Science.gov

Sample records for aging rat brain

  1. Differential expression of sirtuins in the aging rat brain.

    PubMed

    Braidy, Nady; Poljak, Anne; Grant, Ross; Jayasena, Tharusha; Mansour, Hussein; Chan-Ling, Tailoi; Smythe, George; Sachdev, Perminder; Guillemin, Gilles J

    2015-01-01

    Although there are seven mammalian sirtuins (SIRT1-7), little is known about their expression in the aging brain. To characterize the change(s) in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of "physiologically" aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy aging. PMID:26005404

  2. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  3. Preventive effect of safranal against oxidative damage in aged male rat brain

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Samini, Fariborz

    2014-01-01

    An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses. PMID:25312506

  4. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  5. Tail pinch induces fos immunoreactivity within several regions of the male rat brain: effects of age.

    PubMed

    Smith, W J; Stewart, J; Pfaus, J G

    1997-05-01

    Brief, intermittent stressors, such as low-level foot shock or tail pinch, induce a general excitement and autonomic arousal in rats that increases their sensitivity to external incentives. Such stimulation can facilitate a variety of behaviors, including feeding, aggression, sexual activity, parental behavior, and drug taking if the appropriate stimuli exist in the environment. However, the ability of tail pinch to induce general arousal and incentive motivation appears to diminish with age. Here we report on the ability of tail pinch to induce Fos immunoreactivity within several brain regions as a function of age. Young (2-3 months) and middle-aged (12-13 months) male rats were administered either five tail pinches (one every 2 min), one tail pinch, or zero (sham) tail pinches (n = 4 per stimulation condition). Rats were sacrificed 75 min following the onset of stimulation, and their brains were prepared for immunocytochemical detection of Fos protein. Fos immunoreactivity was induced by one and five tail pinches in several brain regions, including the anterior medial preoptic area (mPOA), paraventricular nucleus of the hypothalamus (PVN), paraventricular nucleus of the thalamus (PV-Thal), medial amygdala (MEA), basolateral amygdala (BLA), lateral habenula (LHab), and ventral tegmental area (VTA), of young rats compared with those that received zero tail pinches. In contrast to young rats, middle-aged rats had significantly less Fos induced by one and five tail pinches in the mPOA, PVN, MEA, BLA, and VTA, but an equivalent amount induced in the LHab. Fos immunoreactivity was not found within the medial prefrontal cortex, nucleus accumbens, striatum, lateral septum, or locus coeruleus in either young or old rats. Tail pinch appears to activate regions of the brain known to be involved in behavioral responses to both incentive cues and stressors. The lower level of cellular reactivity to tail pinch in middle-aged rats suggests a diminished neural responsiveness to

  6. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  7. Water maze training in aged rats: effects on brain metabolic capacity and behavior.

    PubMed

    Villarreal, J S; Gonzalez-Lima, F; Berndt, J; Barea-Rodriguez, E J

    2002-06-01

    The effects of Morris water maze training on brain metabolism and behavior were compared between aged (20-22 months) and young (2-4 months) Fischer 344 male rats. Each group had yoked controls, which swam the same amount of time as the trained rats but without the platform. This was followed after 9 days by quantitative histochemical mapping of brain cytochrome oxidase, the terminal enzyme for cellular respiration. The aged rats spent a significantly lower percent of time in the correct quadrant and had a longer latency to escape to the hidden platform, relative to the young rats. Metabolic differences between trained aged and young rats were found in regions related to escape under stress: perirhinal cortex, basolateral amygdala and lateral habenula; and vestibular nuclei that guide orientation in three-dimensional space. These differences were not found in the yoked swimming rats. The results suggest that, at the time point investigated, water maze training in aged Fischer 344 rats produces altered oxidative energy metabolism in task-relevant limbic and vestibular regions.

  8. In vivo and in vitro assessment of brain bioenergetics in aging rats

    PubMed Central

    Vančová, Ol’ga; Bačiak, Ladislav; Kašparová, Svatava; Kucharská, Jarmila; Palacios, Hector H; Horecký, Jaromír; Aliev, Gjumrakch

    2010-01-01

    Abstract Brain energy disorders can be present in aged men and animals. To this respect, the mitochondrial and free radical theory of aging postulates that age-associated brain energy disorders are caused by an imbalance between pro- and anti-oxidants that can result in oxidative stress. Our study was designed to investigate brain energy metabolism and the activity of endogenous antioxidants during their lifespan in male Wistar rats. In vivo brain bioenergetics were measured using 31P nuclear magnetic resonance (NMR) spectroscopy and in vitro by polarographic analysis of mitochondrial oxidative phosphorylation. When compared to the young controls, a significant decrease of age-dependent mitochondrial respiration and adenosine-3-phosphate (ATP) production measured in vitro correlated with significant reduction of forward creatine kinase reaction (kfor) and with an increase in phosphocreatine (PCr)/ATP, PCr/Pi and PME/ATP ratio measured in vivo. The levels of enzymatic antioxidants catalase, GPx and GST significantly decreased in the brain tissue as well as in the peripheral blood of aged rats. We suppose that mitochondrial dysfunction and oxidative inactivation of endogenous enzymes may participate in age-related disorders of brain energy metabolism. PMID:19906014

  9. Effect of centrophenoxine on the antioxidative enzymes in various regions of the aging rat brain.

    PubMed

    Roy, D; Pathak, D N; Singh, R

    1983-01-01

    This study investigated the effect (in vivo) of centrophenoxine (Helfergin) on the activity of antioxidant enzymes (glutathione peroxidase GSH-PER, glutathione reductase GSSG-RED, superoxide dismutase SOD and catalase) in subcellular fractions from the regions of the brain (cerebrum, cerebellum and brain stem) of rats aged 6, 9 and 12 months. In all age groups, normal (control) activity of GSH-PER, GSSG-RED and SOD in the three brain regions was higher in the soluble fractions than in the particulate fractions. The three regions of the brain showed different levels of the enzyme activities. Enzymes in soluble fractions (except GSSG-RED in cerebrum of rats aged 12 months) did not change with age. In particulate fractions, however, the enzymes showed age-related changes: GSH-PER decreased with age in cerebellum and brain stem, but showed an age-related increase in cerebrum, GSSG-RED and SOD increased with age in all the three brain regions. Catalase activity in all the three brain regions remained unchanged in all age groups. Six week administration of centrophenoxine (once a day in doses of 80 mg/Kg and 120 mg/Kg) to the experimental animals produced increases in the activity of SOD, GSH-PER and GSSG-RED in particulate fractions from all the three brain regions. In the soluble fractions, however, only SOD and GSH-PER activity was increased. In vitro also centrophenoxine stimulated the activity of GSH-PER. A dosage of 80 mg/Kg produced greater changes than a 120 mg/Kg dosage. The drug had no effect on the activity of catalase. Centrophenoxine also reduced lipofuscin deposits (studied both biochemically and histochemically) thus indicating that the drug inhibited lipofuscin accumulation by elevating the activity of the antioxidant enzymes. The data suggest that alleviation of senescence by centrophenoxine may, at least, partly be due to activation by it of antioxidant enzymes.

  10. Oxidative stress induces the decline of brain EPO expression in aging rats.

    PubMed

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (p<0.05). Also, the amount of β-galactosidase and the MDA level in the hippocampus were significantly increased but the SOD activity was significantly decreased (p<0.05, 0.01 and 0.01, respectively). Similar to aging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (p<0.05) at 150mg·kg(-1) and 250mg·kg(-1). Interestingly, negative correlations were found between EPOR (r=-0

  11. Aging and sex influence the permeability of the blood-brain barrier in the rat

    SciTech Connect

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer ({sup 14}C)-{alpha}-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels.

  12. Age-dependent changes in material properties of the brain and braincase of the rat.

    PubMed

    Gefen, Amit; Gefen, Nurit; Zhu, Qiliang; Raghupathi, Ramesh; Margulies, Susan S

    2003-11-01

    Clinical and biomechanical evidence indicates that mechanisms and pathology of head injury in infants and young children may be different from those in adults. Biomechanical computer-based modeling, which can be used to provide insight into the thresholds for traumatic tissue injury, requires data on material properties of the brain, skull, and sutures that are specific for the pediatric population. In this study, brain material properties were determined for rats at postnatal days (PND) 13, 17, 43, and 90, and skull/suture composite (braincase) properties were determined at PND 13, 17, and 43. Controlled 1 mm indentation of a force probe into the brain was used to measure naive, non-preconditioned (NPC) and preconditioned (PC) instantaneous (G(i)) and long-term (G( infinity )) shear moduli of brain tissue both in situ and in vitro. Brains at 13 and 17 PND exhibited statistically indistinguishable shear moduli, as did brains at 43 and 90 PND. However, the immature (average of 13 and 17 PND) rat brain (G(i) = 3336 Pa NPC, 1754 Pa PC; G( infinity )= 786 Pa NPC, 626 Pa PC) was significantly stiffer (p < 0.05) than the mature (average of 43 and 90 PND) brains (G(i) = 1721 Pa NPC, 1232 Pa PC; G( infinity ) = 508 Pa NPC, 398 Pa PC). A "reverse engineering" finite element model approach, which simulated the indentation of the force probe into the intact braincase, was used to estimate the effective elastic moduli of the braincase. Although the skull of older rats was significantly thicker than that of the younger rats, there was no significant age-dependent change in the effective elastic modulus of the braincase (average value = 6.3 MPa). Thus, the increase in structural rigidity of the braincase with age (up to 43 PND) was due to an increase in skull thickness rather than stiffening of the tissue. These observations of a stiffer brain and more compliant braincase in the immature rat compared with the adult rat will aid in the development of age-specific experimental

  13. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats

    PubMed Central

    LI, YALI; LIU, JIAN; GAO, DENGFENG; WEI, JIN; YUAN, HAIFENG; NIU, XIAOLIN; ZHANG, QIAOJUN

    2016-01-01

    The aim of the present study was to investigate the age-related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the SHR group, which was accompanied by increased expression of oxidative stress markers (iNOS and gp47phox) and apoptotic regulatory proteins (Bax and caspase-3). In addition, the expression of PPAR-γ and Bcl-2 were progressively reduced with increasing age in the SHR group. The 32 and 64-week-old SHRs exhibited significantly increased numbers of apoptotic cells, oxidative stress markers and pro-apoptotic proteins compared with age-matched WKY rats, which was accompanied by reduced expression of PPAR-γ. Compared with the 16 and 32-week-old WKY group, the 64-week-old WKY rats exhibited increased oxidative stress and pro-apoptotic markers, and increased levels apoptotic cells. In conclusion, the present study indicated that both aging and hypertension enhanced brain damage and oxidative stress injury in the hippocampi of SHRs, indicated by an increased presence of apoptotic cells and astrocytes. In addition, reduced expression of PPAR-γ may contribute to the age-related brain damage in SHRs. PMID:26846626

  14. Beneficial effects of folic acid on enhancement of memory and antioxidant status in aged rat brain.

    PubMed

    Singh, Rashmi; Kanwar, Shalinder S; Sood, Pooja K; Nehru, Bimla

    2011-01-01

    As our population ages, diseases affecting memory and daily functioning will affect an increasing number of individuals, their families and the healthcare system. Therefore, there is a need to study and evaluate effects of certain conditions for anti-aging of the brain. Nutrient supplementation can modify the brain function. The chemistry and function of both the developing and the mature brain are influenced by diet (Fernstrom, Am J Clinical Nutrition 71:1669S-1673S, 2000). Clinical, biochemical, and pathological aspects have shown a correlation between mental symptoms, especially depression and cognitive decline, with high incidence of folate deficiency (Bottiglieri et al., J Neurol Neurosurg Psychiatry 69:562, 2000). In the present study, consequences of folic acid supplementation on brain dysfunction as a result of aging were studied in cerebral cortex, mid brain, and cerebellar regions of rat brain. This study was carried out on 6-, 11-, and 16-month-old rats, which received folic acid at a dose of 5 mg/kg body weight/day for a period of 8 weeks. Respective control groups of the same age groups were also taken. At the end of the treatment duration, behavioral studies were performed and later the animals were killed for various biochemical and histological investigations. Results indicated significant improvement in memory as assessed by active avoidance, passive avoidance, and plus maze tests in the folic acid supplemented aged animals. Significant improvement was also seen in the cellular protective mechanisms where by the activity of superoxide dismutase and catalase enzymes increased in folic acid supplemented group and so was the glutathione content. Increased lipid peroxidation content, a marker of aging, was also found to be decreased during folic acid supplementation in all the three regions of brain in our study. Thus, it can be concluded that folic acid helps in improving the memory status by reducing oxidative stress and maintaining the integrity of

  15. The effects of acute ethanol exposure and ageing on rat brain glutathione metabolism.

    PubMed

    Sommavilla, Michela; Sánchez-Villarejo, M Victoria; Almansa, Inmaculada; Sánchez-Vallejo, Violeta; Barcia, Jorge M; Romero, Francisco Javier; Miranda, María

    2012-09-01

    Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.

  16. Modulatory effects of centrophenoxine on different regions of ageing rat brain.

    PubMed

    Bhalla, Punita; Nehru, Bimla

    2005-10-01

    The debilitating consequences of age-related brain deterioration are widespread and extremely costly in terms of quality of life and longevity. Free radical induced damage is thought to be responsible, at least in part, for the degenerative effects of aging. This may be largely due to high-energy requirements, high oxygen consumption, high tissue concentration of iron and low of antioxidant enzymes in brain. Therefore, supplementing an external source of free radical scavenger would greatly benefit in ameliorating the free radical damage which may thus be beneficial in aging. In the present study, an important nootropic agent Centrophenoxine, which has an easy access to brain, has been administered to aged animals (16 months old). Rats aged 6 months (young group) and 16 months old (old group) were chosen for the study. Both groups were administered Centrophenoxine (dissolved in physiological saline) intraperitoneally once a day for 6 weeks. Our study indicates an increased activity of Catalase, Superoxide Dismutase, Glutathione reductase, as well as an increase in the reduced, oxidized, and total glutathione content thus resulting in an altered redox state. A substantial increase in the malondialdehyde content was also reported as a result of aging. Whereas, following Centrophenoxine administration (100 mg/kg body weight/day, injected i.p) alterations in the activities of Superoxide dismutase, Glutathione reductase as well as in the reduced and oxidized glutathione content was reported in aged rat brain. Lipid peroxidation was also reported to be significantly decreased in aged animals after Centrophenoxine supplementation for 6 weeks. The use of an extraneous antioxidant substance may prove beneficial in combating the conditions of oxidative stress in ageing brain.

  17. Alterations in the molecular weight distribution of proteins in rat brain synaptosomes during aging and centrophenoxine treatment of old rats.

    PubMed

    Nagy, K; Nagy, I

    1984-12-01

    Properly prepared membrane proteins of brain synaptosomes of 2-, 12- and 24-month-old CFY female rats were filtrated on a Sepharose 2B gel. The molecular weight distribution showed an age-dependence: there was a clear shift toward the higher molecular weights in the adult and old rats. The observed alterations reflect an increased cross-linking of the proteins during aging due most probably to the OH free radical damage of the cell components. Centrophenoxine treatment for 2 months reversed this phenomenon in the old animals: the high molecular weight fractions decreased and the lower ones increased in the treated animals as compared to the old, untreated rats. The results support the membrane hypothesis of aging and contribute to a better understanding of the biological effects of centrophenoxine.

  18. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats.

    PubMed

    Li, Yali; Liu, Jian; Gao, Dengfeng; Wei, Jin; Yuan, Haifeng; Niu, Xiaolin; Zhang, Qiaojun

    2016-03-01

    The aim of the present study was to investigate the age‑related alterations in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats (SHR) and the underlying mechanisms. Aging resulted in a significant increase in the number of activated astrocytes and apoptotic cells in the SHR group, which was accompanied by increased expression of oxidative stress markers (iNOS and gp47phox) and apoptotic regulatory proteins (Bax and caspase‑3). In addition, the expression of PPAR‑γ and Bcl‑2 were progressively reduced with increasing age in the SHR group. The 32 and 64‑week‑old SHRs exhibited significantly increased numbers of apoptotic cells, oxidative stress markers and pro‑apoptotic proteins compared with age‑matched WKY rats, which was accompanied by reduced expression of PPAR‑γ. Compared with the 16 and 32‑week‑old WKY group, the 64‑week‑old WKY rats exhibited increased oxidative stress and pro‑apoptotic markers, and increased levels apoptotic cells. In conclusion, the present study indicated that both aging and hypertension enhanced brain damage and oxidative stress injury in the hippocampi of SHRs, indicated by an increased presence of apoptotic cells and astrocytes. In addition, reduced expression of PPAR‑γ may contribute to the age‑related brain damage in SHRs. PMID:26846626

  19. Decreased myeloperoxidase expressing cells in the aged rat brain after excitotoxic damage.

    PubMed

    Campuzano, Oscar; Castillo-Ruiz, Maria del Mar; Acarin, Laia; Gonzalez, Berta; Castellano, Bernardo

    2011-09-01

    Brain aging is associated to several morphological and functional alterations that influence the evolution and outcome of CNS damage. Acute brain injury such as an excitotoxic insult induces initial tissue damage followed by associated inflammation and oxidative stress, partly attributed to neutrophil recruitment and the expression of oxidative enzymes such as myeloperoxidase (MPO), among others. However, to date, very few studies have focused on how age can influence neutrophil infiltration after acute brain damage. Therefore, to evaluate the age-dependent pattern of neutrophil cell infiltration following an excitotoxic injury, intrastriatal injection of N-methyl-d-aspartate was performed in young and aged male Wistar rats. Animals were sacrificed at different times between 12h post-lesion (hpl) to 14 days post-lesion (dpl). Cryostat sections were processed for myeloperoxidase (MPO) immunohistochemistry, and double labeling for either neuronal cells (NeuN), astrocytes (GFAP), perivascular macrophages (ED-2), or microglia/macrophages (tomato lectin histochemistry). Our observations showed that MPO + cells were observed in the injured striatum from 12 hpl (when maximum values were found) until 7 dpl, when cell density was strongly diminished. However, at all survival times analyzed, the overall density of MPO + cells was lower in the aged versus the adult injured striatum. MPO + cells were mainly identified as neutrophils (especially at 12 hpl and 1 dpl), but it should be noted that MPO + neurons and microglia/macrophages were also found. MPO + neurons were most commonly observed at 12 hpl and reduced in the aged. MPO + microglia/macrophages were the main population expressing MPO from 3 dpl, when density was also reduced in aged subjects. These results point to neutrophil infiltration as another important factor contributing to the different responses of the adult and aged brain to damage, highlighting the need of using aged animals for the study of acute age

  20. Protein synthesis rates in rat brain regions and subcellular fractions during aging

    SciTech Connect

    Avola, R.; Condorelli, D.F.; Ragusa, N.; Renis, M.; Alberghina, M.; Giuffrida Stella, A.M.; Lajtha, A.

    1988-04-01

    In vivo protein synthesis rates in various brain regions (cerebral cortex, cerebellum, hippocampus, hypothalamus, and striatum) of 4-, 12-, and 24-month-old rats were examined after injection of a flooding dose of labeled valine. The incorporation of labeled valine into proteins of mitochondrial, microsomal, and cytosolic fractions from cerebral cortex and cerebellum was also measured. At all ages examined, the incorporation rate was 0.5% per hour in cerebral cortex, cerebellum, hippocampus, and hypothalamus and 0.4% per hour in striatum. Of the subcellular fractions examined, the microsomal proteins were synthesized at the highest rate, followed by cytosolic and mitochondrial proteins. The results obtained indicate that the average synthesis rate of proteins in the various brain regions and subcellular fractions examined is fairly constant and is not significantly altered in the 4 to 24-month period of life of rats.

  1. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    PubMed Central

    Bachstetter, Adam D; Pabon, Mibel M; Cole, Michael J; Hudson, Charles E; Sanberg, Paul R; Willing, Alison E; Bickford, Paula C; Gemma, Carmelina

    2008-01-01

    Background Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation. Results We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis. Conclusion The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain. PMID:18275610

  2. Age-dependent increase of etheno-DNA-adducts in liver and brain of ROS overproducing OXYS rats

    SciTech Connect

    Nair, Jagadeesan; Sinitsina, Olga; Vasunina, Elena A.; Nevinsky, Georgy A.; Laval, Jacques; Bartsch, Helmut . E-mail: h.bartsch@dkfz.de

    2005-10-21

    Reactive oxygen species (ROS) and lipid peroxidation (LPO) play a role in aging and degenerative diseases. To correlate oxidative stress and LPO-derived DNA damage, we determined etheno-DNA-adducts in liver and brain from ROS overproducing OXYS rats in comparison with age-matched Wistar rats. Liver DNA samples from 3- and 15-month-old OXYS and Wistar rats were analyzed for 1,N {sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3,N {sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabelling. While {epsilon}dA and {epsilon}dC levels were not different in young rats, adduct levels were significantly higher in old OXYS rats when compared to old Wistar or young OXYS rats. Frozen rat brain sections were analyzed for {epsilon}dA by immunostaining of nuclei. Brains from old OXYS rats accumulated {epsilon}dA more frequently than age-matched Wistar rats. Our results demonstrate increased LPO-induced DNA damage in organs of OXYS rats which correlates with their known shorter life-span and elevated frequency of chronic degenerative diseases.

  3. Non-injurious neonatal hypoxia confers resistance to brain senescence in aged male rats.

    PubMed

    Martin, Nicolas; Bossenmeyer-Pourié, Carine; Koziel, Violette; Jazi, Rozat; Audonnet, Sandra; Vert, Paul; Guéant, Jean-Louis; Daval, Jean-Luc; Pourié, Grégory

    2012-01-01

    Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal "conditioning-like" hypoxia (100% N₂, 5 min) on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence). We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP) kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.

  4. Discovering novel microRNAs and age-related nonlinear changes in rat brains using deep sequencing.

    PubMed

    Yin, Lanxuan; Sun, Yubai; Wu, Jinfeng; Yan, Siyu; Deng, Zhenglu; Wang, Jun; Liao, Shenke; Yin, Dazhong; Li, Guolin

    2015-02-01

    Elucidating the molecular mechanisms of brain aging remains a significant challenge for biogerontologists. The discovery of gene regulation by microRNAs (miRNAs) has added a new dimension for examining this process; however, the full complement of miRNAs involved in brain aging is still not known. In this study, miRNA profiles of young, adult, and old rats were obtained to evaluate molecular changes during aging. High-throughput deep sequencing revealed 547 known and 171 candidate novel miRNAs that were differentially expressed among groups. Unexpectedly, miRNA expression did not decline progressively with advancing age; moreover, genes targeted by age-associated miRNAs were predicted to be involved in biological processes linked to aging and neurodegenerative diseases. These findings provide novel insight into the molecular mechanisms underlying brain aging and a resource for future studies on age-related brain disorders.

  5. The Perimenopausal Aging Transition in the Female Rat Brain: Decline in Bioenergetic Systems and Synaptic Plasticity

    PubMed Central

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C.; Morgan, Todd E.; Finch, Caleb E.; Pike, Christian J.; Mack, Wendy J.; Cadenas, Enrique; Brinton, Roberta D.

    2015-01-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the current study determined genomic, biochemical, brain metabolic and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in FDG-PET brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/IGF1 and AMPK/PGC1α signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later life vulnerability to hypometabolic conditions such as Alzheimer’s. PMID:25921624

  6. [COMPARATIVE ANALYSIS OF SEROTONIN LEVELS IN RAT PLATELETS, SERUM AND BRAIN ON THE AGING].

    PubMed

    Taborskaya, K I; Frolova, M Yu; Kuleva, N V

    2016-01-01

    Serotonin functions as neurotransmitter in central nervous system and is involved in the regulation of vascular tone, gastro-intestinal motility and blood coagulation in the periphery. The appearance of new data on the significant correlation between serotonin levels in platelets and cerebrospinal fluid (Audhya et al., 2012) renewed interest in the hypothesis in which the platelet is seen as a model of cerotoninergic neuron. In our study, the levels of serotonin in platelets, serum and various brain regions of rats aged 6 and 24 months have been determined and comparatively analyzed. The method of high performance liquid chromatography was used. The decrease of serotonin level in platelets from 0.768 to 0.359 μg per 10(9) cells and its increase in the middle brain from 0.260 to 0.439 μg per 1 of wet weight have been clearly demonstrated in aging of animals. The differences in the content of serotonin in other parts of the brain and in the blood serum of young and old animals were statistically insignificant. Therefore, despite the attractiveness of the concept of platelet as a model of a neuron, the extrapolation of the data on platelet serotonin transport into neuronal ones requires caution, especially in the study of aging.

  7. Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging.

    PubMed

    Simonyi, Agnes; Ngomba, Richard T; Storto, Marianna; Catania, Maria V; Miller, Laura A; Youngs, Brian; DiGiorgi-Gerevini, Valeria; Nicoletti, Ferdinando; Sun, Grace Y

    2005-05-10

    Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age. PMID:15862522

  8. Brain Tissue Hypoxia and Oxidative Stress Induced by Obstructive Apneas is Different in Young and Aged Rats

    PubMed Central

    Dalmases, Mireia; Torres, Marta; Márquez-Kisinousky, Leonardo; Almendros, Isaac; Planas, Anna M.; Embid, Cristina; Martínez-Garcia, Miguel Ángel; Navajas, Daniel; Farré, Ramon; Montserrat, Josep Maria

    2014-01-01

    Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats. Citation: Dalmases M, Torres M, Márquez-Kisinousky L, Almendros I, Planas AM, Embid C, Martínez-Garcia MA, Navajas D, Farré R, Montserrat JM. Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats. SLEEP 2014;37(7):1249-1256. PMID:25061253

  9. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain.

    PubMed

    Hoekzema, Elseline; Rojas, Santiago; Herance, Raúl; Pareto, Deborah; Abad, Sergio; Jiménez, Xavier; Figueiras, Francisca P; Popota, Foteini; Ruiz, Alba; Flotats, Núria; Fernández, Francisco J; Rocha, Milagros; Rovira, Mariana; Víctor, Víctor M; Gispert, Juan D

    2012-07-01

    The GABA-ergic system, known to regulate neural tissue genesis during cortical development, has been postulated to play a role in cerebral aging processes. Using in vivo molecular imaging and voxel-wise quantification, we aimed to assess the effects of aging on the benzodiazepine (BDZ) recognition site of the GABA(A) receptor. To visualize BDZ site availability, [(11)C]-flumazenil microPET acquisitions were conducted in young and old rats. The data were analyzed and region of interest analyses were applied to validate the voxel-wise approach. We observed decreased [(11)C]-flumazenil binding in the aged rat brains in comparison with the young control group. More specifically, clusters of reduced radioligand uptake were detected in the bilateral hippocampus, cerebellum, midbrain, and bilateral frontal and parieto-occipital cortex. Our results support the pertinence of voxel-wise quantification in the analysis of microPET data. Moreover, these findings indicate that the aging process involves declines in neural BDZ recognition site availability, proposed to reflect alterations in GABA(A) receptor subunit polypeptide expression.

  10. Mitochondrial dysfunction in aging rat brain regions upon chlorpyrifos toxicity and cold stress: an interactive study.

    PubMed

    Basha, P Mahaboob; Poojary, Annappa

    2014-07-01

    Mitochondrial dysfunction and consequent energy depletion are the major causes of oxidative stress resulting to bring alterations in the ionic homeostasis causing loss of cellular integrity. Our previous studies have shown the age-associated interactive effects in rat central nervous system (CNS) upon co-exposure to chlorpyrifos (CPF) and cold stress leading to macromolecular oxidative damage. The present study elucidates a possible mechanism by which CPF and cold stress interaction cause(s) mitochondrial dysfunction in an age-related manner. In this study, the activity levels of Krebs cycle enzymes and electron transport chain (ETC) protein complexes were assessed in the isolated fraction of mitochondria. CPF and cold stress (15 and 20 °C) exposure either individually or in combination decreased the activity level of Krebs cycle enzymes and ETC protein complexes in discrete regions of rat CNS. The findings confirm that cold stress produces significant synergistic effect in CPF intoxicated aging rats. The synergism between CPF and cold stress at 15 °C caused a higher depletion of respiratory enzymes in comparison with CPF and cold stress alone and together at 20 °C indicating the extent of deleterious functional alterations in discrete regions of brain and spinal cord (SC) which may result in neurodegeneration and loss in neuronal metabolic control. Hence, co-exposure of CPF and cold stress is more dangerous than exposure of either alone. Among the discrete regions studied, the cerebellum and medulla oblongata appears to be the most susceptible regions when compared to cortex and SC. Furthermore, the study reveals a gradual decrease in sensitivity to CPF toxicity as the rat matures.

  11. Cigarette Smoking Accelerated Brain Aging and Induced Pre-Alzheimer-Like Neuropathology in Rats

    PubMed Central

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β–amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia. PMID:22606286

  12. Relationship between local brain glucose metabolism and maze patrolling in adult and aged rats.

    PubMed

    Jucker, M; Meier-Ruge, W; Bättig, K

    1989-10-01

    Rats in the tunnel maze are not rewarded or punished. The active information gathering of the rats in this apparatus is supposed to be guided by learning and memory processes. As assessed by the 2-deoxyglucose method the age-related behavioral changes in rats in this maze are partly reflected in functional-metabolic changes in cortical and hippocampal structures.

  13. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

    PubMed Central

    2012-01-01

    Background Amyloid accumulation in the brain parenchyma is a hallmark of Alzheimer's disease (AD) and is seen in normal aging. Alterations in cerebrospinal fluid (CSF) dynamics are also associated with normal aging and AD. This study analyzed CSF volume, production and turnover rate in relation to amyloid-beta peptide (Aβ) accumulation in the aging rat brain. Methods Aging Fischer 344/Brown-Norway hybrid rats at 3, 12, 20, and 30 months were studied. CSF production was measured by ventriculo-cisternal perfusion with blue dextran in artificial CSF; CSF volume by MRI; and CSF turnover rate by dividing the CSF production rate by the volume of the CSF space. Aβ40 and Aβ42 concentrations in the cortex and hippocampus were measured by ELISA. Results There was a significant linear increase in total cranial CSF volume with age: 3-20 months (p < 0.01); 3-30 months (p < 0.001). CSF production rate increased from 3-12 months (p < 0.01) and decreased from 12-30 months (p < 0.05). CSF turnover showed an initial increase from 3 months (9.40 day-1) to 12 months (11.30 day-1) and then a decrease to 20 months (10.23 day-1) and 30 months (6.62 day-1). Aβ40 and Aβ42 concentrations in brain increased from 3-30 months (p < 0.001). Both Aβ42 and Aβ40 concentrations approached a steady state level by 30 months. Conclusions In young rats there is no correlation between CSF turnover and Aβ brain concentrations. After 12 months, CSF turnover decreases as brain Aβ continues to accumulate. This decrease in CSF turnover rate may be one of several clearance pathway alterations that influence age-related accumulation of brain amyloid. PMID:22269091

  14. Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants.

    PubMed

    Numagami, Y; Sato, S; Ohnishi, S T

    1996-08-01

    Effects of an aged garlic extract and its thioallyl components on rat brain ischemia were examined using a middle cerebral artery occlusion model and a transient global ischemia model. In focal ischemia, an aged garlic extract, S-allyl cysteine (SAC), Allyl sulfide (AS) or Allyl disulfide (ADS) was administered 30 min prior to ischemic insult. Three days after ischemic insult, water contents of both ischemic and contralateral hemispheres were measured to assess the degree of ischemic damage. The water content of the ischemic control (no drug treatment) group was 81.50 +/- 0.07% (mean +/- SEM). It was significantly reduced with the administration of 300 mg/kg of SAC; the water content was 80.66 +/- 0.11% (P < 0.001). The histological observation using 2,3,5-triphenyltetrazolium chloride staining demonstrated that the administration of SAC reduced infarct volume. Neither AS nor ADS was effective. In global ischemia, the production of reactive oxygen species (ROS) was measured ex vivo using a spin-trapping agent, alpha-phenyl-N-tert-butylnitrone, and electron paramagnetic resonance spectroscopy. The production of ROS had two peaks; first at 5 min and second at 20 min after reperfusion. Both SAC and 7-nitro indazole, a nitric oxide synthase inhibitor, did not attenuate the amount of ROS produced at the first peak, but did the amount of the second peak. A possible involvement of peroxinitrite, which may be formed from superoxide and nitric oxide and is known to be highly toxic in ischemia/reperfusion injury of the brain, was suggested.

  15. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    SciTech Connect

    Kodavanti, Prasada Rao S.; Royland, Joyce E.; Richards, Judy E.; Besas, Jonathan; MacPhail, Robert C.

    2011-11-15

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), {gamma}-glutamylcysteine synthetase ({gamma}-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at - 80 Degree-Sign C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure

  16. Does the olfactory cue activate the same brain network during aging in the rat after taste potentiated odor aversion retrieval?

    PubMed

    Dardou, David; Datiche, Frédérique; Cattarelli, Martine

    2010-01-01

    Depending on the brain networks involved, aging is not accompanied by a general decrease in learning and memory capabilities. We demonstrated previously that learning and retrieval of taste potentiated odor aversion (TPOA) is preserved, and even slightly improved, in senescent rats showing some memory deficiencies in cognitive tasks (Dardou, Datiche, & Cattarelli, 2008). TPOA is a particular behavior in which the simultaneous presentation of odor and taste cues followed by a delayed visceral illness leads to a robust aversion towards both conditioned stimuli, which permits diet selection and animal survival. The present experiment was performed in order to investigate the stability or the evolution of the brain network underlying TPOA retrieval during aging. By using immunocytochemical detection of Fos and Egr1 proteins we mapped the cerebral activation induced by TPOA retrieval elicited by the odor presentation in the young, the adult and the senescent rats. The pattern of brain activation changed and the number of activated areas decreased with age. Nevertheless, the piriform cortex and the basolateral amygdala nucleus were always activated and seemed essential for TPOA retrieval. The hippocampus and the neocortical areas could have different implications in TPOA memory in relation to age. The patterns of expression of Fos and Egr1 were different, suggesting their differential involvement in TPOA retrieval. Data are discussed according to the possible roles of the brain areas studied and a model of schematic brain network subtending TPOA retrieval induced by the odor cue is proposed.

  17. Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system.

    PubMed

    Haider, Saida; Saleem, Sadia; Perveen, Tahira; Tabassum, Saiqa; Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Madiha, Syeda

    2014-06-01

    Oxidative stress from generation of increased reactive oxygen species or free radicals of oxygen has been reported to play an important role in the aging. To investigate the relationship between the oxidative stress and memory decline during aging, we have determined the level of lipid peroxidation, activities of antioxidant enzymes, and activity of acetylcholine esterase (AChE) in brain and plasma as well as biogenic amine levels in brain from Albino-Wistar rats at age of 4 and 24 months. The results showed that the level of lipid peroxidation in the brain and plasma was significantly higher in older than that in the young rats. The activities of antioxidant enzymes displayed an age-dependent decline in both brain and plasma. Glutathione peroxidase and catalase activities were found to be significantly decreased in brain and plasma of aged rats. Superoxide dismutase (SOD) was also significantly decreased in plasma of aged rats; however, a decreased tendency (non-significant) of SOD in brain was also observed. AChE activity in brain and plasma was significantly decreased in aged rats. Learning and memory of rats in the present study was assessed by Morris Water Maze (MWM) and Elevated plus Maze (EPM) test. Short-term memory and long-term memory was impaired significantly in older rats, which was evident by a significant increase in the latency time in MWM and increase in transfer latency in EPM. Moreover, a marked decrease in biogenic amines (NA, DA, and 5-HT) was also found in the brain of aged rats. In conclusion, our data suggest that increased oxidative stress, decline of antioxidant enzyme activities, altered AChE activity, and decreased biogenic amines level in the brain of aged rats may potentially be involved in diminished memory function.

  18. Age-related change in the multiple unit activity of the rat brain parietal cortex and the effect of centrophenoxine.

    PubMed

    Roy, D; Singh, R

    1988-01-01

    In this study, spontaneous multiple unit activity (MUA, action potentials derived simultaneously from a number of neurons in a given brain region) was recorded through electrodes chronically implanted in the parietal cerebral cortex of the rats of 1, 3, 6, 9, 12, and 26 months of age (cross-sectional study). Electrophysiological recordings were obtained from unrestrained conscious rats using standard techniques. The results indicated that multiple unit activity was decreased with aging (senescence). Maximum firing rate (MUA counts) was found at the age of 3 months. At 6 months of age, the MUA was decreased by about 30%, while during 6 to 12 months of age the activity seemed to remain unchanged. At 26 months of age the firing rate was, however, further decreased (about 40%). Centrophenoxine administration led to an increase in MUA in the rats of 12 and 26 months of age. The results, thus, further showed that centrophenoxine, a nootropic drug known for its antiaging effects in experimental animals as well as in humans, also manifested beneficial effects electrophysiologically. The data presented in this work are new and significant, since although age effects on gross electrophysiological signals (EEG, evoked potentials, etc.) are known, the aging changes in cellular level electrophysiological signals (action potentials) have not been generally studied particularly in conscious animals.

  19. Age and heat exposure-dependent changes in antioxidant enzymes activities in rat's liver and brain mitochondria: role of alpha-tocopherol.

    PubMed

    Stojkovski, V; Hadzi-Petrushev, N; Ilieski, V; Sopi, R; Gjorgoski, I; Mitrov, D; Jankulovski, N; Mladenov, M

    2013-01-01

    To investigate the role of mitochondrial antioxidant capacity during increased susceptibility to heat accompanied by the aging, young and aged Wistar rats were exposed on heat for 60 min. After heat exposure, hepatic and brain mitochondria were isolated. Our results revealed changes in antioxidant enzyme activities in liver and brain mitochondria from young and to a greater extent in aged rats. Our measurements of MnSOD, GPx and GR activity indicate greater reactive oxygen species production from the mitochondria of aged heat exposed in comparison to young heat exposed rats. Also in the aged rats, the effect of alpha-tocopherol treatment in the prevention of oxidative stress occurred as a result of heat exposure, is less pronounced. Taken together, our data suggest that mitochondria in aged rats are more vulnerable and less able to prevent oxidative changes that occur in response to acute heat exposure.

  20. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    PubMed

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  1. Sex hormones and brain aging.

    PubMed

    Veiga, Sergio; Melcangi, Roberto C; Doncarlos, Lydia L; Garcia-Segura, Luis M; Azcoitia, Iñigo

    2004-01-01

    Sex steroids exert pleiotropic effects in the nervous system, preserving neural function and promoting neuronal survival. Therefore, the age-related decrease in sex steroids may have a negative impact on neural function. Progesterone, testosterone and estradiol prevent neuronal loss in the central nervous system in different experimental animal models of neurodegeneration. Furthermore, progesterone and its reduced derivatives dihydroprogesterone and tetrahydroprogesterone reduce aging-associated morphological abnormalities of myelin and aging-associated myelin fiber loss in rat peripheral nerves. However, the results from hormone replacement studies in humans are thus far inconclusive. A possible alternative to hormonal replacement therapy is to increase local steroidogenesis by neural tissues, which express enzymes for steroid synthesis and metabolism. Proteins involved in the intramitochondrial trafficking of cholesterol, the first step in steroidogenesis, such as the peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein, are up-regulated in the nervous system after injury. Furthermore, steroidogenic acute regulatory protein expression is increased in the brain of 24-month-old rats compared with young adult rats. This suggests that brain steroidogenesis may be modified in adaptation to neurodegenerative conditions and to the brain aging process. Furthermore, recent studies have shown that local formation of estradiol in the brain, by the enzyme aromatase, is neuroprotective. Therefore, steroidogenic acute regulatory protein, peripheral-type benzodiazepine receptor and aromatase are attractive pharmacological targets to promote neuroprotection in the aged brain. PMID:15582278

  2. Effect of aging on alpha-1 adrenergic stimulation of phosphoinositide hydrolysis in various regions of rat brain

    SciTech Connect

    Burnett, D.M.; Bowyer, J.F.; Masserano, J.M.; Zahniser, N.R. )

    1990-12-01

    The effects of aging were examined on the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis in three brain regions. Tissue minces of thalamus, cerebral cortex and hippocampus from 3-, 18- and 28-month-old male Fischer 344 rats were prelabeled with ({sup 3}H)myoinositol. Exposure of these prelabeled minces to phenylephrine and (-)-norepinephrine revealed that accumulation of ({sup 3}H)inositol phosphates was selectively reduced by 20 to 30% in the thalamus and cerebral cortex of the oldest age group. Analysis of concentration-response and competition binding curves indicated that this decrease was due to diminished agonist efficacy rather than diminished receptor affinity. The reduction in responsiveness to phenylephrine and (-)-norepinephrine in the cerebral cortex and the lack of any changes in the hippocampus parallel previously reported changes in the density of alpha-1 adrenergic receptors with aging. These data indicate that the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis is reduced in some, but not all, brain regions of aged Fischer 344 rats.

  3. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats

    PubMed Central

    Shults, Cody L.; Rao, Yathindar S.; Pak, Toni R.

    2016-01-01

    Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET) can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs) mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK). These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX) followed by an acute dose of 17β-estradiol (E2) administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks). Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status. PMID:27487271

  4. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats.

    PubMed

    Pinceti, Elena; Shults, Cody L; Rao, Yathindar S; Pak, Toni R

    2016-01-01

    Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET) can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs) mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK). These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX) followed by an acute dose of 17β-estradiol (E2) administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks). Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status. PMID:27487271

  5. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    PubMed

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis.

  6. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.

    PubMed

    Singh, Rumani; Manchanda, Shaffi; Kaur, Taranjeet; Kumar, Sushil; Lakhanpal, Dinesh; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2015-12-01

    Intermittent fasting dietary restriction (IF-DR) is recently reported to be an effective intervention to retard age associated disease load and to promote healthy aging. Since sustaining long term caloric restriction regimen is not practically feasible in humans, so use of alternate approach such as late onset short term IF-DR regimen which is reported to trigger similar biological pathways is gaining scientific interest. The current study was designed to investigate the effect of IF-DR regimen implemented for 12 weeks in middle age rats on their motor coordination skills and protein and DNA damage in different brain regions. Further, the effect of IF-DR regimen was also studied on expression of energy regulators, cell survival pathways and synaptic plasticity marker proteins. Our data demonstrate that there was an improvement in motor coordination and learning response with decline in protein oxidative damage and recovery in expression of energy regulating neuropeptides. We further observed significant downregulation in nuclear factor kappa B (NF-κB) and cytochrome c (Cyt c) levels and moderate upregulation of mortalin and synaptophysin expression. The present data may provide an insight on how a modest level of short term IF-DR, imposed in middle age, can slow down or prevent the age-associated impairment of brain functions and promote healthy aging by involving multiple regulatory pathways aimed at maintaining energy homeostasis. PMID:26318578

  7. Age dependence of the level of the enzymes involved in the protection against active oxygen species in the rat brain

    SciTech Connect

    Scarpa, M.; Rigo, A.; Viglino, P.; Stevanato, R.; Bracco, F.; Battistin, L.

    1987-06-01

    Levels of Cu, Zn superoxide dismutase (CuSOD), Mn superoxide dismutase (MnSOD), catalase, and glutathione peroxidase (GPx) were assessed in the rat brain cortex. The concentrations of Cu- and MnSOD were found to increase linearly with the logarithm of the age of the animal from 3 days before birth to 30 months, both in the whole cortex tissue and in its cytoplasmic fraction. Catalase and GPx levels showed different trends; in particular, GPx, which appears to play a key role in detoxification of hydrogen peroxide, after an initial fall increases steadily with age. The enhancement of the levels of SOD and GPx could be related to protection against an increased production of reactive oxygen species in the aging process.

  8. Erythrocyte DHA level as a biomarker of DHA status in specific brain regions of n-3 long-chain PUFA-supplemented aged rats.

    PubMed

    Létondor, Anne; Buaud, Benjamin; Vaysse, Carole; Fonseca, Laurence; Herrouin, Coralie; Servat, Benjamin; Layé, Sophie; Pallet, Véronique; Alfos, Serge

    2014-12-14

    n-3 Long-chain PUFA (n-3 LC-PUFA), particularly EPA and DHA, play a key role in the maintenance of brain functions such as learning and memory that are impaired during ageing. Ageing is also associated with changes in the DHA content of brain membranes that could contribute to memory impairment. Limited studies have investigated the effects of ageing and n-3 LC-PUFA supplementation on both blood and brain fatty acid compositions. Therefore, we assessed the relationship between fatty acid contents in plasma and erythrocyte membranes and those in the hippocampus, striatum and cerebral cortex during ageing, and after a 5-month period of EPA/DHA supplementation in rats. In the blood, ageing was associated with an increase in plasma DHA content, whereas the DHA content remained stable in erythrocyte membranes. In the brain, ageing was associated with a decrease in DHA content, which was both region-specific and phospholipid class-specific. In EPA/DHA-supplemented aged rats, DHA contents were increased both in the blood and brain compared with the control rats. The present results demonstrated that n-3 LC-PUFA level in the plasma was not an accurate biomarker of brain DHA status during ageing. Moreover, we highlighted a positive relationship between the DHA levels in erythrocyte phosphatidylethanolamine (PE) and those in the hippocampus and prefrontal cortex in EPA/DHA-supplemented aged rats. Within the framework of preventive dietary supplementation to delay brain ageing, these results suggest the possibility of using erythrocyte PE DHA content as a reliable biomarker of DHA status in specific brain regions. PMID:25331622

  9. Alterations of the synaptosomal membrane 'microviscosity' in the brain cortex of rats during aging and centrophenoxine treatment.

