... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...
Communication Breakdown: The Impact of Ageing on Synapse Structure
Petralia, Ronald S.; Mattson, Mark P.; Yao, Pamela J.
2014-01-01
Impaired synaptic plasticity is implicated in the functional decline of the nervous system associated with ageing. Understanding the structure of ageing synapses is essential to understanding the functions of these synapses and their role in the ageing nervous system. In this review, we summarize studies on ageing synapses in vertebrates and invertebrates, focusing on changes in morphology and ultrastructure. We cover different parts of the nervous system, including the brain, the retina, the cochlea, and the neuromuscular junction. The morphological characteristics of aged synapses could shed light on the underlying molecular changes and their functional consequences. PMID:24495392
Cross-education of strength and skill: an old idea with applications in the aging nervous system.
Barss, Trevor S; Pearcey, Gregory E P; Zehr, E Paul
2016-03-01
Edward Wheeler Scripture's 1894 work out of the Yale Psychological Laboratory has been influential in identifying the nervous system's contribution to the bilateral improvements that are seen with unilateral strength and skill training. Scripture coined the term "cross-education" to describe this improvement in the untrained contralateral limb. While physiological changes accompany aging that may negatively affect the performance of physical tasks, far too much credit has been given to the natural aging process rather than the effects of inactivity. Emerging evidence indicates strength or skill training interventions induce significant neuroplasticity in an aging population. The model of unilateral training provides a unique approach in which to elicit such plasticity. This brief review highlights the innate ability of the nervous system to adapt to unilateral strength and skill training interventions, regardless of age, and provides a novel perspective on the robust plastic ability of the aging nervous system.
Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.
Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica
2012-06-27
Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.
Neurite Sprouting and Synapse Deterioration in the Aging C. elegans Nervous System
Toth, Marton; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A.; Bhanot, Gyan; Rongo, Chris; Hall, David H
2012-01-01
C. elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: 1) accumulation of novel outgrowths from specific neurons, and 2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a dimunition of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies. PMID:22745480
The Role of Oxidative Stress in Nervous System Aging
Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.
2013-01-01
While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146
The role of oxidative stress in nervous system aging.
Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L
2013-01-01
While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.
Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.
Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee
2016-03-01
Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract.
Balu, Muthaiya; Sangeetha, Purushotham; Haripriya, Dayalan; Panneerselvam, Chinnakannu
2005-08-05
Oxidative stress is considered as a major risk factor that contributes to age-related increase in lipid peroxidation and declined antioxidants in the central nervous system during aging. Grape seed extract, one of the bioflavonoid, is widely used for its medicinal properties. In the present study, we evaluated the role of grape seed extract on lipid peroxidation and antioxidant status in discrete regions of the central nervous system of young and aged rats. Male albino rats of Wistar strain were divided into four groups: Group I-control young rats, Group II-young rats treated with grape seed extract (100 mg/kg body weight) for 30 days, Group III-aged control rats and Group IV-aged rats supplemented with grape seed extract (100 mg/kg body weight) for 30 days. Age-associated increase in lipid peroxidation was observed in the spinal cord, cerebral cortex, striatum and the hippocampus regions of aged rats (Group III). Activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and levels of non-enzymic antioxidants like reduced glutathione, Vitamin C and Vitamin E were found to be significantly decreased in all the brain regions studied in aged rats when compared to young rats. However, normalized lipid peroxidation and antioxidant defenses were reported in the grape seed extract-supplemented aged rats. These findings demonstrated that grape seed extract enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in the central nervous system of aged rats.
Behavioral neuroscience of emotion in aging.
Kaszniak, Alfred W; Menchola, Marisa
2012-01-01
Recent research on emotion and aging has revealed a stability of emotional experience from adulthood to older age, despite aging-related decrements in the perception and categorization of emotionally relevant stimuli. Research also shows that emotional expression remains intact with aging. In contrast, other studies provide evidence for an age-related decrease in autonomic nervous system physiological arousal, particularly in response to emotionally negative stimuli, and for shifts in central nervous system physiologic response to emotional stimuli, with increased prefrontal cortex activation and decreased amygdala activation in aging. Research on attention and memory for emotional information supports a decreased processing of negative emotional stimuli (i.e., a decrease in the negativity effect seen in younger adults), and a relative increase in the processing of emotionally positive stimuli (positivity effect). These physiological response and attentional/memory preference differences across increasingly older groups have been interpreted, within socioemotional selectivity theory, as reflecting greater motivation for emotion regulation with aging. According to this theory, as persons age, their perceived future time horizon shrinks, and a greater value is placed upon cultivating close, familiar, and meaningful relationships and other situations that give rise to positive emotional experience, and avoiding, or shifting attention from, those people and situations that are likely to elicit negative emotion. Even though there are central nervous system structural changes in emotion-relevant brain regions with aging, this shift in socioemotional selectivity, and perhaps the decreased autonomic nervous system physiological arousal of emotion with aging, facilitate enhanced emotion regulation with aging.
Brain and nervous system (image)
The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...
Risk of central nervous system defects in offspring of women with and without mental illness.
Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie
2018-02-22
We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.
Association between number of siblings and nervous system tumors suggests an infectious etiology.
Altieri, Andrea; Castro, Felipe; Bermejo, Justo Lorenzo; Hemminki, Kari
2006-12-12
To estimate the effect of the number of siblings on the risk of histopathologic subtypes of tumors of the nervous system using large population-based data. The Swedish Family-Cancer Database comprises 13,613 diagnoses of nervous system tumors with histopathologic information. We analyzed the data using Poisson regression models taking into account potential confounding effects of age, birth cohort, socioeconomic status, and family history of cancer. The rate ratios (RR) for having four or more siblings vs none were significantly increased for hemangioblastoma (RR = 1.68), childhood neuroblastoma (RR = 2.01), and ependymoma (RR = 1.83, p trend < 0.01). For age at diagnosis < or =15 years, the RRs for individuals with three or more younger siblings compared to none were 1.34 for astrocytoma, 2.30 for medulloblastoma, 2.61 for ependymoma, 3.71 for meningioma, and 2.13 for neuroblastoma, with significant trends in risk. Non-significant decreased risks were found between the number of older siblings and nervous system tumors. We provide the first reliable quantification of the effects of number of siblings on the risk of nervous system tumors. Sibship size and number of younger siblings correlate with the incidence of childhood nervous system tumors, suggesting a role of infectious agents in the etiology of the disease.
Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio
2015-01-01
Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans. Copyright © 2014 Elsevier B.V. All rights reserved.
Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F
2014-03-01
We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.
Roshina, Natalia V; Symonenko, Alexander V; Krementsova, Anna V; Trostnikov, Mikhail V; Pasyukova, Elena G
2014-12-01
Despite the progress in aging research that highlights the role of the nervous system in longevity, whether genes that control development and consequently structure of the nervous system affect lifespan is unclear. We demonstrated that a mutation inshuttle craft, a gene involved in the nervous system development, increased the lifespan of unmated females and decreased the lifespan of mated females, without affecting males. Precise reversions of the mutation lead to the restoration of the lifespan specific to control females. In mutant unmated females, increased lifespan was associated with elevated locomotion at older ages, indicating slowed aging. In mutant mated females, reproduction was decreased compared to controls, indicating a lack of tradeoff between this trait and lifespan. No differences in shuttle craft transcription were observed between whole bodies, ovaries, and brains of mutant and control females of different ages, either unmated or mated. The amount of shuttle craft transcript appeared to be substantially decreased in mutant embryos. Our results demonstrated that a gene that regulates development of the nervous system might also influence longevity, and thus expanded the spectrum of genes involved in lifespan control. We hypothesize that this "carry-over" effect might be the result of transcription regulation in embryos.
Alkon, Abbey; Boyce, W. Thomas; Tran, Linh; Harley, Kim G.; Neuhaus, John; Eskenazi, Brenda
2014-01-01
The purpose of the study was to determine whether mothers’ adversities experienced during early pregnancy are associated with offspring’s autonomic nervous system (ANS) reactivity trajectories from 6 months to 5 years of age. This cohort study of primarily Latino families included maternal interviews at 13–14 weeks gestation about their experience of a range of adversities: father’s absence, general social support, poverty level, and household density. ANS measures of heart rate, respiratory sinus arrhythmia (parasympathetic nervous system) and preejection period (sympathetic nervous system) were collected during resting and challenging conditions on children at 6 months and 1, 3.5 and 5 years of age. Reactivity measures were calculated as the mean of the responses to challenging conditions minus a resting condition. Fixed effects models were conducted for the 212 children with two or more timepoints of ANS measures. Interactions between maternal prenatal adversity levels and child age at time of ANS protocol were included in the models, allowing the calculation of separate trajectories or slopes for each level of adversity. Results showed no significant relations between mothers’ prenatal socioeconomic or social support adversity and offspring’s parasympathetic nervous system trajectories, but there was a statistically significant relationship between social support adversity and offspring’s heart rate trajectories (p<.05) and a borderline significant relationship between socioeconomic adversity and offspring’s sympathetic nervous system trajectories (p = .05). Children whose mothers experienced one, not two, social support adversity had the smallest increases in heart rate reactivity compared to children whose mothers experienced no adversity. The children whose mothers experienced no social support and no socioeconomic adversity had the largest increases in heart rate and preejection period respectively from 6 months to 5 years showing the most plasticity. Mothers’ prenatal adverse experiences may program their children’s physiologic trajectory to dampen their heart rate or sympathetic responsivity to challenging conditions. PMID:24466003
The cardiovascular system in the ageing patient
Moore, A; Mangoni, A A; Lyons, D; Jackson, S H D
2003-01-01
The ageing process is associated with important changes in the responses of the cardiovascular system to pharmacological stimuli. They are not limited to the arterial system, involved in the modulation of cardiac afterload and vascular resistance, but they also involve the low-resistance capacitance venous system and the heart. The main changes include loss of large artery compliance, dysfunction of some of the systems modulating resistance vessel tone, increased activity of the sympathetic nervous system, and reduced haemodynamic responses to inotropic agents. This review focuses on the effects of ageing on arterial and venous reactivity to drugs and hormones, the autonomic nervous system, and the cardiovascular responses to inotropic agents. Some of the age-related changes might be at least partially reversible. This may have important therapeutic implications. PMID:12919173
APOPTOSIS DURING DEVELOPMENT AND AGING AND IN RESPONSE TO MERCURY EXPOSURE.
In the central nervous system from embryogenesis through senescence, cell number is regulated, in part, by apoptosis. Each region of the nervous system has a characteristic temporal pattern of programmed cell death, which includes far greater numbers of cells undergoing apop...
Impact of aging immune system on neurodegeneration and potential immunotherapies.
Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong
2017-10-01
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Desplan, Claude
2016-01-01
Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003
[Molecular genetics of familial tumour syndromes of the central nervous system].
Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor
2015-02-01
Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.
The susceptibility of the developing nervous system to damage following exposure to environmental contaminants is believed to be based upon the critical nature of the organizational events that occur in both a regionally- and temporally-dependent manner. The age-related susceptib...
Caloric restriction and intermittent fasting: Two potential diets for successful brain aging
Martin, Bronwen; Mattson, Mark P.; Maudsley, Stuart
2008-01-01
The vulnerability of the nervous system to advancing age is all too often manifest in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review article we describe evidence suggesting that two dietary interventions, caloric restriction (CR) and intermittent fasting (IF), can prolong the health-span of the nervous system by impinging upon fundamental metabolic and cellular signaling pathways that regulate life-span. CR and IF affect energy and oxygen radical metabolism, and cellular stress response systems, in ways that protect neurons against genetic and environmental factors to which they would otherwise succumb during aging. There are multiple interactive pathways and molecular mechanisms by which CR and IF benefit neurons including those involving insulin-like signaling, FoxO transcription factors, sirtuins and peroxisome proliferator-activated receptors. These pathways stimulate the production of protein chaperones, neurotrophic factors and antioxidant enzymes, all of which help cells cope with stress and resist disease. A better understanding of the impact of CR and IF on the aging nervous system will likely lead to novel approaches for preventing and treating neurodegenerative disorders. PMID:16899414
Exploring violence against women and adverse health outcomes in middle age to promote women's health
USDA-ARS?s Scientific Manuscript database
A history of intimate partner violence (IPV) is linked to cardiovascular disorders among women. Static autonomic nervous system (ANS) imbalance may result from chronic stress associated with exposure to IPV. Autonomic nervous system imbalance is associated with an excessive proinflammatory response ...
Anaya-Delgadillo, Gustavo; de Juambelz-Cisneros, Pedro Pablo; Fernández-Alvarado, Basilio; Pazos-Gómez, Fernando; Velasco-Torre, Andrea; Revuelta-Gutiérrez, Rogelio
Central nervous system tumours comprise a heterogeneous group of neoplasms with great histological diversity. Despite the rising prevalence of these tumours in developing countries, some places like Mexico and Latin America have no representative studies that show the real impact of these tumours in our population. To describe the characteristics of the primary and secondary tumours of the central nervous system in the last 20 years in a Mexican institution. Patients with histopathological diagnosis from 1993 to 2013 in our institution, grouping them according to WHO classification 2007, characterising them by age group, gender, and anatomical location. There were a total of 511 tumours of the central nervous system. Of those, 292 were women and 219 men, with a ratio 1.3: 1, and a mean age of 49.3 years. Tumours with higher prevalence were: Meningeal tumours, 171 (33%), followed by neuroepithelial, 121 (24%). Astrocytoma had the highest prevalence in paediatric patients, whereas in those older than 20 years it was the meningioma. The supratentorial location was the most involved. This is the first study of a series of cases in Mexico that is performed by taking into account benign and malignant tumours of the central nervous system, with patients of all age groups with a range of 20 years. While this work only represents a retrospective analysis of an institution, it can be a strong indication of the epidemiology of these tumours in our environment. Copyright © 2016. Publicado por Masson Doyma México S.A.
USDA-ARS?s Scientific Manuscript database
Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...
Diagnostic Challenges of Central Nervous System Tuberculosis
Loeffler, Ann M.; Honarmand, Somayeh; Flood, Jennifer M.; Baxter, Roger; Jacobson, Susan; Alexander, Rick; Glaser, Carol A.
2008-01-01
Central nervous system tuberculosis (TB) was identified in 20 cases of unexplained encephalitis referred to the California Encephalitis Project. Atypical features (encephalitic symptoms, rapid onset, age) and diagnostic challenges (insensitive cerebrospinal fluid [CSF] TB PCR result, elevated CSF glucose levels in patients with diabetes, negative result for tuberculin skin test) complicated diagnosis. PMID:18760024
Nakamoto, M
1990-01-01
Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.
Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects
Darwazeh, Rami; Yan, Yi
2013-01-01
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. PMID:25206579
Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.
Darwazeh, Rami; Yan, Yi
2013-10-05
Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.
Chitty, Kate M; Evans, Elizabeth; Torr, Jennifer J; Iacono, Teresa; Brodaty, Henry; Sachdev, Perminder; Trollor, Julian N
2016-04-01
Information on the rates and predictors of polypharmacy of central nervous system medication in older people with intellectual disability is limited, despite the increased life expectancy of this group. This study examined central nervous system medication use in an older sample of people with intellectual disability. Data regarding demographics, psychiatric diagnoses and current medications were collected as part of a larger survey completed by carers of people with intellectual disability over the age of 40 years. Recruitment occurred predominantly via disability services across different urban and rural locations in New South Wales and Victoria. Medications were coded according to the Monthly Index of Medical Specialties central nervous system medication categories, including sedatives/hypnotics, anti-anxiety agents, antipsychotics, antidepressants, central nervous system stimulants, movement disorder medications and anticonvulsants. The Developmental Behaviour Checklist for Adults was used to assess behaviour. Data were available for 114 people with intellectual disability. In all, 62.3% of the sample was prescribed a central nervous system medication, with 47.4% taking more than one. Of those who were medicated, 46.5% had a neurological diagnosis (a seizure disorder or Parkinson's disease) and 45.1% had a psychiatric diagnosis (an affective or psychotic disorder). Linear regression revealed that polypharmacy was predicted by the presence of neurological and psychiatric diagnosis, higher Developmental Behaviour Checklist for Adults scores and male gender. This study is the first to focus on central nervous system medication in an older sample with intellectual disability. The findings are in line with the wider literature in younger people, showing a high degree of prescription and polypharmacy. Within the sample, there seems to be adequate rationale for central nervous system medication prescription. Although these data do not indicate non-adherence to guidelines for prescribing in intellectual disability, the high rate of polypharmacy and its relationship to Developmental Behaviour Checklist for Adults scores reiterate the importance of continued medication review in older people with intellectual disability. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir
2012-01-01
To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.
Classification of neural tumors in laboratory rodents, emphasizing the rat.
Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D
2011-01-01
Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.
Fanconi anemia: correlating central nervous system malformations and genetic complementation groups.
Johnson-Tesch, Benjamin A; Gawande, Rakhee S; Zhang, Lei; MacMillan, Margaret L; Nascene, David R
2017-06-01
Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations.
Combined central diabetes insipidus and cerebral salt wasting syndrome in children.
Lin, Jainn-Jim; Lin, Kuang-Lin; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong
2009-02-01
Central diabetes insipidus, a common consequence of acute central nervous system injury, causes hypernatremia; cerebral salt wasting syndrome can cause hyponatremia. The two conditions occurring simultaneous are rarely described in pediatric patients. Pediatric cases of combined diabetes insipidus and cerebral salt wasting after acute central nervous system injury between January 2000 and December 2007 were retrospectively reviewed, and clinical characteristics were systemically assessed. Sixteen patients, aged 3 months to 18 years, met study criteria: 11 girls and 5 boys. The most common etiologies were severe central nervous system infection (n = 7, 44%) and hypoxic-ischemic event (n = 4, 25%). In 15 patients, diabetes insipidus was diagnosed during the first 3 days after acute central nervous system injury. Onset of cerebral salt wasting syndrome occurred 2-8 days after the onset of diabetes insipidus. In terms of outcome, 13 patients died (81%) and 3 survived under vegetative status (19%). Central diabetes insipidus and cerebral salt wasting syndrome may occur after acute central nervous system injury. A combination of both may impede accurate diagnosis. Proper differential diagnoses are critical, because the treatment strategy for each entity is different.
Bellil, Salma; Limaiem, Faten; Mahfoudhi, Houaïda; Bellil, Khadija; Chelly, Inès; Mekni, Amina; Jemel, Hafedh; Khaldi, Moncef; Haouet, Slim; Zitouna, Moncef; Kchir, Nidhameddine
2008-01-01
Central nervous system tumours represent 20% of all childhood cancers, and are the second most common group of neoplasms after leukaemias. To describe epidemiological characteristics of central nervous system tumours in a paediatric Tunisian population. A retrospective study of 492 childhood central nervous system tumours operated between 1990 and 2004 was undertaken. We investigated the age-related location, gender distribution and the histology of all tumours, and adopted the latest WHO classification (2007) in grouping all the tumours. There were 488 primary and 4 secondary tumours; 426 (86.6%) were intracranial and 66 (13.4%) were intraspinal. Of the 426 intracranial tumours, 214 (50.24%) were supratentorial and 212 (49.76%) were infratentorial. The median age at diagnosis was 8 years, with a male:female ratio of 1.14:1. Low-grade tumours (WHO I/II) constituted 67.3% of all lesions and the rest (32.7%) were high-grade tumours (WHO III/IV). The most common tumour found in our series was astrocytoma (38%), followed by medulloblastoma (16.2%), then ependymoma (6.9%), cystic tumours (6.3%) and craniopharyngioma (5.3%). The overall 5-year survival rate was 45% with a mean follow-up period of 36 months. In our patient population, the incidence and distribution of central nervous system tumours were similar to those reported in literature. Overall survival rates varied according to tumour location and histopathology. (c) 2008 S. Karger AG, Basel.
Cellular changes in the enteric nervous system during ageing.
Saffrey, M Jill
2013-10-01
The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable functional reserve. © 2013 Elsevier Inc. All rights reserved.
Drozdovski, Aleksandr K
2015-01-01
Based on experimental studies in education, professions and sports, an attempt was made to combine the following two historically disconnected research directions in the study of the natural human traits into a single coordinate system: Pavlov’s theory on the properties of the nervous system, as well as the types of higher nervous activity, and Jung’s theory on psychological types. It is noted that Pavlov’s school of thought was developed by his followers in Russia within the scientific school of differential psychophysiology, while Yung’s theory was developed through the works of well-known American researchers Myers and Keirsey. The spatial model that is presented here rests on the knowledge of the properties of the human nervous system and enables the prediction of psychological characteristics, temperament, and psychological types of individuals belonging to a wide age range. PMID:26056499
Pío del Río-Hortega: A Visionary in the Pathology of Central Nervous System Tumors
Ramon y Cajal Agüeras, Santiago
2016-01-01
The last 140 years have seen considerable advances in knowledge of central nervous system tumors. However, the main tumor types had already been described during the early years of the twentieth century. The studies of Dr. Pío del Río Hortega have been ones of the most exhaustive histology and cytology-based studies of nervous system tumors. Río Hortega's work was performed using silver staining methods, which require a high level of practical skill and were therefore difficult to standardize. His technical aptitude and interest in nervous system tumors played a key role in the establishment of his classification, which was based on cell lineage and embryonic development. Río Hortega's approach was controversial when he proposed it. Current classifications are not only based on cell type and embryonic lineage, as well as on clinical characteristics, anatomical site, and age. PMID:26973470
[Health status and fitness of the young men for military service].
Korenev, N M; Bulaga, L P; Komlik, P V; Nemirova, O A; Kalmykov, K K; Sidorenko, T P
2002-01-01
Submitted in the article are medical causes of unfitness of those men called up for military service in peace-time. These include psychic dysfunctions (22%), traumata (18.5%), disorders of the nervous system and sensory organs (14.5%), of the osteomuscular system and connective tissue (13.3%), digestive diseases (8.6%). Mental disorders, those of the nervous system and sensory organs, the endocrine system and digestive organs rank first among causes of striking the serviceman off the register, coming up to 40.9%, 31.2%, and 6.8% respectively. Age has been established at which disease manifestations causing unfitness for military service come to reveal themselves: in 58.4 percent of registrants the above manifestations were first diagnosed in childhood, in 5.4 percent--at 16 to 17 years of age, in 36.2 percent--at call-up age.
Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.
Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma
2014-01-01
Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.
Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui
2017-08-01
Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti-oxidant capacity. These findings provide a theoretical basis to further the anti-aging mechanism of EPO in the nervous system, and they provide experimental evidence at the cellular level for the clinical application of EPO to protect the nervous system from aging.
ERIC Educational Resources Information Center
Thorne, John C.
2017-01-01
Purpose: The purpose of this study was to examine (a) whether increased grammatical error rates during a standardized narrative task are a more clinically useful marker of central nervous system abnormality in Fetal Alcohol Spectrum Disorders (FASD) than common measures of productivity or grammatical complexity and (b) whether combining the rate…
Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica.
Kempsell, Andrew T; Fieber, Lynne A
2015-01-01
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.
Neural Control of the Circulation: How Sex and Age Differences Interact in Humans
Joyner, Michael J.; Barnes, Jill N.; Hart, Emma C.; Wallin, B. Gunnar; Charkoudian, Nisha
2015-01-01
The autonomic nervous system is a key regulator of cardiovascular system. In this review we focus on how sex and aging influence autonomic regulation of blood pressure in humans in an effort to understand general issues related to how the autonomic nervous system regulates blood pressure, and the cardiovascular system as a whole. Younger women generally have lower blood pressure and sympathetic activity than younger men. However, both sexes show marked inter-individual variability across age groups with significant overlap seen. Additionally, while men across the lifespan show a clear relationship between markers of whole body sympathetic activity and vascular resistance, such a relationship is not seen in young women. In this context, the ability of the sympathetic nerves to evoke vasoconstriction is lower in young women likely as a result of concurrent β2 mediated vasodilation that offsets α-adrenergic vasoconstriction. These differences reflect both central sympatho-inhibitory effects of estrogen and also its influence on peripheral vasodilation at the level of the vascular smooth muscle and endothelium. By contrast post-menopausal women show a clear relationship between markers of whole body sympathetic traffic and vascular resistance, and sympathetic activity rises progressively in both sexes with aging. These central findings in humans are discussed in the context of differences in population-based trends in blood pressure and orthostatic intolerance. The many areas where there is little sex-specific data on how the autonomic nervous system participates in the regulation of the human cardiovascular system are highlighted. PMID:25589269
[Signs and symptoms of autonomic dysfunction in dysphonic individuals].
Park, Kelly; Behlau, Mara
2011-01-01
To verify the occurrence of signs and symptoms of autonomic nervous system dysfunction in individuals with behavioral dysphonia, and to compare it with the results obtained by individuals without vocal complaints. Participants were 128 adult individuals with ages between 14 and 74 years, divided into two groups: behavioral dysphonia (61 subjects) and without vocal complaints (67 subjects). It was administered the Protocol of Autonomic Dysfunction, containing 46 questions: 22 related to the autonomic nervous system and had no direct relationship with voice, 16 related to both autonomic nervous system and voice, six non-relevant questions, and two reliability questions. There was a higher occurrence of reported neurovegetative signs in the group with behavioral dysphonia, in questions related to voice, such as frequent throat clearing, frequent swallowing need, fatigability when speaking, and sore throat. In questions not directly related to voice, dysphonic individuals presented greater occurrence of three out of 22 symptoms: gas, tinnitus and aerophagia. Both groups presented similar results in questions non-relevant to the autonomic nervous system. Reliability questions needed reformulation. Individuals with behavioral dysphonia present higher occurrence of neurovegetative signs and symptoms, particularly those with direct relationship with voice, indicating greater lability of the autonomic nervous system in these subjects.
Autonomic nervous system activity of preschool-age children who stutter
Jones, Robin M.; Buhr, Anthony P.; Conture, Edward G.; Tumanova, Victoria; Walden, Tedra A.; Porges, Stephen W.
2014-01-01
Purpose The purpose of this study was to investigate potential differences in autonomic nervous system (ANS) activity to emotional stimuli between preschool-age children who do (CWS) and do not stutter (CWNS). Methods Participants were 20 preschool-age CWS (15 male) and 21 preschool-age CWNS (11 male). Participants were exposed to two emotion-inducing video clips (negative and positive) with neutral clips used to establish pre-and post-arousal baselines, and followed by age-appropriate speaking tasks. Respiratory sinus arrhythmia (RSA) – often used as an index of parasympathetic activity – and skin conductance level (SCL) – often used as an index of sympathetic activity – were measured while participants listened to/watched the audio-video clip presentation and performed a speaking task. Results CWS, compared to CWNS, displayed lower amplitude RSA at baseline and higher SCL during a speaking task following the positive, compared to the negative, condition. During speaking, only CWS had a significant positive relation between RSA and SCL. Conclusion Present findings suggest that preschool-age CWS, when compared to their normally fluent peers, have a physiological state that is characterized by a greater vulnerability to emotional reactivity (i.e., lower RSA indexing less parasympathetic tone) and a greater mobilization of resources in support of emotional reactivity (i.e., higher SCL indexing more sympathetic activity) during positive conditions. Thus, while reducing stuttering to a pure physiological process is unwarranted, the present findings suggest that parasympathetic and sympathetic nervous system activity is involved. PMID:25087166
The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence
Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.
2015-01-01
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640
Diagnostic value of creatine kinase activity in canine cerebrospinal fluid.
Ferreira, Alexandra
2016-10-01
This study aimed to determine whether creatine kinase (CK) activity in cerebrospinal fluid (CSF) has diagnostic value for various groups of neurological conditions or for different anatomical areas of the nervous system (NS). The age, breed, results of CSF analysis, and diagnosis of 578 canine patients presenting with various neurological conditions between January 2009 and February 2015 were retrospectively collected. The cases were divided according to anatomical areas of the nervous system, i.e., brain, spinal cord, and peripheral nervous system, and into groups according to the nature of the condition diagnosed: vascular, immune/inflammatory/infectious, traumatic, toxic, anomalous, metabolic, idiopathic, neoplastic, and degenerative. Statistical analysis showed that CSF-CK alone cannot be used as a diagnostic tool and that total proteins in the CSF and red blood cells (RBCs) do not have a significant relationship with the CSF-CK activity. CSF-CK did not have a diagnostic value for different disease groups or anatomical areas of the nervous system.
Adel Fahmideh, Maral; Tettamanti, Giorgio; Lavebratt, Catharina; Talbäck, Mats; Mathiesen, Tiit; Lannering, Birgitta; Johnson, Kimberly J; Feychting, Maria
2018-01-01
Purpose Phacomatoses are genetic syndromes that are associated with increased risk of developing nervous system tumors. Phacomatoses are usually inherited, but many develop de novo, with unknown etiology. In this population-based study, we investigated the effect of parental age on the risk of phacomatoses in offspring. Patients and methods The study was a population-based nested case–control study. All individuals born and residing in Sweden between January 1960 and December 2010 were eligible for inclusion. Using the Patient Register, 4625 phacomatosis cases were identified and further classified as familial or nonfamilial. Ten matched controls per case were randomly selected from the eligible population. Data were analyzed using conditional logistic regression. Analyses were conducted for neurofibromatosis alone (n=2089) and other phacomatoses combined (n=2536). Results Compared with offspring of fathers aged 25–29 years, increased risk estimates of nonfamilial neurofibromatosis were found for offspring of fathers aged 35–39 years (odds ratio [OR]=1.43 [95% CI 1.16–1.74]) and ≥40 years (OR =1.74 [95% CI 1.38–2.19]). For other nonfamilial phacomatoses, the risk estimate for offspring of fathers aged ≥40 years was OR =1.23 (95% CI 1.01–1.50). Paternal age was not associated with familial phacomatoses, and no consistent association was observed with maternal age. Conclusion The findings show a consistent increase in risk of de novo occurrence of phacomatoses predisposing to nervous system tumors in offspring with increasing paternal age, most pronounced for neurofibromatosis, while maternal age did not seem to influence the risk. These findings suggest an increasing rate of new mutations in the NF1 and NF2 genes in spermatozoa of older fathers.
Gajek, Jacek; Zyśko, Dorota
2002-12-01
Sympathetic nervous system may play an important role in development and maintenance of hypertension. Its activity can be assessed by plasma levels of catecholamines, neuropeptide Y (NPY) and adrenergic receptor density. Hypertensive subjects may be more prone to reveal overactivity of sympathetic nervous system, for instance as a result of physical stress. The aim of the study was to determine the activity of sympathetic nervous system in young patients with newly recognized, untreated mild hypertension. The study was carried out in 22 patients (age 38.5 +/- 10.3 years) and 20 normotensive volunteers (age 38.5 +/- 8.6 years) as a control group, matched for sex. Density of alpha 2- and beta-adrenergic receptors using 3H-yohimbine and 125I-cyanopindolol respectively, total catecholamines and plasma renin activity using radioenzymatic assay, neuropeptide Y and aldosterone using radioimmunoassay were assessed in the blood taken in the supine position and after moderate bicycle ergometer exercise. Plasma concentration of NPY at rest did not differ between the groups, but increased significantly after exercise and was greater in hypertensive patients (p < 0.05). The density of alpha 2- and beta-adrenergic receptors at rest and after exercise in hypertensive subjects was unchanged when comparing to healthy individuals. The plasma concentrations of endogenous catecholamines, plasma renin activity and aldosterone level increase during exercise in both studied groups (p < 0.05). Aldosterone level was higher in hypertensive patients at rest (p < 0.05). There was a negative correlation between baseline aldosterone and NPY levels in hypertensive patients (r = -0.44, p < 0.05). Moderate exercise in hypertensive subjects causes the hyperactivity of sympathetic nervous system expressed as increase of NPY plasma level.
[Hereditary cerebro-oculo-renal syndromes].
Sessa, Galina; Hjortshøj, Tina Duelund; Egfjord, Martin
2014-02-17
Although many congenital diseases present disturbances of the central nervous system, eyes and renal function, only few of these have a defined genetic basis. The first clinical features of cerebro-oculo-renal diseases usually develop in early childhood and deterioration of kidney function and even end-stage kidney disease may occur in a young age. The syndromes should be considered in patients with retarded growth and development, central nervous system abnormalities, impaired vision or blindness and progressive renal failure.
Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.
Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S
2003-09-01
To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chronic recurrent subarachnoidal hemorrhage with bleeding into the cerebrospinal fluid is the cause of deposition of hemosiderin in leptomeningeal and subpial tissue, cranial nerves, and spinal cord. Removing the cause of bleeding can prevent irreversible damage to these structures. Because this is the only effective treatment, an early diagnosis is crucial. Retrospective case review. Tertiary referral center. A 72-year-old woman with superficial hemosiderosis of the central nervous system that developed when she was age 39. Neurologic and imaging diagnostic examinations and longitudinal evaluation of cochleovestibular features were performed. Neurosurgery was not performed. Progressive bilateral sensorineural hearing loss and severe vestibular hyporeflexia developed within 15 years, which can be attributed to lesions in the cochleovestibular system. Additional pathology of the central nervous system developed later. The patient demonstrated cochlear and vestibular findings that are typical of this pathologic condition. It is the first documented case with extensive serial audiometry used to precisely outline the degree of hearing deterioration during the course of the disease.
[Gender and age dependent mortality from nervous diseases in Azerbaijan].
Mamedbeyli, A K
2015-01-01
To assess age- and sex-related changes in the mortality from nervous diseases at the population level. Methods of descriptive statistics and analysis of qualitative traits were applied. We analyzed 13580 medical certificates of cause of death from nervous diseases (all classes of ICD-10). The mortality rate varied with age, the main trend of which was the dynamic growth. Age-specific mortality rates for men and women differed from each other: in most ages (20-24, 30-34, 45-49, 50-54, 55-59, 65-69), the likelihood of mortality was higher in men, and at the age of 5-9, 15-19, 60-64, 70 and more years in women. After the standardization of gender differences by age, the mortality risk of nervous illnesses disappeared (146.74 and 144.16 per 100 thousand for men and women, respectively). There were significant differences in the proportion of nervous diseases of all-cause mortality among the population in the groups stratified by age and sex. It is believed that situational factors is a cause of actual prevailing of gender age- and sex-related mortality risks. Gender features of age-related risk of mortality from nervous diseases are characterized by the multidirectional dynamics of likelihood of mortality and specific weight of nervous diseases among all causes of mortality. The actual gender features of age-related risk of mortality from nervous diseases are generally caused by situational factors (different age structure and unequal level of the general mortality among male and female population) which disappear after standardization.
Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori
2011-01-01
We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system.
UNDERNUTRITION IN EARLY LIFE DOES NOT IMPAIR LEARNING IN YOUNG OR AGING RATS.
Prenatal undernutrition is associated with increased incidence of obesity, heart disease, diabetes. Effects of pre- and post-natal undernutrition on nervous system function in middle-aged and aging male SD rats were examined. Intrauterine growth retardation (IUGR) was induced by ...
Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging.
