Sample records for aging thermal aging

  1. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging

    PubMed Central

    Wang, Youyuan; Zhang, Zhanxi; Xiao, Kun

    2017-01-01

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO2 nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO2 nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles. PMID:29023428

  2. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging.

    PubMed

    Wang, Youyuan; Wang, Can; Zhang, Zhanxi; Xiao, Kun

    2017-10-12

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO₂ nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO₂ nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  3. Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel

    NASA Astrophysics Data System (ADS)

    Kolluri, M.; Kryukov, A.; Magielsen, A. J.; Hähner, P.; Petrosyan, V.; Sevikyan, G.; Szaraz, Z.

    2017-04-01

    The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T41 value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high thermal stability.

  4. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  5. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    NASA Astrophysics Data System (ADS)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  6. Evaluation of thermally-aged carbon fiber/epoxy composites using acoustic emission, electrical resistance, contact angle and thermogram

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Shin, P. S.; Kim, J. H.; Park, H. S.; Baek, Y. M.; DeVries, K. L.

    2018-03-01

    Interfacial and mechanical properties of thermal aged carbon fiber reinforced epoxy composites (CFRP) were evaluated using acoustic emission (AE), electrical resistance (ER), contact angle (CA) and thermogram measurements. Unidirectional (UD)-composites were aged at 200, 300, and 400 °C to produce different interfacial conditions. The interfacial degradation was identified by Fourier transform infrared (FT-IR) spectroscopy after different thermal aging. AE and ER of UD composites were measured along 0, 30, 60 and 90 °. Changes in wavespeed, with thermal aging, were calculated using wave travel time from AE source to AE sensor and the changes in ER were measured. For a thermogram evaluation, the composites were laid upon on a hotplate and the increase in the surface temperature was measured. Static contact angle were measured after different thermal aging and elapsed times to evaluate wettability. Interlaminar shear Strength (ILSS) and tensile strength at transverse direction tests were also performed to explore the effects of thermal aging on mechanical and interfacial properties. While thermal aging of CFRPs was found to affect all these properties, the changes were particularly evident at 400 °C.

  7. Influence of Thermal Ageing on Microstructure and Tensile Properties of P92 Steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Selvi, S. Panneer; Parameswaran, P.; Laha, K.

    2018-04-01

    Microstructure and tensile properties of P92 steel in the normalized and tempered, and thermal aged at 923 K for 5000 h and 10,000 h conditions have been investigated. Laves phase precipitate was observed in the thermal-aged steels. The size of Laves phase precipitate increased with increase in thermal exposure. This was also confirmed from the observation that the area fraction of Laves phase precipitate was higher in the 5000 h aged condition which decreased with further increase in thermal exposure. On the other hand, the size and area fraction of M23C6 precipitate were found increased in the 5000 h aged steel, further continued to enhanced precipitation of fine M23C6 in the 10,000 h aged steel. This resulted in significant increase in area fraction and comparable size with the steel aged for 5000 h. Hardness of the steel was decreased with increase in the duration of ageing. Thermal-aged steels exhibited lower yield stress, ultimate tensile strength and relatively higher ductility in comparison with steel in the normalized and tempered condition. The increase in lath width and recovery of dislocation structure under thermal-aged condition resulted in lower tensile strength and hardness. An extensive Laves phase formation and coarsening by loss of tungsten in the matrix led to decrease in the tensile strength predominantly in the 5000 h aged steel. The tensile strength of 10,000 h aged steel was comparable with that of 5000 h aged steel due to enhanced precipitation of fine M23C6 in the steel due to enhanced mobility of carbon in the absence of tungsten in the matrix.

  8. The correlation between elongation at break and thermal decomposition of aged EPDM cable polymer

    NASA Astrophysics Data System (ADS)

    Šarac, T.; Devaux, J.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2017-03-01

    The effect of simultaneous thermal and gamma irradiation ageing on the mechanical and physicochemical properties of industrial EPDM was investigated. Accelerated ageing, covering a wide range of dose rates, doses and temperatures, was preformed in stagnant air on EPDM polymer samples extracted from the cables in use in the Belgian nuclear power plants. The mechanical properties, ultimate tensile stress and elongation at break, are found to exhibit the strong dependence on the dose, ageing temperature and dose rate. The thermal decomposition of aged polymer is observed to be the dose dependent when thermogravimetry test is performed under air atmosphere. No dose dependence is observed when thermal decomposition is performed under nitrogen atmosphere. The thermal decomposition rates are found to fully mimic the reduction of elongation at break for all dose rates and ageing temperatures. This effect is argued to be the result of thermal and radiation mediated oxidation degradation process.

  9. Isothermal relaxation current and microstructure changes of thermally aged polyester films impregnated by epoxy resin

    NASA Astrophysics Data System (ADS)

    Jiang, Xiongwei; Sun, Potao; Peng, Qingjun; Sima, Wenxia

    2018-01-01

    In this study, to understand the effect of thermal aging on polymer films degradation, specimens of polyester films impregnated by epoxy resin with different thermal aging temperatures (80 and 130 °C) and aging times (500, 1600, 2400 and 3000 h) are prepared, then charge de-trapping properties of specimens are investigated via the isothermal relaxation current (IRC) measurement, the distributions of trap level and its corresponding density are obtained based on the modified IRC model. It is found that the deep trap density increases remarkably at the beginning of thermal aging (before 1600 h), but it decreases obviously as the aging degree increases. At elevated aging temperature and, in particular considering the presence of air gap between two-layer insulation, the peak densities of deep traps decrease more significant in the late period of aging. It can be concluded that it is the released energy from de-trapping process leads to the fast degradation of insulation. Moreover, after thermal aging, the microstructure changes of crystallinity and molecular structures are analyzed via the x-ray diffraction experiment and Fourier transform infrared spectrometer. The results indicate that the variation of the deep trap density is closely linked with the changes of microstructure, a larger interface of crystalline/amorphous phase, more defects and broken chains caused by thermal aging form higher deep trap density stored in the samples.

  10. Thermal aging effect of vanadyl acetylacetonate precursor for deposition of VO{sub 2} thin films with thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung-Hoon; Nam, Sang-Hun; Kim, Donguk

    Highlights: • 7 day aged VO(acac){sub 2} sol shows enhanced adhesivity on the SiO{sub 2} compared with non-aged sol. • The aging process has significantly affected the morphologies of VO{sub 2} films. • From the FT-IR spectra, thermal aging process provides the deformation of precursor. • The metal insulator transition (MIT) efficiency (ΔT{sub at2000} {sub nm}) reached a maximum value of 51% at 7 day aging. • Thermal aging process could shorten the aging time of sol solution. - Abstract: Thermochromic properties of vanadium dioxide (VO{sub 2}) have been studied extensively due to their IR reflection applications in energy smartmore » windows. In this paper, we studied the optical switching property of VO{sub 2} thin film, depending on the thermal aging time of the vanadyl acetylacetonate (VO(acac){sub 2}) precursor. We found the alteration of the IR spectra of the precursor by tuning the aging time as well as heat treatments of the precursor. An aging effect of vanadium precursor directly affects the morphologies, optical switching property and crystallinity of VO{sub 2} films. The optimum condition was achieved at the 7 day aging time with metal insulator transition (MIT) efficiency of 50%.« less

  11. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less

  12. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    EPA Science Inventory

    The Brown Norway (BN) rat is a popular strain for aging studies. There is little information on effects of age on baseline cardiac and thermoregulatory parameters in undisturbed BN rats even though cardiac and thermal homeostasis is linked to many pathological deficits in the age...

  13. Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690

    NASA Astrophysics Data System (ADS)

    Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.

    2018-03-01

    This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.

  14. Effects of aging temperature on microstructural evolution at dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Bahn, Chi Bum; Kim, Ji Hyun

    2015-07-01

    From the earlier study which characterized the region of a fusion boundary between a low-alloy steel (LAS) and a Ni-based weld metal of as-welded and aged samples at 450 °C for a 30-y-equivalent time, it was observed in the microstructure that the aging treatment induced the formation and growth of Cr precipitates in the fusion boundary region because of the thermodynamic driving force. Now, this research extends the text matrix and continues the previous study by compiling all the test data, with an additional aging heat treatment conducted at 400 °C for 15- and 30-y-equivalent times (6450 and 12,911 h, respectively). The results for the extended test matrix primarily represent the common features of and disparities in the effects of thermal aging on the aged samples at two different heat-treatment temperatures (400 and 450 °C). Although no difference was expected between the samples, because the heat treatment conditions simulate thermal aging effects during the same service time of 30 y, the sample aged at 450 °C exhibited slightly more severe effects of thermal aging than the sample aged at 400 °C. Nevertheless, the trends for these effects are similar and the simulation of thermal aging effects for a light-water reactor appears to be reliable. However, according to a simulation of the same degree of thermal aging effects, it appears that the activation energy for Cr diffusion should be larger than the numerical value used in this study.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.; Soppet, W.K.; Rink, D.L.

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensilemore » properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.« less

  16. Precision of four otolith techniques for estimating age of white perch from a thermally altered reservoir

    USGS Publications Warehouse

    Snow, Richard A.; Porta, Michael J.; Long, James M.

    2018-01-01

    The White Perch Morone americana is an invasive species in many Midwestern states and is widely distributed in reservoir systems, yet little is known about the species' age structure and population dynamics. White Perch were first observed in Sooner Reservoir, a thermally altered cooling reservoir in Oklahoma, by the Oklahoma Department of Wildlife Conservation in 2006. It is unknown how thermally altered systems like Sooner Reservoir may affect the precision of White Perch age estimates. Previous studies have found that age structures from Largemouth Bass Micropterus salmoides and Bluegills Lepomis macrochirus from thermally altered reservoirs had false annuli, which increased error when estimating ages. Our objective was to quantify the precision of White Perch age estimates using four sagittal otolith preparation techniques (whole, broken, browned, and stained). Because Sooner Reservoir is thermally altered, we also wanted to identify the best month to collect a White Perch age sample based on aging precision. Ages of 569 White Perch (20–308 mm TL) were estimated using the four techniques. Age estimates from broken, stained, and browned otoliths ranged from 0 to 8 years; whole‐view otolith age estimates ranged from 0 to 7 years. The lowest mean coefficient of variation (CV) was obtained using broken otoliths, whereas the highest CV was observed using browned otoliths. July was the most precise month (lowest mean CV) for estimating age of White Perch, whereas April was the least precise month (highest mean CV). These results underscore the importance of knowing the best method to prepare otoliths for achieving the most precise age estimates and the best time of year to obtain those samples, as these factors may affect other estimates of population dynamics.

  17. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Ding, X. F.; Lu, Y. H.; Shoji, T.

    2017-04-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2-11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging.

  18. Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Huang, Qian; Childers, Matthew I.

    Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed formore » single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.« less

  19. Impact of Isothermal Aging on Long-Term Reliability of Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Surface Finish Effects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie

    2010-12-01

    The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.

  20. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides

    2010-08-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.

  1. Effect of Isothermal Aging and Thermal Cycling on Interfacial IMC Growth and Fracture Behavior of SnAgCu/Cu Joints

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Li, Fenghui; Guo, Fu; Shi, Yaowu

    2011-01-01

    The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from -25°C to 125°C and -40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.