    PubMed

    Nagy, K; Nagy, V; Bertoni-Freddari, C; Nagy, I

    1983-07-01

    Synaptosomal and myelin fractions were isolated from the brain cortex of young, adult and old male CFY rats (2, 12 and 24 mth, respectively). The purity of the fractions was tested by transmission electron microscopy and marker enzyme assays. The cholesterol content of the fractions was also determined. Samples of the fractions were labelled with diphenylhexatriene (DPH) and the fluorescence anisotropy (r) of the label was measured at various optical densities. The values of r extrapolated to zero optical density were compared in the age groups and used for calculating the 'microviscosity' of the membranes. The 'microviscosity' of synaptosomal membranes displayed a significant age-dependent increase: from 2.3 +/- 0.02 (SD) in the young group it increased to 2.6 +/- 0.03 poise by the age of 24 mth at 37 degrees C. Most of this increase occurred between the adult and old age. The cholesterol content of the synaptosomes also increased significantly during aging. Centrophenoxine (CPH)-treatment with 100 mg/kg body weight daily dose for 2 mth was able to reverse the age-dependent alterations of both the membrane 'microviscosity' and the cholesterol content in the synaptosomes: the values returned nearly to the adult level. The results obtained are interpreted in terms of the membrane hypothesis of aging attributing to primary role to the free-radical induced membrane damage in cellular aging.

  10. Evidence for novel age-dependent network structures as a putative primo vascular network in the dura mater of the rat brain.

    PubMed

    Lee, Ho-Sung; Kang, Dai-In; Yoon, Seung Zhoo; Ryu, Yeon Hee; Lee, Inhyung; Kim, Hoon-Gi; Lee, Byung-Cheon; Lee, Ki Bog

    2015-07-01

    With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-week-old rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix.

  11. Evidence for novel age-dependent network structures as a putative primo vascular network in the dura mater of the rat brain

    PubMed Central

    Lee, Ho-Sung; Kang, Dai-In; Yoon, Seung Zhoo; Ryu, Yeon Hee; Lee, Inhyung; Kim, Hoon-Gi; Lee, Byung-Cheon; Lee, Ki Bog

    2015-01-01

    With chromium-hematoxylin staining, we found evidence for the existence of novel age-dependent network structures in the dura mater of rat brains. Under stereomicroscopy, we noticed that chromium-hematoxylin-stained threadlike structures, which were barely observable in 1-week-old rats, were networked in specific areas of the brain, for example, the lateral lobes and the cerebella, in 4-week-old rats. In 7-week-old rats, those structures were found to have become larger and better networked. With phase contrast microscopy, we found that in 1-week-old rats, chromium-hematoxylin-stained granules were scattered in the same areas of the brain in which the network structures would later be observed in the 4- and 7-week-old rats. Such age-dependent network structures were examined by using optical and transmission electron microscopy, and the following results were obtained. The scattered granules fused into networks with increasing age. Cross-sections of the age-dependent network structures demonstrated heavily-stained basophilic substructures. Transmission electron microscopy revealed the basophilic substructures to be clusters with high electron densities consisting of nanosized particles. We report these data as evidence for the existence of age-dependent network structures in the dura mater, we discuss their putative functions of age-dependent network structures beyond the general concept of the dura mater as a supporting matrix. PMID:26330833

  12. Impaired recovery of brain muscarinic receptor sites following an adaptive down-regulation induced by repeated administration of diisopropyl fluorophosphate in aged rats

    SciTech Connect

    Pintor, A.; Fortuna, S.; De Angelis, S.; Michalek, H. )

    1990-01-01

    Potential age-related differences in the recovery rate of brain cholinesterase activity (ChE) and muscarinic acetylcholine receptor binding sites (mAChRs) following reduction induced by repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. Male 3- and 24-month old rats were s.c. injected with DFP on alternate days for 2 weeks and killed 48 hr and 7, 14, 21, 28 and 35 days after the last treatment. In the hippocampus and striatum, but not in the cerebral cortex, of control rats there as a significant age-related decline of ChE activity and maximal density of 3H-QNB binding sites (Bmax). The repeated administration of DFP during the first week caused a syndrome of cholinergic stimulation both in aged and young rats. The syndrome was more pronounced, in terms of intensity and duration in aged than in young animals resulting in 40 and 12% mortality, respectively; during the second week the syndrome attenuated in the two age-groups. The percentage inhibition of brain ChE at the end of DFP treatment did not differ between young and surviving aged rats. The down-regulation of mACRs was present in the three brain regions of both young and age rats (from 20 to 40%). Factorial analysis of variance showed significant differences for age, recovery rate, and significant interaction between age and recovery rate, both for ChE and mAChRs in young rats the three brain areas.

  13. Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome.

    PubMed

    Wood, Shona H; Craig, Thomas; Li, Yang; Merry, Brian; de Magalhães, João Pedro

    2013-06-01

    Brain aging frequently underlies cognitive decline and is a major risk factor for neurodegenerative conditions. The exact molecular mechanisms underlying brain aging, however, remain unknown. Whole transcriptome sequencing provides unparalleled depth and sensitivity in gene expression profiling. It also allows non-coding RNA and splice variant detection/comparison across phenotypes. Using RNA-seq to sequence the cerebral cortex transcriptome in 6-, 12- and 28-month-old rats, age-related changes were studied. Protein-coding genes related to MHC II presentation and serotonin biosynthesis were differentially expressed (DE) in aging. Relative to protein-coding genes, more non-coding genes were DE over the three age-groups. RNA-seq quantifies not only levels of whole genes but also of their individual transcripts. Over the three age-groups, 136 transcripts were DE, 37 of which were so-called dark matter transcripts that do not map to known exons. Fourteen of these transcripts were identified as novel putative long non-coding RNAs. Evidence of isoform switching and changes in usage were found. Promoter and coding sequence usage were also altered, hinting of possible changes to mitochondrial transport within neurons. Therefore, in addition to changes in the expression of protein-coding genes, changes in transcript expression, isoform usage, and non-coding RNAs occur with age. This study demonstrates dynamic changes in RNA with age at various genomic levels, which may reflect changes in regulation of transcriptional networks and provides non-coding RNA gene candidates for further studies.

  14. The effects of Ginkgo biloba extract on cognitive functions in aged female rats: the role of oxidative stress and brain-derived neurotrophic factor.

    PubMed

    Belviranlı, Muaz; Okudan, Nilsel

    2015-02-01

    The aim of this study was to investigate the effects of Ginkgo biloba extract (GBE) on cognitive functions as well as oxidative stress and brain-derived neurotrophic factor (BDNF) levels in aged female rats. Rats were divided into 4 groups according to age (young vs. aged) and treatment (GBE vs. vehicle). GBE or vehicle was given for 30 d, and a series of behavioral tests were performed. Following behavioral testing, blood samples and brain tissues were obtained for analysis of BDNF, malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and glutathione levels, and superoxide dismutase activity. Locomotor activity and anxiety levels were lower in the aged rats. Based on Morris water maze probe trial findings, GBE supplementation increased the number of platform crossings in the aged rats. MDA and 8-OHdG levels were lower in the brain tissue, and BDNF levels were higher in plasma in the rates treated with GBE. Based on these findings, we concluded that GBE supplementation improved cognitive functions by decreasing oxidative damage and increasing the BDNF level in aged female rats.

  15. Quantitative autoradiographic analysis of /sup 125/I-pindolol binding in Fischer 344 rat brain: changes in beta-adrenergic receptor density with aging

    SciTech Connect

    Miller, J.A.; Zahniser, N.R.

    1988-05-01

    Age-related changes in beta-adrenergic receptor density in Fischer 344 rat brain were examined using in vitro /sup 125/I-pindolol (IPIN) binding and quantitative autoradiographic analysis. Localized protein concentrations were determined using a new quantitative histological technique, and these were used to normalize the densities of receptors. Saturation binding studies in brain sections revealed 40-50% decreases in beta-adrenergic receptor density in the thalamus of 23-25-month-old and the cerebellum and brainstem of both 18-19-month-old and 23-25-month-old compared to 4-6-month-old rats. The loss of cerebellar beta-adrenergic receptors may be correlated with reports of deficits in sensitivity to beta-adrenergic-mediated transmission in the cerebellum of aged rats. No changes in specific IPIN binding with age were observed in rat cortex or hippocampus. In all areas examined no age-related differences were observed in receptor affinity. No changes in protein concentration were found in any of the areas examined in the different aged animals. These results demonstrate a region-specific loss of beta-adrenergic receptors with age in the brain of Fischer 344 rats.

  16. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62.

    PubMed

    Jung, Hyun-Jung; Kim, Yoon-Jeong; Eggert, Simone; Chung, Kwang Chul; Choi, Kyeong Sook; Park, Sun Ah

    2013-10-01

    Aging increases the co-incidence of Alzheimer's disease (AD) and type 2 diabetes (T2DM). However, the critical factors that contribute to the age-related increase in AD-T2DM comorbidity have yet to be clarified. In this study, aging effects and their relationship to AD-related pathology and T2DM as well as the underlying mechanisms of this process were investigated using obese rats with chronic T2DM. Tau pathology and its associated signaling pathways in the brain were compared between Otsuka Long-Evans Tokushima Fatty (OLETF) rats and corresponding non-diabetic controls at various ages. Tau phosphorylation at AD-related epitopes, including Thr212, Thr231, Ser262, and Ser396, increased with age in the soluble brain extracts of chronic OLETF rats and were accompanied by synaptic protein loss. There was also a marked age-dependent accumulation of polyubiquitinated substances in diabetic rats. Accordingly, tau proteins were highly polyubiquitinated in aged OLETF rats and a strong degree of co-localization existed between p-tau and ubiquitin in these neurons. In addition, the mRNA and protein levels of p62, a known cargo molecule that transports polyubiquitinated tau to proteasomal and autophagic degradation systems, decreased robustly with age in OLETF rats and there was an inverse correlation between protein levels of p62 and p-tau. The impaired degradation of polyubiquitinated p-tau due to age- and T2DM-dependent decreases in p62 transcription is a primary mechanism underlying increased AD-like pathology in a T2DM rat model as age increases. These results provide novel insight into the mechanisms supporting the age-related increase in AD-T2DM comorbidity.

  17. AMPA receptor potentiation by acetylcholinesterase is age-dependently upregulated at synaptogenesis sites of the rat brain

    PubMed Central

    Olivera, Silvia; Henley, Jeremy M.; Rodriguez-Ithurralde, Daniel

    2012-01-01

    We have used radioligand binding to synaptic membranes from distinct rat brain regions and quantitative autoradiography to investigate the postnatal evolution of acetylcholinesterase (AChE)-evoked up-regulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in CNS areas undergoing synaptogenesis. Incubation of synaptosomal membranes or brain sections with purified AChE caused a developmentally modulated enhancement in the binding of [3H]-(S)–AMPA and the specific AMPA receptor ligand [3H]-(S)-5–fluorowillardiine, but did not modify binding to kainate neither N-methyl-D-aspartate receptors. In all postnatal ages investigated (4, 7, 14, 20, 27, 40 days-old and adult rats), AChE effect on binding was concentration-dependent and blocked by propidium, BW 284c51, diisopropylfluorophosphonate and eserine, therefore requiring indemnity of both peripheral and active sites of the enzyme. AChE-mediated enhancement of [3H]-fluorowillardiine binding was measurable in all major CNS areas, but displayed remarkable anatomical selectivity and developmental regulation. Autoradiograph densitometry exhibited distinct temporal profiles and peaks of treated/control binding ratios for different cortices, cortical layers, and nuclei. Within the parietal, occipital and temporal neocortices, hippocampal CA1 field and cerebellum, AChE-potentiated binding ratios peaked in chronological correspondence with synaptogenesis periods of the respective AMPA-receptor containing targets. This modulation of AMPA receptors by AChE is a molecular mechanism able to transduce localized neural activity into durable modifications of synaptic molecular structure and function. It might also contribute to AChE-mediated neurotoxicity, as postulated in Alzheimer’s disease and other CNS disorders. PMID:12565696

  18. Effect of Ganoderma lucidum on the activities of mitochondrial dehydrogenases and complex I and II of electron transport chain in the brain of aged rats.

    PubMed

    Ajith, T A; Sudheesh, N P; Roshny, D; Abishek, G; Janardhanan, K K

    2009-03-01

    Dysfunction of the mitochondrial respiratory chain, being direct intracellular source of reactive oxygen species (ROS), is important in the pathogenesis of number of ageing associated human disorders. Effect of ethanol extract of Ganoderma lucidum on the activities of mitochondrial dehydrogenases; complex I and II of electron transport chain have been evaluated in the aged rat brain. Aged male Wistar rats were administered with ethanol extract of G. lucidum (50 and 250mg/kg, p.o) once daily for 15 days. Similarly DL-alpha-lipoic acid (100mg/kg, p.o) administered group was kept as the reference standard. Young and aged rats administered with water were kept as young and aged control, respectively. The effect of treatment was assessed by estimating the activities of succinate dehydrogenase (SDH), malate dehydrogenase (MDH), alpha-ketoglutarate dehydrogenase (alpha-KGDH), pyruvate dehydrogenase (PDH), complex I and II in the mitochondria of rat brain. Results of the study demonstrated that the extract of G. lucidum (50 and 250mg/kg) significantly (p<0.01) enhanced the activities of PDH, alpha-KGDH, SDH, complex I and II when compared to that of the aged control animals. The level of the lipid peroxidation was significantly lowered (p<0.01) in the G. lucidum treated group with respect to that of aged control. However, we could not find any statistically significant difference between the activities of enzymes in groups treated with 50 and 250mg/kg of G. lucidum. The activity exhibited by the extract of G. lucidum in the present study can be partially correlated to its antioxidant activity. The results of the study concluded that the extract of G. lucidum may effective to improve the function of mitochondria in aged rat brain, suggest its possible therapeutic application against ageing associated neurodegenerative diseases. PMID:19041385

  19. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats.

    PubMed

    Bake, Shameena; Okoreeh, Andre K; Alaniz, Robert C; Sohrabji, Farida

    2016-01-01

    In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I-treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I-treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate-BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females.

  20. Both long and brief maternal separation produces persistent changes in tissue levels of brain monoamines in middle-aged female rats.

    PubMed

    Arborelius, L; Eklund, M B

    2007-03-16

    Adverse experiences early in life are associated with an increased incidence of later psychopathology including depression. Based on evidence that dysfunction of central monoaminergic systems is involved in the pathophysiology of depression, we hypothesize that early adversity could negatively affect these systems. To test this we have investigated the effects of maternal separation, which has been suggested to model early-life stress and the development of a depression-like syndrome in the rat, on brain monoaminergic systems. Since depression is more common in women and the risk of developing this disorder appears to increase with age, we have studied such effects in middle-aged female rats. Rat pups were separated for 180 min (long maternal separation; LMS) or 15 min (brief maternal separation; BMS, often referred to as neonatal handling) twice daily for 2 weeks postpartum. An animal facility-reared (AFR) group was also included. At 15 months of age tissue levels of monoamines and their metabolites in several different brain regions were analyzed. In the LMS females tissue levels of both 5-HT and 5-hydroxyindole acetic acid (5-HIAA) were significantly increased in the dorsal raphe nucleus, and 5-HIAA and homovanillic acid levels were also elevated in the nucleus accumbens as compared with AFR and BMS rats. In the cingulate cortex both LMS and BMS decreased noradrenaline (NA) levels, although this effect was more pronounced in the LMS rats. On the other hand, BMS decreased 5-HT, 5-HIAA, dopamine (DA) as well as NA levels in the amygdala and produced an increase in DA levels in response to acute stress in the hypothalamus, an effect not seen in AFR rats. Our results demonstrate that LMS produced persistent alterations in both serotonergic, noradrenergic and dopaminergic systems in brain regions that have been suggested to be implicated in the pathophysiology of depression. In addition, BMS affected brain monoaminergic levels mainly in the amygdala.

  1. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    EPA Science Inventory

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cereb...

  2. EFFECTS OF TOLUENE ON BRAIN OXIDATIVE STRESS PARAMETERS IN AGING BROWN NORWAY RATS

    EPA Science Inventory

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  3. Surgery-Induced Hippocampal Angiotensin II Elevation Causes Blood-Brain Barrier Disruption via MMP/TIMP in Aged Rats

    PubMed Central

    Li, Zhengqian; Mo, Na; Li, Lunxu; Cao, Yiyun; Wang, Wenming; Liang, Yaoxian; Deng, Hui; Xing, Rui; Yang, Lin; Ni, Cheng; Chui, Dehua; Guo, Xiangyang

    2016-01-01

    Reversible blood-brain barrier (BBB) disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD). Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9), as well as three of their endogenous tissue inhibitors of MMP (TIMP-1, -2, -3), and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II) and Ang II receptor type 1 (AT1) after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1), as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB) activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor. PMID:27199659

  4. IN VITRO SENSITIVITY OF CHOLINESTERASES AND [3H]OXOTREMORINE-M BINDING IN HEART AND BRAIN OF ADULT AND AGING RATS TO ORGANOPHOSPHORUS ANTICHOLINESTERASES

    PubMed Central

    Mirajkar, Nikita; Pope, Carey N.

    2008-01-01

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328

  5. Revitalizing the aged brain.

    PubMed

    Desai, Abhilash K

    2011-05-01

    Optimal cognitive and emotional function is vital to independence, productivity, and quality of life. Cognitive impairment without dementia may be seen in 16% to 33% of adults older than 65 years, and is associated with significant emotional distress. Cognitive and emotional well-being are inextricably linked. This article qualifies revitalizing the aged brain, discusses neuroplasticity, and suggests practical neuroplasticity-based strategies to improve the cognitive and emotional well-being of older adults.

  6. AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...

  7. TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE

    EPA Science Inventory

    The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...

  8. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  9. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    EPA Science Inventory

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  10. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  11. Multiple mechanisms of age-dependent accumulation of amyloid beta protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, α-lipoic acid and α-tocopherol.

    PubMed

    Sinha, Maitrayee; Bir, Aritri; Banerjee, Anindita; Bhowmick, Pritha; Chakrabarti, Sasanka

    2016-05-01

    The aged brain may be used as a tool to investigate altered metabolism of amyloid beta protein (Aβ42) that may have implications in the pathogenesis of Alzheimer's disease (AD). In the present study, we have observed a striking increase in the amyloid precursor protein (APP) level in the brain cortex of aged rats (22-24 months) along with a mild but statistically significant increase in the level of APP mRNA. Moreover, the activity of β secretase is elevated (nearly 55%) and that of neprilysin diminished (48%) in brain cortex of aged rats compared to that in young rats (4-6 months). All these changes lead to a markedly increased accumulation of Aβ42 in brain cortical tissue of aged rats. Long-term dietary supplementation of rats with a combination of N-acetylcysteine, α-lipoic and α-tocopherol from 18 months onwards daily till the sacrifice of the animals by 22-24 months, attenuates the age-related alterations in amyloid beta metabolism. In separate experiments, a significant impairment of spatial learning and memory has been observed in aged rats, and the phenomenon is remarkably prevented by the dietary supplementation of the aged animals by the same combination of N-acetylcysteine, α-lipoic acid and α-tocopherol. The results call for further explorations of this combination in suitable animal models in ameliorating AD related brain deficits.

  12. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose.

    PubMed

    Prisila Dulcy, Charles; Singh, Hemant K; Preethi, Jayakumar; Rajan, Koilmani Emmanuvel

    2012-10-01

    In this study, we examined the neuroprotective effect of standardized Bacopa monniera extract (BME: BESEB CDRI-08) against the D-galactose (D-gal)-induced brain aging in rats. Experimental groups were subjected to contextual-associative learning task. We found that the administration of BME in the D-gal-treated group attenuated contextual-associative learning deficits; the individuals showed more correct responses and retrieved the reward with less latency. Subsequent analysis showed that the BME administration significantly decreased advance glycation end product (AGE) in serum and increased the activity of antioxidant response element (ARE) and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nuclear transcription factor NF-E2-related factor 2 (Nrf2), accompanied by a reduction in the level of serotonin (5-HT) in the hippocampus. The BME treatment also reversed D-gal-induced brain aging by upregulating the levels of the presynaptic proteins synaptotagmin I (SYT1) and synaptophysin (SYP) and the postsynaptic proteins Ca(2+) /calmodulin dependent protein kinase II (αCaMKII) and postsynaptic density protein-95 (PSD-95) in the hippocampus during synaptic plasticity. A significant finding is that the D-gal- + BME-treated rats exhibited more correct responses in contextual-associative learning than D-gal alone-treated rats. Our findings suggest that BME treatment attenuates D-gal-induced brain aging and regulates the level of antioxidant enzymes, Nrf2 expression, and the level of 5-HT, which was accompanied by concomitantly increased levels of synaptic proteins SYT1, SYP, αCaMKII, p-αCaMKII, and PSD-95.

  13. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose.

    PubMed

    Prisila Dulcy, Charles; Singh, Hemant K; Preethi, Jayakumar; Rajan, Koilmani Emmanuvel

    2012-10-01

    In this study, we examined the neuroprotective effect of standardized Bacopa monniera extract (BME: BESEB CDRI-08) against the D-galactose (D-gal)-induced brain aging in rats. Experimental groups were subjected to contextual-associative learning task. We found that the administration of BME in the D-gal-treated group attenuated contextual-associative learning deficits; the individuals showed more correct responses and retrieved the reward with less latency. Subsequent analysis showed that the BME administration significantly decreased advance glycation end product (AGE) in serum and increased the activity of antioxidant response element (ARE) and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nuclear transcription factor NF-E2-related factor 2 (Nrf2), accompanied by a reduction in the level of serotonin (5-HT) in the hippocampus. The BME treatment also reversed D-gal-induced brain aging by upregulating the levels of the presynaptic proteins synaptotagmin I (SYT1) and synaptophysin (SYP) and the postsynaptic proteins Ca(2+) /calmodulin dependent protein kinase II (αCaMKII) and postsynaptic density protein-95 (PSD-95) in the hippocampus during synaptic plasticity. A significant finding is that the D-gal- + BME-treated rats exhibited more correct responses in contextual-associative learning than D-gal alone-treated rats. Our findings suggest that BME treatment attenuates D-gal-induced brain aging and regulates the level of antioxidant enzymes, Nrf2 expression, and the level of 5-HT, which was accompanied by concomitantly increased levels of synaptic proteins SYT1, SYP, αCaMKII, p-αCaMKII, and PSD-95. PMID:22715050

  14. Parallel Age-Associated Changes in Brain and Plasma Neuronal Pentraxin Receptor Levels in a Transgenic APP/PS1 Rat Model of Alzheimer’s Disease

    PubMed Central

    Bilousova, Tina; Taylor, Karen; Emirzian, Ana; Gylys, Raymond; Frautschy, Sally A.; Cole, Gregory M.; Teng, Edmond

    2014-01-01

    Neuronal pentraxin receptor (NPR) is a synaptic protein implicated in AMPA receptor trafficking at excitatory synapses. Since glutamate neurotransmission is disrupted in Alzheimer’s disease (AD), NPR levels measured from plasma represent a potential biomarker for synaptic dysfunction associated with AD. We sought to determine the relationship between AD pathology and brain and plasma NPR levels by examining age-associated NPR levels in these compartments in a transgenic APP/PS1 rat model of AD. NPR levels in cortical homogenate were similar in wild-type (Wt) and APP/PS1 rats at 3 months of age (prior to Aβ plaque deposition), but significantly increased in APP/PS1 rats by 9 and 18-20 months of age (after the onset of plaque deposition). These age-dependent differences were driven by proportional increases in NPR in membrane-associated cortical fractions. Genotype-related differences in NPR expression were also seen in the hippocampus, which exhibits significant Aβ pathology, but not in the cerebellum, which does not. Plasma analyses revealed increased levels of a 26 kDa NPR fragment in APP/PS1 rats relative to Wt rats by 18-20 months of age, which correlated with the levels of full-length NPR in cortex. Our findings indicate that cerebral accumulation of NPR and Aβ occurs with similar temporal and regional patterns in the APP/PS1 model, and suggest that a 26 kDa plasma NPR fragment may represent a peripheral biomarker of this process. PMID:25449907

  15. Parallel age-associated changes in brain and plasma neuronal pentraxin receptor levels in a transgenic APP/PS1 rat model of Alzheimer's disease.

    PubMed

    Bilousova, Tina; Taylor, Karen; Emirzian, Ana; Gylys, Raymond; Frautschy, Sally A; Cole, Gregory M; Teng, Edmond

    2015-02-01

    Neuronal pentraxin receptor (NPR) is a synaptic protein implicated in AMPA receptor trafficking at excitatory synapses. Since glutamate neurotransmission is disrupted in Alzheimer's disease (AD), NPR levels measured from plasma represent a potential biomarker for synaptic dysfunction associated with AD. We sought to determine the relationship between AD pathology and brain and plasma NPR levels by examining age-associated NPR levels in these compartments in a transgenic APP/PS1 rat model of AD. NPR levels in cortical homogenate were similar in wild-type (Wt) and APP/PS1 rats at 3 months of age (prior to Aβ plaque deposition), but significantly increased in APP/PS1 rats by 9 and 18-20 months of age (after the onset of plaque deposition). These age-dependent differences were driven by proportional increases in NPR in membrane-associated cortical fractions. Genotype-related differences in NPR expression were also seen in the hippocampus, which exhibits significant Aβ pathology, but not in the cerebellum, which does not. Plasma analyses revealed increased levels of a 26 kDa NPR fragment in APP/PS1 rats relative to Wt rats by 18-20 months of age, which correlated with the levels of full-length NPR in cortex. Our findings indicate that cerebral accumulation of NPR and Aβ occurs with similar temporal and regional patterns in the APP/PS1 model, and suggest that a 26 kDa plasma NPR fragment may represent a peripheral biomarker of this process.

  16. Aging of the brain-testicular axis: reproductive systems of healthy old male rats with or without endocrine stimulation.

    PubMed

    Taylor, G; Bardgett, M; Farr, S; Humphrey, W; Womack, S; Weiss, J

    1996-01-01

    To test the hypothesis that endocrine declines in males are incidental to disease, 24 gonadally intact old (22-24 months) rats were selected on the basis of good general health and assigned to one of three groups. One group of aged males was left untreated for comparison with an untreated control group of young adult males. Results from multiple measures of sociosexual behavior and reproductive physiology indicated that endocrine declines in males are not simply a by-product of increased disease incidence with aging. The untreated old animals showed clear decrements on all 13 measures of hypothalamic-pituitary- testicular (HPT) activity. The other two groups of old males were used to compare responsiveness of the aging HPT axis in healthy males to supplements with a typical exogenous (ExT) androgen regimen (300 micrograms testosterone/kg body wt/SC/daily/6 weeks) or to social stimulation (brief daily exposure to an inaccessible estrous female) for additional episodes of endogenous (EnT) hormone. Neither treatment restored our disease-free old male rats to levels approximating those of untreated young adults. Nonetheless, both treatments activated the aging HPT axis. EnT males showed increases in sociosexual behaviors, growth of androgen-sensitive bulbospongiosus muscle, and elevation of epididymal sperm reserves. ExT males, on the other hand, experienced a more foreboding hypertrophy of the ventral prostate gland. Our conclusion is that endocrine aging in males is ubiquitous and inevitable. Still, aged androgen-sensitive systems of healthy old rats retain notable capacity, particularly, for endogenous activation. Evidence points to functional responses by healthy aged males to the presence of sexually receptive females that, although not quantitatively the same, are qualitatively similar to the responses of young adult males.

  17. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats.

    PubMed

    Tajiri, Naoki; Acosta, Sandra A; Shahaduzzaman, Md; Ishikawa, Hiroto; Shinozuka, Kazutaka; Pabon, Mibel; Hernandez-Ontiveros, Diana; Kim, Dae Won; Metcalf, Christopher; Staples, Meaghan; Dailey, Travis; Vasconcellos, Julie; Franyuti, Giorgio; Gould, Lisa; Patel, Niketa; Cooper, Denise; Kaneko, Yuji; Borlongan, Cesar V; Bickford, Paula C

    2014-01-01

    Traumatic brain injury (TBI) survivors exhibit motor and cognitive symptoms from the primary injury that can become aggravated over time because of secondary cell death. In the present in vivo study, we examined the beneficial effects of human adipose-derived stem cells (hADSCs) in a controlled cortical impact model of mild TBI using young (6 months) and aged (20 months) F344 rats. Animals were transplanted intravenously with 4 × 10(6) hADSCs (Tx), conditioned media (CM), or vehicle (unconditioned media) at 3 h after TBI. Significant amelioration of motor and cognitive functions was revealed in young, but not aged, Tx and CM groups. Fluorescent imaging in vivo and ex vivo revealed 1,1' dioactadecyl-3-3-3',3'-tetramethylindotricarbocyanine iodide-labeled hADSCs in peripheral organs and brain after TBI. Spatiotemporal deposition of hADSCs differed between young and aged rats, most notably reduced migration to the aged spleen. Significant reduction in cortical damage and hippocampal cell loss was observed in both Tx and CM groups in young rats, whereas less neuroprotection was detected in the aged rats and mainly in the Tx group but not the CM group. CM harvested from hADSCs with silencing of either NEAT1 (nuclear enriched abundant transcript 1) or MALAT1 (metastasis associated lung adenocarcinoma transcript 1), long noncoding RNAs (lncRNAs) known to play a role in gene expression, lost the efficacy in our model. Altogether, hADSCs are promising therapeutic cells for TBI, and lncRNAs in the secretome is an important mechanism of cell therapy. Furthermore, hADSCs showed reduced efficacy in aged rats, which may in part result from decreased homing of the cells to the spleen.

  18. Intravenous Transplants of Human Adipose-Derived Stem Cell Protect the Brain from Traumatic Brain Injury-Induced Neurodegeneration and Motor and Cognitive Impairments: Cell Graft Biodistribution and Soluble Factors in Young and Aged Rats

    PubMed Central

    Tajiri, Naoki; Acosta, Sandra A.; Shahaduzzaman, Md; Ishikawa, Hiroto; Shinozuka, Kazutaka; Pabon, Mibel; Hernandez-Ontiveros, Diana; Kim, Dae Won; Metcalf, Christopher; Staples, Meaghan; Dailey, Travis; Vasconcellos, Julie; Franyuti, Giorgio; Gould, Lisa; Patel, Niketa

    2014-01-01

    Traumatic brain injury (TBI) survivors exhibit motor and cognitive symptoms from the primary injury that can become aggravated over time because of secondary cell death. In the present in vivo study, we examined the beneficial effects of human adipose-derived stem cells (hADSCs) in a controlled cortical impact model of mild TBI using young (6 months) and aged (20 months) F344 rats. Animals were transplanted intravenously with 4 × 106 hADSCs (Tx), conditioned media (CM), or vehicle (unconditioned media) at 3 h after TBI. Significant amelioration of motor and cognitive functions was revealed in young, but not aged, Tx and CM groups. Fluorescent imaging in vivo and ex vivo revealed 1,1′ dioactadecyl-3-3-3′,3′-tetramethylindotricarbocyanine iodide-labeled hADSCs in peripheral organs and brain after TBI. Spatiotemporal deposition of hADSCs differed between young and aged rats, most notably reduced migration to the aged spleen. Significant reduction in cortical damage and hippocampal cell loss was observed in both Tx and CM groups in young rats, whereas less neuroprotection was detected in the aged rats and mainly in the Tx group but not the CM group. CM harvested from hADSCs with silencing of either NEAT1 (nuclear enriched abundant transcript 1) or MALAT1 (metastasis associated lung adenocarcinoma transcript 1), long noncoding RNAs (lncRNAs) known to play a role in gene expression, lost the efficacy in our model. Altogether, hADSCs are promising therapeutic cells for TBI, and lncRNAs in the secretome is an important mechanism of cell therapy. Furthermore, hADSCs showed reduced efficacy in aged rats, which may in part result from decreased homing of the cells to the spleen. PMID:24381292

  19. [The transcription of the amyloid precursor protein and tryptophan 2,3-dioxygenase genes are increased by aging in the rat brain].

    PubMed

    Kálmán, Sára; Pákáski, Magdolna; Szucs, Szabina; Garab, Dénes; Domokos, Agnes; Zvara, Agnes; Puskás, László; Bagdy, György; Zelena, Dóra; Kálmán, János

    2009-09-30

    Aging itself is considered as a major risk factor of dementia. The prevalence of the Alzheimer's disease (AD) is increasing exponentially after the age of 65 and doubles every 5 years. The major aim of our present research was to examine the effect of aging on the transcription of certain genes associated with neurodegenerative disorders in the rat brain. The influence of the vasopressin (VP) hormone was also examined in the same experimental paradigm. Age dependent transcriptional changes of the following four genes were examined in the cerebral cortex: the first was the gene of the amyloid precursor protein (APP) which is abnormally cleaved to toxic beta-amyloid fragments. These aggregated peptides are the major components of the senile plaques in the AD brain. The second one was the mitogen-activated protein kinase (MAPK1) gene. The MAPK is involved in the abnormal hyperphosphorylation of the tau-protein which results in aggregated neurofibrillary tangles. The beta-actin gene was the third one. The protein product of this gene is considered to be involved in synaptogenesis, neuronal plasticity and clinical conditions like depression and AD. The last one was the gene of the tryptophan 2,3-dioxygenase (TDO2) enzyme. The activity of this enzyme is considered as a rate limiting factor in the metabolism of the neuro-immune modulator quinolinic acid (QUIN). The transciptional activity of young (2.5 months) and aged (13 months) Brattleboro rats with or without VP expression were compared by means of real time PCR technique. The cortical transciptional activity of the APP and TDO2 genes were increased in the aged animals as compared with the activity of the young ones, and this effect was independent on the presence of the VP. Our results indicate the importance of certain age dependent transcriptional changes might influence the mechanism of AD and other neurodegenerative disorders.

  20. Nutrients, Microglia Aging, and Brain Aging.

    PubMed

    Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi

    2016-01-01

    As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of "microglia aging." This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging. PMID:26941889

  1. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats.

    PubMed

    Silhol, M; Bonnichon, V; Rage, F; Tapia-Arancibia, L

    2005-01-01

    A large amount of aging individuals show diminished cognitive and endocrine capabilities. The main brain areas involved in these changes are the hippocampus and hypothalamus, two regions possessing high plasticity and implicated in cognitive and endocrine functions, respectively. Among neurotrophins (considered as genuine molecular mediators of synaptic plasticity), brain-derived neurotrophic factor (BDNF) exhibits in adult rats, the highest concentrations in the hippocampus and hypothalamus. Most of neuronal effects of BDNF are mediated through high-affinity cell surface BDNF tyrosine kinase receptors (TrkB). Different TrkB isoforms are issued by alternative splicing of mRNA encoding for TrkB (trkB mRNA) generating at least three different TrkB receptors with different signaling capabilities. The goal of this study was to examine simultaneously the expression (mRNAs and proteins) of BDNF and its three specific receptors, in the hippocampus and hypothalamus throughout lifespan in rats. We observed that BDNF essentially increased during the first 2 postnatal weeks in the hippocampus and hypothalamus, with no close correlation to its mRNA levels. In these regions, mRNA encoding for BDNF full-length catalytic receptor (trkB.FL mRNA) showed no important changes throughout life but of the mRNA truncated forms of TrkB receptors (trkB.T1 mRNA and trkB.T2 mRNA) trkB.T1 mRNA strongly increased after birth, then remaining stable during aging. trkB.T2 mRNA gradually decreased from 1 postnatal week becoming undetectable in the hippocampus in old-rats. Proteins issued from these mRNAs showed substantial quantitative modifications with aging. From 2 months old, the BDNF full-length catalytic receptor (TrkB.FL) gradually and significantly decreased in the hippocampus and the hypothalamus. Of the truncated forms of TrkB receptors (TrkB.T1 and TrkB.T2) TrkB.T1, which is essentially localized in glial cells, significantly increased from the first postnatal week in the hippocampus

  2. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  3. The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex.

    PubMed

    Tatarkova, Zuzana; Kovalska, Maria; Timkova, Veronika; Racay, Peter; Lehotsky, Jan; Kaplan, Peter

    2016-08-01

    One of the characteristic features of the aging is dysfunction of mitochondria. Its role in the regulation of metabolism and apoptosis suggests a possible link between these cellular processes. This study investigates the relationship of respiratory complex I with aging-related oxidative stress in the cerebral mitochondria. Deterioration of complex I seen in senescent (26-months old) mitochondria was accompanied by decline in total thiol group content, increase of HNE and HNE-protein adducts as well as decreased content of complex I subunits, GRIM-19 and NDUFV2. On the other hand, decline of complex I might be related with the mitochondrial apoptosis through increased Bax/Bcl-2 cascade in 15-month old animal brains. Higher amount of Bcl-2, Bcl-xL with the lower content of GRIM-19 could maintain to some extent elevated oxidative stress in mitochondria as seen in the senescent group. In the cortical M1 region increased presence of TUNEL+ cells and more than 20-times higher density of Fluoro-Jade C+ cells in 26-months old was observed, suggesting significant neurodegenerative effect of aging in the neuronal cells. Our study supports a scenario in which the age-related decline of complex I might sensitize neurons to the action of death agonists, such as Bax through lipid and protein oxidative stimuli in mitochondria. Although aging is associated with oxidative stress, these changes did not increase progressively with age, as similar extent of lesions was observed in oxidative stress markers of the both aged groups. PMID:27161369

  4. Ischemia-induced Angiogenesis is Attenuated in Aged Rats.

    PubMed

    Tang, Yaohui; Wang, Liuqing; Wang, Jixian; Lin, Xiaojie; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2016-08-01

    To study whether focal angiogenesis is induced in aged rodents after permanent distal middle cerebral artery occlusion (MCAO), young adult (3-month-old) and aged (24-month-old) Fisher 344 rats underwent MCAO and sacrificed up to two months after MCAO. Immunohistochemistry and synchrotron radiation microangiography were performed to examine the number of newly formed blood vessels in both young adult and aged rats post-ischemia. We found that the number of capillaries and small arteries in aged brain was the same as young adult brain. In addition, we found that after MCAO, the number of blood vessels in the peri-infarct region of ipsilateral hemisphere in aged ischemic rats was significantly increased compared to the aged sham rats (p<0.05). We also confirmed that ischemia-induced focal angiogenesis occurred in young adult rat brain while the blood vessel density in young adult ischemic brain was significantly higher than that in the aged ischemic brain (p<0.05). Our data suggests that focal angiogenesis in aged rat brain can be induced in response to ischemic brain injury, and that aging impedes brain repairing and remodeling after ischemic stroke, possible due to the limited response of angiogenesis. PMID:27493831

  5. [Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology].

    PubMed

    Sarkisova, K Yu; Kulikov, M A; Kudrin, V S; Midzyanovskaya, I S; Birioukova, L M

    2014-01-01

    Behavior in the light-dark choice, open field, sucrose consumption/preference and forced swimming tests, monoamines and their metabolites content in 5 brain structures (prefrontal cortex, nucleus accumbens, striatum, hypothalamus, hippocampus), and density of D1- and D2-like dopamine receptors in the prefrontal cortex, nucleus accumbens and ventral tegmental area were studied in WAG/Rij rats at age of 36 days, 3 and 6 months. It has been found that with age, as far as spike-wave discharges aggravate, behavioral symptoms of depression (enhanced immobility in the forced swimming test, reduced sucrose consumption/preference) as well as a hypo-function of the mesolimbic dopaminergic brain system increase in WAG/Rij rats. At age of 36 days, when phenotypic expression of absence epilepsy in WAG/Rij rats is absent, neurochemical alterations in the brain suggesting a hypo-function of the mesolimbic dopaminergic system (deficit of dopamine in the nucleus accumbens), as well as symptoms of depression-like behavior, are not detected. In WAG/Rij rats, as well as in control rats, density of D1-like dopamine receptors in the nucleus accumbens decreased with age. A tendency to a lower density of D1-like dopamine receptors was found in WAG/Rij rats compared with controls at age of 3 months. In contrast with control rats, in WAG/Rij rats, density of D2-like dopamine receptors in the nucleus accumbens increased with age. Higher density of D2-like dopamine receptors was observed in WAG/Rij rats compared with controls only at age of 6 months when a hypo-function of the mesolimbic dopaminergic bran system was extremely pronounced indicating that this increase is a compensatory response to a deficit of dopamine.

  6. [Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology].

    PubMed

    Sarkisova, K Yu; Kulikov, M A; Kudrin, V S; Midzyanovskaya, I S; Birioukova, L M

    2014-01-01

    Behavior in the light-dark choice, open field, sucrose consumption/preference and forced swimming tests, monoamines and their metabolites content in 5 brain structures (prefrontal cortex, nucleus accumbens, striatum, hypothalamus, hippocampus), and density of D1- and D2-like dopamine receptors in the prefrontal cortex, nucleus accumbens and ventral tegmental area were studied in WAG/Rij rats at age of 36 days, 3 and 6 months. It has been found that with age, as far as spike-wave discharges aggravate, behavioral symptoms of depression (enhanced immobility in the forced swimming test, reduced sucrose consumption/preference) as well as a hypo-function of the mesolimbic dopaminergic brain system increase in WAG/Rij rats. At age of 36 days, when phenotypic expression of absence epilepsy in WAG/Rij rats is absent, neurochemical alterations in the brain suggesting a hypo-function of the mesolimbic dopaminergic system (deficit of dopamine in the nucleus accumbens), as well as symptoms of depression-like behavior, are not detected. In WAG/Rij rats, as well as in control rats, density of D1-like dopamine receptors in the nucleus accumbens decreased with age. A tendency to a lower density of D1-like dopamine receptors was found in WAG/Rij rats compared with controls at age of 3 months. In contrast with control rats, in WAG/Rij rats, density of D2-like dopamine receptors in the nucleus accumbens increased with age. Higher density of D2-like dopamine receptors was observed in WAG/Rij rats compared with controls only at age of 6 months when a hypo-function of the mesolimbic dopaminergic bran system was extremely pronounced indicating that this increase is a compensatory response to a deficit of dopamine. PMID:25975143

  7. Aging, Brain Size, and IQ.

    ERIC Educational Resources Information Center

    Bigler, Erin D.; And Others

    1995-01-01

    Whether cross-sectional rates of decline for brain volume and the Performance Intellectual Quotient of the Wechsler Adult Intelligence Scale-Revised were equivalent over the years 16 to 65 was studied with 196 volunteers. Results indicate remarkably similar rates of decline in perceptual-motor functions and aging brain volume loss. (SLD)

  8. Creatine kinase reaction rates in rat brain during chronic ischemia.

    PubMed

    Mlynárik, V; Kasparová, S; Liptaj, T; Dobrota, D; Horecký, J; Belan, V

    1998-12-01

    Creatine kinase reaction rates were measured by magnetisation transfer technique in the brain of healthy adult and aged rats and in the rats with mild or severe chronic cerebral ischemia. These measurements indicated that the rate constant of the creatine kinase reaction is significantly reduced in the case of chronic brain ischemia in aged rats. In contrast, occlusion of both carotid arteries in adult rats produced a slight increase in the reaction rate 4 weeks after occlusion. At the same time, corresponding conventional phosphorus magnetic resonance spectra showed negligible changes in signal intensities. PMID:10050942

  9. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity.

    PubMed

    Triplett, Judy C; Tramutola, Antonella; Swomley, Aaron; Kirk, Jessime; Grimes, Kelly; Lewis, Kaitilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Perluigi, Marzia; Buffenstein, Rochelle; Butterfield, D Allan

    2015-10-01

    The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained health span. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extend human health span and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared with shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan and may contribute to the extraordinary health span of these rodents. The potential of augmenting human health span via activating the proteostasis network will require further studies.

  10. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity.

    PubMed

    Triplett, Judy C; Tramutola, Antonella; Swomley, Aaron; Kirk, Jessime; Grimes, Kelly; Lewis, Kaitilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Perluigi, Marzia; Buffenstein, Rochelle; Butterfield, D Allan

    2015-10-01

    The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained health span. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently under investigation to gain insights that may conceivably promote and extend human health span and lifespan. The ubiquitin-proteasome and autophagy-lysosomal systems play a vital role in eliminating cellular detritus to maintain proteostasis and have been previously shown to be more robust in NMRs when compared with shorter-lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of proteins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved in proteostasis networks. To further investigate the possible role that autophagy may play in maintaining cellular proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis as well as levels of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs maintain high levels of autophagy throughout the majority of their lifespan and may contribute to the extraordinary health span of these rodents. The potential of augmenting human health span via activating the proteostasis network will require further studies. PMID:26248058

  11. Flavonoids and the aging brain.

    PubMed

    Schmitt-Schillig, S; Schaffer, S; Weber, C C; Eckert, G P; Müller, W E

    2005-03-01

    Like in all other organs, the functional capacity of the human brain deteriorates over time. Pathological events such as oxidative stress, due to the elevated release of free radicals and reactive oxygen or nitrogen species, the subsequently enhanced oxidative modification of lipids, protein, and nucleic acids, and the modulation of apoptotic signaling pathways contribute to loss of brain function. The identification of neuroprotective food components is one strategy to facilitate healthy brain aging. Flavonoids were shown to activate key enzymes in mitochondrial respiration and to protect neuronal cells by acting as antioxidants, thus breaking the vicious cycle of oxidative stress and tissue damage. Furthermore, recent data indicate a favorable effect of flavonoids on neuro-inflammatory events. Whereas most of these effects have been shown in vitro, limited data in vivo are available, suggesting a rather low penetration of flavonoids into the brain. Nevertheless, several reports support the concept that flavonoid intake inhibits certain biochemical processes of brain aging, and might thus prevent to some extent the decline of cognitive functions with aging as well as the development or the course of neurodegenerative diseases. However, more data are needed to assess the true impact of flavonoids on brain aging.