Coder, Brandon; Wang, Weikan; Wang, Liefeng; Wu, Zhongdao; Zhuge, Qichuan; Su, Dong-Ming
2017-01-24
The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and "protective autoimmunity" provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the "thymus-inflammaging-neurodegeneration axis".
Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging
Wang, Liefeng; Wu, Zhongdao; Zhuge, Qichuan; Su, Dong-Ming
2017-01-01
The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and “protective autoimmunity” provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the “thymus-inflammaging-neurodegeneration axis”. PMID:27738345
Litvintsev, B S; Odinak, M M; Kovalenko, A P; Efimtsev, A Iu; Tarumov, D A; Petrov, A D; Lisianskiĭ, D A
2014-08-01
Authors examined 60 female and male patients (average age 25.8±2.7 years) with confirmed diagnosis - drug abuse. Average duration of drug abuse was approximately 9±3.3 years. At the moment of examination patients had been fully in remission for 3 weeks. The following non-invasive procedures were undertaken: stimulation electroneuromyogrphy and brain MRI. Received results showed that drug abuse leads to diffuse lesion of the nervous system, which manifests itself as vegetative disorders, scattered neurological symptoms, polyneuropathy. Authors gave recommendations in the field of military examination with the aim of detection of nervous disorders caused by drug abuse.
A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system
Bateman, Randall J.; Siemers, Eric R.; Mawuenyega, Kwasi G.; Wen, Guolin; Browning, Karen R.; Sigurdson, Wendy C.; Yarasheski, Kevin E.; Friedrich, Stuart W.; DeMattos, Ronald B.; May, Patrick C.; Paul, Steven M.; Holtzman, David M.
2009-01-01
Objective Accumulation of amyloid-β (Aβ) by over-production or under-clearance in the central nervous system is hypothesized to be a necessary event in the pathogenesis of Alzheimer Disease. However, previously there has not been a method to determine drug effects on Aβ production or clearance in the human central nervous system. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Aβ in the human CNS. Methods We utilized a recently developed method of stable-isotope labeling combined with cerebrospinal fluid sampling to directly measure Aβ production during treatment of a gamma-secretase inhibitor, LY450139. We assessed whether this drug could decrease central nervous system Aβ production in healthy men (age 21–50) at single oral doses of 100mg, 140mg, or 280mg (N=5 per group). Results LY450139 significantly decreased the production of central nervous system Aβ in a dose-dependent fashion, with inhibition of Aβ generation of 47%, 52%, and 84% over a 12 hour period with doses of 100 mg, 140, and 280 mg respectively. There was no difference in Aβ clearance. Interpretation Stable isotope labeling of central nervous system proteins can be utilized to assess the effects of drugs on the production and clearance rates of proteins targeted as potential disease modifying treatments for Alzheimer Disease and other central nervous system disorders. Results from this approach can assist in making decisions about drug dosing and frequency in the design of larger and longer clinical trials for diseases such as Alzheimer Disease, and may accelerate effective drug validation. PMID:19360898
Łacka, Katarzyna; Florczak, Jolanta; Gradecka-Kubik, Ilona; Rajewska, Justyna; Junik, Roman
2010-03-01
Lack of thyroid hormones in the womb and the first years of life causes changes in the nervous system and mental retardation. The aim of the study was to assess changes in peripheral and central nervous system in 29 adult patients with primary congenital hypothyroidism (PCH) depending on the cause of the disease and systematic treatment of L-thyroxine. The analysis was performed in 29 adult patients with PCH (16 women, 13 men) on the basis of the results of neurological examination, EEG, SPECT (Computer tomography single photon emission) of the brain. Changes in the nervous system were found in 72% of respondents. Patients who had implemented replacement therapy L-thyroxine after completing 12 months of age showed the most neurological disorders. There were variations in the cranial nerves III, IX, IV and VI. In 34% of respondents revealed paraneoplastic cerebellar symptoms, while the pyramid, and extrapyramidal symptoms in 10% and 3% of the people. EEG showed changes in brain bioelectrical activity in the entire study group. In the 83% found a significant asymmetry in regional cerebral blood flow (rCBF). Hypoperfusion outbreak occurred mainly in the stands and leading occipital. The relationship between time of initiation of treatment, and the presence of a systematic change in the nervous system was inversely proportional. In turn, analyzing the causes of most PCH deviations were found in the nervous system in patients with athyreosis. Brain SPECT study in these patients confirmed the organic changes in brain development. CONCLUSIONS. The presence and extent of changes in peripheral and central nervous system depends on the cause PCH, pending the implementation of L-thyroxine treatment and systematic. Studies of brain SPECT and EEG confirmed the existence of developmental changes of the brain in patients with PCH.
Aras, Yeşim Güzey; Aydemir, Yusuf; Güngen, Belma Doğan; Güngen, Adil Can
2018-01-01
The aim of the study was to investigate the frequency and characteristics of peripheral nervous system (PNS) and central nervous system (CNS) involvement in COPD. The study included 41 COPD patients and 41 healthy volunteers. Electrophysiological studies were carried out: electromyography (EMG) and visual evoked potentials (VEPs). The median nerve, ulnar nerve, common peroneal nerve, and tibial nerve were evaluated for latency, amplitude, and conduction velocity. The mean age of patients with COPD was 61.8 years and disease duration 10.3 years. There was no difference between patient and control groups in terms of age, BMI, smoking status, or biochemical parameters. Upon VEP examination, latencies were significantly prolonged and amplitudes shortened in the patient group compared to the control group. In EMG measurements, conduction velocity and amplitudes in all nerves were low in the patient group. Similarly, latencies in all nerves were higher in patients with COPD. Central and peripheral nervous system involvement could develop in patients with moderate-severe COPD, and these patients should be monitored for neuropathic changes in combination with neurological examination.
NASA Astrophysics Data System (ADS)
Adhikary, Ramkrishna; Bose, Sayantan; Casey, Thomas A.; Gapsch, Al; Rasmussen, Mark A.; Petrich, Jacob W.
2010-02-01
Applications of fluorescence spectroscopy that enable the real-time or rapid detection of fecal contamination on beef carcasses and the presence of central nervous system tissue in meat products are discussed. The former is achieved by employing spectroscopic signatures of chlorophyll metabolites; the latter, by exploiting the characteristic structure and intensity of lipofuscin in central nervous system tissue. The success of these techniques has led us to investigate the possibility of diagnosing scrapie in sheep by obtaining fluorescence spectra of the retina. Crucial to this diagnosis is the ability to obtain baseline correlations of lipofuscin fluorescence with age. A murine model was employed as a proof of principle of this correlation.
Alkon, Abbey; Harley, Kim G; Neilands, Torsten B; Tambellini, Katelyn; Lustig, Robert H; Boyce, W Thomas; Eskenazi, Brenda
2014-06-01
To understand whether the relationship between young children's autonomic nervous system (ANS) responses predicted their BMI, or vice versa, the association between standardized BMI (zBMI) at 2, 3.5, and 5 years of age and ANS reactivity at 3.5-5 years of age, and whether zBMI predicts later ANS reactivity or whether early ANS reactivity predicts later zBMI, was studied. Low-income, primarily Latino children (n=112) were part of a larger cohort study of mothers recruited during early pregnancy. Study measures included maternal prenatal weight, children's health behaviors (i.e., time watching television, fast food consumption, and time playing outdoors), children's height and weight at 2, 3.5, and 5 years, and children's ANS reactivity at 3.5 and 5 years. ANS measures of sympathetic nervous system (i.e., pre-ejection period) and parasympathetic nervous system (i.e., respiratory sinus arrhythmia) activity were monitored during rest and four challenges. Reactivity was calculated as the difference between mean challenge response and rest. Structural equation models analyzed the relationship between children's zBMI at 2, 3.5, and 5 years and ANS reactivity at 3.5 and 5 years, adjusting for mother's BMI, children's behaviors, and changes in height. There was no association between zBMI and ANS cross-sectionally. Children with high zBMI at 2 or 3.5 years or large zBMI increases from 2 to 3.5 years of age had decreased sympathetic activity at 5 years. Neither sympathetic nor parasympathetic reactivity at 3.5 years predicted later zBMI. Increased zBMI early in childhood may dampen young children's SNS responses later in life.
ERIC Educational Resources Information Center
Weible, Aldis P.; Oh, M. Matthew; Lee, Grace; Disterhoft, John F.
2004-01-01
Cholinergic systems are critical to the neural mechanisms mediating learning. Reduced nicotinic cholinergic receptor (nAChR) binding is a hallmark of normal aging. These reductions are markedly more severe in some dementias, such as Alzheimer's disease. Pharmacological central nervous system therapies are a means to ameliorate the cognitive…
The zebrafish as a gerontology model in nervous system aging, disease, and repair.
Van Houcke, Jessie; De Groef, Lies; Dekeyster, Eline; Moons, Lieve
2015-11-01
Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age. Copyright © 2015 Elsevier B.V. All rights reserved.
Defective cholesterol clearance limits remyelination in the aged central nervous system.
Cantuti-Castelvetri, Ludovico; Fitzner, Dirk; Bosch-Queralt, Mar; Weil, Marie-Theres; Su, Minhui; Sen, Paromita; Ruhwedel, Torben; Mitkovski, Miso; Trendelenburg, George; Lütjohann, Dieter; Möbius, Wiebke; Simons, Mikael
2018-02-09
Age-associated decline in regeneration capacity limits the restoration of nervous system functionality after injury. In a model for demyelination, we found that old mice fail to resolve the inflammatory response initiated after myelin damage. Aged phagocytes accumulated excessive amounts of myelin debris, which triggered cholesterol crystal formation and phagolysosomal membrane rupture and stimulated inflammasomes. Myelin debris clearance required cholesterol transporters, including apolipoprotein E. Stimulation of reverse cholesterol transport was sufficient to restore the capacity of old mice to remyelinate lesioned tissue. Thus, cholesterol-rich myelin debris can overwhelm the efflux capacity of phagocytes, resulting in a phase transition of cholesterol into crystals and thereby inducing a maladaptive immune response that impedes tissue regeneration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The Effects of Aging on Motor Performance.
ERIC Educational Resources Information Center
Kleinman, Matthew
A review of research on the effects of aging on motor performance provided evidence that age-induced changes within the central nervous system, particularly in the functioning of the non-dominant cortical hemisphere, result in diminished fluid abilities. The loss was most clearly manifested behaviorally as a decreased capacity to perform…
Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H
2015-08-01
The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.
Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li
2017-01-01
A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN. PMID:28713263
Zhang, Sharon; Ratliff, Eric P.; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W.; Achal, Madhulika; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A.; Macias, Andrew M.; Daugherty, Daniel; Harris, Greg L.; Edwards, Robert A.; Finley, Kim D.
2018-01-01
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system. PMID:29642630
Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D
2018-04-10
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Crivello, Natalia A.; Blusztajn, Jan K.; Joseph, James A.; Shukitt-Hale, Barbara; Smith, Donald E.
2010-01-01
The hypothesis of this study is that a folate-deficient diet (FD) has a greater effect on cholinergic system in the peripheral nervous system than in the brain, and that this effect escalates with age. It was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats fed either control or folate-deficient diets for 10 weeks, starting at age 4 weeks (the young group) or 9 months (the adult group). FD consumption resulted in depletion of plasma folate in both age groups. In young folate-deficient rats, liver and lung choline levels were significantly lower than those in the respective controls. No other significant effects of FD on choline and acetylcholine metabolism were found in young rats. In adult rats, FD consumption markedly decreased choline levels in the liver, kidneys, and heart; furthermore, choline levels in the cortex and striatum were moderately elevated, although hippocampal choline levels were not affected. Acetylcholine levels were higher in the heart, cortex, and striatum but lower in the hippocampus in adult folate-deficient rats, as compared to controls. Higher acetylcholine levels in the striatum in adult folate-deficient rats were also associated with higher dopamine release in the striatal slices. Thus, both age groups showed higher cholinergic metabolic sensitivity to FD in the peripheral nervous system than in the brain. However, compensatory abilities appeared to be better in the young group, implicating the adult group as a preferred model for further investigation of folate-choline-acetylcholine interactions and their role in brain plasticity and cognitive functions. PMID:21056288
Crivello, Natalia A; Blusztajn, Jan K; Joseph, James A; Shukitt-Hale, Barbara; Smith, Donald E
2010-10-01
The hypothesis of this study is that a folate-deficient diet (FD) has a greater effect on cholinergic system in the peripheral nervous system than in the brain, and that this effect escalates with age. It was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats fed either control or folate-deficient diets for 10 weeks, starting at age 4 weeks (the young group) or 9 months (the adult group). Folate-deficient diet consumption resulted in depletion of plasma folate in both age groups. In young folate-deficient rats, liver and lung choline levels were significantly lower than those in the respective controls. No other significant effects of FD on choline and acetylcholine metabolism were found in young rats. In adult rats, FD consumption markedly decreased choline levels in the liver, kidneys, and heart; furthermore, choline levels in the cortex and striatum were moderately elevated, although hippocampal choline levels were not affected. Acetylcholine levels were higher in the heart, cortex, and striatum but lower in the hippocampus in adult folate-deficient rats, as compared to controls. Higher acetylcholine levels in the striatum in adult folate-deficient rats were also associated with higher dopamine release in the striatal slices. Thus, both age groups showed higher cholinergic metabolic sensitivity to FD in the peripheral nervous system than in the brain. However, compensatory abilities appeared to be better in the young group, implicating the adult group as a preferred model for further investigation of folate-choline-acetylcholine interactions and their role in brain plasticity and cognitive functions. Copyright © 2010 Elsevier Inc. All rights reserved.
[Primary lymphoma of the central nervous system: 20 years' experience in a referral hospital].
Calderón-Garcidueñas, A L; Pacheco-Calleros, J; Castelán-Maldonado, E; Nocedal-Rustrián, F C
Primary central nervous system lymphomas (PCNSL) are rare neoplasms. AIM. To study the clinical aspects and the immuno-phenotype of all cases of PCNSL in a 20 years lapse in a referral hospital in Northeastern Mexico. From January 1986 to December 2005 all PCNSL histologically confirmed were studied. The primary lymphomas were 1% of malignant central nervous system neoplasms. 21 cases were studied (ages from 9-70 years) with male predominance (2:1). 24% patients had immuno-suppression. The more frequent clinical data were: papilledema (71%), headache (62%), paresis (48%) and seizures (33%). 33% of patients died during the first six months after diagnosis. The T lymphomas were 19% of cases and corresponded to small cell type. PCNSL are still a diagnostic challenge. Multicenter studies are required in order to determine the best treatment protocol.
De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S
2014-04-01
Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p < 0.01), activities of daily living scores (p < 0.05), Schwab-England scale (p < 0.001) and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of disease, involved side of the body, pain and freezing), but mini mental status (MMS) score and Hamilton depression and anxiety rating scale were significantly lower (p < 0.05). Our results confirm a high prevalence of autonomic nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical presentation and the existing anxiety and depression.
Sunitinib in Treating Young Patients With Refractory Solid Tumors
2014-01-27
Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, A.I.; Weinberg, V.; Brecher, M.L.
1983-03-03
The authors compared two regimens with respect to their ability to prolong disease-free survival in 506 children and adolescents with acute lymphocytic leukemia. All responders to induction therapy were randomized to treatment with 2400 rad of cranial irradiation plus intrathecal methotrexate or to treatment with intermediate-dose methotrexate plus intrathecal methotrexate, as prophylaxis for involvement of the central nervous system and other sanctuary areas. Complete responders were stratified into either standard-risk or increased-risk groups on the basis of age and white-cell count at presentation. Among patients with standard risk, hematologic relapses occurred in 9 of 117 given methotrexate and 24 ofmore » 120 given irradiation. The rate of central-nervous-system relapse was higher in the methotrexate group (23 of 117) than in the irradiation group. Among patients with increased risk, radiation offered greater protection to the central nervous system than methotrexate; there was no difference in the rate of hematologic relapse. Methotrexate offered better protection against systemic relapse in standard-risk patients and better protection against testicular relapse overall, but it offered less protection against relapses in the central nervous system than cranial irradiation.« less
Neuroactive steroids and the peripheral nervous system: An update.
Giatti, Silvia; Romano, Simone; Pesaresi, Marzia; Cermenati, Gaia; Mitro, Nico; Caruso, Donatella; Tetel, Marc J; Garcia-Segura, Luis Miguel; Melcangi, Roberto C
2015-11-01
In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy. Copyright © 2015 Elsevier Inc. All rights reserved.
Strauser, David; Wagner, Stacia; Wong, Alex W K; O'Sullivan, Deidre
2013-04-01
The primary purpose of this paper is to undertake foundational research in the area of career readiness, work personality and age of onset with young adult central nervous system (CNS) survivors. Participants for this study consisted of 43 individuals whose age range from 18 to 30 (M = 21.64, SD = 3.46), an average age of brain tumor onset of 9.50 years (SD = 4.73) and average years off of treatment of 7.25 years (SD = 5.80). Packets were distributed to survivors who were participating in a psychosocial cancer treatment program. Participants completed multiple career instruments and a demographic form. Differences between groups and among the variables were examined and size effect sizes were analyzed. Young adult CNS survivors had significantly lower levels of work personality and career readiness when compared to young adult non-cancer survivors with CNS cancer with those between the ages of 6 and 12 reported significantly lower levels when compared to individuals diagnosed before age 6 and after the age of 13. Young adult CNS survivors at an increased risk for having lower levels of work personality and career readiness then a norm group comparison. Age of onset (between 6 and 12) may be at significant risk factor for developing poor or dysfunctional work and career behaviors. • Young adults with central nervous system (CNS) cancer are at particular risk for experiencing difficulties related to career and employment. • Work personality and career readiness are two constructs that have been found to be related to one's ability to meet the demands of work. • Young adult CNS cancer survivors have lower levels of work personality and career readiness. • Individuals diagnosed between the ages of 6 and 12 may be at particular risk and may need specific vocational rehabilitation interventions. • The results of this study point to the need for comprehensive career and vocational services for young adult CNS cancer survivors.
Types A and B Niemann-Pick disease.
Schuchman, Edward H; Wasserstein, Melissa P
2015-03-01
Two distinct metabolic abnormalities are encompassed under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second NPD category are designated as having types C and D NPD. These patients may have mild hepatosplenomegaly, but the central nervous system is profoundly affected. Impaired intracellular trafficking of cholesterol causes types C and D NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed. Copyright © 2014. Published by Elsevier Ltd.
Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings
ERIC Educational Resources Information Center
Prada, Carlos E.; Grabowski, Gregory A.
2013-01-01
Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…
Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors
2013-05-01
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Neurotoxic and neuroactive compounds from Cnidaria: five decades of research….and more.
Mariottini, Gian L; Bonello, Gaido; Giacco, Elisabetta; Pane, Luigi
2015-01-01
Cnidarians are numbered among the most venomous organisms. Their venoms are contained in intracellular capsules, nematocysts, which inject the content into preys/attackers through an eversion system resembling a syringe needle. Several cnidarian venoms have activity against the nervous system, being neurotoxic, or affect other systems whose functioning is under nerve control. Besides direct damage to nerve cells, the activity on ionic conductance, blockade of neuromuscular junctions, and influence on action potentials and on voltage-gated channels have been described. Therefore, cnidarians can be a useful source of nervous system-targeted compounds which could have, in perspective, a role in the therapy of some nervous system diseases. Following this idea, this article aims to review the existing data about the neuroactive properties of cnidarian venoms and their possible usefulness in tackling some neurological diseases as well as neurodegenerative age-related diseases whose incidence is expected to raise in the next decades owing to the increase of life expectancy.
Boulouis, Grégoire; de Boysson, Hubert; Zuber, Mathieu; Guillevin, Loïc; Meary, Eric; Costalat, Vincent; Pagnoux, Christian; Naggara, Olivier
2017-05-01
Primary angiitis of the central nervous system remains challenging. To report an overview and pictorial review of brain magnetic resonance imaging findings in adult primary angiitis of the central nervous system and to determine the distribution of parenchymal, meningeal, and vascular lesions in a large multicentric cohort. Adult patients from the French COVAC cohort (Cohort of Patients With Primary Vasculitis of the Central Nervous System), with biopsy or angiographically proven primary angiitis of the central nervous system and brain magnetic resonance imaging available at the time of diagnosis were included. A systematic imaging review was performed blinded to clinical data. Sixty patients met inclusion criteria. Mean age was 45 years (±12.9). Patients initially presented focal deficit(s) (83%), headaches (53%), cognitive disorder (40%), and seizures (38.3%). The most common magnetic resonance imaging finding observed in 42% of patients was multiterritorial, bilateral, distal acute stroke lesions after small to medium artery distribution, with a predominant carotid circulation distribution. Hemorrhagic infarctions and parenchymal hemorrhages were also frequently found in the cohort (55%). Acute convexity subarachnoid hemorrhage was found in 26% of patients and 42% demonstrated pre-eminent leptomeningeal enhancement, which is found to be significantly more prevalent in biopsy-proven patients (60% versus 28%; P =0.04). Seven patients had tumor-like presentations. Seventy-seven percent of magnetic resonance angiographic studies were abnormal, revealing proximal/distal stenoses in 57% and 61% of patients, respectively. Adult primary angiitis of the central nervous system is a heterogenous disease, with multiterritorial, distal, and bilateral acute stroke being the most common pattern of parenchymal lesions found on magnetic resonance imaging. Our findings suggest a higher than previously thought prevalence of hemorrhagic transformation and other hemorrhagic manifestations. © 2017 American Heart Association, Inc.
Bisogni, Valeria; Pengo, Martino F; Drakatos, Panagis; Maiolino, Giuseppe; Kent, Brian; Rossitto, Giacomo; Steier, Joerg; Rossi, Gian Paolo
2017-06-01
Increased arterial stiffness and sympathetic nervous system activity, independent markers of cardiovascular risk, are common in patients with severe obstructive sleep apnoea, who have excessive daytime sleepiness. Among patients with mild-to-moderate obstructive sleep apnoea, however, it remains unknown whether arterial stiffness and/or increased sympathetic nervous system activity correlate with excessive daytime sleepiness. We measured heart rate variability, as an index of autonomic nervous system activity, and arterial stiffness index, as a marker of vascular damage and cardiovascular risk, in 56 men aged 18 to 75years, with mild-to-moderate obstructive sleep apnoea, and matched into two groups, "sleepy" (Epworth Sleepiness Scale≥10) and "non-sleepy" (Epworth Sleepiness Scale<10). We found no association of excessive daytime sleepiness with sympathetic nervous system activation (very low frequency power 18,947±11,207ms 2 vs 15,893±8,272ms 2 , p=0.28; low frequency (LH) power 17,753±8,441ms 2 vs 15,414±5,666ms 2 , p=0.26; high frequency (HF) power 7,527±1,979ms 2 vs 8,257±3,416ms 2 , p=0.36; LF/HF ratio 3.04±1.37 vs 2.55±1.01, p=0.15) and mean arterial stiffness index (6.97±0.83 vs 7.26±0.66, p=0.18) in mild-to-moderate obstructive sleep apnoea patients. Symptoms of excessive daytime sleepiness are not associated with sympathetic nervous system activation and arterial stiffness in male subjects with mild-to-moderate obstructive sleep apnoea. Copyright © 2017 Elsevier B.V. All rights reserved.
Mousavi, Seyed Mohsen; Sundquist, Jan; Hemminki, Kari
2013-01-01
We compared the incidence of cancer among Turkish, Chilean, and North African (NA) first-generation immigrants with residents in their countries of origin and native Swedes. The Swedish Family-Cancer Database was used to calculate age-standardized incidence rates. We compared the age-standardized incidence rates for immigrants with those in the Cancer Incidence in Five Continents report. All-cancer rates were decreased in Turks (men) and Chileans and increased in NAs compared with the residents in their countries of origin. The rates of stomach cancer in Chileans and lung cancer in Turkish men were decreased, whereas Turkish women had an increased rate of lung cancer. Furthermore, the rate of prostate cancer in Turks and NAs and nervous system tumors in NA men and Turkish women were increased. Chileans had higher rates of stomach and testicular cancers and lower rates of colon cancer, nervous system tumors, and non-Hodgkin's lymphoma compared with Swedes. Higher rates of male lung cancer and female thyroid cancer, and lower rates of male rectal and kidney cancers and nervous system tumors, and female stomach and colon cancers were observed among Turks compared with Swedes. The differences observed in all-cancer rates among immigrants were mostly attributable to decreased rates of stomach and lung cancers or an increased rate of prostate cancer after migration. We observed increased rates of colon, breast, and nervous system cancers after migration, whereas the rates of testicular, kidney and thyroid cancers, and non-Hodgkin's lymphoma remained unchanged.
Central diabetes insipidus in children with acute brain insult.
Yang, Yun-Hsuan; Lin, Jainn-Jim; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong; Hung, Po-Cheng; Chou, Min-Liang; Hsieh, Meng-Ying; Lin, Kuang-Lin
2011-12-01
Central diabetes insipidus occurs in patients with overwhelming central nervous system injuries, and may be associated with brain death. The clinical picture of children with acquired central diabetes insipidus after acute brain insult is seldom reported. We retrospectively reviewed cases dating from January 2000-February 2008 at a tertiary pediatric intensive care unit. Fifty-four patients (28 girls, 26 boys), aged 3 months to 18 years, were enrolled. Etiologies included severe central nervous system infection (35.2%), hypoxic-ischemic events (31.5%), head injury (18.5%), and vascular lesions (14.8%). In 39 (72.2%) patients, diabetes insipidus was diagnosed during the first 2 days after acute central nervous system injury, and 40 (74.0%) developed maximum serum sodium concentrations of >160 mEq/L. In 16, sequential cerebral salt wasting syndrome developed after their initial diabetes insipidus presentation. Overall mortality at 2 months after admission was 77.8%. Our results demonstrate that patients who develop central diabetes insipidus after acute central nervous system injury manifest high mortality. Development of central diabetes insipidus within the first 2 days and a maximum plasma sodium >160 mEq/L were significant predictors of outcomes. Copyright © 2011 Elsevier Inc. All rights reserved.
DNT DATA CALL-IN FOR ORGANO PHOSPHATES
Product: Developmental neurotoxicity (DNT) and age-comparative cholinesterase data. Activity: Individual pesticide hazard characterizations and risk assessments, including FQPA factor determinations. The need for evaluation of nervous system development follow...
... kids of the same age or have trouble lifting things. Kids with SMA can develop scoliosis (a ... Nervous System Your Muscles Wheelchairs Scoliosis Steven's Story: Power Player Kyphosis Muscular Dystrophy Spinal Muscular Atrophy: Steven's ...
[Guillain-Barré syndrome in a patient with primary sicca syndrome].
Pryszmont, M; Sierakowski, S; Popławska, T; Domysławska, I; Pryszmont, J; Pawlak-Tumiel, B
2000-01-01
At the age of 23 the patient showed the first signs of dryness syndrome. Those symptoms developed progressively and during a few years primary Sjögren syndrome was noted. In the 37th year of life suddenly the patient developed very severe Gullian-Barré syndrome with involvement of the peripheral and central nervous system and with a considerable autonomic component. After treatment the patient improved, however mild symptoms of central and peripheral nervous system destruction remained. Those symptoms are still present and the patient is under the care of the Neurology and Rheumatology Clinic.
2013-09-27
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific
A new insight into mechanisms of age-related changes in heart rate.
Zefirov, T L; Svyatova, N V; Ziyatdinova, N I
2001-06-01
Changes in cardiac rhythm induced by blockade of hyperpolarization currents with ZD 7288 depend on animal's age. The increase in cardiointerval duration is related to prolongation of T-P segment on ECG. It is hypothesized that the age-related changes in activity of hyperpolarization channels are determined by a modulating effect of the autonomic nervous system.
Age-related changes in the function and structure of the peripheral sensory pathway in mice.
Canta, Annalisa; Chiorazzi, Alessia; Carozzi, Valentina Alda; Meregalli, Cristina; Oggioni, Norberto; Bossi, Mario; Rodriguez-Menendez, Virginia; Avezza, Federica; Crippa, Luca; Lombardi, Raffaella; de Vito, Giuseppe; Piazza, Vincenzo; Cavaletti, Guido; Marmiroli, Paola
2016-09-01
This study is aimed at describing the changes occurring in the entire peripheral nervous system sensory pathway along a 2-year observation period in a cohort of C57BL/6 mice. The neurophysiological studies evidenced significant differences in the selected time points corresponding to childhood, young adulthood, adulthood, and aging (i.e., 1, 7, 15, and 25 months of age), with a parabolic course as function of time. The pathological assessment allowed to demonstrate signs of age-related changes since the age of 7 months, with a remarkable increase in both peripheral nerves and dorsal root ganglia at the subsequent time points. These changes were mainly in the myelin sheaths, as also confirmed by the Rotating-Polarization Coherent-Anti-stokes-Raman-scattering microscopy analysis. Evident changes were also present at the morphometric analysis performed on the peripheral nerves, dorsal root ganglia neurons, and skin biopsies. This extensive, multimodal characterization of the peripheral nervous system changes in aging provides the background for future mechanistic studies allowing the selection of the most appropriate time points and readouts according to the investigation aims. Copyright © 2016 Elsevier Inc. All rights reserved.
Aging changes in the nervous system
... MA. Delirium. In: Ham RJ, Sloane PD, Warshaw GA, Potter JF, Flaherty E, eds. Ham's Primary Care ... other dementias. In: Ham RJ, Sloane PD, Warshaw GA, Potter JF, Flaherty E, eds. Ham's Primary Care ...
Microglia in the developing brain: a potential target with lifetime effects
Harry, G. Jean; Kraft, Andrew D.
2012-01-01
Microglia are a heterogeneous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related. PMID:22322212
Use of mobile phones and risk of brain tumours: update of Danish cohort study.
Frei, Patrizia; Poulsen, Aslak H; Johansen, Christoffer; Olsen, Jørgen H; Steding-Jessen, Marianne; Schüz, Joachim
2011-10-19
To investigate the risk of tumours in the central nervous system among Danish mobile phone subscribers. Nationwide cohort study. Denmark. All Danes aged ≥ 30 and born in Denmark after 1925, subdivided into subscribers and non-subscribers of mobile phones before 1995. Risk of tumours of the central nervous system, identified from the complete Danish Cancer Register. Sex specific incidence rate ratios estimated with log linear Poisson regression models adjusted for age, calendar period, education, and disposable income. 358,403 subscription holders accrued 3.8 million person years. In the follow-up period 1990-2007, there were 10,729 cases of tumours of the central nervous system. The risk of such tumours was close to unity for both men and women. When restricted to individuals with the longest mobile phone use--that is, ≥ 13 years of subscription--the incidence rate ratio was 1.03 (95% confidence interval 0.83 to 1.27) in men and 0.91 (0.41 to 2.04) in women. Among those with subscriptions of ≥ 10 years, ratios were 1.04 (0.85 to 1.26) in men and 1.04 (0.56 to 1.95) in women for glioma and 0.90 (0.57 to 1.42) in men and 0.93 (0.46 to 1.87) in women for meningioma. There was no indication of dose-response relation either by years since first subscription for a mobile phone or by anatomical location of the tumour--that is, in regions of the brain closest to where the handset is usually held to the head. In this update of a large nationwide cohort study of mobile phone use, there were no increased risks of tumours of the central nervous system, providing little evidence for a causal association.
Symonenko, Alexander V.; Roshina, Natalia V.; Krementsova, Anna V.; Pasyukova, Elena G.
2018-01-01
In recent years, several genes involved in complex neuron specification networks have been shown to control life span. However, information on these genes is scattered, and studies to discover new neuronal genes and gene cascades contributing to life span control are needed, especially because of the recognized role of the nervous system in governing homeostasis, aging, and longevity. Previously, we demonstrated that several genes that encode RNA polymerase II transcription factors and that are involved in the development of the nervous system affect life span in Drosophila melanogaster. Among other genes, escargot (esg) was demonstrated to be causally associated with an increase in the life span of male flies. Here, we present new data on the role of esg in life span control. We show that esg affects the life spans of both mated and unmated males and females to varying degrees. By analyzing the survival and locomotion of the esg mutants, we demonstrate that esg is involved in the control of aging. We show that increased longevity is caused by decreased esg transcription. In particular, we demonstrate that esg knockdown in the nervous system increased life span, directly establishing the involvement of the neuronal esg function in life span control. Our data invite attention to the mechanisms regulating the esg transcription rate, which is changed by insertions of DNA fragments of different sizes downstream of the structural part of the gene, indicating the direction of further research. Our data agree with the previously made suggestion that alterations in gene expression during development might affect adult lifespan, due to epigenetic patterns inherited in cell lineages or predetermined during the development of the structural and functional properties of the nervous system. PMID:29760717
MORPHOLOGICAL PATTERN AND FREQUENCY OF CENTRAL NERVOUS SYSTEM TUMOURS IN CHILDREN.
Bilqees, Fatima; Samina, Khaleeq; Mohammad, Tahir; Khaleeq-uz-Zamaan
2016-01-01
Recent studies, including a comprehensive study by National Cancer Institute, have shown that a significant increase in the incidence of childhood brain tumours makes them the most common paediatric tumour. The objectives of this study were to determine the frequency of central nervous system tumours in paediatric age group (0-12 years), and to segregate various morphologic types according to WHO classification. The study included consecutive cases of central nervous system tumours diagnosed in children in the histopathology department at Federal Government Polyclinic, PGMI, Islamabad, during a period of 4.8 years (Jan 2009-Aug 2013). The initial histopathological evaluation of these lesions was performed on H&E stained sections of paraffin embedded tissues. Special stains and immunohistochemistry were performed whenever indicated. Out of 75 cases, 34 (45.3%) were astrocytic tumours, including 16 (47.1%) Pilocytic astrocytomas (WHO Grade-I), 1 (2.9%) diffuse fibrillary astrocytoma (WHO Grade-II), 1 (2.9%) anaplastic astrocytoma (WHO Grade-III) and 16(47.1%) glioblastoma multiforme (WHO Grade-IV); 18 (24%) were embryonal tumours including 17 (94.4%) medulloblastoma (WHO Grade-IV) and 1 (5.6%) neuroblastoma (WHO Grade IV); 10 (13.3%) were craniopharyngiomas (WHO Grade-I) and 5 (6.7%) were ependymal tumours including 1 (20%) myxopapillary ependymoma (WHO Grade-I) and 4 (80%) ependymomas (WHO Grade-II). Miscellaneous entities included 3 (4%) choroid plexus tumours; 1 (2%) anaplastic oligodendroglioma (WHO Grade-III); 1 (2%) atypical meningioma (WHO Grade-II); 1 (2%) schwannoma (WHO Grade-I); 1 (2%) neurofibroma (WHO Grade-I) and 1 (2%) lipoma (WHO Grade-I). Astrocytic tumours are the most common central nervous system tumours in paediatric age group and high grade lesions (WHO Grade-IV) constitute the largest category (45.3%).
Bone mineral density in subjects using central nervous system-active medications.
Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H
2005-12-01
Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.