  2. Etude de l'effet du vieillissement sur les proprietes d'un tissu en melange KevlarRTM-PBI utilise dans le revetement exterieur des habits de protection contre le feu

    NASA Astrophysics Data System (ADS)

    Arrieta, Carlos

    The aim of this work is to study and model the effect of three aging factors, temperature, humidity and light radiation, on the properties of a fabric made of a blend of KevlarRTM and PBI fibers frequently used to manufacture fire-protective garments. Accelarated-aging treatments carried out at carefully chosen conditions for the three factors resulted in a sizeable loss of mechanical performance. The breaking force of both the fabric and the yarns extracted from it decreases to less than 50% after one month of continuous exposure. X-ray diffraction (XRD) tests performed on thermally-aged samples indicated an increase of the crystallinity of the fabric, whereas the disappearance of Raman spectral lines suggested instead a reduction of the crystallinity following thermal aging. To explain these seemingly contradictory results, a hypothesis was introduced, stating that two different processes occurred simultaneously during thermal aging. The first one, an increase of size of the crystallites in the direction of the fibers' axis, accounted for the increase in crystallinity observed in XRD tests. The second one, an increase in the gap separating lamellar crystallites that causes a non-measurable reduction of the crystallinity of the sample, was highlighted by the Raman analyses. The results of the dielectric spectroscopy analyses carried out on thermally-aged samples confirmed the XRD results showing a significant change in the Kevlar's morphology during thermal aging. Despite the important decrease of the breaking force that ensued thermal aging, no evidence of a chemical structure modification of KevlarRTM was found. On the other hand, differential thermal analyses conducted on thermally aged fabric samples indicated a reduction of the glass transition temperature of the other component of the blend, namely the PBI, a fact that suggests a decrease of molecular weight after thermal aging. Infrared spectroscopy analyses performed on samples exposed to high humidity levels showed the development of a new absorbing band in the spectrum of aged KevlarRTM yarns. This band was ascribed to the formation of carboxylic acid groups. Based on these results, the humidity aging mechanism was inferred. This mechanism corresponds to the hydrolysis of the amide bond of KevlarRTM catalyzed by an acid. The progress of the hydrolysis reaction was modeled mathematically using the evolution of the concentration of carboxylic acid groups. The mechanism of light radiation aging was also determined from infrared spectroscopy analyses as the absorbing band attributed to the carboxylic acid groups was once again observed. In the case of light radiation, the degradation mechanism corresponds to a photo-oxidation reaction initiated by the photolysis of the amide bond of KevlarRTM. The accumulation of Photo-Fries products on the surface of yarns is believed to slow down of the oxidation reaction, as indicated by the overlapping of breaking force vs. aging time curves for the light-radiation aged samples. Expressions based on the Arrhenius law were used to characterize both the thermal and hydrolytic aging, whereas an expression taking into account the irradiance as well as the temperature was used to model the light radiation aging. The global damage produced by the joint action of the three aging factors was modeled after Palmgren-Miner's linear cumulative damage theory.

  3. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  4. Protection of alodine coatings from thermal aging by removable polymer coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, Brett R.; Bradshaw, Robert W.; Whinnery, LeRoy L., Jr.

    2006-12-01

    Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigatedmore » the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.« less

  5. Qualitative Investigation of the Decomposition of Organic Solvent Based Lithium Ion Battery Electrolytes with LC-IT-TOF-MS.

    PubMed

    Schultz, Carola; Vedder, Sven; Winter, Martin; Nowak, Sascha

    2016-11-15

    The development of a novel high performance liquid chromatography (HPLC) method hyphenated to an ion-trap time-of-flight mass spectrometer (IT-TOF-MS) for the separation and identification of constituents from common organic carbonate solvent-based electrolyte systems in lithium ion batteries (LIBs) is presented in this work. The method development was conducted for the qualitative structural elucidation of electrolyte main constituents with a special focus on the aging products of these components. The determination of their limits of detection was performed as well. Four different LiPF 6 -based LIB electrolytes were investigated in this study. The selected aging procedures for the electrolytes were thermal aging (storage at 60 °C for 2 weeks, storage at 60 °C in the presence of 2 vol % water contamination for 2 weeks) and electrochemical aging for 100 cycles at 2C. After thermal aging, several aging products were identified. The formation of organic phosphate aging products and several organofluorophosphates aging products was observed after thermal aging with water. Additionally, the content of carbonate aging products increased. After electrochemical aging, several carbonate aging products were detected. Electrochemical aging at 60 °C leads to the additional generation of organofluorophosphate aging products.

  6. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    NASA Astrophysics Data System (ADS)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  7. Influence of thermal aging on AC leakage current in XLPE insulation

    NASA Astrophysics Data System (ADS)

    Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun

    2018-02-01

    Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.

  8. Age-related thermal habitat use by Pacific salmon Oncorhynchus spp.

    PubMed

    Morita, K; Fukuwaka, M; Tanimata, N

    2010-09-01

    Age-related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  9. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables

    NASA Astrophysics Data System (ADS)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2017-03-01

    Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.

  10. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials – CF3, CF3M, CF8, and CF8M – were thermally aged for 1500 hours at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/ α`, precipitationmore » of G-phase in the δ-ferrite, segregation of solute to the austenite/ ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. A comprehensive model is being developed to correlate the microstructural evolution with mechanical behavior and simulation for predictive evaluations of LWR coolant system components.« less

  11. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    We performed mechanical testing and microstructural characterization on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials–CF3, CF3M, CF8, and CF8M–were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α', precipitation of G-phase in the δ-ferrite,more » segregation of solute to the austenite/ferrite interphase boundary, and growth of M 23C 6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. Finally, the low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.« less

  12. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    NASA Astrophysics Data System (ADS)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    2017-12-01

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials-CF3, CF3M, CF8, and CF8M-were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α‧, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. The low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.

  13. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    DOE PAGES

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    2017-07-31

    We performed mechanical testing and microstructural characterization on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials–CF3, CF3M, CF8, and CF8M–were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α', precipitation of G-phase in the δ-ferrite,more » segregation of solute to the austenite/ferrite interphase boundary, and growth of M 23C 6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. Finally, the low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.« less

  14. The calibration of photographic and spectroscopic films. 1: Film batch variations of reciprocity failure in IIaO film. 2: Thermal and aging effects in relationship to reciprocity failure. 3: Shifting of reciprocity failure points as a function of thermal and aging effects

    NASA Technical Reports Server (NTRS)

    Peters, K. A.; Atkinson, P. F.; Hammond, E. C., Jr.

    1986-01-01

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.

  15. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  16. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  17. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing

    NASA Astrophysics Data System (ADS)

    Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2018-01-01

    Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.

  18. Optimum temperature for growth and preferred temperatures of age-0 lake trout

    USGS Publications Warehouse

    Edsall, Thomas A.; Cleland, Joshua

    2000-01-01

    This study was performed to determine the thermal preferences and optimum temperature for growth of age-0 lake trout Salvelinus namaycush to help predict the thermal habitat they select when they leave the spawning grounds and to assess the risk posed to them in the Great Lakes by piscivorus, nonnative fishes whose thermal habitat preferences are known. The test fish were hatched in the laboratory from eggs taken from wild fish, acclimated to 5, 10, 15, and 18°C, and fed to excess with commercial trout food for 47 d. The test fish grew at all of the temperatures, and the specific growth rate was highest at about 12.5°C (3.8% wet body weight/d). Fish used in the growth study were also tested in a vertical thermal gradient tank and had a final thermal preferendum between 10.1°C and 10.2°C. These results, which generally agreed with those of an earlier laboratory study of the temperature preference of age-1 lake trout and the limited information on thermal habitat use by age-0 lake trout in the Great Lakes, indicated age-0 lake trout would tend to seek temperatures near 10°C, or as high as 12.5°C, during summer if food was abundant. Published information on thermal habitat use of age-1 and adult alewives Alosa pseudoharengus and rainbow smelt Osmerus mordax indicated they would be expected to co-occur with age-0 lake trout during much of the time when the lake trout were small enough to be eaten by these two introduced piscivores.

  19. Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2015-04-01

    In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.

  20. Fracture Toughness of Z3CN20.09M Cast Stainless Steel with Long-Term Thermal Aging

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Yu, Dunji; Gao, Hongbo; Xue, Fei; Chen, Xu

    2017-09-01

    Accelerated thermal aging tests were performed at 400 °C for nearly 18,000 h on Z3CN20.09M cast stainless steel which was used for primary coolant pipes of nuclear power plants. A series of Charpy impact tests were conducted on Z3CN20.09M after different long-term thermal aging time. The test results indicated that the Charpy impact energy of Z3CN20.09M cast stainless steel decreased rapidly at an early stage and then almost saturated after thermal aging of 10,000 h. Furthermore, J-resistance curves were measured for CT specimens of longitudinal and circumferential pipe orientations. It showed that there was no obvious difference in the fracture characteristics of Z3CN20.09M in different sampling directions. In addition, the observed stretch zone width (SZW) revealed that the value of initiation fracture toughness J SZW was significantly lower than that of fracture toughness J IC, indicating a low actual crack initiation energy due to long-term thermal aging.

  1. Simultaneous magnetic investigations of Cu precipitation and recovery in thermally aged Fe-Cu alloy by first-order-reversal-curves

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Kawagoe, Riko; Murakami, Hiroaki

    2018-05-01

    We have measured first-order reversal curves (FORCs) for Fe-1wt%Cu alloy thermally aged at 753 K up to 20000 min. While hardness exhibits a maximum at around 1000 min, reflecting the formation and growth of Cu precipitates, major-loop coercivity monotonically decreases and becomes almost constant above 100 min.; an increase of coercivity associated with Cu precipitation is masked by a large decrease due to recovery. On the other hand, FORC diagrams exhibit two distribution peaks at low and high switching fields after aging. While the former shifts towards a lower switching field after aging, reflecting recovery, the latter shows up after aging up to ˜1000 min, possibly due to the formation of Cu precipitates. These observations demonstrate that FORCs are useful to separately evaluate competing microstructural changes in thermally aged Fe-Cu alloy where recovery and Cu precipitation take place simultaneously.

  2. Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias C.

    Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basismore » of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.« less

  3. Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong

    2017-04-01

    To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.

  4. Coupled aging effects in nanofiber-reinforced siloxane foams

    DOE PAGES

    Labouriau, Andrea; Robison, Tom; Geller, Drew Adam; ...

    2018-01-11

    Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less

  5. Coupled aging effects in nanofiber-reinforced siloxane foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labouriau, Andrea; Robison, Tom; Geller, Drew Adam

    Here, this study investigates the combined effects of ionizing radiation and thermal treatments on the aging of siloxane foams containing small amounts of carbon nanofibers. Our siloxane foams were exposed to accelerated aging conditions for more than two years, resulting in very low dose rates. In addition, foams were aged under compressive load to evaluate the strength of the porous microstructure. Samples were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), Mössbauer, mass spectroscopy, electron paramagnetic resonance spectroscopy (EPR), solvent swelling, imaging techniques, uniaxial compressive load testing and tearmore » testing. No significant changes in thermal stability or chemistry of the accelerated aged foam were observed, although gas evolution was detected. Changes in crystallization levels at low temperatures, microstructure, and mechanical properties were observed for foams with and without carbon nanofibers. In particular, foams aged under compressive load showed irreversible deformation of the porous microstructure. This study demonstrates that aging effects were enhanced when thermal and radiolysis were coupled together and that the addition of carbon nanofibers did not improve aging effects.« less

  6. Thermal diffusivity study of aged Li-ion batteries using flash method

    NASA Astrophysics Data System (ADS)

    Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim

    Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.