  12. Long-term treatment of aged Long Evans rats with a dietary supplement containing neuroprotective peptides (N-PEP-12) to prevent brain aging: effects of three months daily treatment by oral gavage.

    PubMed

    Hutter-Paier, B; Reininger-Gutmann, B; Wronski, R; Doppler, E; Moessler, H

    2015-01-01

    Aging is associated with morphological and functional changes in the brain, resulting in the deterioration of cognitive performance. Growth factors like BDNF are suggested to be involved in the regulation of age-related processes in the brain. A novel dietary supplement produced from purified nerve cell proteins, N-PEP-12, has shown to share properties with naturally occurring peptide growth factors by stimulating neurite outgrowth and beneficial effects on neuronal survival and protection against metabolic stress in cell cultures. The current study investigates the effects of long-term intake on age-dependent memory decline by assessing cognitive performance and synaptic density. All the experiments were performed in aged Long Evans rats randomly assigned to saline or N-PEP-12 once daily by gavage over a period of three months. Behavioral tests were performed in the Morris Water Maze after one, two and three months of treatment. Histological examinations were performed in the hippocampal formation and in the entorhinal cortex by measuring the synaptic density. This study shows that the oral intake of N-PEP-12 has beneficial effects on the cognitive performance of aged animals and that these effects go along with an increase in the synaptic density. Thus, N-PEP-12 may help maintain memory and learning performance during the aging process.

  13. AGE-DEPENDENT EFFECTS OF AROCLOR 1254 ON CALCIUM UPTAKE BY SUBCELLULAR ORGANELLES IN SELECTED BRAIN REGIONS OF RATS.

    EPA Science Inventory

    Earlier reports from our laboratory have indicated that polychlorinated biphenyls (PCBs) affect signal transduction mechanisms in brain, including Ca2+ homeostasis, phosphoinositol hydrolysis, and protein kinase C (PKC) translocation in mature neurons and adult brain homogenate p...

  14. Ulinastatin decreases permeability of blood--brain barrier by inhibiting expression of MMP-9 and t-PA in postoperative aged rats.

    PubMed

    Ma, Li; Zhang, Hui; Liu, Yong-zhe; Yin, Yan-ling; Ma, Ya-qun; Zhang, Sheng-suo

    2016-01-01

    Tissue-type plasminogen activator (t-PA) and matrix metalloproteinase-9 (MMP-9) have been reported to play important roles in increased permeability of blood-brain barrier (BBB) under many pathological circumstances. We have showed that Ulinastatin, a broad-spectrum serine protease inhibitor, could alleviate inflammation in the hippocampus of aged rats following partial hepatectomy. In this study, we investigate the expression and potential roles of t-PA and MMP-9 in the protective effect of Ulinastatin. We found that partial hepatectomy increased Evans blue leakage in hippocampus at day 1 and 3 postoperatively. Furthermore, surgery decreased the protein levels of claudin-5, ZO-1, and NF-kB p65 while upregulating the mRNA and protein levels of t-PA and MMP-9 in brain capillaries. All these effects caused by surgery were partially reversed by administering Ulinastatin. Our study sheds light on the roles of t-PA and MMP-9 of BBB in post-surgical neuroinflammation and postoperative cognitive dysfunction. Besides, it could also help to understand the mechanism of Ulinastatin alleviating neuroinflammation.

  15. Brain trace elements and aging

    NASA Astrophysics Data System (ADS)

    Hebbrecht, Geert; Maenhaut, Willy; Reuck, Jacques De

    1999-04-01

    Degenerative mechanisms involved in the aging process of the brain are to a certain extent counteracted by repair mechanisms. In both degenerative and recovery processes, trace elements are involved. The present study focused on the role of two minor (i.e., K and Ca) and six trace elements (i.e., Mn, Fe, Cu, Zn, Se and Rb) in the aging process. The elements were determined by PIXE in cerebral cortex and white matter, basal ganglia, brainstem and cerebellar cortex of 18 postmortem human brains, from persons without a history of neurologic or psychiatric disease who deceased between the age of 7 and 79. This age range allowed us to study the relationship between elemental concentrations and age. The most prominent findings were a concentration decrease for K and Rb and a concentration increase for the elements Ca, Fe, Zn and Se. The study supports recent findings that Ca and Fe are involved in brain degenerative processes initiated by oxygen free radicals, whereas Zn and Se are involved in immunological reactions counteracting the aging process.

  16. Aging and functional brain networks

    SciTech Connect

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  17. TOLUENE EFFECTS ON OXIDATIVE STRESS IN BRAIN REGIONS OF YOUNG-ADULT, MIDDLE-AGE AND SENESCENT BROWN NORWAY RATS

    EPA Science Inventory

    Aging-related susceptibility to environmental chemicals is poorly understood. Oxidative stress (OS) appears to play an important role in susceptibility and disease in old age. The objectives of this study, therefore, were to test whether OS is a potential toxicity pathway for tol...

  18. AGING AND LIFE-STAGE SUSCEPTIBILITY: TOLUENE EFFECTS ON BRAIN OXIDATIVE STRESS PARAMETERS IN BROWN NORWAY RATS.

    EPA Science Inventory

    The influence of aging on susceptibility to environmental contaminants is poorly understood. The objectives of this study were to test whether oxidative stress (OS) is a potential toxicity pathway following toluene exposure and to determine if these effects are age-dependent. We ...

  19. Brain aging, Alzheimer's disease, and mitochondria

    PubMed Central

    Swerdlow, Russell H.

    2011-01-01

    The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438

  20. Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats.

    PubMed

    Sharma, D; Singh, R

    1995-05-01

    Age-related changes in the acetylcholinesterase activity were measured in the hippocampus, brain stem and cerebellum of rats (aged 4, 8, 16 and 24 months). The age-dependent decrease in the enzyme activity first appeared in the hippocampus; the brain stem was affected later while the cerebellum remained unaffected. Centrophenoxine, usually considered as an ageing reversal drug and also regarded as a neuroenergeticum in human therapy, increased the acetylcholinesterase activity in the hippocampus of aged rats, the activity was also elevated in the brain stem but no in the cerebellum. The acetylcholinesterase-stimulating influence of the drug is likely to be implicated in the pharmacological reversal of the age related decline of the cholinergic system. This effect of the drug may also mediate its effects on cognitive and neuronal synaptic functions.

  1. Centrophenoxine increases the rates of total and mRNA synthesis in the brain cortex of old rats: an explanation of its action in terms of the membrane hypothesis of aging.

    PubMed

    Zs-Nagy, I; Semsei, I

    1984-01-01

    The rates of total and polyA+ RNA (mRNA) synthesis were measured by radioisotope technique in the brain cortex of female CFY rats. There was practically no significant difference between the young (1.5 months) and adult (13 months) rats; however, the old group (26 months) displayed a considerable decrease of the rates of synthesis of both classes of RNA studied. Centrophenoxine treatment (100 mg per kg body weight per day, for 2 months) reversed this tendency, and increased significantly the synthesis rates of old rats almost to the adult level. The results are interpreted in terms of the membrane hypothesis of aging, attributing a free-radical scavenger function of the dimethylamino-ethanol incorporated into the nerve cell membrane from the centrophenoxine.

  2. The Brain Metabolome of Male Rats across the Lifespan

    PubMed Central

    Zheng, Xiaojiao; Chen, Tianlu; Zhao, Aihua; Wang, Xiaoyan; Xie, Guoxiang; Huang, Fengjie; Liu, Jiajian; Zhao, Qing; Wang, Shouli; Wang, Chongchong; Zhou, Mingmei; Panee, Jun; He, Zhigang; Jia, Wei

    2016-01-01

    Comprehensive and accurate characterization of brain metabolome is fundamental to brain science, but has been hindered by technical limitations. We profiled the brain metabolome in male Wistar rats at different ages (day 1 to week 111) using high-sensitivity and high-resolution mass spectrometry. Totally 380 metabolites were identified and 232 of them were quantitated. Compared with anatomical regions, age had a greater effect on variations in the brain metabolome. Lipids, fatty acids and amino acids accounted for the largest proportions of the brain metabolome, and their concentrations varied across the lifespan. The levels of polyunsaturated fatty acids were higher in infancy (week 1 to week 3) compared with later ages, and the ratio of omega-6 to omega-3 fatty acids increased in the aged brain (week 56 to week 111). Importantly, a panel of 20 bile acids were quantitatively measured, most of which have not previously been documented in the brain metabolome. This study extends the breadth of the mammalian brain metabolome as well as our knowledge of functional brain development, both of which are critically important to move the brain science forward. PMID:27063670

  3. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis.

    PubMed

    Li, Yang; Wang, Saiying; Ran, Ke; Hu, Zhonghua; Liu, Zhaoqian; Duan, Kaiming

    2015-08-01

    The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats. PMID:25936412

  4. Isoflurane/nitrous oxide anesthesia induces increases in NMDA receptor subunit NR2B protein expression in the aged rat brain.

    PubMed

    Mawhinney, Lana J; de Rivero Vaccari, Juan Pablo; Alonso, Ofelia F; Jimenez, Christopher A; Furones, Concepción; Moreno, W Javier; Lewis, Michael C; Dietrich, W Dalton; Bramlett, Helen M

    2012-01-11

    Postoperative cognitive dysfunction, POCD, afflicts a large number of elderly surgical patients following surgery with general anesthesia. Mechanisms of POCD remain unclear. N-methyl-D-aspartate (NMDA) receptors, critical in learning and memory, that display protein expression changes with age are modulated by inhalation anesthetics. The aim of this study was to identify protein expression changes in NMDA receptor subunits and downstream signaling pathways in aged rats that demonstrated anesthesia-induced spatial learning impairments. Three-month-old and 18-month-old male Fischer 344 rats were randomly assigned to receive 1.8% isoflurane/70% nitrous oxide (N(2)O) anesthesia for 4h or no anesthesia. Spatial learning was assessed at 2weeks and 3months post-anesthesia in Morris water maze. Hippocampal and cortical protein lysates of 18-month-old rats were immunoblotted for activated caspase 3, NMDA receptor subunits, and extracellular-signal regulated kinase (ERK) 1/2. In a separate experiment, Ro 25-6981 (0.5mg/kg dose) was administered by I.P. injection before anesthesia to 18-month-old rats. Immunoblotting of NR2B was performed on hippocampal protein lysates. At 3months post-anesthesia, rats treated with anesthesia at 18-months-old demonstrated spatial learning impairment corresponding to acute and long-term increases in NR2B protein expression and a reduction in phospho-ERK1/2 in the hippocampus and cortex. Ro 25-6981 pretreatment attenuated the increase in acute NR2B protein expression. Our findings suggest a role for disruption of NMDA receptor mediated signaling pathways in the hippocampus and cortex of rats treated with isoflurane/ N(2)O anesthesia at 18-months-old, leading to spatial learning deficits in these animals. A potential therapeutic intervention for anesthesia associated cognitive deficits is discussed. PMID:22137658

  5. NIH Conference. Brain imaging: aging and dementia

    SciTech Connect

    Cutler, N.R.; Duara, R.; Creasey, H.; Grady, C.L.; Haxby, J.V.; Schapiro, M.B.; Rapoport, S.I.

    1984-09-01

    The brain imaging techniques of positron emission tomography using (18F)-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings.

  6. Secrets of aging: What does a normally aging brain look like?

    PubMed Central

    2011-01-01

    Over the past half century, remarkable progress has been made in understanding the biological basis of memory and how it changes over the lifespan. An important conceptual advance during this period was the realization that normative cognitive trajectories can exist independently of dementing illness. In fact, mammals as different as rats and monkeys, who do not spontaneously develop Alzheimer’s disease, show memory impairments at advanced ages in similar domains as those observed in older humans. Thus, animal models have been particularly helpful in revealing brain mechanisms responsible for the cognitive changes that occur in aging. During these past decades, a number of empirical and technical advances enabled the discoveries that began to link age-related changes in brain function to behavior. The pace of innovation continues to accelerate today, resulting in an expanded window through which the secrets of the aging brain are being deciphered. PMID:22003369

  7. Aspartame and the rat brain monoaminergic system.

    PubMed

    Perego, C; De Simoni, M G; Fodritto, F; Raimondi, L; Diomede, L; Salmona, M; Algeri, S; Garattini, S

    1988-12-01

    A high dose of aspartame (APM) was administered to rats to study possible effects on brain monoaminergic systems. APM and its metabolite phenylalanine (Phe) were given orally at doses of 1000 and 500 mg/kg, respectively. Significant increases were seen in brain Phe and tyrosine (Tyr) levels. Two different approaches were used to study monoaminergic systems: whole tissue measurements by HPLC-ED and in vivo voltammetry in freely moving rats. Dopamine, serotonin and their metabolites were taken as indexes of neuronal activity. In spite of the high dose used, no modification was found in monoamines or their metabolites in striatum, hippocampus and nucleus accumbens.

  8. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  9. [F-18]FDDNP microPET imaging correlates with brain Aβ burden in a transgenic rat model of Alzheimer disease: effects of aging, in vivo blockade, and anti-Aβ antibody treatment.

    PubMed

    Teng, Edmond; Kepe, Vladimir; Frautschy, Sally A; Liu, Jie; Satyamurthy, Nagichettiar; Yang, Fusheng; Chen, Ping-Ping; Cole, Graham B; Jones, Mychica R; Huang, Sung-Cheng; Flood, Dorothy G; Trusko, Stephen P; Small, Gary W; Cole, Gregory M; Barrio, Jorge R

    2011-09-01

    In vivo detection of Alzheimer's disease (AD) neuropathology in living patients using positron emission tomography (PET) in conjunction with high affinity molecular imaging probes for β-amyloid (Aβ) and tau has the potential to assist with early diagnosis, evaluation of disease progression, and assessment of therapeutic interventions. Animal models of AD are valuable for exploring the in vivo binding of these probes, particularly their selectivity for specific neuropathologies, but prior PET experiments in transgenic mice have yielded conflicting results. In this work, we utilized microPET imaging in a transgenic rat model of brain Aβ deposition to assess [F-18]FDDNP binding profiles in relation to age-associated accumulation of neuropathology. Cross-sectional and longitudinal imaging demonstrated that [F-18]FDDNP binding in the hippocampus and frontal cortex progressively increases from 9 to 18months of age and parallels age-associated Aβ accumulation. Specificity of in vivo [F-18]FDDNP binding was assessed by naproxen pretreatment, which reversibly blocked [F-18]FDDNP binding to Aβ aggregrates. Both [F-18]FDDNP microPET imaging and neuropathological analyses revealed decreased Aβ burden after intracranial anti-Aβ antibody administration. The combination of this non-invasive imaging method and robust animal model of brain Aβ accumulation allows for future longitudinal in vivo assessments of potential therapeutics for AD that target Aβ production, aggregation, and/or clearance. These results corroborate previous analyses of [F-18]FDDNP PET imaging in clinical populations.

  10. The ageing brain: normal and abnormal memory.

    PubMed Central

    Albert, M S

    1997-01-01

    With advancing age, the majority of individuals experience declines in their ability to learn and remember. An examination of brain structure and function in healthy older persons across the age range indicates that there are substantial changes in the brain that appear to be related to alterations in memory. The nature of the cognitive and neurobiological alterations associated with age-related change is substantially different from that seen in the early stages of a dementing illness, such as Alzheimer's disease. These differences have implications for potential intervention strategies. PMID:9415922

  11. Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats

    PubMed Central

    Yousuf, Seema; Sayeed, Iqbal; Atif, Fahim; Tang, Huiling; Wang, Jun; Stein, Donald G

    2014-01-01

    We evaluated the neuroprotective effects of delayed progesterone (PROG) treatment against ischemic stroke-induced neuronal death, inflammation, and functional deficits. We induced transient focal cerebral ischemia in male rats and administered PROG (8 mg/kg) or vehicle intraperitoneally at 3, 6, or 24 hours post occlusion, subcutaneously 5 hours later and then every 24 hours for 7 days. Behavioral outcomes were evaluated over 22 days. Infarct size and other biomarkers of injury were evaluated by cresyl violet staining, and matrix metalloproteinase-9 (MMP-9), glial fibrillary acidic protein (GFAP), and vascular endothelial growth factor (VEGF) by immunofluorescence. Progesterone treatment started at 3 and 6 hours post occlusion significantly (P<0.05) improved behavioral performance at all time points (74.01%) and reduced infarction volume (61.68%) compared with vehicle. No significant difference was observed between the 3 and 6 hour PROG treatment groups. Matrix metalloproteinase-9 and VEGF were upregulated in the PROG groups compared with vehicle. Glial fibrillary acidic protein expression was increased in the vehicle group but markedly lower in the PROG groups. Treatment delayed for 24 hours did not significantly improve functional outcomes or reduce infarction volume. We conclude that, under the right treatment conditions, PROG treatment delayed up to 6 hours can improve functional deficits and reduce brain infarction, possibly by modulating GFAP, VEGF, and MMP-9 expression. PMID:24301297

  12. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  13. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  14. Age-related changes in the rat hippocampus.

    PubMed

    Is, Merih; Comunoglu, Nil Ustundag; Comunoglu, Cem; Eren, Bulent; Ekici, Isin Dogan; Ozkan, Ferda

    2008-05-01

    The human brain is uniquely powerful in its cognitive abilities, yet the hippocampal and neocortical circuits that mediate these complex functions are highly vulnerable during aging. In this study, we analyzed age-related changes in the rat hippocampus by studying newborn (1 month), middle-aged (12 months), and older (24 months) male and female Sprague-Dawley rats. We evaluated neuronal dystrophy, neuron scattering, and granulovacuolar degeneration in the hippocampal area using light microscopy, according to age and gender. We detected significant neuronal dystrophy in the CA1, CA2, and CA3 areas in male rats, and in the CA1, CA3, and CA4 areas in female rats. Degenerative changes, indicated by neuron scattering, were observed in the CA1, CA2, and CA3 areas of male and the CA2 and CA4 areas of female rats. Changes in all areas of the hippocampus were observed with increasing age; these changes included neuronal dystrophy and neuron scattering and did not differ significantly between male and female rats.

  15. Metabolic drift in the aging brain

    PubMed Central

    Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary

    2016-01-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  16. Effects of Chinese herbal medicine fuzhisan on aged rats.

    PubMed

    Li, Xu Ling; Wang, De Sheng; Zhao, Bao Quan; Li, Qian; Qu, Heng Yan; Zhang, Ting; Zhou, Jian Ping; Sun, Man Ji

    2008-09-01

    Fuzhisan (FZS), a Chinese herbal complex prescription, has been used in the treatment of Alzheimer's disease (AD) for more than 15 years. Previous studies showed that FZS enhanced the cognitive ability in AD patients and AD model rats. FZS modulated the impaired cellular functions, and attenuated the damage caused by beta-amyloid protein, dose-dependently regulated and ameliorated the cholinergic functions of the Abeta(25-35)-induced AD-model mice. The SPECT imaging revealed that FZS improved the blood flow of the frontal and temporal lobes and the callosal gyrus in AD patients. However, little investigation of the effects of FZS on the naturally aged rats was reported. The underlying mechanism also remains to be explored. Recently we investigated the effects of the aqueous extract of FZS on the cognitive functions of the aged rats and the pharmacological basis for its therapeutic efficacy. The results showed a significant improvement made by FZS (0.3, 0.6, and 1.2 g/kg/d) for impaired cognitive functions of the aged rats. The rats manifested a shortened latency in Morris water maze test after intra-gavage administration (ig) of FZS for 30 consecutive days. The micro-positron emission tomography (microPET) using (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) as the tracer demonstrated that FZS promoted the glucose metabolism in the whole brains especially the temporal and parietal regions in the aged rats. The spectrophotometry and Western blot showed that FZS obviously increased the activity and the production of choline O-acetyltransferase (ChAT, EC 2.3.1.6) and the acetylcholine (ACh) contents in the hippocampus, thus regulated and ameliorated the impaired cholinergic functions of the aged rats. The therapeutical effects of FZS on the learning and memory of the aged rats were dose-dependent. The mechanism of action of FZS in ameliorating the memory dysfunction of the aged rats is ascribed to the reinforcement of the function of the cholinergic system and the

  17. Functional brain asymmetry, handedness and menarcheal age.

    PubMed

    Nikolova, P; Stoyanov, Z; Negrev, N

    1994-12-01

    Functional brain asymmetry influences many functions of the organism; the neuroendocrine axis is one that has received insufficient attention. In this study we set us as the goal of studying the link between functional brain asymmetry and menarcheal age in females with left versus right manual dominance. The appearance of the first menarche was used as a natural model of functioning of the hypothalamic-pituitary-gonadal (HPG) axis. 1695 females, aged between 16 and 25 years, were interviewed by questionnaire about manual dominance and menarcheal age. 182 women were selected and divided into 2 groups: all left-handers (n = 91), and a control group of 91 right-handers. We found a significantly lower average age of menarcheal appearance in the left-handers' age of 12.09 +/- 0.16 years compared to the right-handers' age of 13.32 +/- 0.12 years (p < 0.001). The earliest menarcheal age in left-handers was 8 years and the peak of appearance at age 13 (in 30.76% of the cases). In right-handers these values were 10 and 14 years (in 40.60% of the cases), respectively. The data allow us to accept the existence of a link between functional brain asymmetry and menarche, which causes earlier activation of the HPG axis in left-handed females.

  18. Cortical reorganization in the aging brain.

    PubMed

    Dinse, Hubert R

    2006-01-01

    Aging exerts major reorganization and remodeling at all levels of brain structure and function. Studies in aged animals and in human elderly individuals demonstrate that sensorimotor cortical representational maps undergo significant alterations. Because cortical reorganization is paralleled by a decline in perceptual and behavioral performance, this type of cortical remodeling differs from the plastic reorganization observed during learning processes in young individuals where map changes are associated with a gain in performance. It is now clear that brain plasticity is operational into old age; therefore, protocols for interventions such as training, exercising, practicing, and stimulation, which make use of neuroplasticity principles, are effective to ameliorate some forms of cortical and behavioral age-related changes, indicating that aging effects are not irreversible but treatable. However, old individuals cannot be rejuvenated, but restoration of function is possible through the emergence of new processing strategies. This implies that cortical reorganization in the aging brain occurs twice: during aging, and during treatment of age-related changes.

  19. Light-sensitive brain pathways and aging.

    PubMed

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.

  20. [Age-related changes of the brain].

    PubMed

    Paltsyn, A A; Komissarova, S V

    2015-01-01

    The first morphological signs of aging of the brain are found in the white matter already at a young age (20-40 years), and later (40-50 years) in a gray matter. After the 40-50 years appear and in subsequently are becoming more pronounced functional manifestations of morphological changes: the weakening of sensory-motor and cognitive abilities. While in principle this dynamic of age-related changes is inevitable, the rate of their development to a large extent determined by the genetic characteristics and lifestyle of the individual. According to modem concepts age-related changes in the number of nerve cells are different in different parts of the brain. However, these changes are not large and are not the main cause of senile decline brain. The main processes that contribute to the degradation of the brain develop as in the bodies of neurons and in neuropil. In the bodies of neurons--it is a damage (usually decrease) of the level of expression of many genes, and especially of the genes determining cell communication. In neuropil: reduction in the number of synapses and the strength of synaptic connections, reduction in the number of dendritic spines and axonal buttons, reduction in the number and thickness of the dendritic branches, demyelination of axons. As the result of these events, it becomes a violation of the rate of formation and rebuilding neuronal circuits. It is deplete associative ability, brain plasticity, and memory. PMID:27116888

  1. Light-sensitive brain pathways and aging.

    PubMed

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-01-01

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity. PMID:26980095

  2. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  3. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation.

    PubMed

    Akiyama, K; Tanaka, R; Sato, M; Takeda, N

    2001-12-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis.

  4. Immunohistochemical and neurochemical correlates of learning deficits in aged rats.

    PubMed

    Stemmelin, J; Lazarus, C; Cassel, S; Kelche, C; Cassel, J C

    2000-01-01

    This study examined whether cholinergic and monoaminergic dysfunctions in the brain could be related to spatial learning capabilities in 26-month-old, as compared to three-month-old, Long-Evans female rats. Performances were evaluated in the water maze task and used to constitute subgroups with a cluster analysis statistical procedure. In the first experiment (histological approach), the first cluster contained young rats and aged unimpaired rats, the second one aged rats with moderate impairment and the third one aged rats with severe impairment. Aged rats showed a reduced number of choline acetyltransferase- and p75(NTR)-positive neurons in the nucleus basalis magnocellularis, and choline acetyltransferase-positive neurons in the striatum. In the second experiment (neurochemical approach), the three clusters comprised young rats, aged rats with moderate impairment and aged rats with severe impairment. Alterations related to aging consisted of reduced concentration of acetylcholine, norepinephrine and serotonin in the striatum, serotonin in the occipital cortex, dopamine and norepinephrine in the dorsal hippocampus, and norepinephrine in the ventral hippocampus. In the first experiment, there were significant correlations between water maze performance and the number of; (i) choline acetyltransferase- and p75(NTR)-positive neurons in the nucleus basalis magnocellularis; (ii) choline acetyltransferase-positive neurons in the striatum and; (iii) p75(NTR)-positive neurons in the medial septum. In the second experiment, water maze performance was correlated with the concentration of; (i) acetylcholine and serotonin in the striatum; (ii) serotonin and norepinephrine in the dorsal hippocampus; (iii) norepinephrine in the frontoparietal cortex and; (iv) with other functional markers such as the 5-hydroxyindoleacetic acid/serotonin ratio in the striatum, 3,4-dihydroxyphenylacetic acid/dopamine ratio in the dorsal hippocampus, 5-hydroxyindoleacetic acid/serotonin and

  5. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident. PMID:27432348

  6. Biotransformation of norcocaine to norcocaine nitroxide by rat brain microsomes.

    PubMed

    Kloss, M W; Rosen, G M; Rauckman, E J

    1984-01-01

    In the mid 1970's, norcocaine was identified as a metabolite of cocaine in rat brain tissue. We extend these studies by demonstrating that rat brain FAD-containing monooxygenase metabolizes norcocaine to N-hydroxynorcocaine. This hydroxylamine is then further oxidized to the nitroxyl free radical norcocaine nitroxide by rat brain cytochrome P-450. Brain microsomal reduction of norcocaine nitroxide leads to the generation of superoxide. Finally, incubation of rat brain microsomes with either N-hydroxynorcocaine or norcocaine nitroxide leads to significant lipid peroxidation as monitored by spin-trapping techniques.

  7. Functional interrelationship of brain aging and delirium.

    PubMed

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium. PMID:25998952

  8. Functional interrelationship of brain aging and delirium.

    PubMed

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium.

  9. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  10. Age-dependence of intracranial viscoelastic properties in living rats.

    PubMed

    Shulyakov, Alexander V; Cenkowski, Stefan S; Buist, Richard J; Del Bigio, Marc R

    2011-04-01

    To explore the effect of maturation on intracranial mechanical properties, viscoelastic parameters were determined in 44 live rats at ages 1-2, 10-12, 21, 56-70, and 180 days using instrumented indentation. With the dura mater intact, the apparent modulus of elasticity, the indentation modulus, and viscous behavior were measured in vivo, as well as 1 h after death. In a separate group of 25 rats, brain water, and protein content were determined. A significant increase of the elastic and indentation moduli beginning at 10-12 days after birth and continuing to 180 days was observed. The creep behavior decreased in the postnatal period and stabilized at 21 days. Changes in intracranial biomechanical properties corresponded to a gradual decrease of brain water, and an increase in total protein content, including glial fibrillary acidic protein, myelin basic protein, and neurofilament light chain. Elastic properties were not significantly different comparing the live and dead states. However, there were significant postmortem changes in viscous behavior. Viscoelastic properties of living rat intracranial contents are shown to be age dependent, reflecting the physical and biochemical changes during postnatal development. This may be important for understanding why young and mature brains respond differently in situations of brain trauma and hydrocephalus.

  11. Aging causes exacerbated ischemic brain injury and failure of sevoflurane post-conditioning: role of B-cell lymphoma-2.

    PubMed

    Dong, P; Zhao, J; Zhang, Y; Dong, J; Zhang, L; Li, D; Li, L; Zhang, X; Yang, B; Lei, W

    2014-09-01

    Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain.

  12. Aging and brain rejuvenation as systemic events

    PubMed Central

    Bouchard, Jill; Villeda, Saul A

    2015-01-01

    The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne ‘pro-youthful’ factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. PMID:25327899

  13. Differential modulation of AMPK/PPARα/UCP2 axis in relation to hypertension and aging in the brain, kidneys and heart of two closely related spontaneously hypertensive rat strains

    PubMed Central

    Rubattu, Speranza; Bianchi, Franca; Busceti, Carla Letizia; Cotugno, Maria; Stanzione, Rosita; Marchitti, Simona; Di Castro, Sara; Madonna, Michele; Nicoletti, Ferdinando; Volpe, Massimo

    2015-01-01

    Objectives We examined expression protein of AMPK/SIRT1/PGC1α/PhoxO3a/PPARα/UCP2 pathway in brain, kidneys and heart of stroke-prone spontaneously hypertensive rat (SHRSP) vs stroke-resistant SHR (SHRSR) at different weeks of age, up to one year, in order to test the hypothesis that abnormalities within this pathway could associate with higher susceptibility of SHRSP to develop hypertension-related vascular damage. Background SHRSP develops severe hypertension and related target organ damage. Marked reduction of uncoupling protein 2 (UCP2) expression upon high salt-low potassium diet associates with increased renal injury in SHRSP. UCP2 may represent a key mitochondrial protein involved in cardiovascular damage. Results At 2 months of age a significant down-regulation of UCP2 expression at both mRNA and protein levels was found, along with reduced protein expression of all components of UCP2 regulatory pathway, in tissues of SHRSP but not of SHRSR, that progressed with hypertension development and aging. A significant increase of both oxidative stress and inflammation was detected in tissues of SHRSP as a function of age. SBP levels were significantly higher in SHRSP than SHRSR at 3 months of age and thereafter. At one year of age, higher degree of renal damage, with proteinuria and severe glomerular and tubulo-interstitial fibrosis, of cerebral damage, with significant vessel extravasation and stroke occurrence, and of myocardial damage was detected in SHRSP than SHRSR. Conclusions The early significant reduced expression of the antioxidant AMPK/PPARα/UCP2 pathway that progressed throughout lifetime may contribute to explain higher predisposition of SHRSP to oxidative stress dependent target organ damage in the context of severe hypertension. PMID:26023797

  14. Altered Proteins in the Aging Brain

    PubMed Central

    Elobeid, Adila; Libard, Sylwia; Leino, Marina; Popova, Svetlana N.

    2016-01-01

    We assessed the prevalence of common altered brain proteins in 296 cognitively unimpaired subjects ranging from age 50 to 102 years. The incidence and the stage of hyperphosphorylated-τ (HPτ), β-amyloid, α-synuclein (αS), and transactive response DNA (TDP) binding protein 43 (TDP43)-immunoreactivity (-IR) increased with age. HPτ-IR was observed in 98% of the subjects; the locus coeruleus was solely affected in 46%, and 79% of the subjects were in Braak stages a to II. β-Amyloid was seen in 47% of subjects and the Thal phase correlated with the HPτ Braak stage and age. Intermediate Alzheimer disease-related pathology (ADRP) was seen in 12%; 52% of the subjects with HPτ-IR fulfilled criteria for definite primary age-related tauopathy (PART). The incidence of concomitant pathology (αS, TDP43) did not differ between those with PART and those with ADRP but the former were younger. TDP43-IR was observed in 36%; the most frequently affected region was the medulla; αS-IR was observed in 19% of subjects. In 41% of the subjects from 80 to 89 years at death, 3 altered proteins were seen in the brain. Thus, altered proteins are common in the brains of cognitively unimpaired aged subjects; this should be considered while developing diagnostic biomarkers, particularly for identifying subjects at early stages of neurodegenerative diseases. PMID:26979082

  15. Altered Proteins in the Aging Brain.

    PubMed

    Elobeid, Adila; Libard, Sylwia; Leino, Marina; Popova, Svetlana N; Alafuzoff, Irina

    2016-04-01

    We assessed the prevalence of common altered brain proteins in 296 cognitively unimpaired subjects ranging from age 50 to 102 years. The incidence and the stage of hyperphosphorylated-τ (HPτ), β-amyloid, α-synuclein (αS), and transactive response DNA (TDP) binding protein 43 (TDP43)-immunoreactivity (-IR) increased with age. HPτ-IR was observed in 98% of the subjects; the locus coeruleus was solely affected in 46%, and 79% of the subjects were in Braak stages a to II. β-Amyloid was seen in 47% of subjects and the Thal phase correlated with the HPτ Braak stage and age. Intermediate Alzheimer disease-related pathology (ADRP) was seen in 12%; 52% of the subjects with HPτ-IR fulfilled criteria for definite primary age-related tauopathy (PART). The incidence of concomitant pathology (αS, TDP43) did not differ between those with PART and those with ADRP but the former were younger. TDP43-IR was observed in 36%; the most frequently affected region was the medulla; αS-IR was observed in 19% of subjects. In 41% of the subjects from 80 to 89 years at death, 3 altered proteins were seen in the brain. Thus, altered proteins are common in the brains of cognitively unimpaired aged subjects; this should be considered while developing diagnostic biomarkers, particularly for identifying subjects at early stages of neurodegenerative diseases. PMID:26979082

  16. (Pre)diabetes, brain aging, and cognition.

    PubMed

    S Roriz-Filho, Jarbas; Sá-Roriz, Ticiana M; Rosset, Idiane; Camozzato, Ana L; Santos, Antonio C; Chaves, Márcia L F; Moriguti, Júlio César; Roriz-Cruz, Matheus

    2009-05-01

    Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-beta (Abeta) clearance due to competition for their common and main depurative mechanism - the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Abeta, brain hyperinsulinism may deprive Abeta of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy

  17. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    PubMed

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions.

  18. Effects of dietary folate deficiency on developmental increase of myelin lipids in rat brain.

    PubMed

    Hirono, H; Wada, Y

    1978-05-01

    Rats were fed a folic acid deficient purified diet from day 12 of gestation throughout the lactational period. Offsprings were fed the same diet after weaning. Control rats were given 170 microgram of folic acid per day per rat supplemented to the same diet, which was fed ad libitum or by pair-feeding. At 3 and 6 weeks of age, myelin was isolated from rat brains. It was found that in comparison with the controls, myelin yield was significantly decreased as well as the brain weight in the folic acid deficient rats at 6 weeks of age. There were no differences of gross composition of myelin, protein, ratio of cholesterol, glycolipids, phospholipids, and total lipid with or without folate deficiency either at 3 or 6 weeks of age. The hydroxy fatty acid composition of myelin lipids in brain was not changed with folate deficiency at 3 or 6 weeks of age. The developmental increase of the percentages of 22:6, 22:4, and 20:1 in nonhydroxy fatty acids of myelin lipids from the folic acid deficient rats were significantly lower at 6 weeks of age in comparison with the controls. The n-3:n-6 ratio in myelin fatty acids from the folic acid deficient rat brains was abnormally low at 3 weeks of age and was not increased at even 6 weeks of age. The implications of these findings are that folic acid may play an important role in desaturation or chain elongation of polyunsaturated fatty acids in the brain of developing rats. PMID:641593

  19. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model.

    PubMed

    Aydın, A Fatih; Çoban, Jale; Doğan-Ekici, Işın; Betül-Kalaz, Esra; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-04-01

    D-galactose (GAL) has been used as an animal model for brain aging and antiaging studies. GAL stimulates oxidative stress in several tissues including brain. Carnosine (CAR; β-alanil-L-histidine) and taurine (TAU; 2-aminoethanesulfonic acid) exhibit antioxidant properties. CAR and TAU have anti-aging and neuroprotective effects. We investigated the effect of CAR and TAU supplementations on oxidative stress and brain damage in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days per week) or TAU (2.5% w/w; in rat chow) for 2 months. Brain malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST) and acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brains by immunohistochemistry. GAL treatment increased brain MDA and PC levels and AChE activities. It decreased significantly brain GSH levels, SOD and GSH-Px but not GST activities. GAL treatment caused histopathological changes and increased apoptosis. CAR and TAU significantly reduced brain AChE activities, MDA and PC levels and elevated GSH levels in GAL-treated rats. CAR, but not TAU, significantly increased low activities of SOD and GSH-Px. Both CAR and TAU diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. Our results indicate that CAR and TAU may be effective to prevent the development of oxidative stress, apoptosis and histopathological deterioration in the brain of GAL-treated rats. PMID:26518192

  20. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model.

    PubMed

    Aydın, A Fatih; Çoban, Jale; Doğan-Ekici, Işın; Betül-Kalaz, Esra; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-04-01

    D-galactose (GAL) has been used as an animal model for brain aging and antiaging studies. GAL stimulates oxidative stress in several tissues including brain. Carnosine (CAR; β-alanil-L-histidine) and taurine (TAU; 2-aminoethanesulfonic acid) exhibit antioxidant properties. CAR and TAU have anti-aging and neuroprotective effects. We investigated the effect of CAR and TAU supplementations on oxidative stress and brain damage in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days per week) or TAU (2.5% w/w; in rat chow) for 2 months. Brain malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST) and acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brains by immunohistochemistry. GAL treatment increased brain MDA and PC levels and AChE activities. It decreased significantly brain GSH levels, SOD and GSH-Px but not GST activities. GAL treatment caused histopathological changes and increased apoptosis. CAR and TAU significantly reduced brain AChE activities, MDA and PC levels and elevated GSH levels in GAL-treated rats. CAR, but not TAU, significantly increased low activities of SOD and GSH-Px. Both CAR and TAU diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. Our results indicate that CAR and TAU may be effective to prevent the development of oxidative stress, apoptosis and histopathological deterioration in the brain of GAL-treated rats.

  1. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  2. Grape powder treatment prevents anxiety-like behavior in a rat model of aging.

    PubMed

    Patki, Gaurav; Ali, Quaisar; Pokkunuri, Indira; Asghar, Mohammad; Salim, Samina

    2015-06-01

    Earlier, we have reported that grape powder (GP) treatment prevented pharmacologic and psychological stress-induced anxiety-like behavior and memory impairment in rats. Protective effects of GP were attributed to its antioxidant effects. In this study, we tested the hypothesis that age-associated behavioral and cognitive deficits such as anxiety and memory impairment will be ameliorated with GP treatment. Using a National Institute of Aging recommended rodent model of aging, we examined a potentially protective role of antioxidant-rich GP in age-associated anxiety-like behavior and memory impairment. Male Fischer 344 rats were randomly assigned into 4 groups: young rats (3 months old) provided with tap water or with 15 g/L GP dissolved in tap water for 3 weeks, aged rats (21 months old) provided with tap water or with GP-treated tap water for 3 weeks (AG-GP). Anxiety-like behavior was significantly greater in aged rats compared with young rats, GP-treated young rats, or aged control rats (P < .05). Also, GP treatment prevented age-induced anxiety-like behavior in AG-GP rats (P < .05). Neither short-term nor long-term age-associated memory deficits improved with GP treatment in AG-GP rats. Furthermore, aged rats showed increased level of physiological stress (corticosterone) and increased oxidative stress in the plasma (8-isoprostane) as well as in selected brain areas (protein carbonylation). Grape powder treatment prevented age-induced increase in corticosterone levels and plasma 8-isoprostane levels in aged rats (P < .05), whereas protein carbonylation was recovered in the amygdala region only (P < .05). Grape powder by regulating oxidative stress ameliorates age-induced anxiety-like behavior in rats, whereas age-associated memory deficits seem unaffected with GP treatment.

  3. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  4. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging.

    PubMed

    Buechel, Heather M; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L; Thibault, Olivier; Blalock, Eric M

    2014-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9-12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.

  5. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Staggs, Kendra; Anderson, Katie L.; Thibault, Olivier; Blalock, Eric M.

    2013-01-01

    Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors. PMID:24575039

  6. Poststroke Cell Therapy of the Aged Brain.

    PubMed

    Popa-Wagner, Aurel; Filfan, Madalina; Uzoni, Adriana; Pourgolafshan, Pouya; Buga, Ana-Maria

    2015-01-01

    During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC), the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs), mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment. PMID:26347826

  7. Protein purification and cloning of diacylglycerol lipase from rat brain.

    PubMed

    Aso, Chizu; Araki, Mari; Ohshima, Noriyasu; Tatei, Kazuaki; Hirano, Tohko; Obinata, Hideru; Kishi, Mikiko; Kishimoto, Koji; Konishi, Akimitsu; Goto, Fumio; Sugimoto, Hiroyuki; Izumi, Takashi

    2016-06-01

    Diacylglycerol (DG) lipase, which hydrolyses 1-stearoyl-2-arachidonyl-sn-glycerol to produce an endocannabinoid, 2-arachidonoylglycerol, was purified from the soluble fraction of rat brain lysates. DG lipase was purified about 1,200-fold by a sequential column chromatographic procedure. Among proteins identified by mass spectrometry analysis in the partially purified DG lipase sample, only DDHD domain containing two (DDHD2), which was formerly regarded as a phospholipase A1, exhibited significant DG lipase activity. Rat DDHD2 expressed in Chinese hamster ovary cells showed similar enzymatic properties to partially purified DG lipase from rat brain. The source of DG lipase activity in rat brain was immunoprecipitated using anti-DDHD2 antibody. Thus, we concluded that the DG lipase activity in the soluble fraction of rat brain is derived from DDHD2. DDHD2 is distributed widely in the rat brain. Immunohistochemical analysis revealed that DDHD2 is expressed in hippocampal neurons, but not in glia.

  8. Age, Dose, and Time-Dependency of Plasma and Tissue Distribution of Deltamethrine in Immature Rats

    EPA Science Inventory

    The major objective of this project was to characterize the systemic disposition of the pyrethroid, deltamethrin (DLT), in immature rats, with emphasis on the age-dependence of target organ (brain) dosimetry. Postnatal day (PND) 10, 21, and 40 male Sprague-Dawley rats received 0...

  9. Human and rat brain lipofuscin proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  10. Executive dysfunction, brain aging, and political leadership.

    PubMed

    Fisher, Mark; Franklin, David L; Post, Jerrold M

    2014-01-01

    Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function.

  11. Executive dysfunction, brain aging, and political leadership.

    PubMed

    Fisher, Mark; Franklin, David L; Post, Jerrold M

    2014-01-01

    Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function. PMID:25901887

  12. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats.

    PubMed

    Tomassoni, Daniele; Avola, Roberto; Di Tullio, Maria Antonietta; Sabbatini, Maurizio; Vitaioli, Lucia; Amenta, Francesco

    2004-05-01

    Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.

  13. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine.

    PubMed

    Long, Jiangang; Gao, Feng; Tong, Liqi; Cotman, Carl W; Ames, Bruce N; Liu, Jiankang

    2009-04-01

    To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-alpha-lipoic acid plus acetyl-L-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in K(m)) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage.

  14. Enriched environment increases myelinated fiber volume and length in brain white matter of 18-month female rats.

    PubMed

    Yang, Shu; Lu, Wei; Zhou, De-shan; Tang, Yong

    2015-04-23

    Cognition and memory decline with normal aging, which could be partly attributed to the degeneration of brain white matter. Previous studies demonstrated that exposure to an enriched environment (EE) could protect cognition and memory from aging. However, if or how EE might affect the brain white matter has not been thoroughly investigated. In the current study, 24 middle-aged (14-month-old) female Sprague -Dawley (SD) rats were randomly assigned to EE or standard environment (SE) for 4 months. At the end of the environment intervention, the Morris water maze tests were performed. Then, 5 rats were randomly selected from each group for stereological assessment of the brain white matter and its myelinated fibers. The results revealed that middle-aged rats living in EE displayed better spatial learning than SE controls. The white matter volume was 124.6 ± 7.8mm(3) in EE rats, which was significantly enlarged compared with 84.8 ± 3.4mm(3) in SE rats. Likewise, the myelinated fiber volume was markedly increased from 56.6 ± 1.7 mm(3) in SE rats to 87.2 ± 9.0mm(3) in EE rats; so was the myelinated fiber length from 83.5 ± 6.6 km in SE rats to 119.0 ± 10.0 km in EE rats. Our data suggested that EE could protect brain white matter and its myelinated fibers of female rats at middle age.

  15. Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain.