Direct Interaction between Autonomic Nerves and the Immune System.
1986-08-05
between the autonomic nervous system and the immune system in young adult male C3H and BALB/c mice. Evidence from our laboratory and others has revealed...noted in the distribution and appearance of noradrenergic varicosities along the vasculature or within the parenchyma in the spleens of adult C3H, BALB...months of age. There also were some age- related differences in thymic innervation and lymph node innervation, but the splenic innervation in adults
Physical and Psychological Decrements Affecting Reading in the Aged.
ERIC Educational Resources Information Center
Wilson, Molly M.
While reading has been recognized as a potentially useful and enjoyable pastime for the elderly, physical and psychological decrements affect the ability of the elderly to read. As the eyes age, near-point tasks become more difficult. In addition to reduced sensory intake, perceptual changes occur. The central nervous system slows, and data travel…
Overview of the Autonomic Nervous System
... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...
Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.
Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf
2018-05-09
Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging human individuals. Both in mice and humans, these alterations were accompanied by endoneurial macrophages. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by blocking a cytokine receptor, essential for macrophage survival. The treatment strongly reduced macrophage numbers and substantially improved nerve structure and muscle strength. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may be helpful for treatment weakness and reduced mobility in the elderly. Copyright © 2018 the authors 0270-6474/18/384610-11$15.00/0.
Del Risco Kollerud, R; Blaasaas, K G; Claussen, B
2014-09-23
Over the past few years, there has been growing interest in assessing the relationship between exposure to radon at home and the risk of childhood cancer. Previous studies have produced conflicting results, probably because of limitations assessing radon exposure, too few cancer cases and poorly documented health statistics. We used a cohort approach of 0-15-year-old children to examine whether residential radon exposure was associated with childhood leukaemia and cancer in the central nervous system in the Oslo region. The study was based on Norwegian population registers and identified cancer cases from The Cancer Registry of Norway. The residence of every child was geo-coded and assigned a radon exposure. In all, 712 674 children were followed from 1967 to 2009 from birth to date of cancer diagnosis, death, emigration or 15 years of age. A total of 864 cancer cases were identified, 437 children got leukaemia and 427 got cancer in the central nervous system.Conclusions or interpretation:No association was found for childhood leukaemia. An elevated nonsignificant risk for cancer in the central nervous system was observed. This association should be interpreted with caution owing to the crude exposure assessment and possibilities of confounding.
Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.
Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey
2016-12-01
In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Varró, Petra; Béldi, Melinda; Kovács, Melinda; Világi, Ildikó
2018-03-01
T-2 toxin is primarily produced by Fusarium sp. abundant under temperate climatic conditions. Its main harmful effect is the inhibition of protein synthesis. Causing oxidative stress, it also promotes lipid peroxidation and changes plasma membrane phospholipid composition; this may lead to nervous system alterations. The aim of the present study was to examine whether a single dose of T-2 toxin administered at newborn age has any long-lasting effects on nervous system functions. Rat pups were treated on the first postnatal day with a single intraperitoneal dose of T-2 toxin (0.2 mg/bwkg). Body weight of treated pups was lower during the second and third week of life, compared to littermates; later, weight gain was recovered. At young adulthood, behavior was tested in the open field, and no difference was observed between treated and control rats. Field potential recordings from somatosensory cortex and hippocampus slices did not reveal any significant difference in neuronal network functions. In case of neocortical field EPSP, the shape was slightly different in treated pups. Long-term synaptic plasticity was also comparable in both groups. Seizure susceptibility of the slices was not different, either. In conclusion, T-2 toxin did not significantly affect basic nervous system functions at this dose.
DNA methylation-based classification of central nervous system tumours.
Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M
2018-03-22
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
Geriatric neuro-oncology: from mythology to biology.
Weller, Michael; Platten, Michael; Roth, Patrick; Wick, Wolfgang
2011-12-01
Age has remained one of the most important determinants of risk for the development of certain brain tumors, of benefit from and tolerance of brain tumor treatment, and overall outcome. Regarding these three aspects, there are major differences across the spectrum of primary brain tumors depending on specific histology. Here, we review recent advances in understanding the biological basis of the prognostic marker 'age' in neuro-oncology. Contemporary population-based studies confirm the strong prognostic impact of age in many brain tumors. Elderly patients continue to be treated less aggressively than younger patients with the same tumors. However, biological factors may contribute to the negative prognostic impact of age. For instance, among gliomas, mutations of the isocitrate dehydrogenase genes, which are prognostically favorable, are much more common in younger patients. Moreover, complete responses defined by neuroimaging were much less durable in elderly as opposed to younger patients with primary central nervous system lymphoma in the German Primary Central Nervous System Lymphoma Study Group trial. A combination of age-adapted patterns of care and treatment-independent, tumor-intrinsic factors contributes to the poorer outcome of elderly patients with brain tumors. These factors need to be better distinguished and understood in order to improve outcome in elderly brain tumor patients.
Lanni, C; Stanga, S; Racchi, M; Govoni, S
2010-01-01
Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.
Maranon, Rodrigo O; Reckelhoff, Jane F
2016-02-01
Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P < 0.05). Losartan reduced MAP in both sham and RD rats similarly (numerically and by percentage) (142 ± 10 vs. 161 ± 6 mm Hg; P < 0.05 vs. RD, P < 0.05 vs. baseline). However, female SHR rats remained significantly hypertensive despite both pharmacological intervention and RD. The data suggest that both the renal sympathetic nervous system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Severe Mental Retardation in Children in a Northern Swedish County
ERIC Educational Resources Information Center
And Others; Gustavson, K. H.
1977-01-01
Presented are results of a study of the incidence, prevalence, gestational age, birth weight, associated central nervous system disorders, and etiological and pathogenetic aspects of 161 severely mentally retarded children in Northern Sweden. (CL)
Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Mead, Hilary K.
2007-01-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed. PMID:17045726
Beauchaine, Theodore P; Gatzke-Kopp, Lisa; Mead, Hilary K
2007-02-01
In science, theories lend coherence to vast amounts of descriptive information. However, current diagnostic approaches in psychopathology are primarily atheoretical, emphasizing description over etiological mechanisms. We describe the importance of Polyvagal Theory toward understanding the etiology of emotion dysregulation, a hallmark of psychopathology. When combined with theories of social reinforcement and motivation, Polyvagal Theory specifies etiological mechanisms through which distinct patterns of psychopathology emerge. In this paper, we summarize three studies evaluating autonomic nervous system functioning in children with conduct problems, ages 4-18. At all age ranges, these children exhibit attenuated sympathetic nervous system responses to reward, suggesting deficiencies in approach motivation. By middle school, this reward insensitivity is met with inadequate vagal modulation of cardiac output, suggesting additional deficiencies in emotion regulation. We propose a biosocial developmental model of conduct problems in which inherited impulsivity is amplified through social reinforcement of emotional lability. Implications for early intervention are discussed.
2013-01-01
Background The role of the extracranial venous system in the pathology of central nervous system (CNS) disorders and aging is largely unknown. It is acknowledged that the development of the venous system is subject to many variations and that these variations do not necessarily represent pathological findings. The idea has been changing with regards to the extracranial venous system. Discussion A range of extracranial venous abnormalities have recently been reported, which could be classified as structural/morphological, hemodynamic/functional and those determined only by the composite criteria and use of multimodal imaging. The presence of these abnormalities usually disrupts normal blood flow and is associated with the development of prominent collateral circulation. The etiology of these abnormalities may be related to embryologic developmental arrest, aging or other comorbidities. Several CNS disorders have been linked to the presence and severity of jugular venous reflux. Another composite criteria-based vascular condition named chronic cerebrospinal venous insufficiency (CCSVI) was recently introduced. CCSVI is characterized by abnormalities of the main extracranial cerebrospinal venous outflow routes that may interfere with normal venous outflow. Summary Additional research is needed to better define the role of the extracranial venous system in relation to CNS disorders and aging. The use of endovascular treatment for the correction of these extracranial venous abnormalities should be discouraged, until potential benefit is demonstrated in properly-designed, blinded, randomized and controlled clinical trials. Please see related editorial: http://www.biomedcentral.com/1741-7015/11/259. PMID:24344742
Chronic sympathetic activation: consequence and cause of age-associated obesity?
Seals, Douglas R; Bell, Christopher
2004-02-01
Primary aging in adult humans is associated with a progressive, tonic activation of the peripheral sympathetic nervous system (SNS). The purpose of this SNS activation and its physiological impact are, however, unknown. We hypothesize that the chronic stimulation of the SNS with aging is driven in part by a progressive accumulation of body fat. This "error" is sensed by the central nervous system via increases in adiposity-sensitive humoral signals (e.g., leptin, insulin) that cross the blood-brain barrier, activate subcortical areas involved in the regulation of energy balance (e.g., ventromedial hypothalamus), and stimulate SNS outflow to peripheral tissues. The SNS activation is intended to increase beta-adrenergic thermogenesis in order to expend excess energy as heat rather than by storage of fat. Recent evidence, however, indicates that these adjustments are not effective in augmenting energy expenditure with aging. Indeed, older sedentary adults demonstrate reduced, not increased, beta-adrenergic stimulation of metabolic rate because of reduced tissue responsiveness, presumably mediated by SNS-induced impairment of beta-adrenergic signaling. As a result, age-associated SNS activation, initiated as a consequence of accumulating adiposity with the intent of preventing further fat storage, ironically, may in time evolve into a potential mechanism contributing to the development of obesity with aging.
Meshchaninov, V N; Tkachenko, E L; Zharkov, S V; Gavrilov, I V; Katyreva, Iu E
2015-01-01
We've estimated the cellular and metabolic part of geroprophylactic effects of short synthetic tripeptides vesugen and pinealon for correction of the biological age. 32 people (18 men, 12 women) aged 41-83 years with polymorbidity and the organic brain syndrome in remission participated in the study. The preparations of "Pinealon" and "Vesugen" have had the significant anabolic effect. They have improved the activity of the Central nervous system and other vital organs, which slows the rate of aging by biological age indicators. Vesugen has demonstrated more visible geroprophylactic effect than Pinealon. At the same time we've found the prooxidant activity through chemiluminescence. Decrease of markers CD34+ positive hematopoietic polypotent cells in blood has shown significant inhibition of hemopoiesis. Apparently, the cells have not been involved in the adaptive reactions. Pinealon and Vesugen haven't affected the degree of chromatin condensation, so they are safe on nuclear genetic level. This property should be studied in future. In geriatric practice, we recommend to apply the peptides Pinealon and Vesugen as geroprotectors anabolic neuroprotective and no antioxidant type for reducing the rate of aging in patients with the organic brain syndrome vascular and/or traumatic genesis.
77 FR 56133 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... is the nervous system but effects on the nervous system were only observed at high doses. Nervous... cholinergic nervous system seen after repeated dosing. Typically, low to moderate levels of neonicotinoids... peripheral nervous system (PNS). High levels of neonicotinoids can over stimulate the PNS, maintaining cation...
The effect of age on fluid intelligence is fully mediated by physical health.
Bergman, Ingvar; Almkvist, Ove
2013-01-01
The present study investigated the extent to which the effect of age on cognitive ability is predicted by individual differences in physical health. The sample consisted of 118 volunteer subjects who were healthy and ranging in age from 26 to 91. The examinations included a clinical investigation, magnetic resonance imaging (MRI) brain neuroimaging, and a comprehensive neuropsychological assessment. The effect of age on fluid IQ with and without visual spatial praxis and on crystallized IQ was tested whether being fully-, partially- or non-mediated by physical health. Structural equation analyses showed that the best and most parsimonious fit to the data was provided by models that were fully mediated for fluid IQ without praxis, non-mediated for crystallized IQ and partially mediated for fluid IQ with praxis. The diseases of the circulatory and nervous systems were the major mediators. It was concluded from the pattern of findings that the effect of age on fluid intelligence is fully mediated by physical health, while crystallized intelligence is non-mediated and visual spatial praxis is partially mediated, influenced mainly by direct effects of age. Our findings imply that improving health by acting against the common age-related circulatory- and nervous system diseases and risk factors will oppose the decline in fluid intelligence with age. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
NASA Astrophysics Data System (ADS)
Horn, Eberhard R.; Dournon, Christian; Frippiat, Jean-Pol; Marco, Roberto; Böser, Sybille; Kirschnick, Uta
2007-09-01
Neurobiological experiments on 4 animal species (Xenopus laevis, Pleurodeles waltl, Drosophila melanogaster, Acheta domesticus) were performed to study effects of microgravity on development and aging of neuronal, sensory and motor systems. Animal models were selected according to their suitability to answer questions concerning μg-effects on neuroanatomy, neuronal activity, and behaviour. The studies were performed on the Soyuz Taxi flights Andromède, Cervantes, Eneide and LDM-TMA8/TMA7. Observations from these flights include: (1) In tadpoles and cricket larvae, morphological features of sensory cells and neurons are rarely affected by microgravity. (2) In crickets, in-flight fertilization was successful; after landing, flight larvae hatched earlier than ground reared siblings. (3) In crickets, proliferation of peptidergic neurons and their projection patterns within the nervous system were not affected by microgravity. (4) During aging, the impact of microgravity on peptidergic neurons of male Drosophila was limited to the size of cell body. (5) In Xenopus, neurophysiological features of the spinal motor system during fictive swimming were partially modified. (6) In Xenopus tadpoles, the vestibuloocular reflex was affected in an age-related manner. Modifications were also related to the occurrence of a tail lordosis induced by microgravity. It is concluded that adaptation to microgravity during development and aging is mainly based on physiological mechanisms within the central nervous system while structural modifications of the sensory and neuronal system contribute less.
Del Risco Kollerud, R; Blaasaas, K G; Claussen, B
2014-01-01
Background: Over the past few years, there has been growing interest in assessing the relationship between exposure to radon at home and the risk of childhood cancer. Previous studies have produced conflicting results, probably because of limitations assessing radon exposure, too few cancer cases and poorly documented health statistics. Methods: We used a cohort approach of 0–15-year-old children to examine whether residential radon exposure was associated with childhood leukaemia and cancer in the central nervous system in the Oslo region. The study was based on Norwegian population registers and identified cancer cases from The Cancer Registry of Norway. The residence of every child was geo-coded and assigned a radon exposure. Results: In all, 712 674 children were followed from 1967 to 2009 from birth to date of cancer diagnosis, death, emigration or 15 years of age. A total of 864 cancer cases were identified, 437 children got leukaemia and 427 got cancer in the central nervous system. Conclusions or interpretation: No association was found for childhood leukaemia. An elevated nonsignificant risk for cancer in the central nervous system was observed. This association should be interpreted with caution owing to the crude exposure assessment and possibilities of confounding. PMID:25117818
Blonz, Edward R.
2017-01-01
The decreased availability of metabolizable energy resources in the central nervous system is hypothesized to be a key factor in the pathogenesis of Alzheimer’s disease. More specifically, the age-related decline in the ability of glucose to cross the blood-brain barrier creates a metabolic stress that shifts the normal, benign processing of amyloid-β protein precursor toward pathways associated with the production of amyloid-β plaques and tau-containing neurofibrillary tangles that are characteristic of the disease. The neuroenergetic hypothesis provides insight into the etiology of Alzheimer’s disease and illuminates new approaches for diagnosis, monitoring, and treatment. PMID:28946565
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Subacute combined degeneration
... SCD Images Central nervous system and peripheral nervous system Central nervous system References Pytel P, Anthony DC. Peripheral nerves and ... chap 27. So YT. Deficiency diseases of the nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E
2008-01-01
The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.
Major diagnostic and pathological features of iniencephaly based on twenty-four cases.
Joó, József Gábor; Beke, Artúr; Papp, Csaba; Szigeti, Zsanett; Csaba, Akos; Papp, Zoltán
2008-01-01
Iniencephaly is quite a rare malformation the etiology of which is still not fully understood. In the majority of cases it is a grave and lethal condition. It is often complicated by other abnormalities affecting the central nervous system (spina bifida, anencephaly), but malformations involving other organs and systems may also be observed. Based on 24 cases the authors have surveyed the diagnostics of iniencephaly with special regard to the disorders affecting the central and non-central nervous systems. In addition, they have compared the results of prenatal diagnostics and pathological investigations. In the sample, maternal age ranged between 17 and 42 (median 24) years. Positive obstetrical-gynecological and genetic findings in the patients' history have been reported in 4 and 2 cases, respectively. In these cases, the maternal serum alpha-fetoprotein (AFP) values ranged between 0.7 and 3.9 (median 2.0) MoM, while the amniotic fluid AFP values were between 0.9 and 2.7 (median 1.4) MoM. Spina bifida (50%) and anencephaly (42%) were the most commonly occurring complications affecting the central nervous system. Among the non-central nervous system disorders, malformations of the abdominal (omphalocele) and thoracic walls (diaphragmatic hernia) were found most frequently and the tendency to develop associated polyhydramnios was also very high (75%). Pathological investigations revealed developmental disorders such as cleft lip and palate, ventricular septal defect and facial dysmorphism, which are difficult to detect using ultrasonography. Copyright 2008 S. Karger AG, Basel.
Cao, Xin-xin; Li, Jian; Zhang, Wei; Duan, Ming-hui; Shen, Ti; Zhou, Dao-bin
2014-06-01
The objective of this study was to evaluate retrospectively the clinical characteristics, treatments, and outcomes of patients with primary diffuse large B-cell lymphoma (DLBCL) of the female genital tract. The basic characteristics, treatments, and outcomes of six patients diagnosed with primary DLBCL of the female genital tract, including the ovary, uterine cervix, and vagina, treated in our hospital between 2000 and 2012, were analyzed retrospectively. Seven of 323 (2.2 %) newly diagnosed DLBCLs were diagnosed as primary female genital tract DLBCL. Six patients with complete medical data were included in the analysis. The median age at diagnosis was 52.5 years (range 20-65). The presenting symptoms included abnormal vaginal bleeding, increased vaginal discharge, abdominal fullness, and abdominal pain. Two patients had stage IE disease and four patients had stage IIE disease. Treatment included chemotherapy only in five patients, and combined chemotherapy and localized radiation in one patient. After a median follow-up of 58 months, four patients showed relapse in the central nervous system and two had died from progressive disease. The median progression-free survival was 27 months and the median overall survival for this group has not been reached. Patients with primary female genital tract DLBCL may have poor outcomes and a high risk of central nervous system relapse. Central nervous system prophylaxis might be considered in addition to systemic chemotherapy for DLBCL of the female genital tract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, A.I.; Weinberg, V.; Brecher, M.L.
1983-03-03
We compared two regimens with respect to their ability to prolong disease-free survival in 506 children and adolescents with acute lymphocytic leukemia. All responders to induction therapy were randomized to treatment with 2400 rad of cranial irradiation plus intrathecal methotrexate or to treatment with intermediate-dose methotrexate plus intrathecal methotrexate, as prophylaxis for involvement of the central nervous system and other sanctuary areas. Patients were then treated with a standard maintenance regimen. Complete responders were stratified into either standard-risk or increased-risk groups on the basis of age and white-cell count at presentation. Among patients with standard risk, hematologic relapses occurred inmore » 9 of 117 given methotrexate and 24 of 120 given irradiation (P less than 0.01). The rate of central-nervous-system relapse was higher in the methotrexate group (23 of 117) than in the irradiation group (8 of 120) (P . 0.01). Among patients with increased risk, radiation offered greater protection to the central nervous system than methotrexate (P . 0.03); there was no difference in the rate of hematologic relapse. In both risk strata the frequency of testicular relapse was significantly lower in the methotrexate group (1 patient) than the radiation group (10 patients) (P . 0.01). Methotrexate offered better protection against systemic relapse in standard-risk patients and better protection against testicular relapse overall, but it offered less protection against relapses in the central nervous system than cranial irradiation.« less
Autonomic Nervous System Disorders
Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...
Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...
NASA Astrophysics Data System (ADS)
Podolska, Katerina
2015-04-01
The aim of this conference paper is to analyse relationships between strong changes of solar, geomagnetic and ionospheric physical parameters, and mortality by medical cause of death from diagnosis group Diseases of the nervous system by ICD-10 WHO. The aggregated daily number of deaths of 6 largest individual causes of death of group VI. Diseases of the nervous system on the occurrence of exceptional solar and geomagnetic events is investigated. Analysis is performed for the period of the solar cycles No. 23 and 24 (years 1994-2013) in the Czech Republic. The correlation between the intensity of mortality from diseases Multiple sclerosis, Epilepsy, Cerebral palsy, Parkinson disease, Secondary parkinsonism and Alzheimer disease and the solar, geomagnetic and ionospheric physical parameters is examined using stochastic method of graphical models of conditional dependences. We study the daily number of deaths separately for both sexes at the age groups under 39 and 40+. Differences are found for maximum solar activity and during the ascending and descending epoch of the solar cycles.
Cortical neuronal cytoskeletal changes associated with FIV infection
NASA Technical Reports Server (NTRS)
Jacobson, S.; Henriksen, S. J.; Prospero-Garcia, O.; Phillips, T. R.; Elder, J. H.; Young, W. G.; Bloom, F. E.; Fox, H. S.
1997-01-01
HIV-1 infection is often complicated by central nervous system (CNS) dysfunction. Degenerative neuronal changes as well as neuronal loss have been documented in individuals with AIDS. Feline immunodeficiency virus (FIV) infection of cats provides a model for both the immune and the central nervous system manifestations of HIV infection of humans. In this study we have examined neurons in the frontal cortex of feline immunodeficiency virus-infected cats and controls for immunoreactivity with SMI 32, an antibody recognizing a non-phosphorylated epitope on neurofilaments. We noted a significant increase in the number of immunoreactive pyramidal cells in infected animals compared to controls. The changes seen in the neuronal cytoskeleton as a consequence of the inoculation with FIV were similar to those seen in humans undergoing the normal aging process as well as those suffering from neurological diseases, including Alzheimer's and dementia pugilistica. The changes we noted in the feline brain were also similar to that reported in animals with traumatic injuries or with spontaneously occurring or induced motor neuron diseases, suggesting that the increase in reactivity represents a deleterious effect of FIV on the central nervous system.
Spontaneous Age-Related Neurite Branching in C. elegans
Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia
2011-01-01
The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377
Use of mobile phones and risk of brain tumours: update of Danish cohort study
Poulsen, Aslak H; Johansen, Christoffer; Olsen, Jørgen H; Steding-Jessen, Marianne; Schüz, Joachim
2011-01-01
Objective To investigate the risk of tumours in the central nervous system among Danish mobile phone subscribers. Design Nationwide cohort study. Setting Denmark. Participants All Danes aged ≥30 and born in Denmark after 1925, subdivided into subscribers and non-subscribers of mobile phones before 1995. Main outcome measures Risk of tumours of the central nervous system, identified from the complete Danish Cancer Register. Sex specific incidence rate ratios estimated with log linear Poisson regression models adjusted for age, calendar period, education, and disposable income. Results 358 403 subscription holders accrued 3.8 million person years. In the follow-up period 1990-2007, there were 10 729 cases of tumours of the central nervous system. The risk of such tumours was close to unity for both men and women. When restricted to individuals with the longest mobile phone use—that is, ≥13 years of subscription—the incidence rate ratio was 1.03 (95% confidence interval 0.83 to 1.27) in men and 0.91 (0.41 to 2.04) in women. Among those with subscriptions of ≥10 years, ratios were 1.04 (0.85 to 1.26) in men and 1.04 (0.56 to 1.95) in women for glioma and 0.90 (0.57 to 1.42) in men and 0.93 (0.46 to 1.87) in women for meningioma. There was no indication of dose-response relation either by years since first subscription for a mobile phone or by anatomical location of the tumour—that is, in regions of the brain closest to where the handset is usually held to the head. Conclusions In this update of a large nationwide cohort study of mobile phone use, there were no increased risks of tumours of the central nervous system, providing little evidence for a causal association. PMID:22016439
What Health-Related Functions Are Regulated by the Nervous System?
... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...
Lövheim, Hugo; Karlsson, Stig; Gustafson, Yngve
2008-09-01
Old people in general, and particularly those with dementia, are more sensitive to adverse drug effects than younger people. Despite this, the use of central nervous system (CNS) drugs among old people is common. The aim of the present study was to compare the use of central nervous system drugs and analgesics among people aged 85 years or older, with and without dementia. One half of all people aged 85 years old and all those aged 90, 95 and above in Umeå, Sweden and Vaasa and Mustasaari, Finland, were asked to participate in this part of the GERDA/Umeå 85+ study. Both those living in their own homes and those in institutions were included. Trained investigators performed structured interviews and assessments. Medication data were obtained from the participants and medical records. Dementia disorders were diagnosed according to DSM-IV. Dementia was diagnosed in 247/546 participants (45.2%). A higher proportion of the participants with dementia used paracetamol (50.6% compared to 21.4%, p < 0.001), antipsychotics (22.3% and 2.7%, p < 0.001), antidepressants (33.6% and 11.4%, p < 0.001) and anxiolytics (19.0% and 8.0%, p < 0.001). There were no differences in the use of opioid analgesics, anticonvulsants and hypnotics. The use of CNS drugs and analgesics was common among this population of very old people. Furthermore, the prescription of CNS drugs was more common among people with dementia. The use of antipsychotics in people with dementia should arouse particular concern, because of the high risk of severe adverse events and the limited evidence of positive effects.
El-Sheikh, Mona; Hinnant, J. Benjamin; Erath, Stephen
2010-01-01
Trajectories of delinquency symptoms across middle and late childhood were examined through latent growth modeling, with a focus on the role of interactions among parental marital conflict, child sex, and multiple indices (baseline, reactivity) of either parasympathetic nervous system (PNS) activity, indexed by respiratory sinus arrhythmia (RSA), or sympathetic nervous system (SNS) activity, indexed by skin conductance level (SCL) as predictors of growth. At T1, 128 girls and 123 boys (Mean age 8.23 yrs ± .73) and their parents participated. The sample was comprised of 64% European-American (EA) and 36% African-American (AA) children. Families participated in 2nd and 3rd waves of data collection with a one-year lag between each wave. Interactions among marital conflict, sex, baseline RSA, and RSA reactivity from baseline to a frustrating lab task were significant predictors of growth in delinquent behavior from age 8 to age 10, with overall patterns indicating increasing symptoms for boys who live in high conflict homes and have an RSA response profile comprised of lower RSA during the baseline and RSA augmentation (increase from baseline to the frustrating task). Furthermore, increases in delinquency symptoms over time were observed for children from high conflict homes with an SCL profile characterized by higher baseline levels and lower reactivity (less pronounced SCL increases from baseline) to the frustrating task. Findings highlight the importance of contemporaneous assessments of resting and reactivity levels when examining relations between the environment, physiological functioning, and psychopathology. Results are discussed in the context of biology by environment interactions as relevant to the development of psychopathology. PMID:20919788
ERIC Educational Resources Information Center
Karachaliou, Marianna; Chatzi, Leda; Roumeliotaki, Theano; Kampouri, Mariza; Kyriklaki, Andriani; Koutra, Katerina; Chalkiadaki, Georgia; Michel, Angelika; Stiakaki, Eftichia; Kogevinas, Manolis; Pawlita, Michael; Waterboer, Tim; de Sanjose, Silvia
2016-01-01
Background: Viral infections of the central nervous system may have detrimental effects for the developing brain, but the effects of less virulent common infections are unclear. We aim to investigate the impact of common viral infections of early childhood on neuropsychological performance of children at age four. Methods: We used cross-sectional…
Krut, Jan J; Price, Richard W; Zetterberg, Henrik; Fuchs, Dietmar; Hagberg, Lars; Yilmaz, Aylin; Cinque, Paola; Nilsson, Staffan; Gisslén, Magnus
2017-07-04
The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. With a cross-sectional retrospective design, p-tau, total tau (t-tau), neopterin and HIV-RNA were measured in CSF together with plasma HIV-RNA and blood CD4 + T-cells of 225 HIV-infected patients <50 y of age, subdivided into 3 groups: untreated neuroasymptomatic (NA) (n = 145), on suppressive antiretroviral treatment (cART) (n = 49), and HIV-associated dementia (HAD) (n = 31). HIV-negative healthy subjects served as controls (n = 79). P-tau was not significantly higher in any HIV-infected group compared to HIV-negative controls. Significant increases in t-tau were found as expected in patients with HAD compared to NA, cART, and control groups (p < 0.001 ). P-tau was not higher in HIV-infected patients compared to uninfected controls, thus failing to support a role for premature or accelerated brain aging in HIV infection.
An option space for early neural evolution.
Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter
2015-12-19
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. © 2015 The Author(s).
[Central nervous system vasculitis and of the peripheral nerves in the elderly].
Boddaert, Jacques; Verny, Marc
2002-11-01
Vasculitis of the nervous system are rare in the elderly. When present, they may constitute an urgent diagnosis and a therapeutic emergency. Clinical expression is rich and without specificity. Atypical signs (unusual course of dementia, systemic signs) or atypical laboratory results (inflammatory syndrome) may suggest the diagnosis of vasculitis. However, as multiple comorbidity is the rule in elderly subjects, searching for intercurrent factors (e.g. atrial fibrilation due to infectious disease causing embolic stroke) may be more contributive than searching for proof of a rare disease (vasculitis) with invasive procedures in this population. Giant cell (temporal) arteritis is the only vasculitis specifically related with age; the vital prognosis of vision may be compromised. Corticosterid therapy must be instituted without delay. Periartritis nodosa begins in 30% of cases after 60 years of age. The clinical features are the same as in younger subjects. Other vasculidis are rare in the elderly. In absence of specific studies in this population, therapeutic protocols are the same as in younger subjects but may have to be adjusted.
Pavlov's Position on Old Age within the Framework of the Theory of Higher Nervous Activity.
ERIC Educational Resources Information Center
Windholz, George
1995-01-01
In later life, I. P. Pavlov incorporated his findings on aging into his theory of higher nervous activity. Some of the major findings showed that salivary conditioning and stimulus differentiation were difficult to establish in old dogs, but that conditioned reflexes established earlier in life persisted into old age. Pavlov hypothesized that…
ERIC Educational Resources Information Center
Rifai, A. Hind; And Others
1992-01-01
Describes age-related changes in central nervous system pertinent to biology of suicide. Reviews postmortem biological studies of brains of suicides and suicide attempters. As suicide attempts in elderly are characterized by violence, discusses biological studies of impulsive violence. Describes data on effect of degenerative diseases on serotonin…
Maternal adiposity negatively influences infant brain white matter development
USDA-ARS?s Scientific Manuscript database
Objective: To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Methods: Diffusion tensor imaging was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age infants from uncomplicat...
78 FR 9311 - Hazard Communication; Corrections and Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... Column for Standard No. 1910.1051. ``Cancer; eye and respiratory tract irritation; center nervous system... irritation; central nervous system effects; and flammability.'' The following table contains a summary of the... (l)(1)(ii) ``center nervous system effects'' is paragraph. corrected to ``central nervous system...
The Nervous System and Gastrointestinal Function
ERIC Educational Resources Information Center
Altaf, Muhammad A.; Sood, Manu R.
2008-01-01
The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…
Ritvanen, Tiina; Louhevaara, Veikko; Helin, Pertti; Väisänen, Sari; Hänninen, Osmo
2006-05-01
The aim of this study was to examine the response of the autonomic nervous system in younger (mean age 31 yrs, n=14) and older (mean age 54 yrs, n=14) healthy female teachers during work periods of perceived high and low stress. In the younger participants, heart rate, cortisol excretion rate and psychosomatic symptoms were significantly higher during the high work stress period. The older participants experienced no decrease in their heart rate and cortisol excretion during the low stress period and they exhibited no significant decrease in blood pressure after the work in the evening during both periods. It may be concluded that the recovery from the stress in the older teachers was insufficient particularly in view of their elevated diastolic blood pressure during the low work stress period. Ergonomic and individually tailored measures in terms of work time control, specific relaxation techniques, and a part-time retirement may improve the stress management of older teachers.
Administration of secretin for autism alters dopamine metabolism in the central nervous system.
Toda, Yoshihiro; Mori, Kenji; Hashimoto, Toshiaki; Miyazaki, Masahito; Nozaki, Satoshi; Watanabe, Yasuyoshi; Kuroda, Yasuhiro; Kagami, Shoji
2006-03-01
We evaluated the clinical effects of intravenously administered secretin in 12 children with autism (age range: 4-6 years, median age: 9 years, boy:girl=8:4). In addition, we investigated the association between improvement in symptoms and changes in the cerebrospinal fluid (CSF) homovanillic acid (HVA),5-hydroxyindole-3-acetic acid (5-HIAA), and 6R-5,6,7,8-tetrahydro-L-biopterin (BH(4)) levels after administration. After administration of secretin, the Autism Diagnostic Interview-Revised (ADI-R) score improved in 7 of the 12 children. However, the score deteriorated in 2 of the 12 children (in the item of 'restricted and repetitive, stereotyped interests and behaviors'). The HVA and BH(4) levels in CSF were increased in all children with improvement in the ADI-R score. In contrast, no patient without the elevation of the BH(4) level showed improvement in the score. These findings suggest that secretin activated metabolic turnover of dopamine in the central nervous system via BH(4), improving symptoms.
77 FR 70908 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
... level of skin irritation. The main target of toxicity is the nervous system but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as clinical signs and... motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen after...
78 FR 21267 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... causes a low level of skin irritation. The main target of toxicity is the nervous system, but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as... in motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen...
Sene-Diouf, F; Ndiaye, M; Diop, A G; Thiam, A; Ndao, A K; Diagne, M; Ndiaye, M M; Ndiaye, I P
2000-01-01
Through a cohort of 93 neuroaids which has been diagnosed at Dakar in our Neurology Department, the authors evaluated the hospital prevalence of retrovirus, detected socio-demographic factors, related AIDS outline the mean neurological picture and try to correlate survival and neurological involvement of these patients. Among 1151 patients who got retroviral blood test, 93 were seropositive (8.1%). On these repartitions 36 were females (38.7%) and 57 males (61.3%). The age goes from 19 to 76 years old. 45 patients (48.4%) have been found positive for HIV-1 blood test, 21 patients (22.6%) for HIV-2 blood test, 11 patients (11.8%) for both HIV2, 11 patients (11.8%) for HTLV1, 3 patients (3.2%) for both HIV-1 and HTLV1, and 2 patients (2.2%) for both HIV-2 and HTLV1. In our study the transmission of AIDS occur mainly through heterosexual inter course and multiple parternship is a high risk group. The central nervous system deseases represented 68.8% of cases. The pathology were dominated by stroke, myelopathies, meningoencephalotis and spinal cord compression. The peripheral nervous system desease were found in 7.5% of cases. The peripheral facial paralysis occupied the first place in HIV infections of peripheral nervous system deseases (57.1% of cases). When neurological involvement set up the letality is higher for HIV-1 (57% of global letality) and for central system nervous involvement (76.2%).