  7. Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Chudasama, Bhupendra

    2018-04-01

    Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.

  8. The calibration of photographic and spectroscopic films. Part 1: Film batch variations of reciprocity failure in IIaO film. Part 2: Thermal and aging effects in relationship to reciprocity failure. P art 3: Shifting of reciprocity failure points as a function of thermal and aging effects

    NASA Technical Reports Server (NTRS)

    Peters, Kevin A.; Atkinson, Pamela F.; Hammond, Ernest C., Jr

    1987-01-01

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. Results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.

  9. Mid-Infrared Lifetime Imaging for Viability Evaluation of Lettuce Seeds Based on Time-Dependent Thermal Decay Characterization

    PubMed Central

    Kim, Ghiseok; Kim, Geon Hee; Ahn, Chi-Kook; Yoo, Yoonkyu; Cho, Byoung-Kwan

    2013-01-01

    An infrared lifetime thermal imaging technique for the measurement of lettuce seed viability was evaluated. Thermal emission signals from mid-infrared images of healthy seeds and seeds aged for 24, 48, and 72 h were obtained and reconstructed using regression analysis. The emission signals were fitted with a two-term exponential model that had two amplitudes and two time variables as lifetime parameters. The lifetime thermal decay parameters were significantly different for seeds with different aging times. Single-seed viability was visualized using thermal lifetime images constructed from the calculated lifetime parameter values. The time-dependent thermal signal decay characteristics, along with the decay amplitude and delay time images, can be used to distinguish aged lettuce seeds from normal seeds. PMID:23529120

  10. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-05-01

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  11. FY 2017 – Thermal Aging Effects on Advanced Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Natesan, K; Chen, Wei-Ying

    This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  12. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  13. Study of cyclic thermal aging of tube type receivers as a function of the duration of the cycle

    NASA Astrophysics Data System (ADS)

    Setien, Eneko; Fernández-Reche, Jesús; Ariza, María Jesús; Álvarez-de-Lara, Mónica

    2017-06-01

    The tube type receivers are exposed to variable duration cyclic operating conditions, which can jeopardize its reliability, and make it hard to estimate its long term performance. The designers have to deal with this problem and estimate the receiver long term performance based on the poor available litterature and the data sheets of the material. In order to help the designer better estimate the performance of the receivers, in this paper the cyclic thermal aging is analyzed as a function of the cycle duration. For this purpose, coated and uncoated Inconel alloy 625 tubular samples, similar to those used in the commercial receivers, are cyclically aged with different thermal cycle duration. The aging of these samples has been analyzed by means of oxidation kinetics, microstructure examination and mechanical and optical properties. The effect of the thermal cycle duration is studied and discussed by comparison of the results.

  14. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO

    PubMed Central

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-01-01

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860

  15. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO.

    PubMed

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-05-04

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.

  16. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  17. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.

  18. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations

    PubMed Central

    Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi

    2017-01-01

    Tri-block copolymer styrene–butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG–DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as –OH, C=O, –COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds on the molecular structure of aged SBS. PMID:28773124

  19. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations.

    PubMed

    Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi

    2017-07-07

    Tri-block copolymer styrene-butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG-DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as -OH, C=O, -COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds on the molecular structure of aged SBS.

  20. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGES

    Byun, T. S.; Yang, Y.; Overman, N. R.; ...

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  1. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, T. S.; Yang, Y.; Overman, N. R.

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This articlemore » intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  2. A systematic approach to standardize artificial aging of resin composite cements.

    PubMed

    Blumer, Lukas; Schmidli, Fredy; Weiger, Roland; Fischer, Jens

    2015-07-01

    The aim of the investigation was to contribute to the ongoing discussion at the international standardization committee on how to artificially age dental resin composite cements. Indirect tensile strength (n=30) of a dual-cured resin composite cement (Panavia F2.0) was measured to evaluate the effect of water storage at 37°C or thermal cycling (5°C/55°C/1min) for up to 64 days. The influence of water temperature (5-65°C) after 16 days and the effect of 1 day water storage at 37°C prior to aging were assessed. Storage in air at 37°C served as control. Thermal cycling affected the indirect tensile strength most, followed by water storage at 55°C, whereas water storage at 37°C had only little influence. Major deterioration occurred before day 4 (≈6000 cycles). A 1-day pre-treatment by water storage at 37°C prior to thermal cycling attenuated the effect of aging. For the material investigated, thermal cycling for 4 days is the most efficient aging procedure. A 1-day water storage at 37°C prior to thermal cycling is recommended to allow complete polymerization. A 4-day water storage at 55°C may be considered as a viable alternative to thermal cycling. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Effects of Electrical Current and External Stress on the Electromigration of Intermetallic Compounds Between the Flip-Chip Solder and Copper Substrate

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer

    2018-01-01

    This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.

  4. Aging Mechanisms and Nondestructive Aging Indicator of Filled Cross-linked Polyethylene (XLPE) Exposed to Simultaneous Thermal and Gamma Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    Aging mechanisms and a nondestructive aging indicator of filled cross-linked polyethylene (XLPE) cable insulation material used in nuclear power plants (NPPs) are studied. Using various material characterization techniques, likely candidates and functions for the main additives in a commercial filled-XLPE insulation material have been identified. These include decabromodiphenyl ether and Sb2O3 as flame retardants, ZnS as white pigment and polymerized 1,2-dihydro-2,2,4-trimethylquinoline as antioxidant. Gas chromatography-mass spectrometry, differential scanning calorimetry, oxidation induction time and measurements of dielectric loss tangent are utilized to monitor property changes as a function of thermal and radiation exposure of the cable material. Small-molecular-weight hydrocarbons are evolvemore » with gamma radiation aging at 90 °C. The level of antioxidant decreases with aging by volatilization and chemical reaction with free radicals. Thermal aging at 90 °C for 25 days or less causes no observable change to the cross-linked polymer structure. Gamma radiation causes damage to crystalline polymer regions and introduces defects. Dielectric loss tangent is shown to be an effective and reliable nondestructive indicator of the aging severity of the filled-XLPE insulation material.« less

  5. Effects of Isothermal Aging on the Thermal Expansion of Several Sn-Based Lead-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Hasnine, M.; Bozack, M. J.

    2018-03-01

    In this paper, effects of high-temperature aging on the thermal expansion behavior of several lead-free alloys SAC305, SAC387, Sn-3.5Ag, SnCu, SN100C (SnCu-Ni-Ge) and SnCu-0.01Ge have been explored. The coefficients of thermal expansion (CTEs) of the alloys have been experimentally determined over the temperature range 30-150 °C after isothermal aging at 125 °C for up to 30 days (720 h). The CTE values of SAC305, SAC387 and Sn-3.5Ag increase by 8-16% after 30 days of aging, while the CTE values of SnCu, SnCu-Ge and SN100C solders increase by only 3-6%. The CTE evolution of lead-free solders can be explained by microstructural changes observed during isothermal aging, which causes coarsening of various phases of the solder. As the phases coarsen, dislocation movement proceeds with a consequent increase in the average interparticle distance. The observation of CTE increases during isothermal aging suggests potential reliability problems for lead-free solder joints subjected to long-term aging exposures at high temperatures.

  6. Degradation sequence of young lunar craters from orbital infrared survey

    NASA Technical Reports Server (NTRS)

    Wieczorek, M. A.; Mendell, W. W.

    1993-01-01

    Using new software, nighttime thermal maps of the lunar surface have been generated from data obtained by the Apollo 17 Infrared Scanning Radiometer (ISR) in lunar orbit. Most of the thermal anomalies observed in the maps correspond to fresh lunar craters because blocks on the lunar surface maintain a thermal contrast relative to surrounding soil during the lunar night. Craters of Erastosthenian age and older - relatively young by lunar standards - have developed soil covers that make them almost indistinguishable from their surroundings in the thermal data. Thermal images of Copernican age craters show various stages of a degradation process, allowing the craters to be ranked by age. The ISR data should yield insights into lunar surface evolution as well as a more detailed understanding of the bombardment history after formation of the great mare basins.

  7. Effect of Thermal Aging on the Mechanical Properties of Sn3.0Ag0.5Cu/Cu Solder Joints Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2015-07-01

    Shear tests with velocities between 0.5 m/s and 2.5 m/s were conducted to investigate the deformation characteristics of 0.76 mm lead-free Sn-3Ag-0.5Cu solder ball joints after thermal aging at 373 K up to 1000 h. A scanning electron microscope equipped with energy dispersive spectroscopy was then used to examine the fracture surfaces and microstructures of the solder joints. The results showed that the main failure mode of the solder joints was the brittle interfacial fracture mode with cleavage failure in the intermetallic compound (IMC). The maximum shear strength and the fracture toughness ( K C) of the solder joint decreased substantially after aging for the initial aging time, after which they decreased gradually with further aging or an increase in the strain rate. The evolution of the IMC layer when it was thicker and had coarser nodules due to thermal aging was the primary cause of the reduction in the shear strength and fracture toughness in this study.

  8. Quantitative model of the effects of contamination and space environment on in-flight aging of thermal coatings

    NASA Astrophysics Data System (ADS)

    Vanhove, Emilie; Roussel, Jean-François; Remaury, Stéphanie; Faye, Delphine; Guigue, Pascale

    2014-09-01

    The in-orbit aging of thermo-optical properties of thermal coatings critically impacts both spacecraft thermal balance and heating power consumption. Nevertheless, in-flight thermal coating aging is generally larger than the one measured on ground and the current knowledge does not allow making reliable predictions1. As a result, a large oversizing of thermal control systems is required. To address this issue, the Centre National d'Etudes Spatiales has developed a low-cost experiment, called THERME, which enables to monitor the in-flight time-evolution of the solar absorptivity of a large variety of coatings, including commonly used coatings and new materials by measuring their temperature. This experiment has been carried out on sunsynchronous spacecrafts for more than 27 years, allowing thus the generation of a very large set of telemetry measurements. The aim of this work was to develop a model able to semi-quantitatively reproduce these data with a restraint number of parameters. The underlying objectives were to better understand the contribution of the different involved phenomena and, later on, to predict the thermal coating aging at end of life. The physical processes modeled include contamination deposition, UV aging of both contamination layers and intrinsic material and atomic oxygen erosion. Efforts were particularly focused on the satellite leading wall as this face is exposed to the highest variations in environmental conditions during the solar cycle. The non-monotonous time-evolution of the solar absorptivity of thermal coatings is shown to be due to a succession of contamination and contaminant erosion by atomic oxygen phased with the solar cycle.