    PubMed

    Babenko, Nataliya A; Shakhova, Elena G

    2014-01-01

    Abnormalities of sphingolipid turnover in the brain during normal aging and age-related neurological disorders were associated with the neurons loss and cognitive malfunction. Calorie restriction (CR) prevented age-related deficits in hippocampal long-term potentiation and improved cognitive function at old age. In the paper we investigated the ceramide and sphingomyelin (SM) levels in the brain regions, which are critical for learning and memory of 3- and 24-month-old rats, as well as the correction of sphingolipid turnover in the brain of old rats, by means of the CR diet and modulators of SM turnover. Using the [methyl-(14)C-choline]SM, the neutral, but not the acid SMase activity has been observed to increase in both the hippocampus and brain cortex of 24-month-old rats with respect to 3-month-old animals. Age-dependent changes of neutral SMase activities were associated with ceramide accumulation and SM level drop in the brain structures studied. Treatment of the rats with the CR diet or N-acetylcysteine (NAC) or α-tocopherol acetate, but not an inhibitor of acid SMase imipramine, reduced the ceramide content and neutral SMase activity in the hippocampus of 24-month-old animals with respect to control rats of the same age. These results suggest that redox-sensitive neutral SMase plays important role in SM turnover dysregulation in both the hippocampus and neocortex at old age and that the CR diet can prevent the age-dependent accumulation of ceramide mainly via neutral SMase targeting.

  16. Age-related differences in the toxicity of ochratoxin A in female rats.

    PubMed

    Dortant, P M; Peters-Volleberg, G W; Van Loveren, H; Marquardt, R R; Speijers, G J

    2001-01-01

    Ochratoxin A (OTA) is a mycotoxin found in food and feedstuffs of plant and animal origin. OTA exposure is related to nephropathy in humans. Age-related differences, especially in nephro- and immunotoxicity of OTA, were investigated in young adult (aged 12 weeks) and old (aged 27-30 months) female SPF Wag rats, treated by gavage with 0, 0.07, 0.34 or 1.68 mg OTA/kg body weight for 4 weeks. In both age groups, survival was significantly decreased in the highest dose group. Clinical condition, body weight, clinical chemistry parameters (ALAT, ASAT, creatinin and urea) and target organs (as identified by weight and pathology - kidney, liver, adrenals, forestomach and brain) were affected by age and dose, but often more severely in old than in young rats. OTA induced primarily nephropathy. Old rats were more sensitive to induction of tubular karyomegaly and vacuolation/necrosis. In young rats, OTA induced a dose-related thickening of the basement membrane and reduction in splenic T-cell fraction. Decreased IgG levels were seen at 0.34 mg/kg OTA (young and old rats) and 1.68 mg/kg OTA (young rats). Vacuolation of the white brain matter (cerebellar medulla and ventral parts of the brain stem) was significantly increased in young rats at 0.34 and 1.68 mg/kg OTA and in old rats at 0.07 and 0.34 mg/kg OTA. It was concluded that: (1) the profiles of OTA toxicity for both age groups are similar, with the kidney and possibly the brain being primary target organs; (2) based on clinical and pathological data old rats are more sensitive to OTA than young rats; and (3) the immune system is probably not the primary target of OTA toxicity.

  17. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain.

    PubMed

    Ickes, B R; Pham, T M; Sanders, L A; Albeck, D S; Mohammed, A H; Granholm, A C

    2000-07-01

    A number of studies have demonstrated that both morphological and biochemical indices in the brain undergo alterations in response to environmental influences. In previous work we have shown that rats raised in an enriched environmental condition (EC) perform better on a spatial memory task than rats raised in isolated conditions (IC). We have also found that EC rats have a higher density of immunoreactivity than IC rats for both low and high affinity nerve growth factor (NGF) receptors in the basal forebrain. In order to determine if these alterations were coupled with altered levels of neurotrophins in other brain regions as well, we measured neurotrophin levels in rats that were raised in EC or IC conditions. Rats were placed in the different environments at 2 months of age and 12 months later brain regions were dissected and analyzed for NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) levels using Promega ELISA kits. We found that NGF and BDNF levels were increased in the cerebral cortex, hippocampal formation, basal forebrain, and hindbrain in EC animals compared to age-matched IC animals. NT-3 was found to be increased in the basal forebrain and cerebral cortex of EC animals as well. These findings demonstrate significant alterations in NGF, BDNF, and NT-3 protein levels in several brain regions as a result of an enriched versus an isolated environment and thus provide a possible biochemical basis for behavioral and morphological alterations that have been found to occur with a shifting environmental stimulus.

  18. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    PubMed

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  19. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    PubMed

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation. PMID:26342279

  20. Propofol Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats.

    PubMed

    Shi, Song-sheng; Zhang, Hua-bin; Wang, Chun-hua; Yang, Wei-zhong; Liang, Ri-sheng; Chen, Ye; Tu, Xian-kun

    2015-12-01

    Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1β in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation.

  1. [Effect of small doses of interferon-alpha on food conditioning in young and ageing rats].

    PubMed

    Loseva, E V; Loginova, N A; Biriukovan, L M; Mats, V N; Pasikova, N V

    2007-04-01

    Low doses (10 or 350 ME) of human interferon-alpha (HIA) were intranasally applied to young (3-4 months) and ageing (12-15 months) Wistar rats during food conditioning. In control groups, development of the conditioned reflex to acoustic stimulus (tone) did not differ significantly in young and ageing rats in the course of chronic applications of the HIA. However, the control ageing rats were better than young rats in time-interval conditioning. Small doses of HIA do not cause anorexia in rats whereas large doses do so. Tone-conditioning did not change in rats of both ages when they were treated with 10 ME of the HIA; moreover, 350 ME increased food motivation, especially in young rats. Time-interval conditioning in aging rats was descended by both doses to the level of young rats, whereas in young rats it did not change at all. We suggest that these differences between ages may by accounted for be different affinity and concentration of micro-opiod receptors (which are the targets for the HIA) in the brain structures responsible for food behaviour, and for counting time intervals.

  2. The role of the brain in female reproductive aging.

    PubMed

    Downs, Jodi L; Wise, Phyllis M

    2009-02-01

    In middle-aged women, follicular depletion is a critical factor mediating the menopausal transition; however, all levels of the hypothalamic-pituitary-gonadal (HPG) axis contribute to the age-related decline in reproductive function. To help elucidate the complex interactions between the ovary and brain during middle-age that lead to the onset of the menopause, we utilize animal models which share striking similarities in reproductive physiology. Our results show that during middle-age, prior to any overt irregularities in estrous cyclicity, the ability of 17beta-estradiol (E(2)) to modulate the cascade of neurochemical events required for preovulatory gonadotropin-releasing hormone (GnRH) release and a luteinizing hormone (LH) surge is diminished. Middle-aged female rats experience a delay in and an attenuation of LH release in response to E(2). Additionally, although we do not observe a decrease in GnRH neuron number until a very advanced age, E(2)-mediated GnRH neuronal activation declines during the earliest stages of age-related reproductive decline. Numerous hypothalamic neuropeptides and neurochemical stimulatory inputs (i.e., glutamate, norepinephrine (NE), and vasoactive intestinal peptide (VIP)) that drive the E(2)-mediated GnRH/LH surge appear to dampen with age or lack the precise temporal coordination required for a specific pattern of GnRH secretion, while inhibitory signals such as gamma-aminobutyric acid (GABA) and opioid peptides remain unchanged or elevated during the afternoon of proestrus. These changes, occurring at the level of the hypothalamus, lead to irregular estrous cycles and, ultimately, the cessation of reproductive function. Taken together, our studies indicate that the hypothalamus is an important contributor to age-related female reproductive decline.

  3. Exercise and the Aging Brain. (The 1982 C. H. McCloy Research Lecture)

    ERIC Educational Resources Information Center

    Spirduso, Waneen W.

    1983-01-01

    Exercise may postpone the deterioration in response speed that generally appears in the motor system of the aging by maintaining the nigrostriatal dopaminergic system in the brain. Exercise may also ameliorate symptoms of Parkinson's disease. Results of laboratory studies involving animals and rats are reported. (Author/PP)

  4. Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein.

    PubMed

    Banks, William A; Abrass, Christine K; Hansen, Kim M

    2016-01-01

    Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments.

  5. Brain Aging in the Oldest-Old

    PubMed Central

    von Gunten, A.; Ebbing, K.; Imhof, A.; Giannakopoulos, P.; Kövari, E.

    2010-01-01

    Nonagenarians and centenarians represent a quickly growing age group worldwide. In parallel, the prevalence of dementia increases substantially, but how to define dementia in this oldest-old age segment remains unclear. Although the idea that the risk of Alzheimer's disease (AD) decreases after age 90 has now been questioned, the oldest-old still represent a population relatively resistant to degenerative brain processes. Brain aging is characterised by the formation of neurofibrillary tangles (NFTs) and senile plaques (SPs) as well as neuronal and synaptic loss in both cognitively intact individuals and patients with AD. In nondemented cases NFTs are usually restricted to the hippocampal formation, whereas the progressive involvement of the association areas in the temporal neocortex parallels the development of overt clinical signs of dementia. In contrast, there is little correlation between the quantitative distribution of SP and AD severity. The pattern of lesion distribution and neuronal loss changes in extreme aging relative to the younger-old. In contrast to younger cases where dementia is mainly related to severe NFT formation within adjacent components of the medial and inferior aspects of the temporal cortex, oldest-old individuals display a preferential involvement of the anterior part of the CA1 field of the hippocampus whereas the inferior temporal and frontal association areas are relatively spared. This pattern suggests that both the extent of NFT development in the hippocampus as well as a displacement of subregional NFT distribution within the Cornu ammonis (CA) fields may be key determinants of dementia in the very old. Cortical association areas are relatively preserved. The progression of NFT formation across increasing cognitive impairment was significantly slower in nonagenarians and centenarians compared to younger cases in the CA1 field and entorhinal cortex. The total amount of amyloid and the neuronal loss in these regions were also

  6. Incidence of brain tumors in rats fed aspartame.

    PubMed

    Ishii, H

    1981-03-01

    The brain tumorigenicity of aspartame (APM) and of its diketopiperazine (DKP) was studied in 860 SCL Wistar rats. APM at dietary levels of 1 g/kg, 2 gK/, 4 g/kg or APM + DKP (3:1) 4 g/kg was fed for 104 weeks. One atypical astrocytoma was found in a control rat and 2 astrocytomas, 2 oligodendrogliomas and 1 ependymoma were scattered among the 4 test groups. There was no significant difference in the incidence of brain tumors between control and test groups. It is concluded that neither AMP nor DKP caused brain tumors in rats in this study.

  7. Social support, stress and the aging brain.

    PubMed

    Sherman, Stephanie M; Cheng, Yen-Pi; Fingerman, Karen L; Schnyer, David M

    2016-07-01

    Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support 'buffers' the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress. PMID:26060327

  8. Social support, stress and the aging brain.

    PubMed

    Sherman, Stephanie M; Cheng, Yen-Pi; Fingerman, Karen L; Schnyer, David M

    2016-07-01

    Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support 'buffers' the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress.

  9. The Influence of the Brain on Overpopulation, Ageing and Dependency.

    ERIC Educational Resources Information Center

    Cape, Ronald D. T.

    1989-01-01

    With time, an increasing number in the world population is becoming old, and changes in the aging brain mean that a significant proportion of the aged are likely to be dependent on others. The devotion of resources to research into the aging brain could bring benefits far outweighing the investment. (Author/CW)

  10. Methylglyoxal can mediate behavioral and neurochemical alterations in rat brain.

    PubMed

    Hansen, Fernanda; Pandolfo, Pablo; Galland, Fabiana; Torres, Felipe Vasconcelos; Dutra, Márcio Ferreira; Batassini, Cristiane; Guerra, Maria Cristina; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2016-10-01

    Diabetes is associated with loss of cognitive function and increased risk for Alzheimer's disease (AD). Advanced glycation end products (AGEs) are elevated in diabetes and AD and have been suggested to act as mediators of the cognitive decline observed in these pathologies. Methylglyoxal (MG) is an extremely reactive carbonyl compound that propagates glycation reactions and is, therefore, able to generate AGEs. Herein, we evaluated persistent behavioral and biochemical parameters to explore the hypothesis that elevated exogenous MG concentrations, induced by intracerebroventricular (ICV) infusion, lead to cognitive decline in Wistar rats. A high and sustained administration of MG (3μmol/μL; subdivided into 6days) was found to decrease the recognition index of rats, as evaluated by the object-recognition test. However, MG was unable to impair learning-memory processes, as shown by the habituation in the open field (OF) and Y-maze tasks. Moreover, a single high dose of MG induced persistent alterations in anxiety-related behavior, diminishing the anxiety-like parameters evaluated in the OF test. Importantly, MG did not alter locomotion behavior in the different tasks performed. Our biochemical findings support the hypothesis that MG induces persistent alterations in the hippocampus, but not in the cortex, related to glyoxalase 1 activity, AGEs content and glutamate uptake. Glial fibrillary acidic protein and S100B content, as well as S100B secretion (astroglial-related parameters of brain injury), were not altered by ICV MG administration. Taken together, our data suggest that MG interferes directly in brain function and that the time and the levels of exogenous MG determine the different features that can be seen in diabetic patients.

  11. Methylglyoxal can mediate behavioral and neurochemical alterations in rat brain.

    PubMed

    Hansen, Fernanda; Pandolfo, Pablo; Galland, Fabiana; Torres, Felipe Vasconcelos; Dutra, Márcio Ferreira; Batassini, Cristiane; Guerra, Maria Cristina; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2016-10-01

    Diabetes is associated with loss of cognitive function and increased risk for Alzheimer's disease (AD). Advanced glycation end products (AGEs) are elevated in diabetes and AD and have been suggested to act as mediators of the cognitive decline observed in these pathologies. Methylglyoxal (MG) is an extremely reactive carbonyl compound that propagates glycation reactions and is, therefore, able to generate AGEs. Herein, we evaluated persistent behavioral and biochemical parameters to explore the hypothesis that elevated exogenous MG concentrations, induced by intracerebroventricular (ICV) infusion, lead to cognitive decline in Wistar rats. A high and sustained administration of MG (3μmol/μL; subdivided into 6days) was found to decrease the recognition index of rats, as evaluated by the object-recognition test. However, MG was unable to impair learning-memory processes, as shown by the habituation in the open field (OF) and Y-maze tasks. Moreover, a single high dose of MG induced persistent alterations in anxiety-related behavior, diminishing the anxiety-like parameters evaluated in the OF test. Importantly, MG did not alter locomotion behavior in the different tasks performed. Our biochemical findings support the hypothesis that MG induces persistent alterations in the hippocampus, but not in the cortex, related to glyoxalase 1 activity, AGEs content and glutamate uptake. Glial fibrillary acidic protein and S100B content, as well as S100B secretion (astroglial-related parameters of brain injury), were not altered by ICV MG administration. Taken together, our data suggest that MG interferes directly in brain function and that the time and the levels of exogenous MG determine the different features that can be seen in diabetic patients. PMID:27235733

  12. Incentive relativity in middle aged rats.

    PubMed

    Justel, N; Mustaca, A; Boccia, M; Ruetti, E

    2014-01-24

    Response to a reinforcer is affected by prior experience with different reward values of that reward, a phenomenon known as incentive relativity. Two different procedures to study this phenomenon are the incentive downshift (ID) and the consummatory anticipatory negative contrast (cANC), the former is an emotional-cognitive protocol and the latter cognitive one. Aged rodents, as also well described in aged humans, exhibit alterations in cognitive functions. The main goal of this work was to evaluate the effect of age in the incentive' assessment using these two procedures. The results indicated that aged rats had an adequate assessment of the rewards but their performance is not completely comparable to that of young subjects. They recover faster from the ID and they had a cognitive impairment in the cANC. The results are discussed in relation to age-related changes in memory and emotion.

  13. 26Al uptake and accumulation in the rat brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  14. Cognitive Skills and the Aging Brain: What to Expect.

    PubMed

    Howieson, Diane B

    2015-01-01

    Whether it's a special episode on the PBS series, "The Secret Life of the Brain" or an entire issue dedicated to the topic in the journal Science, a better understanding of the aging brain is viewed as a key to an improved quality of life in a world where people live longer. Despite dementia and other neurobiological disorders that are associated with aging, improved imaging has revealed that even into our seventies, our brains continue producing new neurons. Our author writes about how mental health functions react to the normal aging process, including why an aging brain may even form the basis for wisdom. PMID:27408669

  15. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents

    PubMed Central

    Zhou, June; Keenan, Michael J.; Fernandez-Kim, Sun Ok; Pistell, Paul J.; Ingram, Donald K.; Li, Bing; Raggio, Anne M.; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T.; Blackman, Marc R.; Keller, Jeffrey N.; Martin, Roy J.

    2013-01-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (1) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (2) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (3) a higher serum active GLP-1. Third, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (1) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and that (2) GLP-1 is important in the optimal feeding response to a fast. PMID:23818307

  16. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents.

    PubMed

    Zhou, June; Keenan, Michael J; Fernandez-Kim, Sun Ok; Pistell, Paul J; Ingram, Donald K; Li, Bing; Raggio, Anne M; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T; Blackman, Marc R; Keller, Jeffrey N; Martin, Roy J

    2013-11-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast.

  17. Short-term nutritional folate deficiency in rats has a greater effect on choline and acetylcholine metabolism in the peripheral nervous system than in the brain, and this effect escalates with age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that age- and tissue-specific differences in choline metabolism is differentially affected by folate deficiency (FD) was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats, who were fed for 10 weeks either a control diet or a folate deficient diet startin...

  18. The pituitary - Aging and spaceflown rats

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.

    1991-01-01

    Decrements in growth hormone (GH) release we observed in two spaceflight experiments and four tail-suspended rat studies mimic age-associated changes in the mammalian pituitary GH system seen by Meites and others. The spaceflight data suggest that formation of high molecular weight bioactive disulfide-linked aggregates of the 20 and 22K monomeric GH forms may be reduced in microgravity, thereby, reducing target tissue activity. Correlative studies to confirm spaceflight as a model for pituitary GH system aging should include: (1) investigation of mechanisms of intracellular hormone packaging, (2) consequences to biological activity of the hormone molecule, and (3) study of intracellular microtubule dynamics.

  19. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain.

    PubMed

    Soares, Ricardo V; Do, Tuan M; Mabondzo, Aloïse; Pons, Gérard; Chhun, Stéphanie

    2016-04-01

    The blood-brain barrier (BBB) is responsible for the control of solutes' concentration in the brain. Tight junctions and multiple ATP-binding cassette (ABC) and SoLute Carrier (SLC) efflux transporters protect brain cells from xenobiotics, therefore reducing brain exposure to intentionally administered drugs. In epilepsy, polymorphisms and overexpression of efflux transporters genes could be associated with pharmacoresistance. The ontogeny of these efflux transporters should also be addressed because their expression during development may be related to different brain exposure to antiepileptic drugs in the immature brain. We detected statistically significant higher expression of Abcb1b and Slc16a1 genes, and lower expression of Abcb1a and Abcg2 genes between the post-natal day 14 (P14) and the adult rat microvessels. P-gP efflux activity was also shown to be lower in P14 rats when compared with the adults. The P-gP proteins coded by rodent genes Abcb1a and Abcb1b are known to have different substrate affinities. The role of the Abcg2 gene is less clear in pharmacoresistance in epilepsy, nonetheless the coded protein Bcrp is frequently associated with drug resistance. Finally, we observed a higher expression of the Mct1 transporter gene in the P14 rat brain microvessels. Accordingly to our results, we suppose that age may be another factor influencing brain exposure to antiepileptics as a consequence of different expression patterns of efflux transporters between the adult and immature BBB.

  20. 17β-estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas.

    PubMed

    Kiss, Agata; Delattre, Ana Márcia; Pereira, Sofia I R; Carolino, Ruither G; Szawka, Raphael E; Anselmo-Franci, Janete A; Zanata, Sílvio M; Ferraz, Anete C

    2012-02-01

    Clinical and experimental evidence suggest that estrogens have a major impact on cognition, presenting neurotrophic and neuroprotective actions in regions involved in such function. In opposite, some studies indicate that certain hormone therapy regimens may provoke detrimental effects over female cognitive and neurological function. Therefore, we decided to investigate how estrogen treatment would influence cognition and depression in different ages. For that matter, this study assessed the effects of chronic 17β-estradiol treatment over cognition and depressive-like behaviors of young (3 months old), adult (7 months old) and middle-aged (12 months old) reproductive female Wistar rats. These functions were also correlated with alterations in the serotonergic system, as well as hippocampal BDNF. 17β-Estradiol treatment did not influence animals' locomotor activity and exploratory behavior, but it was able to improve the performance of adult and middle-aged rats in the Morris water maze, the latter being more responsive to the treatment. Young and adult rats displayed decreased immobility time in the forced swimming test, suggesting an effect of 17β-estradiol also over such depressive-like behavior. This same test revealed increased swimming behavior, triggered by serotonergic pathway, in adult rats. Neurochemical evaluations indicated that 17β-estradiol treatment was able to increase serotonin turnover rate in the hippocampus of adult rats. Interestingly, estrogen treatment increased BDNF levels from animals of all ages. These findings support the notion that the beneficial effects of 17β-estradiol over spatial reference memory and depressive-like behavior are evident only when hormone therapy occurs at early ages and early stages of hormonal decline.

  1. The effect of aging on synaptosomal Ca2+ transport in the brain.

    PubMed

    Sun, A Y; Seaman, R N

    1977-03-01

    The effect of aging on Ca2+ -transport in synaptosomal preparations from rat brains was assessed by measuring the accumulation of radioactive 45Ca within these particles. Four groups of rats at 6, 12 24 and 30 months of age were used for this study. Synaptosomal particles were isolated from the cerebral cortex of each animal and the radioactive 45Ca inside the particles were measured after incubating the particles with media containing an energy source and 45Ca Cl2. Results indicated that the transport of 45Ca was lower in the younger rats than the older groups. A 20% increase was consistent with the old rats (30 mo) as compared with the young ones (6 mo). The increase in Ca2+ -transport across synaptic plasma membranes may be related to the transmitter release and behavioral activity after senescence. PMID:885150

  2. Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats.

    PubMed

    Bouji, Marc; Lecomte, Anthony; Hode, Yannick; de Seze, René; Villégier, Anne-Sophie

    2012-06-01

    The widespread use of mobile phones raises the question of the effects of electromagnetic fields (EMF, 900 MHz) on the brain. Previous studies reported increased levels of the glial fibrillary acidic protein (GFAP) in the rat's brain after a single exposure to 900 MHz global system for mobile (GSM) signal, suggesting a potential inflammatory process. While this result was obtained in adult rats, no data is currently available in older animals. Since the transition from middle-age to senescence is highly dependent on environment and lifestyle, we studied the reactivity of middle-aged brains to EMF exposure. We assessed the effects of a single 15 min GSM exposure (900 MHz; specific absorption rate (SAR)=6 W/kg) on GFAP expression in young adults (6 week-old) and middle-aged rats (12 month-old). Brain interleukin (IL)-1β and IL-6, plasmatic levels of corticosterone (CORT), and emotional memory were also assessed. Our data indicated that, in contrast to previously published work, acute GSM exposure did not induce astrocyte activation. Our results showed an IL-1β increase in the olfactory bulb and enhanced contextual emotional memory in GSM-exposed middle-aged rats, and increased plasmatic levels of CORT in GSM-exposed young adults. Altogether, our data showed an age dependency of reactivity to GSM exposure in neuro-immunity, stress and behavioral parameters. Reproducing these effects and studying their mechanisms may allow a better understanding of mobile phone EMF effects on neurobiological parameters.

  3. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    SciTech Connect

    Lei Ming; Hua Xiangdong; Xiao Ming Ding Jiong; Han Qunying Hu Gang

    2008-05-16

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose.

  4. Skin tumors in aging Long Evans rats.

    PubMed

    Esfandiari, Adeleh; Loya, Theresa; Lee, Jeffrey L

    2002-06-01

    We report 25 cases of skin neoplasm observed among 30 Long Evans rats serving as controls in a psychosocial behavioral study conducted in the Vivarium at Charles R. Drew University, Los Angeles, CA. The animals were 10 weeks old at the beginning of the study. All the skin tumors developed at 18 to 26 months of age and slowly enlarged over a period of 9 months. Multiple nodules occurred in 8 males and 6 females. None of the tumors regressed. The tumors were located around the hind leg and dorso-medial area and measured 1 to 2 cm. Physical examination revealed firm well demarcated dermal masses. Most of the tumor nodules were intradermal, and some had a central ulcerated or keratin-filled core. Microscopic examination performed on some of the tumors showed findings of classic Keratoacanthoma, whereas others showed histologic features suggestive of squamous cell carcinoma. These findings indicate a high rate (83%) of spontaneous skin neoplasms among aging Long Evans rats. To our knowledge, such a high rate of skin neoplasms in aged rodents has not been described in the literature. Furthermore, further studies should be undertaken to confirm these findings and to assess whether these rodents might serve as a model for studying the alterations in the immune system with aging.

  5. The beneficial effects of tree nuts on the aging brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary patterns may play an important role in protecting the brain from the cellular and cognitive dysfunction associated with the aging process and neurodegenerative diseases. Tree nuts are showing promise as possible dietary interventions for age-related brain dysfunction. Tree nuts are an impo...

  6. Aging effects on oxidative phosphorylation in rat adrenocortical mitochondria.

    PubMed

    Solinas, Paola; Fujioka, Hisashi; Radivoyevitch, Tomas; Tandler, Bernard; Hoppel, Charles L

    2014-06-01

    Does aging in itself lead to alteration in adrenocortical mitochondrial oxidative phosphorylation? Mitochondria from Fischer 344 (F344) rats (6 and 24 months old), Brown Norway rats (6 and 32 months old) and F344-Brown Norway hybrid rats (6 and 30 months old) were compared. Mitochondria were isolated from extirpated adrenal cortex. The yields of mitochondria were quantitatively similar in all rat strains irrespective of age. In order to assess the activity of each mitochondrial complex, several different substrates were tested and the rate of oxidative phosphorylation measured. Aging does not affect mitochondrial activity except in the F344 rat adrenal cortex where the maximal ADP-stimulated oxidative phosphorylation decreased with age. We hypothesize that impaired synthesis of steroid hormones by the adrenal cortex with age in F344 rats might be due to decreased adrenocortical mitochondrial oxidative phosphorylation. We conclude that aging results in adrenocortical mitochondria effects that are non-uniform across different rat strains.

  7. Actin purification from a gel of rat brain extracts.

    PubMed

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles. PMID:6529588

  8. Effects of photoradiation therapy on normal rat brain

    SciTech Connect

    Cheng, M.K.; McKean, J.; Boisvert, D.; Tulip, J.; Mielke, B.W.

    1984-12-01

    Laser photoradiation of the brain via an optical fiber positioned 5 mm above a burr hole was performed after the injection of hematoporphyrin derivative (HpD) in 33 normal rats and 6 rats with an intracerebral glioma. Normal rats received HpD, 5 or 10 mg/kg of body weight, followed by laser exposure at various doses or were exposed to a fixed laser dose after the administration of HpD, 2.5 to 20 mg/kg. One control group received neither HpD nor laser energy, and another was exposed to laser energy only. The 6 rats bearing an intracranial 9L glioma were treated with HpD, 5 mg/kg, followed by laser exposure at various high doses. The temperature in the cortex or tumor was measured with a probe during laser exposure. The rats were killed 72 hours after photoradiation, and the extent of necrosis of cerebral tissue was measured microscopically. In the normal rats, the extent of brain damage correlated with increases in the dose of both the laser and the HpD. In all 6 glioma-bearing rats, the high laser doses produced some focal necrosis in the tumors but also damaged adjacent normal brain tissue. The authors conclude that damage to normal brain tissue may be a significant complication of high dose photoradiation therapy for intracranial tumors.

  9. The effects of aging on dopaminergic neurotransmission: a microPET study of [11C]-raclopride binding in the aged rodent brain.

    PubMed

    Hoekzema, E; Herance, R; Rojas, S; Pareto, D; Abad, S; Jiménez, X; Figueiras, F P; Popota, F; Ruiz, A; Torrent, È; Fernández-Soriano, F J; Rocha, M; Rovira, M; Víctor, V M; Gispert, J D

    2010-12-29

    Rodent models are frequently used in aging research to investigate biochemical age effects and aid in the development of therapies for pathological and non-pathological age-related degenerative processes. In order to validate the use of animal models in aging research and pave the way for longitudinal intervention-based animal studies, the consistency of cerebral aging processes across species needs to be evaluated. The dopaminergic system seems particularly susceptible to the aging process, and one of the most consistent findings in human brain aging research is a decline in striatal D2-like receptor (D2R) availability, quantifiable by positron emission tomography (PET) imaging. In this study, we aimed to assess whether similar age effects can be discerned in rat brains, using in vivo molecular imaging with the radioactive compound [(11)C]-raclopride. We observed a robust decline in striatal [(11)C]-raclopride uptake in the aged rats in comparison to the young control group, comprising a 41% decrement in striatal binding potential. In accordance with human studies, these results indicate that substantial reductions in D2R availability can be measured in the aged striatal complex. Our findings suggest that rat and human brains exhibit similar biochemical alterations with age in the striatal dopaminergic system, providing support for the pertinence of rodent models in aging research.

  10. Brain uptake of ketoprofen-lysine prodrug in rats.

    PubMed

    Gynther, Mikko; Jalkanen, Aaro; Lehtonen, Marko; Forsberg, Markus; Laine, Krista; Ropponen, Jarmo; Leppänen, Jukka; Knuuti, Johanna; Rautio, Jarkko

    2010-10-31

    The blood-brain barrier (BBB) controls the entry of xenobiotics into the brain. Often the development of central nervous system drugs needs to be terminated because of their poor brain uptake. We describe a way to achieve large neutral amino acid transporter (LAT1)-mediated drug transport into the rat brain. We conjugated ketoprofen to an amino acid l-lysine so that the prodrug could access LAT1. The LAT1-mediated brain uptake of the prodrug was demonstrated with in situ rat brain perfusion technique. The ability of the prodrug to deliver ketoprofen into the site of action, the brain intracellular fluid, was determined combining in vivo and in vitro experiments. A rapid brain uptake from blood and cell uptake was seen both in in situ and in vivo experiments. Therefore, our results show that a prodrug approach can achieve uptake of drugs via LAT1 into the brain intracellular fluid. The distribution of the prodrug in the brain parenchyma and the site of parent drug release in the brain were shown with in vivo and in vitro studies. In addition, our results show that although lysine or ketoprofen are not LAT1-substrates themselves, by combining these molecules, the formed prodrug has affinity for LAT1. PMID:20727958

  11. Elevated dynorphin in the hippocampal formation of aged rats: Relation to cognitive impairment on a spatial learning task

    SciTech Connect

    Jiang, Hannkuang; Owyang, V.; Hong, Jaushyong; Gallagher, M. )

    1989-04-01

    Radioimmunoassay revealed increased dynorphin A(1-8)-like immunoreactivity (dynA(1-8)LI) in the aged rat brain. Among a number of brain regions examined, an age-related dynA(1-8)LI elevation was found only in the hippocampal formation and frontal cortex. Moreover, the increase in dynA(1-8)LI in the aged hippocampus was associated with a decline in spatial learning ability: dynA(1-8)LI distinguished aged rats that were behaviorally impaired from aged cohorts that learned the spatial task as rapidly as younger animals. Northern blot hybridization using a {sup 32}P-labeled complementary RNA probe encoding rat prodynorphin indicated that the abundance of prodynorphin mRNA was also significantly increased in the hippocampal formation of aged rats with identified spatial learning impairments.

  12. In vitro comparison of rat and chicken brain neurotoxic esterase

    SciTech Connect

    Novak, R.; Padilla, S.

    1986-04-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. (/sup 3/H)Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay.

  13. Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats.

    PubMed

    Posadas, S J; Caz, V; Largo, C; De la Gándara, B; Matallanas, B; Reglero, G; De Miguel, E

    2009-01-01

    Rosemary leaves, "Rosmarinus officinalis", possess a variety of antioxidant, anti-tumoral and anti-inflammatory bioactivities. We hypothesized that rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats. This work evaluates whether supplementing their diet with supercritical fluid (SFE) rosemary extract containing 20% antioxidant carnosic acid (CA) reduces oxidative stress in aged rats. Aged Wistar rats (20 months old) were included in the study. Rats were fed for 12 weeks with a standard kibble (80%) supplemented with turkey breast (20%) containing none or one of two different SFE rosemary concentrations (0.2% and 0.02%). After sacrifice, tissue samples were collected from heart and brain (cortex and hippocampus). Enzyme activities of catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD) and nitric oxide synthase (NOS) were quantitatively analyzed. Lipid peroxidation and levels of reactive oxygen species (ROS) were also determined. Rosemary decreased lipid peroxidation in both brain tissues. The levels of catalase activities in heart and cortex were decreased in the rosemary-treated groups. The SFE rosemary-treated rats presented lower NOS levels in heart and lower ROS levels in hippocampus than the control rats. Supplementing the diet of aged rats with SFE rosemary extract produced a decrease in antioxidant enzyme activity, lipid peroxidation and ROS levels that was significant for catalase activity in heart and brain, NOS in heart, and LPO and ROS levels in different brain tissues. These observations suggest that the rosemary supplement improved the oxidative stress status in old rats.

  14. Plasticity of the aging brain: new directions in cognitive neuroscience.

    PubMed

    Gutchess, Angela

    2014-10-31

    Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span.

  15. Brain glucose content in fetuses of ethanol-fed rats

    SciTech Connect

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  16. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  17. Neuroprotection by Vitamin C Against Ethanol-Induced Neuroinflammation Associated Neurodegeneration in the Developing Rat Brain.

    PubMed

    Ahmad, Ashfaq; Shah, Shahid A; Badshah, Haroon; Kim, Min J; Ali, Tahir; Yoon, Gwang H; Kim, Tae H; Abid, Nouman B; Rehman, Shafiq Ur; Khan, Sohail; Kim, Myeong O

    2016-01-01

    Ethanol induces oxidative stress and its exposure during early developmental age causes neuronal cell death which leads to several neurological disorders. We previously reported that vitamin C can protect against ethanol-induced apoptotic cell death in the developing rat brain. Here, we extended our study to understand the therapeutic efficacy of vitamin C against ethanol-induced oxidative stress, neuroinflammation mediated neurodegeneration in postnatal day 7 (PND7) rat. A single episode of ethanol (5g/kg) subcutaneous administration to postnatal day 7 rat significantly induced the production of reactive oxygen species (ROS), and activated both microglia and astrocytes followed by the induction of different apoptotic markers. On the other hand, due to its free radical scavenging properties, vitamin C treatment significantly reduced the production of reactive oxygen species, suppressed both activated microglia and astrocytes and reversed other changes including elevated level of Bax/Bcl-2 ratio, cytochrome c and different caspases such as caspase-9 and caspase-3 induced by ethanol in developing rat brain. Moreover, vitamin C treatment also reduced ethanol-induced activation of Poly [ADP-Ribose] Polymerase 1(PARP-1) and neurodegeneration as evident from Flouro-Jade-B and Nissl stainined neuronal cell death in PND7 rat brain. These findings suggest that vitamin C mitigated ethanol-induced oxidative stress, neuroinflammation and apoptotic neuronal loss and may be beneficial against ethanol damaging effects in brain development. PMID:26831257

  18. Neuroprotection by Vitamin C Against Ethanol-Induced Neuroinflammation Associated Neurodegeneration in the Developing Rat Brain.

    PubMed

    Ahmad, Ashfaq; Shah, Shahid A; Badshah, Haroon; Kim, Min J; Ali, Tahir; Yoon, Gwang H; Kim, Tae H; Abid, Nouman B; Rehman, Shafiq Ur; Khan, Sohail; Kim, Myeong O

    2016-01-01

    Ethanol induces oxidative stress and its exposure during early developmental age causes neuronal cell death which leads to several neurological disorders. We previously reported that vitamin C can protect against ethanol-induced apoptotic cell death in the developing rat brain. Here, we extended our study to understand the therapeutic efficacy of vitamin C against ethanol-induced oxidative stress, neuroinflammation mediated neurodegeneration in postnatal day 7 (PND7) rat. A single episode of ethanol (5g/kg) subcutaneous administration to postnatal day 7 rat significantly induced the production of reactive oxygen species (ROS), and activated both microglia and astrocytes followed by the induction of different apoptotic markers. On the other hand, due to its free radical scavenging properties, vitamin C treatment significantly reduced the production of reactive oxygen species, suppressed both activated microglia and astrocytes and reversed other changes including elevated level of Bax/Bcl-2 ratio, cytochrome c and different caspases such as caspase-9 and caspase-3 induced by ethanol in developing rat brain. Moreover, vitamin C treatment also reduced ethanol-induced activation of Poly [ADP-Ribose] Polymerase 1(PARP-1) and neurodegeneration as evident from Flouro-Jade-B and Nissl stainined neuronal cell death in PND7 rat brain. These findings suggest that vitamin C mitigated ethanol-induced oxidative stress, neuroinflammation and apoptotic neuronal loss and may be beneficial against ethanol damaging effects in brain development.

  19. Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats.

    PubMed

    Çoban, Jale; Doğan-Ekici, Işın; Aydın, A Fatih; Betül-Kalaz, Esra; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2015-06-01

    D-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of whole fresh blueberry (BB) (Vaccinium corymbosum L.) treatment on oxidative stress in age-related brain damage model. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with 5 % (BB1) and 10 % (BB2) BB containing chow for two months. Malondialdehyde (MDA),protein carbonyl (PC) and glutathione (GSH) levels, and Cu Zn-superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities as well as acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brain by immunohistochemistry. MDA and PC levels and AChE activity increased, but GSH levels, SOD and GSH-Px activities decreased together with histopathological structural damage in the brain of GAL-treated rats. BB treatments, especially BB2 reduced MDA and PC levels and AChE activity and elevated GSH levels and GSH-Px activity. BB1 and BB2 treatments diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. These results indicate that BB partially prevented the shift towards an imbalanced prooxidative status and apoptosis together with histopathological amelioration by acting as an antioxidant (radical scavenger) itself in GAL-treated rats.

  20. Prediction of brain age suggests accelerated atrophy after traumatic brain injury

    PubMed Central

    Cole, James H; Leech, Robert; Sharp, David J

    2015-01-01

    Objective The long-term effects of traumatic brain injury (TBI) can resemble observed in normal ageing, suggesting that TBI may accelerate the ageing process. We investigate this using a neuroimaging model that predicts brain age in healthy individuals and then apply it to TBI patients. We define individuals' differences in chronological and predicted structural "brain age," and test whether TBI produces progressive atrophy and how this relates to cognitive function. Methods A predictive model of normal ageing was defined using machine learning in 1,537 healthy individuals, based on magnetic resonance imaging–derived estimates of gray matter (GM) and white matter (WM). This ageing model was then applied to test 99 TBI patients and 113 healthy controls to estimate brain age. Results The initial model accurately predicted age in healthy individuals (r * 0.92). TBI brains were estimated to be "older," with a mean predicted age difference (PAD) between chronological and estimated brain age of 4.66 years (±10.8) for GM and 5.97 years (±11.22) for WM. This PAD predicted cognitive impairment and correlated strongly with the time since TBI, indicating that brain tissue loss increases throughout the chronic postinjury phase. Interpretation TBI patients' brains were estimated to be older than their chronological age. This discrepancy increases with time since injury, suggesting that TBI accelerates the rate of brain atrophy. This may be an important factor in the increased susceptibility in TBI patients for dementia and other age-associated conditions, motivating further research into the age-like effects of brain injury and other neurological diseases. PMID:25623048

  1. A detailed viscoelastic characterization of the P17 and adult rat brain.

    PubMed

    Elkin, Benjamin S; Ilankovan, Ashok I; Morrison, Barclay

    2011-11-01

    Brain is a morphologically and mechanically heterogeneous organ. Although rat brain is commonly used as an experimental neurophysiological model for various in vivo biomechanical studies, little is known about its regional viscoelastic properties. To address this issue, we have generated viscoelastic mechanical property data for specific anatomical regions of the P17 and adult rat brain. These ages are commonly used in rat experimental models. We measured mechanical properties of both white and gray matter regions in coronal slices with a custom-designed microindentation device performing stress-relaxation indentations to 10% effective strain. Shear moduli calculated for short (100?ms), intermediate (1?sec), and long (20?sec) time points, ranged from ?1?kPa for short term moduli to ?0.4?kPa for long term moduli. Both age and anatomic region were significant factors affecting the time-dependent shear modulus. White matter regions and regions of the cerebellum were much more compliant than those of the hippocampus, cortex, and thalamus. Linear viscoelastic models (Prony series, continuous phase lag, and a power law model) were fit to the time-dependent shear modulus data. All models fit the data equally with no significant differences between them (F-test; p>0.05). The F-test was also used to statistically determine that a Prony series with three time-dependent parameters accurately fit the data with no added benefit from additional terms. The age- and region-dependent rat brain viscoelastic properties presented here will help inform future biomechanical models of the rat brain with specific and accurate regional mechanical property data. PMID:21341982

  2. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    EPA Science Inventory

    The Brown Norway (BN) rat is a popular strain for aging studies. There is little information on effects of age on baseline cardiac and thermoregulatory parameters in undisturbed BN rats even though cardiac and thermal homeostasis is linked to many pathological deficits in the age...

  3. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  4. Ulinastatin attenuates brain edema after traumatic brain injury in rats.

    PubMed

    Cui, Tao; Zhu, Gangyi

    2015-03-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. The objective of this study was to evaluate whether Ulinastatin (UTI), a serine protease inhibitor, attenuates brain edema following TBI. Our results showed that treatment with UTI at a dose of 50,000 U/kg attenuated the brain edema, as assayed by water content 24 h after TBI induction. This attenuation was associated with a significant decrease of the expression level of aquaporin-4. In addition, we showed that UTI treatment also markedly inhibited the expression of pro-inflammatory cytokines including IL-1β and TNF-α as well as activity of NF-κB. Collectively, our findings suggested that UTI may be a promising strategy to treat brain edema following TBI.

  5. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders.

    PubMed

    Sibille, Etienne

    2013-03-01

    The increased risk for neurodegenerative and neuropsychiatric disorders associated with extended lifespan has long suggested mechanistic links between chronological age and brain-related disorders, including depression, Recent characterizations of age-dependent gene expression changes now show that aging of the human brain engages a specific set of biological pathways along a continuous lifelong trajectory, and that the same genes that are associated with normal brain aging are also frequently and similarly implicated in depression and other brain-related disorders. These correlative observations suggest a model of age-by-disease molecular interactions, in which brain aging promotes biological changes associated with diseases, and additional environmental factors and genetic variability contribute to defining disease risk or resiliency trajectories. Here we review the characteristic features of brain aging in terms of changes in gene function over time, and then focus on evidence supporting accelerated molecular aging in depression. This proposed age-by-disease biological interaction model addresses the current gap in research between "normal" brain aging and its connection to late-life diseases. The implications of this model are profound, as it provides an investigational framework for identifying critical moderating factors, outlines opportunities for early interventions or preventions, and may form the basis for a dimensional definition of diseases that goes beyond the current categorical system.

  6. Distribution of kappa opioid receptors in the brain of young and old male rats

    SciTech Connect

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F. )

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. {sup 3}H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals.

  7. Environmental enrichment restores neurogenesis and rapid acquisition in aged rats.

    PubMed

    Speisman, Rachel B; Kumar, Ashok; Rani, Asha; Pastoriza, Jessica M; Severance, Jamie E; Foster, Thomas C; Ormerod, Brandi K

    2013-01-01

    Strategies combatting cognitive decline among the growing aging population are vital. We tested whether environmental enrichment could reverse age-impaired rapid spatial search strategy acquisition concomitantly with hippocampal neurogenesis in rats. Young (5-8 months) and aged (20-22 months) male Fischer 344 rats were pair-housed and exposed to environmental enrichment (n = 7 young, 9 aged) or housed individually (n = 7 young, 7 aged) for 10 weeks. After 5 weeks, hidden platform trials (5 blocks of 3 trials; 15 m inter-block interval), a probe trial, and then visible platform trials (5 blocks of 3 trials; 15 m inter-block interval) commenced in the water maze. One week after testing, rats were given 5 daily intraperitoneal bromodeoxyuridine (50 mg/kg) injections and perfused 4 weeks later to quantify neurogenesis. Although young rats outperformed aged rats, aged enriched rats outperformed aged individually housed rats on all behavioral measures. Neurogenesis decreased with age but enrichment enhanced new cell survival, regardless of age. The novel correlation between new neuron number and behavioral measures obtained in a rapid water maze task among aged rats, suggests that environmental enrichment increases their ability to rapidly acquire and flexibly use spatial information along with neurogenesis.

  8. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients. PMID:26826009

  9. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  10. Hippocampal Neuron Number Is Unchanged 1 Year After Fractionated Whole-Brain Irradiation at Middle Age

    SciTech Connect

    Shi Lei Molina, Doris P.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2008-06-01

    Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of {sup 137}Cs {gamma} rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats were anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.

  11. Nutritional strategies to optimise cognitive function in the aging brain.

    PubMed

    Wahl, Devin; Cogger, Victoria C; Solon-Biet, Samantha M; Waern, Rosilene V R; Gokarn, Rahul; Pulpitel, Tamara; Cabo, Rafael de; Mattson, Mark P; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2016-11-01

    Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.