Aging and brain rejuvenation as systemic events
Bouchard, Jill; Villeda, Saul A
2015-01-01
The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne ‘pro-youthful’ factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. PMID:25327899
Mongillo, Paolo; Bertotto, Daniela; Pitteri, Elisa; Stefani, Annalisa; Marinelli, Lieta; Gabai, Gianfranco
2015-06-01
In the present study, the peripheral blood leukocyte phenotypes, lymphocyte subset populations, and oxidative stress parameters were studied in cognitively characterized adult and aged dogs, in order to assess possible relationships between age, cognitive decline, and the immune status. Adult (N = 16, 2-7 years old) and aged (N = 29, older than 8 years) dogs underwent two testing procedures, for the assessment of spatial reversal learning and selective social attention abilities, which were shown to be sensitive to aging in pet dogs. Based on age and performance in cognitive testing, dogs were classified as adult not cognitively impaired (ADNI, N = 12), aged not cognitively impaired (AGNI, N = 19) and aged cognitively impaired (AGCI, N = 10). Immunological and oxidative stress parameters were compared across groups with the Kruskal-Wallis test. AGCI dogs displayed lower absolute CD4 cell count (p < 0.05) than ADNI and higher monocyte absolute count and percentage (p < 0.05) than AGNI whereas these parameters were not different between AGNI and ADNI. AGNI dogs had higher CD8 cell percentage than ADNI (p < 0.05). Both AGNI and AGCI dogs showed lower CD4/CD8 and CD21 count and percentage and higher neutrophil/lymphocyte and CD3/CD21 ratios (p < 0.05). None of the oxidative parameters showed any statistically significant difference among groups. These observations suggest that alterations in peripheral leukocyte populations may reflect age-related changes occurring within the central nervous system and disclose interesting perspectives for the dog as a model for studying the functional relationship between the nervous and immune systems during aging.
Bellum, Sairam; Thuett, Kerry A; Bawa, Bhupinder; Abbott, Louise C
2013-09-01
Epidemiology studies have clearly documented that the central nervous system is highly susceptible to methylmercury toxicity, and exposure to this neurotoxicant in humans primarily results from consumption of contaminated fish. While the effects of methylmercury exposure have been studied in great detail, comparatively little is known about the effects of moderate to low dose methylmercury toxicity in the aging central nervous system. We examined the toxic effects of a moderate dose of methylmercury on the aging mouse cerebellum. Male and female C57BL/6 mice at 16-20 months of age were exposed to methylmercury by feeding a total dose of 5.0 mg kg(-1) body weight and assessed using four behavioral tests. Methylmercury-treated aged mice performed significantly worse in open field, footprint analysis and the vertical pole test compared with age-matched control mice. Isolated cerebellar granule cells from methylmercury-treated aged mice exhibited higher levels of reactive oxygen species and reduced mitochondrial membrane potentials, but no differences in basal intracellular calcium ion levels compared with age-matched control mice. When aged mice were exposed to a moderate dose of methylmercury, they exhibited a similar degree of impairment when compared with young adult mice exposed to the same moderate dose of methylmercury, as reported in earlier studies from this laboratory. Thus, at least in mice, exposure of the aged brain to moderate concentrations methylmercury does not pose greater risk compared with the young adult brain exposed to similar concentrations of methylmercury. Copyright © 2012 John Wiley & Sons, Ltd.
Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System
Van houcke, Jessie
2017-01-01
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies. PMID:28203046
NASA Astrophysics Data System (ADS)
David, Samuel; Aguayo, Albert J.
1981-11-01
The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.
Assessment of Gestational Age and Neuromaturation
ERIC Educational Resources Information Center
Allen, Marilee C.
2005-01-01
Neuromaturation is the functional development of the central nervous system (CNS). It is by its very nature a dynamic process, a continuous interaction between the genome and first the intrauterine environment, then the extrauterine environment. Understanding neuromaturation and being able to measure it is fundamental to infant neurodevelopmental…
Fetal Alcohol Syndrome in Adolescents and Adults.
ERIC Educational Resources Information Center
Bert, Cynthia R. Greene; Bert, Minnie
Persons with fetal alcohol syndrome (FAS) may be diagnosed at birth based on specific symptoms and anomalies. These are history of prenatal alcohol exposure, mental retardation, central nervous system dysfunctions, growth deficiency, particular physical anomalies, and speech and language anomalies. With aging, cranial and skeletal anomalies become…
Effects of strawberry supplementation on mobility and cognition in older adults
USDA-ARS?s Scientific Manuscript database
During aging, functional changes in the central and peripheral nervous system can alter mobility and cognition - in some cases leading to early cognitive decline, disability, or injurious falls among older adults. Previously, we have shown that two months of dietary supplementation with berry fruit...
Gomez, Patrick; von Gunten, Armin; Danuser, Brigitta
2016-11-01
In the present study, we examined how sex and age shape cardiovascular, electrodermal, and pupillary reactivity to picture series within the valence-arousal affective space in a sample of 176 healthy younger, middle-aged, and older men and women. Across participants, heart rate (HR) decelerated with increasing self-reported unpleasantness, whereas skin conductance level (SCL) and pupil size (PS) increased with increasing self-rated arousal. Systolic (SBP) and diastolic (DBP) blood pressure increased with increasing self-rated arousal when valence was pleasant but much less when valence was unpleasant. Compared to women, men exhibited a stronger correlation between valence and HR and an SBP response characterized by larger increases for pleasant high-arousal states and lower change scores for unpleasant low- and high-arousal and pleasant low-arousal states. Men's largest SCL change scores were for pleasant high-arousal states, whereas women's largest SCL change scores were for unpleasant high-arousal states. The arousal-PS relationship was stronger among women, in particular for unpleasant series. From younger to older age, there were decreases in the strength of the valence-HR, arousal-SCL, and arousal-PS relationships. Older adults had larger overall increases in SBP and DBP than younger adults, but the relationships with self-reported valence and arousal were not age dependent. We discuss how the observed sex and age effects may reflect sex and age differences in emotional processing and in basic autonomic nervous system functioning. Copyright © 2016 Elsevier B.V. All rights reserved.
Avila-Castells, Pilar; Garre-Olmo, Josep; Calvó-Perxas, Laia; Turró-Garriga, Oriol; Alsina, Elisabet; Carmona, Olga; Perkal, Héctor; Roig, Anna Maria; Cuy, Josep Ma; Lozano, Manuela; Molins, Albert; Vallmajó, Natàlia; López-Pousa, Secundino
2013-05-01
To describe the pattern of drug consumption among patients with dementia in a geographically defined general population in Catalonia (Spain), and to determine its association with age, gender, type of dementia and severity indicators. Cross-sectional study that included 1,894 cases of dementia registered by the Registry of Dementias of Girona from 2007 to 2009. Prescribed drugs were categorized according to the Anatomical Therapeutic Chemical (ATC) classification. A descriptive analysis of drug consumption was stratified according to age, gender, dementia subtypes and dementia severity. Binary logistic regression models were adjusted to detect the association of these variables with drug consumption according to the ATC groups. The most commonly prescribed drugs were for the central nervous system (CNS) (96.4 %), cardiovascular system (79.4 %) and digestive and metabolic system categories (77.7 %). No significant differences were found between the use of nervous system drugs and age, gender, dementia subtypes or dementia severity. The use of alimentary tract and metabolism related drugs, as well as cardiovascular and blood system drugs, were positively correlated with age and secondary dementia. The prevalence of use of cardiovascular and musculoskeletal drugs was higher in women than in men (OR: 1.34; OR: 1.26 respectively). A negative association was found between the severity of dementia and the use of musculoskeletal drugs (OR: 0.71), while its use was significantly higher in the youngest patients (OR: 1.71). Almost all patients with dementia received a CNS drug, being at risk of inappropriate treatment. Treatment for comorbidities in patients with dementia should not be withheld on the basis of age or dementia severity, but rather on the benefit/risk ratio of its prescription. Further studies are needed to evaluate potentially inappropriate drug use and possible untreated conditions in this population.
Aircrew Availability: Modeling Predictors of Duties Not Including Flying Status
2017-07-25
International Classification of Diseases , Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes, were obtained from ASIMS. Participant age...diagnosis category,b no. (%): Diseases of the respiratory system 104,637 (26.83) DoD specific: education or counseling 48,117 (12.34... Diseases of the digestive system 31,177 (7.99) Diseases of the nervous system and sense organs 30,625 (7.85) Symptoms; signs, ill-defined
2013-07-01
Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific
Cystic Fibrosis and the Nervous System.
Reznikov, Leah R
2017-05-01
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
[Epidemiology of parechovirus infections of the central nervous system in a French pediatric unit].
Escuret, A; Mirand, A; Dommergues, M-A; Couzon, B; Foucaud, P; Peigue-Lafeuille, H; Marque-Juillet, S
2013-05-01
Human parechoviruses (HPeV), like their counterpart enteroviruses (EV), are associated with clinical manifestations ranging from asymptomatic disease to infections of the central nervous system. Newborn and young infants are particularly at risk for severe infection. In the last 5 years, the molecular diagnosis of HPeV infection in cerebrospinal fluid (CSF) and the identification of the associated HPeV type revealed the specific association between HPeV3 and meningitis or sepsis-like illness in neonates and infants. HPeV infection is not yet routinely diagnosed in clinical virology laboratories. To determine the clinical, biological, and epidemiological characteristics of HPeV infections of patients hospitalized at the Centre Hospitalier de Versailles, France. A total of 380 CSF samples originally referred to our laboratory for enterovirus testing between January 1st, 2007 and August 31st, 2011, were selected and retrospectively screened for the genome detection of HPeV. All HPeV detected were identified by amplification and sequencing of the complete 1D sequence encoding the VP1 protein. The HPeV genome was detected in CSF samples from nine (2.8%) patients. All were young infants under 18 months of age (median, 30 days; age range, 8 days to 18 months). Fever was observed for all children and eight out of nine (89%) presented with irritability. No pleiocytosis and normal glucose and protein levels were observed. The mean duration of the hospital stay was 4 days (range, 2-7 days) and antibiotics were administered to five patients (55.6%). Yearly frequency of genome detection varied remarkably: 1.1% in 2007, 0% in 2008 and 2011, 2.9% in 2009 and 7.1% in 2010. All genotyped viruses were HPeV3. This study confirmed the importance of the HPeV genome detection in CSF samples from patients presenting with sepsis-like illness or suspected infection of the central nervous system, particularly in children under 2 years of age. The introduction of the molecular diagnosis of HPeV infection broadens the panel of diagnosis of neonatal sepsis and central nervous system symptoms in young children. Rapid identification of HPeV by PCR could also contribute to shorter duration of both antibiotic use and hospital stay. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.
Maurer, Laura L; Philbert, Martin A
2015-01-01
The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.
Lönnrot, K; Metsä-Ketelä, T; Alho, H
1995-01-01
The essential role of coenzyme Q--ubiquinone--in biological energy transduction is well established. Reduced Q--ubiquinol--has also been shown to act as an antioxidant and to decrease the action of free radicals, which in turn could cause damage to structural lipids or proteins. The accumulation of lipopigments during aging in several peripheral organs and in the nervous system is considered to be related to the peroxidation of unsaturated fatty acids. An age-related decline of Q-10 has been suggested to occur in man and rats. In this study we followed the effects of life-long oral supplementation of coenzyme Q-10 on the development and life-span and pigment accumulation in peripheral tissues and the nervous system of laboratory rats. The Q-10 supplemented group showed a significant increase in Q-10 in plasma and liver, while it was unchanged in other tissues. There was no significant difference between the two groups in the development and mortality of the animals. No differences were observed in lipopigment accumulation. Our results indicate that in rats, life-long supplementation of Q-10 has no beneficial effects on life-span or pigment accumulation.
NASA Astrophysics Data System (ADS)
Kozhina, R. A.; Chausov, V. N.; Kuzmina, E. A.; Boreyko, A. V.
2018-04-01
One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Co were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.
Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu
2017-08-09
The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of "tension-anxiety", "anger-hostility", "fatigue-inertia", "depression-dejection", and "confusion-bewilderment" were significantly lower, whereas the positive mood subscale score of "vigor-activity" was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.
Electroneurographic findings in patients with solvent induced central nervous system dysfunction.
Orbaek, P; Rosén, I; Svensson, K
1988-01-01
The function of the peripheral nervous system was examined in a group of 32 men aged 30-65 (mean 49) with diagnosed solvent induced chronic toxic encephalopathy. The subjects were examined at the time of diagnosis and 26 were re-examined after a follow up period of 22-72 months (mean 40) and compared with a group of 50 unexposed male workers aged 27-64 (mean 42) with appropriate adjustment for age. All subjects were carefully scrutinised for alcohol abuse and other neurological diseases. The results of motor fibre neurography disclosed no difference between the groups. Nevertheless, a significant decrease in motor conduction velocity was found in the patients at follow up. Sensory fibre neurography showed signs of slight axonal degeneration with significantly decreased sensory nerve action potential amplitudes in the median and sural nerves; these amplitudes increased during follow up. The duration of sensory nerve action potentials was longer in the exposed group for the median and the sural nerves. The percentage of late components was significantly higher in the median nerve. The warm-cold sensitivity in the exposed group also indicated a slight sensory dysfunction with statistically significant wider detection limits. PMID:2840109
Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu
2017-01-01
The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals. PMID:28792445
[Age-related features of neuromuscular function in rats with hyperthyroidism].
Nerush, P O; Makiĭ, Ie A; Rodyns'kyĭ, O H
2001-01-01
Studied features of functioning of nervous-muscular system at white rats of two age groups: preadolescent (5 weeks) and puberal (24 weeks), in conditions experimental hyperthyroidism (HT). It is established, that in conditions HT at action of the raised concentration thyroxine characteristics of excitation gastrocnemius muscles essentially changed at irritation of a sciatic nerve in groups preadolescent and puberal animals. In all age groups in conditions HT increase of a threshold of excitation gastrocnemius muscles is marked at indirect stimulation and decrease at direct stimulation; also in all age groups in conditions HT reduction of time chronaxy muscles is fixed, both at direct, and at indirect irritation. At preadolescent animals, as against puberal in conditions HT at action of the raised concentration thyroxine on nervous-muscular system it is not revealed authentic change of the latent period and amplitude of potential of action (PA). The conclusion is made, that in conditions HT change of a threshold of excitation and chronaxy gastrocnemius muscles both at direct, and at indirect irritation do not carry age specificity and have an identical orientation, both at preadolescent, and at puberal rats. At preadolescent animals in conditions HT, as against puberal the parameter of amplitude and latent period PA authentically did not change, that can testify to smaller sensitivity of the caused answers gastrocnemius muscles to the raised concentration thyroxine, probably, by virtue of immaturity peripheral neuromotor the device.
Kondrashova, V G; Kolpakov, I E; Vdovenko, V Yu; Leonovych, O S; Lytvynets, O M; Stepanova, E I
2014-09-01
Objective. The study examined the features of functional state of the autonomic nervous system in children having endothelial dysfunction and permanently residing in contaminated areas. Materials and methods. Clinical and instrumental examination of 101 children aged 7-18 years that were born and are domiciled in contaminated territories, including 37 persons with signs of endothelial dysfunction (subgroup IA) and 64 ones with no signs of endothelial dysfunction (IB subgroup) was conducted. The control group being comparable to the subgroups IA and IB by age, gender and clinical examination results included 37 children neither been domiciled in contaminated areas nor were belonging to the contingent of Chornobyl accident survivors. There were 20 apparently healthy children also examined. Results. Due to peculiarities of physiological pathways providing adaptive responses the children having signs of endothelial dysfunction are characterized by a more pronounced dysregulation of autonomous nervous system both in a resting state and under a functional load simulation, and also by a high strain of adaptation pathways. The lack of autonomous support of cardiovascular system is caused by inadequate adaptive responses of both central regulatory bodies (hypothalamus, vasomotor center) and peripheral receptors. Mainly the failure of segmental autonomous (parasympathetic) structures was revealed. The mode of their response to stress in this case corresponds to that in healthy individuals but at a lower functional level. There is a reduced aerobic capacity of the organism by the Robinson index, contributing to low adaptive range to non-specific stress in children being domiciled on contaminated territories including children having the endothelial dysfunction. Conclusions. Endothelial dysfunction was associated with more pronounced manifestations of autonomic dysregulation and reduced aerobic capacity of the organism being the risk factors of development of a range of somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas. autonomous nervous system balance, endothelial dysfunction, children, Chornobyl accident. V. G. Kondrashova, I. E. Kolpakov, V. Yu. Vdovenko, O. S. Leonovych, O. M. Lytvynets, E. I. Stepanova.
Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.
Matt, Stephanie M; Johnson, Rodney W
2016-02-01
Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sasaki, T; Iwasaki, K; Oka, T; Hisanaga, N; Ueda, T; Takada, Y; Fujiki, Y
1999-01-01
A field survey of 147 engineers (23-49 years) in an electronics manufacturing company was conducted to investigate the effect of working hours on cardiovascular-autonomic nervous functions (urinary catecholamines, heart rate variability and blood pressure). The subjects were divided into 3 groups by age: 23-29 (n = 49), 30-39 (n = 74) and 40-49 (n = 24) year groups. Subjects in each age group were further divided into shorter (SWH) and longer (LWH) working hour subgroups according to the median of weekly working hours. In the 30-39 year group, urinary noradrenaline in the afternoon for LWH was significantly lower than that for SWH and a similar tendency was found in the LF/HF ratio of heart rate variability at rest. Because these two autonomic nervous indices are related to sympathetic nervous activity, the findings suggested that sympathetic nervous activity for LWH was lower than that for SWH in the 30-39 year group. Furthermore, there were significant relationships both between long working hours and short sleeping hours, and between short sleeping hours and high complaint rates of "drowsiness and dullness" in the morning in this age group. Summarizing these results, it appeared that long working hours might lower sympathetic nervous activity due to chronic sleep deprivation.
Lead Poisoning: A Need for Education.
ERIC Educational Resources Information Center
Lipnickey, Susan Cross
1981-01-01
Each year approximately 200 children die of lead poisoning. Especially vulnerable to the toxic effects of lead poisoning are the nervous system, kidneys, and the bones. Physiological effects of lead on the school-age child, screening processes, and roles of school personnel in dealing with suspected victims of lead poisoning are discussed. (JN)
Autonomic Dysregulation during Sensory Stimulation in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Schaaf, Roseann C.; Benevides, Teal W.; Leiby, Benjamin E.; Sendecki, Jocelyn A.
2015-01-01
Autonomic nervous system (ANS) activity during sensory stimulation was measured in 59 children with autism spectrum disorder (ASD) ages 6-9 in comparison to 30 typically developing controls. Multivariate comparisons revealed significant differences between groups in the respiratory sinus arrhythmia (parasympathetic measure) vector of means across…
The susceptibility of the developing nervous system to damage following exposure to environmental contaminants is believed to be based upon the critical nature of the organizational events that occur in both a regionally- and temporally-dependent manner. The age-related susceptib...
Standard Operating Procedure for the Turbidimetric Determination of Lead in Paint Extracts
Exposure to lead (Pb) may adversely impact children's brains, nervous systems and many organs. An estimated 310,000 US children ages 1 to 5 have elevated blood leads. In the United States, the major exposure pathway for children to Pb is from deteriorated Pb-based paint (LBP), ...
USDA-ARS?s Scientific Manuscript database
Older adults experience a variety of functional changes that decrease their quality of life with age-related cognitive decline and reduced mobility being of particular concern. Pre-clinical research indicates that berry fruit offer a promising dietary approach to preserving nervous system function, ...
How Relevant Are GFAP Autoantibodies in Autism and Tourette Syndrome?
ERIC Educational Resources Information Center
Kirkman, Nikki J.; Libbey, Jane E.; Sweeten, Thayne L.; Coon, Hilary H.; Miller, Judith N.; Stevenson, Edward K.; Lainhart, Janet E.; McMahon, William M.; Fujinami, Robert S.
2008-01-01
Controversy exists over the role of autoantibodies to central nervous system antigens in autism and Tourette Syndrome. We investigated plasma autoantibody titers to glial fibrillary acidic protein (GFAP) in children with classic onset (33) and regressive onset (26) autism, controls (25, healthy age- and gender-matched) and individuals with…
Huang, Claire Yu-Mei; Zhang, Chuansheng; Ho, Tammy Szu-Yu; Oses-Prieto, Juan; Burlingame, Alma L; Lalonde, Joshua; Noebels, Jeffrey L; Leterrier, Christophe; Rasband, Matthew N
2017-11-22
Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1 f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system. SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology. Copyright © 2017 the authors 0270-6474/17/3711311-12$15.00/0.
Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.
2017-01-01
ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615
Martin, J R; Stoner, G L
1984-11-01
Female mice were inoculated vaginally with the MS strain of herpes simplex virus type 2, and serially positive vaginal cultures were used to confirm infection. The proportion of mice infected and the mortality rate in infected mice decreased with increasing age. In mice 12 weeks old, clinical, neuropathologic, and virologic criteria defined four patterns of disease. Moribund mice had severe genital lesions, hindleg paralysis, and urinary and fecal retention, and most died during the second week of infection. These mice had a panmyelitis with a decreasing gradient of both viral antigen and lesions extending rostrally from the lumbosacral cord into the brain stem. Lesions were about equally distributed in gray and white matter and were characterized by neuronal loss and axonal demyelination, respectively. By contrast, mice with nonfatal infections had mild or no evident genital lesions and a small proportion had mild hindleg weakness. Of these, some mice had demyelinative lesions, particularly in the lower spinal cord but also at higher cord and brain stem levels, whereas others had leptomeningitis. Both of these groups had sacral sensory root abnormalities. A third group of survivors lacked both sensory root and central nervous system abnormalities. This report defines a broader spectrum of disease patterns following infection by a natural route than has been previously appreciated. It provides the first evidence that nonfatal herpes simplex virus type 2 infection by a peripheral route can produce central nervous system demyelination. It indicates that in aseptic meningitis with this agent, the route of virus spread to the central nervous system is neural and not hematogenous. Finally, the antigenic and pathologic observations presented here complement and confirm the virus isolation data and pathologic findings of others that genital herpes simplex virus type 2 infection causes ascending infection in the peripheral and central nervous system.
Testosterone Plus Finasteride Treatment After Spinal Cord Injury
2018-05-16
Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male
Circulatory response and autonomic nervous activity during gum chewing.
Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu
2009-08-01
Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.
Cockayne syndrome pathogenesis: lessons from mouse models.
Jaarsma, Dick; van der Pluijm, Ingrid; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J
2013-01-01
Cockayne syndrome (CS) is a rare multisystem disorder characterized by cachectic dwarfism, nervous system abnormalities and features of premature aging. CS symptoms are associated with mutations in 5 genes, CSA, CSB, XPB, XPD and XPG encoding for proteins involved in the transcription-coupled subpathway of nucleotide excision DNA repair (NER). Mutant mice have been generated for all CS-associated genes and provide tools to examine how the cellular defects translate into CS symptoms. Mice deficient for Csa or Csb genetically mimic CS in man, and develop mild CS symptoms including reduced fat tissue, photoreceptor cell loss, and mild, but characteristic, nervous system pathology. These mild CS models are converted into severe CS models with short life span, progressive nervous system degeneration and cachectic dwarfism after simultaneous complete inactivation of global genome NER. A spectrum of mild-to-severe CS-like symptoms occurs in Xpb, Xpd, and Xpg mice that genetically mimic patients with a disorder that combines CS symptoms with another NER syndrome, xeroderma pigmentosum. In conclusion, CS mouse models mice develop a range of CS phenotypes and open promising perspectives for testing interventional approaches. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan
Chang, Kang-Ming; Shen, Chuh-Wei
2011-01-01
Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P < .001∗∗∗) after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy. PMID:21584196
Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan.
Chang, Kang-Ming; Shen, Chuh-Wei
2011-01-01
Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P < .001(∗∗∗)) after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.
Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon
2016-11-01
Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.
Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon
2016-01-01
Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132
Gengo, F M; Gabos, C
1988-07-01
The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.
2013-05-01
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma
Shumskikh, D S; Rakhmanov, R S; Orlov, A L
2015-01-01
There was developed the PC software, which demonstrates the type of nervous system, allows us to differentiate people according to the empirical coefficient within groups with the same type of nervous system, provides information on the severity of the asymmetry of the hemispheres of the brain and shows the results of performance of the work It does not require additional calculations. With its use there were examined 1 and 2 courses students of the institution. Ehpyky was performed the comparative analysis of the progress of students with different types of nervous system. The academic performance in the examinees with a strong type of nervous system was significantly higher than in those with a weak type. In order to improve professional training the assessment of the type of the nervous system can be used in the educational process for the identification and correction of students with a weak nervous system.
Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T; do Carmo, Jussara M; Zhang, Howei; Smith, Andrew D; Bui, Elizabeth; Thomas, R Lucas; Moulana, Mohadetheh; Hall, John E; Granger, Joey P; Reckelhoff, Jane F
2015-04-15
Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. Copyright © 2015 the American Physiological Society.
Paine, Nicola J; Watkins, Lana L; Blumenthal, James A; Kuhn, Cynthia M; Sherwood, Andrew
2015-01-01
Depression and anxiety are considered risk factors for cardiovascular disease (CVD). The explanatory mechanisms, however, are still to be characterized. One proposed pathophysiological pathway is dysregulation of the autonomic nervous system, including heightened sympathetic nervous system activity. This study examined the relationship between symptoms of depression, anxiety, and sympathetic nervous system activity in individuals with untreated high blood pressure. A total of 140 participants with untreated high blood pressure (55% white, 38.5% female, mean [standard deviation] age = 45.5 [8.55] years) collected urine over a 24-hour period on 3 separate occasions. Urine samples were assayed for mean 24-hour epinephrine (EPI24) and norepinephrine excretion. Depressive symptoms were assessed using the Beck Depression Inventory, with anxiety symptoms assessed using the Spielberger State-Trait Anxiety Inventory. Depression and anxiety scores were intercorrelated (r = 0.76, p < .001). EPI24 was positively correlated with anxiety (r = 0.20, p = .02) but not depression (r = 0.02, p = .77), whereas 24-hour urinary norepinephrine excretion was not correlated with anxiety (r = 0.10, p = .21) or with depression (r = 0.07, p = .39). Regression models, accounting for sex, age, body mass index, race, mean systolic ambulatory blood pressure, tobacco use, alcohol use, physical activity, and sleep efficiency confirmed that anxiety was associated with EPI24 excretion (p = .023) and that depressive symptoms were not (p = .54). Anxiety was associated with heightened sympathoadrenal activity, suggesting a biological pathway through which anxiety could increase CVD risk. Anxiety and depression may confer increased CVD risk via different mechanisms.
Effect of training mode on post-exercise heart rate recovery of trained cyclists.
McDonald, Kelia G; Grote, Silvie; Shoepe, Todd C
2014-06-28
The sympathetic nervous system dominates the regulation of body functions during exercise. Therefore after exercise, the sympathetic nervous system withdraws and the parasympathetic nervous system helps the body return to a resting state. In the examination of this relationship, the purpose of this study was to compare recovery heart rates (HR) of anaerobically versus aerobically trained cyclists. With all values given as means ± SD, anaerobically trained track cyclists (n=10, age=25.9 ± 6.0 yrs, body mass=82.7 ± 7.1 kg, body fat=10.0 ± 6.3%) and aerobically trained road cyclists (n=15, age=39.9 ± 8.5 yrs, body mass=75.3 ± 9.9 kg, body fat=13.1 ± 4.5%) underwent a maximal oxygen uptake test. Heart rate recovery was examined on a relative basis using heart rate reserve as well as the absolute difference between maximum HR and each of two recovery HRs. The post-exercise change in HR at minute one for the track cyclists and road cyclists respectively were 22 ± 8 bpm and 25 ± 12 bpm. At minute two, the mean drop for track cyclists was significantly (p<0.05) greater than the road cyclists (52 ± 15 bpm and 64 ± 11 bpm). Training mode showed statistically significant effects on the speed of heart rate recovery in trained cyclists. Greater variability in recovery heart rate at minute two versus minute one suggests that the heart rate should be monitored longer than one minute of recovery for a better analysis of post-exercise autonomic shift.
Low heart rate variability and cancer-related fatigue in breast cancer survivors
Crosswell, Alexandra D.; Lockwood, Kimberly G.; Ganz, Patricia A.; Bower, Julienne E.
2015-01-01
Cancer-related fatigue is a common and often long lasting symptom for many breast cancer survivors. Fatigued survivors show evidence of elevated inflammation, but the physiological mechanisms driving inflammatory activity have not been determined. Alterations in the autonomic nervous system, and particularly parasympathetic nervous system activity, are a plausible, yet understudied contributor to cancer-related fatigue. The goal of this study was to replicate one previous study showing an association between lower parasympathetic activity and higher fatigue in breast cancer survivors (Fagundes et al., 2011), and to examine whether inflammation mediates this association. Study participants were drawn from two samples and included 84 women originally diagnosed with early-stage breast cancer prior to age 50. Participants completed questionnaires, provided blood samples for determination of interleukin (IL)-6 and C-reactive protein (CRP), and underwent electrocardiography (ECG) assessment for evaluation of resting heart rate variability (HRV), a measure of parasympathetic activity. Results showed that lower HRV was associated with higher fatigue (p < .05), as predicted. In bivariate analyses, HRV was also correlated with circulating concentrations of IL-6 and CRP. However, path analyses did not support inflammation as a mediator of the association between HRV and fatigue; instead, associations among these variables appeared to be driven by age and BMI. These findings identify HRV as a potential contributor to cancer-related fatigue, but suggest that inflammation does not mediate this association in younger, healthy breast cancer survivors who are several years post-treatment. The autonomic nervous system merits additional attention in research on the etiology of cancer-related fatigue. PMID:24845177
Human alcohol-related neuropathology
Kril, Jillian J.
2015-01-01
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions. PMID:24370929
Franco, Claudinéia C S; Prates, Kelly V; Previate, Carina; Moraes, Ana M P; Matiusso, Camila C I; Miranda, Rosiane A; de Oliveira, Júlio C; Tófolo, Laize P; Martins, Isabela P; Barella, Luiz F; Ribeiro, Tatiane A; Malta, Ananda; Pavanello, Audrei; Francisco, Flávio A; Gomes, Rodrigo M; Alves, Vander S; Moreira, Veridiana M; Rigo, Késia P; Almeida, Douglas L; de Sant Anna, Juliane R; Prado, Marialba A A C; Mathias, Paulo C F
2017-05-01
Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of β-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.
Sympathetic nerve dysfunction is common in patients with chronic intestinal pseudo-obstruction.
Mattsson, Tomas; Roos, Robert; Sundkvist, Göran; Valind, Sven; Ohlsson, Bodil
2008-02-01
To clarify whether disturbances in the autonomic nervous system, reflected in abnormal cardiovascular reflexes, could explain symptoms of impaired heat regulation in patients with intestinal pseudo-obstruction. Chronic intestinal pseudo-obstruction is a clinical syndrome characterized by diffuse, unspecific gastrointestinal symptoms due to damage to the enteric nervous system or the smooth muscle cells. These patients often complain of excessive sweating or feeling cold, suggesting disturbances in the autonomic nervous system. Earlier studies have pointed to a coexistence of autonomic disturbances in the enteric and cardiovascular nervous system. Thirteen consecutive patients (age range 23 to 79, mean 44 y) fulfilling the criteria for chronic intestinal pseudo-obstruction were investigated. Six of them complained of sweating or a feeling of cold. Examination of autonomic reflexes included heart rate variation to deep-breathing (expiration/inspiration index), heart rate reaction to tilt (acceleration index, brake index), and vasoconstriction (VAC) due to indirect cooling by laser doppler (VAC-index; high index indicates impaired VAC). Test results in patients were compared with healthy individuals. Patients had significantly higher (more abnormal) median VAC-index compared with healthy controls [1.79 (interquartile ranges 1.89) vs. 0.08 (interquartile ranges 1.29); P=0.0007]. However, symptoms of impaired heat regulation were not related to the VAC-index. There were no differences in expiration/inspiration, acceleration index, or brake index between patients and controls. The patients with severe gastrointestinal dysmotility showed impaired sympathetic nerve function which, however, did not seem to be associated with symptoms of impaired heat regulation.
Screening Criteria for Ophthalmic Manifestations of Congenital Zika Virus Infection.
Zin, Andrea A; Tsui, Irena; Rossetto, Julia; Vasconcelos, Zilton; Adachi, Kristina; Valderramos, Stephanie; Halai, Umme-Aiman; Pone, Marcos Vinicius da Silva; Pone, Sheila Moura; Silveira Filho, Joel Carlos Barros; Aibe, Mitsue S; da Costa, Ana Carolina C; Zin, Olivia A; Belfort, Rubens; Brasil, Patricia; Nielsen-Saines, Karin; Moreira, Maria Elisabeth Lopes
2017-09-01
Current guidelines recommend screening eye examinations for infants with microcephaly or laboratory-confirmed Zika virus infection but not for all infants potentially exposed to Zika virus in utero. To evaluate eye findings in a cohort of infants whose mothers had polymerase chain reaction-confirmed Zika virus infection during pregnancy. In this descriptive case series performed from January 2 through October 30, 2016, infants were examined from birth to 1 year of age by a multidisciplinary medical team, including a pediatric ophthalmologist, from Fernandes Figueira Institute, a Ministry of Health referral center for high-risk pregnancies and infectious diseases in children in Rio de Janeiro, Brazil. Mother-infant pairs from Rio de Janeiro, Brazil, who presented with suspected Zika virus infection during pregnancy were referred to our institution and had serum, urine, amniotic fluid, or placenta samples tested by real-time polymerase chain reaction for Zika virus. Description of eye findings, presence of microcephaly or other central nervous system abnormalities, and timing of infection in infants with confirmed Zika virus during pregnancy. Eye abnormalities were correlated with central nervous system findings, microcephaly, and the timing of maternal infection. Of the 112 with polymerase chain reaction-confirmed Zika virus infection in maternal specimens, 24 infants (21.4%) examined had eye abnormalities (median age at first eye examination, 31 days; range, 0-305 days). Ten infants (41.7%) with eye abnormalities did not have microcephaly, and 8 (33.3%) did not have any central nervous system findings. Fourteen infants with eye abnormalities (58.3%) were born to women infected in the first trimester, 8 (33.3%) in the second trimester, and 2 (8.3%) in the third trimester. Optic nerve and retinal abnormalities were the most frequent findings. Eye abnormalities were statistically associated with microcephaly (odds ratio [OR], 19.1; 95% CI, 6.0-61.0), other central nervous system abnormalities (OR, 4.3; 95% CI, 1.6-11.2), arthrogryposis (OR, 29.0; 95% CI, 3.3-255.8), and maternal trimester of infection (first trimester OR, 5.1; 95% CI, 1.9-13.2; second trimester OR, 0.5; 95% CI, 0.2-1.2; and third trimester OR, 0.3; 95% CI, 0.1-1.2). Eye abnormalities may be the only initial finding in congenital Zika virus infection. All infants with potential maternal Zika virus exposure at any time during pregnancy should undergo screening eye examinations regardless of the presence or absence of central nervous system abnormalities.