  9. Interfacial thermal degradation in inverted organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbank, William; Hirsch, Lionel; Wantz, Guillaume

    2015-12-28

    The efficiency of organic photovoltaic (OPV) solar cells is constantly improving; however, the lifetime of the devices still requires significant improvement if the potential of OPV is to be realised. In this study, several series of inverted OPV were fabricated and thermally aged in the dark in an inert atmosphere. It was demonstrated that all of the devices undergo short circuit current-driven degradation, which is assigned to morphology changes in the active layer. In addition, a previously unreported, open circuit voltage-driven degradation mechanism was observed that is highly material specific and interfacial in origin. This mechanism was specifically observed inmore » devices containing MoO{sub 3} and silver as hole transporting layers and electrode materials, respectively. Devices with this combination were among the worst performing devices with respect to thermal ageing. The physical origins of this mechanism were explored by Rutherford backscattering spectrometry and atomic force microscopy and an increase in roughness with thermal ageing was observed that may be partially responsible for the ageing mechanism.« less

  10. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareige, P.; Russell, K.F.; Stoller, R.E.

    1998-03-01

    Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less

  11. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

    NASA Astrophysics Data System (ADS)

    Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.

    2018-04-01

    The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

  12. Methodology for Estimating Thermal and Neutron Embrittlement of Austenitic Stainless Steel Welds During Service in Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Rao, A. S.

    The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to fillermore » metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.« less

  13. Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

    NASA Astrophysics Data System (ADS)

    Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.

    2018-03-01

    The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

  14. Comparison of cable ageing

    NASA Astrophysics Data System (ADS)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  15. Effect of the cellular structure on thermal conductivity of rigid closed-cell foam polymers during long-term aging

    NASA Astrophysics Data System (ADS)

    Dementyev, A. G.; Dementyev, M. A.; Zinger, P. A.; Metlyakova, I. R.

    1999-03-01

    The thermal conductivity of rigid closed-cell polyurethane foams during long-term aging has been studied. The similarity between the kinetics of changes in the physical and mechanical characteristics of PU foams on progressive aging is established, which is attributed to the effect of matrix destruction. It is found that rigid foams have cell walls of various strength, whose impact on the kinetics of changes in the physical characteristics of the foams during long-term aging is ascertained. The results of predicting the thermal conductivity of PU foams by the method of temperature-time analogy and establishing the limits of its application are discussed. The research presented is of interest both in determining the foam durability and in replacing freons by alternative, ecologically less harmful blowing agents.

  16. Effect of butorphanol on thermal nociceptive threshold in healthy pony foals.

    PubMed

    McGowan, K T; Elfenbein, J R; Robertson, S A; Sanchez, L C

    2013-07-01

    Pain management is an important component of foal nursing care, and no objective data currently exist regarding the analgesic efficacy of opioids in foals. To evaluate the somatic antinociceptive effects of 2 commonly used doses of intravenous (i.v.) butorphanol in healthy foals. Our hypothesis was that thermal nociceptive threshold would increase following i.v. butorphanol in a dose-dependent manner in both neonatal and older pony foals. Seven healthy neonatal pony foals (age 1-2 weeks), and 11 healthy older pony foals (age 4-8 weeks). Five foals were used during both age periods. Treatments, which included saline (0.5 ml), butorphanol (0.05 mg/kg bwt) and butorphanol (0.1 mg/kg bwt), were administered i.v. in a randomised crossover design with at least 2 days between treatments. Response variables included thermal nociceptive threshold, skin temperature and behaviour score. Data within each age period were analysed using a 2-way repeated measures ANOVA, followed by a Holm-Sidak multiple comparison procedure if warranted. There was a significant (P<0.05) increase in thermal threshold, relative to Time 0, following butorphanol (0.1 mg/kg bwt) administration in both age groups. No significant time or treatment effects were apparent for skin temperature. Significant time, but not treatment, effects were evident for behaviour score in both age groups. Butorphanol (0.1 mg/kg bwt, but not 0.05 mg/kg bwt) significantly increased thermal nociceptive threshold in neonatal and older foals without apparent adverse behavioural effects. Butorphanol shows analgesic potential in foals for management of somatic painful conditions. © 2012 EVJ Ltd.

  17. Number of fragments, margin status and thermal artifacts of conized specimens from LLETZ surgery to treat cervical intraepithelial neoplasia.

    PubMed

    Bittencourt, Dulcimary Dias; Zanine, Rita Maira; Sebastião, Ana Martins; Taha, Nabiha Saadi; Speck, Neila Góis; Ribalta, Julisa Chamorro Lascasas

    2012-01-01

    Large loop excision of the transformation zone (LLETZ) is a nontraumatic cut and coagulation method with several advantages, but it induces thermal artifacts in the cut region. The aim here was to assess the correlations of age, number of fragments, lesion grade and degree of thermal artifacts with margin quality in conized specimens from LLETZ for cervical intraepithelial neoplasia (CIN). Cross-sectional study at Universidade Federal de São Paulo (Unifesp). The records and histopathology findings of 118 women who underwent LLETZ between 1999 and 2007 were reviewed. Age, number of fragments, lesion grade, degree of thermal artifacts and margin quality were assessed. The patients' mean age was 27.14 years; 63.6% had been diagnosed with CIN II and 36.4% with CIN III. The lesion was removed as a single fragment in 79.6% of the cases. The margins were free from intraepithelial neoplasia in 85.6% and compromised in the endocervical margin in 6.8%. Fragment damage due to artifacts occurred in 2.5%. Severe artifacts occurred in 22.8%. Women aged 30 years or over presented more cases of CIN III (P < 0.0004). Neoplastic compromising of surgical margins and severe artifacts occurred more often in cases in which two or more fragments were removed, and in patients aged 30 years or over. CIN III in women aged 30 or over, when removed in two or more fragments during LLETZ, presented a greater number of compromised margins and greater severity of thermal artifacts.

  18. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  19. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE PAGES

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  20. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    PubMed

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Study of thermal aging effects on the conduction and trapping of charges in XLPE cable insulations under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2018-08-01

    The effect of thermal aging on the charging phenomena in cross-linked polyethylene (XLPE) has been studied under electron beam irradiation in scanning electron microscope (SEM). The dynamic variation of trapped charge represents the trapping process of XLPE under electron beam irradiation. We have found that the trapped charge variation can be approximated by a first order exponential function. The amount of trapped charge presents enhanced values at the beginning of aging at lower temperatures (80 °C and 100 °C). This suggests the diffusion of cross-linking by-products to the surface of sample that acts as traps for injected electrons. The oxidation which is a very important form of XLPE degradation has an effect at the advanced stage of the aging process. For higher temperatures (120 °C and 140 °C), the taken part process in the evolution of the trapped charge is the crystallinity increase at the beginning of aging leading to the trapped charge decreasing, and the polar groups generated by thermo-oxidation process at the end of aging leading to the trapped charge increase. Variations of leakage current according to the aging time have quite similar trends with the dielectric losses factor and consequently some correlations must be made between charging mechanisms and the electrical behaviour of XLPE under thermal aging.

  2. Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianco, P.T.; Rejent, J.A.

    1997-10-01

    The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate withmore » the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.« less

  3. Lifetime Extension Report: Progress on the SAVY-4000 Lifetime Extension Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Cynthia F.; Smith, Paul Herrick; Weis, Eric M.

    The 3-year accelerated aging study of the SAVY-4000 O-ring shows very little evidence of significant degradation to samples subjected to aggressive elevated temperature and radiation conditions. Whole container thermal aging studies followed by helium leakage testing and compression set measurements were used to establish an estimate for a failure criterion for O-ring compression set of ≥65 %. The whole container aging studies further show that the air flow and efficiency functions of the filter do not degrade significantly after thermal aging. However, the degradation of the water-resistant function leads to water penetration failure after four months at 210°C, but doesmore » not cause failure after 10 months at 120°C (130°C is the maximum operating temperature for the PTFE membrane). The thermal aging data for O-ring compression set do not meet the assumptions of standard time-temperature superposition analysis for accelerated aging studies. Instead, the data suggest that multiple degradation mechanisms are operative, with a reversible mechanism operative at low aging temperatures and an irreversible mechanism dominating at high aging temperatures. To distinguish between these mechanisms, we have measured compression set after allowing the sample to physically relax, thereby minimizing the effect of the reversible mechanism. The resulting data were analyzed using two distinct mathematical methods to obtain a lifetime estimate based on chemical degradation alone. Both methods support a lifetime estimate of greater than 150 years at 80°C. Although the role of the reversible mechanism is not fully understood, it is clear that the contribution to the total compression set is small in comparison to that due to the chemical degradation mechanism. To better understand the chemical degradation mechanism, thermally aged O-ring samples have been characterized by Fourier Transform Infrared (FTIR), Electron Paramagnetic Resonance (EPR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). These experiments detect no significant O-ring degradation below 80°C. Furthermore, durometer measurements indicate that there is no significant change in O-ring hardness at all aging conditions examined. Therefore, our current conservative lifetime estimate for the O-ring and the filter is 10 years at 80°C. In FY17, we will continue to probe the chemical degradation mechanism using oxygen consumption measurements under accelerated aging conditions to reveal temperatures at which oxidation occurs, along with any differences in oxidation rate at the low vs. high aging temperatures. We will also refine the failure criteria and finalize the radiation/thermal synergistic studies to determine a final design lifetime.« less

  4. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  5. Low-Temperature Aging of Delta-Ferrite in 316L SS Welds; Changes in Mechanical Properties and Etching Properties

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka

    Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).

  6. Microstructure/mechanical property relationships for various thermal treatments of Al-Cu-Mg-X PM aluminum alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1986-01-01

    The thermal response and aging behavior of three 2XXX-series powder metallurgy aluminum alloys have been investigated, using Rockwell B hardness measurements, optical and electron microscopy, and energy-dispersive chemical analysis, in order to correlate microstructure with measured mechanical properties. Results of the thermal response study indicated that an increased solution heat treatment temperature was effective in resolutionizing large primary constituents in the alloy bearing more copper but had no apparent effect on the microconstituents of the other two. Aging studies conducted at room temperature and at 120, 150, and 180 C for times ranging up to 60 days indicated that classic aging response curves, as determined by hardness measurements, occurred at lower aging temperatures than were previously studied for these alloys, as well as at lower aging temperatures than are commonly used for ingot metallurgy alloys of similar compositions. Microstructural examination and fracture surface analysis of peak-aged tension specimens indicated that the highest tensile strengths are associated with extremely fine and homogeneous distributions of theta-prime or S-prime phases combined with low levels of both large constituent particles and dispersoids. Examination of the results suggest that refined solution heat treatments and lower aging temperatures may be necessary to achieve optimum mechanical properties for these 2XXX series alloys.

  7. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolik, G.R.; Reuter, W.G.