  12. Hydrophilic solute transport across the rat blood-brain barrier

    SciTech Connect

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.

  13. Exploring age-related brain degeneration in meditation practitioners.

    PubMed

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research.

  14. Successful brain aging: plasticity, environmental enrichment, and lifestyle.

    PubMed

    Mora, Francisco

    2013-03-01

    Aging is a physiological process that can develop without the appearance of concurrent diseases. However, very frequently, older people suffer from memory loss and an accelerated cognitive decline. Studies of the neurobiology of aging are beginning to decipher the mechanisms underlying not only the physiology of aging of the brain but also the mechanisms that make people more vulnerable to cognitive dysfunction and neurodegenerative diseases. Today we know that the aging brain retains a considerable functional plasticity, and that this plasticity is positively promoted by genes activated by different lifestyle factors. In this article some of these lifestyle factors and their mechanisms of action are reviewed, including environmental enrichment and the importance of food intake and some nutrients. Aerobic physical exercise and reduction of chronic stress are also briefly reviewed. It is proposed that lifestyle factors are powerful instruments to promote healthy and successful aging of the brain and delay the appearance of age-related cognitive deficits in elderly people.

  15. Modeling the brain morphology distribution in the general aging population

    NASA Astrophysics Data System (ADS)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  16. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats

    PubMed Central

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M.; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  17. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats.

    PubMed

    Zakaria, Mohamed Naguib; El-Bassossy, Hany M; Barakat, Waleed

    2015-01-01

    Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications. PMID:26491434

  18. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context.

  19. Statistical Approaches for the Study of Cognitive and Brain Aging.

    PubMed

    Chen, Huaihou; Zhao, Bingxin; Cao, Guanqun; Proges, Eric C; O'Shea, Andrew; Woods, Adam J; Cohen, Ronald A

    2016-01-01

    Neuroimaging studies of cognitive and brain aging often yield massive datasets that create many analytic and statistical challenges. In this paper, we discuss and address several limitations in the existing work. (1) Linear models are often used to model the age effects on neuroimaging markers, which may be inadequate in capturing the potential nonlinear age effects. (2) Marginal correlations are often used in brain network analysis, which are not efficient in characterizing a complex brain network. (3) Due to the challenge of high-dimensionality, only a small subset of the regional neuroimaging markers is considered in a prediction model, which could miss important regional markers. To overcome those obstacles, we introduce several advanced statistical methods for analyzing data from cognitive and brain aging studies. Specifically, we introduce semiparametric models for modeling age effects, graphical models for brain network analysis, and penalized regression methods for selecting the most important markers in predicting cognitive outcomes. We illustrate these methods using the healthy aging data from the Active Brain Study. PMID:27486400

  20. Statistical Approaches for the Study of Cognitive and Brain Aging

    PubMed Central

    Chen, Huaihou; Zhao, Bingxin; Cao, Guanqun; Proges, Eric C.; O'Shea, Andrew; Woods, Adam J.; Cohen, Ronald A.

    2016-01-01

    Neuroimaging studies of cognitive and brain aging often yield massive datasets that create many analytic and statistical challenges. In this paper, we discuss and address several limitations in the existing work. (1) Linear models are often used to model the age effects on neuroimaging markers, which may be inadequate in capturing the potential nonlinear age effects. (2) Marginal correlations are often used in brain network analysis, which are not efficient in characterizing a complex brain network. (3) Due to the challenge of high-dimensionality, only a small subset of the regional neuroimaging markers is considered in a prediction model, which could miss important regional markers. To overcome those obstacles, we introduce several advanced statistical methods for analyzing data from cognitive and brain aging studies. Specifically, we introduce semiparametric models for modeling age effects, graphical models for brain network analysis, and penalized regression methods for selecting the most important markers in predicting cognitive outcomes. We illustrate these methods using the healthy aging data from the Active Brain Study. PMID:27486400

  1. Radial glia-like cells persist in the adult rat brain.

    PubMed

    Gubert, Fernanda; Zaverucha-do-Valle, Camila; Pimentel-Coelho, Pedro M; Mendez-Otero, Rosalia; Santiago, Marcelo F

    2009-03-01

    During development, radial glia cells contribute to neuronal migration and neurogenesis, and differentiate into astrocytes by the end of the developmental period. Recently, it was demonstrated that during development, radial glia cells, in addition to their role in migration, also give rise to neuroblasts. Furthermore, radial glial cells remain in the adult brain as adult neural stem cells (NSC) in the subventricular zone (SVZ) around the lateral ventricles (LVs), and generate new neurons continuously throughout adulthood. In this study, we used immunohistochemical and morphological methods to investigate the presence of radial glia-like cells around the LVs during the postnatal development period until adulthood in rats. In all ages of rats studied, we identified cells with morphological and immunocytochemical features that are similar to the radial glia cells found in the embryonic brain. Similarly to the radial glia, these cells express nestin and vimentin, and have a radial morphology, extending perpendicularly as processes from the ventricle wall. These cells also express GFAP, GLAST, and Pax6, and proliferate. In the brains of adult rats, we identified cells with relatively long processes (up to 600 mum) in close apposition with migrating neuroblasts. Our results showed that the radial glia-like cells present in the adult rat brain share several morphological and functional characteristics with the embryonic radial glia. We suggest that the embryonic radial glia cells located around the LV walls do not complete their transformation into astrocytes, but rather persist in adulthood.

  2. Testosterone locally increases vasopressin content but fails to restore choline acetyltransferase activity in other regions in the senescent male rat brain.

    PubMed

    Goudsmit, E; Luine, V N; Swaab, D F

    1990-05-01

    Age-related decreases have been reported in both vasopressinergic and cholinergic innervation in the rat brain. Since both systems are also sensitive to sex steroids, the effect of testosterone supplementation on vasopressin (AVP) levels and on choline acetyltransferase (ChAT) activity was investigated in the brains of young, middle-aged and aged male rats. Although no age-related changes in AVP levels were observed in the lateral septum or the medial amygdala (MA), peripheral testosterone administration raised AVP levels in the MA in all age groups. ChAT activity decreased with age in the medial preoptic area and was not restored by testosterone.

  3. Regulation of atrial natriuretic peptide receptors in the rat brain

    SciTech Connect

    Saavedra, J.M.

    1987-06-01

    We have studied the localization, kinetics, and regulation of receptors for the circulating form of the atrial natriuretic peptide (ANP; 99-126) in the rat brain. Quantitative autoradiographic techniques and a /sup 125/I-labeled ligand, /sup 125/I-ANP (99-126), were employed. After in vitro autoradiography, quantification was achieved by computerized microdensitometry followed by comparison with /sup 125/I-standards. ANP receptors were discretely localized in the rat brain, with the highest concentrations in circumventricular organs, the choroid plexus, and selected hypothalamic nuclei involved in the production of the antidiuretic hormone vasopressin and in blood-pressure control. Spontaneously (genetic) hypertensive rats showed much lower numbers of ANP receptors than normotensive controls in the subfornical organ, the area postrema, the nucleus of the solitary tract, and the choroid plexus. These changes are in contrast to those observed for receptors of angiotensin II, another circulating peptide with actions opposite to those of ANP. Under conditions of acute dehydration after water deprivation, as well as under conditions of chronic dehydration such as those present in homozygous Brattleboro rats, there was an up-regulation of ANP receptors in the subfornical organ. Our results indicate that in the brain, circumventricular organs contain ANP receptors which could respond to variations in the concentration of circulating ANP. In addition, brain areas inside the blood-brain barrier contain ANP receptors probably related to the endogenous, central ANP system. The localization of ANP receptors and the alterations in their regulation present in genetically hypertensive rats and after dehydration indicate that brain ANP receptors are probably related to fluid regulation, including the secretion of vasopressin, and to cardiovascular function.

  4. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    PubMed Central

    Zamroziewicz, Marta K.; Barbey, Aron K.

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging. PMID:27375409

  5. Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury

    PubMed Central

    Cai, Ying-min; Zhang, Yong; Zhang, Peng-bo; Zhen, Lu-ming; Sun, Xiao-ju; Wang, Zhi-ling; Xu, Ren-yan; Xue, Rong-liang

    2016-01-01

    Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats (20–22 months) were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline (40 mL/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation. PMID:26981095

  6. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  7. Blueberries and the Aging Brain: Beyond Antioxidants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild blueberries, native to North America, have been evaluated as having anti-aging properties for nerve cells and nerve cell functions such as neuromotor skills and memory. Aged animals fed blueberries in their diets for eight weeks showed improvements in short-term memory, coordination, balance, m...

  8. Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study.

    PubMed

    Elsner, Viviane Rostirola; Lovatel, Gisele Agustini; Moysés, Felipe; Bertoldi, Karine; Spindler, Christiano; Cechinel, Laura Reck; Muotri, Alysson Renato; Siqueira, Ionara Rodrigues

    2013-02-01

    Regular exercise improves learning and memory, including during aging process. Interestingly, the imbalance of epigenetic mechanisms has been linked to age-related cognitive deficits. However, studies about epigenetic alterations after exercise during the aging process are rare. In this preliminary study we investigated the effect of aging and exercise on DNA methyltransferases (DNMT1 and DNMT3b) and H3-K9 methylation levels in hippocampus from 3 and 20-months aged Wistar rats. The animals were submitted to two exercise protocols: single session or chronic treadmill protocol. DNMT1 and H3-K9 methylation levels were decreased in hippocampus from aged rats. The single exercise session decreased both DNMT3b and DNMT1 levels in young adult rats, without any effect in the aged group. Both exercise protocols reduced H3-K9 methylation levels in young adult rats, while the single session reversed the changes on H3-K9 methylation levels induced by aging. Together, these results suggest that an imbalance on DNMTs and H3-K9 methylation levels might be linked to the brain aging process and that the outcome to exercise seems to vary through lifespan.

  9. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  10. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  11. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  12. Determinants of iron accumulation in the normal aging brain.

    PubMed

    Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2016-07-01

    In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. PMID:27255824

  13. AGE-RELATED BRAIN CHOLINESTERASE INHIBITION KINETICS FOLLOWING IN VITRO INCUBATION WITH CHLORPYRIFOS-OXON AND DIAZINON-OXON

    SciTech Connect

    Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck

    2007-01-01

    Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki values obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.

  14. Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats

    PubMed Central

    Barceló-Coblijn, Gwendolyn; Wold, Loren E.; Ren, Jun; Murphy, Eric J.

    2013-01-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content is known to change in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43%, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total PUFA, in the n-3/n-6 ratio, and in the 22:6 n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of post-natal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats. PMID:23996454

  15. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug.

    PubMed

    Marschallinger, Julia; Schäffner, Iris; Klein, Barbara; Gelfert, Renate; Rivera, Francisco J; Illes, Sebastian; Grassner, Lukas; Janssen, Maximilian; Rotheneichner, Peter; Schmuckermair, Claudia; Coras, Roland; Boccazzi, Marta; Chishty, Mansoor; Lagler, Florian B; Renic, Marija; Bauer, Hans-Christian; Singewald, Nicolas; Blümcke, Ingmar; Bogdahn, Ulrich; Couillard-Despres, Sebastien; Lie, D Chichung; Abbracchio, Maria P; Aigner, Ludwig

    2015-10-27

    As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood-brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias.

  16. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug

    PubMed Central

    Marschallinger, Julia; Schäffner, Iris; Klein, Barbara; Gelfert, Renate; Rivera, Francisco J.; Illes, Sebastian; Grassner, Lukas; Janssen, Maximilian; Rotheneichner, Peter; Schmuckermair, Claudia; Coras, Roland; Boccazzi, Marta; Chishty, Mansoor; Lagler, Florian B.; Renic, Marija; Bauer, Hans-Christian; Singewald, Nicolas; Blümcke, Ingmar; Bogdahn, Ulrich; Couillard-Despres, Sebastien; Lie, D. Chichung; Abbracchio, Maria P.; Aigner, Ludwig

    2015-01-01

    As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood–brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias. PMID:26506265

  17. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug.

    PubMed

    Marschallinger, Julia; Schäffner, Iris; Klein, Barbara; Gelfert, Renate; Rivera, Francisco J; Illes, Sebastian; Grassner, Lukas; Janssen, Maximilian; Rotheneichner, Peter; Schmuckermair, Claudia; Coras, Roland; Boccazzi, Marta; Chishty, Mansoor; Lagler, Florian B; Renic, Marija; Bauer, Hans-Christian; Singewald, Nicolas; Blümcke, Ingmar; Bogdahn, Ulrich; Couillard-Despres, Sebastien; Lie, D Chichung; Abbracchio, Maria P; Aigner, Ludwig

    2015-01-01

    As human life expectancy has improved rapidly in industrialized societies, age-related cognitive impairment presents an increasing challenge. Targeting histopathological processes that correlate with age-related cognitive declines, such as neuroinflammation, low levels of neurogenesis, disrupted blood-brain barrier and altered neuronal activity, might lead to structural and functional rejuvenation of the aged brain. Here we show that a 6-week treatment of young (4 months) and old (20 months) rats with montelukast, a marketed anti-asthmatic drug antagonizing leukotriene receptors, reduces neuroinflammation, elevates hippocampal neurogenesis and improves learning and memory in old animals. By using gene knockdown and knockout approaches, we demonstrate that the effect is mediated through inhibition of the GPR17 receptor. This work illustrates that inhibition of leukotriene receptor signalling might represent a safe and druggable target to restore cognitive functions in old individuals and paves the way for future clinical translation of leukotriene receptor inhibition for the treatment of dementias. PMID:26506265

  18. Heavy Drinking Can Harm the Aging Brain

    MedlinePlus

    ... in their attention or executive function (which includes reasoning and working memory), regardless of their age, the ... The study was published Sept. 22 in Alcoholism: Clinical and Experimental Research . SOURCES: Marc Gordon, M.D., ...

  19. Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    PubMed Central

    Tews, Björn; Bartsch, Dusan

    2011-01-01

    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system. PMID:22140568

  20. Autoradiographic localization of (3H) gepirone in the rat brain

    SciTech Connect

    Bennett, J.E.; Matheson, G.K. )

    1990-02-26

    Gepirone is an anxiolytic compound active at the 5-HT{sub 1A} receptor site. The purpose of this study was to locate the ({sup 3}H)gepirone in the rat brain and to determine the quantity of gepirone in these locations. Male Sprague-Dawley rats were injected with (3H)gepirone (200 {mu}Ci/kg, i.v.) and decapitated 10 minutes later. To determine specific binding some animals were pretreated with cold gepirone (1 mg/kg) 15 minutes before the (3H)gepirone treatment. The brains were removed, frozen, sectioned, and fixed in formaldehyde vapors. Tritium sensitive film was exposed to the sections for 106 days. Using computerized imaging technology data were obtained from 104 brain sites. Overall, the quantity of (3H)gepirone in each site correlated proportionally with known 5-HT{sub 1A} (in vitro) receptor binding.

  1. ShcC proteins: brain aging and beyond.

    PubMed

    Sagi, Orli; Budovsky, Arie; Wolfson, Marina; Fraifeld, Vadim E

    2015-01-01

    To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.

  2. Enzyme markers of maternal malnutrition in fetal rat brain.

    PubMed

    Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R

    1987-01-01

    The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.

  3. Age, Plasticity, and Homeostasis In Childhood Brain Disorders

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Juranek, Jenifer J.; Bigler, Erin D.; Snead, O. Carter; Fletcher, Jack M.

    2013-01-01

    It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are: Plasticity is neutral with respect to outcome. Although the effects of plasticity are often beneficial, the outcome of plasticity may be adaptive or maladaptive.The young age plasticity privilege has been overstated.Plastic change operates in concert with homeostatic mechanisms regulating change at every point in the lifespan.The same mechanisms that propel developmental change expose the immature brain to adverse events, making it more difficult for the immature than for the mature brain to sustain equilibrium between plasticity and homeostasis.Poor outcome in many neurodevelopmental disorders and childhood acquired brain insults is related to disequilibrium between plasticity and homeostasis. PMID:24096190

  4. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development.

    PubMed

    de Almeida, Alexandre Aparecido; Gomes da Silva, Sérgio; Fernandes, Jansen; Peixinho-Pena, Luiz Fernando; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; Arida, Ricardo Mario

    2013-10-11

    It has been established that low intensities of exercise produce beneficial effects for the brain, while high intensities can cause some neuronal damage (e.g. exacerbated inflammatory response and cell death). Although these effects are documented in the mature brain, the influence of exercise intensities in the developing brain has been poorly explored. To investigate the impact of exercise intensity in developing rats, we evaluated the hippocampal level of brain derived neurotrophic factor (BDNF), inflammatory cytokines (TNFα, IL6 and IL10) and the occurrence of hippocampal cell degeneration and proliferation at different stages of postnatal brain development of rats submitted to two physical exercise intensities. To this point, male rats were divided into different age groups: P21, P31, P41 and P51. Each age group was submitted to two exercise intensities (low and high) on a treadmill over 10 consecutive days, except the control rats. We verified that the density of proliferating cells was significantly higher in the dentate gyrus of rats submitted to low-intensity exercise from P21 to P30 compared with high-intensity exercise and control rats. A significant increase of proliferative cell density was found in rats submitted to high-intensity exercise from P31 to P40 when compared to low-intensity exercise and control rats. Elevated hippocampal levels of IL6 were detected in rats submitted to high-intensity exercise from P21 to P30 compared to control rats. From P41 to P50 period, higher levels of BDNF, TNFα and IL10 were found in the hippocampal formation of rats submitted to high-intensity exercise in relation to their control rats. Our data show that exercise-induced neuroplastic effects on BDNF levels and cellular proliferation in the hippocampal region are dependent on exercise intensity and developmental period. Thus, exercise intensity is an inflammation-inducing factor and exercise-induced inflammatory response during the postnatal brain development is

  5. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain

    PubMed Central

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs. PMID:23977451

  6. Understanding How Exercise Promotes Cognitive Integrity in the Aging Brain.

    PubMed

    Laitman, Benjamin M; John, Gareth R

    2015-01-01

    Alterations in the structure and organization of the aging central nervous system (CNS), and associated functional deficits, result in cognitive decline and increase susceptibility to neurodegeneration. Age-related changes to the neurovascular unit (NVU), and their consequences for cerebrovascular function, are implicated as driving cognitive impairment during aging as well as in neurodegenerative disease. The molecular events underlying these effects are incompletely characterized. Similarly, the mechanisms underlying effects of factors that reduce the impact of aging on the brain, such as physical exercise, are also opaque. A study in this issue of PLOS Biology links the NVU to cognitive decline in the aging brain and suggests a potential underlying molecular mechanism. Notably, the study further links the protective effects of chronic exercise on cognition to neurovascular integrity during aging.

  7. Age-related responses to mild restraint in the rat.

    PubMed

    Rattner, B A; Michael, S D; Altland, P D

    1983-11-01

    Immature, postpubertal, young adult, and middle-aged rats were lightly restrained for 4 h. Relative to untreated controls, restraint uniformly reduced body weight and plasma luteinizing hormone concentration and elevated plasma corticosterone concentration in all age groups. However, restraint increased activities of plasma alanine and aspartate aminotransferase, creatine phosphokinase, and fructose-diphosphate aldolase in only immature and middle-aged animals. This age-related release of tissue enzymes is hypothesized to reflect enhanced responsiveness to catecholamines in immature rats, and possible ischemia related to diminished vasodilatory activity in middle-aged rats. On the basis of these changes, tolerance to restraint in postpubertal and young adults appears to be slightly greater than that of immature and middle-aged rats.

  8. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    PubMed Central

    Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005

  9. Expression of aquaporins 1 and 4 in the brain of spontaneously hypertensive rats.

    PubMed

    Tomassoni, Daniele; Bramanti, Vincenzo; Amenta, Francesco

    2010-04-14

    Aquaporins (AQP) 1 and 4 are water channel proteins localized respectively at the level of the blood-cerebrospinal fluids (CSF) and blood brain (BBB) barriers. These barriers represent the sites of exchange between blood and nervous tissue and between blood, choroid plexus and CSF in brain ventricles respectively. Damage of these barriers may alter transfer of substances between blood and nervous tissue. In spontaneously hypertensive rats (SHR) chronic hypertension may induce BBB dysfunction and pronounced defects in the integrity of the blood-CSF barrier. AQP1 is expressed in the apical membrane of choroid plexus epithelium. AQP4 is expressed by astrocyte foot processes near blood vessels. The present study has assessed the expression of AQP1 and AQP4 in the brain of SHR in pre-hypertensive (2 months of age), developing hypertension (4 months of age) and established hypertension (6 months of age) stages. Age-matched Wistar-Kyoto (WKY) rats were used as normotensive reference group. AQP1 expression is increased in choroid plexus epithelium of 6-month-old SHR. An increased expression of AQP4 was found in frontal cortex, striatum, and hippocampus of 4- and 6-month-old SHR compared to younger cohorts and age-matched WKY rats. These findings suggest that the increase in AQP expression may alter fluid exchange in BBB and/or in blood-CSF barrier. This situation in case of an acute or excessively elevated rise of blood pressure can promote BBB changes causing the brain damage occurring in this animal model of hypertension.

  10. Effects of carnosine plus vitamin E and betaine treatments on oxidative stress in some tissues of aged rats.

    PubMed

    Çoban, Jale; Bingül, Ilknur; Yesil-Mizrak, Kubra; Dogru-Abbasoglu, Semra; Oztezcan, Serdar; Uysal, Mujdat

    2013-07-01

    Oxidative stress plays an important role in aging. Effects of several antioxidants on age-related oxidative stress have been investigated. Carnosine (CAR) and betaine have antioxidant actions. The combination of CAR with vitamin E(CAR+E) increases its antioxidant efficiency. We investigated the effects of CAR+E and betaine treatments on oxidative and antioxidative status in liver, heart and brain tissues of aged rats. Experiments were carried out on young (5 months)and aged (22 months) male Wistar rats. Aged rats were given CAR (250 mg/kg; i.p.; 5 days per week) and vitamin E (200mg/kg; i.m.; twice per week) or betaine (1% w/v) for two months. Malondialdehyde (MDA) and diene conjugate (DC)levels and antioxidants were measured. MDA and DC levels were higher in tissues of aged rats than young rats. Glutathione(GSH) levels decreased in liver, but not heart and brain. There were no changes in vitamin E and vitamin C levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities in tissues of aged rats. CAR+E treatment was observed to decrease MDA and DC levels in tissues of aged rats. However, betaine decreased only hepatic MDA and DC levels. Both CAR+E and betaine increased hepatic GSH and vitamin E levels, but these treatments did not affect antioxidant enzyme activities. These results suggest that CAR+E treatment seems to be useful to decrease oxidative stress in liver, heart and brain tissues, but betaine is only effective in liver tissue of aged rats. PMID:23701646

  11. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  12. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  13. Aging impact on brain biomechanics with applications to hydrocephalus.

    PubMed

    Wilkie, K P; Drapaca, C S; Sivaloganathan, S

    2012-06-01

    Hydrocephalus is a neurological disorder whose clinical symptoms and treatment outcome are correlated with patient age. In Wilkie et al. (2010, A theoretical study of the effect of intraventricular pulsations on the pathogenesis of hydrocephalus. Appl. Math. Comput., 215, 3181-3191), the fractional Zener model was used to investigate the role of cerebrospinal fluid pressure pulsations in the development of hydrocephalus in infants and adults. In this paper, we determine the mechanical parameters of the fractional Zener model for the infant and adult brains using age-dependent shear complex modulus data (Thibault, K. L. & Margulies, S. S. (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech., 31, 1119-1126). The displacement of brain tissue under conditions representing the onset of hydrocephalus are then calculated. The infant brain was found to produce tissue displacements that are unphysical for our model geometry and a new boundary condition is proposed to replace the stress-free outer boundary condition used in Wilkie et al. (2010). The steadystate elastic modulus is identified as the parameter of interest in the development of hydrocephalus: it is found to increase from the infant value of 621 Pa to the young adult value of 955 Pa and we hypothesize that it then decreases with age. The low steady-state elastic modulus of the infant brain (and possibly the aged brain) increases the tissue's susceptibility to large deformations and thus to the ventricular expansion characteristic of hydrocephalus.

  14. Benefits from dietary polyphenols for brain aging and Alzheimer's disease.

    PubMed

    Rossi, L; Mazzitelli, S; Arciello, M; Capo, C R; Rotilio, G

    2008-12-01

    Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.

  15. Comparing Aging and Fitness Effects on Brain Anatomy.

    PubMed

    Fletcher, Mark A; Low, Kathy A; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A; Tan, Chin H; Schneider-Garces, Nils; Sutton, Bradley P; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain's atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55-87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors. PMID:27445740

  16. Comparing Aging and Fitness Effects on Brain Anatomy.

    PubMed

    Fletcher, Mark A; Low, Kathy A; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A; Tan, Chin H; Schneider-Garces, Nils; Sutton, Bradley P; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain's atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55-87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors.

  17. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    PubMed

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. PMID:25975171

  18. Effect of prenatal phenytoin administration on brain tryptophan metabolism of rat offspring during the preweaning period.

    PubMed

    Elmazar, M M; Sullivan, F M

    1980-10-01

    Serum 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) concentrations in control rat offspring increased progressively during the preweaning period reaching adult values by day 21. It has been shown the prenatal phenytoin administration (100 mg kg-1 orally, days 7-19 of pregnancy) increased serum tryptophan and brain tryptophan, 5-HT and 5-HIAA of rat offspring at 3 days of age but not at 4, 15 or 21 days of age. The effect of prenatal phenytoin administration on the offspring at 3 days of age was not observed when these pups were cross-fostered to control mothers at 2 days of age suggesting that the alteration in rain tryptophan metabolism during the development of tryptaminergic neurons in rat offspring, as a result of prenatal phenytoin administration is mediated through changes in lactation or nursing ability of the mothers. It is important that such non-specific factors are controlled when studying the effect of prenatally administered drugs on neonatal brain transmitter concentrations.

  19. Age-Specific Effects of Voluntary Exercise on Memory and the Older Brain

    PubMed Central

    Siette, Joyce; Westbrook, R. Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J.

    2014-01-01

    Background Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. Method We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. Results We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Conclusions Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. PMID:22795967

  20. Alterations of Amino Acid Level in Depressed Rat Brain

    PubMed Central

    Yang, Pei; Li, Xuechun; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-01-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant. PMID:25352755

  1. Rat brain acetylcholinesterase visualized with [11C]physostigmine.

    PubMed

    Planas, A M; Crouzel, C; Hinnen, F; Jobert, A; Né, F; DiGiamberardino, L; Tavitian, B

    1994-06-01

    Physostigmine, a powerful cholinesterase inhibitor, has recently been labelled with 11C in view of its potential application for in vivo imaging of cerebral acetylcholinesterase (AChE) using positron emission tomography. Here we carried out autoradiography of the rat brain using [11C]physostigmine in order to characterize the cerebral targets of this ligand. Autoradiograms were obtained using phosphor storage plates which, compared to autoradiographic films, greatly improved the quality of 11C images. Following autoradiography, brain sections were stained for AChE activity, allowing a direct comparison of autoradiographic and histoenzymatic localizations. The distributions of 11C label and of AChE activity were found to be essentially super-imposable, both after in vivo injection of and after in vitro incubation with [11C]physostigmine. Densitometric analysis showed that radioactivity and enzymatic activity distributions were regionally correlated. The fixation of [11C]physostigmine to cerebral tissue was abolished after incubation of the rat brain sections with BW 284C51, a specific AChE inhibitor, but not after incubation with iso-OMPA, a specific inhibitor of butyrylcholinesterase. Unilateral excitotoxic lesions of the striatum that eliminated local AChE expression concomitantly reduced the binding of the ligand in the lesioned area. These results indicate that autoradiographic images of the rat brain obtained with [11C]physostigmine reflect AChE distribution, thus supporting the use of this radioligand to trace cerebral AChE activity in humans with positron emission tomography.

  2. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  3. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats.

    PubMed

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette

    2010-02-01

    Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14% in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific nuclei of the hypothalamus and brainstem as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor. PMID:19944727

  4. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  5. Nerve growth factor receptor molecules in rat brain

    SciTech Connect

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  6. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney. PMID:19375929

  7. Differential Effects of Radiation and Age on Diffusion Tensor Imaging in Rats

    PubMed Central

    Peiffer, Ann M; Shi, Lei; Olson, John; Brunso-Bechtold, Judy K

    2010-01-01

    Greater than 50% of adults and ∼100% of children who survive >6 months after fractionated partial or whole-brain radiotherapy develop cognitive impairments. Noninvasive methods are needed for detecting and tracking the radiation-induced brain injury associated with these impairments. Using magnetic resonance imaging, we sought to detect structural changes associated with brain injury in our rodent model of fractionated whole-brain irradiation (fWBI) induced cognitive impairment and to compare those changes with alterations that occur during the aging process. Middle aged rats were given a clinically relevant dose of fWBI (40 Gy: two 5 Gy fractions/wk for 4 wk) and scanned approximately one year post-irradiation to obtain whole-brain T2 and diffusion tensor images (DTI); control groups of sham-irradiated age-matched and young rats were also scanned. No gross structural changes were evident in the T2 structural images, and no detectable fWBI-induced DTI changes in fractional anisotropy (FA) were found in heavily myelinated white matter (corpus callosum, cingulum, and deep cortical white matter). However, significant fWBI-induced variability in FA distribution was present in the superficial parietal cortex due to an fWBI-induced decline in FA in the more anterior slices through parietal cortex. Young rats had significantly lower FA values relative to both groups of older rats, but only within the corpus callosum. These findings suggest that targets of the fWBI-induced change in this model may be the less myelinated or unmyelinated axons, extracellular matrix, or synaptic fields rather than heavily myelinated tracts. PMID:20599817

  8. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test. PMID:26463968

  9. The Dopaminergic System in the Aging Brain of Drosophila

    PubMed Central

    White, Katherine E.; Humphrey, Dickon M.; Hirth, Frank

    2010-01-01

    Drosophila models of Parkinson's disease are characterized by two principal phenotypes: the specific loss of dopaminergic (DA) neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analyzed the DA system and motor behavior in aging Drosophila. DA neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH > mCD8::GFP and cell type-specific MARCM clones revealed that DA neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, DA neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity, and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH > Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct DA behaviors in Drosophila. Moreover, DA neurons were maintained between early- and late life, as quantified by TH > mCD8::GFP and anti-TH labeling, indicating that adult onset, age-related degeneration of DA neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson's disease as well as other disorders affecting DA neurons and movement control. PMID:21165178

  10. Toluene effects on Oxidative Stress in Brain regions of Young-adult, Middleage,and Senescent Brown Norway Rats

    EPA Science Inventory

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound toluene. The objective was to test whether oxidative stress plays a role in the adver...

  11. Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners.

    PubMed

    Luders, Eileen; Cherbuin, Nicolas; Gaser, Christian

    2016-07-01

    Normal aging is known to be accompanied by loss of brain substance. The present study was designed to examine whether the practice of meditation is associated with a reduced brain age. Specific focus was directed at age fifty and beyond, as mid-life is a time when aging processes are known to become more prominent. We applied a recently developed machine learning algorithm trained to identify anatomical correlates of age in the brain translating those into one single score: the BrainAGE index (in years). Using this validated approach based on high-dimensional pattern recognition, we re-analyzed a large sample of 50 long-term meditators and 50 control subjects estimating and comparing their brain ages. We observed that, at age fifty, brains of meditators were estimated to be 7.5years younger than those of controls. In addition, we examined if the brain age estimates change with increasing age. While brain age estimates varied only little in controls, significant changes were detected in meditators: for every additional year over fifty, meditators' brains were estimated to be an additional 1month and 22days younger than their chronological age. Altogether, these findings seem to suggest that meditation is beneficial for brain preservation, effectively protecting against age-related atrophy with a consistently slower rate of brain aging throughout life. PMID:27079530

  12. Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats.

    PubMed

    Thangthaeng, Nopporn; Miller, Marshall G; Gomes, Stacey M; Shukitt-Hale, Barbara

    2015-12-01

    Decline in brain function during normal aging is partly due to the long-term effects of oxidative stress and inflammation. Several fruits and vegetables have been shown to possess antioxidant and anti-inflammatory properties. The present study investigated the effects of dietary mushroom intervention on mobility and memory in aged Fischer 344 rats. We hypothesized that daily supplementation of mushroom would have beneficial effects on behavioral outcomes in a dose-dependent manner. Rats were randomly assigned to receive a diet containing either 0%, 0.5%, 1%, 2%, or 5% lyophilized white button mushroom (Agaricus bisporus); after 8 weeks on the diet, a battery of behavioral tasks was given to assess balance, coordination, and cognition. Rats on the 2% or 5% mushroom-supplemented diet consumed more food, without gaining weight, than rats in the other diet groups. Rats in the 0.5% and 1% group stayed on a narrow beam longer, indicating an improvement in balance. Only rats on the 0.5% mushroom diet showed improved performance in a working memory version of the Morris water maze. When taken together, the most effective mushroom dose that produced improvements in both balance and working memory was 0.5%, equivalent to about 1.5 ounces of fresh mushrooms for humans. Therefore, the results suggest that the inclusion of mushroom in the daily diet may have beneficial effects on age-related deficits in cognitive and motor function.

  13. Daily supplementation with mushroom (Agaricus bisporus) improves balance and working memory in aged rats.

    PubMed

    Thangthaeng, Nopporn; Miller, Marshall G; Gomes, Stacey M; Shukitt-Hale, Barbara

    2015-12-01

    Decline in brain function during normal aging is partly due to the long-term effects of oxidative stress and inflammation. Several fruits and vegetables have been shown to possess antioxidant and anti-inflammatory properties. The present study investigated the effects of dietary mushroom intervention on mobility and memory in aged Fischer 344 rats. We hypothesized that daily supplementation of mushroom would have beneficial effects on behavioral outcomes in a dose-dependent manner. Rats were randomly assigned to receive a diet containing either 0%, 0.5%, 1%, 2%, or 5% lyophilized white button mushroom (Agaricus bisporus); after 8 weeks on the diet, a battery of behavioral tasks was given to assess balance, coordination, and cognition. Rats on the 2% or 5% mushroom-supplemented diet consumed more food, without gaining weight, than rats in the other diet groups. Rats in the 0.5% and 1% group stayed on a narrow beam longer, indicating an improvement in balance. Only rats on the 0.5% mushroom diet showed improved performance in a working memory version of the Morris water maze. When taken together, the most effective mushroom dose that produced improvements in both balance and working memory was 0.5%, equivalent to about 1.5 ounces of fresh mushrooms for humans. Therefore, the results suggest that the inclusion of mushroom in the daily diet may have beneficial effects on age-related deficits in cognitive and motor function. PMID:26475179

  14. Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats.

    PubMed

    Matsuzaki, Kentaro; Katakura, Masanori; Inoue, Takayuki; Hara, Toshiko; Hashimoto, Michio; Shido, Osamu

    2015-06-01

    This study investigated age-dependent changes in heat exposure-induced hypothalamic neurogenesis and acquired heat tolerance in rats. We previously reported that neuronal progenitor cell proliferation and neural differentiation are enhanced in the hypothalamus of long-term heat-acclimated (HA) rats. Male Wistar rats, 5 weeks (Young), 10-11 months (Adult), or 22-25 months (Old) old, were subjected to an ambient temperature of 32°C for 40-50 days (HA rats). Rats underwent a heat tolerance test. In HA rats, increases in abdominal temperature (Tab ) in the the Young, Adult, and Old groups were significantly smaller than those in their respective controls. However, the increase in Tab of HA rats became greater with advancing age. The number of hypothalamic bromodeoxyuridine (BrdU)-immunopositive cells double stained with a mature neuron marker, neuronal nuclei (NeuN), of HA rats was significantly higher in the Young group than that in the control group. In Young HA, BrdU/NeuN-immunopositive cells of the preoptic area/anterior hypothalamus appeared to be the highest among regions examined. Large numbers of newborn neurons were also located in the ventromedial and dorsomedial nuclei, as well as the posterior hypothalamic area, whereas heat exposure did not increase such numbers in the Adult and Old groups. Aging may interfere with heat exposure-induced hypothalamic neurogenesis and acquired heat tolerance in rats.

  15. Spectral and lifetime domain measurements of rat brain tumours

    NASA Astrophysics Data System (ADS)

    Abi Haidar, D.; Leh, B.; Allaoua, K.; Genoux, A.; Siebert, R.; Steffenhagen, M.; Peyrot, D.; Sandeau, N.; Vever-Bizet, C.; Bourg-Heckly, G.; Chebbi, I.; Collado-Hilly, M.

    2012-02-01

    During glioblastoma surgery, delineation of the brain tumour margins remains difficult especially since infiltrated and normal tissues have the same visual appearance. This problematic constitutes our research interest. We developed a fibre-optical fluorescence probe for spectroscopic and time domain measurements. First measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumour brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analysed. Fluorescence information collected from both, lifetime and spectroscopic experiments, appeared promising for tumour tissue discrimination. Two photon measurements were performed on the same fixed tissue. Different wavelengths are used to acquire two-photon excitation-fluorescence of tumorous and healthy sites.

  16. Centrophenoxine: effects on aging mammalian brain.

    PubMed

    Nandy, K

    1978-02-01

    A study was made of the effects of centrophenoxine on the learning and memory of old mice. The results were correlated with changes in neuronal lipofuscin in the cerebral cortex and hippocampus. Old female mice (11-12 months) were treated with centropheoxine for three months and their learning and memory were tested in a T-maze. The number of trials required to attain the criterion in the 20 treated old mice were compared with those for 20 untreated mice of the same age and for 20 younger untreated mice. The treated animals learned the task with significantly fewer trials, and also exhibited a reduction of neuronal lipofuscin pigment in both the cerebral cortex and the hippocampus. The changes in lipofuscin were demonstrated by study of the characteristic autofluorescence, and by histolchemical and ultrastructural (electron microscope) observations.

  17. The Function of the Glutamate-Nitric Oxide-cGMP Pathway in Brain in Vivo and Learning Ability Decrease in Parallel in Mature Compared with Young Rats

    ERIC Educational Resources Information Center

    Piedrafita, Blanca; Cauli, Omar; Montoliu, Carmina; Felipo, Vicente

    2007-01-01

    Aging is associated with cognitive impairment, but the underlying mechanisms remain unclear. We have recently reported that the ability of rats to learn a Y-maze conditional discrimination task depends on the function of the glutamate-nitric oxide-cGMP pathway in brain. The aims of the present work were to assess whether the ability of rats to…

  18. Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats.

    PubMed

    Allagui, M S; Feriani, A; Saoudi, M; Badraoui, R; Bouoni, Z; Nciri, R; Murat, J C; Elfeki, A

    2014-08-01

    This study aimed to investigate the potential protective effects of melatonin (Mel) against aluminium-induced neurodegenerative changes in aging Wistar rats (24-28months old). Herein, aluminium chloride (AlCl3) (50mg/kg BW/day) was administered by gavage, and melatonin (Mel) was co-administered to a group of Al-treated rats by an intra-peritoneal injection at a daily dose of 10mg/kg BW for four months. The findings revealed that aluminium administration induced a significant decrease in body weight associated with marked mortality for the old group of rats, which was more pronounced in old Al-treated rats. Behavioural alterations were assessed by 'open fields', 'elevated plus maze' and 'Radial 8-arms maze' tests. The results demonstrated that Mel co-administration alleviated neurobehavioral changes in both old and old Al-treated rats. Melatonin was noted to play a good neuroprotective role, reducing lipid peroxidation (TBARs), and enhancing enzymatic (SOD, CAT and GPx) activities in the brain organs of old control and old Al-treated rats. Mel treatment also reversed the decrease of AChE activity in the brain tissues, which was confirmed by histological sections. Overall, the results showed that Mel administration can induce beneficial effects for the treatment of Al-induced neurobehavioral and neurochemical changes in the central nervous system (CNS).

  19. Onion flesh and onion peel enhance antioxidant status in aged rats.

    PubMed

    Park, Juyeon; Kim, Joohee; Kim, Mi Kyung

    2007-02-01

    This study was designed to investigate the effects of dietary onion flesh or onion peel on lipid peroxides and DNA damage in aged rats. Sprague Dawley male rats (n=40, 16 mo old) were blocked into five groups and raised for 3 mo with either an onion-free control diet or onion diets (Allium cepa L., intermediate-day variety) containing either 5% (w/w) powdered dried onion flesh, 5% (w/w) powdered dried onion peel or ethanol extracts of the two powdered forms of onion. Total antioxidant status (TAS) and levels of total polyphenols and quercetin were greatest in onion peel ethanol extract, followed by onion peel powder, onion flesh ethanol extract, and onion flesh powder. Plasma quercetin and isorhamnetin levels were markedly increased by onion peel powder and onion peel ethanol extract. Rats fed onion flesh powder or onion peel powder had a higher plasma TAS than rats fed the control diet. Onion peel powder reduced liver thiobarbituric reactive substances relative to those of the control diet in aged rats (p<0.05). Brain 8-isoprostane levels were markedly decreased by all four onion diets and the decrease was significant for the onion flesh powder and onion peel powder diets (p<0.05). There was no significant decrease in cellular DNA damage in the kidney or brain tissue among rats fed the four onion diets. Onion flesh or onion peel enhanced antioxidant status in aged rats and may be beneficial for the elderly as a means of lowering lipid peroxide levels. PMID:17484375

  20. Locomotion, physical development, and brain myelination in rats treated with ionizing radiation in utero

    SciTech Connect

    Zaman, M.S.

    1989-01-01

    Effects of ionizing radiation on the emergence of locomotion skill and some physical development parameters were studied in laboratory rats (Fisher F-344 inbred strain). Rats were treated with 3 different doses of radiation (150 R, 15 R, and 6.8 R) delivered on the 20th day of the prenatal life. Results indicated that relatively moderate (15 R) to high (150 R) doses of radiation have effects on certain locomotion and physical development parameters. Exposure to 150 R affected pivoting, cliff-avoidance, upper jaw tooth eruption, body weight, and organs, such as brain, cerebral cortex, ovary, kidney, heart and spleen weights. Other parameters, such as negative geotaxis, eye opening, and lower jaw tooth eruption appeared to be affected in the 150 R treated animals. Exposure to 15 R affected pivoting and cliff-avoidance parameters. The cerebral cortex weight of the 15 R treated animals was found to be reduced at the age of day 30. Exposure to 6.8 R had no adverse effects on these parameters. Prenatal exposure to 150 R of radiation reduced the cerebral cortex weight by 22.07% at 30 days of age, and 20.15% at 52 days of age which caused a reduction in cerebral cortex myelin content by 20.16, and 22.89% at the ages of day 30 and day 52 respectively. Exposure to 150 R did not affect the myelin content of the cerebellum or the brain stem; or the myelin concentration (mg myelin/g brain tissue weight) of the cerebral cortex, cerebellum, and the brain stem. Exposure to 15 R, and 6.8 R did not affect either the myelin content or the myelin concentration of these brain areas.

  1. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  2. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    PubMed Central

    2011-01-01

    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age. PMID:21943199

  3. Life and death of neurons in the aging brain

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.

  4. Microwave effects on energy metabolism of rat brain

    SciTech Connect

    Sanders, A.P.; Schaefer, D.J.; Joines, W.T.

    1980-01-01

    Rat brain was exposed to 591-MHz, continuous-wave (CW) microwaves at 13.8 or 5.0 mW/cm2 to determine the effect on nicotinamide adenine dinucleotide, reduced (NADH), adenosine triphosphate (ATP) and creatine phosphate (CP) levels. On initiation of the in vivo microwave exposures, fluorimetrically determined NADH rapidly increased to a maximum of 4.0%-12.5% above pre-exposure control levels at one-half minute, than decreased slowly to 2% above control at three minutes, finally increasing slowly to 5% above control level at five minutes. ATP and CP assays were performed on sham- and microwave-exposed brain at each exposure time. At 13.8 mW/cm2, brain CP level was decreased an average of 39.4%, 41.1%, 18.2%, 13.1%, and 36.4% of control at exposure points one-half, one, two three, and five minutes, respectively, and brain ATP concentration was decreased an average of 25.2%, 15.2%, 17.8%, 7.4%, and 11.2% of control at the corresponding exposure periods. ATP and CP levels of rat brain exposed to 591-MHz cw microwaves at 5mW/cm2 for one-half and one minute were decreased significantly below control levels at these exposure times, but were not significantly different from the 13.8 mW/cm2 exposures. For all exposures, rectal temperature remained constant. Heat loss through the skull aperture caused brain temperature to decrease during the five-minute exposures. This decrease was the same in magnitude for experimental and control subjects. Changes in NADH, ATP, and CP levels during microwave exposure cannot be attributed to general tissue hyperthermia. The data support the hypothesis that microwave exposure inhibits mitochondrial electron transport chain function, which results in decreased ATP and CP levels in brain.

  5. Efficacy of Female Rat Models in Translational Cardiovascular Aging Research

    PubMed Central

    Rice, K. M.; Fannin, J. C.; Gillette, C.; Blough, E. R.

    2014-01-01

    Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging. PMID:25610649

  6. Identification of rat brain opioid (enkephalin) receptor by photoaffinity labeling

    SciTech Connect

    Yeung, C.W.