Toivanen, H; Länsimies, E; Jokela, V; Hänninen, O
1993-10-01
The work-related strain of 50 female hospital cleaners and 48 female bank employees was recorded during a period of rationalization in the workplace, and the effect of daily relaxation to help the workers cope was tested. The subjects were arranged into age-matched pairs and randomly allocated into intervention and reference groups. The intervention period lasted six months. The relaxation method was brief and easily introduced as an alternative break in the workplace. Each training session lasted 15 min. A microcomputer-based system was used to record heart rate variability in response to quiet breathing, the Valsalva maneuver, deep breathing, and active orthostatic tests. Cardiac reflexes indicated that occupational strain (especially of a mental nature) caused the functioning of the autonomic nervous system to deteriorate. Regular deep relaxation normalized the function and improved the ability to cope.
Clément, Gilles; Ngo-Anh, Jennifer Thu
2013-07-01
Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.
ERIC Educational Resources Information Center
Gordon, Tessa; Gordon, Karen
2010-01-01
Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…
The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.
Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu
2018-06-07
Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.
The Human Sympathetic Nervous System Response to Spaceflight
NASA Technical Reports Server (NTRS)
Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David
2003-01-01
The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.
Stages of Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Treatment Options for Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Development of a stained cell nuclei counting system
NASA Astrophysics Data System (ADS)
Timilsina, Niranjan; Moffatt, Christopher; Okada, Kazunori
2011-03-01
This paper presents a novel cell counting system which exploits the Fast Radial Symmetry Transformation (FRST) algorithm [1]. The driving force behind our system is a research on neurogenesis in the intact nervous system of Manduca Sexta or the Tobacco Hornworm, which was being studied to assess the impact of age, food and environment on neurogenesis. The varying thickness of the intact nervous system in this species often yields images with inhomogeneous background and inconsistencies such as varying illumination, variable contrast, and irregular cell size. For automated counting, such inhomogeneity and inconsistencies must be addressed, which no existing work has done successfully. Thus, our goal is to devise a new cell counting algorithm for the images with non-uniform background. Our solution adapts FRST: a computer vision algorithm which is designed to detect points of interest on circular regions such as human eyes. This algorithm enhances the occurrences of the stained-cell nuclei in 2D digital images and negates the problems caused by their inhomogeneity. Besides FRST, our algorithm employs standard image processing methods, such as mathematical morphology and connected component analysis. We have evaluated the developed cell counting system with fourteen digital images of Tobacco Hornworm's nervous system collected for this study with ground-truth cell counts by biology experts. Experimental results show that our system has a minimum error of 1.41% and mean error of 16.68% which is at least forty-four percent better than the algorithm without FRST.
Masud, Tahir; Frost, Morten; Ryg, Jesper; Matzen, Lars; Ibsen, Marlene; Abrahamsen, Bo; Brixen, Kim
2013-01-01
drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years. a questionnaire was sent to randomly selected Danish men aged 60-75 years. Cross-sectional data on CNS drugs and falls in the previous year were available for 4,696 men. Logistic regression investigated the relationship between falls and CNS drugs. the median age was 66.3 (IQR = 63.1-70.0) years; 21.7% were fallers. The following were associated with fallers (OR; 95% CI): opiates (2.4; 1.5-3.7), other analgesics (1.7; 1.4-2.1), antiepileptics (2.8; 1.5-5.1), antidepressants (2.8; 1.9-4.1) and anxiolytics/hypnotics (1.5; 0.9-2.6). Effects of opiates interacted strongly and significantly with age, with a marked association with falls in the older half of the subjects only. No significant associations were found between antipsychotics and fallers. Selective serotonin reuptake inhibitors and tricyclics were significantly associated with fallers (3.1; 2.0-5.0 and 2.2; 1.0-4.7, respectively). several CNS drug classes are associated with an approximately 2-3-fold increase risk of falls in men aged 60-75 years randomly selected from the population. Further longitudinal data are now required to confirm and further investigate the role of CNS drugs in falls causation in men.
ERIC Educational Resources Information Center
Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.
2010-01-01
The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…
Due Process Hearing Case Study
ERIC Educational Resources Information Center
Bateman, David F.
2009-01-01
Marnie is a resident of an unnamed School District ("the District"). In January 2000 at the age of 13, Marnie was involved in a bicycle accident that severely damaged her central nervous system, leaving her without use of her legs or left hand and cognitively impaired. She had not received special education previously. By September 2001,…
ERIC Educational Resources Information Center
Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett
2010-01-01
Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…
Brain Damage in School Age Children.
ERIC Educational Resources Information Center
Haywood, H. Carl, Ed.
The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…
Mocikova, Heidi; Pytlik, Robert; Sykorova, Alice; Janikova, Andrea; Prochazka, Vit; Vokurka, Samuel; Berkova, Adela; Belada, David; Campr, Vit; Buresova, Lucie; Trneny, Marek
2016-12-01
We have investigated whether the addition of rituximab to methotrexate, procarbazine, vincristine, radiotherapy and cytarabine was associated with improved outcome of primary central nervous system lymphomas (PCNSL). Of 164 patients, 49 received rituximab. Median age was 63 years, median Karnofsky performance score (KPS) was 60 and median follow-up of living patients was 59.5 months. 1- and 2-year PFS were 49.7 and 37.9%, 1- and 2-year OS were 57.0 and 45.3%. Median progression-free survival (PFS), but not overall survival (OS) was significantly better for patients treated with rituximab (22.9 vs. 10.9 months, p = 0.037). In multivariate analysis, age ≤70 years and KPS ≥90 were predictive for PFS and OS, rituximab was an independent prognostic factor for PFS only. In landmark analyses, rituximab was not found beneficial for long-term survivors and no group particularly benefited from rituximab. In conclusion, addition of rituximab was associated with improved PFS, but not OS in this unselected cohort of PCNSL patients.
Types A and B Niemann-Pick Disease.
Schuchman, Edward H; Wasserstein, Melissa P
2016-06-01
Two distinct metabolic abnormalities are included under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly, frequent pulmonary infections, and profound central nervous system involvement in infancy. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and progressive alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second category are designated as having type C NPD. Impaired intracellular trafficking of cholesterol causes type C NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.
Mustafaev, I I; Nurmamedova, G S
2013-01-01
Aim of the study was to assess effect of monotherapy with nebivolol, bisoprolol, carvedilol for 2 months on sexual function in men with arterial hypertension (AH). Men with 1-2 degree of AH (n=75, age 35-55 years, mean age 48+/-3,5 years) received monotherapy with these drugs for 2 months. Registration of parameters of heart rate variability (HRV), Dopplerography of penile arteries, and the Vasilchenko questionnaire were implemented at the end of 4 months of placebo period and after 2 months of therapy with a study drug. Therapy with bisoprolol, carvedilol, and nebivolol was associated with significant elevation of parasympathetic part of vegetative nervous system tone, improvement of systolic blood flow in cavernous and dorsal arteries. Analysis of data obtained by Vasilchenko questionnaire demonstrated improvement of psychic and erectile components of sexual function. Thus bisoprolol, carvedilol, and nebivolol did not worsen sexual function of men with AH, improved spectral parameters of HRV and vascular blood flow in arteries of cavernous bodies.
Watanabe, Shohei; Okada, Masaya; Tokugawa, Tazuko; Sawada, Akihiro; Ogawa, Hiroyasu; Yoshikawa, Hiroo
2014-01-01
A 38-year-old man was admitted to our hospital with neck pain, dysesthesia of both hands, and weakness of the left upper limb. He had been diagnosed with a chronic active Epstein-Barr virus infection (CAEBV) at the age of 34 and had undergone umbilical cord blood transplantation at the age of 37. MRI of the spinal cord revealed an intramedullary hyperintense lesion on T₂-weighted images with gadolinium enhancement. Because his laboratory tests revealed proliferation of CD19(+) lymphocytes in the peripheral blood, and EBV DNA was detected in both peripheral blood and CSF, he was diagnosed as having post-transplant EBV associated lymphoproliferative disease. However, chemotherapy did not alleviate his symptoms. At a later time, quantitative chimerism analysis of his CSF showed a higher proportion of lymphocytes that had originated from the recipient. Finally, he was diagnosed as having a recurrence of CAEBV in the central nervous system, and his symptoms were restored by intrathecal chemotherapy (methotrexate, cytosine arabinoside, and prednisolone). Quantitative chimerism analysis of CSF was useful for diagnosing the recurrence of CAEBV in the central nervous system.
A history of the autonomic nervous system: part II: from Reil to the modern era.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The history of the study of the autonomic nervous system is rich. At the beginning of the nineteenth century, scientists were beginning to more firmly grasp the reality of this part of the human nervous system. The evolution of our understanding of the autonomic nervous system has a rich history. Our current understanding is based on centuries of research and trial and error.
Evolution of eumetazoan nervous systems: insights from cnidarians.
Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich
2015-12-19
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.
Becker, Laren; Nguyen, Linh; Gill, Jaspreet; Kulkarni, Subhash; Pasricha, Pankaj Jay; Habtezion, Aida
2018-05-01
The enteric nervous system (ENS) undergoes neuronal loss and degenerative changes with age. The cause of this neurodegeneration is poorly understood. Muscularis macrophages residing in close proximity to enteric ganglia maintain neuromuscular function via direct crosstalk with enteric neurons and have been implicated in the pathogenesis of GI motility disorders like gastroparesis and postoperative ileus. The aim of this study was to assess whether ageing causes alterations in macrophage phenotype that contributes to age-related degeneration of the ENS. Longitudinal muscle and myenteric plexus from small intestine of young, mid-aged and old mice were dissected and prepared for whole mount immunostaining, flow cytometry, Luminex immunoassays, western blot analysis, enteric neural stem cell (ENSC) isolation or conditioned media. Bone marrow derived macrophages were prepared and polarised to classic (M1) or alternative (M2) activation states. Markers for macrophage phenotype were measured using quantitative RT-PCR. Ageing causes a shift in macrophage polarisation from anti-inflammatory 'M2' to proinflammatory 'M1' that is associated with a rise in cytokines and immune cells in the ENS. This phenotypic shift is associated with a neural response to inflammatory signals, increase in apoptosis and loss of enteric neurons and ENSCs, and delayed intestinal transit. An age-dependent decrease in expression of the transcription factor FoxO3, a known longevity gene, contributes to the loss of anti-inflammatory behaviour in macrophages of old mice, and FoxO3-deficient mice demonstrate signs of premature ageing of the ENS. A shift by macrophages towards a proinflammatory phenotype with ageing causes inflammation-mediated degeneration of the ENS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
75 FR 69005 - Flumioxazin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... reproduction studies indicated an effect on the nervous systems. Based on the lack of evidence of... flumioxazin does not directly impact the nervous system or directly target the immune system. The Agency does... to indicate that flumioxazin targets the nervous system or the immune system. Further, EPA has...
Treatment Option Overview (Childhood Soft Tissue Sarcoma)
... nearby lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... therapy , and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
... will include a detailed examination of the nervous system and muscle function. In most cases, a neurologist (specialist in ... require ongoing care and support. Alternative Names Decreased muscle tone; Floppy infant ... Central nervous system and peripheral nervous system References Burnette WB. Hypotonic ( ...
... the autonomic nervous system. This is the part of the nervous system that is not under your control. Sweating is ... Skin layers References Chelimsky T, Chelimsky G. Disorders of the autonomic nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H
1981-06-01
In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.
Del Risco Kollerud, Ruby; Blaasaas, Karl Gerhard; Claussen, Bjørgulf
2015-11-01
The association between childhood cancer and socioeconomic status is inconclusive. Family income has seldom been included in large population-based studies, and the specific contributions of it remain unknown. A total of 712,674 children born between 1967 and 2009 in the Oslo region were included. Of these, 864 were diagnosed with leukemia or cancer in the central nervous system before the age of 15 years. The association between poverty and childhood leukemia or brain cancer was analyzed using logistic regression and Cox proportional hazards models. Family income was stratified according to poverty lines. Parents' educational level and several perinatal variables were also examined. Family poverty during the first 2 years of life was associated with lymphoid leukemia before the age of 15 years: odds ratio 1.72, 95% confidence interval 1.11-2.64. In the same age group we found a significant dose response, with a 21% increased risk of lymphoid leukemia with increasing poverty. The risk for intracranial and intraspinal embryonal tumors in the whole study period was lower for children in the middle family income category. For astrocytomas there was a more than 70% increased risk in the medium income category when analyzing the two first years of life. The observed increase was reduced when all years each child contributed to the study were included. The risk of cancer in the central nervous system overall was 20% higher in the medium income category compared to the high-income category. Being born into a household of low family income the first 2 years of life was found to be a risk factor for development of lymphoid leukemia. For astrocytomas we observed an increased risk among children born into the medium income category throughout the first two years of life. © 2015 the Nordic Societies of Public Health.
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also
Immunostaining to visualize murine enteric nervous system development.
Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush
2015-04-29
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.
Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.
Vida, Carmen; González, Eva M; De la Fuente, Mónica
2014-01-01
According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.
Stocker, Abigail; Abell, Thomas L.; Rashed, Hani; Kedar, Archana; Boatright, Ben; Chen, Jiande
2016-01-01
Background Disorders of nausea, vomiting, abdominal pain, and related problems often are manifestations of gastrointestinal, neuromuscular, and/or autonomic dysfunction. Many of these patients respond to neurostimulation, either gastric electrical stimulation or electroacupuncture. Both of these therapeutic techniques appear to influence the autonomic nervous system which can be evaluated directly by traditional testing and indirectly by heart rate variability. Methods We studied patients undergoing gastric neuromodulation by both systemic autonomic testing (39 patients, six males and 33 females, mean age 38 years) and systemic autonomic testing and heart rate variability (35 patients, seven males and 28 females, mean age 37 years) testing before and after gastric neuromodulation. We also performed a pilot study using both systemic autonomic testing and heart rate variability in a small number of patients (five patients, all females, mean age 48.6 years) with diabetic gastroparesis at baseline to compare the two techniques at baseline. Systemic autonomic testing and heart rate variability were performed with standardized techniques and gastric electrical stimulation was performed as previously described with electrodes implanted serosally in the myenteric plexus. Results Both systemic autonomic testing and heart rate variability measures were often abnormal at baseline and showed changes after gastric neuromodulation therapy in two groups of symptomatic patients. Pilot data on a small group of similar patients with systemic automatic nervous measures and heart rate variability showed good concordance between the two techniques. Conclusions Both traditional direct autonomic measures and indirect measures such as heart rate variability were evaluated, including a pilot study of both methods in the same patient group. Both appear to be useful in evaluation of patients at baseline and after stimulation therapies; however, a future full head-to-head comparison is warranted. PMID:27785318
Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan
2006-11-01
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
Riley, D G; Gill, C A; Boldt, C R; Funkhouser, R R; Herring, A D; Riggs, P K; Sawyer, J E; Lunt, D K; Sanders, J O
2016-04-01
cattle often have the reputation for a poor or dangerous temperament. Identification of genomic regions that associate with temperament of such cattle may be useful for genetic improvement strategies. The objectives of this study were to evaluate subjective temperament scores (1 to 9; higher scores indicated more unfavorable temperament) for aggressiveness, nervousness, flightiness, gregariousness, and overall temperament of one-half steers in feedlot conditions at 1 yr of age and compare those scores of those steers when evaluated approximately 1 mo postweaning, and conduct whole genome association analyses using SNP markers and the temperament traits of those steers at 1 yr of age and for temperament traits of all calves at weaning. Contemporary groups ( < 0.001) were steers born in the same year and season, and fed in the same feedlot pen. Aggressiveness of steers at 1 yr of age was not associated with aggressiveness at weaning (linear regression coefficient did not differ from 0; = 0.96), but regressions of all other yearling scores of steers on the scores at weaning were positive (coefficients ranged from 0.26 ± 0.04 to 0.32 ± 0.04; < 0.001). Estimates of Pearson correlation coefficients (using unadjusted values and residual values) of the different traits measured at 1 yr of age were large ( > 0.63; < 0.008) except for aggressiveness with nervousness, flightiness, or gregariousness, which did not differ from 0 ( > 0.1). Five SNP on BTA 1, 24, and 29 had suggestive associations (0.17 < [adjusted for FDR] < 0.24) with aggressiveness, nervousness, or flightiness at evaluation postweaning and 13 SNP on 11 chromosomes had suggestive associations (0.07 < [adjusted for FDR] < 0.24) with aggressiveness, nervousness, flightiness, or overall temperament score of steers at 1 yr of age. Genes close to these loci with roles in neural systems of various organisms included synaptotagmin 4 (BTA 24), FAT atypical cadhedrin 3 (BTA 29), tubulin tyrosine ligase-like 1 (BTA 5), spermatogenesis associated 17 (BTA 16), stanniocalcin 2 (BTA 20), and GABA receptor γ 3 (BTA 21).
Autonomic dysfunction in pediatric patients with headache: migraine versus tension-type headache.
Rabner, Jonathan; Caruso, Alessandra; Zurakowski, David; Lazdowsky, Lori; LeBel, Alyssa
2016-12-01
To examine symptoms indicating central nervous system (CNS) autonomic dysfunction in pediatric patients with migraine and tension-type headache. A retrospective chart review assessed six symptoms (i.e. constipation, insomnia, dizziness, blurry vision, abnormal blood pressure, and cold and clammy palms and soles) indicating central nervous system (CNS) autonomic dysfunction in 231 patients, ages 5-18 years, diagnosed with migraine, tension-type headache (TTH), or Idiopathic Scoliosis (IS). Higher frequencies of "insomnia," "dizziness," and "cold and clammy palms and soles" were found for both migraine and TTH patients compared to the IS control group (P < 0.001). Frequencies of all six symptoms were greater in TTH than migraine patients with "cold and clammy palms and soles" reaching significance (P < 0.001). The need for prospective research investigating autonomic dysfunction in pediatric headache patients is discussed.
Prenatal stress and balance of the child's cardiac autonomic nervous system at age 5-6 years.
van Dijk, Aimée E; van Eijsden, Manon; Stronks, Karien; Gemke, Reinoud J B J; Vrijkotte, Tanja G M
2012-01-01
Autonomic nervous system (ANS) misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. Mothers from a prospective birth cohort (ABCD study) filled out a questionnaire at gestational week 16 [IQR 12-20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80(th) percentiles). Indicators of cardiac ANS in the offspring at age 5-6 years are: pre-ejection period (PEP), heart rate (HR), respiratory sinus arrhythmia (RSA) and cardiac autonomic balance (CAB), measured with electrocardiography and impedance cardiography in resting supine and sitting positions. 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17). Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07). Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years.
Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li
2014-09-01
Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.
Song, Chorong; Ikei, Harumi; Kobayashi, Maiko; Miura, Takashi; Taue, Masao; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-03-02
There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0±10.6 years) were instructed to walk predetermined courses in forest and urban environments (as control). Course length (17-min walk), walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV) and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased "comfortable", "relaxed", "natural" and "vigorous" feelings and decreased "tension-anxiety," "depression," "anxiety-hostility," "fatigue" and "confusion". A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.
Classical Neurotransmitters and their Significance within the Nervous System.
ERIC Educational Resources Information Center
Veca, A.; Dreisbach, J. H.
1988-01-01
Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)
C. elegans model of neuronal aging
Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min
2011-01-01
Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and showed that age-dependent neuronal defects are regulated by insulin signaling. We identified electrical activity and epithelial attachment as two critical factors in the maintenance of structural integrity of C. elegans touch receptor neurons. These findings open a new avenue for elucidating the molecular mechanisms that maintain neuronal structures during the course of aging. PMID:22446530
Complex Homology and the Evolution of Nervous Systems
Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.
2016-01-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806
Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang
2016-01-01
Abstract The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited. Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results. The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found. The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin. PMID:27175645
Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang
2016-05-01
The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.
Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M.
2015-01-01
Objectives It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Methods Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. Results In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. Conclusions This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system. PMID:25965336
Shorter telomere length increases age-related tumor risks in von Hippel-Lindau disease patients.
Wang, Jiang-Yi; Peng, Shuang-He; Ning, Xiang-Hui; Li, Teng; Liu, Sheng-Jie; Liu, Jia-Yuan; Hong, Bao-An; Qi, Nie-Nie; Peng, Xiang; Zhou, Bo-Wen; Zhang, Jiu-Feng; Cai, Lin; Gong, Kan
2017-09-01
Von Hippel-Lindau (VHL) disease is a rare autosomal dominant cancer syndrome caused by alterations of VHL gene. Patients are predisposed to develop pheochromocytomas and solid or cystic tumors of the central nervous system, kidney, pancreas, and retina. Remarkable phenotypic heterogeneity exits in organ involvement and tumor onset age between and within VHL families. However, no reliable markers have been found to predict the age-related tumor risks in VHL patients. A large Chinese cohort composed of 300 VHL patients and 92 healthy family controls was enrolled in our study. Blood relative telomere length was measured in 184 patients and all the controls available for genomic DNA samples. Age-related risks for the five major VHL-associated tumors were evaluated using Kaplan-Meier plots and Cox regression analysis. Differences in clinical phenotype were observed between Chinese cohort and the United Kingdom cohort. VHL patients showed significantly shorter telomere length than healthy family controls(P = 0.0183), and a positive correlation was found between telomere length and onset age of the five major tumors, respectively. Moreover, patients in the shorter telomere group (age-adjusted telomere length ≤ 0.44) suffered higher age-related risks for VHL-associated central nervous system hemangioblastomas (HR: 1.879, P = 0.004), renal cell carcinoma (HR: 2.126, P = 0.002) and pancreatic cyst and neuroendocrine tumors (HR: 2.093, P = 0.001). These results indicate that blood shorter telomere length is a new biomarker for age-related tumor risks in VHL patients, which will be crucial to genetic counseling and future research about the role of telomere shortening in the pathogenesis of VHL-associated tumors. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue
Peptide-gated ion channels and the simple nervous system of Hydra.
Gründer, Stefan; Assmann, Marc
2015-02-15
Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.
Learning and Memory... and the Immune System
ERIC Educational Resources Information Center
Marin, Ioana; Kipnis, Jonathan
2013-01-01
The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…
Dysregulated physiological stress systems and accelerated cellular aging.
Révész, Dóra; Verhoeven, Josine E; Milaneschi, Yuri; de Geus, Eco J C N; Wolkowitz, Owen M; Penninx, Brenda W J H
2014-06-01
Exposure to chronic stressors is associated with accelerated biological aging as indicated by reduced leukocyte telomere length (LTL). This impact could be because of chronic overactivation of the body's physiological stress systems. This study examined the associations between LTL and the immune system, hypothalamic-pituitary-adrenal axis and autonomic nervous system. LTL was assessed in 2936 adults from the Netherlands Study of Depression and Anxiety. Inflammation markers (interleukin-6, c-reactive protein, tumor necrosis factor-alpha), hypothalamic-pituitary-adrenal-axis indicators (salivary cortisol awakening curve [area under the curve indicators, with respect to the ground and increase], evening levels, 0.5 mg dexamethasone cortisol suppression ratio), and autonomic nervous system measures (heart rate, respiratory sinus arrhythmia, pre-ejection period) were determined. Linear regression analyses were performed and adjusted for sociodemographic, lifestyle and clinical factors. Shorter LTL was significantly associated with higher c-reactive protein, interleukin-6, area under the curve with respect to increase, and heart rate. A cumulative index score was calculated based on the number of highest tertiles of these 4 stress markers. LTL demonstrated a significant gradient within subjects ranging from having zero (5528 base pairs) to having 4 elevated stress markers (5371 base pairs, p for trend = 0.002), corresponding to a difference of 10 years of accelerated biological aging. Contrary to the expectations, shorter LTL was also associated with longer pre-ejection period, indicating lower sympathetic tone. This large-scale study showed that inflammation, high awakening cortisol response, and increased heart rate are associated with shorter LTL, especially when they are dysregulated cumulatively. Copyright © 2014 Elsevier Inc. All rights reserved.
Shepherd, Mark N.; Pomicter, Anthony D.; Velazco, Cristine S.; Henderson, Scott C.; Dupree, Jeffrey L.
2012-01-01
Paranodal axo-glial junctional complexes anchor the myelin sheath to the axon and breakdown of these complexes presumably facilitates demyelination. Myelin deterioration is also prominent in the aging central nervous system (CNS); however, the stability of the paranodal complexes in the aged CNS has not been examined. Here, we show that transverse bands, prominent components of paranodal junctions, are significantly reduced in the aged CNS; however, the number of paired clusters of both myelin and axonal paranodal proteins is not altered. Ultrastructural analyses also reveal that thicker myelin sheaths display a “piling” of paranodal loops, the cytoplasm-containing sacs that demarcate the paranode. Loops involved in piling are observed throughout the paranode and are not limited to loops positioned in either the nodal- or juxtanodal-most regions. Here, we propose that as myelination continues, previously anchored loops lose their transverse bands and recede away from the axolemma. Newly juxtaposed loops then lose their transverse bands, move laterally to fill in the gap left by the receded loops and finally reform their transverse bands. This paranodal reorganization results in conservation of paranodal length, which may be important in maintaining ion channel spacing and axonal function. Furthermore, we propose that transverse band reformation is less efficient in the aged CNS, resulting in the significant reduction of these junctional components. Although demyelination was not observed, we propose that loss of transverse bands facilitates myelin degeneration and may predispose the aged CNS to a poorer prognosis following a secondary insult. PMID:20888080
Central and peripheral nervous systems: master controllers in cancer metastasis.
Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning
2013-12-01
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
76 FR 5711 - Bispyribac-sodium; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
...- sodium has shown no indications of central or peripheral nervous system toxicity in any study and does not appear to be structurally related to any other chemical that causes adverse nervous system effects... the nervous system is a target for [[Page 5715
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
2017-08-30
Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors
Natural History Study of Children With Metachromatic Leukodystrophy
2016-04-19
Lipid Metabolism Disorders; Metachromatic Leukodystrophy (MLD); Nervous System Diseases; Brain Diseases; Central Nervous System Diseases; Demyelinating Diseases; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Sphingolipidoses; Hereditary Central Nervous System Demyelinating Diseases; Metabolic Inborn Brain Diseases; Lysosomal Storage Diseases; Metabolic Diseases; Sulfatidosis
Stoll, Elizabeth A
2014-01-01
Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.
Strittmatter, M; Hamann, G F; Grauer, M; Fischer, C; Blaes, F; Hoffmann, K H; Schimrigk, K
1996-05-17
Twelve patients (age 43.4 +/- 6.3 years) with episodic cluster headache (CH) were examined during the cluster period. Plasma norepinephrine levels in patients suffering from CH were significantly decreased compared with the control group (p < 0.01). There were also statistically significant correlations between norepinephrine levels and clinical features of the pain attacks including duration (r = 0.75, p < 0.05), intensity (r = 0.64, p < 0.05) and frequency (r = 0.68, p < 0.06), thereby suggesting a pathophysiological involvement of the sympathetic nervous system in CH. Increased plasma levels of plasmacortisol and ACTH in patients with CH, especially in the morning and in the evening, suggest an alteration of the feedback circuit involving the hypothalamus, the pituitary and the adrenal gland, an imbalance in the hormones related to these structures, as well as an alteration of the circadian rhythm. In addition, CH patients demonstrated significantly decreased levels of norepinephrine (p < 0.05), HVA (p < 0.01) and 5-HIAA (p < 0.01) in the cerebrospinal fluid (CSF) consistent with a central genesis of CH. These significant relationships between neurochemical parameters and the clinical patterns suggest a complex interplay between the hypothalamus, neuroendocrinological parameters, activity of the autonomic nervous system and the pain of CH.
Nutritional and metabolic diseases involving the nervous system.
Kopcha, M
1987-03-01
This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.
Yoon, Jin-Ha; Ahn, Yeon-Soon
2015-03-01
In occupational epidemiologic studies, the low incidence and chronic process of central nervous system (CNS) diseases has complicated the determination of the relationship between increased morbidity and manganese (Mn) exposure. Therefore, through this large cohort study, we evaluated CNS disease morbidity among Korean workers exposed to Mn Data were collected from Mn-associated specialized medical check-up 2000 and 2004 in Korea. The number of workers admitted to hospital because of clinically diagnosed CNS disease was analyzed in male workers exposed to Mn (n = 104,544). As a control reference population, 2% of Korean men were randomly selected and their hospital admission data were analyzed. For Mn-exposed workers, Standardized admission ratios (SARs) for CNS disease, as determined by ICD-10 classifications, were estimated in reference to the control population During follow up, 64 workers admitted because of CNS diseases. Chronic exposure to Mn (≥ 10 years) was significantly associated with the SAR (95% CI) of extrapyramidal and movement disorders (SAR: 2.03, 95% CI: 1.05-3.55), in particular, other extrapyramidal and movement disorders (SAR: 4.81, 95% CI: 1.29-12.32). Also borderline association (SAR = 4.88, 90% CI: 1.05-7.04) was noted for secondary Parkinsonism among workers with chronic Mn exposure. SARs (95% CI) for other degenerative nervous system diseases were significantly higher in Mn-exposed workers compared with the control population (SAR: 3.60, 95% CI: 1.16-8.40) CONCLUSION: In conclusion, Mn-exposed workers exhibited significantly elevated SARs for degenerative nervous system diseases and extrapyramidal and movement disorders, compared to the age-matched reference population, suggesting a relatedness with Mn exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Network science in Egyptology.
Coulombe, Patrick; Qualls, Clifford; Kruszynski, Robert; Nerlich, Andreas; Bianucci, Raffaella; Harris, Richard; Mermier, Christine; Appenzeller, Otto
2012-01-01
Egyptology relies on traditional descriptive methods. Here we show that modern, Internet-based science and statistical methods can be applied to Egyptology. Two four-thousand-year-old sarcophagi in one tomb, one within the other, with skeletal remains of a woman, gave us the opportunity to diagnose a congenital nervous system disorder in the absence of a living nervous system. The sarcophagi were discovered near Thebes, Egypt. They were well preserved and meticulously restored. The skeletal remains suggested that the woman, aged between 50 and 60 years, was Black, possibly of Nubian descent and suffered from syringobulbia, a congenital cyst in the brain stem and upper spinal cord. We employed crowd sourcing, the anonymous responses of 204 Facebook users who performed a matching task of living persons' iris color with iris color of the Udjat eyes, a decoration found on Egyptian sarcophagi, to confirm the ethnicities of the sarcophagus occupants. We used modern fMRI techniques to illustrate the putative extent of her lesion in the brain stem and upper spinal cord deduced from her skeletal remains. We compared, statistically, the right/left ratios, a non-dimensional number, of the orbit height, orbit width, malar height and the infraorbital foramena with the same measures obtained from 32 ancient skulls excavated from the Fayum, North of Thebes. We found that these ratios were significantly different in this skull indicating atrophy of cranial bones on the left. In this instance, Internet science and the use of modern neurologic research tools showed that ancient sarcophagus makers shaped and decorated their wares to fit the ethnicity of the prospective occupants of the sarcophagi. We also showed that, occasionally, human nervous system disease may be recognizable in the absence of a living nervous system.
The glia of the adult Drosophila nervous system
Kremer, Malte C.; Jung, Christophe; Batelli, Sara; Rubin, Gerald M.
2017-01-01
Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638 PMID:28133822
ERIC Educational Resources Information Center
Wodrich, David L.; Cunningham, Melissa M.
2007-01-01
Approximately 15% of children experience a significant illness prior to age 18 years. For many of them, school absenteeism, substandard academic performance, and social problems ensue. When disorders affect the central nervous system, some suffer global developmental delays or selective neuropsychological deficits. As health service providers,…
ERIC Educational Resources Information Center
Rudolph, Karen D.; Troop-Gordon, Wendy; Granger, Douglas A.
2010-01-01
This research examined whether variations in salivary measures of the hypothalamic-pituitary-adrenal axis (cortisol) and autonomic nervous system (alpha amylase [sAA]) contribute to individual differences in the association between peer victimization and aggression. Children (N = 132; M age = 9.46 years, SD = 0.33) completed a measure of peer…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... serious adverse reactions, such as central nervous system (CNS) depression, decreased heart rate, and... stability testing, which is intended to increase the rate at which the degradation reactions take place. The..., idiosyncratic reaction (i.e., a drug effect that occurs in a small number of people due to age, genetics, or...
Neurodevelopmental Assessment of the Young Child: The State of the Art
ERIC Educational Resources Information Center
Allen, Marilee C.
2005-01-01
A wide variety of tests are available to assess the central nervous system (CNS) function of the toddler and preschool-aged child. These tests vary as to function; qualities and abilities tapped; facility with which they can be learned, administered, and scored; availability of test materials and manuals or training videos; and strength of…
75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... of [beta]-amyloid (beta-amyloid) aggregates in the brain to help rule out Alzheimer's disease. On... children (2 years of age and older) to detect and visualize areas with disrupted blood brain barrier (BBB... bloodstream into the brain. FDA intends to make background material available to the public no later than 2...
Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew
2011-01-01
The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.
Nervous System Complexity Baffles Scientists.
ERIC Educational Resources Information Center
Fox, Jeffrey L.
1982-01-01
New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)
75 FR 4571 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... peripheral nervous systems. Researchers at the National Cancer Institute (``NCI'')-Frederick investigating genetic influences on cancer susceptibility of the nervous system have synthesized novel analogues of.... Applications: Therapies for tumors associated with NF1 (including brain and peripheral nervous system tumors...
Strategies for Enhanced Drug Delivery to the Central Nervous System
Dwibhashyam, V. S. N. M.; Nagappa, A. N.
2008-01-01
Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703
Radiation injury to the nervous system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutin, P.H.; Leibel, S.A.; Sneline, G.E.
1991-01-01
This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
Designed to accompany the student text on the nervous system, this manual presents laboratory activities dealing with concepts presented in the text. Thirty-seven activities are described. Four supplementary activities dealing with concepts in electricity are also included. Laboratory activities are divided into several parts, each part covering a…
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
This volume contains the lesson plans and appropriate teacher background material for a 37-lesson sequence on the nervous system in health and medicine. Additional material is provided for supplementary lessons on concepts of electricity. Associated material, contained in separate volumes, include a student text and a student laboratory manual.…
Pharmacotherapy for Adults with Tumors of the Central Nervous System
Schor, Nina F.
2009-01-01
Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301
Peripheral nervous system involvement in primary burning mouth syndrome--results of a pilot study.