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400$sup 0$F stress rupture solution- annealed properties and room temperature age-hardened properties. 1400$sup 0$F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter.more » Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900$sup 0$F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400$sup 0$F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties. (auth)« less

  8. Magnetic properties evolution of a high permeability nanocrystalline FeCuNbSiB during thermal ageing

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-07-01

    It is found to be one of the major issues while designing an aircraft, mass and volume have to be reduced in order to achieve energy efficiency. This leads to a high compactness of the electrical components which enables them to withstand at high temperatures. The magnetic components which are responsible for the electrical energy conversion, therefore exposed to high temperatures in working conditions. Their thermal ageing becomes a serious problem and deserves a particular attention. The FeCuNbSiB nanocrystalline materials have been selected for this ageing study because they are used in power electronic systems very frequently. The objective of the study is based on monitoring the magnetic characteristics under the condition of several continuous thermal ageing (100, 150, 200 and 240 °C). An important, experimental work of magnetic characterization is being done through a specific monitoring protocol and X-ray diffraction (XRD) along with magnetostriction measurements was carried out to support the study of the evolution of the anisotropy energies with aging. The latter is discussed in this paper to explain and give the hypothesis about the aging phenomena. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  9. Physicochemical characterization of thermally aged Egyptian linen dyed with organic natural dyestuffs

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, N.; El-Gaoudy, H.; Varella, E.; Kovala-Demertzi, D.

    2013-08-01

    A number of organic natural dyestuffs used in dyeing in ancient times, i.e. indigo, madder, turmeric, henna, cochineal, saffron and safflower, have been used to colour Egyptian fabrics based on linen. Their physicochemical properties have been evaluated on thermally aged linen samples. The aged dyed linen samples were thoroughly examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile strength and elongation measurements. It was found that, in the molecular level, dyes interact mainly with the cellulose compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Tensile strength is positively related to the dye treatment while elongation depends specifically on the type of the dye used. Results converge that the dyed textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration.

  10. Influence of artificial aging in marginal adaptation of mixed class V cavities.

    PubMed

    Tonetto, Mateus Rodrigues; Bandéca, Matheus Coelho; Barud, Hélida Gomes de Oliveira; Pinto, Shelon Cristina Souza; Lima, Darlon Martins; Borges, Alvaro Henrique; de Campos, Edson Alves; de Andrade, Marcelo Ferrarezi

    2013-03-01

    The aim of this study was to investigate whether the artificial aging by thermal cycling had influenced the marginal adaptation of class V restorations with/without chlorhexidine application in the bond process. Twelve intact human third molars were used. Class V cavity preparations were performed on the buccal surface and the teeth received 35% phosphoric acid-etching procedure (Ultradent Products Inc., South Jordan, Utah, USA). Subsequently, the samples were divided in two groups: Untreated acid-etched dentin and chlorhexidine application as an adjunct in the bond process. The adhesive Single Bond 2 (3M ESPE, St. Paul, MN, USA) was used after 2% chlorhexidine application, and the restorations were performed with Filtek™ Z350 XT (3M ESPE) composite resin. The specimens were submitted to artificial aging by thermal cycling with 3,000 cycles. Analyzes were performed on scanning electron microscopy using replicas of marginal adaptation in percentage of continuous margin before and after the artificial aging. The data were analyzed by paired test and the results showed statistically significant differences in the percentage of continuous margin with/without chlorhexidine treatment before and after thermal cycling. This study concluded that the artificial aging by thermal cycling influenced the marginal adaptation of mixed class V composite restorations.

  11. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Jauhari, Iswadi

    2016-07-01

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag3Sn and Cu6Sn5), especially the Cu6Sn5 IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  12. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    PubMed

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. A field study on thermal comfort in an Italian hospital considering differences in gender and age.

    PubMed

    Del Ferraro, S; Iavicoli, S; Russo, S; Molinaro, V

    2015-09-01

    The hospital is a thermal environment where comfort must be calibrated by taking into account two different groups of people, that is, patients and medical staff. The study involves 30 patients and 19 medical staff with a view to verifying if Predicted Mean Vote (PMV) index can accurately predict thermal sensations of both groups also taking into account any potential effects of age and gender. The methodology adopted is based on the comparison between PMV values (calculated according to ISO 7730 after having collected environmental data and estimated personal parameters) and perceptual judgments (Actual Mean Vote, AMV), expressed by the subjects interviewed. Different statistical analyses show that PMV model finds his best correlation with AMV values in a sample of male medical staff under 65 years of age. It has been observed that gender and age are factors that must be taken into account in the assessment of thermal comfort in the hospital due to very weak correlation between AMV and PMV values. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Thermal characterization and model free kinetics of aged epoxies and foams using TGA and DSC methods.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April

    2013-10-01

    Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition.more » From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.« less

  15. Conodont (U Th)/He thermochronology: Initial results, potential, and problems

    NASA Astrophysics Data System (ADS)

    Peppe, Daniel J.; Reiners, Peter W.

    2007-06-01

    We performed He diffusion experiments and (U-Th)/He age determinations on conodonts from a variety of locations to explore the potential of conodont (U-Th)/He thermochronology to constrain thermal and exhumation histories of some sedimentary-rock dominated terrains. Based on two diffusion experiments and age results from some specimens, He diffusion in conodont elements appears to be similar to that in Durango apatite fragments of similar size, and closure temperatures are approximately 60-70 °C (for cooling rates of ˜ 10 °C/m.y.). (U-Th)/He ages of conodonts from some locations yield reproducible ages consistent with regional thermal history constraints and, in at least two cases, require a closure temperature lower than ˜ 80 °C. Other samples however, yield irreproducible ages, and in one case yield ages much younger than expected based on regional geologic considerations. These irreproducible samples show inverse correlations between parent nuclides and age consistent with late-stage open-system U-Th behavior.

  16. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  17. Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C

    NASA Astrophysics Data System (ADS)

    Mouginot, Roman; Sarikka, Teemu; Heikkilä, Mikko; Ivanchenko, Mykola; Ehrnstén, Ulla; Kim, Young Suk; Kim, Sung Soo; Hänninen, Hannu

    2017-03-01

    Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M23C6 carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM).

  18. Elevated temperature ductility of types 304 and 316 stainless steel. [640/sup 0/ to 750/sup 0/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V. K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649/sup 0/C was observed to eliminate the ductility minimum at 649/sup 0/C in both types 304 andmore » 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593/sup 0/C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition.« less

  19. Experimental characterization and modeling of isothermal and nonisothermal physical aging in glassy polymer films

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong

    This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves was also performed. The temperature shift factors and aging shift rates for both PEEK and PPS were consistent for both creep and stress relaxation test results. Nonisothermal physical aging was monitored by sequential short-term creep tests after a series of temperature jumps; the resulting strain histories were analyzed to determine aging shift factors (ate) for each of the creep tests. The nonisothermal aging response was predicted using the KAHR-ate model, which combines the KAHR model of volume recovery with a suitable linear relationship between aging shift factors and specific volume. The KAHR-ate model can be utilized to both predict aging response and to determine necessary model parameters from a set of aging shift factor data. For the PEEK and PPS materials considered in the current study, predictions of mechanical response were demonstrated to be in good agreement with the experimental results for several complicated thermal histories. In addition to short-term nonisothermal aging, long-term creep tests under identical thermal conditions were also analyzed. Effective time theory was unitized to predict long-term response under both isothermal and nonisothermal temperature histories. The long-term compliance after a series of temperature changes was predicted by the KAHR- ate model, and the theoretical predictions and experimental data showed good agreement for various thermal histories. Lastly, physical aging behavior of PPS near the glass transition temperature was investigated, in order to observe the mechanical response in the process of the evolution of the material into equilibrium. At several temperatures near Tg, the time need to reach equilibrium were determined by the creep test results at various aging times. In addition to isothermal physical aging, mechanical shift factors in the period of approaching equilibrium at a common temperature after temperature up-jumps and down-jumps are monitored from creep tests; prior to these temperature jumps, the materials were aged to reach equilibrium states. From these tests, asymmetry of approaching equilibrium phenomenon in ate was observed, which is first-time reported in the literature. This finding shows the similarity between the thermodynamic and mechanical properties during structural relaxation. This work will lead to improved understanding of the viscoelastic behavior of glassy polymers, which is important for better understanding and design of PMCs in elevated temperature applications. With the above findings, this dissertation deals with nonisothermal physical aging of glassy polymers, including both experimental characterization and constructing a framework for predictions of mechanical behavior of polymeric materials under complicated thermal conditions. (Abstract shortened by UMI.)

  20. Tectono-thermal evolution of north Kuqa Depression and South Tian Shan: constraints from apatite (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; Qiu, N.; Chang, J.

    2017-12-01

    The Kuqa Depression, located between Tarim Basin and South Tian Shan Orogen, is considered the most promising site for study the tectono-thermal evolution of the Central Asia Orogenic Belt (CAOB). (U-Th)/He is a new dating method and apatite He ages can record the cooling histories at low temperature between 40 ° 75°1. At present, the low temperature thermochronological data, especially the (U-Th)/He, from north Kuqa Depression are scarce, resulting in controversial issues regarding the cooling history of the upper crust and the latest uplift of South Tian Shan. We present new apatite (U-Th)/He (AHe) thermochronologic data from kuqa depression, aiming to provide insights into exhumation and thermal history of the north kuqa depression. In this study, we firstly present 43 apatite (U-Th)/He ages of 9 samples in north rim of Kuqa Depression. The (U-Th)/He ages range from 1.4±1.0Ma to 17.9±1.2Ma, which are obviously both younger than both the depositional ages and the corresponding AFT ages. To better understand the deformation evolution and thermal history of north Tarim Basin, we use these thermochronological data as inputs for HeFTy software implemented with radiation damage accumulation and annealing model (RDAAM) for time-temperature reconstruction1,2. The relationship between AHe or AFT ages and the relative stratigraphic ages shows that the AHe ages are young and almost about 10 Ma.Thermal modeling using apatite (U-Th)/He ages and geological background information in the same area allow us to obtain a cooling history. The sample T-03 suffered a cooling between 170 and 130Ma, they were re-heated at around 100° between 100 and 40Ma then rapidly cooled and exhumed to reach the surface temperature at around 5Ma. The thermal modeling results indicated the north Kuqa Depression experienced a Miocene rapid cooling event initialed at 12Ma and continued to 5Ma, resulting from far field effect of India-Asia collision. References1. Ketcham, R.A. Forward and reverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry. 58, 275-314(2005). 2. Flowers, R.M. Ketcham, R.A., Shuster, D.l. & Farley, K.A. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta. 73, 2347-2365 (2009).

  1. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.; Desjarlais, A.O.; Courville, G.

    1992-10-01

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the majormore » contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.« less

  2. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation. [Hydrochlorofluorocarbon (HCFC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.E.; Desjarlais, A.O.; Courville, G.

    1992-01-01

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the majormore » contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.« less

  3. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    NASA Astrophysics Data System (ADS)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  4. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less

  5. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Vismara, Marcus Vinícius Gonçalves; Mello, Luciano Marcelo de Medeiros; Di Hipólito, Vinicius; González, Alejandra Hortencia Miranda; Graeff, Carlos Frederico de Oliveira

    2014-07-01

    This study evaluated the mechanical, thermal, and morphological characteristics of different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to these factors: Composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and Material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The flexural strength (FS) and flexural modulus (E) were obtained. The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed and the glass transition temperature (Tg) and the weight loss calculated. Topographic analysis of the composites was performed under SEM. The material conditions influenced the mechanical properties of the composites. The silorane composite exhibited a characteristic thermal behavior different from that of the methacrylates. In general, the Tg increased after the accelerated aging protocol and decreased for expired ones, compared to the new composites. A significant increase in FS of Filtek Z350XT after aging was accompanied by an increase in the Tg. The filler packings were in accordance with the manufacture׳s information. The topographic aspects of the composites were modified as a function of the material condition. The mechanical properties of the composites following a simplified protocol of accelerated aging varied as a function of the expiration date. The silorane composite presented a characteristic thermal behavior. Although the dental manufacturers may not be able to control variables as storage temperature and transportation conditions, these effects on the composite clinical performance can be minimized if properly considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Preferred temperatures of juvenile lake whitefish

    USGS Publications Warehouse

    Edsall, Thomas A.