    1986-01-01

    A photoreactive, radioactive enkephalin derivative was prepared and purified by high performance liquid chromatography. Rat brain and spinal cord plasma membranes were incubated with this radioiodinated photoprobe and were subsequently photolysed. Autoradiography of the sodium dodecyl sulfate gel electrophoresis of the solubilized and reduced membranes showed that a protein having an apparent molecular weight of 46,000 daltons was specifically labeled, suggesting that this protein may be the opioid (enkephalin) receptor.

  7. Oxidative changes in brain of aniline-exposed rats

    SciTech Connect

    Kakkar, P.; Awasthi, S.; Viswanathan, P.N. )

    1992-10-01

    Oxidative stress in rat cerebellum, cortex and brain stem after a short-term high-dose exposure to aniline vapors under conditions akin to those after major chemical accidents, was studied. Significant increases in superoxide dismutase isozyme activities and formation of thiobarbituric acid reactive material along with depletion of ascorbic acid and non-protein sulfhydryl content suggest impairment of antioxidant defenses 24 h after single exposure to 15,302 ppm aniline vapors for 10 min.

  8. Brain atrophy in Alzheimer's Disease and aging.

    PubMed

    Pini, Lorenzo; Pievani, Michela; Bocchetta, Martina; Altomare, Daniele; Bosco, Paolo; Cavedo, Enrica; Galluzzi, Samantha; Marizzoni, Moira; Frisoni, Giovanni B

    2016-09-01

    Thanks to its safety and accessibility, magnetic resonance imaging (MRI) is extensively used in clinical routine and research field, largely contributing to our understanding of the pathophysiology of neurodegenerative disorders such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the main findings in AD and normal aging over the past twenty years, focusing on the patterns of gray and white matter changes assessed in vivo using MRI. Major progresses in the field concern the segmentation of the hippocampus with novel manual and automatic segmentation approaches, which might soon enable to assess also hippocampal subfields. Advancements in quantification of hippocampal volumetry might pave the way to its broader use as outcome marker in AD clinical trials. Patterns of cortical atrophy have been shown to accurately track disease progression and seem promising in distinguishing among AD subtypes. Disease progression has also been associated with changes in white matter tracts. Recent studies have investigated two areas often overlooked in AD, such as the striatum and basal forebrain, reporting significant atrophy, although the impact of these changes on cognition is still unclear. Future integration of different MRI modalities may further advance the field by providing more powerful biomarkers of disease onset and progression. PMID:26827786

  9. Chronic Anticholinergic Use and the Aging Brain

    PubMed Central

    Cai, Xueya; Campbell, Noll; Khan, Babar; Callahan, Chris; Boustani, Malaz

    2012-01-01

    Background Older Americans are facing an epidemic of chronic diseases and are thus exposed to anticholinergics (AC) that might negatively affect their risk of developing mild cognitive impairment (MCI) or dementia. Objective Investigate the association between impairment in cognitive function and previous AC exposure. Design A retrospective cohort study. Setting Primary care clinics in Indianapolis, Indiana. Participants 3690 older adults who have undergone cognitive assessment and had a one-year medication dispensing record. Outcome Cognitive function was measured in two sequential steps; a two-step screening process followed by a formal diagnostic process for participants with positive screening results. Exposure Three patterns of AC exposure were defined by the duration of AC exposure, the number of AC medications dispensed at the same time, and the severity of AC effects as determined by the Anticholinergic Cognitive Burden List. Results In comparison to older adults with no anticholinergic exposure and after adjusting for age, race, gender, and underlying comorbidity, the odds ratio (OR) for having a diagnosis of MCI was 2.73 (95% confidence interval, CI; 1.27, 5.87) among older adults who were exposed to at least three possible anticholinergic for at least 90 days; and the OR for having dementia was 0.43 (95% CI; 0.10, 1.81). Conclusion Exposure to medications with severe anticholinergic cognitive burden may be a risk factor for developing MCI. PMID:23183138

  10. Brain atrophy in Alzheimer's Disease and aging.

    PubMed

    Pini, Lorenzo; Pievani, Michela; Bocchetta, Martina; Altomare, Daniele; Bosco, Paolo; Cavedo, Enrica; Galluzzi, Samantha; Marizzoni, Moira; Frisoni, Giovanni B

    2016-09-01

    Thanks to its safety and accessibility, magnetic resonance imaging (MRI) is extensively used in clinical routine and research field, largely contributing to our understanding of the pathophysiology of neurodegenerative disorders such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the main findings in AD and normal aging over the past twenty years, focusing on the patterns of gray and white matter changes assessed in vivo using MRI. Major progresses in the field concern the segmentation of the hippocampus with novel manual and automatic segmentation approaches, which might soon enable to assess also hippocampal subfields. Advancements in quantification of hippocampal volumetry might pave the way to its broader use as outcome marker in AD clinical trials. Patterns of cortical atrophy have been shown to accurately track disease progression and seem promising in distinguishing among AD subtypes. Disease progression has also been associated with changes in white matter tracts. Recent studies have investigated two areas often overlooked in AD, such as the striatum and basal forebrain, reporting significant atrophy, although the impact of these changes on cognition is still unclear. Future integration of different MRI modalities may further advance the field by providing more powerful biomarkers of disease onset and progression.

  11. An Observational Assessment Method for Aging Laboratory Rats

    PubMed Central

    Phillips, Pamela M; Jarema, Kimberly A; Kurtz, David M; MacPhail, Robert C

    2010-01-01

    The rapid growth of the aging human population highlights the need for laboratory animal models to study the basic biologic processes of aging and susceptibility to disease, drugs, and environmental pollutants. Methods are needed to evaluate the health of aging animals over time, particularly methods for efficiently monitoring large research colonies. Here we describe an observational assessment method that scores appearance, posture, mobility, and muscle tone on a 5-point scale that can be completed in about 1 min. A score of 1 indicates no deterioration, whereas a score of 5 indicates severe deterioration. Tests were applied to male Brown Norway rats between 12 and 36 mo of age (n = 32). The rats were participating concurrently in experiments on the behavioral effects of intermittent exposure (approximately every 4 mo) to short-acting environmental chemicals. Results demonstrated that aging-related signs of deterioration did not appear before 18 mo of age. Assessment scores and variability then increased with age. Body weights increased until approximately 24 mo, then remained stable, but decreased after 31 mo for the few remaining rats. The incidence of death increased slightly from 20 to 28 mo of age and then rose sharply; median survival age was approximately 30 mo, with a maximum of 36 mo. The results indicate that our observational assessment method supports efficient monitoring of the health of aging rats and may be useful in studies on susceptibility to diseases, drugs, and toxicants during old age. PMID:21205442

  12. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    SciTech Connect

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  13. Evolution of the Aging Brain Transcriptome and Synaptic Regulation

    PubMed Central

    Dakin, Kelly A.; Vann, James M.; Isaacs, Adrian; Geula, Chengiz; Wang, Jianbin; Pan, Ying; Gabuzda, Dana H.; Li, Cheng; Prolla, Tomas A.; Yankner, Bruce A.

    2008-01-01

    Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes. PMID:18830410

  14. Comparing Aging and Fitness Effects on Brain Anatomy

    PubMed Central

    Fletcher, Mark A.; Low, Kathy A.; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A.; Tan, Chin H.; Schneider-Garces, Nils; Sutton, Bradley P.; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain’s atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55–87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors. PMID:27445740

  15. Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats.

    PubMed

    Wei, Guo; Lu, Xi-Chun M; Shear, Deborah A; Yang, Xiaofang; Tortella, Frank C

    2011-01-01

    Induced hypothermia has been reported to provide neuroprotection against traumatic brain injury. We recently developed a novel method of selective brain cooling (SBC) and demonstrated its safety and neuroprotection efficacy in a rat model of ischemic brain injury. The primary focus of the current study was to evaluate the potential neuroprotective efficacy of SBC in a rat model of penetrating ballistic-like brain injury (PBBI) with a particular focus on the acute cerebral pathophysiology, neurofunction, and cognition. SBC (34°C) was induced immediately after PBBI, and maintained for 2 hours, followed by a spontaneous re-warming. Intracranial pressure (ICP) and regional cerebral blood flow were monitored continuously for 3 hours, and the ICP was measured again at 24 hours postinjury. Brain swelling, blood-brain barrier permeability, intracerebral hemorrhage, lesion size, and neurological status were assessed at 24 hours postinjury. Cognitive abilities were evaluated in a Morris water maze task at 12-16 days postinjury. Results showed that SBC significantly attenuated PBBI-induced elevation of ICP (PBBI = 33.2 ± 10.4; PBBI + SBC = 18.8 ± 6.7 mmHg) and reduced brain swelling, blood-brain barrier leakage, intracerebral hemorrhage, and lesion volume by 40%-45% for each matrix, and significantly improved neurologic function. However, these acute neuroprotective benefits of SBC did not translate into improved cognitive performance in the Morris water maze task. These results indicate that 34°C SBC is effective in protecting against acute brain damage and related neurological dysfunction. Further studies are required to establish the optimal treatment conditions (i.e., duration of cooling and/or combined therapeutic approaches) needed to achieve significant neurocognitive benefits.

  16. Procyanidins extracted from the lotus seedpod ameliorate age-related antioxidant deficit in aged rats.

    PubMed

    Xu, Jiqu; Rong, Shuang; Xie, Bijun; Sun, Zhida; Zhang, Li; Wu, Hailei; Yao, Ping; Hao, Liping; Liu, Liegang

    2010-03-01

    The alleviative effect of procyanidins extracted from the lotus seedpod (LSPC) on oxidative stress in various tissues was evaluated by determining the activities of the antioxidant enzymes and the content of reduced glutathione (GSH) in heart, liver, lung, kidney, skeletal muscle, and serum in aged rats. Aging led to antioxidant deficit in various tissues in this study, which is confirmed by remarkable increased lipid peroxidation, whereas the change patterns of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and GSH were diverse in various tissues of aged rats. LSPC treatment (50 and 100 mg/kg body weight) modified the activity of SOD, CAT, and GPx as well as GSH content alteration in these tissues, which reversed the age-related antioxidant deficit in aged rats. However, the regulatory patterns on the activities of these enzymes and GSH content by LSPC treatment were different according to the tissues in aged rats.

  17. Cytosolic rat brain synapsin I is a diacylglycerol kinase.

    PubMed Central

    Kahn, D W; Besterman, J M

    1991-01-01

    The phosphorylation of diacylglycerol (DG), a reaction catalyzed by DG kinase, may be critical in the termination of effector-induced signals mediated by protein kinase C. Synapsin I is a principal target of intracellular protein kinases and is thought to be involved in the release of neurotransmitter from axon terminals. We present several lines of evidence which indicate that rat brain synapsin, in addition to this role, may function as a DG kinase. Purified rat brain DG kinase was digested with trypsin, which produced three major fragments whose sequence was identical to three regions in synapsin I. Using a rabbit anti-synapsin polyclonal antiserum, the elution profile of synapsin immunoreactivity coincided exactly with that of DG kinase activity in column fractions from the final step in the DG kinase purification procedure. As is the case with synapsin, the purified enzyme was a strongly basic protein with an isoelectric point greater than 10.0. Finally, incubating the DG kinase with highly purified bacterial collagenase, an enzyme that partially degrades the proline- and glycine-rich synapsin, resulted in the simultaneous loss of DG kinase activity and synapsin immunoreactivity. We conclude that cytosolic rat brain synapsin is capable of functioning as a DG kinase. Images PMID:1648730

  18. Methylphenidate alters NCS-1 expression in rat brain.

    PubMed

    Souza, Renan P; Soares, Eliane C; Rosa, Daniela V F; Souza, Bruno R; Réus, Gislaine Z; Barichello, Tatiana; Gomes, Karin M; Gomez, Marcus V; Quevedo, João; Romano-Silva, Marco A

    2008-07-01

    Methylphenidate has been used as an effective treatment for attention deficit hyperactivity disorder (ADHD). Methylphenidate (MPH) blocks dopamine and norepinephrine transporters causing an increase in extracellular levels. The use of psychomotor stimulants continues to rise due to both the treatment of ADHD and illicit abuse. Methylphenidate sensitization mechanism has still poor knowledge. Neuronal calcium sensor 1 was identified as a dopaminergic receptor interacting protein. When expressed in mammalian cells, neuronal calcium sensor 1 attenuates dopamine-induced D2 receptor internalization by a mechanism that involves a reduction in D2 receptor phosphorylation. Neuronal calcium sensor 1 appears to play a pivotal role in regulating D2 receptor function, it will be important to determine if there are alterations in neuronal calcium sensor 1 in neuropathologies associated with deregulation in dopaminergic signaling. Then, we investigated if methylphenidate could alter neuronal calcium sensor 1 expression in five brain regions (striatum, hippocampus, prefrontal cortex, cortex and cerebellum) in young and adult rats. These regions were chosen because some are located in brain circuits related with attention deficit hyperactivity disorder. Our results showed changes in neuronal calcium sensor 1 expression in hippocampus, prefrontal cortex and cerebellum mainly in adult rats. The demonstration that methylphenidate induces changes in neuronal calcium sensor 1 levels in rat brain may help to understand sensitization mechanisms as well as methylphenidate therapeutic effects to improve attention deficit hyperactivity disorder symptoms.

  19. Gelation and fodrin purification from rat brain extracts.

    PubMed

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-01

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation. PMID:3707993

  20. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  1. Brain surgery breathes new life into aging plants

    SciTech Connect

    Makansi, J.

    2006-04-15

    Unlike managing the human aging process, extending the life of a power plant often includes brain surgery, modernizing its control and automation system. Lately, such retrofits range from wholesale replacing of existing controls to the addition of specific control elements that help optimize performance. Pending revisions to safety codes and cybersecurity issues also need to be considered. 4 figs.

  2. Alpha oscillatory correlates of motor inhibition in the aged brain

    PubMed Central

    Bönstrup, Marlene; Hagemann, Julian; Gerloff, Christian; Sauseng, Paul; Hummel, Friedhelm C.

    2015-01-01

    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time—early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains. PMID:26528179

  3. Brain-Based Teaching in the Digital Age

    ERIC Educational Resources Information Center

    Sprenger, Marilee

    2010-01-01

    In the digital age, your students have the ways, means, and speed to gather any information they want. But they need your guidance more than ever. Discover how digital technology is actually changing your students' brains. Learn why this creates new obstacles for teachers, but also opens up potential new pathways for learning. You will understand…

  4. Changes in mitochondrial bioenergetics in the brain versus spinal cord become more apparent with age.

    PubMed

    Yonutas, Heather M; Pandya, Jignesh D; Sullivan, Patrick G

    2015-04-01

    The cell is known to be the most basic unit of life. However, this basic unit of life is dependent on the proper function of many intracellular organelles to thrive. One specific organelle that has vast implications on the overall health of the cell and cellular viability is the mitochondrion. These cellular power plants generate the energy currency necessary for cells to maintain homeostasis and function properly. Additionally, when mitochondria become dysfunctional, they can orchestrate the cell to undergo cell-death. Therefore, it is important to understand what insults can lead to mitochondrial dysfunction in order to promote cell health and increase cellular viability. After years of research, is has become increasingly accepted that age has a negative effect on mitochondrial bioenergetics. In support of this, we have found decreased mitochondrial bioenergetics with increased age in Sprague-Dawley rats. Within this same study we found a 200 to 600% increase in ROS production in old rats compared to young rats. Additionally, the extent of mitochondrial dysfunction and ROS production seems to be spatially defined affecting the spinal cord to a greater extent than certain regions of the brain. These tissue specific differences in mitochondrial function may be the reason why certain regions of the Central Nervous System, CNS, are disproportionately affected by aging and may play a pivotal role in specific age-related neurodegenerative diseases like Amyotrophic Lateral Sclerosis, ALS. PMID:25472025

  5. Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat.

    PubMed

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2008-08-01

    Changes in the levels of calcium binding proteins are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on the parvalbumin-expressing system of neurons in the higher parts of the central auditory system. Age-related changes in parvalbumin immunoreactivity were investigated in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) in two rat strains, normally aging Long-Evans (LE) and fast aging Fischer 344 (F344). The results demonstrate that the changes in PV-immunoreactivity are strain-dependent with an increase in the number of PV-immunoreactive (PV-ir) neurons occurring in the inferior colliculus of old LE rats and a pronounced decline in the number of PV-ir neurons appearing in the auditory cortex of aged F344 animals. In some parts of the AC of old F344 animals no PV-ir neurons were present at all. The number of PV-ir neurons in the MGB in all examined animals was very low independent of the strain and age. The loss of PV-ir neurons in the auditory cortex of Fischer 344 rats with aging may contribute to the substantial deterioration of hearing function in this strain. PMID:18486384

  6. Intrinsic optical signals of brains in rats during loss of tissue viability: effect of brain temperature

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Kikuchi, Makoto

    2007-07-01

    Noninvasive, real-time monitoring of brain tissue viability is crucial for the patients with stroke, traumatic brain injury, etc. For this purpose, measurement of intrinsic optical signal (IOS) is attractive because it can provide direct information about the viability of brain tissue noninvasively. We performed simultaneous measurements of IOSs that are related to morphological characteristics, i.e., light scattering, and energy metabolism for rat brains during saline infusion as a model with temporal loss of brain tissue viability. The results showed that the scattering signal was steady in an initial phase but showed a drastic, triphasic change in a certain range of infusion time, during which the reduction of CuA in cytochrome c oxidase started and proceeded rapidly. The start time of triphasic scattering change was delayed for about 100 s by lowering brain temperature from 29°C to 24°C, demonstrating the optical detection of cerebroprotection effect by brain cooling. Electron microscopic observation showed morphological changes of dendrite and mitochondria in the cortical surface tissue after the triphasic scattering change, which was thought to be associated with the change in light scattering we observed. These findings suggest that the simultaneous measurement of the intrinsic optical signals related to morphological characteristics and energy metabolism is useful for monitoring tissue viability in brain.

  7. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    PubMed

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body. PMID:24486465

  8. Characterization of neuropathology in the HIV-1 transgenic rat at different ages.

    PubMed

    Reid, William C; Ibrahim, Wael G; Kim, Saejeong J; Denaro, Frank; Casas, Rafael; Lee, Dianne E; Maric, Dragan; Hammoud, Dima A

    2016-03-15

    The transgenic HIV-1 rat (Tg) is a commonly used neuroHIV model with documented neurologic/behavioral deficits. Using immunofluorescent staining of the Tg brain, we found astrocytic dysfunction/damage, as well as dopaminergic neuronal loss/dysfunction, both of which worsening significantly in the striatum with age. We saw mild microglial activation in young Tg brains, but this decreased with age. There were no differences in neurogenesis potential suggesting a neurodegenerative rather than a neurodevelopmental process. Gp120 CSF levels exceeded serum gp120 levels in some animals, suggesting local viral protein production in the brain. Further probing of the pathophysiology underlying astrocytic injury in this model is warranted. PMID:26943969

  9. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  10. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  11. The Laboratory Rat: Relating Its Age With Human's

    PubMed Central

    Sengupta, Pallav

    2013-01-01

    By late 18th or early 19th century, albino rats became the most commonly used experimental animals in numerous biomedical researches, as they have been recognized as the preeminent model mammalian system. But, the precise correlation between age of laboratory rats and human is still a subject of debate. A number of studies have tried to detect these correlations in various ways, But, have not successfully provided any proper association. Thus, the current review attempts to compare rat and human age at different phases of their life. The overall findings indicate that rats grow rapidly during their childhood and become sexually mature at about the sixth week, but attain social maturity 5-6 months later. In adulthood, every day of the animal is approximately equivalent to 34.8 human days (i.e., one rat month is comparable to three human years). Numerous researchers performed experimental investigations in albino rats and estimated, in general, while considering their entire life span, that a human month resembles every-day life of a laboratory rat. These differences signify the variations in their anatomy, physiology and developmental processes, which must be taken into consideration while analyzing the results or selecting the dose of any research in rats when age is a crucial factor. PMID:23930179

  12. Effect of Zhuang Jing Decoction on Learning and Memory Ability in Aging Rats.

    PubMed

    Cai, Hao-Bin; Wu, Guang-Liang; Huang, Cen-Han; Huang, Zhong-Shi; Chen, Yun-Bo; Wang, Qi

    2016-08-01

    With the average life span of humans on the rise, aging in the world has drawn considerable attentions. The monoamine neurotransmitters and neurotrophic factors in brain areas are involved in learning and memory processes and are an essential part of normal synaptic neurotransmission and plasticity. In the present study, the effect of Zhuang Jing Decoction (ZJD) on the learning and memory ability in aging rats was examined in vivo using Morris water maze. Furthermore, the levels of monoamine neurotransmitters and neurotrophic factors in brain were detected by high-performance liquid chromatography with a fluorescence detector and enzyme-linked immunosorbent assay, respectively. These data showed that oral administration with ZJD at the dose of 30 g·kg(-1) exerted an improved effect on learning and memory ability in aging rats. The results revealed that ZJD could effectively adjust the monoamine neurotransmitters and neurotrophic factors, restore the balance of the level of monoamine neurotransmitters and neurotrophic factors in brain, and finally attenuate the degeneration of learning and memory ability. These findings suggested that ZJD might be a potential agent as cognitive-enhancing drug in improving learning and memory ability. It may exert through regulating the levels of monoamine neurotransmitters and neurotrophic factors in brain, which demonstrated that ZJD had certain antiaging effects. PMID:26649780

  13. Lifelong ethanol consumption and brain regional GABAA receptor subunit mRNA expression in alcohol-preferring rats.

    PubMed

    Sarviharju, Maija; Hyytiä, Petri; Hervonen, Antti; Jaatinen, Pia; Kiianmaa, Kalervo; Korpi, Esa R

    2006-11-01

    Brain regional gamma-aminobutyric acid type A (GABAA) receptor subunit mRNA expression was studied in ethanol-preferring AA (Alko, Alcohol) rats after moderate ethanol drinking for up to 2 years of age. In situ hybridization with oligonucleotide probes specific for 13 different subunits was used with coronal cryostat sections of the brains. Selective alterations were observed by ethanol exposure and/or aging in signals for several subunits. Most interestingly, the putative highly ethanol-sensitive alpha4 and beta3 subunit mRNAs were significantly decreased in several brain regions. The age-related alterations in alpha4 subunit expression were parallel to those caused by lifelong ethanol drinking, whereas aging had no significant effect on beta3 subunit expression. The results suggest that prolonged ethanol consumption leading to blood concentrations of about 10 mM may downregulate the mRNA expression of selected GABAA receptor subunits and that aging might have partly similar effects.

  14. Potential targets for protecting against hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats

    PubMed Central

    Ji, Xiangyu; Zhang, Li’na; Liu, Ran; Liu, Yingzhi; Song, Jianfang; Dong, He; Jia, Yanfang; Zhou, Zangong

    2014-01-01

    Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial proteins in hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats using a comparative proteomics strategy. Our experimental results show that the aged rat brain is sensitive to ischemia-reperfusion injury and that transient ischemia led to cell apoptosis in the hippocampus and changes in memory and cognition of aged rats. Differential proteomics analysis suggested that this phenomenon may be mediated by mitochondrial proteins associated with energy metabolism and apoptosis in aged rats. This study provides potential drug targets for the treatment of transient cerebral ischemia-reperfusion injury. PMID:25206771

  15. Exercise-induced hippocampal anti-inflammatory response in aged rats.

    PubMed

    Gomes da Silva, Sérgio; Simões, Priscila Santos Rodrigues; Mortara, Renato Arruda; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; da Graça Naffah-Mazzacoratti, Maria; Arida, Ricardo Mario

    2013-01-01

    Aging is often accompanied by cognitive decline, memory impairment and an increased susceptibility to neurodegenerative disorders. Most of these age-related alterations have been associated with deleterious processes such as changes in the expression of inflammatory cytokines. Indeed, higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines are found in the aged brain. This perturbation in pro- and anti-inflammatory balance can represent one of the mechanisms that contribute to age-associated neuronal dysfunction and brain vulnerability. We conducted an experimental study to investigate whether an aerobic exercise program could promote changes in inflammatory response in the brains of aged rats. To do so, we evaluated the levels of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1β), interleukin 6 (IL6) and interleukin 10 (IL10) in the hippocampal formation of 18 month old rats that underwent treadmill training over 10 consecutive days. Quantitative immunoassay analyses showed that the physical exercise increased anti-inflammatory cytokine levels IL10 in the hippocampal formation of aged rats, when compared to the control group. The hippocampal levels of pro-inflammatory cytokines IL1β, IL6 and TNFα were not statistically different between the groups. However, a significant reduction in IL1β/IL10, IL6/IL10 and TNFα/IL10 ratio was observed in the exercised group in relation to the control group. These findings indicate a favorable effect of physical exercise in the balance between hippocampal pro- and anti-inflammatory during aging, as well as reinforce the potential therapeutic of exercise in reducing the risk of neuroinflammation-linked disorders.

  16. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    PubMed

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  17. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    PubMed

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed. PMID:27496035

  18. Brain development and aging: overlapping and unique patterns of change.

    PubMed

    Tamnes, Christian K; Walhovd, Kristine B; Dale, Anders M; Østby, Ylva; Grydeland, Håkon; Richardson, George; Westlye, Lars T; Roddey, J Cooper; Hagler, Donald J; Due-Tønnessen, Paulina; Holland, Dominic; Fjell, Anders M

    2013-03-01

    Early-life development is characterized by dramatic changes, impacting lifespan function more than changes in any other period. Developmental origins of neurocognitive late-life functions are acknowledged, but detailed longitudinal magnetic resonance imaging studies of brain maturation and direct comparisons with aging are lacking. To these aims, a novel method was used to measure longitudinal volume changes in development (n=85, 8-22 years) and aging (n=142, 60-91 years). Developmental reductions exceeded 1% annually in much of the cortex, more than double to that seen in aging, with a posterior-to-anterior gradient. Cortical reductions were greater than the subcortical during development, while the opposite held in aging. The pattern of lateral cortical changes was similar across development and aging, but the pronounced medial temporal reduction in aging was not precast in development. Converging patterns of change in adolescents and elderly, particularly in the medial prefrontal areas, suggest that late developed cortices are especially vulnerable to atrophy in aging. A key question in future research will be to disentangle the neurobiological underpinnings for the differences and the similarities between brain changes in development and aging. PMID:23246860

  19. Aging and Gene Expression in the Primate Brain

    SciTech Connect

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.; Paabo, Svante; Eisen, Michael B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  20. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  1. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    PubMed

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  2. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.

  3. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  4. Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats.

    PubMed

    Pyapali, G K; Turner, D A

    1996-01-01

    Age-related dendritic alterations were evaluated in F344 rats following a water maze assessment of spatial memory. Based on the probe trial times, 39% of the aged animals were designated impaired. CA1 pyramidal neurons were labeled intracellularly with neurobiotin in brain slices prepared from these animals. Neurons (aged: n = 15; young: n = 11) were reconstructed using a microscope-based three-dimensional system. Increased dendritic length was observed in the aged neurons both for basal dendrites (aged = 4.54 mm and young = 3.33 mm) and the entire neurons (aged = 14.8 mm and young = 10.8 mm). However, dendritic length values did not correlate with the individual animal's probe trial time. Sholl analysis revealed a diffuse increase in dendritic branch intersections in the cells from aged rats, which on branch order analysis was noted to be due to an increased number of distal branches. Mean electrotonic distance to dendritic terminals, a functional assessment of synaptic efficacy, was longer in the aged neurons (aged = 0.67 lambda and young = 0.55 lambda). These results suggest a lengthening and increased complexity of CA1 pyramidal neurons with successful aging, which may represent either an intrinsic response to aging or a reactive partial denervation response to a loss of afferent inputs.

  5. Greater Glucocorticoid Receptor Activation in Hippocampus of Aged Rats Sensitizes Microglia

    PubMed Central

    Barrientos, Ruth M.; Thompson, Vanessa M.; Kitt, Meagan M.; Amat, Jose; Hale, Matthew W.; Frank, Matthew G.; Crysdale, Nicole Y.; Stamper, Christopher E.; Hennessey, Patrick A.; Watkins, Linda R.; Spencer, Robert L.; Lowry, Christopher A.; Maier, Steven F.

    2014-01-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher CORT levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal CORT levels were associated with increased hippocampal 11β-HSD1 protein expression, the enzyme that catalyzes glucocorticoid formation, and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia, and prevented E. coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia. PMID:25559333

  6. Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia.

    PubMed

    Barrientos, Ruth M; Thompson, Vanessa M; Kitt, Meagan M; Amat, Jose; Hale, Matthew W; Frank, Matthew G; Crysdale, Nicole Y; Stamper, Christopher E; Hennessey, Patrick A; Watkins, Linda R; Spencer, Robert L; Lowry, Christopher A; Maier, Steven F

    2015-03-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher corticosterone levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal corticosterone levels were associated with increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 protein expression, the enzyme that catalyzes glucocorticoid formation and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia and prevented Escherichia coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia.

  7. Maturation of metabolic connectivity of the adolescent rat brain.

    PubMed

    Choi, Hongyoon; Choi, Yoori; Kim, Kyu Wan; Kang, Hyejin; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2015-11-27

    Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency.

  8. Detecting Behavioral Deficits Post Traumatic Brain Injury in Rats.

    PubMed

    Awwad, Hibah O

    2016-01-01

    Traumatic brain injury (TBI), ranging from mild to severe, almost always elicits an array of behavioral deficits in injured subjects. Some of these TBI-induced behavioral deficits include cognitive and vestibulomotor deficits as well as anxiety and other consequences. Rodent models of TBI have been (and still are) fundamental in establishing many of the pathophysiological mechanisms of TBI. Animal models are also utilized in screening and testing pharmacological effects of potential therapeutic agents for brain injury treatment. This chapter details validated protocols for each of these behavioral deficits post traumatic brain injury in Sprague-Dawley male rats. The elevated plus maze (EPM) protocol is described for assessing anxiety-like behavior; the Morris water maze protocol for assessing cognitive deficits in learning memory and spatial working memory and the rotarod test for assessing vestibulomotor deficits. PMID:27604739

  9. Expression profiling in the aging brain: a perspective.

    PubMed

    Galvin, James E; Ginsberg, Stephen D

    2005-11-01

    To evaluate molecular events associated with the aging process in animal models and human tissues, microarray analysis is performed at the regional and cellular levels to define transcriptional patterns or mosaics that may lead to better understanding of the mechanism(s) that drive senescence. In this review, we outline the experimental and analytical issues associated with high-throughput genomic analyses in aging brain and other tissues for a comprehensive evaluation of the current state of microarray analysis in aging paradigms. Ultimately, the goal of these studies is to apply functional genomics and proteomics approaches to aging research to develop new tools to assess age in cell- and tissue-specific manners in order to develop aging biomarkers for pharmacotherapeutic interventions and disease prevention.

  10. Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats.

    PubMed

    Pietrelli, A; Lopez-Costa, J; Goñi, R; Brusco, A; Basso, N

    2012-01-27

    Recent research involving human and animals has shown that aerobic exercise of moderate intensity produces the greatest benefit on brain health and behavior. In this study we investigated the effects on cognitive function and anxiety-related behavior in rats at different ages of aerobic exercise, performed regularly throughout life. We designed an aerobic training program with the treadmill running following the basic principles of human training, and assuming that rats have the same physiological adaptations. The intensity was gradually adjusted to the fitness level and age, and maintained at 60-70% of maximum oxygen consumption (max.VO(2)). In middle age (8 months) and old age (18 months), we studied the cognitive response with the radial maze (RM), and anxiety-related behaviors with the open field (OF) and the elevated plus maze (EPM). Aerobically trained (AT) rats had a higher cognitive performance measured in the RM, showing that exercise had a cumulative and amplifier effect on memory and learning. The analysis of age and exercise revealed that the effects of aerobic exercise were modulated by age. Middle-aged AT rats were the most successful animals; however, the old AT rats met the criteria more often than the middle-aged sedentary controls (SC), indicating that exercise could reverse the negative effects of sedentary life, partially restore the cognitive function, and protect against the deleterious effects of aging. The results in the OF and EPM showed a significant decrease in key indicators of anxiety, revealing that age affected most of the analyzed variables, and that exercise had a prominent anxiolytic effect, particularly strong in old age. In conclusion, our results indicated that regular and chronic aerobic exercise has time and dose-dependent, neuroprotective and restorative effects on physiological brain aging, and reduces anxiety-related behaviors.

  11. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    PubMed

    Gordon, Christopher J

    2008-12-01

    The cardiovascular and thermoregulatory systems are considered to be susceptible in the aged population, but little is known about baseline cardiac and thermoregulatory homeostasis in rodent models of aging. Radiotransmitters were implanted in male, Brown Norway rats obtained at 4, 12, and 24 months to monitor the electrocardiogram (ECG), interbeat interval (IBI), heart rate (HR), core temperature (Tc), and motor activity (MA). There was no significant effect of age on resting HR and MA. Daytime Tc of the 24-month-old rats was significantly elevated above those of the 4- and 12-month-old groups. Variability of the IBI was highest in the 24-month-old rats. The elevation in daytime Tc beginning around 8 months of age may be a physiological biomarker of aging and may be an important factor to consider in studies using caloric restriction-induced hypothermia to increase longevity. PMID:19126843

  12. Effects of inter-alpha inhibitor proteins on neonatal brain injury: Age, task and treatment dependent neurobehavioral outcomes.

    PubMed

    Threlkeld, Steven W; Gaudet, Cynthia M; La Rue, Molly E; Dugas, Ethan; Hill, Courtney A; Lim, Yow-Pin; Stonestreet, Barbara S

    2014-11-01

    Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full term birth related complications. HI injury often results in learning and processing deficits that reflect widespread damage to an extensive range of cortical and sub-cortical brain structures. Further, inflammation has been implicated in the long-term progression and severity of HI injury. Recently, inter-alpha inhibitor proteins (IAIPs) have been shown to attenuate inflammation in models of systemic infection. Importantly, preclinical studies of neonatal HI injury and neuroprotection often focus on single time windows of assessment or single behavioral domains. This approach limits translational validity, given evidence for a diverse spectrum of neurobehavioral deficits that may change across developmental windows following neonatal brain injury. Therefore, the aims of this research were to assess the effects of human IAIPs on early neocortical cell death (72h post-insult), adult regional brain volume measurements (cerebral cortex, hippocampus, striatum, corpus callosum) and long-term behavioral outcomes in juvenile (P38-50) and adult (P80+) periods across two independent learning domains (spatial and non-spatial learning), after postnatal day 7 HI injury in rats. Here, for the first time, we show that IAIPs reduce acute neocortical neuronal cell death and improve brain weight outcome 72h following HI injury in the neonatal rat. Further, these longitudinal studies are the first to show age, task and treatment dependent improvements in behavioral outcome for both spatial and non-spatial learning following systemic administration of IAIPs in neonatal HI injured rats. Finally, results also show sparing of brain regions critical for spatial and non-spatial learning in adult animals treated with IAIPs at the time of injury onset. These data support the proposal that inter-alpha inhibitor proteins may serve as novel therapeutics for brain injury associated with premature birth and

  13. The impact of aging and gender on brain viscoelasticity.

    PubMed

    Sack, Ingolf; Beierbach, Bernd; Wuerfel, Jens; Klatt, Dieter; Hamhaber, Uwe; Papazoglou, Sebastian; Martus, Peter; Braun, Jürgen

    2009-07-01

    Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.

  14. Consequences of nicotine exposure during different phases of rat brain development.

    PubMed

    Khanna Sood, Pooja; Sharma, Sonika; Nehru, Bimla

    2012-08-01

    Nicotine is a psychoactive drug whose intensity of the addiction is so tremendous that it is now the fastest growing public health hazard in the world. The present study was designed to study the toxic effects of nicotine during different phases of rat brain development. The study is extended through adult brain designated as group A, that received nicotine at the dosage of 5 mg/kg of b.wt. for 21 days and were sacrificed following 21 days of recovery. In the second group P, pups in different gestational phases (P2-P4) were given maternal nicotine exposures for only a period of 7 days followed by recovery till they had achieved the age of 40 days. A significant decrease in long term memory was observed in adult rats which correlated well with a significant decrease in the acetylcholine esterase activity. Simultaneously a significant decrease in the total glutathione, GSH content and catalase activity was observed which could account for the increase in peroxidation of lipids as evaluated by malondialdehyde (MDA) content in the nicotine exposed adult rats. The consequences of maternal nicotine exposure were different during different exposures regimes the alterations were least during the early gestation period, i.e. P2 (2-9 days of their gestation period) as compared to P3 (7-14 days of their gestation period) and P4 (21 days of their weanling period). The study indicates that the consequences of nicotine exposure are varied during different stages of brain development. PMID:22169521

  15. Aging and the disposition and toxicity of mercury in rats.

    PubMed

    Bridges, Christy C; Joshee, Lucy; Zalups, Rudolfs K

    2014-05-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg(2+)), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg(2+) in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5μmol·kg(-1) non-nephrotoxic or a 2.5μmol·kg(-1) nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  16. Aging and the Disposition and Toxicity of Mercury in Rats

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2014-01-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  17. Cerebrolysin improves memory and ameliorates neuronal atrophy in spontaneously hypertensive, aged rats.

    PubMed

    Solis-Gaspar, Carlos; Vazquez-Roque, Ruben A; De Jesús Gómez-Villalobos, Ma; Flores, Gonzalo

    2016-09-01

    The spontaneously hypertensive (SH) rat has been used as an animal model of vascular dementia (VD). Our previous report showed that, SH rats exhibited dendritic atrophy of pyramidal neurons of the CA1 dorsal hippocampus and layers 3 and 5 of the prefrontal cortex (PFC) at 8 months of age. In addition, we showed that cerebrolysin (Cbl), a neurotrophic peptide mixture, reduces the dendritic atrophy in aged animal models. This study aimed to determine whether Cbl was capable of reducing behavioral and neuronal alterations, in old female SH rats. The level of diastolic and systolic pressure was measured every month for the 6 first months and only animals with more than 160 mm Hg of systolic pressure were used. Female SH rats (6 months old) received 6 months of Cbl treatment. Immediately after the Cbl treatment, two behavioral tests were applied, the Morris water maze test for memory and learning and locomotor activity in novel environments. Immediately after the last behavioral test, dendritic morphology was studied with the Golgi-Cox stain procedure followed by a Sholl analysis. Clearly, SH rats with Cbl showed an increase in the dendritic length and dendritic spine density of pyramidal neurons in the CA1 in the dorsal hippocampus and layers 3 and 5 of the PFC. Interestingly, Cbl improved memory of the old SH rats. Our results support the possibility that Cbl may have beneficial effects on the management of brain alterations in an animal model with VD. Synapse 70:378-389, 2016. © 2016 Wiley Periodicals, Inc.

  18. Dietary aspartame with protein on plasma and brain amino acids, brain monoamines and behavior in rats.

    PubMed

    Torii, K; Mimura, T; Takasaki, Y; Ichimura, M

    1986-01-01

    Aspartame (APM; L-aspartyl-L-phenylalanine methyl ester), was investigated for its ability to alter levels of the large neutral amino acids and monoamines in overnight fasted rats allowed to consume meals with or without protein for two hours. Additionally, the possible long term behavioral consequences of APM in 25% casein diets with or without 10% sucrose were determined. Acute APM ingestion increased both plasma and brain phenylalanine and tyrosine levels, but brain tryptophan levels were not altered regardless of dietary protein. Brain norepinephrine and dopamine levels were unaltered by any of the diet while serotonin levels were slightly increased when a protein-free diet was consumed. But APM and/or protein ingestion minimized this increase of brain serotonin levels as much as controls. Chronic APM ingestion failed to influence diurnal feeding patterns, meal size distributions, or diurnal patterns of spontaneous motor activity. The chronic ingestion of abuse doses of APM produced no significant chemical changes in brain capable of altering behavioral parameters believed to be controlled by monoamines in rats.

  19. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  20. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Peyman, A.; Rezazadeh, A. A.; Gabriel, C.

    2001-06-01

    The dielectric properties of ten rat tissues at six different ages were measured at 37 °C in the frequency range of 130 MHz to 10 GHz using an open-ended coaxial probe and a computer controlled network analyser. The results show a general decrease of the dielectric properties with age. The trend is more apparent for brain, skull and skin tissues and less noticeable for abdominal tissues. The variation in the dielectric properties with age is due to the changes in the water content and the organic composition of tissues. The percentage decrease in the dielectric properties of certain tissues in the 30 to 70 day old rats at cellular phone frequencies have been tabulated. These data provide an important input in the provision of rigorous dosimetry in lifetime-exposure animal experiments. The results provide some insight into possible differences in the assessment of exposure for children and adults.

  1. Regional dependence of morphine-induced mu-opiate receptor down-regulation in perinatal rat brain.

    PubMed

    Hammer, R P; Seatriz, J V; Ricalde, A R

    1991-12-17

    The effect of perinatal morphine administration was examined in various brain regions using in vitro receptor autoradiography. Morphine was administered by continuous s.c. infusion of 10 mg/kg per day; brains of offspring were examined at five days of age. Morphine exposure reduced mu-receptor binding density in the preoptic area of hypothalamus, but not in the primary somatosensory cortex. mu-Receptor density was greater in the medial preoptic area of females than males, and in superficial layers of cortex in males than females. The results suggest that morphine has selective regional effects on mu-receptor ontogeny in rat brain. PMID:1665797

  2. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    SciTech Connect

    Balduini, W.; Murphy, S.D.; Costa, L.G. )

    1990-05-01

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats. Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.

  3. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain.

    PubMed

    Kobayashi, Megumi Sugahara; Asai, Satoshi; Ishikawa, Koichi; Nishida, Yayoi; Nagata, Toshihito; Takahashi, Yasuo

    2008-06-01

    Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.

  4. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene

    PubMed Central

    Stefaniuk, Marzena; Gualda, Emilio J.; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  5. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene.

    PubMed

    Stefaniuk, Marzena; Gualda, Emilio J; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  6. Red raspberries can improve motor function in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Many foods rich in antioxidant and anti-inflammatory compounds have been shown to increase health and reduce markers of aging. A number of berry fruits high in polyphenols are known to ameliorate age-related declines in cellular, cognitive and behavioral function in rats. OBJECTIVES: Thi...

  7. Tart cherries improve working memory in aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aged rats show impaired performance on cognitive tasks that require the use of spatial learning and memory. In previous studies, we have shown the beneficial effects of various dark-colored berry fruits (blueberries, strawberries, and blackberries) in reversing age-related deficits in behavioral and...

  8. Maternal age, reproduction and chromosomal aberrations in Wistar derived rats.

    PubMed

    Niggeschulze, A; Kast, A

    1994-01-01

    The fertility of rats ranges from one to 18 months. In standard teratogenicity testing young, mature females are used which may not reflect the situation in women above 35 years old. Reproduction among different age groups of Wistar ats (strain Chbb: THOM) was compared at 3, 6, 9, 12, 15 and 18 months. At least 20 virgin females were inseminated per age group. The copulation rate did not differ between the groups. From the maternal age of 12 months, the pregnancy rate was significantly decreased, from the age of 9 months, the litter values were significantly lowered and the resorption rates were increased. Maternal age did not influence the incidence of fetal variations and malformations. Additionally, the chromosomal aberration rate in the bone marrow was evaluated in male and female rats. Twelve animals of each sex were scheduled per group, and studied at the age of 1, 3, 6, 12, 15, 18, 21 or 24 months. In males, the aberration rate increased continuously from 0.18 through 3%, while in females the increase continued from 0.33 to 2.29% at 15 months old when a plateau was reached. When testing new compounds for embryotoxicity or genotoxicity in female rats, the animals should be of comparable age to man in order to avoid a misinterpretation of spontaneous abnormalities. From these studies, however, it was concluded that the use of higher age groups of female rats in teratogenicity studies would not improve the risk assessment.

  9. In utero exposure to microwave radiation and rat brain development

    SciTech Connect

    Merritt, J.H.; Hardy, K.A.; Chamness, A.F.

    1984-01-01

    Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.

  10. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    PubMed

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  11. Pharmacologically Induced Hypothermia Attenuates Traumatic Brain Injury in Neonatal Rats

    PubMed Central

    Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A.; Yu, Shan Ping

    2015-01-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A six-hour hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15 min or 2 hr after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and Caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the

  12. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  13. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  14. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory.

    PubMed

    Andres-Lacueva, Cristina; Shukitt-Hale, Barbara; Galli, Rachel L; Jauregui, Olga; Lamuela-Raventos, Rosa M; Joseph, James A

    2005-04-01

    Research has shown that fruits and vegetables containing high levels of polyphenolics (flavonoids) display high total antioxidant activity. Our laboratory found that various fruit and vegetable extracts, particularly blueberry (BB), were effective in reversing age-related deficits in neuronal signaling and behavioral parameters following 8 weeks of feeding, possibly due to their polyphenolic content. However, it was unclear if these phytonutrients were able to directly access the brain from dietary BB supplementation (BBS). The present study examined whether different classes of polyphenols could be found in brain areas associated with cognitive performance following BBS. Thus, 19 month old F344 rats were fed a control or 2% BB diet for 8-10 weeks and tested in the Morris water maze (MWM), a measure of spatial learning and memory. LC-MS analyses of anthocyanins in the diet and subsequently in different brain regions of BBS and control rats were carried out. Several anthocyanins (cyanidin-3-O-beta-galactoside, cyanidin-3-O-beta-glucoside, cyanidin-3-O-beta-arabinose, malvidin-3-O-beta-galactoside, malvidin-3-O-beta-glucoside, malvidin-3-O-beta-arabinose, peonidin-3-O-beta-arabinose and delphinidin-3-O-beta-galactoside) were found in the cerebellum, cortex, hippocampus or striatum of the BBS rats, but not the controls. These findings are the first to suggest that polyphenolic compounds are able to cross the blood brain barrier and localize in various brain regions important for learning and memory. Correlational analyses revealed a relationship between MWM performance in BBS rats and the total number of anthocyanin compounds found in the cortex. These findings suggest that these compounds may deliver their antioxidant and signaling modifying capabilities centrally.