Puhakka, A; Forssell, H; Soinila, S; Virtanen, A; Röyttä, M; Laine, M; Tenovuo, O; Teerijoki-Oksa, T; Jääskeläinen, S K
2016-05-01
The pathophysiology of primary burning mouth syndrome (BMS) has remained enigmatic, but recent studies suggest pathology within the nervous system at multiple levels. This study aimed to investigate in detail the contribution of either focal or generalized alterations within the peripheral nervous system (PNS) in the etiopathogenesis of BMS. Intraepithelial nerve fiber density (IENFD) of tongue mucosa was assessed in 10 carefully characterized BMS, and the results were compared to 19 age- and gender-matched cadaver controls, 6 with lifetime diabetes. Extensive neurophysiologic and psychophysical examinations of the trigeminal system and distal extremities were performed to profile PNS function in BMS. Patients with BMS had significantly fewer intraepithelial nerve fibers (0,27, s.e. 0,18 mm(-1); P = 0.0253) than non-diabetic controls (0,92, s.e. 0,15 mm(-1)). In the subepithelial space, the amount of nerve fibers did not differ between the groups. The majority (9/10) of patients with BMS showed neurophysiologic or psychophysical signs of a more generalized PNS dysfunction. Our results in neurophysiologically optimally characterized BMS patients confirm that pure focal small fiber neuropathy of the oral mucosa has a role in the pathophysiology of primary BMS. Furthermore, BMS may be related to a more generalized, yet subclinical peripheral neuropathy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Anteroposterior patterning in hemichordates and the origins of the chordate nervous system
NASA Technical Reports Server (NTRS)
Lowe, Christopher J.; Wu, Mike; Salic, Adrian; Evans, Louise; Lander, Eric; Stange-Thomann, Nicole; Gruber, Christian E.; Gerhart, John; Kirschner, Marc
2003-01-01
The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.
Complex Homology and the Evolution of Nervous Systems.
Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A
2016-02-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.
Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham
2017-04-01
It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...
Code of Federal Regulations, 2011 CFR
2011-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2013 CFR
2013-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2010 CFR
2010-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2014 CFR
2014-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Code of Federal Regulations, 2012 CFR
2012-07-01
... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...
Ma, Z P; Ainiwaer, Babayi; Liu, Z Y; Shi, X L; Cui, W L; Zhang, W; Li, X X
2016-11-08
Objective: To investigate clinicopathologic characteristics, immunophenotype and EB virus-related molecular genetic alterations in primary central nervous system diffuse large B cell lymphoma (DLBCL) along with correlation with clinical prognosis. Methods: A total of 30 cases of primary central nervous system DLBCL were retrospectively studied by retrieving clinical data, histological evaluation and immunophenotyping by EnVision two steps methods. The expression of EBER mRNA was detected by in situ hybridization and bcl-2, bcl-6 and C-MYC gene abnormalities were analyzed by interphase fluorescence in situ hybridization. Results: The cases included 18 males and 12 females (sex ratio of 1.5∶1.0) with an age ranging from 24 to 78 years (average age of 52 years, the median age of 53 years). The single primary clinical presentation was focal neurologic deficits. Tumor locations were supratentorial (21 cases), subtentorial (7 cases), involving both locations in 2 cases. Diffuse growth pattern was observed with large lymphoid cells mostly resembling centroblasts with abundant basophilic cytoplasm with oval to round, vesicular nuclei containing fine chromatin. An angiocentric and angiodestructive growth pattern was also present. Other features included perivascular space invasion. Immunohistochemical staining using a panel of CD10, bcl-6 and MUM1, six cases were germinal center-like (GCB) and 24 cases were non-germinal central-like (non-GCB). The positive rates of bcl-2, bcl-6 and C-MYC were 53.3% (16/30), 80.0% (24/30) and 20.0% (6/30), respectively. Genetic alterations were detected by FISH and the gene arrangement rates of bcl-2, bcl-6 and C-MYC were 3.3% (1/30), 16.7% (5/30) and 3.3% (1/30), respectively. There were 19 cases in stage 0-1 disease and 11 cases had stage 2-3 disease. Postoperative follow-up for average 13.6 months showed the median survival of 10 months, one-year survival of 46.7% and 16 patients died within a year. Conclusions: The clinical prognosis of primary central nerve system DLBCL depends on age, clinical performence status score, IPI score, immune classification and treatment. Patients typically progress rapidly with the high mortality within one year of diagnosis. Surgical resection combined with high-dose methotrexate or cytarabine chemotherapy offer the best treatment option.
46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2014 CFR
2014-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2011 CFR
2011-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2013 CFR
2013-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene
Code of Federal Regulations, 2012 CFR
2012-10-01
... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...
Extraversion, Neuroticism and Strength of the Nervous System
ERIC Educational Resources Information Center
Frigon, Jean-Yves
1976-01-01
The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…
Stressful life events and the risk of initial central nervous system demyelination.
Saul, Alice; Ponsonby, Anne-Louise; Lucas, Robyn M; Taylor, Bruce V; Simpson, Steve; Valery, Patricia; Dwyer, Terence; Kilpatrick, Trevor J; Pender, Michael P; van der Mei, Ingrid Af
2017-06-01
There is substantial evidence that stress increases multiple sclerosis disease activity, but limited evidence on its association with the onset of multiple sclerosis. To examine the association between stressful life events and risk of first demyelinating event (FDE). This was a multicentre incident case-control study. Cases ( n = 282 with first diagnosis of central nervous system (CNS) demyelination, including n = 216 with 'classic FDE') were aged 18-59 years. Controls without CNS demyelination ( n = 558) were matched to cases on age, sex and study region. Stressful life events were assessed using a questionnaire based on the Social Readjustment Rating Scale. Those who suffered from a serious illness in the previous 12 months were more likely to have an FDE (odds ratio (OR) = 2.35 (1.36, 4.06), p = 0.002), and when we limited our reference group to those who had no stressful life events, the magnitude of effect became stronger (OR = 5.41 (1.80, 16.28)). The total stress number and stress load were not convincingly associated with the risk of an FDE. Cases were more likely to report a serious illness in the previous 12 months, which could suggest that a non-specific illness provides an additional strain to an already predisposed immune system.
Ferrucci, Luigi; Ble, Alessandro; Bandinelli, Stefania; Lauretani, Fulvio; Suthers, Kristen; Guralnik, Jack M
2004-06-01
Inflammation is a human being's primary defense against threats to homeostasis that are encountered every day. Especially in old age, when regulatory mechanisms responsible for inflammatory responses may be ineffective or damaged, the result can be adverse pathological conditions, and an increased risk of morbidity and mortality. The inflammation response is a plastic network composed of redundant signaling among several different mediators. These mediators have a reciprocal relationship with other biological sub-systems, including hormone regulation, the autonomic nervous system, and oxidative/anti-oxidant balance. Studying this complex architecture requires parallel and multiple research strategies from epidemiological to biochemical level, from observational studies to innovative intervention approaches. Given that the inflammatory response is a critical age-related process, understanding its regulatory action is essential in avoiding hazardous consequences in old age.
Sukhoterin, A F; Pashchenko, P S
2014-01-01
Purpose of the work was to analyze morbidity among pilots of different categories of aircraft, and to investigate reactivity of the vegetative nervous system (VNS) in pilots flying high maneuver aircrafts varying in age and flying time. Morbidity was deduced from the data of aviation medical exams. The VNS investigation involved 56 pilots of fighter and assault aircrafts both in the inter-flight periods and during duty shifts. Cytochemistry was used to measure glycogen in peripheral blood neutrophils in 77 pilots. It was shown that the pre-stress condition in pilots with the flying time more than 1000 hours may transform to chronic stress, provided that the flight duties remain heavy. According to the cytochemical data, concentration of neutrophilic glycogen indicating the energy potential of peripheral blood leukocytes is controlled by hormones secreted by the VNS sympathetic and parasympathetic components.
Zinc Signal in Brain Diseases.
Portbury, Stuart D; Adlard, Paul A
2017-11-23
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.
Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System
Gauberti, Maxime; Fournier, Antoine P.; Docagne, Fabian; Vivien, Denis; Martinez de Lizarrondo, Sara
2018-01-01
Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin. We also discuss the perspectives and challenges for the clinical application of this technology in neurovascular disorders (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, diabetes mellitus), neuroinflammatory disorders (multiple sclerosis, brain infectious diseases, sepsis), neurodegenerative disorders (Alzheimer's disease, vascular dementia, aging) and brain cancers (primitive neoplasms, metastasis). PMID:29507614
76 FR 18915 - Ethiprole; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... homeostasis and the developing nervous system in the young is not available. Based on a battery of... of the nervous system, the Agency is requiring a developmental thyroid toxicity study to assess for... nervous system, the Agency is requiring the developmental thyroid toxicity study in lieu of the DNT. iii...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... cancer; nervous system disease; reproductive or developmental dysfunction; non-malignant respiratory... nervous system cancers, stomach cancer, prostatic cancer and testicular cancer. The non-malignant diseases... and bladder cancer exists. G. Brain and Other Central Nervous System Cancers Of the 20 published...
75 FR 37301 - Exempt Chemical Mixtures Containing Gamma-Butyrolactone
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... their central nervous system (CNS) depressant effect. An overdose from GBL or GHB may result in... the central nervous system that is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
..., Central Nervous System Research Unit (Currently Known as Neuroscience Research Unit), Global External... as Warner Lambert Company, Central Nervous System Research Unit, Global External Supply Department... Central Nervous System Research Unit was renamed the Neuroscience Research Unit. In order to ensure proper...
76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...
ERIC Educational Resources Information Center
El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin
2013-01-01
We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…
Mitochondria in the nervous system: From health to disease, part II.
Carrì, Maria Teresa; Polster, Brian M; Beart, Philip M
2018-04-10
In Part II of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together more reviews and original articles from researchers in the field of mitochondrial metabolism in the healthy and diseased nervous system. Subjects span from basic mitochondrial physiology to papers on mitochondrial dynamics and to those altered states of the nervous system that can be considered "mitopathologies". Finally, a few papers approach aspects of mitochondrial biology linked to the feasibility and validity of a mitochondrial therapy. Copyright © 2018. Published by Elsevier Ltd.
Diagnosis abnormalities of limb movement in disorders of the nervous system
NASA Astrophysics Data System (ADS)
Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul
2017-08-01
The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.
Chatterjee, Nivedita; Sinha, Sitabhra
2008-01-01
The nervous system of the nematode C. elegans provides a unique opportunity to understand how behavior ('mind') emerges from activity in the nervous system ('brain') of an organism. The hermaphrodite worm has only 302 neurons, all of whose connections (synaptic and gap junctional) are known. Recently, many of the functional circuits that make up its behavioral repertoire have begun to be identified. In this paper, we investigate the hierarchical structure of the nervous system through k-core decomposition and find it to be intimately related to the set of all known functional circuits. Our analysis also suggests a vital role for the lateral ganglion in processing information, providing an essential connection between the sensory and motor components of the C. elegans nervous system.
Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.
Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M
2016-06-13
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M
2002-12-01
The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.
Degenerative disease affecting the nervous system.
Eadie, M J
1974-03-01
The term "degenerative disease" is one which is rather widely used in relation to the nervous system and yet one which is rarely formally and carefully defined. The term appears to be applied to disorders of the nervous system which often occur in later life and which are of uncertain cause. In the Shorter Oxford Dictionary the word degeneration is defined as "a change of structure by which an organism, or an organ, assumes the form of a lower type". However this is not quite the sense in which the word is applied in human neuropathology, where it is conventional to restrict the use of the word to those organic disorders which are of uncertain or poorly understood cause and in which there is a deterioration or regression in the level of functioning of the nervous system. The concept of degenerative disorder is applied to other organs as well as to the brain, and as disease elsewhere in the body may affect the nervous system, it seems reasonable to include within the topic of degenerative disorder affecting the nervous system those conditions in which the nervous system is involved as a result of primary degenerations in other parts of the body. Copyright © 1974 Australian Physiotherapy Association. Published by . All rights reserved.
New tools for the analysis of glial cell biology in Drosophila.
Awasaki, Takeshi; Lee, Tzumin
2011-09-01
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila. Copyright © 2011 Wiley-Liss, Inc.
Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system.
Huang, Yafei; Potter, Rachel; Sigurdson, Wendy; Santacruz, Anna; Shih, Shirley; Ju, Yo-El; Kasten, Tom; Morris, John C; Mintun, Mark; Duntley, Stephen; Bateman, Randall J
2012-01-01
The amyloid hypothesis predicts that increased production or decreased clearance of β-amyloid (Aβ) leads to amyloidosis, which ultimately culminates in Alzheimer disease (AD). To investigate whether dynamic changes in Aβ levels in the human central nervous system may be altered by aging or by the pathology of AD and thus contribute to the risk of AD. Repeated-measures case-control study. Washington University School of Medicine in St Louis, Missouri. Participants with amyloid deposition, participants without amyloid deposition, and younger normal control participants. In this study, hourly cerebrospinal fluid (CSF) Aβ concentrations were compared with age, status of amyloid deposition, electroencephalography, and video recording data. Linear increases were observed over time in the Aβ levels in CSF samples obtained from the younger normal control participants and the older participants without amyloid deposition, but not from the older participants with amyloid deposition. Significant circadian patterns were observed in the Aβ levels in CSF samples obtained from the younger control participants; however, circadian amplitudes decreased in both older participants without amyloid deposition and older participants with amyloid deposition. Aβ diurnal concentrations were correlated with the amount of sleep but not with the various activities that the participants participated in while awake. A reduction in the linear increase in the Aβ levels in CSF samples that is associated with amyloid deposition and a decreased CSF Aβ diurnal pattern associated with increasing age disrupt the normal physiology of Aβ dynamics and may contribute to AD.
Pyrzanowska, Justyna; Wawer, Adriana; Joniec-Maciejak, Ilona; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Graikou, Konstantia; Chinou, Ioanna; Widy-Tyszkiewicz, Ewa
2018-05-14
Royal Jelly (RJ) is a unique substance obtained from bees that has been used widely in European and Asian traditional medicine for its potential to prevent signs of aging through its antioxidative, anti-inflammatory, anti-hyperglycemic and anti-hypercholesterolemic properties. We recently reported an enhancement in spatial memory along with changes in monoaminergic transmission in aged rats after chronic RJ administration. Here, we aim to further explore the action of RJ on central nervous system activity by examining levels of amino acids in selected brain structures of aged male Wistar rats following 2-months of Greek RJ administration. RJ powder was previously chemically characterized and given orally (50 or 100 mg of powder/kg b.w./day) by gastric gavage. The concentrations of amino acids (alanine, aspartic acid, gamma-aminobutyric acid, glutamic acid, histidine and taurine) in the brain regions examined (prefrontal cortex, hippocampus, striatum and hypothalamus) were quantified using HPLC. We also examined basic biochemical parameters of renal and hepatic activity, as damage of these organs could potentially explain the changes in brain function and behavior. Upon biochemical examination, a decrease in the concentration of gamma-aminobutyric acid was observed in both the striatum and hypothalamus. Liver and kidney functions were not changed by chronic RJ-administration. Our results provide insight toward understanding the mechanism of action of RJ and its effects on neurotransmission in the central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Heckel, Leila; Clarke, Adam; Barry, Robert; McCarthy, Rory; Selikowitz, Mark
2009-01-01
It is generally accepted that Attention-Deficit/Hyperactivity Disorder (ADHD) results from a dysfunction of the central nervous system, which has led to a commonly held belief that environmental factors play little role in the behavioural problems of children identified as having ADHD. Therefore, the two studies reported in this article…
Vandenbussche, Christopher J; Ho, Cheng-Ying; Nugent, Summer L; Ali, Syed Z
2014-01-01
Extraneural metastasis (EM) of primary central nervous system (PCNS) neoplasms is rare and signifies a poor clinical outcome. Due to its infrequent occurrence, relatively few reports on the cytomorphology of these neoplasms have been published. We describe a series of 19 cases from 16 patients at a single, large tertiary care center. A retrospective analysis of 19 cases of metastases from PCNS neoplasms identified on fine needle aspiration (FNA) in 8 male and 8 female patients aged 14-72 years (mean age 39.6) from 1989 to 2013 was conducted to further characterize the cytomorphologic features identified at metastatic sites. Six different PCNS neoplasms were identified: meningioma, glioblastoma, hemangiopericytoma (HPC), oligodendroglioma, medulloblastoma, and retinoblastoma. The mean latency period between the diagnoses of the primary and first metastatic tumors was 7.4 years (range 0-15). The most common PCNS malignancy responsible for EM was HPC. The most common metastatic sites were the lung (31%) and soft tissue/bone (31%). EM of PCNS tumors is extremely rare. FNA allows for quick, safe and accurate diagnosis. Cytomorphologic features are characteristic, and in conjunction with the clinical history and immunohistochemistry, an accurate diagnosis was obtained in 100% of the cases.
Altered Pain Sensitivity in Elderly Women with Chronic Neck Pain
Uthaikhup, Sureeporn; Prasert, Romchat; Paungmali, Aatit; Boontha, Kritsana
2015-01-01
Background Age-related changes occur in both the peripheral and central nervous system, yet little is known about the influence of chronic pain on pain sensitivity in older persons. The aim of this study was to investigate pain sensitivity in elders with chronic neck pain compared to healthy elders. Methods Thirty elderly women with chronic neck pain and 30 controls were recruited. Measures of pain sensitivity included pressure pain thresholds, heat/cold pain thresholds and suprathreshold heat pain responses. The pain measures were assessed over the cervical spine and at a remote site, the tibialis anterior muscle. Results Elders with chronic neck pain had lower pressure pain threshold over the articular pillar of C5-C6 and decreased cold pain thresholds over the cervical spine and tibialis anterior muscle when compared with controls (p < 0.05). There were no between group differences in heat pain thresholds and suprathreshold heat pain responses (p > 0.05). Conclusion The presence of pain hypersensitivity in elderly women with chronic neck pain appears to be dependent on types of painful stimuli. This may reflect changes in the peripheral and central nervous system with age. PMID:26039149
Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M
2017-02-01
Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation. Copyright© Ferrata Storti Foundation.
The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central and peripheral nervous systems in Good Laboratory Practice-type nonclinical general toxicity studies. Brains should be trimmed ...
75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
76 FR 77895 - Schedules of Controlled Substances: Placement of Ezogabine Into Schedule V
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... ester, is a new chemical substance with central nervous system depressant properties and is classified... nervous system as an anticonvulsant and the potential side effects of the drug therein, warrant closer... the central nervous system is alone not enough to merit its inclusion into Schedule IV of the CSA, nor...
78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... means adverse outcomes to the nervous system resulting from exposure during any life stage. Special... critical to the development and/or function of the nervous system. The NTP is also interested in receiving... to act as toxicants to the developing or adult nervous systems. Request for Information 1...
Liu, Mengmeng; Cheng, Xinran; Li, Kaikai; Xu, Mingrui; Wu, Yongji; Wang, Mengli; Zhang, Qianru; Yan, Wenyong; Luo, Chang; Zhao, Shanting
2018-05-25
Stem cell research has become a frontier in the field of life sciences, and provides an ideal model for exploring developmental biology problems such as embryogenesis, histiocytosis, and gene expression regulation, as well as opens up new doors for clinical tissue defective and inheritance diseases. Among them, menstrual blood-derived stem cells (MenSCs) are characterized by wide source, multi-directional differentiation potential, low immune rejection characteristics. Thus, MenSCs can achieve individual treatment and have the most advantage of the clinical application. The central nervous system, including brain and spinal cord, is susceptible to injury. And lethality and morbidity of them tops the list of all types of trauma. Compared to peripheral nervous system, recovery of central nervous system after damage remains extremely hard. However, the treatment of stem cells, especially MenSCs, is expected to solve this problem. Therefore, biological characteristics of MenSCs and their treatment in the respect of central nervous system diseases have been reviewed at home and abroad in recent years, so as to provide reference for the treatment of central nervous system diseases.
3D printed nervous system on a chip.
Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C
2016-04-21
Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.
Improving and Accelerating Drug Development for Nervous System Disorders
Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.
2014-01-01
Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933
Abnormalities of the QT interval in primary disorders of autonomic failure.
Choy, A M; Lang, C C; Roden, D M; Robertson, D; Wood, A J; Robertson, R M; Biaggioni, I
1998-10-01
Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not solely caused by lesions of the sympathetic nervous system, and that the parasympathetic nervous system is likely to have a modulatory role in ventricular repolarization.
Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D
2016-04-01
Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic leukemia are due to other etiologies in approximately 80% of cases. Analysis of the cerebrospinal fluid has high sensitivity but limited specificity to distinguish clinically significant chronic lymphocytic leukemia involvement from other etiologies. Copyright© Ferrata Storti Foundation.
Kaur, Sonya; Birdsill, Alex C; Steward, Kayla; Pasha, Evan; Kruzliak, Peter; Tanaka, Hirofumi; Haley, Andreana P
2017-06-01
Excessive adipose tissue, particularly with a central distribution, consists of visceral fat, which is metabolically active and could impinge upon central nervous system functioning. The aim of the current study was to examine levels of visceral adiposity in relation to key cerebral metabolite ratios localized in the occipitoparietal grey matter. Seventy-three adults, aged between 40 and 60 years, underwent structural magnetic resonance imaging and single voxel 1 H Magnetic Resonance Spectroscopy ( 1 H MRS). Visceral fat was assessed using Dual Energy X Ray Absorptiometry (DXA). Individuals with higher visceral fat mass and volume had significantly lower ratios of N-acetyl-aspartate to total creatine (phosphocreatine + creatine, PCr + Cr) (NAA/PCr + Cr) (β = -0.29, p = 0.03, β = -0.28, p = 0.04). They also had significantly higher ratios of myo-inositol to total creatine (mI/PCr + Cr ) (β = 0.36, p = 0.01, β = 0.36, p = 0.01). Visceral fat mass and volume were not significantly related to ratios of glutamate to total creatine (Glu/PCr + Cr). While future studies are necessary, these results indicate central adiposity is associated with metabolic changes that could impinge upon the central nervous system in middle age.
2014-01-01
Background Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Methods Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. Results In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. Discussion High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period. PMID:25179125
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Peter C.; Roos, Daniel E.; Pratt, Gary
2006-02-01
Purpose: To assess, in a multicenter setting, the long-term outcomes of a brief course of high-dose methotrexate followed by radiotherapy for patients with primary central nervous system lymphoma (PCNSL). Methods and Materials: Forty-six patients were entered in a Phase II protocol consisting of methotrexate (1 g/m{sup 2} on Days 1 and 8), followed by whole-brain irradiation (45-50.4 Gy). The median follow-up time was 7 years, with a minimum follow-up of 5 years. Results: The 5-year survival estimate was 37% ({+-}14%, 95% confidence interval [CI]), with progression-free survival being 36% ({+-}15%, 95% CI), and median survival 36 months. Of the originalmore » 46 patients, 10 were alive, all without evidence of disease recurrence. A total of 11 patients have developed neurotoxicity, with the actuarial risk being 30% ({+-}18%, 95% CI) at 5 years but continuing to increase. For patients aged >60 years the risk of neurotoxicity at 7 years was 58% ({+-}30%, 95% CI). Conclusion: Combined-modality therapy, based on high-dose methotrexate, results in improved survival outcomes in PCNSL. The risk of neurotoxicity for patients aged >60 years is unacceptable with this regimen, although survival outcomes for patients aged >60 years were higher than in many other series.« less
Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C
2015-01-01
Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development.
Son, Seung-Myoung; Ha, Sang-Yun; Yoo, Hae-Yong; Oh, Dongryul; Kim, Seok-Jin; Kim, Won-Seog; Ko, Young-Hyeh
2017-01-01
The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.
Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria).
Piraino, Stefano; Zega, Giuliana; Di Benedetto, Cristiano; Leone, Antonella; Dell'Anna, Alessandro; Pennati, Roberta; Carnevali, Daniela Candia; Schmid, Volker; Reichert, Heinrich
2011-07-01
The organization of the cnidarian nervous system has been widely documented in polyps and medusae, but little is known about the nervous system of planula larvae, which give rise to adult forms after settling and metamorphosis. We describe histological and cytological features of the nervous system in planulae of the hydrozoan Clava multicornis. These planulae do not swim freely in the water column but rather crawl on the substrate by means of directional, coordinated ciliary movement coupled to lateral muscular bending movements associated with positive phototaxis. Histological analysis shows pronounced anteroposterior regionalization of the planula's nervous system, with different neural cell types highly concentrated at the anterior pole. Transmission electron microscopy of planulae shows the nervous system to be unusually complex, with a large, orderly array of sensory cells at the anterior pole. In the anterior half of the planula, the basiectodermal plexus of neurites forms an extensive orthogonal network, whereas more posteriorly neurites extend longitudinally along the body axis. Additional levels of nervous system complexity are uncovered by neuropeptide-specific immunocytochemistry, which reveals distinct neural subsets having specific molecular phenotypes. Together these observations imply that the nervous system of the planula of Clava multicornis manifests a remarkable level of histological, cytological, and functional organization, the features of which may be reminiscent of those present in early bilaterian animals. Copyright © 2011 Wiley-Liss, Inc.
[Thyroid hormones and the development of the nervous system].
Mussa, G C; Zaffaroni, M; Mussa, F
1990-09-01
The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa)
2016-01-01
The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. PMID:26598729
Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt
2014-08-01
Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system
Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge
2011-01-01
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381
The neurosciences in Averroes principles of medicine.
Delgado, Fernando
2012-01-01
One of the fundamental advances of the transition of the Middle Ages to the Renaissance was the rediscovery of the Greek philosophers. Among the greatest representatives of this epoch we find the Cordovan doctor and philosopher Averroes (Ibn Rushd) who, with his commentaries on the works of Aristotle, brought a new philosophical vision to Western Europe. His contribution to medicine has been overshadowed to some extent by this great work of philosophy. Our intention is to evaluate, in the context of the neurosciences, the vision of health and sickness that he left us in his book "The Book of the Principles of Medicine. The organisation of the Kulliyat is based on Aristotelian concepts. Averroes regarded the nervous system not as single entity but rather as a complex of various elements. The anatomy of the nervous system is studied in two parts: the encephalus and the periphery. Both the encephalic nervous system and the sensory organs are regarded as heterogeneous organs. Averroes structures the anatomical order without taking into account the local movements of the living body. The mission of the senses is to maintain contact between external reality and the structure of the organism. This requires an external process, a point of union and an internal process. The ultimate goal is the preservation of health in a balanced disposition and the cure of disease in the organism in disequilibrium.
New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer's Disease.
Fuchsberger, Tanja; Lloret, Ana; Viña, Jose
2017-05-14
The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer's disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD.
Birth weight and order as risk factors for childhood central nervous system tumors.
MacLean, Jane; Partap, Sonia; Reynolds, Peggy; Von Behren, Julie; Fisher, Paul Graham
2010-09-01
To determine whether birth characteristics related to maternal-fetal health in utero are associated with the development of childhood central nervous system tumors. We identified, from the California Cancer Registry, 3733 children under age 15 diagnosed with childhood central nervous system tumors between 1988 and 2006 and linked these cases to their California birth certificates. Four controls per case, matched on birth date and sex, were randomly selected from the same birth files. We evaluated associations of multiple childhood CNS tumor subtypes with birth weight and birth order. Low birth weight was associated with a reduced risk of low-grade gliomas (OR=0.67; 95% CI, 0.46 to 0.97) and high birth weight was associated with increased risk of high-grade gliomas (OR=1.57; 95% CI, 1.16 to 2.12). High birth order (fourth or higher) was associated with decreased risk of low-grade gliomas (OR=0.75; 95% CI, 0.56 to 0.99) and increased risk of high-grade gliomas (OR=1.32; 95% CI, 1.01 to 1.72 for second order). Factors that drive growth in utero may increase the risk of low-grade gliomas. There may be a similar relationship in high-grade gliomas, although other factors, such as early infection, may modify this association. Additional investigation is warranted to validate and further define these findings. Copyright (c) 2010 Mosby, Inc. All rights reserved.
... degeneration; Multiple system atrophy cerebellar predominance; MSA-C Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...
Neuroimmunomodulation and Aging.
Gemma, Carmelina
2010-12-01
Inflammation is by definition a protective phase of the immune response. The very first goal of inflammation is destroying and phagocytosing infected or damaged cells to avoid the spread of the pathogen or of the damage to neighboring, healthy, cells. However, we now know that during many chronic neurological disorders, inflammation and degeneration always coexist at certain time points. For example, inflammation comes first in multiple sclerosis, but degeneration follows, while in Alzheimer's or Parkinson's disease degeneration starts and inflammation is secondary. Either way these are the two pathological detectable problems. The central nervous system (CNS) has long been viewed as exempt from the effects of the immune system. The brain has physical barriers for protection, and it is now clear that cells in the nervous system respond to inflammation and injury in unique ways. In recent years, researchers have presented evidence supporting the idea that in the CNS there is an ongoing protective inflammatory mechanism, which involves macrophage, monocytes, T cells, regulatory T-cells, effector T cells and many others; these, in turn, promote repair mechanisms in the brain not only during inflammatory, and degenerative disorders but also in healthy people. This "repair mechanism" can be considered as an intrinsic part of the physiological activities of the brain. It is now well known that the microenvironment of the brain is a crucial player in determining the relative contribution of the two different outcomes. Failure of molecular and cellular mechanisms sustaining the "brain-repair programme" might be, at least in part, a cause of neurological disorders. Today, the neurotoxic and neuroprotective roles of the innate immune reactions in aging, brain injury, ischemia, autoimmune and neurodegenerative disorders of the CNS are widely investigated and highly debated research topics. Nevertheless, several issues remain to be elucidated, notably the earlier cellular events that initiate dysregulation of brain inflammatory pathways. If these inflammatory processes could be identified and harnessed, then cognitive function may be protected during aging and age-related neurodegenerative diseases through early interventions directed against the negative consequences of inflammation. This commentary highlights the major issues/opinions presented by experts on the involvement of the brain immune system in aging and age-related diseases in a special edition of the journal Aging and Disease.
2017-08-28
B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Central Nervous System Lymphoma; Intraocular Lymphoma; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Recurrent Adult Diffuse Large Cell Lymphoma; Retinal Lymphoma
This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug Safety... and Central Nervous System Drugs Advisory Committee and the Drug Safety and Risk Management Advisory...
A survey of current practices for sampling and examination of the nervous system in rodents and non-rodents for general and neurotoxicity (NT) studies was conducted by the Nervous System Sampling Subcommittee of the STP. For general toxicity studies most of those surveyed (>63%) ...
Viral Oncolytic Therapeutics for Neoplastic Meningitis
2012-07-01
the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the
Shardell, Michelle; Bandinelli, Stefania; Guralnik, Jack M.; Ferrucci, Luigi
2015-01-01
Background. Mobility is an essential aspect of everyday life and enables autonomy and participation. Although many risk factors for mobility loss have been previously described, their relative importance and independent contributions to the long-term risk of losing mobility have not been well defined. Methods. This study is based on 1,013 men and women aged ≥65 years enrolled in 1998–2000 and followed for 9 years through 2007–2008 in the population-based InCHIANTI (Invecchiare in Chianti, aging in the Chianti area) study. We considered 44 different measures assessed at baseline to explore six subsystems: (i) central nervous system, (ii) peripheral nervous system, (iii) muscles, (iv) bone and joints, (v) energy production and delivery, and (vi) perceptual system. The outcome was incident mobility loss defined as self-report of inability to walk 400 m or climb and descend 10 steps without help from another person. Random survival forest analysis was used to rank the candidate predictors by their importance. Results. The most important physiological markers predicting mobility loss that emerged from the random survival forest modeling were older age among women (81–95 vs 65–68 years, hazard ratio [HR] 9.60 [95% CI 3.35, 27.50]), weaker ankle dorsiflexion strength (lowest vs highest quintile, HR 5.25 [95% CI 2.35, 11.72]), low hip flexion range of motion (lowest vs highest quintile, HR 2.30 [95% CI 1.20, 4.41]), presence of primitive reflexes (yes vs no, HR 1.47 [95% CI 1.03, 2.09]), and tremor (yes vs no, HR 1.91 [95% CI 1.18, 3.07]). Conclusion. Prevention of mobility loss with aging should focus on prevention and treatment of neuromuscular impairments. PMID:25748030
Head, Elizabeth; Rofina, Jaime; Zicker, Steven
2008-01-01
Decline in cognitive functions that accompany aging in dogs may have a biologic basis, and many of the disorders associated with aging in dogs may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs.
Peripheral inflammation and cognitive aging.
Lim, Alvin; Krajina, Katarina; Marsland, Anna L
2013-01-01
Evidence suggests that inflammation, an innate immune response facilitating recovery from injury and pathogenic invasion, is positively associated with age-related cognitive decline and may play a role in risk for dementia. Physiological pathways linking the peripheral immune and central nervous systems are outlined, and studies linking inflammation with neurocognitive function are overviewed. We also present recent studies from our laboratory showing that midlife inflammation is related to cognitive function and brain morphology. Finally, potential implications for treatment, future directions, and limitations are discussed. Copyright © 2013 S. Karger AG, Basel.
Hemangiopericytoma in the central nervous system. A study of eight cases.
Mekni, A; Kourda, J; Chelly, I; Ferchichi, L; Bellil, K; Hammouda, K B; Kchir, N; Zitouna, M; Khaldi, M; Haouet, S
2008-02-01
Most hemangiopericytomas (HPC) are located in the musculoskeletal system and the skin, while the location in the central nervous system (CNS) is rare. The latter represents 2 to 4% in large series of meningeal tumors, thus accounting for less than 1% of all CNS tumors. In the central nervous system, tumors with a hemangiopericytomatous histolopathological pattern can be either hemangiopericytomas or solitary fibrous tumors. CNS-HPCs have a relentless tendency for local recurrence and metastases outside the CNS. Metastasis can also appear many years after adequate treatment of the primary tumor. We present a pathological study of eight patients with CNS-HPC and compare our results with corresponding published data. The CNS-HPC group consisted of three males and five females with a mean age of 36.75 years. The tumors were supratentorial in four cases, infratentorial in two cases, tentorial in one case and located in the spinal cord in the last one. Histologically, CNS-HPCs were similar to their soft tissue counterparts. One case demonstrated increased cellularity, marked nuclear hyperchromasia and marked cellular pleomorphism with infiltration of the cerebellum. All patients underwent surgery with gross-total resection in all cases. No patients received postoperative radiation therapy. Only four patients recurred locally after six, seven and eight months, and five years. Our study presents the pathological features of CNS-HPC as a distinct entity from both meningioma and solitary fibrous tumors. A comparative review of literature with our results is discussed.
Extrapulmonary involvement in pediatric tuberculosis.
Kritsaneepaiboon, Supika; Andres, Mariaem M; Tatco, Vincent R; Lim, Cielo Consuelo Q; Concepcion, Nathan David P
2017-09-01
Tuberculosis in childhood is clinically challenging, but it is a preventable and treatable disease. Risk factors depend on age and immunity status. The most common form of pediatric tuberculosis is pulmonary disease, which comprises more than half of the cases. Other forms make up the extrapulmonary tuberculosis that involves infection of the lymph nodes, central nervous system, gastrointestinal system, hepatobiliary tree, and renal and musculoskeletal systems. Knowledge of the imaging characteristics of pediatric tuberculosis provides clues to diagnosis. This article aims to review the imaging characteristics of common sites for extrapulmonary tuberculous involvement in children.