    1999-01-01

    Lake whitefish (Coregonus clupeaformis) supported valuable commercial fisheries in all of the Great Lakes until the 1950s to 1960s when their populations collapsed due to overfishing, pollution, and predation by the exotic sea lamprey (Petromyzon marinus). Reduction of these population stresses has permitted significant recovery of the lake whitefish in the upper three Great Lakes since the 1980s, and limited but encouraging recovery is now apparent in Lakes Erie and Ontario. In the present study the thermal preferences of age-0 and age-1 lake whitefish were measured in the laboratory to provide a basis for determining thermal habitat use by juvenile lake whitefish and thermal niche overlap with exotic fishes that might prey on them. Final thermal preferenda of young lake whitefish varied inversely with fish size ranging from 16.8°C for fish averaging 1.9 g to 15.6°C for age-1 fish averaging 3.9 g. Final thermal preferenda were in agreement with the limited published information on temperature selection of juvenile lake whitefish in the laboratory and on thermal habitat use by wild, free-ranging populations in the Great Lakes.

  7. Effects of Combined Stressing on the Electrical Properties of Film and Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Overton, Eric; Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.

    1994-01-01

    Advanced power systems which generate, control, and distribute electrical power to many large loads are a requirement for future space exploration missions. The development of high temperature insulating materials and power components constitute a key element in systems which are lightweight, efficient, and are capable of surviving the hostile space environment. In previous work, experiments were carried out to evaluate film and ceramic capacitors for potential use in high temperature applications. The effects of thermal stressing, in air and without electrical bias, on the electrical properties of the capacitors as a function of thermal aging up to 12 weeks were determined. In this work, the combined effects of thermal aging and electrical stresses on the properties of teflon film and ceramic power capacitors were examined. The ceramic capacitors were thermally aged for 35 weeks and the teflon capacitors for 15 weeks at 200 C under full electrical bias and were characterized, on a weekly basis, in terms of their capacitance stability and electrical loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also obtained. The results obtained represent the influence that short-term thermal aging and electrical bias have on the electrical properties of the power capacitors characterized.

  8. Oxidation and biodegradation of polyethylene films containing pro-oxidantadditives: Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation

    USDA-ARS?s Scientific Manuscript database

    Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly (ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days du...

  9. Thermal cycling effects on static and dynamic properties of a phase separated manganite

    NASA Astrophysics Data System (ADS)

    Sacanell, J.; Sievers, B.; Quintero, M.; Granja, L.; Ghivelder, L.; Parisi, F.

    2018-06-01

    In this work we address the interplay between two phenomena which are signatures of the out-of-equilibrium state in phase separated manganites: irreversibility against thermal cycling and aging/rejuvenation process. The sample investigated is La0.5Ca0.5MnO3, a prototypical manganite exhibiting phase separation. Two regimes for isothermal relaxation were observed according to the temperature range: for T > 100 K, aging/rejuvenation effects are observed, while for T < 100 K an irreversible aging was found. Our results show that thermal cycles act as a tool to unveil the dynamical behavior of the phase separated state in manganites, revealing the close interplay between static and dynamic properties of phase separated manganites.

  10. Effects of real-time thermal aging on graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.

    1985-01-01

    As part of a program to evaluate high-temperature advanced composites for use on supersonic cruise transport aircraft, two graphite/polyimide composites have been aged at elevated temperatures for times up to 5.7 years. Work on the first, HT-S/710 graphite/polyimide, was started in 1974. Evaluation of the second polyimide, Celion 6000/LARC-160, began in 1980. Baseline properties are presented, including unnotched and notched tensile data as a function of temperature, compression, flexure, shear, and constant-amplitude fatigue data at R = 0.1 and R = -1. Tensile specimens were aged in ovens where pressure and aging temperatures were controlled for various times up to and including 50,000 hours. Changes in tensile strength were determined and plotted as a function of aging time. The HT-S/710 composite aged at 450 F and 550 F if compared to the Celion 6000/LARC-160 composite aged at 350 F and 450 F. After tensile testing, many of the thermal aging specimens were examined using a scanning electron microscope. Results of these studies are presented, and changes in properties and degradation mechanisms during high-temperature aging are discussed and illustrated using metallographic techniques.

  11. Aging effects on vertical graphene nanosheets and their thermal stability

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  12. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  13. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Goldsby, David L.; Carpick, Robert W.

    2018-05-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe macroscale to microscale frictional behavior. They entail a linear combination of the direct effect (the increase of friction with sliding velocity due to the reduced influence of thermal excitations) and the evolution effect (the change in friction with changes in contact "state," such as the real contact area or the degree of interfacial chemical bonds). Recent atomic force microscope (AFM) experiments and simulations found that nanoscale single-asperity amorphous silica-silica contacts exhibit logarithmic aging (increasing friction with time) over several decades of contact time, due to the formation of interfacial chemical bonds. Here we establish a physically based RSF relation for such contacts by combining the thermally activated Prandtl-Tomlinson (PTT) model with an evolution effect based on the physics of chemical aging. This thermally activated Prandtl-Tomlinson model with chemical aging (PTTCA), like the PTT model, uses the loading point velocity for describing the direct effect, not the tip velocity (as in conventional RSF laws). Also, in the PTTCA model, the combination of the evolution and direct effects may be nonlinear. We present AFM data consistent with the PTTCA model whereby in aging tests, for a given hold time, static friction increases with the logarithm of the loading point velocity. Kinetic friction also increases with the logarithm of the loading point velocity at sufficiently high velocities, but at a different increasing rate. The discrepancy between the rates of increase of static and kinetic friction with velocity arises from the fact that appreciable aging during static contact changes the energy landscape. Our approach extends the PTT model, originally used for crystalline substrates, to amorphous materials. It also establishes how conventional RSF laws can be modified for nanoscale single-asperity contacts to provide a physically based friction relation for nanoscale contacts that exhibit chemical bond-induced aging, as well as other aging mechanisms with similar physical characteristics.

  14. Effects of thermal aging on mechanical performance of paper

    Treesearch

    B.T. Hotle; J.M. Considine; M.J. Wald; R.E. Rowlands; K.T. Turner

    2008-01-01

    A missing element of paper aging research is a description of mechanical performance with aging. Tensile strength cannot be predicted directly from DP measurements, and existing models do not represent the effects of aging on strength and stiffness. The primary aim of the present work is to characterize changes of mechanical properties, such as tensile response and...

  15. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Bakhtiar, E-mail: engrbakhtiaralikhan@gmail.com; Sabri, Mohd Faizul Mohd, E-mail: faizul@um.edu.my; Jauhari, Iswadi, E-mail: iswadi@um.edu.my

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCsmore » size (Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5}), especially the Cu{sub 6}Sn{sub 5} IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.« less

  16. Geologic and Geochronologic Studies of the Early Proterozoic Kanektok Metamorphic Complex of Southwestern Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, Robert B.; Aleinikoff, John N.; McDougall, Ian; Hedge, Carl E.; Wilson, Frederic H.; Layer, Paul W.; Hults, Chad P.

    2009-01-01

    The Kanektok complex of southwestern Alaska appears to be a rootless terrane of early Proterozoic sedimentary, volcanic, and intrusive rocks which were metamorphosed to amphibolite and granulite facies and later underwent a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism of overlying sediments. The terrane is structurally complex and exhibits characteristics generally attributed to mantled gneiss domes. U-Th-Pb analyses of zircon and sphene from a core zone granitic orthogneiss indicate that the orthogneiss protolith crystallized about 2.05 b.y. ago and that the protolithic sedimentary, volcanic and granitic intrusive rocks of the core zone were metamorphosed to granulite and amphibolite facies about 1.77 b.y. ago. A Rb-Sr study of 13 whole-rock samples also suggests metamorphism of an early Proterozoic [Paleoproterozoic] protolith at 1.77 Ga, although the data are scattered and difficult to interpret. Seventy-seven conventional 40K/40Ar mineral ages were determined for 58 rocks distributed throughout the outcrop area of the complex. Analysis of the K-Ar data indicate that nearly all of these ages have been totally or partially reset by a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism. Several biotites gave apparent K-Ar ages over 2 Ga. These ages appear to be controlled by excess radiogenic 40Ar produced by the degassing protolith during the 1.77 Ga metamorphism and incorporated by the biotites when they were at temperatures at which Ar could diffuse through the lattice. Five amphibolites yielded apparent Precambrian 40K/40Ar hornblende ages. There is no evidence that these hornblende ages have been increased by excess argon. The oldest 40K/40Ar hornblende age of 1.77 Ga is identical to the sphene 207Pb/206Pb orthogneiss age and to the Rb-Sr 'isochron' age for six of the 13 whole-rock samples. The younger hornblende ages are interpreted as having been partially reset during the late Mesozoic thermal event. 40Ar/39Ar incremental heating experiments suggest metamorphism occurred at least 1.2 b.y. ago but do not exhibit high temperature plateau ages significantly older than the 40Ar/39Ar total fusion ages of these samples. The age spectra are much more uniform than expected from a terrane with such a complex thermal history, perhaps caused by the small grain size of the samples which may possibly be less than the effective Ar diffusion radii of the analyzed hornblendes.

  17. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    NASA Astrophysics Data System (ADS)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  18. Examining the progression and consistency of thermal concepts: a cross-age study

    NASA Astrophysics Data System (ADS)

    Adadan, Emine; Yavuzkaya, Merve Nur

    2018-03-01

    This cross-sectional study examined how the progression and consistency of students' understanding of thermal concepts in everyday contexts changes across the grade levels. A total of 656 Turkish students from Grade 8 (age 13-14), Grade 10 (age 15-16), and the first year of college (age 19-20) participated in the study. The data were analysed using statistical procedures (descriptive and inferential). Findings indicated a substantial progression in the students' scientific understanding of thermal concepts across grade levels. In addition, the students' alternative conceptions about thermal concepts generally decreased in frequency across grade levels, but certain alternative conceptions were observed in every grade level to a similar extent. Even though the number of students who consistently used scientific ideas increased across grade levels, the number of students who consistently used non-scientific ideas decreased across grade levels. However, the number of students who used scientific and non-scientific ideas inconsistently generally increased as they progressed in the science curriculum. These findings can be associated with either fragmentation or alternative conceptions that result from the gradual enrichment processes students experience when they try to integrate scientific concepts into their conceptual frameworks.

  19. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  20. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3more » were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.« less

  1. Correlations of phase structure and thermal stability for Alnico 8 alloys

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Sun, Y. L.; Liu, L.; Lee, D.; Liu, Z.; Feng, X. C.; Yan, A. R.