  15. Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium.

    PubMed

    Feng, Liuxing; He, Xiao; Xiao, Haiqing; Li, Zijie; Li, Fuliang; Liu, Nianqing; Chai, Zhifang; Zhao, Yuliang; Zhang, Zhiyong

    2007-01-01

    Lanthanides, because of their diversified physical and chemical effects, have been widely used in a number of fields. As a result, more and more lanthanides are entering the environment and eventually accumulating in the human body. Previous studies indicate that the impact of lanthanides on brain function cannot be neglected. Although neurological studies of trace elements are of paramount importance, up to now, little data are provided regarding the status of micronutritional elements in rats after prenatal and long-term exposure to lanthanide. The aim of this study is to determine the ytterbium (Yb) and trace elements distribution in brain and organic tissues of offspring rats after prenatal and long-term exposure to Yb. Wistar rats were exposed to Yb through oral administration at 0,0.1, 2, and 40 mg Yb/kg concentrations from gestation day 0 through 5 mo of age. Concentrations of Yb and other elements (Mg, Ca, Fe, Cu, Mn, and Zn) in the serum, liver, femur, and brain regions (cerebral cortex, hippocampus, cerebellum, and the rest) of offspring rats at the age of 0 d, 25 d, and 5 mo were analyzed by inductively coupled plasma-mass spectrometry. The accumulation of Yb in the brain, liver, and femur is observed; moreover, the levels of Fe, Cu, Mn, Zn, Ca, and Mg in the brain and organic tissues of offspring rats are also altered after Yb exposure. This disturbance of the homeostasis of trace elements might induce adverse effects on normal physiological functions of the brain and other organs.

  16. [Behavior and functional state of the dopaminergic brain system in pups of depressive WAG/Rij rats].

    PubMed

    Malyshev, A V; Razumkina, E V; Rogozinskaia, É Ia; Sarkisova, K Iu; Dybynin, V A

    2014-01-01

    In the present work, it has been studied for the first time behavior and functional state of the dopaminergic brain system in pups of "depressive" WAG/Rij rats. Offspring of "depressive" WAG/Rij rats at age of 6-16 days compared with offspring of "normal" (non-depressed) outbred rats of the same age exhibited reduced rate of pshychomotor development, lower body weight, attenuation in integration of coordinated reflexes and vestibular function (greater latency of righting reflex, abnormal negative geotaxis), hyper-reactivity to tactile stimulation, reduced motivation to contact with mother (reduced infant-mother attachment). Differences in a nest seeking response induced by olfactory stimuli (olfactory discrimination test) and in locomotor activity (tests "gait reflex" and "small open field") have not been revealed. Acute injection of the antagonist of D2-like dopamine receptors clebopride 20 min before testing aggravated mother-oriented behavior in 15-days-old pups of both "depressive" and "non-depressive" rats. However this effect was greater in pups of "depressive" WAG/Rij rats compared with pups of "normal" rats that may indicate reduced functional activity of the dopaminergic brain system in offspring of "depressive" rats. It is proposed that reduced attachment behavior in pups of "depressive" WAG/Rij rats might be a consequence of maternal depression and associated with it reduced maternal care. Moreover, reduced attachment behavior in pups of "depressive" rats might be an early precursor (a marker) of depressive-like pathology which become apparent later in life (approximately at age of 3 months). PMID:25723020

  17. Age-related changes in the brain antioxidant status: modulation by dietary supplementation of Decalepis hamiltonii and physical exercise.

    PubMed

    Ravikiran, Tekupalli; Sowbhagya, Ramachandregowda; Anupama, Sindhghatta Kariyappa; Anand, Santosh; Bhagyalakshmi, Dundaiah

    2016-08-01

    The synergistic effects of physical exercise and diet have profound benefits on brain function. The present study was aimed to determine the effects of exercise and Decalepis hamiltonii (Dh) on age-related responses on the antioxidant status in discrete regions of rat brain. Male Wistar albino rats of 4 and 18 months old were orally supplemented with Dh extract and swim trained at 3 % intensity for 30 min/day, 5 days/week, for a period of 30 days. Supplementation of 100 mg Dh aqueous extract/kg body weight and its combination with exercise significantly elevated the antioxidant enzyme activities irrespective of age. Age-related and region-specific changes were observed in superoxide levels, and protein carbonyl and malondialdehyde contents, and were found to be decreased in both trained and supplemented groups. Levels of total thiols, protein, and nonprotein thiols decreased with age and significantly increased in the SW-T(+100 mg) groups. Our results demonstrated that the interactive effects of two treatments enhanced the antioxidant status and decreased the risk of protein and lipid oxidation in the rat brain. PMID:27379504

  18. Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age.

    PubMed

    Slotkin, Theodore A; MacKillop, Emiko A; Rudder, Charles L; Ryde, Ian T; Tate, Charlotte A; Seidler, Frederic J

    2007-05-01

    Nicotine is a neuroteratogen that disrupts neurodevelopment and synaptic function, with vulnerability extending into adolescence. We assessed the permanence of effects in rats on indices of neural cell number and size, and on acetylcholine and serotonin (5HT) systems, conducting assessments at 6 months of age, after prenatal nicotine exposure, adolescent exposure, or sequential exposure in both periods. For prenatal nicotine, indices of cell number and size showed few abnormalities by 6 months, but there were persistent deficits in cerebrocortical choline acetyltransferase activity and hemicholinium-3 binding to the presynaptic choline transporter, a pattern consistent with cholinergic hypoactivity; these effects were more prominent in males than females. The expression of 5HT receptors also showed permanent effects in males, with suppression of the 5HT(1A) subtype and upregulation of 5HT(2) receptors. In addition, cell signaling through adenylyl cyclase showed heterologous uncoupling of neurotransmitter responses. Nicotine exposure in adolescence produced lasting effects that were similar to those of prenatal nicotine. However, when animals were exposed to prenatal nicotine and received nicotine subsequently in adolescence, the adverse effects then extended to females, whereas the net effect in males was similar to that of prenatal nicotine by itself. Our results indicate that prenatal or adolescent nicotine exposure evoke permanent changes in synaptic function that transcend the recovery of less-sensitive indices of structural damage; further, prenatal exposure sensitizes females to the subsequent adverse effects of adolescent nicotine, thus creating a population that may be especially vulnerable to the lasting behavioral consequences of nicotine intake in adolescence.

  19. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    PubMed Central

    Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.

    2016-01-01

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106

  20. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.

    PubMed

    Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L

    2016-06-23

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  1. The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain

    SciTech Connect

    Ku, Shuting; Yan, Feng; Wang, Ying; Sun, Yilin; Yang, Nan; Ye, Ling

    2010-04-16

    PEGylated PAMAM conjugated fluorescein-doped magnetic silica nanoparticles (PEGylated PFMSNs) have been synthesized for evaluating their ability across the blood-brain barrier (BBB) and distribution in rat brain. The obtained nanoparticles were characterized by transmission electron microscopy (TEM), thermal gravimetry analyses (TGA), zeta potential ({zeta}-potential) titration, and X-ray photoelectron spectroscopy (XPS). The BBB penetration and distribution of PEGylated PFMSNs and FMSNs in rat brain were investigated not only at the cellular level with Confocal laser scanning microscopy (CLSM), but also at the subcellular level with transmission electron microscopy (TEM). The results provide direct evidents that PEGylated PFMSNs could penetrate the BBB and spread into the brain parenchyma.

  2. Cerebrolysin attenuates blood-brain barrier and brain pathology following whole body hyperthermia in the rat.

    PubMed

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Sharma, Aruna; Johanson, Conrad E

    2010-01-01

    The possibility that Cerebrolysin, a mixture of several neurotrophic factors, has some neuroprotective effects on whole body hyperthermia (WBH) induced breakdown of the blood-brain barrier (BBB), blood-CSF barrier (BCSFB), brain edema formation and neuropathology were examined in a rat model. Rats subjected to a 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited profound increases in BBB and BCSFB permeability to Evans blue and radioiodine tracers compared to controls. Hippocampus, caudate nucleus, thalamus and hypothalamus exhibited pronounced increase in water content and brain pathology following 4 h heat stress. Pretreatment with Cerebrolysin (1, 2 or 5 mL/kg i.v.) 24 h before WBH significantly attenuated breakdown of the BBB or BCSFB and brain edema formation. This effect was dose dependent. Interestingly, the cell and tissue injury following WBH in cerebrolysin-treated groups were also considerably reduced. These novel observations suggest that cerebrolysin can attenuate WBH induced BBB and BCSFB damage resulting in neuroprotection.

  3. Magnetic Micelles for DNA delivery to rat brains after mild traumatic brain injury

    PubMed Central

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S.; Mohapatra, Subhra

    2014-01-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CPmag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM - tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 hours after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. PMID:24486465

  4. Lucid dreaming: an age-dependent brain dissociation.

    PubMed

    Voss, Ursula; Frenzel, Clemens; Koppehele-Gossel, Judith; Hobson, Allan

    2012-12-01

    The current study focused on the distribution of lucid dreams in school children and young adults. The survey was conducted on a large sample of students aged 6-19 years. Questions distinguished between past and current experience with lucid dreams. Results suggest that lucid dreaming is quite pronounced in young children, its incidence rate drops at about age 16 years. Increased lucidity was found in those attending higher level compared with lower level schools. Taking methodological issues into account, we feel confident to propose a link between the natural occurrence of lucid dreaming and brain maturation. PMID:22639960

  5. Lucid dreaming: an age-dependent brain dissociation.

    PubMed

    Voss, Ursula; Frenzel, Clemens; Koppehele-Gossel, Judith; Hobson, Allan

    2012-12-01

    The current study focused on the distribution of lucid dreams in school children and young adults. The survey was conducted on a large sample of students aged 6-19 years. Questions distinguished between past and current experience with lucid dreams. Results suggest that lucid dreaming is quite pronounced in young children, its incidence rate drops at about age 16 years. Increased lucidity was found in those attending higher level compared with lower level schools. Taking methodological issues into account, we feel confident to propose a link between the natural occurrence of lucid dreaming and brain maturation.

  6. Age-related hearing loss: ear and brain mechanisms.

    PubMed

    Frisina, Robert D

    2009-07-01

    Loss of sensory function in the aged has serious consequences for economic productivity, quality of life, and healthcare costs in the billions each year. Understanding the neural and molecular bases will pave the way for biomedical interventions to prevent, slow, or reverse these conditions. This chapter summarizes new information regarding age changes in the auditory system involving both the ear (peripheral) and brain (central). A goal is to provide findings that have implications for understanding some common biological underpinnings that affect sensory systems, providing a basis for eventual interventions to improve overall sensory functioning, including the chemical senses.

  7. Brain plasticity and motor practice in cognitive aging

    PubMed Central

    Cai, Liuyang; Chan, John S. Y.; Yan, Jin H.; Peng, Kaiping

    2014-01-01

    For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population. PMID:24653695

  8. Detection of cocaine induced rat brain activation by photoacoustic tomography

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic tomography (PAT) was used to detect the progressive changes on the cerebral cortex of Sprague Dawley rats after the administration of cocaine hydrochloride. Different concentrations (0, 2.5, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution were injected into Sprague Dawley rats through tail veins. Cerebral cortex images of the animals were continuously acquired by PAT. For continuous observation, PAT system used multi-transducers to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The obtained photoacoustic images were compared with each other and confirmed that changes in blood volume were induced by cocaine hydrochloride injection. The results demonstrate that PAT may be used to detect the effects of drug abuse-induced brain activation. PMID:21163301

  9. Characteristics of electrically induced locomotion in rat in vitro brain stem-spinal cord preparation.

    PubMed

    Atsuta, Y; Garcia-Rill, E; Skinner, R D

    1990-09-01

    1. Electrical stimulation of two brain stem regions in the decerebrate neonatal rat brain--the mesencephalic locomotor region (MLR) and the medioventral medulla (MED)--were found to elicit rhythmic limb movements in the hind-limb-attached, in vitro, brain stem-spinal cord preparation. 2. Electromyographic (EMG) analysis revealed locomotion similar to that observed during stepping in the adult rat. The step-cycle frequency could be increased by application of higher-amplitude currents; but, unlike the adult, alternation could not be driven to a gallop. 3. Threshold currents for inducing locomotion were significantly lower for stimulation of the MED compared with the MLR. Brain stem transections carried out at midpontine levels demonstrated that the presence of the MLR was not required for the expression of MED-stimulation-induced effects. 4. Substitution of the standard artificial cerebrospinal fluid (aCSF) by magnesium-free aCSF did not affect interlimb relationships and resulted in a significant decrease of the threshold currents for inducing locomotion. 5. Fixation of the limbs during electrical stimulation of brain stem sites altered the amplitude and duration of the EMG patterns, but the basic rhythm and timing of each muscle contraction during the step cycle was not affected. 6. These studies suggest that, although peripheral afferent modulation is evident in the neonatal locomotor control system, descending projections from brain stem-locomotor regions appear capable of modulating the activity of spinal pattern generators as early as the day of birth. However, there may be ceiling to the maximal frequency of stepping possible at this early age, perhaps suggesting a later-developing mechanism for galloping.

  10. Aging increases the susceptibility to develop anhedonia in male rats.

    PubMed

    Herrera-Pérez, J J; Martínez-Mota, L; Fernández-Guasti, A

    2008-12-12

    The objective of this study was to establish the effect of aging on the development of anhedonia, a core feature of depression. Young and old male Wistar rats (of around 3-5 and 12-15 months, respectively) were exposed to a chronic variable stress (CVS) schedule for 3 weeks. CVS produced anhedonia, indicated by a reduction in the intake of a sucrose solution (1%), in 8 out of 23 (35%) young rats and in 19 out of 26 (73%) old rats, implying that old animals are more susceptible to stress and develop anhedonia more readily than young animals. Young and old anhedonic rats showed a similar temporal course in the reduction of sucrose consumption, reaching the anhedonic state after 2 weeks of CVS exposure. Compared with young animals, old rats had lower basal serum testosterone and estradiol levels. The systemic levels of corticosterone did not vary between both age groups. No significant pathological condition was detected in old animals. It is suggested that the higher susceptibility to develop anhedonia in male rats could be associated to neuroendocrine changes consequent to aging.

  11. Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats.

    PubMed

    Hao, L Y; Hao, X Q; Li, S H; Li, X H

    2010-03-31

    Studies have suggested that maternal infection/inflammation maybe a major risk factor for neurodevelopmental brain damage. In the present study, we evaluated the effects of prenatal exposure to a low level of inflammatory stimulation lipopolysaccharide (LPS) repeatedly on spatial learning and memory performances in rat offspring's lifetime. Sixteen pregnant Sprague-Dawley rats were randomly divided into two groups. The rats in the LPS group were treated i.p. with LPS (0.79 mg/kg) at gestation day 8, 10 and 12; meanwhile the rats in the control group were treated with saline. After delivery, the rat offspring at 3- (young), 10- (adult) and 20-mon-old (aged) were allocated. Spatial learning and memory abilities were tested by Morris water maze. The structure of hippocampal CA1 region was observed by light microscopy. The expression of synaptophysin (SYP) and glial fibrillary acidic protein (GFAP) in hippocampal CA1 region were measured by immunohistochemistry. Results showed that the rat offspring of LPS group needed longer escape latency and path-length in the Morris water maze and presented a significant neuron loss, decreased expression of SYP, increased expression of GFAP in CA1 region in histological studies. All these changes were more significant with the age increasing. These findings support the hypothesis that maternal systemic inflammation may alter the state of astrocytes in rat offspring for a long time, the alteration may affect neurons and synapse development in neural system, increase the neurons' vulnerability to environment especially as the age increasing, at last result in distinct learning and memory impairment. PMID:20074621

  12. Effect of age on respiratory function of Fischer-344 rats

    SciTech Connect

    Mauderly, J.L.

    1982-01-01

    The respiratory function of adult male and female specific pathogen free Fischer-344 rats in three age groups was measured by plethysmography. Groups included young adults at 102 days, mid-adults at 538 days and old adults at 815 days of age. Measurements included spontaneous breathing patterns, subdivisions of lung volume, quasistatic lung pressure-volume relationships and CO diffusing capacity. The mid-adult and old rats were larger in body size than the young rats and had larger values for breathing pattern variables and lung volumes. The mid-adult rats had lower values for functional residual capacity and residual volume and a greater quasistatic lung compliance than the young or old rats. There were no age-related differences in the position of the mid-portion of the quasistatic pressure-volume curve; however, when volumes were expressed as percentages of maximal lung volume, the curves of the older groups lay to the right of the curve for the youngest group. Although these differences suggested the possibility of a slight reduction of respiratory efficiency in the old rats, there was no clear indication of a major loss of respiratory function with age. Differences between males and females were largely related to body size, although young and mid-adult females had larger size-adjusted values for lung volumes than males. Rat lungs undergo significant changes during adulthood, due primarily to continued lung growth, but the pattern of change may be different than that of man and the degrees of the changes suggesting a possible function loss in aged subjects were less than those observed in many at an equivalent portion of the life span.

  13. Litter size, age-related memory impairments, and microglial changes in rat dentate gyrus: stereological analysis and three dimensional morphometry.

    PubMed

    Viana, L C; Lima, C M; Oliveira, M A; Borges, R P; Cardoso, T T; Almeida, I N F; Diniz, D G; Bento-Torres, J; Pereira, A; Batista-de-Oliveira, M; Lopes, A A C; Silva, R F M; Abadie-Guedes, R; Amâncio Dos Santos, A; Lima, D S C; Vasconcelos, P F C; Cunningham, C; Guedes, R C A; Picanço-Diniz, C W

    2013-05-15

    It has been demonstrated that rat litter size affects the immune cell response, but it is not known whether the long-term effects aggravate age-related memory impairments or microglial-associated changes. To that end, we raised sedentary Wistar rats that were first suckled in small or large litters (6 or 12pups/dam, respectively), then separated into groups of 2-3 rats from the 21st post-natal day to study end. At 4months (young adult) or 23months (aged), all individual rats were submitted to spatial memory and object identity recognition tests, and then sacrificed. Brain sections were immunolabeled with anti-IBA-1 antibodies to selectively identify microglia/macrophages. Microglial morphological changes in the molecular layer of the dentate gyrus were estimated based on three-dimensional reconstructions. The cell number and laminar distribution in the dentate gyrus was estimated with the stereological optical fractionator method. We found that, compared to young rat groups, aged rats from large litters showed significant increases in the number of microglia in all layers of the dentate gyrus. Compared to the microglia in all other groups, microglia in aged individuals from large litters showed a significantly higher degree of tree volume expansion, branch base diameter thickening, and cell soma enlargement. These morphological changes were correlated with an increase in the number of microglia in the molecular layer. Young adult individuals from small litters exhibited preserved intact object identity recognition memory and all other groups showed reduced performance in both spatial and object identity recognition tasks. We found that, in large litters, brain development was, on average, associated with permanent changes in the innate immune system in the brain, with a significant impact on the microglial homeostasis of aged rats.

  14. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  15. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  16. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    PubMed

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.

  17. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    PubMed

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  18. 2-hydroxyestradiol modifies serotonergic processes in the male rat brain

    SciTech Connect

    Kowalik, S.

    1985-01-01

    The effects of chronic (5 day) 2-hydroxyestradiol or estradiol on catecholaminergic and serotonergic neurons in the male rat brain were studied. The results indicate estrogen to be specific is inducing changes in dopaminergic systems; whereas its hydroxymetabolite appears to have a preference for serotonergic processes. In particular, in vitro 2-hydroxyestradiol appears to be a potent inhibitor of /sup 3/H-imipramine binding in brain; this inhibition is especially potent in the cortex, where it is equal in potency to serotonin. However, unlike serotonin, which is a competitive inhibitor of imipramine, 2-hydroxyestradiol is an uncompetitive inhibitor of /sup 3/H-imipramine binding in cortex and hypothalamus and a noncompetitive inhibitor in the striatum; this suggests that the inhibition of binding takes place at a point other than the site of serotonin uptake. In vitro 2-hydroxyestradiol also appears to increase the uptake of serotonin into these tissues, a change which would be expected if the imipramine binding is blocked.

  19. Four-month enriched environment prevents myelinated fiber loss in the white matter during normal aging of male rats.

    PubMed

    Yang, Shu; Lu, Wei; Zhou, De-shan; Tang, Yong

    2015-01-01

    White matter degenerates with normal aging and accordingly results in declines in multiple brain functions. Previous neuroimaging studies have implied that the white matter is plastic by experiences and contributory to the experience-dependent recovery of brain functions. However, it is not clear how and how far enriched environment (EE) plays a role in the white matter remodeling. Male rats exhibit earlier and severer age-related damages in the white matter and its myelinated fibers than female rats; therefore, in this current study, 24 middle-aged (14-month-old) and 24 old-aged (24-month-old) male SD rats were randomly assigned to an EE or standard environment (SE) for 4 months prior to Morris water maze tests. Five rats from each group were then randomly sampled for stereological assessment of the white matter. Results revealed that EE could somewhat induce improvement of spatial learning and significantly increase the white matter volume, the myelinated fiber volume and the myelinated fiber length during normal aging. The EE-induced improvement of spatial learning ability was significantly correlated with the EE-induced increase of the white matter and its myelinated fibers. We suggested that exposure to an EE could delay the progress of age-related changes in the white matter and the effect could extend to old age.

  20. Challenges of multimorbidity of the aging brain: a critical update.

    PubMed

    Jellinger, Kurt A; Attems, Johannes

    2015-04-01

    A major problem in elderly patients is the high incidence of multiple pathologies, referred to as multimorbidity, in the aging brain. It has been increasingly recognized that co-occurrence of neurodegenerative proteinopathies and other pathologies including cerebrovascular disorders is a frequent event in the brains of both cognitively intact and impaired aged subjects. Although clinical and neuropathological diagnostic criteria of the major neurodegenerative diseases have been improved, major challenges arise from cerebral multimorbidity, and the thresholds to cause clinical overt dementia are ill defined. More than 80% of aged human brains show neurodegenerative non-Alzheimer type proteinopathies and other pathologies which, however, frequently have been missed clinically and are even difficult to identify at neuropathological examination. Autopsy studies differ in selection criteria and the applied evaluation methods. Therefore, irrespective of the clinical symptoms, the frequency of cerebral pathologies vary considerably: Alzheimer-related pathology is seen in 19-100%, with "pure" Alzheimer's disease (AD) in 17-72%, Lewy pathology in 6-39% (AD + Lewy disease 9-28%), vascular pathologies in 28-93% (10.7-78% "pure" vascular dementia), TDP-43 proteinopathy in 6-39%, hippocampal sclerosis in 8-1%, and mixed pathologies in 10-93%. These data clearly suggest that pathologically deposited proteins in neurodegenerating diseases mutually interact and are influenced by other factors, in particular cardiovascular and cerebrovascular ones, to promote cognitive decline and other clinical symptoms. It is obvious that cognitive and other neuropsychiatric impairment in the aged result from a multimorbid condition in the CNS rather than from a single disease and that the number of complex pathologies progresses with increasing age. These facts have implications for improvement of the clinical diagnosis and prognosis, the development of specific biomarkers, preventive strategies

  1. The impact of chronic stress on the rat brain lipidome.

    PubMed

    Oliveira, T G; Chan, R B; Bravo, F V; Miranda, A; Silva, R R; Zhou, B; Marques, F; Pinto, V; Cerqueira, J J; Di Paolo, G; Sousa, N

    2016-01-01

    Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer's disease and depression. Lipids are a major constituent of the brain and specifically signaling lipids have been shown to regulate brain function. Here, we used a mass spectrometry-based lipidomic approach to evaluate the impact of a chronic unpredictable stress (CUS) paradigm on the rat brain in a region-specific manner. We found that the prefrontal cortex (PFC) was the area with the highest degree of changes induced by chronic stress. Although the hippocampus presented relevant lipidomic changes, the amygdala and, to a greater extent, the cerebellum presented few lipid changes upon chronic stress exposure. The sphingolipid and phospholipid metabolism were profoundly affected, showing an increase in ceramide (Cer) and a decrease in sphingomyelin (SM) and dihydrosphingomyelin (dhSM) levels, and a decrease in phosphatidylethanolamine (PE) and ether phosphatidylcholine (PCe) and increase in lysophosphatidylethanolamine (LPE) levels, respectively. Furthermore, the fatty-acyl profile of phospholipids and diacylglycerol revealed that chronic stressed rats had higher 38 carbon(38C)-lipid levels in the hippocampus and reduced 36C-lipid levels in the PFC. Finally, lysophosphatidylcholine (LPC) levels in the PFC were found to be correlated with blood corticosterone (CORT) levels. In summary, lipidomic profiling of the effect of chronic stress allowed the identification of dysregulated lipid pathways, revealing putative targets for pharmacological intervention that may potentially be used to modulate stress-induced deficits.

  2. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    PubMed Central

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  3. Forced limb-use enhanced neurogenesis and behavioral recovery after stroke in the aged rats.

    PubMed

    Qu, H L; Zhao, M; Zhao, S S; Xiao, T; Song, C G; Cao, Y P; Jolkkonen, J; Zhao, C S

    2015-02-12

    Constraint-induced movement therapy (CIMT) after stroke enhances not only functional reorganization but also structural plasticity of the brain in the adult rats. We examined whether forced limb-use which mimicked CIMT could influence ischemia-induced neurogenesis, apoptosis and behavioral recovery in the aged rats. Aged rats were divided into a sham group, an ischemia group, and an ischemia group with forced limb-use. Focal cerebral ischemia was induced by injection of endothelin-1. Forced limb-use began on post-stroke day 7 by fitting a plaster cast around the unimpaired upper limbs of rats for 3 weeks. Behavioral recovery was evaluated by tapered/ledged beam-walking test on postoperative day 32. The expression of doublecortin, neuronal nuclei, glial fibrillary acidic protein and Iba-1 were measured by single or double immunohistochemistry, and apoptosis was measured by TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay. The production of neuroblasts in the subventricular zone (SVZ) was significantly increased after stroke. Forced limb-use enhanced the proliferation of newborn neurons in the SVZ, as well as increased the long-term survival of newborn neurons. Furthermore, forced limb-use suppressed apoptosis and improved the motor functions after stroke in the aged rats. Forced limb-use exerted few effects on inflammation. Neither the number nor dendritic complexity of newborn granule cells in the hippocampus was affected by forced limb-use. Forced limb-use is effective in enhancing neurogenesis and behavioral recovery after stroke even in the aged rats. PMID:25463522

  4. Data for mitochondrial proteomic alterations in the developing rat brain.

    PubMed

    Villeneuve, Lance M; Stauch, Kelly L; Fox, Howard S

    2014-12-01

    Mitochondria are a critical organelle involved in many cellular processes, and due to the nature of the brain, neuronal cells are almost completely reliant on these organelles for energy generation. Due to the fact that biomedical research tends to investigate disease state pathogenesis, one area of mitochondrial research commonly overlooked is homeostatic responses to energy demands. Therefore, to elucidate mitochondrial alterations occurring during the developmentally important phase of E18 to P7 in the brain, we quantified the proteins in the mitochondrial proteome as well as proteins interacting with the mitochondria. We identified a large number of significantly altered proteins involved in a variety of pathways including glycolysis, mitochondrial trafficking, mitophagy, and the unfolded protein response. These results are important because we identified alterations thought to be homeostatic in nature occurring within mitochondria, and these results may be used to identify any abnormal deviations in the mitochondrial proteome occurring during this period of brain development. A more comprehensive analysis of this data may be obtained from the article "Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands" in the Journal of Proteomics. PMID:26217684

  5. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  6. Somatostatin receptors: identification and characterization in rat brain membranes.

    PubMed

    Srikant, C B; Patel, Y C

    1981-06-01

    We have identified and characterized specific receptors for tetradecapeptide somatostatin (SRIF; somatotropin release-inhibiting factor) in rat brain using [125I]Tyr11]SRIF as the radioligand. These receptors are present in membranes obtained from a subfraction of synaptosomes. Membranes derived from cerebral cortex bind SRIF with high affinity (Ka = 1.25 X 10(10) M-1) and have a maximum binding capacity (Bmax) of 0.155 X 10(-12) mol/mg. Neither opiates nor other neuropeptides appear to influence the binding of SRIF to brain membranes. Synthetic analogs with greater biological potency than SRIF--[D-Trp8]SRIF, [D-Cys14]SRIF, and [D-Trp8, D-Cys14]SRIF--bind to the receptors with greater avidity than SRIF, whereas inactive analogs [(2H)Ala3]SRIF and [Ala6]SRIF exhibit low binding. The ratio of receptor density to endogenous somatostatin is high in the cortex, thalamus, and striatum, low in the hypothalamus, and extremely low in the brain stem and cerebellum. Thus, SRIF receptors in the brain appear to be a distinct, new class of receptors with a regional distribution different from that of endogenous somatostatin.

  7. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  8. A look inside the diabetic brain: Contributors to diabetes-induced brain aging.

    PubMed

    Wrighten, Shayna A; Piroli, Gerardo G; Grillo, Claudia A; Reagan, Lawrence P

    2009-05-01

    Central nervous system (CNS) complications resulting from diabetes is a problem that is gaining more acceptance and attention. Recent evidence suggests morphological, electrophysiological and cognitive changes, often observed in the hippocampus, in diabetic individuals. Many of the CNS changes observed in diabetic patients and animal models of diabetes are reminiscent of the changes seen in normal aging. The central commonalities between diabetes-induced and age-related CNS changes have led to the theory of advanced brain aging in diabetic patients. This review summarizes the findings of the literature as they relate to the relationship between diabetes and dementia and discusses some of the potential contributors to diabetes-induced CNS impairments.

  9. Uptake of (/sup 14/C)deoxyglucose into brain of young rats with inherited hydrocephalus

    SciTech Connect

    Richards, H.K.; Bucknall, R.M.; Jones, H.C.; Pickard, J.D.

    1989-02-01

    The effect of hydrocephalus on cerebral glucose utilization as reflected by deoxyglucose uptake has been examined in rats with inherited hydrocephalus at 10, 20, and 28 days after birth using a semiquantitative method. Injection of (14C)deoxyglucose intraperitoneally was followed by freezing the brain, sectioning, and quantitative autoradiography of 10 brain regions. Brain (14C) concentration, cortical thickness, and plasma glucose concentrations were measured. Maximal thinning of the cerebral cortex had already occurred by 10 days after birth, although obvious symptoms such as gait disturbance developed after 20 days. In control rats, the cerebral isotope concentration was lower and more homogeneous at 10 days than at 20 or 28 days, which may be a reflection of the use of metabolic substrates other than glucose in younger animals. In order to make comparisons between control and hydrocephalic groups, tissue isotope concentrations were normalized to cerebellar cortex which was not affected by the hydrocephalus at any age. In hydrocephalic rats at 10 and 20 days, the concentration of (14C) was lower in all areas except the inferior colliculi and pons but the reduction was only significant in the sensory-motor cortex at 10 days and in the caudate nuclei at 20 days. By 28 days after birth, all areas except the cerebellum (six cortical regions, inferior colliculi, pons, and caudate) had significantly lower isotope concentrations in the hydrocephalic group. It is concluded that cerebral glucose metabolism is significantly reduced by 28 days after birth in H-Tx rats with congenital hydrocephalus and that less marked reductions occur prior to 28 days.

  10. Immune marker CD68 correlates with cognitive impairment in normally aged rats.

    PubMed

    Farso, Mark; Ménard, Caroline; Colby-Milley, Jessica; Quirion, Rémi

    2013-08-01

    The relationship between heightened neuroinflammation and cognitive decline in the normally aged brain is still debatable, as most data are derived from insult-related models. Accordingly, the aim of the current study was to determine whether a link could be established for 2 immune markers at the post-transcriptional level; CD68 and MHC-II, in a normally aged (24-month-old) rat population discriminated for their learning abilities. Using the Morris Water Maze (MWM) task, aged rats were divided into aged learning-impaired (AI) or -unimpaired (AU) groups. Western immunoblots of hippocampal tissue revealed a significant increase of CD68 in AI rats compared to the AU group. Moreover, up-regulated CD68 expression correlated with increased latency times in the MWM task. Immunofluorescence for CD68 revealed intense staining in the white matter regions and CA3 subregion of the hippocampus in the AI group. Despite expression of MHC-II in the AI group, no correlation was found. Overall, these data suggest that CD68 could play a role associated with cognitive decline in a subgroup of the normally aged population. PMID:23523271

  11. [DYNAMICS OF GLUTAMINE SYNTHASE ACTIVITY IN RAT BRAIN IN PRENATAL HYPOXIA MODEL].

    PubMed

    Khairova, V R; Safarov, M I

    2015-01-01

    Prenatal ontogenesis is a period of high sensitivity to stressful impact, so any stressor can lead to changes of physiological, biochemical indicators, behavioral and cognitive functions. The most common and clinically significant stress factor, which the embryo may be exposed during embryonic development, is hypoxia. In this case pathological changes in the central nervous system depend on the duration and severity of hypoxic exposure, individual tolerance and the stage of prenatal development, at each of which in the brain take place the basic histogenetic processes. By activating energetically disadvantageous anaerobic glycolysis hypoxia leads to excess of glutamate emission and cell apoptosis. Glutamine synthase is a basic enzyme that regulates metabolism of glutamate, catalyzing conversion of glutamate to glutamine with ammonia detoxification. The aim of the presented work was to reveal changes in the activity of one of the key enzyme of glutamate metabolism- glutamine synthetase in the brain of offspring of white rats undergone to hypoxia at different stages of prenatal ontogenesis. Hypoxia was created by placing female rats at stages of the pregnancy, corresponding to progestation period of organogenesis and fetal period of prenatal development, in the hypobaric chamber with exposure to 5% oxygen and 95% nitrogen gas mixture during 30 minutes per day. The offspring obtained from females of control and experimental groups were used for biochemical determinations in the age of 1 and 3 month. It has been established that hypoxia exposed to pregnant females during embryonic organogenesis causes significant changes in enzyme activity, particularly pronounced in the cerebral cortex and cerebellum, as compared with progestational and fetal hypoxia. Enzyme activity decreased in a greater degree in one-month-old rats undergone to prenatal hypoxia, than three- month-old animals. Thus, stress during intensive processes of proliferation and migration of cells of the

  12. Indestructible plastic: the neuroscience of the new aging brain

    PubMed Central

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  13. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  14. Cross-activation and detraining effects of tongue exercise in aged rats.

    PubMed

    Schaser, Allison J; Ciucci, Michelle R; Connor, Nadine P

    2016-01-15

    Voice and swallowing deficits can occur with aging. Tongue exercise paired with a swallow may be used to treat swallowing disorders, but may also benefit vocal function due to cross-system activation effects. It is unknown how exercise-based neuroplasticity contributes to behavior and maintenance following treatment. Eighty rats were used to examine behavioral parameters and changes in neurotrophins after tongue exercise paired with a swallow. Tongue forces and ultrasonic vocalizations were recorded before and after training/detraining in young and old rats. Tissue was analyzed for neurotrophin content. Results showed tongue exercise paired with a swallow was associated with increased tongue forces at all ages. Gains diminished after detraining in old rats. Age-related changes in vocalizations, neurotrophin 4 (NT4), and brain derived neurotrophic factor (BDNF) were found. Minimal cross-system activation effects were observed. Neuroplastic benefits were demonstrated with exercise in old rats through behavioral improvements and up-regulation of BDNF in the hypoglossal nucleus. Tongue exercise paired with a swallow should be developed, studied, and optimized in human clinical research to treat swallowing and voice disorders in elderly people.

  15. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration.

    PubMed

    Simchon-Tenenbaum, Yaarit; Weizman, Abraham; Rehavi, Moshe

    2015-04-01

    Attention deficit hyperactivity disorder (ADHD) overdiagnosis and a pharmacological attempt to increase cognitive performance, are the major causes for the frequent (ab)use of psychostimulants in non-ADHD individuals. Methylphenidate is a non-addictive psychostimulant, although its mode of action resembles that of cocaine, a well-known addictive and abused drug. Neuronal- and glial-derived growth factors play a major role in the development, maintenance and survival of neurons in the central nervous system. We hypothesized that methylphenidate and cocaine treatment affect the expression of such growth factors. Beginning on postnatal day (PND) 14, male Sprague Dawley rats were treated chronically with either cocaine or methylphenidate. The rats were examined behaviorally and biochemically at several time points (PND 35, 56, 70 and 90). On PND 56, rats treated with cocaine or methylphenidate from PND 14 through PND 35 exhibited increased hippocampal glial-cell derived neurotrophic factor (GDNF) mRNA levels, after 21 withdrawal days, compared to the saline-treated rats. We found a significant association between cocaine and methylphenidate treatments and age progression in the prefrontal protein expression of brain derived neurotrophic factor (BDNF). Neither treatments affected the behavioral parameters, although acute cocaine administration was associated with increased locomotor activity. It is possible that the increased hippocampal GDNF mRNA levels, may be relevant to the reduced rate of drug seeking behavior in ADHD adolescence that were maintained from childhood on methylphenidate. BDNF protein level increase with age, as well as following stimulant treatments at early age may be relevant to the neurobiology and pharmacotherapy of ADHD. PMID:25576963

  16. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration.

    PubMed

    Simchon-Tenenbaum, Yaarit; Weizman, Abraham; Rehavi, Moshe

    2015-04-01

    Attention deficit hyperactivity disorder (ADHD) overdiagnosis and a pharmacological attempt to increase cognitive performance, are the major causes for the frequent (ab)use of psychostimulants in non-ADHD individuals. Methylphenidate is a non-addictive psychostimulant, although its mode of action resembles that of cocaine, a well-known addictive and abused drug. Neuronal- and glial-derived growth factors play a major role in the development, maintenance and survival of neurons in the central nervous system. We hypothesized that methylphenidate and cocaine treatment affect the expression of such growth factors. Beginning on postnatal day (PND) 14, male Sprague Dawley rats were treated chronically with either cocaine or methylphenidate. The rats were examined behaviorally and biochemically at several time points (PND 35, 56, 70 and 90). On PND 56, rats treated with cocaine or methylphenidate from PND 14 through PND 35 exhibited increased hippocampal glial-cell derived neurotrophic factor (GDNF) mRNA levels, after 21 withdrawal days, compared to the saline-treated rats. We found a significant association between cocaine and methylphenidate treatments and age progression in the prefrontal protein expression of brain derived neurotrophic factor (BDNF). Neither treatments affected the behavioral parameters, although acute cocaine administration was associated with increased locomotor activity. It is possible that the increased hippocampal GDNF mRNA levels, may be relevant to the reduced rate of drug seeking behavior in ADHD adolescence that were maintained from childhood on methylphenidate. BDNF protein level increase with age, as well as following stimulant treatments at early age may be relevant to the neurobiology and pharmacotherapy of ADHD.

  17. How age of acquisition influences brain architecture in bilinguals

    PubMed Central

    Wei, Miao; Joshi, Anand A.; Zhang, Mingxia; Mei, Leilei; Manis, Franklin R.; He, Qinghua; Beattie, Rachel L.; Xue, Gui; Shattuck, David W.; Leahy, Richard M.; Xue, Feng; Houston, Suzanne M.; Chen, Chuansheng; Dong, Qi; Lu, Zhong-Lin

    2016-01-01

    In the present study, we explored how Age of Acquisition (AoA) of L2 affected brain structures in bilingual individuals. Thirty-six native English speakers who were bilingual were scanned with high resolution MRI. After MRI signal intensity inhomogeneity correction, we applied both voxel-based morphometry (VBM) and surface-based morphometry (SBM) approaches to the data. VBM analysis was performed using FSL’s standard VBM processing pipeline. For the SBM analysis, we utilized a semi-automated sulci delineation procedure, registered the brains to an atlas, and extracted measures of twenty four pre-selected regions of interest. We addressed three questions: (1) Which areas are more susceptible to differences in AoA? (2) How do AoA, proficiency and current level of exposure work together in predicting structural differences in the brain? And (3) What is the direction of the effect of AoA on regional volumetric and surface measures? Both VBM and SBM results suggested that earlier second language exposure was associated with larger volumes in the right parietal cortex. Consistently, SBM showed that the cortical area of the right superior parietal lobule increased as AoA decreased. In contrast, in the right pars orbitalis of the inferior frontal gyrus, AoA, proficiency, and current level of exposure are equally important in accounting for the structural differences. We interpret our results in terms of current theory and research on the effects of L2 learning on brain structures and functions. PMID:27695193

  18. Alterations in substance P binding in brain nuclei of spontaneously hypertensive rats

    SciTech Connect

    Shigematsu, K.; Niwa, M.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1987-02-01

    Substance P binding sites were characterized in brain nuclei of young (4-wk-old) and adult (16-wk-old) spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats by quantitative autoradiography. Young SHR presented higher affinity constants (K/sub A/) than young WKY. The changes were restricted to locus coeruleus, the area postrema, the dorsal motor nucleus of the vagus, and to discrete areas located in lobes 9 and 10 of the vermis cerebelli of SHR. There were no differences in the maximal binding capacity (B/sub max/) except in the nucleus ambiguus where the B/sub max/ was lower than WKY. Conversely, the number of substance P binding sites was higher in the locus coeruleus, the nucleus tegmentalis dorsalis, the nucleus ambiguus, the dorsal motor nucleus of the vagus, the hypoglossal nucleus, the inferior olivary nucleus, and lobes 9 and 10 of the vermis cerebelli of adult SHR when compared with adult WKY. The results support the hypothesis of a role for brain substance P in blood pressure regulation and in genetic hypertension in rats.

  19. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury.

    PubMed

    Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali

    2015-08-01

    Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.

  20. Can Endocrine Disruptors Influence Neuroplasticity In The Aging Brain?

    PubMed Central

    Weiss, Bernard

    2007-01-01

    Only within the last two decades has the adult mammalian brain been recognized for its ability to generate new nerve cells and other neural structures and in essence to rewire itself. Although hippocampal structures have received the greatest scrutiny, other sites, including the cerebral cortex, also display this potential. Such processes remain active in the aging brain, although to a lesser degree. Two of the factors known to induce neurogenesis are environmental enrichment and physical activity. Gonadal hormones, however, also play crucial roles. Androgens and estrogens are both required for the preservation of cognitive function during aging and apparently help counteract the risk of Alzheimer’s disease. One overlooked threat to hormonal adequacy that requires close examination is the abundance of environmental endocrine-disrupting chemicals that interfere with gonadal function. They come in the form of estrogenic mimics, androgen mimics, anti-estrogens, anti-androgens, and in a variety of other guises. Because our brains are in continuous transition throughout the lifespan, responding both to environmental circumstances and to changing levels of gonadal steroids, endocrine-disrupting chemicals possess the potential to impair neurogenesis, and represent a hazard for the preservation of cognitive function during the later stages of the life cycle. PMID:17350099

  1. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine.

    PubMed Central

    Fraga, C G; Shigenaga, M K; Park, J W; Degan, P; Ames, B N

    1990-01-01

    Oxidative damage to DNA is shown to be extensive and could be a major cause of the physiological changes associated with aging and the degenerative diseases related to aging such as cancer. The oxidized nucleoside, 8-hydroxy-2'-deoxyguanosine (oh8dG), one of the approximately 20 known oxidative DNA damage products, has been measured in DNA isolated from various organs of Fischer 344 rats of different ages. oh8dG was present in the DNA isolated from all the organs studied: liver, brain, kidney, intestine, and testes. Steady-state levels of oh8dG ranged from 8 to 73 residues per 10(6) deoxyguanosine residues or 0.2-2.0 x 10(5) residues per cell. Levels of oh8dG in DNA increased with age in liver, kidney, and intestine but remained unchanged in brain and testes. The urinary excretion of oh8dG, which presumably reflects its repair from DNA by nuclease activity, decreased with age from 481 to 165 pmol per kg of body weight per day for urine obtained from 2-month- and 25-month-old rats, respectively. 8-Hydroxyguanine, the proposed repair product of a glycosylase activity, was also assayed in the urine. We estimate approximately 9 x 10(4) oxidative hits to DNA per cell per day in the rat. The results suggest that the age-dependent accumulation of oh8dG residues observed in DNA from liver, kidney, and intestine is principally due to the slow loss of DNA nuclease activity; however, an increase in the rate of oxidative DNA damage cannot be ruled out. PMID:2352934

  2. Propagation and titration of Alkhumra hemorrhagic fever virus in the brains of newborn Wistar rats.

    PubMed

    Madani, Tariq A; Kao, Moujahed; Abuelzein, El-Tayeb M E; Azhar, Esam I; Al-Bar, Hussein M S; Abu-Araki, Huda; Bokhary, Rana Y; Ksiazek, Thomas G

    2014-04-01

    Alkhumra hemorrhagic fever virus (AHFV) is a novel flavivirus identified first in Saudi Arabia. In this study, successful propagation of AHFV in the brains of newborn Wistar rats is described and the median rat lethal dose (RLD50) is determined. AHFV-RNA-positive human sera diluted 1:10 were injected intracerebrally into 16, ≤24h old rats. Post-inoculation, the rats were observed daily for 30 days. Brains of moribund rats were tested for AHFV-RNA using RT-PCR and cultured in LLC-MK2 cells. The titer of the isolated virus was determined and expressed in median tissue culture infectious dose (TCID50). To determine the RLD50, AHFV brain suspension was 10-fold diluted serially and each dilution was inoculated in the cerebral hemispheres of 10 rats for a total of 90 rats. Three days post-inoculation, the rats developed tremor, irritability, convulsion, opisthotonus, and spastic paresis starting in the hind limbs and ascending to involve the whole body. All infected rats died within 3-7 days with histopathologically confirmed meningoencephalitis. AHFV-RNA was detected in the brains of all infected rats and the virus titer was 10(9.4) RLD50/ml. The virus titer in LLC-MK2 was 10(8.2) TCID50/ml. In conclusion, AHFV was propagated successfully to high titers in the brains of newborn Wistar rats.