Martynova, Yu V; Babiychuk, V G; Sirotenko, L A; Malova, N G; Babiychuk, L V
2016-01-01
The application of the cryopreserved preparation of UCB NCs was accompanied by an enhanced activity of all the neurohumoral regulation elements of heart rate, although the absolute indices in 18- and 24-month-old animals did not reach similar ones in younger age groups. Also we noted an increase of thyroid hormone content in blood serum of aged rats, the level of which decreased with age. In addition, there was shown that the introduction of UCB NCs during animal life cycle (every 6 months) allowed keeping a functional state of the autonomic nervous system at a «young» physiological level.
... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...
The complex simplicity of the brittle star nervous system.
Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir
2018-01-01
Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.
2013-01-01
Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414
Yokel, Robert; Grulke, Eric; MacPhail, Robert
2013-01-01
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.
Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria
2012-01-01
Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count < 50 x 109/L (p-value = 0.0008). There was no difference in cumulative central nervous system relapse (isolated or combined) for the other analyzed variables: immunophenotype, traumatic lumbar puncture, interval between diagnosis and first lumbar puncture and place where the procedure was performed. Conclusions These results suggest that a leukocyte count > 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068
NASA Astrophysics Data System (ADS)
Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.
2015-11-01
The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.
Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children
Iannetti, Ludovico; Zito, Roberta; Bruschi, Simone; Papetti, Laura; Ulgiati, Fiorenza; Nicita, Francesco; Del Balzo, Francesca; Spalice, Alberto
2012-01-01
Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment. PMID:23008735
Establishing age-associated normative ranges of the cerebral 18F-FDG uptake ratio in children.
Hua, Chiaho; Merchant, Thomas E; Li, Xingyu; Li, Yimei; Shulkin, Barry L
2015-04-01
In this study, we reported age-associated ranges of the regional cerebral (18)F-FDG uptake ratio in pediatric patients as a surrogate to normative data from healthy children. (18)F-FDG PET scans of 132 children and adolescents (age, 1-20 y) with non-central nervous system-related diseases and normal-appearing tracer distributions in the brain were retrospectively analyzed. PET images of individual patients were warped to a 3-dimensional reference template. Uptake ratio was calculated for 63 anatomic regions by normalizing the regional count per voxel with the average count per voxel in all regions. Models of regional uptake ratio as a function of age and sex were developed to calculate the 95% prediction interval. The paracentral lobule and cuneus had the highest resting metabolic state among all gray matter regions, whereas the brain stem, uncus, and hippocampus had the lowest uptake. A large left-right asymmetry was present in the angular gyrus and inferior occipital gyrus. Quantitative data of the regression, 95% confidence interval, and 95% prediction interval for each age were summarized for the 63 regions. In 52 of 63 regions, the (18)F-FDG uptake ratio had a significant age effect. The linear model was optimal for 12 regions, whereas the spline model with 1 age knot was a better fit for 40 regions. In children younger than 5 y, frontal and temporal lobes had a lower uptake than parietal and occipital lobes in general. However, uptake in the frontal lobe continued to increase with age but it decreased in the parietal and occipital lobes. Anatomic regions of the brain in children and adolescents exhibited uniquely different (18)F-FDG uptake trends with age. Our results may be useful for studying childhood development and possibly regional metabolic defects in children with traumatic brain injury or central nervous system disorders or children receiving cancer treatment. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Uribe, Rosa A; Gu, Tiffany; Bronner, Marianne E
2016-03-01
The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development. © 2016 Wiley Periodicals, Inc.
Evolution of the Human Nervous System Function, Structure, and Development.
Sousa, André M M; Meyer, Kyle A; Santpere, Gabriel; Gulden, Forrest O; Sestan, Nenad
2017-07-13
The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations. Copyright © 2017 Elsevier Inc. All rights reserved.
Szczecinski, Nicholas S.; Hunt, Alexander J.; Quinn, Roger D.
2017-01-01
A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot. PMID:28848419
ERIC Educational Resources Information Center
Roux, Amy Loomis
2009-01-01
Epilepsy is one of the most common diseases to affect the human nervous system, affecting approximately 0.5% of school-age children (Leppik, 2001; Kaleyias et al., 2005). Epilepsy has the potential to profoundly impact a child's adjustment to school. A large body of literature documents that children with epilepsy are at an increased risk for…
ERIC Educational Resources Information Center
Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.
2012-01-01
The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…
Suspected Lead Poisoning in an Amazon Parrot
McDonald, Lawrence J.
1986-01-01
A double yellow headed Amazon parrot (Amazona ochrocephala tresmariae) of unknown age and sex was examined for an acute onset of anorexia, listlessness, central nervous system signs and diarrhea. A tentative diagnosis of lead toxicosis was achieved based on radiographs, clinical pathology and response to therapy. Chelation therapy (Calcium EDTA) and supportive measures resulted in an uneventful recovery. ImagesFigure 1.Figure 2.Figure 3. PMID:17422638
ERIC Educational Resources Information Center
Queen, Alexander H.; Ehrenreich-May, Jill; Hershorin, Eugene R.
2012-01-01
This study examines the validity of a brief screening tool for adolescent panic disorder (PD) in a primary care setting. A total of 165 participants (ages 12-17 years) seen in two pediatric primary care clinics completed the Autonomic Nervous System Questionnaire (ANS; Stein et al. in Psychosomatic Med 61:359-364, 40). A subset of those screening…
Primary central nervous system B-cell lymphoma in a young dog
Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang
2012-01-01
This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372
The effect of space radiation of the nervous system
NASA Astrophysics Data System (ADS)
Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe
The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.
[Stress and autonomic dysregulation in patients with fibromyalgia syndrome].
Friederich, H-C; Schellberg, D; Mueller, K; Bieber, C; Zipfel, S; Eich, W
2005-06-01
The aim of the present study was to evaluate to what extent the orthostatic dysregulation of FMS patients can be attributed primarily to reduced baroreceptor-mediated activation of the sympathetic nervous system and whether a hyporeactive sympathetic nervous system can also be confirmed for mental stress. A total of 28 patients with primary FMS were examined and compared with 15 healthy subjects. Diagnostic investigations of the autonomic nervous system were based on measuring HRV in frequency range and assessing spontaneous baroreflex sensitivity (sBRS) under mental stress and passive orthostatism. Both under orthostatic and mental stress FMS patients exhibited reduced activation of the sympathetic nervous system as measured by the spectral power of HRV in the low-frequency range and the mean arterial blood pressure or heart rate. The present study provided no indications for dysregulation of sBRS. The results obtained confirm the hypothesis of a hyporeactive stress system in FMS patients for both peripherally and centrally mediated stimulation of the sympathetic nervous system.
Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.
DiBona, G F
1999-01-01
The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.
Sleep and immune function: glial contributions and consequences of aging
Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.
2013-01-01
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941
Sleep and immune function: glial contributions and consequences of aging.
Ingiosi, Ashley M; Opp, Mark R; Krueger, James M
2013-10-01
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.
Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan
2014-06-01
To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.
Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis
Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.
2016-01-01
The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052
Is There Anything "Autonomous" in the Nervous System?
ERIC Educational Resources Information Center
Rasia-Filho, Alberto A.
2006-01-01
The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
Motor System Development Depends on Experience: A Microgravity Study of Rats
NASA Technical Reports Server (NTRS)
Walton, Kerry D.; Llinas, Rodolfo R.; Kalb, Robert; Hillman, Dean; DeFelipe, Javier; Garcia-Segura, Luis Miguel
2003-01-01
Animals move about their environment by sensing their surroundings and making adjustments according to need. All animals take the force of gravity into account when the brain and spinal cord undertake the planning and execution of movements. To what extent must animals learn to factor in the force of gravity when making neural calculations about movement? Are animals born knowing how to respond to gravity, or must the young nervous system learn to enter gravity into the equation? To study this issue, young rats were reared in two different gravitational environments (the one-G of Earth and the microgravity of low Earth orbit) that necessitated two different types of motor operations (movements) for optimal behavior. We inquired whether those portions of the young nervous system involved in movement, the motor system, can adapt to different gravitational levels and, if so, the cellular basis for this phenomenon. We studied two groups of rats that had been raised for 16 days in microgravity (eight or 14 days old at launch) and compared their walking and righting (ability to go from upside down to upright) and brain structure to those of control rats that developed on Earth. Flight rats were easily distinguished from the age-matched ground control rats in terms of both motor function and central nervous system structure. Mature surface righting predominated in control rats on the day of landing (R+O), while immature righting predominated in the flight rats on landing day and 30 days after landing. Some of these changes appear to be permanent. Several conclusions can be drawn from these studies: (1) Many aspects of motor behavior are preprogrammed into the young nervous system. In addition, several aspects of motor behavior are acquired as a function of the interaction of the developing organism and the rearing environment; (2) Widespread neuroanatomical differences between one-G- and microgravity-reared rats indicate that there is a structural basis for the adaptation to the rearing environment. These observations provide support for the idea that an animal's motor system adapts for optimal function within the environment experienced during a critical period in early postnatal life.
The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa).
Martín-Durán, José M; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas
2016-01-05
The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. © 2015 The Authors.
Metronidazole-induced central nervous system toxicity: a systematic review.
Kuriyama, Akira; Jackson, Jeffrey L; Doi, Asako; Kamiya, Toru
2011-01-01
To assess patient and medication factors that contribute to metronidazole toxicity. We searched PUBMED from 1965 through April 7, 2011, and performed a hand search of bibliographies. Case reports or case series reporting metronidazole-induced central nervous toxicity. Two authors independently abstracted demographics, metronidazole indication, dose and duration, neurological manifestations, and outcomes as well as brain imaging findings. Among 64 patients, 48 (77%) had cerebellar dysfunction, 21 (33%) had altered mental status, and 8 (15%) had seizures. Patients' ages averaged 53.3 years (range, 12-87 years), and 64% were male. The median duration of metronidazole was 54 days, although 26% had taken it less than a week and 11% had taken it less than 72 hours. Among cases with outcome data, most patients either improved (n = 18 [29%]) or had complete resolution of their symptoms with discontinuation of metronidazole (n = 41 [65%]). There was no difference in resolution of symptom by age (P = 0.71) or sex (P = 0.34). The patients with cerebellar dysfunction were less likely to experience complete resolution than those with mental status changes or seizures (relative risk, 0.67; 95% confidence interval (CI), 0.49-0.92). Nearly all patients (n = 55 [86%]) underwent imaging of the brain: 44 (69%) underwent magnetic resonance imaging (MRI) and 12 (19%) underwent computed tomographic studies. All patients with cerebellar dysfunction had abnormalities on imaging: 93% (n = 39) had a cerebellar lesion, although numerous areas in the brain were affected. On follow-up MRIs, 25 patients (83%) had complete resolution of abnormalities. Metronidazole can rarely cause central nervous system toxicity; it does not seem to be a dose- or duration-related phenomenon. Most patients will have MRI abnormalities. Prognosis is excellent with metronidazole cessation.
Swartz, Maria C; Basen-Engquist, Karen M; Markham, Christine; Lyons, Elizabeth J; Cox, Matthew; Chandra, Joya; Ater, Joann L; Askins, Martha A; Scheurer, Michael E; Lupo, Philip J; Hill, Rachel; Murray, Jeffrey; Chan, Wenyaw; Swank, Paul R
2016-09-01
Adolescent and young adult (AYA)-aged central nervous system (CNS) tumor survivors are an understudied population that is at risk of developing adverse health outcomes, such as obesity. Long-term follow-up guidelines recommend monitoring those at risk of obesity, thus motivating the need for an eating behavior questionnaire. An abbreviated online version of the Three-Factor Eating Questionnaire (TFEQ-R18v2) has been developed, but its applicability to this population is not yet known. This study investigated the instrument's factor structure and reliability in this population. AYA-aged CNS tumor survivors (n = 114) aged 15-39 years completed the TFEQ-R18V2 questionnaire online. Confirmatory factor analysis was used to examine the fit of the three-factor structure (uncontrollable eating, cognitive restraint, and emotional eating [EE]) and reliability (internal consistency of the TFEQ-R18v2). Associations between the three factors and body mass index (BMI) were assessed by linear regression. The theorized three-factor structure was supported in our population (RMSEA = 0.056 and CFI = 0.98) and demonstrated good reliability (α of 0.81-0.93). EE (β = 0.07, 95% CI 0.02-0.13) was positively associated with BMI, whereas the other two subscale scores were not. The TFEQ-R18v2 instrument holds promise for research and clinical use among AYA-aged CNS tumor survivors. The instrument may be a useful tool for researchers to develop tailored weight management strategies. It also may be a valuable tool for clinicians to monitor survivors who are at risk of obesity and to facilitate referral. Our results also suggest that EE in this population should be further investigated as a potential target for intervention.
Cochrane, Anne M; Cheung, Clement; Rangan, Kasey; Freyer, David; Nahata, Leena; Dhall, Girish; Finlay, Jonathan L
2017-11-01
The adverse effects of irradiation on endocrine function among patients with pediatric brain tumor are well documented. Intensive induction chemotherapy followed by marrow-ablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) without central nervous system (CNS) irradiation has demonstrated efficacy in a proportion of very young children with some malignant CNS tumors. This study assessed the long-term endocrine function of young children following chemotherapy-only treatment regimens. A retrospective chart review was performed on 99 patients under 6 years of age with malignant brain tumors newly diagnosed between May 1991 and October 2010 treated with irradiation-avoiding strategies. Thirty patients survived post-AuHCR without cranial irradiation for a mean of 8.1 years (range 3.0-22.25 years). The patient cohort included 18 males and 12 females (mean age at AuHCR of 2.5 years, range 0.8-5.1 years). All 30 surviving patients had documented normal age-related thyroid function, insulin-like growth factor binding protein 3 (IGF-BP3), prolactin, testosterone, and estradiol levels. Insulin-like growth factor 1 age-related levels were abnormal in one child with normal height. Ninety-seven percent of patients had normal cortisol levels, while follicle-stimulating hormone and LH levels among females were normal in 83% and 92%, respectively, and in 100% of males. Growth charts demonstrated age-associated growth within 2 standard deviations of the mean in 67% of patients. Of 10 patients (33%) with short stature, 6 had proportional diminutions in both height and weight. These findings demonstrate that the use of relatively brief, intensive chemotherapy regimens including marrow-ablative chemotherapy with AuHCR results in fewer endocrine sequelae than treatment schemes utilizing CNS irradiation. © 2017 Wiley Periodicals, Inc.
Cordoba Mosqueda, M.; Guerra Mora, J.; Hernandez Resendiz, R.; Loya Aguilar, I.; Vicuña Gonzalez, R.; Ibarra de la Torre, A.; Garcia Gonzalez, U.
2016-01-01
Abstract Introduction: Primary lymphomas of the central nervous system are a type of Non Hodgkin Lymphoma with high morbidity and mortality. They are frequently associated with HIV infection, nevertheless the prevalence in non HIV patients has been tripled recently without any justified cause. In occasions it is difficult to identify the difference between primary and secondary origin in the central nervous system, this is crucial since the prognosis also changes. Method and Materials: Observational study with a range of patients from March 1999- March 2016 with reported diagnosis of Non Hodgkin Lymphoma with Central Nervous System involvement inside the electronic files of the South Central Hospital of High Specialty PEMEX. A statistical analysis is made through the SPSS Statistics of the Disease in this Institution program. Results: There were a total of 20 patients found with the diagnosis of Non Hodgkin Lymphoma with Central Nervous System involvement with a media of 57.7 ± 16 years of age, 60% males. 45% were classified as primary; multiple variables were analyzed such as the histological subtype from which the most common was Giant B cell types in a 40%. Within the symptoms the most common was headheach and pyramidal syndrome with 25%. At the time of diagnosis we found that with most prevalence ECOG of the population was of 1 reported case of 55 % of patients, nevertheless the survival rate after diagnosis had a global media of 40.3 ± 21 months, being of 56 months in secondary lymphoma and of 16 months in primary lymphoma, there were no significant statistical differences in both groups. Conclusions: The clinical and epidemiological characteristics in both groups were similar to the ones reported in the literature, nonetheless compared with the time of diagnosis based on the ECOG the overall rate of survival in both groups is low, which brings a great challenge for medical and surgical management. It is important to denote that the clinical scenario of this pathology is quite unspecific, giving a large range of differential diagnosis, therefore making it harder to diagnose and treatment.
Potential Side Effect of Inadvertent Intravascular Administration of Liposomal Bupivacaine
2017-06-01
treat and is potentially fatal. LAST can impair function of the central nervous system and cause cardiovascular collapse, with potentially...in the reversal of cardiovascular and central nervous system symptoms of local anesthetic and other lipophilic drug overdoses. ILE is gaining...to the sites of toxic action in the central nervous system and the heart. However, liposomal formulations of local anesthetics (EXPAREL in
Physiological and Mood Changes Induced by Exercise Withdrawal
2004-01-01
parasympathetic nervous system and a shift towards increased sympathetic activity (Dekker et al., 2000; Task Force of the European Society of Cardiology and...HR response will be important. HR is controlled by both the sympathetic and parasympathetic nervous systems . Heart rate variability (HRV) is a... sympathetic and parasympathetic nervous systems plays an important role in cardiovascular homeostasis. Heart rate variability has been used as an
Monozygotic twins discordant for ROHHAD phenotype.
Patwari, Pallavi P; Rand, Casey M; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Weese-Mayer, Debra E
2011-09-01
Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) falls within a group of pediatric disorders with both respiratory control and autonomic nervous system dysregulation. Children with ROHHAD typically present after 1.5 years of age with rapid weight gain as the initial sign. Subsequently, they develop alveolar hypoventilation, autonomic nervous system dysregulation, and, if untreated, cardiorespiratory arrest. To our knowledge, this is the first report of discordant presentation of ROHHAD in monozygotic twins. Twin girls, born at term, had concordant growth and development until 8 years of age. From 8 to 12 years of age, the affected twin developed features characteristic of ROHHAD including obesity, alveolar hypoventilation, scoliosis, hypothalamic dysfunction (central diabetes insipidus, hypothyroidism, premature pubarche, and growth hormone deficiency), right paraspinal/thoracic ganglioneuroblastoma, seizures, and autonomic dysregulation including altered pain perception, large and sluggishly reactive pupils, hypothermia, and profound bradycardia that required a cardiac pacemaker. Results of genetic testing for PHOX2B (congenital central hypoventilation syndrome disease-defining gene) mutations were negative. With early recognition and conservative management, the affected twin had excellent neurocognitive outcome that matched that of the unaffected twin. The unaffected twin demonstrated rapid weight gain later in age but not development of signs/symptoms consistent with ROHHAD. This discordant twin pair demonstrates key features of ROHHAD including the importance of early recognition (especially hypoventilation), complexity of signs/symptoms and clinical course, and importance of initiating comprehensive, multispecialty care. These cases confound the hypothesis of a monogenic etiology for ROHHAD and indicate alternative etiologies including autoimmune or epigenetic phenomenon or a combination of genetic predisposition and acquired precipitant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulsifer, Margaret B., E-mail: mpulsifer@mgh.harvard.edu; Sethi, Roshan V.; Kuhlthau, Karen A.
Purpose: To report, from a longitudinal study, cognitive outcome in pediatric patients treated with proton radiation therapy (PRT) for central nervous system (CNS) tumors. Methods and Materials: Sixty patients receiving PRT for medulloblastoma (38.3%), gliomas (18.3%), craniopharyngioma (15.0%), ependymoma (11.7%), and other CNS tumors (16.7%) were administered age-appropriate measures of cognitive abilities at or near PRT initiation (baseline) and afterward (follow-up). Patients were aged ≥6 years at baseline to ensure consistency in neurocognitive measures. Results: Mean age was 12.3 years at baseline; mean follow-up interval was 2.5 years. Treatment included prior surgical resection (76.7%) and chemotherapy (61.7%). Proton radiation therapy included craniospinal irradiationmore » (46.7%) and partial brain radiation (53.3%). At baseline, mean Wechsler Full Scale IQ was 104.6; means of all 4 Index scores were also in the average range. At follow-up, no significant change was observed in mean Wechsler Full Scale IQ, Verbal Comprehension, Perceptual Reasoning/Organization, or Working Memory. However, Processing Speed scores declined significantly (mean 5.2 points), with a significantly greater decline for subjects aged <12 years at baseline and those with the highest baseline scores. Cognitive outcome was not significantly related to gender, extent of radiation, radiation dose, tumor location, histology, socioeconomic status, chemotherapy, or history of surgical resection. Conclusions: Early cognitive outcomes after PRT for pediatric CNS tumors are encouraging, compared with published outcomes from photon radiation therapy.« less
Aging, the Central Nervous System, and Mobility in Older Adults: Interventions
Hausdorff, Jeffrey M.; Studenski, Stephanie A.; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B.; Chen, Wen G.; Lipsitz, Lewis A.; Carlson, Michelle C.
2016-01-01
Background: Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. Methods: In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, “Aging, the CNS, and Mobility.” The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Results: Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. Conclusions: In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. PMID:27154905
Aging with HIV infection: a journey to the center of inflammAIDS, immunosenescence and neuroHIV.
Nasi, Milena; Pinti, Marcello; De Biasi, Sara; Gibellini, Lara; Ferraro, Diana; Mussini, Cristina; Cossarizza, Andrea
2014-11-01
In the last years, a significant improvement in life expectancy of HIV+ patients has been observed in Western countries. The parallel increase in the mean age of these patients causes a parallel increase in the frequency of non-AIDS related complications (i.e., neurocognitive, cardiovascular, liver and kidney diseases, metabolic syndrome, osteoporosis, non-HIV associated cancers, among others), even when antiviral treatment is successful. Immune activation and persistent inflammation characterizes both HIV infection and physiological aging, and both conditions share common detrimental pathways that lead to early immunosenescence. Furthermore, HIV-associated neurocognitive disorders represent important consequences of the infection. The persistent systemic immune activation, the continuous migration of activated monocytes to the central nervous system and progressive patients' aging contribute to develop neuronal injuries, that are in turn linked to HIV-associated neurocognitive disorders, which can persist despite successful antiretroviral treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.
Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande
2015-01-01
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.
Chronobiology of the neuroimmunoendocrine system and aging.
Mate, Ianire; Madrid, Juan Antonio; De la Fuente, Mónica
2014-01-01
The health maintenance depends on the preservation of the homeostatic systems, such as nervous, endocrine and immune system, and a proper communication between them. In this regard, the circadian system, which promotes a better physiological system functions and thus well being, could be considered part of that homeostatic complex, since the neuroimmunoendocrine system possesses circadian patterns in most variables, as well as circannual or seasonal variations. With aging, an impairment of the homeostatic systems occurs and an alteration of circadian system regulation has been demonstrated. In the immune system, several function parameters, which are good markers of health and of the rate of aging, change not only with age (immunosenescence) but also throughout the day and year. Indeed, with advancing age there is a modification of immune cell circadian function especially in lymphocytes. Moreover, immune functions at early afternoon correspond to more aged values than at morning, especially in mature subjects (60-79 years of age). In addition, these mature men and women showed a significant impaired immune cell function, which is especially remarkable in the winter. It is noteworthy the role of immunomodulatory hormones, such as melatonin, in the regulation of biological rhythms and their involvement in the aging process. Furthermore, the evidence of a neuroimmune regulation of the circadian system and its disturbance with aging, highlights the importance of proinflammatory cytokines in this complex cross-talk. The biological rhythms disruption with age and some diseases (jet lag, cancer and seasonal affective disorder), could contribute increasing the immune system impairment and consequently the loss of health.
Determining Optimal Post-Stroke Exercise (DOSE)
2018-02-13
Cerebrovascular Accident; Stroke; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases
Central Nervous System Infections in Denmark
2018-02-04
Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis
A history of the autonomic nervous system: part I: from Galen to Bichat.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.
NASA Astrophysics Data System (ADS)
Harzsch, S.; Dawirs, R. R.
1993-02-01
We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.
Nodal signalling and asymmetry of the nervous system
Signore, Iskra A.; Palma, Karina
2016-01-01
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531
THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION
Grassi, Guido; Mark, Allyn; Esler, Murray
2015-01-01
A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284
... Tremor - familial; Benign essential tremor; Shaking - essential tremor Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...
... developing. Alternative Names Parkinsonism - secondary; Atypical Parkinson disease Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...
... movements; Body movements - uncontrollable; Dyskinesia; Athetosis; Myoclonus; Ballismus Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...
GORE Flow Reversal System and GORE Embolic Filter Extension Study
2016-01-22
Carotid Stenosis; Constriction, Pathologic; Carotid Artery Diseases; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Arterial Occlusive Diseases; Vascular Diseases; Cardiovascular Diseases; Pathological Conditions, Anatomical
Farmer, A D; Coen, S J; Kano, M; Worthen, S F; Rossiter, H E; Navqi, H; Scott, S M; Furlong, P L; Aziz, Q
2013-12-01
Esophageal intubation is a widely utilized technique for a diverse array of physiological studies, activating a complex physiological response mediated, in part, by the autonomic nervous system (ANS). In order to determine the optimal time period after intubation when physiological observations should be recorded, it is important to know the duration of, and factors that influence, this ANS response, in both health and disease. Fifty healthy subjects (27 males, median age 31.9 years, range 20-53 years) and 20 patients with Rome III defined functional chest pain (nine male, median age of 38.7 years, range 28-59 years) had personality traits and anxiety measured. Subjects had heart rate (HR), blood pressure (BP), sympathetic (cardiac sympathetic index, CSI), and parasympathetic nervous system (cardiac vagal tone, CVT) parameters measured at baseline and in response to per nasum intubation with an esophageal catheter. CSI/CVT recovery was measured following esophageal intubation. In all subjects, esophageal intubation caused an elevation in HR, BP, CSI, and skin conductance response (SCR; all p < 0.0001) but concomitant CVT and cardiac sensitivity to the baroreflex (CSB) withdrawal (all p < 0.04). Multiple linear regression analysis demonstrated that longer CVT recovery times were independently associated with higher neuroticism (p < 0.001). Patients had prolonged CSI and CVT recovery times in comparison to healthy subjects (112.5 s vs 46.5 s, p = 0.0001 and 549 s vs 223.5 s, p = 0.0001, respectively). Esophageal intubation activates a flight/flight ANS response. Future studies should allow for at least 10 min of recovery time. Consideration should be given to psychological traits and disease status as these can influence recovery. © 2013 John Wiley & Sons Ltd.
Andrievskaia, Olga; Tangorra, Erin
2014-12-01
Contamination of rendered animal byproducts with central nervous system tissues (CNST) from animals with bovine spongiform encephalopathy is considered one of the vehicles of disease transmission. Removal from the animal feed chain of CNST originated from cattle of a specified age category, species-labeling of rendered meat products, and testing of rendered products for bovine CNST are tasks associated with the epidemiological control of bovine spongiform encephalopathy. A single-step TaqMan real-time reverse transcriptase (RRT) PCR assay was developed and evaluated for specific detection of bovine glial fibrillary acidic protein (GFAP) mRNA, a biomarker of bovine CNST, in rendered animal by-products. An internal amplification control, mammalian b -actin mRNA, was coamplified in the duplex RRT-PCR assay to monitor amplification efficiency, normalize amplification signals, and avoid false-negative results. The functionality of the GFAP mRNA RRT-PCR was assessed through analysis of laboratory-generated binary mixtures of bovine central nervous system (CNS) and muscle tissues treated under various thermal settings imitating industrial conditions. The assay was able to detect as low as 0.05 % (wt/wt) bovine brain tissue in binary mixtures heat treated at 110 to 130°C for 20 to 60 min. Further evaluation of the GFAP mRNA RRT-PCR assay involved samples of industrial rendered products of various species origin and composition obtained from commercial sources and rendering plants. Low amounts of bovine GFAP mRNA were detected in several bovine-rendered products, which was in agreement with declared species composition. An accurate estimation of CNS tissue content in industrial-rendered products was complicated due to a wide range of temperature and time settings in rendering protocols. Nevertheless, the GFAP mRNA RRT-PCR assay may be considered for bovine CNS tissue detection in rendered products in combination with other available tools (for example, animal age verification) in inspection programs.
Köşkderelioğlu, Aslı; Ortan, Pınar; Ari, Alpay; Gedizlioğlu, Muhteşem
2016-03-01
To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type.
KÖŞKDERELİOĞLU, Aslı; ORTAN, Pınar; ARI, Alpay; GEDİZLİOĞLU, Muhteşem
2016-01-01
Introduction To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Methods Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Results Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Conclusion Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type. PMID:28360761
Lee, Heng Gee; William, Timothy; Menon, Jayaram; Ralph, Anna P; Ooi, Eng Eong; Hou, Yan'an; Sessions, October; Yeo, Tsin Wen
2016-06-16
Central nervous system (CNS) infections are a significant contributor to morbidity and mortality globally. However, most published studies have been conducted in developed countries where the epidemiology and aetiology differ significantly from less developed areas. Additionally, there may be regional differences due to variation in the socio-economic levels, public health services and vaccination policies. Currently, no prospective studies have been conducted in Sabah, East Malaysia to define the epidemiology and aetiology of CNS infections. A better understanding of these is essential for the development of local guidelines for diagnosis and management. We conducted a prospective observational cohort study in patients aged 12 years and older with suspected central nervous system infections at Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia between February 2012 and March 2013. Cerebrospinal fluid was sent for microscopy, biochemistry, bacterial and mycobacterial cultures, Mycobacterium tuberculosis polymerase chain reaction (PCR), and multiplex and MassCode PCR for various viral and bacterial pathogens. A total of 84 patients with clinically suspected meningitis and encephalitis were enrolled. An aetiological agent was confirmed in 37/84 (44 %) of the patients. The most common diagnoses were tuberculous meningitis (TBM) (41/84, 48.8 %) and cryptococcal meningoencephalitis (14/84, 16.6 %). Mycobacterium tuberculosis was confirmed in 13/41 (31.7 %) clinically diagnosed TBM patients by cerebrospinal fluid PCR or culture. The acute case fatality rate during hospital admission was 16/84 (19 %) in all patients, 4/43 (9 %) in non-TBM, and 12/41 (29 %) in TBM patients respectively (p = 0.02). TBM is the most common cause of CNS infection in patients aged 12 years or older in Kota Kinabalu, Sabah, Malaysia and is associated with high mortality and morbidity. Further studies are required to improve the management and outcome of TBM.
Advanced Optical Technologies for Defense Trauma and Critical Care
2017-03-12
biofilms, and the development of innovative technologies for the study of the response of nervous system cells to injury. 15. SUBJECT TERMS Hemorrhagic...approaches to accelerate nerve healing following traumatic brain injury (TBI) and traumatic injury to the peripheral nervous system . Fig. 3...Two key aspects of repair of traumatic nervous system damage are: (1) the ability of damaged neurons to heal (repair the damage), and (2) the
Plasticity and Activation of Spared Intraspinal Respiratory Circuits Following Spinal Cord Injury
2016-10-01
fluorescent immunohistochemistry (IHC) procedures. Accordingly, we performed IHC with two markers commonly used in the central nervous system (GFAP and...immunohistochemistry (IHC) procedures. Accordingly, we performed IHC with two 365 markers commonly used in the central nervous system (GFAP and NeuN) either...905 mammalian central nervous system . J Neurosci Methods 1: 107-132, 1979. 906 Kirkwood PA, Munson JB, Sears TA, and Westgaard RH. Respiratory
Semblano, Aluízio Augusto Pereira; Moreira, Matheus Acácio; de Lemos, Manuela Nascimento; de Mello, Vanessa Jóia; Hamoy, Moisés; Nazareth Junior, Mario Hermes; Paschoal Junior, Fernando Mendes; Adami, Fernando
2017-01-01
Tumours of the Central Nervous System (CNS) are an important cause of mortality from cancer. Epidemiological data on neoplams affecting the CNS are scarce in Brazil, especially in the Amazon region. The study aims at describing the histopathological profile of CNS tumours cases at a high-complexity referral cancer center. This study has described a 17-year-series profile of CNS tumours, registered at a high-complexity referral cancer center in Pará state, from January 1997 until July 2014 in the Brazilian Amazon Region. Data was gathered from histopathology reports kept in the hospital’s cancer registry and 949 cases of CNS tumours were analyzed. The most common histopathology were neuroepithelial tumours (approx. 40%) and meningioma was the most frequent especific tumor histologic subtype (22.2%). Neuroepithelial tumours were more frequent in patients with ages ranging from less than a year to 19 years, whereas metastatic tumours were prevalent in patients over 40 years of age. It was not found temporal trends during the studied period. The knowledge of these tumours profile is valuable for the understanding of cancer epidemiology in the region, since its prevalence is currently underreported and more awareness on the disease is needed. PMID:28369089
Prevention moderates associations between family risks and youth catecholamine levels.
Brody, Gene H; Yu, Tianyi; Chen, Edith; Miller, Gregory E
2014-11-01
The purpose of this study was to establish, using a quasi-experimental design, whether 2 family risk factors, parental psychological dysfunction and nonsupportive parenting, during preadolescence could longitudinally predict elevated sympathetic nervous system (SNS) activity 9 years later, and to determine whether participation in an efficacious family centered prevention program could moderate these associations if they emerged. Rural African American preadolescents (N = 476) were assigned randomly to the Strong African American Families (SAAF) program or to a control condition. When youths were 11 years of age (M = 11.2 years), primary caregivers provided data on their own depressive symptoms and self-esteem, and youths provided data on their receipt of nonsupportive parenting. When the youths were 20 years of age, indicators of SNS activity, the catecholamines epinephrine and norepinephrine, were assayed from their overnight urine voids. Parental psychological dysfunction and nonsupportive parenting forecast elevated catecholamine levels for youths in the control condition, but not for those in the SAAF condition. The demonstration that a prevention program can induce reduction of catecholamine levels is important from both theoretical and public health perspectives, because it shows that the developmental progression from family risk factors to heightened sympathetic nervous system activity is not immutable. PsycINFO Database Record (c) 2014 APA, all rights reserved.
An Early Sensitive Period Induces Long-Lasting Plasticity in the Honeybee Nervous System
Grosso, Juan P.; Barneto, Jesica A.; Velarde, Rodrigo A.; Pagano, Eduardo A.; Zavala, Jorge A.; Farina, Walter M.
2018-01-01
The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera, the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5–8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9–12 days. In the brain, the odor-rewarded experiences that occurred at 5–8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 (Nrx1) and neuroligin 2 (Nlg2) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees. PMID:29449804
An Early Sensitive Period Induces Long-Lasting Plasticity in the Honeybee Nervous System.
Grosso, Juan P; Barneto, Jesica A; Velarde, Rodrigo A; Pagano, Eduardo A; Zavala, Jorge A; Farina, Walter M
2018-01-01
The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera , the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5-8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9-12 days. In the brain, the odor-rewarded experiences that occurred at 5-8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 ( Nrx1 ) and neuroligin 2 ( Nlg2 ) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees.
Walker, Suellen M
2014-01-01
Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback. PMID:24330444
School behaviour and health status after central nervous system tumours in childhood.
Glaser, A. W.; Abdul Rashid, N. F.; U, C. L.; Walker, D. A.