    2017-11-01

    The correlations of phase structure and thermal stability for Alnico 8 alloys is analyzed by three-step aging at 650 °C, 600 °C and 550 °C gradually in this paper. After three-step aging the a1 phase is a chess-like structure in transverse direction and a bamboo-like structure in longitudinal direction. Meanwhile the magnetic energy product ((BH)m) increases from 9.17 MGOe to 10.59 MGOe, and the remanence temperature coefficient a(RT-180 °C) reduces from -2.31 %%/°C to -1.25 %%/°C. The MPMS and VSM measurements indicate that three-step aging makes the a1 phase be single domain particles and dispersed distribution, which plays an important role in optimizing the thermal stability of Alnico alloys.

  2. Magnetic ageing study of high and medium permeability nanocrystalline FeSiCuNbB alloys

    NASA Astrophysics Data System (ADS)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-04-01

    increasing the energy efficiency is one of the most important issues in modern power electronic systems. In aircraft applications, the energy efficiency must be associated with a maximum reduction of mass and volume, so a high components compactness. A consequence from this compactness is the increase of operating temperature. Thus, the magnetic materials used in these applications, have to work at high temperature. It raises the question of the thermal ageing problem. The reliability of these components operating at this condition becomes a real problem which deserves serious interest. Our work takes part in this context by studying the magnetic material thermal ageing. The nanocrystalline materials are getting more and more used in power electronic applications. Main advantages of nanocrystalline materials compared to ferrite are: high saturation flux density of almost 1.25 T and low dynamic losses for low and medium frequencies. The nanocrystalline Fe73.5Cu1Nb3Si15.5B7 alloys have been chosen in our aging study. This study is based on monitoring the magnetic characteristics for several continuous thermal ageing (100, 150, 200 and 240 °C). An important experimental work of magnetic characterization is being done following a specific monitoring protocol. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  3. 40Ar/39Ar geochronology of hypabyssal igneous rocks in the Maranon Basin of Peru - A record of thermal history, structure, and alteration

    USGS Publications Warehouse

    Prueher, L.M.; Erlich, R.; Snee, L.W.

    2005-01-01

    Hypabyssal andesites and dacites from the Balsapuerto Dome in the Mara?on Basin of Peru record the thermal, tectonic, and alteration history of the area. The Mara?on Basin is one of 19 sub-Andean foreland basins. The hypabyssal rocks in the Balsapuerto Dome are one of four known occurrences of subvolcanic rocks along the deformation front in Peru. This dome is a potential petroleum structural trap. Petroleum seeps near the dome indicate that a source for the petroleum is present, but the extent and amount of petroleum development is unknown. The Balsapuerto hypabyssal rocks are plagioclase-, hornblende-, pyroxene-phyric andesites to dacites. Some parts of the dome are pervasively altered to a hydrothermal assemblage of quartz-sericite-pyrite. 40Ar/39Ar geochronology shows that thermal activity related to emplacement of these subvolcanic rocks took place between 12-10 Ma, subsequent to the major periods of Andean folding and faulting, previously assumed to have occurred about 9 Ma. Eleven argon mineral age-spectrum analyses were completed. Argon apparent ages on amphibole range from 12.7 to 11.6 Ma, and the age spectra are simple, which indicates that the ages are very close to emplacement ages. Potassium feldspar yields an argon age spectrum ranging in age from 12.5 to 11.4 Ma, reflecting the period during which the potassium feldspar closed to argon diffusion between the temperature range of 350?C to about 150?C; thus the potassium feldspar age spectrum reflects a cooling profile throughout this temperature range. This age range is consistent with ages of emplacement for the entire igneous complex indicating that an increased thermal state existed in the area for at least 1.0 m.y. Combined with the coexisting hornblende age, this rock cooled from ~580?C to ~150?C in ~1.2 m.y. resulting in an average cooling rate of 358?C /m.y. White mica, or sericite, formed as a later alteration phase associated with quartz- sericite- pyrite and propylitic alteration in some samples. Three age-spectrum analyses on white mica indicate that alteration occurred at 12.5 Ma and again at 11 Ma, and suggest that alteration fluids were present throughout the range of emplacement and as long as 0.5 m.y. afterward. Based on these data, emplacement of the intrusive body(ies) began at about 12.7 Ma. The hornblende age range can be interpreted to reflect multiple periods of intrusion from 12.7 to 11.6 Ma or a period of thermal activity and high-temperature cooling during this age range. The potassium feldspar cooling age range supports either interpretation. The white mica ages indicate that at least two periods of hydrothermal activity occurred at 12.5 and 11.0 Ma, throughout the period of emplacement and cooling of the intrusive body below about 150?C. The magmatic and hydrothermal systems were active after the intrusion, with temperatures not reaching 150?C until about 1 m.y. after emplacement. Therefore, the thermal effects associated with emplacement of the intrusion and the associated hydrothermal system were probably high enough to destroy petroleum in the host and source rocks. Thus, the Balsapuerto Dome is not a viable source of petroleum. There is no evidence in the rock samples or thin sections for brittle or ductile deformation suggesting that this body was emplaced in its present location after cessation of Andean thrusting. Andean thrusting had been assumed to end about 9 Ma. However, this new data suggested that the Andean thrusting had ceased by about 12-10 Ma.

  4. Size at emergence improves accuracy of age estimates in forensically-useful beetle Creophilus maxillosus L. (Staphylinidae).

    PubMed

    Matuszewski, Szymon; Frątczak-Łagiewska, Katarzyna

    2018-02-05

    Insects colonizing human or animal cadavers may be used to estimate post-mortem interval (PMI) usually by aging larvae or pupae sampled on a crime scene. The accuracy of insect age estimates in a forensic context is reduced by large intraspecific variation in insect development time. Here we test the concept that insect size at emergence may be used to predict insect physiological age and accordingly to improve the accuracy of age estimates in forensic entomology. Using results of laboratory study on development of forensically-useful beetle Creophilus maxillosus (Linnaeus, 1758) (Staphylinidae) we demonstrate that its physiological age at emergence [i.e. thermal summation value (K) needed for emergence] fall with an increase of beetle size. In the validation study it was found that K estimated based on the adult insect size was significantly closer to the true K as compared to K from the general thermal summation model. Using beetle length at emergence as a predictor variable and male or female specific model regressing K against beetle length gave the most accurate predictions of age. These results demonstrate that size of C. maxillosus at emergence improves accuracy of age estimates in a forensic context.

  5. Tectonic significance of precambrian apatite fission-track ages from the midcontinent United States

    USGS Publications Warehouse

    Crowley, K.D.; Naeser, C.W.; Babel, C.A.

    1986-01-01

    Apparent apatite fission-track ages from drill core penetrating basement on the flank of the Transcontinental Arch in northwestern Iowa range from 934 ?? 86 to 641 ?? 90 Ma. These ages, the oldest reported in North America, record at least two thermal events. The 934 Ma age, which is synchronous with KAr ages in the Grenville Province and many KAr whole-rock and RbSr isochron ages from the Lake Superior region, may document basement cooling caused by regional uplift and erosion of the crust. The remaining fission-track ages are products of a more recent thermal event, relative to the age of the samples, which raised temperatures into the zone of partial annealing. Heating may have occurred between the Middle Ordovician and Middle Cretaceous by burial of the basement with additional sediment. It is estimated that burial raised temperatures in the part of the basement sampled by the core to between 50 and 75??C. These temperature estimates imply paleogeothermal gradients of about 20??C/km, approximately two and one-half times present-day values, and burial of the basement by an additional 2-3 km of sediment. ?? 1986.

  6. Explosive and pyrotechnic aging demonstration

    NASA Technical Reports Server (NTRS)

    Rouch, L. L., Jr.; Maycock, J. N.

    1976-01-01

    The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.

  7. Apatite (U-Th-Sm)/He age dispersion arising from analysis of variable grain sizes and broken crystals - examples from the Scottish Southern Uplands

    NASA Astrophysics Data System (ADS)

    Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay; Brown, Roderick

    2016-04-01

    Apatite (U-Th-Sm)/He (AHe) thermochronometry is a powerful technique for deciphering denudation of the uppermost crust. However, the age dispersion of single grains from the same rock is typical, and this hampers establishing accurate thermal histories when low grain numbers are analysed. Dispersion arising from the analysis of broken crystal fragments[1] has been proposed as an important cause of age dispersion, along with grain size and radiation damage. A new tool, Helfrag[2], allows constraints to be placed on the low temperature history derived from the analysis of apatite crystal fragments. However, the age dispersion model has not been fully tested on natural samples yet. We have performed AHe analysis of multiple (n = 20-25) grains from four rock samples from the Scottish Southern Uplands, which were subjected to the same exhumation episodes, although, the amount of exhumation varied between the localities. This is evident from the range of AFT ages (˜60 to ˜200 Ma) and variable thermal histories showing either strong, moderate and no support for a rapid cooling event at ˜60 Ma. Different apatite size and fragment geometry were analysed in order to maximise age dispersion. In general, the age dispersion increases with increasing AFT age (from 47% to 127%), consistent with the prediction from the fragmentation model. Thermal histories obtained using Helfrag were compared with those obtained by standard codes based on the spherical approximation. In one case, the Helfrag model was capable of resolving the higher complexity of the thermal history of the rock, constraining several heating/cooling events that are not predicted by the standard models, but are in good agreement with the regional geology. In other cases, the thermal histories are similar for both Helfrag and standard models and the age predictions for the Helfrag are only slightly better than for standard model, implying that the grain size has the dominant role in generating the age dispersion. Rather than suggesting that grain size is the predominant factor in controlling age dispersion in all data sets, our results may be linked to the actual size of the picked grains; for grain widths smaller than 100 μm, the He profile within the crystal may not be differentiated enough to produce a dispersion measureable outside the uncertainty associated with the age. It is also easier for long-thin and short-thick than long-thick and short-thin grains to be preserved; this minimises the age dispersion that can be generated from fragmentation. We suggest, that in order to obtain valuable information from both fragmentation and grain size >20 large (width >100 μm) grain fragments of variable length have to be analyzed, together with a few smaller grains. Our results point to a strategy that favours multiple single-grain AHe ages determinations on carefully selected samples, with good quality apatite crystals of variable dimensions rather than fewer determinations on many samples. [1] Brown, R. et al. 2013.Geochim. Cosmochim. Acta.122, 478-497 [2] Beucher, R. et al. 2013.Geochim. Cosmochim. Acta. 120, 395-416.

  8. Effects of aging on the structural, mechanical, and thermal properties of the silicone rubber current transformer insulation bushing for a 500 kV substation.

    PubMed

    Wang, Zhigao; Zhang, Xinghai; Wang, Fangqiang; Lan, Xinsheng; Zhou, Yiqian

    2016-01-01

    In order to analyze the cracking and aging reason of the silicone rubber current transformer (CT) insulation bushing used for 8 years from a 500 kV alternating current substation, characteristics including Fourier transform infrared (FTIR) spectroscopy, mechanical properties analysis, hardness, and thermo gravimetric analysis have been carried out. The FTIR results indicated that the external surface of the silicone rubber CT insulation bushing suffered from more serious aging than the internal part, fracture of side chain Si-C bond was much more than the backbone. Mechanical properties and thermal stability results illustrated that the main aging reasons were the breakage of side chain Si-C bond and the excessive cross-linking reaction of the backbone. This study can provide valuable basis for evaluating degradation mechanism and aging state of the silicone rubber insulation bushing in electric power field.