  3. Granulovacuolar degeneration in the ageing brain and in dementia.

    PubMed

    Ball, M J; Lo, P

    1977-05-01

    Quantitative morphometry with a sampling stage light microscope was performed to determine the severity of granulovacuolar degeneration of hippocampal neurones in serially sectioned temporal lobe from mentally normal subjects of different ages and from demented patients. The degree of granulovacuolar change in control brains increased slightly with increasing age; the "granulovacuolar index" of cases with Alzheimer's disease exceeded by many times that of age-matched controls. This significant difference was demonstrable whether the granulovacuolar severity was expressed as number of affected cells per volume of cortex analysed, or as the percentage involvement of total neurones counted in the hippocampus. The posterior half of each dement's hippocampus was found to be more susceptible to this augmented granulovacuolar degeneration than the anterior half, a selectivity already observed for neurofibrillary tangel formation in the same material.

  4. Regional distribution of neuropeptide processing endopeptidases in adult rat brain.

    PubMed

    Berman, Y L; Rattan, A K; Carr, K; Devi, L

    1994-01-01

    Many peptide hormone and neuropeptide precursors undergo post-translational processing at mono- and/or dibasic residues. An enzymatic activity capable of processing prodynorphin at a monobasic processing site designated 'dynorphin converting enzyme' has been previously reported in rat rain and bovine pituitary. In this study the distribution of dynorphin converting enzyme activity in ten regions of rat brain has been compared with the distribution of subtilisin-like processing enzymes and with the immuno-reactive dynorphin peptides. The distribution of dynorphin converting enzyme activity generally matches the distribution of immuno-reactive dynorphin B-13 in most but not all brain regions. The regions that are known to have a relatively large number of immuno-reactive dynorphin-neurons also contain high levels of dynorphin converting enzyme activity. The distribution of dynorphin converting enzyme activity does not match the distribution of subtilisin-like processing enzyme or carboxypeptidase E activities. Taken together the data support the possibility that the dynorphin converting enzyme is involved in the maturation of dynorphin, as well as other neuropeptides, and peptide hormones.

  5. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain

    PubMed Central

    2012-01-01

    Background Essential oil of Pimpinella anisum L. Apiaceae (anise oil) has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. Methods The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ) injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP) in in vivo and in vitro experimental models of rat brain. Results Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Conclusions Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested. PMID:22709243

  6. Distribution of beacon immunoreactivity in the rat brain.

    PubMed

    Wang, Fei; Tian, De-Run; Tian, Nan; Chen, Hui; Shi, Yu-Shun; Chang, Jaw-Kang; Yang, Jun; Yuan, Lan; Han, Ji-Sheng

    2006-01-01

    Beacon is a novel peptide isolated from the hypothalamus of Israeli sand rat. In the present study, we determined the distribution of beacon in the rat brain using immunohistochemical approach with a polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73). The hypothalamus represented the major site of beacon-immunoreactive (IR) cell bodies that were concentrated in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). Additional immunostained cells were found in the septum, bed nucleus of the stria terminalis, subfornical organ and subcommissural organ. Beacon-IR fibers were seen with high density in the internal layer of the median eminence and low to moderate density in the external layer. Significant beacon-IR fibers were also seen in the nucleus of the solitary tract and lateral reticular formation. The beacon neurons found in the PVN were further characterized by double label immunohistochemistry. Several beacon-IR neurons that resided in the medial PVN were shown to coexpress corticotrophin-releasing hormone (CRH) and most labeled beacon fibers in the external layer of median eminence coexist with CRH. The topographical distribution of beacon-IR in the brain suggests multiple biological activities for beacon in addition to its proposed roles in modulating feeding behaviors and pituitary hormone release.

  7. Wearable scanning photoacoustic brain imaging in behaving rats.

    PubMed

    Tang, Jianbo; Dai, Xianjin; Jiang, Huabei

    2016-06-01

    A wearable scanning photoacoustic imaging (wPAI) system is presented for noninvasive brain study in behaving rats. This miniaturized wPAI system consists of four pico linear servos and a single transducer-based PAI probe. It has a dimension of 50 mm × 35 mm × 40 mm, and a weight of 26 g excluding cablings. Phantom evaluation shows that wPAI achieves a lateral resolution of ∼0.5 mm and an axial resolution of ∼0.1 mm at a depth of up to 11 mm. Its imaging ability is also tested in a behaving rat, and the results indicate that wPAI is able to image blood vessels at a depth of up to 5 mm with intact scalp and skull. With its noninvasive, deep penetration, and functional imaging ability in behaving animals, wPAI can be used for behavior, cognition, and preclinical brain disease studies. PMID:26777064

  8. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  9. NO-Tryptophan: A New Small Molecule Located in the Rat Brain

    PubMed Central

    Mangas, A.; Yajeya, J.; González, N.; Duleu, S.; Geffard, M.; Coveñas, R.

    2016-01-01

    A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W) with good affinity (10-9 M) and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms. PMID:27734994

  10. Distinct manifestations of executive dysfunction in aged rats

    PubMed Central

    Beas, B. Sofia; Setlow, Barry; Bizon, Jennifer L.

    2013-01-01

    Different components of executive function such as working memory, attention, and cognitive flexibility can be dissociated both behaviorally and mechanistically; however, the within-subject influences of normal aging on different aspects of executive function remain ill-defined. To better define these relationships, young adult and aged male F344 rats were cross-characterized on an attentional set-shifting task that assesses cognitive flexibility and a delayed response task that assesses working memory. Across tasks, aged rats were impaired relative to young; however, there was significant variability in individual performance within the aged cohort. Notably, performance on the set-shifting task and performance at long delays on the delayed response task were inversely related among aged rats. Additional experiments showed no relationship between aged rats’ performance on the set-shifting task and performance on a hippocampal-dependent spatial reference memory task. These data indicate that normal aging can produce distinct manifestations of executive dysfunction, and support the need to better understand the unique mechanisms contributing to different forms of prefrontal cortical-supported executive decline across the lifespan. PMID:23601673

  11. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats.

    PubMed

    Cechinel, Laura Reck; Basso, Carla Giovana; Bertoldi, Karine; Schallenberger, Bruna; de Meireles, Louisiana Carolina Ferreira; Siqueira, Ionara Rodrigues

    2016-10-15

    Some studies have linked age-related beneficial effects of exercise and epigenetic mechanisms. Although, the impact of treadmill exercise on histone acetylation, histone and DNA methylation marks in aged cortices yet remains poorly understood. Considering the role of frontal cortex on brain functions, we investigated the potential of different exercise protocols, single session and daily exercise, to modulate epigenetic marks, namely global H4 acetylation, histone methyltransferase activity (HMT H3K27) and levels of DNA methytransferase (DNMT1 and DNMT3b) in prefrontal cortices from 3 and 21-months aged Wistar rats. The animals were submitted to two treadmill exercise protocols, single session (20min) or daily moderate (20min/day during 14days). The daily exercise protocol induced an increased in histone H4 acetylation levels in prefrontal cortices of 21-months-old rats, without any effects in young adult group. DNMT3b levels were increased in aged cortices of animals submitted to single session of exercise. These results indicate that prefrontal cortex is susceptible to epigenetic changes in a protocol dependent-manner and that H4 acetylation levels and DNMT3b content changes might be linked at least in part to exercise-induced effects on brain functions. PMID:27418438

  12. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats.

    PubMed

    Cechinel, Laura Reck; Basso, Carla Giovana; Bertoldi, Karine; Schallenberger, Bruna; de Meireles, Louisiana Carolina Ferreira; Siqueira, Ionara Rodrigues

    2016-10-15

    Some studies have linked age-related beneficial effects of exercise and epigenetic mechanisms. Although, the impact of treadmill exercise on histone acetylation, histone and DNA methylation marks in aged cortices yet remains poorly understood. Considering the role of frontal cortex on brain functions, we investigated the potential of different exercise protocols, single session and daily exercise, to modulate epigenetic marks, namely global H4 acetylation, histone methyltransferase activity (HMT H3K27) and levels of DNA methytransferase (DNMT1 and DNMT3b) in prefrontal cortices from 3 and 21-months aged Wistar rats. The animals were submitted to two treadmill exercise protocols, single session (20min) or daily moderate (20min/day during 14days). The daily exercise protocol induced an increased in histone H4 acetylation levels in prefrontal cortices of 21-months-old rats, without any effects in young adult group. DNMT3b levels were increased in aged cortices of animals submitted to single session of exercise. These results indicate that prefrontal cortex is susceptible to epigenetic changes in a protocol dependent-manner and that H4 acetylation levels and DNMT3b content changes might be linked at least in part to exercise-induced effects on brain functions.

  13. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease.

  14. Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats.

    PubMed

    Ledreux, Aurélie; Wang, Xiuzhe; Schultzberg, Marianne; Granholm, Ann-Charlotte; Freeman, Linnea R

    2016-10-01

    High fat diets have detrimental effects on cognitive performance, and can increase oxidative stress and inflammation in the brain. The aging brain provides a vulnerable environment to which a high fat diet could cause more damage. We investigated the effects of a high fat/high cholesterol (HFHC) diet on cognitive performance, neuroinflammation markers, and phosphorylated Tau (p-Tau) pathological markers in the hippocampus of Young (4-month old) versus Aged (14-month old) male rats. Young and Aged male Fisher 344 rats were fed a HFHC diet or a normal control diet for 6 months. All animals underwent cognitive testing for 12days in a water radial arm maze to assess spatial and working reference memory. Hippocampal tissue was analyzed by immunohistochemistry for structural changes and inflammation, and Western blot analysis. Young and Aged rats fed the HFHC diet exhibited worse performance on a spatial working memory task. They also exhibited significant reduction of NeuN and calbindin-D28k immunoreactivity as well as an increased activation of microglial cells in the hippocampal formation. Western blot analysis of the hippocampus showed higher levels of p-Tau S202/T205 and T231 in Aged HFHC rats, suggesting abnormal phosphorylation of Tau protein following the HFHC diet exposure. This work demonstrates HFHC diet-induced cognitive impairment with aging and a link between high fat diet consumption and pathological markers of Alzheimer's disease. PMID:27343935

  15. Glucocorticoid-Dependent Hippocampal Transcriptome in Male Rats: Pathway-Specific Alterations With Aging

    PubMed Central

    Chen, Kuey-Chu; Blalock, Eric M.; Curran-Rauhut, Meredith A.; Kadish, Inga; Blalock, Susan J.; Brewer, Lawrence; Porter, Nada M.

    2013-01-01

    Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the long-standing hypothesis that chronic GC exposure promotes brain aging/Alzheimer disease. Here, we adrenalectomized male F344 rats at 15 months of age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid receptor–activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between intermediate and low CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT–up-regulated genes included learning/plasticity, differentiation, glucose metabolism, and cholesterol biosynthesis, whereas processes overrepresented by CORT–down-regulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC transcriptome with a previously defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same direction, the majority were shifted in opposite directions by CORT and aging (eg, glial inflammatory genes down-regulated by CORT are up-regulated with aging). These results contradict the hypothesis that GCs simply promote brain aging and also suggest that the opposite direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways, whereas GC overstimulation develops in others, together generating much of the

  16. The effect of aging on fracture healing in the rat.

    PubMed

    Bak, B; Andreassen, T T

    1989-11-01

    The effect of age on the biomechanical properties of healing tibial fractures was studied by comparing the fracture healing in 2-year-old male Wistar rats with the fracture healing in 3-month-old male Wistar rats after 40 and 80 days of healing. There were no significant differences in the mechanical parameters after 40 days of healing, but after 80 days, a considerable delay in the fracture healing process was noted in the old rats compared with the young adult rats when evaluated by maximum load, maximum stress, stiffness, and energy absorption in a three-point bending procedure. In the contralateral, nonfractured bones, the tibiae from the old animals sustained higher loads and had higher stiffness than the bones from the young adult animals, but stress values, elastic modulus, and capacity for energy absorption was much lower in the old animals.

  17. [Effects of total saponins of semen ziziphi Spinosae on brain damages and brain biochemical parameters under cerebral ischemia of rats].

    PubMed

    Bai, X; Huang, Z; Mo, Z; Pan, H; Ding, H

    1996-02-01

    Total saponins of Semen Ziziphi Spinosae (ZS) can reduce the contents of water and MDA in ischemic rat's brain tissues, elevate the activity of SOD, CK and LDH, cut down the content of lactate and alleviate the damages of nerve cells in brain. The study shows that ZS possesses protective effects on cerebral ischemic injuries. PMID:8758767

  18. Advanced BrainAGE in older adults with type 2 diabetes mellitus.

    PubMed

    Franke, Katja; Gaser, Christian; Manor, Brad; Novak, Vera

    2013-01-01

    Aging alters brain structure and function and diabetes mellitus (DM) may accelerate this process. This study investigated the effects of type 2 DM on individual brain aging as well as the relationships between individual brain aging, risk factors, and functional measures. To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used the novel BrainAGE approach, which determines the complex multidimensional aging pattern within the whole brain by applying established kernel regression methods to anatomical brain magnetic resonance images (MRI). The "Brain Age Gap Estimation" (BrainAGE) score was then calculated as the difference between chronological age and estimated brain age. 185 subjects (98 with type 2 DM) completed an MRI at 3Tesla, laboratory and clinical assessments. Twenty-five subjects (12 with type 2 DM) also completed a follow-up visit after 3.8 ± 1.5 years. The estimated brain age of DM subjects was 4.6 ± 7.2 years greater than their chronological age (p = 0.0001), whereas within the control group, estimated brain age was similar to chronological age. As compared to baseline, the average BrainAGE scores of DM subjects increased by 0.2 years per follow-up year (p = 0.034), whereas the BrainAGE scores of controls did not change between baseline and follow-up. At baseline, across all subjects, higher BrainAGE scores were associated with greater smoking and alcohol consumption, higher tumor necrosis factor alpha (TNFα) levels, lower verbal fluency scores and more severe deprepession. Within the DM group, higher BrainAGE scores were associated with longer diabetes duration (r = 0.31, p = 0.019) and increased fasting blood glucose levels (r = 0.34, p = 0.025). In conclusion, type 2 DM is independently associated with structural changes in the brain that reflect advanced aging. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of abnormal patterns of brain aging associated with type 2 DM

  19. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  20. Effect of exposure to diazinon on adult rat's brain.

    PubMed

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain.

  1. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia

    PubMed Central

    Purdon, P. L.; Pavone, K. J.; Akeju, O.; Smith, A. C.; Sampson, A. L.; Lee, J.; Zhou, D. W.; Solt, K.; Brown, E. N.

    2015-01-01

    Background Anaesthetic drugs act at sites within the brain that undergo profound changes during typical ageing. We postulated that anaesthesia-induced brain dynamics observed in the EEG change with age. Methods We analysed the EEG in 155 patients aged 18–90 yr who received propofol (n=60) or sevoflurane (n=95) as the primary anaesthetic. The EEG spectrum and coherence were estimated throughout a 2 min period of stable anaesthetic maintenance. Age-related effects were characterized by analysing power and coherence as a function of age using linear regression and by comparing the power spectrum and coherence in young (18- to 38-yr-old) and elderly (70- to 90-yr-old) patients. Results Power across all frequency bands decreased significantly with age for both propofol and sevoflurane; elderly patients showed EEG oscillations ∼2- to 3-fold smaller in amplitude than younger adults. The qualitative form of the EEG appeared similar regardless of age, showing prominent alpha (8–12 Hz) and slow (0.1–1 Hz) oscillations. However, alpha band dynamics showed specific age-related changes. In elderly compared with young patients, alpha power decreased more than slow power, and alpha coherence and peak frequency were significantly lower. Older patients were more likely to experience burst suppression. Conclusions These profound age-related changes in the EEG are consistent with known neurobiological and neuroanatomical changes that occur during typical ageing. Commercial EEG-based depth-of-anaesthesia indices do not account for age and are therefore likely to be inaccurate in elderly patients. In contrast, monitoring the unprocessed EEG and its spectrogram can account for age and individual patient characteristics. PMID:26174300

  2. The Aging Brain Care Medical Home: Preliminary Data.

    PubMed

    LaMantia, Michael A; Alder, Catherine A; Callahan, Christopher M; Gao, Sujuan; French, Dustin D; Austrom, Mary G; Boustany, Karim; Livin, Lee; Bynagari, Bharath; Boustani, Malaz A

    2015-06-01

    The Aging Brain Care (ABC) Medical Home aims to improve the care, health outcomes, and medical costs of Medicare beneficiaries with dementia or depression across central Indiana. This population health management program, funded by the Centers for Medicare and Medicaid Services Innovation Center, expanded an existing collaborative dementia and depression care program to serve 1,650 older adults in a local safety-net hospital system. During the first year, 20 full-time clinical staff were hired, trained, and deployed to deliver a collaborative care intervention. In the first 18 months, an average of 13 visits was provided per person. Thirty percent of the sample had a diagnosis of dementia, and 77% had a diagnosis of depression. Sixty-six percent of participants with high depression scores (Patient Health Questionnaire-9 score ≥14) had at least a 50% reduction in their depressive symptoms. Fifty-one percent of caregivers of individuals with dementia had at least a 50% reduction in caregiver stress symptoms (measured by the Healthy Aging Brain Care Monitor-Caregiver Version). After 18 months, the ABC Medical Home has demonstrated progress toward improving the health of older adults with dementia and depression. Scalable and practical models like this show initial promise for answering the challenges posed by the nation's rapidly aging population. PMID:26096394

  3. Neural Plastic Effects of Cognitive Training on Aging Brain

    PubMed Central

    Leung, Natalie T. Y.; Tam, Helena M. K.; Chu, Leung W.; Kwok, Timothy C. Y.; Chan, Felix; Lam, Linda C. W.; Woo, Jean; Lee, Tatia M. C.

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. PMID:26417460

  4. Docosahexaenoic Acid and the Aging Brain1–3

    PubMed Central

    Lukiw, Walter J.; Bazan, Nicolas G.

    2008-01-01

    The dietary essential PUFA docosahexaenoic acid [DHA; 22:6(n-3)] is a critical contributor to cell structure and function in the nervous system, and deficits in DHA abundance are associated with cognitive decline during aging and in neurodegenerative disease. Recent studies underscore the importance of DHA-derived neuroprotectin D1 (NPD1) in the homeostatic regulation of brain cell survival and repair involving neurotrophic, antiapoptotic and antiinflammatory signaling. Emerging evidence suggests that NPD1 synthesis is activated by growth factors and neurotrophins. Evolving research indicates that NPD1 has important determinant and regulatory interactions with the molecular-genetic mechanisms affecting β-amyloid precursor protein (βAPP) and amyloid beta (Aβ) peptide neurobiology. Deficits in DHA or its peroxidation appear to contribute to inflammatory signaling, apoptosis, and neuronal dysfunction in Alzheimer disease (AD), a common and progressive age-related neurological disorder unique to structures and processes of the human brain. This article briefly reviews our current understanding of the interactions of DHA and NPD1 on βAPP processing and Aβ peptide signaling and how this contributes to oxidative and pathogenic processes characteristic of aging and AD pathology. PMID:19022980

  5. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    ERIC Educational Resources Information Center

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  6. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539).

  7. Heatstroke Effect on Brain Heme Oxygenase-1 in Rats

    PubMed Central

    Wen, Ya-Ting; Liu, Tsung-Ta; Lin, Yuh-Feng; Chen, Chun-Chi; Kung, Woon-Man; Huang, Chi-Chang; Lin, Tien-Jen; Wang, Yuan-Hung; Wei, Li

    2015-01-01

    Exposure to high environmental temperature leading to increased core body temperature above 40°C and central nervous system abnormalities such as convulsions, delirium, or coma is defined as heat stroke. Studies in humans and animals indicate that the heat shock responses of the host contribute to multiple organ injury and death during heat stroke. Heme oxygenase-1 (HO-1)—a stress-responsive enzyme that catabolizes heme into iron, carbon monoxide, and biliverdin—has an important role in the neuroprotective mechanism against ischemic stroke. Here, we investigated the role of endogenous HO-1 in heat-induced brain damage in rats. RT-PCR results revealed that levels of HO-1 mRNA peaked at 0 h after heat exposure and immunoblot analysis revealed that the maximal protein expression occurred at 1 h post-heat exposure. Subsequently, we detected the HO-1 expression in the cortical brain cells and revealed the neuronal cell morphology. In conclusion, HO-1 is a potent protective molecule against heat-induced brain damage. Manipulation of HO-1 may provide a potential therapeutic approach for heat-related diseases. PMID:26392811

  8. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    SciTech Connect

    Periyasamy, S.; Hoss, W. )

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  9. Heatstroke Effect on Brain Heme Oxygenase-1 in Rats.

    PubMed

    Wen, Ya-Ting; Liu, Tsung-Ta; Lin, Yuh-Feng; Chen, Chun-Chi; Kung, Woon-Man; Huang, Chi-Chang; Lin, Tien-Jen; Wang, Yuan-Hung; Wei, Li

    2015-01-01

    Exposure to high environmental temperature leading to increased core body temperature above 40°C and central nervous system abnormalities such as convulsions, delirium, or coma is defined as heat stroke. Studies in humans and animals indicate that the heat shock responses of the host contribute to multiple organ injury and death during heat stroke. Heme oxygenase-1 (HO-1)-a stress-responsive enzyme that catabolizes heme into iron, carbon monoxide, and biliverdin-has an important role in the neuroprotective mechanism against ischemic stroke. Here, we investigated the role of endogenous HO-1 in heat-induced brain damage in rats. RT-PCR results revealed that levels of HO-1 mRNA peaked at 0 h after heat exposure and immunoblot analysis revealed that the maximal protein expression occurred at 1 h post-heat exposure. Subsequently, we detected the HO-1 expression in the cortical brain cells and revealed the neuronal cell morphology. In conclusion, HO-1 is a potent protective molecule against heat-induced brain damage. Manipulation of HO-1 may provide a potential therapeutic approach for heat-related diseases. PMID:26392811

  10. Neurotoxicity of Silver Nanoparticles in Rat Brain After Intragastric Exposure.

    PubMed

    Xu, Liming; Shao, Anliang; Zhao, Yanhong; Wang, Zhijie; Zhang, Cuiping; Sun, Yilin; Deng, Jie; Chou, Laisheng Lee

    2015-06-01

    It is known that the biological half-life of silver in the central nervous system is longer than in other organs. However, the potential toxicity of silver nanoparticles (NPs) on brain tissue and the underlying mechanism(s) of action are not well understood. In this study, neurotoxicity of silver NPs was examined in rat after intragastric administration. After a two-week exposure to low-dose (1 mg/kg, body weight) or high-dose (10 mg/kg) silver NPs, the pathological and ultrastructural changes in brain tissue were evaluated with H&E staining and transmission electron microscopy. The mRNA expression levels of key tight junction proteins of the blood-brain barrier (BBB) were analyzed by real-time RT-PCR, and several inflammatory factors were assessed in blood using ELISA assay. We observed neuron shrinkage, cytoplasmic or foot swelling of astrocytes, and extra-vascular lymphocytes in silver NP exposure groups. The cadherin 1 (2(-ΔΔCt): 1.45-fold/control) and Claudin-1 (2(-ΔΔCt): 2.77-fold/control) were slightly increase in mRNA expression levels, and IL-4 significantly increased after silver NP exposure. It was suggest that silver NP can induce neuronal degeneration and astrocyte swelling, even with a low-dose (1 mg/kg) oral exposure. One potential mechanism for the effects of silver NPs to the nervous cells is involved in inflammatory effects.

  11. Maternal administration of flutamide during late gestation affects the brain and reproductive organs development in the rat male offspring.

    PubMed

    Pallarés, M E; Adrover, E; Imsen, M; González, D; Fabre, B; Mesch, V; Baier, C J; Antonelli, M C

    2014-10-10

    We have previously demonstrated that male rats exposed to stress during the last week of gestation present age-specific impairments of brain development. Since the organization of the fetal developing brain is subject to androgen exposure and prenatal stress was reported to disrupt perinatal testosterone surges, the aim of this research was to explore whether abnormal androgen concentrations during late gestation affects the morphology of the prefrontal cortex (PFC), hippocampus (HPC) and ventral tegmental area (VTA), three major areas that were shown to be affected by prenatal stress in our previous studies. We administered 10-mg/kg/day of the androgen receptor antagonist flutamide (4'nitro-3'-trifluoromethylsobutyranilide) or vehicle injections to pregnant rats from days 15-21 of gestation. The antiandrogenic effects of flutamide were confirmed by the analysis of androgen-dependent developmental markers: flutamide-exposed rats showed reduced anogenital distance, delay in the completion of testis descent, hypospadias, cryptorchidism and atrophied seminal vesicles. Brain morphological studies revealed that prenatal flutamide decreased the number of MAP2 (a microtubule-associated protein type 2, present almost exclusively in dendrites) immunoreactive neuronal processes in all evaluated brain areas, both in prepubertal and adult offspring, suggesting that prenatal androgen disruption induces long-term reductions of the dendritic arborization of several brain structures, affecting the normal connectivity between areas. Moreover, the number of tyrosine hydroxylase (TH)-immunopositive neurons in the VTA of prepubertal offspring was reduced in flutamide rats but reach normal values at adulthood. Our results demonstrate that the effects of prenatal flutamide on the offspring brain morphology resemble several prenatal stress effects suggesting that the mechanism of action of prenatal stress might be related to the impairment of the organizational role of androgens on brain

  12. Microglial cell dysregulation in brain aging and neurodegeneration

    PubMed Central

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of

  13. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  14. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat.

    PubMed

    Triplett, Judy C; Swomley, Aaron; Kirk, Jessime; Lewis, Katilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Buffenstein, Rochelle; Butterfield, D Allan

    2015-08-01

    Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span

  15. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat.

    PubMed

    Triplett, Judy C; Swomley, Aaron; Kirk, Jessime; Lewis, Katilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Buffenstein, Rochelle; Butterfield, D Allan

    2015-08-01

    Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span.

  16. Oxidative Stress, Aging and CNS disease in the Canine Model of Human Brain Aging

    PubMed Central

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    SYNOPSIS Decline in cognitive functions that accompany aging in dogs may have a biological basis, and many of the disorders associated with aging in canines may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of both laboratory and clinical studies – antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs. However, determining all effective compounds and combinations, dosage ranges, as well as when to initiate intervention and long term effects constitute gaps in our current knowledge. PMID:18249248

  17. Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging.

    PubMed

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    Decline in cognitive functions that accompany aging in dogs may have a biologic basis, and many of the disorders associated with aging in dogs may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs.

  18. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    SciTech Connect

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-02-18

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of /sup 125/I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.

  19. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats.

    PubMed

    Eady, Tiffany N; Khoutorova, Larissa; Obenaus, Andre; Mohd-Yusof, Alena; Bazan, Nicolas G; Belayev, Ludmila

    2014-02-01

    Recently we have shown that docosahexaenoic acid complexed to albumin (DHA-Alb) is neuroprotective after experimental stroke in young rats. The purpose of this study was to determine whether treatment with DHA-Alb would be protective in aged rats after focal cerebral ischemia. Isoflurane/nitrous oxide-anesthetized normothermic (brain temperature 36-36.5°C) Sprague-Dawley aged rats (18-months old) received 2h middle cerebral artery occlusion (MCAo) by poly-l-lysine-coated intraluminal suture. The neurological status was evaluated during occlusion (60min) and on days 1, 2, 3 and 7 after MCAo; a grading scale of 0-12 was employed. DHA (5mg/kg), Alb (0.63g/kg), DHA-Alb (5mg/kg+0.63g/kg) or saline was administered i.v. 3h after onset of stroke (n=8-10 per group). Ex vivo T2-weighted imaging (T2WI) of the brains was conducted on an 11.7T MRI on day 7 and 3D reconstructions were generated. Infarct volumes and number of GFAP (reactive astrocytes), ED-1 (activated microglia/microphages), NeuN (neurons)-positive cells and SMI-71 (positive vessels) were counted in the cortex and striatum at the level of the central lesion. Physiological variables were entirely comparable between groups. Animals treated with DHA-Alb showed significantly improved neurological scores compared to vehicle rats; 33% improvement on day 1; 39% on day 2; 41% on day 3; and 45% on day 7. Total and cortical lesion volumes computed from T2WI were significantly reduced by DHA-Alb treatment (62 and 69%, respectively). In addition, treatment with DHA-Alb reduced cortical and total brain infarction while promoting cell survival. We conclude that DHA-Alb therapy is highly neuroprotective in aged rats following focal cerebral ischemia and has potential for the effective treatment of ischemic stroke in aged individuals. PMID:24063996

  20. Voltammetric detection of 5-hydroxytryptamine release in the rat brain.

    PubMed

    Hashemi, Parastoo; Dankoski, Elyse C; Petrovic, Jelena; Keithley, Richard B; Wightman, R M

    2009-11-15

    5-Hydroxytryptamine (5-HT) is an important molecule in the brain that is implicated in mood and emotional processes. In vivo, its dynamic release and uptake kinetics are poorly understood due to a lack of analytical techniques for its rapid measurement. Whereas fast-scan cyclic voltammetry with carbon fiber microelectrodes is used frequently to monitor subsecond dopamine release in freely moving and anesthetized rats, the electrooxidation of 5-HT forms products that quickly polymerize and irreversibly coat the carbon electrode surface. Previously described modifications of the electrochemical waveform allow stable and sensitive 5-HT measurements in mammalian tissue slice preparations and in the brain of fruit fly larvae. For in vivo applications in mammals, however, the problem of electrode deterioration persists. We identify the root of this problem to be fouling by extracellular metabolites such as 5-hydoxyindole acetic acid (5-HIAA), which is present in 200-1000 times the concentration of 5-HT and displays similar electrochemical properties, including filming of the electrode surface. To impede access of the 5-HIAA to the electrode surface, a thin layer of Nafion, a cation exchange polymer, has been electrodeposited onto cylindrical carbon-fiber microelectrodes. The presence of the Nafion film was confirmed with environmental scanning electron microscopy and was demonstrated by the diminution of the voltammetric signals for 5-HIAA as well as other common anionic species. The modified microelectrodes also display increased sensitivity to 5-HT, yielding a characteristic cyclic voltammogram that is easily distinguishable from other common electroactive brain species. The thickness of the Nafion coating and a diffusion coefficient (D) in the film for 5-HT were evaluated by measuring permeation through Nafion. In vivo, we used physiological, anatomical, and pharmacological evidence to validate the signal as 5-HT. Using Nafion-modified microelectrodes, we present the

  1. The Role of Mitochondria in Brain Aging and the Effects of Melatonin

    PubMed Central

    Escames, Germaine; López, Ana; García, José Antonio; García, Laura; Acuña-Castroviejo, Darío; García, José Joaquín; López, Luis Carlos

    2010-01-01

    Melatonin is an endogenous indoleamine present in different tissues, cellular compartments and organelles including mitochondria. When melatonin is administered orally, it is readily available to the brain where it counteracts different processes that occur during aging and age-related neurodegenerative disorders. These aging processes include oxidative stress and oxidative damage, chronic and acute inflammation, mitochondrial dysfunction and loss of neural regeneration. This review summarizes age related changes in the brain and the importance of oxidative/nitrosative stress and mitochondrial dysfunction in brain aging. The data and mechanisms of action of melatonin in relation to aging of the brain are reviewed as well. PMID:21358969

  2. Coccomyxa Gloeobotrydiformis Improves Learning and Memory in Intrinsic Aging Rats

    PubMed Central

    Sun, Luning; Jin, Ying; Dong, Liming; Sui, Hai-juan; Sumi, Ryo; Jahan, Rabita; Hu, Dahai; Li, Zhi

    2015-01-01

    Declining in learning and memory is one of the most common and prominent problems during the aging process. Neurotransmitter changes, oxidative stress, mitochondrial dysfunction and abnormal signal transduction were considered to participate in this process. In the present study, we examined the effects of Coccomyxa gloeobotrydiformis (CGD) on learning and memory ability of intrinsic aging rats. As a result, CGD treated (50 mg/kg·d or 100 mg/kg ·d for a duration of 8 weeks) 22-month-old male rats, which have shown significant improvement on learning and spatial memory ability compared with control, which was evidently revealed in both the hidden platform tasks and probe trials. The following immunohistochemistry and Western blot experiments suggested that CGD could increase the content of Ach and thereby improve the function of the cholinergic neurons in the hippocampus, and therefore also improving learning and memory ability of the aged rats by acting as an anti-inflammatory agent. The effects of CGD on learning and memory might also have an association with the ERK/CREB signalling. The results above suggest that the naturally made drug CGD may have several great benefit as a multi-target drug in the process of prevention and/or treatment of age-dependent cognitive decline and aging process. PMID:26078724

  3. Neuroprotective Role of Nanoencapsulated Quercetin in Combating Ischemia-Reperfusion Induced Neuronal Damage in Young and Aged Rats

    PubMed Central

    Ghosh, Aparajita; Sarkar, Sibani; Mandal, Ardhendu K.; Das, Nirmalendu

    2013-01-01

    Cerebral stroke is the leading cause of death and permanent disability among elderly people. In both humans and animals, cerebral ischemia damages the nerve cells in vulnerable regions of the brain, viz., hippocampus, cerebral cortex, cerebellum, and hypothalamus. The present study was conducted to evaluate the therapeutic efficacy of nanoencapsulated quercetin (QC) in combating ischemia-reperfusion-induced neuronal damage in young and aged Swiss Albino rats. Cerebral ischemia was induced by occlusion of the common carotid arteries of both young and aged rats followed by reperfusion. Nanoencapsulated quercetin (2.7 mg/kg b wt) was administered to both groups of animals via oral gavage two hours prior to ischemic insults as well as post-operation till day 3. Cerebral ischemia and 30 min consecutive reperfusion caused a substantial increase in lipid peroxidation, decreased antioxidant enzyme activities and tissue osmolality in different brain regions of both groups of animals. It also decreased mitochondrial membrane microviscosity and increased reactive oxygen species (ROS) generation in different brain regions of young and aged rats. Among the brain regions studied, the hippocampus appeared to be the worst affected region showing increased upregulation of iNOS and caspase-3 activity with decreased neuronal count in the CA1 and CA3 subfields of both young and aged rats. Furthermore, three days of continuous reperfusion after ischemia caused massive damage to neuronal cells. However, it was observed that oral treatment of nanoencapsulated quercetin (2.7 mg/kg b wt) resulted in downregulation of iNOS and caspase-3 activities and improved neuronal count in the hippocampal subfields even 3 days after reperfusion. Moreover, the nanoformulation imparted a significant level of protection in the antioxidant status in different brain regions, thus contributing to a better understanding of the given pathophysiological processes causing ischemic neuronal damage. PMID:23620721

  4. Brain activation by an olfactory stimulus paired with juvenile play in female rats.

    PubMed

    Paredes-Ramos, P; McCarthy, M M; Bowers, J M; Miquel, M; Manzo, J; Coria-Avila, G A

    2014-06-22

    We have previously shown that reward experienced during social play at juvenile age can be paired with artificial odors, and later in adulthood facilitate olfactory conditioned partner preferences (PP) in female rats. Herein, we examined the expression of FOS immunoreactivity (FOS-IR) following exposure to the odor paired with juvenile play (CS+). Starting at day P31 females received daily 30-min periods of social play with lemon-scented (paired group) or unscented females (unpaired group). At day P42, they were tested for play-PP with two juvenile males, one bearing the CS+ (lemon) and one bearing a novel odor (almond). Females were ovariectomized, hormone-primed and at day P55 tested for sexual-PP between two adult stud males scented with lemon or almond. In both tests, females from the paired group displayed conditioned PP (play or sexual) toward males bearing the CS+. In the present experiments females were exposed at day P59 to the CS+ during 60 min and their brains processed for FOS-IR. One group of female rats (Play+Sex) underwent play-PP and sexual-PP, whereas a second group of females (Play-only) underwent exclusively play-PP but not sexual-PP. Results showed that in the Play-only experiment exposure to the CS+ induced more FOS-IR in the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, and ventral tegmental area as compared to females from the unpaired group. In the Play+Sex experiment, more FOS-IR was observed in the piriform cortex, dorsal striatum, lateral septum, nucleus accumbens shell, bed nucleus of the stria terminalis and medial amygdala as compared to females from the unpaired group. Taken together, these results indicate mesocorticolimbic brain areas direct the expectation and/or choice of conditioned partners in female rats. In addition, transferring the meaning of play to sex preference requires different brain areas.

  5. Effect of 2,450 MHz microwave radiation on the development of the rat brain

    SciTech Connect

    Inouye, M.; Galvin, M.J.; McRee, D.I.

    1983-12-01

    Male Sprague-Dawley rats were exposed to 2,450 MHz microwave radiation at an incident power density of 10 mW/cm2 daily for 3 hours from day 4 of pregnancy (in utero exposure) through day 40 postpartum, except for 2 days at the perinatal period. The animals were killed, and the brains removed, weighed, measured, and histologically examined at 15, 20, 30, and 40 days of age. The histologic parameters examined included the cortical architecture of the cerebral cortex, the decline of the germinal layer along the lateral ventricles, the myelination of the corpus callosum, and the decline of the external germinal layer of the cerebellar cortex. In 40-day-old rats, quantitative measurements of neurons were also made. The spine density of the pyramidal cells in layer III of the somatosensory cortex, and the density of basal dendritic trees of the pyramidal cells in layer V were measured in Golgi-Cox impregnated specimens. In addition, the density of Purkinje cells and the extent of the Purkinje cell layer in each lobule were measured in midsagittal sections of the cerebellum stained with thionin. There were no remarkable differences between microwave-exposed and control (sham-irradiated) groups for any of the histologic or quantitative parameters examined; however, the findings provide important information on quantitative measurements of the brain. The data from this study failed to demonstrate that there is a significant effect on rat brain development due to microwave exposure (10 mW/cm2) during the embryonic, fetal, and postnatal periods.

  6. Age sensitivity of behavioral tests and brain substrates of normal aging in mice.

    PubMed

    Kennard, John A; Woodruff-Pak, Diana S

    2011-01-01

    Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena.

  7. Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns.

    PubMed

    Çelik, Ömer; Kahya, Mehmet Cemal; Nazıroğlu, Mustafa

    2016-09-01

    An excessive production of reactive oxygen substances (ROS) and reduced antioxidant defence systems resulting from electromagnetic radiation (EMR) exposure may lead to oxidative brain and liver damage and degradation of membranes during pregnancy and development of rat pups. We aimed to investigate the effects of Wi-Fi-induced EMR on the brain and liver antioxidant redox systems in the rat during pregnancy and development. Sixteen pregnant rats and their 48 newborns were equally divided into control and EMR groups. The EMR groups were exposed to 2.45GHz EMR (1h/day for 5 days/week) from pregnancy to 3 weeks of age. Brain cortex and liver samples were taken from the newborns between the first and third weeks. In the EMR groups, lipid peroxidation levels in the brain and liver were increased following EMR exposure; however, the glutathione peroxidase (GSH-Px) activity, and vitamin A, vitamin E and β-carotene concentrations were decreased in the brain and liver. Glutathione (GSH) and vitamin C concentrations in the brain were also lower in the EMR groups than in the controls; however, their concentrations did not change in the liver. In conclusion, Wi-Fi-induced oxidative stress in the brain and liver of developing rats was the result of reduced GSH-Px, GSH and antioxidant vitamin concentrations. Moreover, the brain seemed to be more sensitive to oxidative injury compared to the liver in the development of newborns.

  8. Role of walnuts in maintaining brain health with age.

    PubMed

    Poulose, Shibu M; Miller, Marshall G; Shukitt-Hale, Barbara

    2014-04-01

    Because of the combination of population growth and population aging, increases in the incidence of chronic neurodegenerative disorders have become a societal concern, both in terms of decreased quality of life and increased financial burden. Clinical manifestation of many of these disorders takes years, with the initiation of mild cognitive symptoms leading to behavioral problems, dementia and loss of motor functions, the need for assisted living, and eventual death. Lifestyle factors greatly affect the progression of cognitive decline, with high-risk behaviors including unhealthy diet, lack of exercise, smoking, and exposure to environmental toxins leading to enhanced oxidative stress and inflammation. Although there exists an urgent need to develop effective treatments for age-related cognitive decline and neurodegenerative disease, prevention strategies have been underdeveloped. Primary prevention in many of these neurodegenerative diseases could be achieved earlier in life by consuming a healthy diet, rich in antioxidant and anti-inflammatory phytochemicals, which offers one of the most effective and least expensive ways to address the crisis. English walnuts (Juglans regia L.) are rich in numerous phytochemicals, including high amounts of polyunsaturated fatty acids, and offer potential benefits to brain health. Polyphenolic compounds found in walnuts not only reduce the oxidant and inflammatory load on brain cells but also improve interneuronal signaling, increase neurogenesis, and enhance sequestration of insoluble toxic protein aggregates. Evidence for the beneficial effects of consuming a walnut-rich diet is reviewed in this article. PMID:24500933

  9. The Effect of the APOE Genotype on Individual BrainAGE in Normal Aging, Mild Cognitive Impairment, and Alzheimer's Disease.

    PubMed

    Löwe, Luise Christine; Gaser, Christian; Franke, Katja

    2016-01-01

    In our aging society, diseases in the elderly come more and more into focus. An important issue in research is Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD) with their causes, diagnosis, treatment, and disease prediction. We applied the Brain Age Gap Estimation (BrainAGE) method to examine the impact of the Apolipoprotein E (APOE) genotype on structural brain aging, utilizing longitudinal magnetic resonance image (MRI) data of 405 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We tested for differences in neuroanatomical aging between carrier and non-carrier of APOE ε4 within the diagnostic groups and for longitudinal changes in individual brain aging during about three years follow-up. We further examined whether a combination of BrainAGE and APOE status could improve prediction accuracy of conversion to AD in MCI patients. The influence of the APOE status on conversion from MCI to AD was analyzed within all allelic subgroups as well as for ε4 carriers and non-carriers. The BrainAGE scores differed significantly between normal controls, stable MCI (sMCI) and progressive MCI (pMCI) as well as AD patients. Differences in BrainAGE changing rates over time were observed for APOE ε4 carrier status as well as in the pMCI and AD groups. At baseline and during follow-up, BrainAGE scores correlated significantly with neuropsychological test scores in APOE ε4 carriers and non-carriers, especially in pMCI and AD patients. Prediction of conversion was most accurate using the BrainAGE score as compared to neuropsychological test scores, even when the patient's APOE status was unknown. For assessing the individual risk of coming down with AD as well as predicting conversion from MCI to AD, the BrainAGE method proves to be a useful and accurate tool even if the information of the patient's APOE status is missing. PMID:27410431

  10. Brain white matter damage in aging and cognitive ability in youth and older age.

    PubMed

    Valdés Hernández, Maria Del C; Booth, Tom; Murray, Catherine; Gow, Alan J; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A; Aribisala, Benjamin S; Bastin, Mark E; Starr, John M; Deary, Ian J; Wardlaw, Joanna M

    2013-12-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = -0.14, p < 0.01) and processing speed (β = -0.19, p < 0.001). WMH were also associated independently with lower age 11 IQ (β = -0.08, p < 0.05) and hypertension. In conclusion, having more WMH is significantly associated with lower cognitive ability, after accounting for prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging.

  11. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats

    PubMed Central

    Lauterborn, Julie C.; Palmer, Linda C.; Jia, Yousheng; Pham, Danielle T.; Hou, Bowen; Wang, Weisheng; Trieu, Brian H.; Cox, Conor D.; Kantorovich, Svetlana

    2016-01-01

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. SIGNIFICANCE STATEMENT Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be

  12. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  13. Estimating The Sodium Ion Diffusion Coefficient in Rat Brain

    NASA Astrophysics Data System (ADS)

    Goodman, James A.; Bretthorst, G. Larry; Kroenke, Christopher D.; Ackerman, Joseph J. H.; Neil, Jeffrey J.

    2004-04-01

    Quantifying sodium ion diffusion in the extra- and intracellular compartments will provide mechanistic insight into the as yet unexplained marked decrease in water d