1997-01-01
This study was designed to assess the overall morbidity burden of survival from central nervous system (CNS) tumours and its impact on return to a normal lifestyle. School behaviour and health status of 27 children after treatment for CNS tumours, of 25 of their school-aged siblings, plus age- and sex-matched controls is reported. Spinetta school behaviour, Lansky play-performance and Health Utilities Index (mark II and III) assessments have been made. Patients had reduced mobility and increased pain levels. They demonstrated a reluctance to participate in organized physical activities. Impaired cognition, emotion and self-esteem were reported. They worried more than controls but attended school willingly, interacted normally with their peers and viewed the future confidently. Their siblings were reluctant to express openly concern for others or feelings of joy. Teachers were reliable proxies for most attributes, notable exceptions being speech and emotion. This is the first study to have assessed the school behaviour of a cohort solely composed of survivors of childhood CNS tumours. The good social reintegration is reassuring and likely to reflect a high level of psychosocial support. However, the results presented identify these young people as a 'special educational needs' group as defined by the 1981 and 1993 Education Acts. PMID:9303365
Armao, Diane; Bailey, Rachel M; Bouldin, Thomas W; Kim, Yongbaek; Gray, Steven J
2016-08-01
Giant axonal neuropathy (GAN) is an inherited severe sensorimotor neuropathy. The aim of this research was to investigate the neuropathologic features and clinical autonomic nervous system (ANS) phenotype in two GAN knockout (KO) mouse models. Little is known about ANS involvement in GAN in humans, but autonomic signs and symptoms are commonly reported in early childhood. Routine histology and immunohistochemistry was performed on GAN KO mouse specimens taken at various ages. Enteric dysfunction was assessed by quantifying the frequency, weight, and water content of defecation in GAN KO mice. Histological examination of the enteric, parasympathetic and sympathetic ANS of GAN KO mice revealed pronounced and widespread neuronal perikaryal intermediate filament inclusions. These neuronal inclusions served as an easily identifiable, early marker of GAN in young GAN KO mice. Functional studies identified an age-dependent alteration in fecal weight and defecation frequency in GAN KO mice. For the first time in the GAN KO mouse model, we described the early, pronounced and widespread neuropathologic features involving the ANS. In addition, we provided evidence for a clinical autonomic phenotype in GAN KO mice, reflected in abnormal gastrointestinal function. These findings in GAN KO mice suggest that consideration should be given to ANS involvement in human GAN, especially when considering treatments and patient care.
2014-11-04
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific
Ma, Zhe; Liu, Cun; Deng, Biping; Dong, Shaogang; Tao, Guowei; Zhan, Xinfeng; Wang, Chuner; Liu, Shaoping; Qu, Xun
2010-12-01
To detect the distinct proteins in amniotic fluid (AF) between nervous system malformations fetuses and normal fetuses. Surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry was used to characterize AF peptides in AF between nervous system malformations fetuses and normal fetuses. WCX2 protein chips were used to characterize AF peptides in AF. Protein chips were examined in a PBSIIC protein reader, the protein profiling was collected by ProteinChip software version 3.1 (Ciphergen Biosystems, Fremont, CA, USA) and analyzed by Biomarker Wizard software (Ciphergen Biosystems). Nine distinct proteins were identified in AF between nervous system malformations fetuses and normal fetuses. Compared with the control group, three proteins with m/z 4967.5 Da, 5258.0 Da, and 11,717.0 Da were down-regulated, and six proteins with m/z 2540.4 Da, 3107.1 Da, 3396.8 Da, 4590.965 Da, 5589.2 Da and 6429.4 Da up-regulated in nervous system malformations fetuses. The results suggest that there are distinct proteins in protein profiling of AF between nervous system malformations fetuses and normal fetuses. © 2010 The Authors. Journal of Obstetrics and Gynaecology Research © 2010 Japan Society of Obstetrics and Gynecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com
The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervousmore » systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.« less
Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra
2015-01-01
Muscle synergies are hypothesized to represent motor modules recruited by the nervous system to flexibly perform subtasks necessary to achieve movement. Muscle synergy analysis may offer a better view of the neural structure underlying motor behaviors and how they change in motor deficits and rehabilitation. The aim of this study is to investigate if muscle synergies are able to encode regularities in the musculoskeletal system organization and dynamic behavior of patients with dystonia, or if they are altered as a consequence of the nervous system dysfunction in dystonia. To do so, we applied muscle synergies analysis to muscle activity recorded during the execution of upper limb writing tasks in 10 children with dystonia and 9 age-matched healthy controls. We show that, although children with dystonia present movement abnormalities compared to control subjects, the muscle synergies extracted from the two groups are very similar, and that the two groups share a significant number of motor modules. Our finding therefore suggests that a regular modular organization of upper limb muscle coordination is preserved for childhood dystonia.
Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.
Noda, Mami
2018-01-01
The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.
Knave, B; Olson, B A; Elofsson, S; Gamberale, F; Isaksson, A; Mindus, P; Persson, H E; Struwe, G; Wennberg, A; Westerholm, P
1978-03-01
Thirty jet fuel exposed workers selected according to exposure criteria and thirty nonexposed controls from a jet motor factory were examined, with special reference to the nervous system, by occupational hygiene physicians, psychiatrists, psychologists, and neurophysiologists. The controls and the exposed subjects were matched with respect to age, employment duration, and education. Among the exposed subjects the mean exposure duration was 17 years, and 300 mg/m3 was calculated as a rough time-weighted average exposure level. The investigation revealed significant differences between the exposed and nonexposed groups for (a) incidence and prevalence of psychiatric symptoms, (b) psychological tests with the load on attention and sensorimotor speed and (c) electroencephalograms. When the control group was selected, it was ensured that the two groups were essentially equivalent except for exposure to jet fuel. It is concluded, therefore, that the differences found between the groups are probably related to exposure to jet fuel.
Valentin, Angelika; Troppan, Katharina; Pfeilstöcker, Michael; Nösslinger, Thomas; Linkesch, Werner; Neumeister, Peter
2014-08-01
Central nervous system recurrence in acute lymphoblastic leukemia (ALL) occurs in up to 15% of patients and is frequently associated with poor outcome. The purpose of our study was to evaluate the efficacy and safety of a slow-release liposomal formulation of cytarabine for intrathecal (IT) meningeal prophylaxis in patients suffering from ALL. Forty patients aged 20-77 years (median 36) were preventively treated with a total of 96 (range 1-6) single doses containing 50 mg of liposomal cytarabine on a compassionate use basis. After a median observation period of 23 months (range 2-118) only two patients experienced a combined medullary-leptomeningeal disease recurrence after primary diagnosis. Except for headache grade 2 in two patients, no specific toxicity attributable to IT liposomal cytarabine application was noted. Long-term neurological side effects were not observed. IT liposomal cytarabine therapy with concomitant dexamethasone appears to be feasible and well tolerated.
Effects of exposure to lead among lead-acid battery factory workers in Sudan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, A.A.E.K.; Hamed, A.A.S.; Elhaimi, Y.A.A.
Health effects of occupational exposure to lead were investigated among 92 exposed workers in lead-acid battery factory and 40 nonexposed workers serving as a control group from an oil mill in Khartoum North industrial area. The two groups were closely similar in age, stature, body weight, and socioeconomic conditions. A highly significant increase (P<.01) was recorded in blood lead, urinary coproporphyrin, and basophilic stippled red blood cells of the exposed group in comparison to the control group. Central nervous system symptoms (insomnia, fatigue, weakness, and drowsiness) were reported by 50% and other symptoms such as abdominal colic and constipation weremore » reported by 41% of the exposed group. Blue line on the gum was detected only on 2% of the exposed group. Strong associations between exposure to lead and the prevalence of central nervous system symptoms, abdominal colic, and constipation were recorded. Exposure to exceedingly high levels of lead in the working environment causes adverse health effects.« less
GM2 gangliosidosis in British Jacob sheep.
Wessels, M E; Holmes, J P; Jeffrey, M; Jackson, M; Mackintosh, A; Kolodny, E H; Zeng, B J; Wang, C B; Scholes, S F E
2014-01-01
GM2 gangliosidosis (Tay-Sachs disease) was diagnosed in 6- to 8-month-old pedigree Jacob lambs from two unrelated flocks presenting clinically with progressive neurological dysfunction of 10 day's to 8 week's duration. Clinical signs included hindlimb ataxia and weakness, recumbency and proprioceptive defects. Histopathological examination of the nervous system identified extensive neuronal cytoplasmic accumulation of material that stained with periodic acid--Schiff and Luxol fast blue. Electron microscopy identified membranous cytoplasmic bodies within the nervous system. Serum biochemistry detected a marked decrease in hexosaminidase A activity in the one lamb tested, when compared with the concentration in age matched controls and genetic analysis identified a mutation in the sheep hexa allele G444R consistent with Tay-Sachs disease in Jacob sheep in North America. The identification of Tay-Sachs disease in British Jacob sheep supports previous evidence that the mutation in North American Jacob sheep originated from imported UK stock. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Management of pediatric central nervous system emergencies: a review for general radiologists.
Rebollo Polo, M
2016-05-01
To review the most common and most important diseases and disorders of the central nervous system (CNS) in pediatric emergencies, discussing the indications for different imaging tests in each context. In pediatric patients, acute neurologic symptoms (seizures, deteriorating level of consciousness, focal neurologic deficits, etc.) can appear in diverse clinical situations (trauma, child abuse, meningoencephalitis, ischemia…). It is important to decide on the most appropriate neuroimaging diagnostic algorithm for each situation and age group, as well as to know the signs of the most typical lesions that help us in the etiological differential diagnosis. Pediatric patients' increased vulnerability to ionizing radiation and the possible need for sedation in studies that require more time are factors that should be taken into account when indicating an imaging test. It is essential to weigh the risks and benefits for the patient and to avoid unnecessary studies. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources.
Echeverría, Francisca; Valenzuela, Rodrigo; Catalina Hernandez-Rodas, María; Valenzuela, Alfonso
2017-09-01
Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progressive supranuclear palsy
... dystonia; Richardson-Steele-Olszewski syndrome; Palsy - progressive supranuclear Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...
Myocardial ischaemia and the cardiac nervous system.
Armour, J A
1999-01-01
The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.
Relationship between Vitamin D Status and Autonomic Nervous System Activity
Burt, Morton G.; Mangelsdorf, Brenda L.; Stranks, Stephen N.; Mangoni, Arduino A.
2016-01-01
Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies. PMID:27649235
Rudd, Kristen L; Alkon, Abbey; Yates, Tuppett M
2017-10-15
This study examined children's parasympathetic nervous system (PNS) regulation, which was indexed by respiratory sinus arrhythmia (RSA) during rest, reactivity, and recovery episodes, and sex as moderators of predicted relations between observed intrusive parenting and later observer-rated child behavior problems. Child-caregiver dyads (N=250; 50% girls; 46% Latino/a) completed a series of laboratory assessments yielding independent measures of intrusive parenting at age 4, PNS regulation at age 6, and child behavior problems at age 8. Results indicated that intrusive parenting was related to more internalizing problems among boys who showed low RSA reactivity (i.e., PNS withdrawal from pre-startle to startle challenge), but RSA reactivity did not moderate this relation among girls. Interestingly, RSA recovery (i.e., PNS activation from startle challenge to post-startle) moderated these relations differently for boys and girls. For girls with relatively low RSA post-startle (i.e., less recovery), intrusive parenting was positively related to both internalizing and externalizing problems. However, the reverse was true for boys, such that there was a significant positive relation between intrusive parenting and later externalizing problems among boys who evidenced relatively high RSA post-startle (i.e., more recovery). Findings provide evidence for the moderation of intrusive caregiving effects by children's PNS regulation while highlighting the differential patterning of these relations across distinct phases of the regulatory response and as a function of child sex. Copyright © 2017 Elsevier Inc. All rights reserved.
Pupillary behavior in relation to wavelength and age
Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia
2014-01-01
Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46–78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18–45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595
Neurovascular patterning cues and implications for central and peripheral neurological disease
Gamboa, Nicholas T.; Taussky, Philipp; Park, Min S.; Couldwell, William T.; Mahan, Mark A.; Kalani, M. Yashar S.
2017-01-01
The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology. PMID:28966815
An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System.
Tseng, Ting-Chen; Tao, Lei; Hsieh, Fu-Yu; Wei, Yen; Chiu, Ing-Ming; Hsu, Shan-hui
2015-06-17
An injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells. In the zebrafish injury model, the central nervous system function is partially rescued by injection of the hydrogel and significantly rescued by injection of the neurosphere-laden hydrogel. The self-healing hydrogel may thus potentially repair the central nervous system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The eye and visual nervous system: anatomy, physiology and toxicology.
McCaa, C S
1982-01-01
The eyes are at risk to environmental injury by direct exposure to airborne pollutants, to splash injury from chemicals and to exposure via the circulatory system to numerous drugs and bloodborne toxins. In addition, drugs or toxins can destroy vision by damaging the visual nervous system. This review describes the anatomy and physiology of the eye and visual nervous system and includes a discussion of some of the more common toxins affecting vision in man. Images FIGURE 1. FIGURE 2. PMID:7084144
Fluoxetine Opens Window to Improve Motor Recovery After Stroke
2018-05-01
Stroke; Cerebrovascular Accident; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases
... Frontotemporal dementia; FTD; Arnold Pick disease; 3R tauopathy Images Central nervous system and peripheral nervous system References Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet . 2015;386( ...
Wheat, Joseph; Myint, Thein; Guo, Ying; Kemmer, Phebe; Hage, Chadi; Terry, Colin; Azar, Marwan M; Riddell, James; Ender, Peter; Chen, Sharon; Shehab, Kareem; Cleveland, Kerry; Esguerra, Eden; Johnson, James; Wright, Patty; Douglas, Vanja; Vergidis, Pascalis; Ooi, Winnie; Baddley, John; Bamberger, David; Khairy, Raed; Vikram, Holenarasipur R; Jenny-Avital, Elizabeth; Sivasubramanian, Geetha; Bowlware, Karen; Pahud, Barbara; Sarria, Juan; Tsai, Townson; Assi, Maha; Mocherla, Satish; Prakash, Vidhya; Allen, David; Passaretti, Catherine; Huprikar, Shirish; Anderson, Albert
2018-03-01
Central nervous system (CNS) involvement occurs in 5 to 10% of individuals with disseminated histoplasmosis. Most experience has been derived from small single center case series, or case report literature reviews. Therefore, a larger study of central nervous system (CNS) histoplasmosis is needed in order to guide the approach to diagnosis, and treatment.A convenience sample of 77 patients with histoplasmosis infection of the CNS was evaluated. Data was collected that focused on recognition of infection, diagnostic techniques, and outcomes of treatment.Twenty nine percent of patients were not immunosuppressed. Histoplasma antigen, or anti-Histoplasma antibodies were detected in the cerebrospinal fluid (CSF) in 75% of patients. One year survival was 75% among patients treated initially with amphotericin B, and was highest with liposomal, or deoxycholate formulations. Mortality was higher in immunocompromised patients, and patients 54 years of age, or older. Six percent of patients relapsed, all of whom had the acquired immunodeficiency syndrome (AIDS), and were poorly adherent with treatment.While CNS histoplasmosis occurred most often in immunocompromised individuals, a significant proportion of patients were previously, healthy. The diagnosis can be established by antigen, and antibody testing of the CSF, and serum, and antigen testing of the urine in most patients. Treatment with liposomal amphotericin B (AMB-L) for at least 1 month; followed by itraconazole for at least 1 year, results in survival among the majority of individuals. Patients should be followed for relapse for at least 1 year, after stopping therapy.
Neighborhood Stress and Autonomic Nervous System Activity during Sleep.
Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori
2018-04-04
Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.
Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F
2017-03-01
Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.
Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying
2013-06-01
The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.
Harnessing neuroplasticity for clinical applications
Sur, Mriganka; Dobkin, Bruce H.; O'Brien, Charles; Sanger, Terence D.; Trojanowski, John Q.; Rumsey, Judith M.; Hicks, Ramona; Cameron, Judy; Chen, Daofen; Chen, Wen G.; Cohen, Leonardo G.; deCharms, Christopher; Duffy, Charles J.; Eden, Guinevere F.; Fetz, Eberhard E.; Filart, Rosemarie; Freund, Michelle; Grant, Steven J.; Haber, Suzanne; Kalivas, Peter W.; Kolb, Bryan; Kramer, Arthur F.; Lynch, Minda; Mayberg, Helen S.; McQuillen, Patrick S.; Nitkin, Ralph; Pascual-Leone, Alvaro; Reuter-Lorenz, Patricia; Schiff, Nicholas; Sharma, Anu; Shekim, Lana; Stryker, Michael; Sullivan, Edith V.; Vinogradov, Sophia
2011-01-01
Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies. PMID:21482550
Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna
2006-04-01
Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.
Central nervous system histoplasmosis
Wheat, Joseph; Myint, Thein; Guo, Ying; Kemmer, Phebe; Hage, Chadi; Terry, Colin; Azar, Marwan M.; Riddell, James; Ender, Peter; Chen, Sharon; Shehab, Kareem; Cleveland, Kerry; Esguerra, Eden; Johnson, James; Wright, Patty; Douglas, Vanja; Vergidis, Pascalis; Ooi, Winnie; Baddley, John; Bamberger, David; Khairy, Raed; Vikram, Holenarasipur; Jenny-Avital, Elizabeth; Sivasubramanian, Geetha; Bowlware, Karen; Pahud, Barbara; Sarria, Juan; Tsai, Townson; Assi, Maha; Mocherla, Satish; Prakash, Vidhya; Allen, David; Passaretti, Catherine; Huprikar, Shirish; Anderson, Albert
2018-01-01
Abstract Central nervous system (CNS) involvement occurs in 5 to 10% of individuals with disseminated histoplasmosis. Most experience has been derived from small single center case series, or case report literature reviews. Therefore, a larger study of central nervous system (CNS) histoplasmosis is needed in order to guide the approach to diagnosis, and treatment. A convenience sample of 77 patients with histoplasmosis infection of the CNS was evaluated. Data was collected that focused on recognition of infection, diagnostic techniques, and outcomes of treatment. Twenty nine percent of patients were not immunosuppressed. Histoplasma antigen, or anti-Histoplasma antibodies were detected in the cerebrospinal fluid (CSF) in 75% of patients. One year survival was 75% among patients treated initially with amphotericin B, and was highest with liposomal, or deoxycholate formulations. Mortality was higher in immunocompromised patients, and patients 54 years of age, or older. Six percent of patients relapsed, all of whom had the acquired immunodeficiency syndrome (AIDS), and were poorly adherent with treatment. While CNS histoplasmosis occurred most often in immunocompromised individuals, a significant proportion of patients were previously, healthy. The diagnosis can be established by antigen, and antibody testing of the CSF, and serum, and antigen testing of the urine in most patients. Treatment with liposomal amphotericin B (AMB-L) for at least 1 month; followed by itraconazole for at least 1 year, results in survival among the majority of individuals. Patients should be followed for relapse for at least 1 year, after stopping therapy. PMID:29595679
Neurologic involvement in scleroderma: a systematic review.
Amaral, Tiago Nardi; Peres, Fernando Augusto; Lapa, Aline Tamires; Marques-Neto, João Francisco; Appenzeller, Simone
2013-12-01
To perform a systematic review of neurologic involvement in Systemic sclerosis (SSc) and Localized Scleroderma (LS), describing clinical features, neuroimaging, and treatment. We performed a literature search in PubMed using the following MeSH terms, scleroderma, systemic sclerosis, localized scleroderma, localized scleroderma "en coup de sabre", Parry-Romberg syndrome, cognitive impairment, memory, seizures, epilepsy, headache, depression, anxiety, mood disorders, Center for Epidemiologic Studies Depression (CES-D), SF-36, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Patient Health Questionnaire-9 (PHQ-9), neuropsychiatric, psychosis, neurologic involvement, neuropathy, peripheral nerves, cranial nerves, carpal tunnel syndrome, ulnar entrapment, tarsal tunnel syndrome, mononeuropathy, polyneuropathy, radiculopathy, myelopathy, autonomic nervous system, nervous system, electroencephalography (EEG), electromyography (EMG), magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA). Patients with other connective tissue disease knowingly responsible for nervous system involvement were excluded from the analyses. A total of 182 case reports/studies addressing SSc and 50 referring to LS were identified. SSc patients totalized 9506, while data on 224 LS patients were available. In LS, seizures (41.58%) and headache (18.81%) predominated. Nonetheless, descriptions of varied cranial nerve involvement and hemiparesis were made. Central nervous system involvement in SSc was characterized by headache (23.73%), seizures (13.56%) and cognitive impairment (8.47%). Depression and anxiety were frequently observed (73.15% and 23.95%, respectively). Myopathy (51.8%), trigeminal neuropathy (16.52%), peripheral sensorimotor polyneuropathy (14.25%), and carpal tunnel syndrome (6.56%) were the most frequent peripheral nervous system involvement in SSc. Autonomic neuropathy involving cardiovascular and gastrointestinal systems was regularly described. Treatment of nervous system involvement, on the other hand, varied in a case-to-case basis. However, corticosteroids and cyclophosphamide were usually prescribed in severe cases. Previously considered a rare event, nervous system involvement in scleroderma has been increasingly recognized. Seizures and headache are the most reported features in LS en coup de sabre, while peripheral and autonomic nervous systems involvement predominate in SSc. Moreover, recently, reports have frequently documented white matter lesions in asymptomatic SSc patients, suggesting smaller branches and perforating arteries involvement. Copyright © 2013 Elsevier Inc. All rights reserved.
MedlinePlus Videos and Cool Tools
... the pancreas, ovaries and testes. The endocrine and nervous systems work very closely together. The brain continuously sends ... endocrine glands. Because of this intimate relationship, the nervous and endocrine systems are referred to as the neuroendocrine system. The ...
Behavior as a sentry of metal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, B.
1978-01-01
Many of the toxic properties of metals are expressed as behavioral aberrations. Some of these arise from direct actions on the central nervous system. Others arise from primary events elsewhere, but still influence behavior. Toxicity may be expressed either as objectively measurable phenomena, such as ataxia, or as subjective complaints, such as depression. In neither instance is clinical medicine equipped to provide assessments of subtle, early indices of toxicity. Reviewers of visual disturbances, paresthesia, and mental retardation exemplify the potential contribution of psychology to the toxicology of metals. Behavior and nervous system functions act as sensitive mirrors of metal toxicity.more » Sensitivity is the prime aim in environmental health assessments. Early detection of adverse effects, before they progress to irreversibility, underlies the strategy for optimal health protection. Some of the toxic actions of metals originate in direct nervous system dysfunction. Others may reflect disturbances of systems less directly linked to behavior than the central nervous system. But behavior, because it expresses the integrated functioning of the organism, can indicate flaws in states and processes outside the nervous system.« less
Designing and implementing nervous system simulations on LEGO robots.
Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph
2013-05-25
We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.
Changes in gravity influence rat postnatal motor system development: from simulation to space flight
NASA Technical Reports Server (NTRS)
Walton, K.; Heffernan, C.; Sulica, D.; Benavides, L.
1997-01-01
Our research examines the role of the environment in postnatal nervous system development. Recently we have been studying the effects of changes in gravity on the motor system of rats from postnatal day (P) 2 to 31 using kinematic analysis of swimming, walking, and righting reflexes. Using the tail suspension model of weightlessness we identified sensitive and critical periods of motor system development corresponding to the time during which a motor skill is first achieved. Motor performance in suspended animals was marked by slow swimming, walking, and air-righting, all of which were characterized by hindlimb extension. (Walton et al, Neurosci. 52,763,1992). The critical periods identified in these studies contributed to determining the age of animals for a small payload, NIH.R3. This 9-day mission (STS-72) included 2 litters at P5, P7, or P15 at launch. The P7-16 and P15-24 groups were studied post-flight. On the landing day (R+0) surface righting, swimming and walking were slower in flight compared to control animals. Differences were more marked in the younger animals and the hindlimbs were more affected than the forelimbs with marked, prolonged extension of, at least, the ankle joint angle. Readaptation to 1G was slower in the P7-16 group with righting reflexes adapting first, walking last. We have shown that gravity is an important factor in postnatal nervous system development and that its affect depends on the age of the animal, duration of the perturbation, and the motor function studied.
Pereira, Vitor H; Marques, Paulo; Magalhães, Ricardo; Português, João; Calvo, Lucy; Cerqueira, João J; Sousa, Nuno
2016-04-01
Takotsubo cardiomyopathy is an intriguing disease characterized by acute transient left ventricular dysfunction usually triggered by an episode of severe stress. The excessive levels of catecholamines and the overactivation of the sympathetic system are believed to be the main pathophysiologic mechanisms of Takotsubo cardiomyopathy, but it is unclear whether there is a structural or functional signature of the disease. In this sense, our aim was to characterize the central autonomic system response to autonomic challenges in patients with a previous episode of Takotsubo cardiomyopathy when compared with a control group of healthy volunteers. Functional magnetic resonance imaging (fMRI) was performed in four patients with a previous episode of Takotsubo cardiomyopathy (average age of 67 ± 12 years) and in eight healthy volunteers (average age of 66 ± 5 years) while being submitted to different autonomic challenges (cold exposure and Valsalva manoeuvre). The fMRI analysis revealed a significant variation of the blood oxygen level dependent signal triggered by the Valsalva manoeuvre in specific areas of the brain involved in the cortical control of the autonomic system and significant differences in the pattern of activation of the insular cortex, amygdala and the right hippocampus between patients with Takotsubo cardiomyopathy and controls, even though these regions did not present significant volumetric changes. The central autonomic response to autonomic challenges is altered in patients with Takotsubo cardiomyopathy, thus suggesting a dysregulation of the central autonomic nervous system network. Subsequent studies are needed to unveil whether these alterations are causal or predisposing factors to Takotsubo cardiomyopathy. © The European Society of Cardiology 2015.
Kan, Min Hui; Yang, Ting; Fu, Hui Qun; Fan, Long; Wu, Yan; Terrando, Niccolò; Wang, Tian-Long
2016-01-01
Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure. PMID:27493629
AMPK modulates tissue and organismal aging in a cell-non-autonomous manner
Ulgherait, Matthew; Rana, Anil; Rera, Michael; Graniel, Jacqueline; Walker, David W.
2014-01-01
AMPK exerts pro-longevity effects in diverse species; however, the tissue-specific mechanisms involved are poorly understood. Here, we show that up-regulation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and also in the intestinal epithelium. Induction of autophagy is linked to improved intestinal homeostasis during aging and extended lifespan. Neuronal up-regulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these inter-tissue effects during aging and to prolong lifespan. Furthermore, up-regulation of AMPK in the adult intestine induces autophagy both cell autonomously and non-autonomously in the brain, slows systemic aging and prolongs lifespan. We show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to reduced insulin-like peptide levels in the brain and a systemic increase in 4E-BP expression. Together, these results reveal that localized activation of AMPK and/or Atg1 in key tissues can slow aging in a cell-non-autonomous manner. PMID:25199830
AMX0035 in Patients With Amyotrophic Lateral Sclerosis (ALS)
2018-05-21
Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Diseases; Neurodegenerative Diseases; Spinal Cord Diseases; TDP-43 Proteinopathies; Nervous System Diseases; Central Nervous System Diseases
Stages of AIDS-Related Lymphoma
... trials is also available. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: External radiation therapy . ...
ERIC Educational Resources Information Center
National Evaluation Systems, Inc., Amherst, MA.
This module on the nervous system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use the…
Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru
2012-07-01
Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.
Treatment Options for AIDS-Related Lymphoma
... trials is also available. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: External radiation therapy . ...
Peroxisomes are oxidative organelles.
Antonenkov, Vasily D; Grunau, Silke; Ohlmeier, Steffen; Hiltunen, J Kalervo
2010-08-15
Peroxisomes are multifunctional organelles with an important role in the generation and decomposition of reactive oxygen species (ROS). In this review, the ROS-producing enzymes, as well as the antioxidative defense system in mammalian peroxisomes, are described. In addition, various conditions leading to disturbances in peroxisomal ROS metabolism, such as abnormal peroxisomal biogenesis, hypocatalasemia, and proliferation of peroxisomes are discussed. We also review the role of mammalian peroxisomes in some physiological and pathological processes involving ROS that lead to mitochondrial abnormalities, defects in cell proliferation, and alterations in the central nervous system, alcoholic cardiomyopathy, and aging. Antioxid.
Body weight and dysautonomia in early Parkinson's disease.
Umehara, T; Nakahara, A; Matsuno, H; Toyoda, C; Oka, H
2017-05-01
Patients with Parkinson's disease (PD) begin to lose weight several years before diagnosis, which suggests weight variation is associated with some factor(s) that precede the onset of motor symptoms. This study aimed to investigate the association of autonomic nervous system with body weight in patients with PD. The subjects were 90 patients with early de novo PD. We examined the associations of body mass index (BMI) with sympathetic nervous activity reflected in orthostatic intolerance or cardiac uptake of 123 I-metaiodobenzylguanidine and parasympathetic nervous activity reflected in constipation or heart rate variability (HRV). Twelve patients (13.3%) were overweight (BMI>25 kg/m 2 ), 62 patients (68.9%) were normal-weight (18.5≦BMI<25 kg/m 2 ), and 16 patients (17.8%) were underweight (BMI<18.5 kg/m 2 ). Underweight patients had greater disease severity and decrease in blood pressure on head-up tilt-table testing, higher cardiac washout ratio of 123 I-metaiodobenzylguanidine, and lower HRV and complained of constipation more often than those with normal-weight or overweight patients. On multiple regression analyses, the correlation of these variables with BMI maintained statistical significance after adjustment for age, sex, symptom duration, and motor subtype. Dysautonomia and disease severity are closely related to body weight independently of age, sex, symptom duration, and motor subtype. Dysautonomia may play a partial role on weight variation in the early stage of PD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
38 CFR 4.119 - Schedule of ratings-endocrine system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...
Summer teachers' teaching tool
and nervous system of the frog. Skeleton System Organs Digestive System Nervous System Berkeley Lab students study anatomy of a frog in Biology class room. The pictures showed the skeleton, organs, digestive
Synchronisation and coupling analysis: applied cardiovascular physics in sleep medicine.
Wessel, Niels; Riedl, Maik; Kramer, Jan; Muller, Andreas; Penzel, Thomas; Kurths, Jurgen
2013-01-01
Sleep is a physiological process with an internal program of a number of well defined sleep stages and intermediate wakefulness periods. The sleep stages modulate the autonomous nervous system and thereby the sleep stages are accompanied by different regulation regimes for the cardiovascular and respiratory system. The differences in regulation can be distinguished by new techniques of cardiovascular physics. The number of patients suffering from sleep disorders increases unproportionally with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop highly-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Methods of cardiovascular physics are used to analyze heart rate, blood pressure and respiration to detect changes of the autonomous nervous system in different diseases. Data driven modeling analysis, synchronization and coupling analysis and their applications to biosignals in healthy subjects and patients with different sleep disorders are presented. Newly derived methods of cardiovascular physics can help to find indicators for these health risks.
Code of Federal Regulations, 2014 CFR
2014-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2012 CFR
2012-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2013 CFR
2013-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2011 CFR
2011-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Code of Federal Regulations, 2010 CFR
2010-04-01
... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...
Central Nervous System Oxygen Toxicity in Closed-Circuit Scuba Divers
1986-03-01
CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA DIVERS III By F. K. Butler, Jr., LCDR, MC, USN NAVY EXPERIMENTAL DIVING UNIT DTIC...PANAMA CITY. FLORIDA 321407 IN. aLV OMW Vol NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 5-86 CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA...BUTLER, Jr. J . .d.M. HAMILTON LCDR, MC, USK CDR, MC, USK CDR, USKN Medical Research Officer Senior Medical Officer Comanding Officer UNCLASSIFIED 4
Interfacing with the nervous system: a review of current bioelectric technologies.
Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W
2017-10-23
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang
2011-01-01
The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728
Afshar, Maryam; Birnbaum, Daniel; Golden, Carla
2014-06-01
The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H
2007-03-01
To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.
... the body's defense (immune) system mistakenly attacks part of the nervous system. This leads to nerve inflammation that causes muscle ... Nerve supply to the pelvis Brain and nervous system References Katirji B. Disorders of peripheral nerves. In: Daroff RB, Jankovic J, Mazziotta ...
[Analysis of Kudiezi injection's security literature].
Chang, Yan-Peng; Xie, Yan-Ming
2012-09-01
By retrieving the relevant database, aim was to achieve the security reported of Kudiezi injection (Yueanxin). To analysis the gender, age, underlying disease, medication dosage, solvent, adverse event/adverse reaction time of occurrence, clinical presentation of patients, It was found the adverse event/adverse reaction usually occur in older people, involving the organs and systems include skin and its appendages, digestive system, nervous system, circulatory system, respiratory system, systemic reaction, part of the adverse event/adverse reaction's cause were not according to the instructions. It was found on the adverse event/adverse reaction of the judgment on the lack of objective evidence, to produce certain effect for objective evaluation of security of Kudiezi injection (Yueanxin).
Neuropsychiatric lupus erythematosus, cerebral infarctions, and anticardiolipin antibodies.
Fields, R A; Sibbitt, W L; Toubbeh, H; Bankhurst, A D
1990-01-01
Anticardiolipin antibody (aCL) has been associated with thromboembolic phenomena, including stroke, in certain patients with systemic lupus erythematosus (SLE); however, the relation between this antibody and the central nervous system manifestations of SLE is unknown. Serum samples and cerebrospinal fluid from five patients with SLE and acute central nervous system manifestations were assayed for the presence of aCL. Anticardiolipin antibody was identified in sera from four of the five patients but in none of the cerebrospinal fluid samples. Nuclear magnetic resonance imaging showed 'infarct-like' lesions in these four patients. This preliminary study suggests that a correlation between serum aCL and cerebral infarcts in central nervous system lupus may potentially exist. From this limited study it seems unlikely that aCL has a direct pathogenic role in the diffuse encephalopathy of acute central nervous system lupus. Images PMID:2317112
40 CFR 158.500 - Toxicology data requirements table.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., following pre- and postnatal exposure (i.e., nervous system malformations or neuropathy, brain weight... the nervous system (e.g., SAR relationship to known neurotoxicants, altered neuroreceptor or...
Safety and Efficacy Study of VY-AADC01 for Advanced Parkinson's Disease
2018-02-27
Idiopathic Parkinson's Disease; Parkinson's Disease; Basal Ganglia Disease; Brain Diseases; Central Nervous System Diseases; Movement Disorders; Nervous System Diseases; Neurodegenerative Diseases; Parkinsonian Disorders
Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.
Dantzer, Robert
2018-01-01
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Microbiota-gut-brain axis and the central nervous system.
Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei
2017-08-08
The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.
Teleost fish as a model system to study successful regeneration of the central nervous system.
Zupanc, Günther K H; Sîrbulescu, Ruxandra F
2013-01-01
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.
Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen
2013-09-23
Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.