  9. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.

    2002-01-01

    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  10. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition.

    PubMed

    Schellen, L; van Marken Lichtenbelt, W D; Loomans, M G L C; Toftum, J; de Wit, M H

    2010-08-01

    Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum thermal condition differ between young adults and elderly. There is a lack of studies that describe the effect of aging on thermal comfort and productivity during a moderate temperature drift. In this study, the effect of a moderate temperature drift on physiological responses, thermal comfort, and productivity of eight young adults (age 22-25 year) and eight older subjects (age 67-73 year) was investigated. They were exposed to two different conditions: S1-a control condition; constant temperature of 21.5 degrees C; duration: 8 h; and S2-a transient condition; temperature range: 17-25 degrees C, duration: 8 h, temperature drift: first 4 h: +2 K/h, last 4 h: -2 K/h. The results indicate that thermal sensation of the elderly was, in general, 0.5 scale units lower in comparison with their younger counterparts. Furthermore, the elderly showed more distal vasoconstriction during both conditions. Nevertheless, TS of the elderly was related to air temperature only, while TS of the younger adults also was related to skin temperature. During the constant temperature session, the elderly preferred a higher temperature in comparison with the young adults. Because the stock of fossil fuels is limited, energy savings play an important role. Thermal comfort is one of the most important performance indicators to successfully apply measures to reduce the energy need in buildings. Allowing drifts in indoor temperature is one of the options to reduce the energy demand. This study contributes to the knowledge concerning the effects of a moderate temperature drift and the age of the inhabitants on their thermal comfort.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A K; Weese, R K; Andrzejewski, W J

    Decomposition kinetics are determined for HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and CP (2-(5-cyanotetrazalato) pentaammine cobalt (III) perchlorate) separately and together. For high levels of thermal stress, the two materials decompose faster as a mixture than individually. This effect is observed both in high-temperature thermal analysis experiments and in long-term thermal aging experiments. An Arrhenius plot of the 10% level of HMX decomposition by itself from a diverse set of experiments is linear from 120 to 260 C, with an apparent activation energy of 165 kJ/mol. Similar but less extensive thermal analysis data for the mixture suggests a slightly lower activation energy formore » the mixture, and an analogous extrapolation is consistent with the amount of gas observed in the long-term detonator aging experiments, which is about 30 times greater than expected from HMX by itself for 50 months at 100 C. Even with this acceleration, however, it would take {approx}10,000 years to achieve 10% decomposition at {approx}30 C. Correspondingly, negligible decomposition is predicted by this kinetic model for a few decades aging at temperatures slightly above ambient. This prediction is consistent with additional sealed-tube aging experiments at 100-120 C, which are estimated to have an effective thermal dose greater than that from decades of exposure to temperatures slightly above ambient.« less

  12. Joint strength of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect in a reducing environment

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Liu, Yu-An; Wu, Si-Han; Liu, Chien-Kuo; Lee, Ruey-Yi

    2015-04-01

    Effects of reducing environment and thermal aging on the joint strength of a BaO-B2O3-Al2O3-SiO2 glass-ceramic sealant (GC-9) with a ferritic-stainless-steel interconnect (Crofer 22 H) for planar solid oxide fuel cells are investigated. A technique is developed for conducting mechanical tests at room temperature and 800 °C in H2-7 vol% H2O under shear and tensile loadings. Given an aged condition and loading mode, the joint strength at 800 °C is lower than that at room temperature in the given humidified hydrogen atmosphere. A thermal aging at 800 °C in H2-7 vol% H2O for 100 h or 1000 h enhances both shear and tensile joint strengths at room temperature but degrades them at 800 °C in the same reducing environment. Non-aged specimens show a comparable joint strength and fracture mode when tested in humidified hydrogen and in air under a given loading mode and testing temperature. The shear strength at 800 °C for joint specimens after a 1000-h thermal aging at 800 °C in air or humidified hydrogen is reduced by a similar extent of 19%, compared to the counterpart of non-aged joint specimens tested in the same oxidizing or reducing environment.

  13. Interpretation of thermochronological cooling ages using thermal modelling: an example from shallow magma intrusions from the Kerguelen archipelago

    NASA Astrophysics Data System (ADS)

    Ahadi, Floriane; Delpech, Guillaume; Gautheron, Cécile; Nomade, Sébastien; Zeyen, Hermann; Guillaume, Damien

    2017-04-01

    Low temperature thermochronology on plutonic rocks is traditionally used to calculate erosion rates over large time scale. However, this method requires a good knowledge of the local or regional geology and particularly the thermal structure and evolution of the crust. The Kerguelen Islands (48-50°S, 68/5-70.5°E, Indian Ocean) are the emerged part of a vast oceanic plateau and are mostly made up of Oligocene basaltic traps that are cross cut by a dense network of large and deep valleys. Numerous plutonic complexes of various age (20-4.5 Ma) locally intrude theses traps and cover about 15% of the main island's surface. The Rallier du Baty peninsula is the largest plutonic complex, it is mainly constituted of syenites and is divided into two adjacent circular plutonic complexes whose centres are distant of 15 km. The southern part has a laccolith structure with satellites plutons and was emplaced at shallow depth (about 1 to 3 km) between 13.7 ± 0.3 and 8.0 ± 0.2 Ma. The northern part was emplaced later between 7.8 ± 0.25 and 4.5 ± 0.1 Ma. The Kerguelen Islands are of particular interest to understand the impact of Cenozoïc climatic variations on the long-term geomorphological evolution of emerged reliefs at mid-latitudes. To understand the erosion of the area, we conducted the first study on the Kerguelen Islands using the biotite 40Ar/39Ar (BAr), apatite and zircon (U-Th)/He thermochronometers (AHe and ZHe). In the southern part, the BAr ages for the various intrusions of the complex range from 9.44 ± 0.13 Ma to 13.84 ± 0.07 Ma. These ages are identical to high-temperature crystallisation ages (U-Pb on zircon) indicating an extremely rapid cooling between ˜700 and ˜300°C. The mean ZHe ages range between 7.1 ± 2.3 and 8.8 ± 1.4 and the mean AHe ages range between 4.4 ± 0.3 Ma and 7.4 ± 0.7 Ma. The AHe ages of the southern complex are similar to the crystallization ages of the northern part of the complex. The mean AHe ages in the northern part are much younger and range from 1.4 ± 0.7 Ma to 0.8 ± 0.1 Ma. Combined with the thermochronological approach, the thermal structure of the crust beneath the Kerguelen Plateau was established by inverse modelling of gravity, geoid and topography data. The results suggest a mean current thermal gradient of ˜40°/km for the Kerguelen Plateau. Moreover, thermal modelling allows reconstructing heat diffusion in 1D after successive sill intrusions (vertically and horizontally) in order to confirm AHe data can be interpreted as exhumation ages in both complexes. In this case, the mean thermal gradient can be considered to convert the cooling rates in erosion rates.

  14. Abstracts of AF Materials Laboratory Reports. January 1973 - December 1973

    DTIC Science & Technology

    1974-07-01

    substituted polymers with aryl ether , ketone and sulfone units in the backbone has been studied. The best resins seem to have come from simple...exposed to hostile environments such as heat aging plus salt spray, humid aging , humid aging and elevated temperature cycling, and fatigue...unclassified results of materials and process and radome characterization effort. Environmental exposure including thermal aging resulted in significant

  15. Isothermal aging effects on PMR-15 resin

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.

    1992-01-01

    Specimens of PMR-15 polyimide neat resin were aged in air at temperatures of 288, 316, and 343 C. Weight losses and dimensional changes were monitored during the course of the exposure time. Physical changes were also observed by optical and electron microscopy. It was found that polyimide polymer degradation occurred within a thin surface layer that developed and grew during thermal aging. The cores of the polymer specimens were protected from oxidative degradation, and they were relatively unchanged by the thermal treatment. Surface cracking was observed at 343 C and was probably due to an interaction between voids and stresses that developed in the surface layer.

  16. Thermophysical properties of hydrophobised lime plasters - The influence of ageing

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Zemanová, Lucie; Pavlík, Zbyšek

    2017-07-01

    The building envelope is a principal responsible for buildings energy loses. Lime plasters as the most popular finishing materials of historical buildings and culture monuments influence the thermal behaviour as well as construction material of masonry. On this account, the effect of ageing on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime plaster is tested. The ageing is accelerated with controlled carbonation process to simulate the final plasters properties. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity are experimentally assessed using a transient impulse method. The obtained data revealed the significant changes of the both studied thermal parameters in the dependence on plasters composition and age. The assessed material parameters will be stored in a material database, where will find use as an input data for computational modelling of heat transport in this type of porous building materials and evaluation of energy-savings and sustainability issues.

  17. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 ÀC. Samples included: two formulations developed at Kansas City Plant (KCP) (#6 and #10), one commercially available formulation (#21), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated,more » separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl #10 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl #10 was also aged under non-oxidative thermal conditions using an argon atmosphere.« less

  19. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    PubMed Central

    de Albuquerque, Victor Hugo C.; Barbosa, Cleisson V.; Silva, Cleiton C.; Moura, Elineudo P.; Rebouças Filho, Pedro P.; Papa, João P.; Tavares, João Manuel R. S.

    2015-01-01

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ” and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed. PMID:26024416

  20. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    PubMed

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  1. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    NASA Astrophysics Data System (ADS)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  2. 500 Myr of thermal history elucidated by multi-method detrital thermochronology of North Gondwana Cambrian sandstone (Eilat area, Israel)

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Avigad, D.

    2009-04-01

    Following the Neoproterozoic Pan-African orogeny, the Arabian-Nubian Shield (ANS) of North Africa and Arabia was eroded and then covered by Cambrian sandstones that record the onset of platform sedimentation. We applied K-feldspar 40Ar/39Ar, zircon and apatite fission track and apatite (U-Th)/He thermochronology to detritus from Cambrian sandstones of southern Israel deposited at about 500 Ma. U-Pb detrital zircon ages from these sandstones predate deposition and record the earlier Neoproterozoic crustal evolution of the Pan-African orogens. 40Ar/39Ar ages from 50 single grains of K-feldspar yield a Cambrian mean of approximately 535 Ma. The 40Ar/39Ar age spectrum of a multi-grain K-feldspar aliquot displays diffusion behaviour compatible with >560 Ma cooling later affected by a heating event. Assuming that the high temperature domains of the K-feldspars have not been affected by subsequent (hydro)thermal events, and taking previously published K-Ar and Rb-Sr ages from other parts of the East African Orogen at face value, these ages apparently record Pan-African thermal resetting below a thick volcano-sedimentary pile similar to the Saramuj conglomerate in Jordan and/or the Hammamat in Egypt. Detrital zircon fission track (ZFT) ages cluster around 380 Ma, consistent with previous ZFT results from Neoproterozoic basement and sediments of the region, revealing that the Cambrian platform sequence experienced a middle Devonian thermal event and low-grade metamorphism. Regional correlation indicates that during Devonian time the sedimentary cover atop the Cambrian in Israel was never in excess of 2.5 km, requiring an abnormally steep geothermal gradient to explain the complete ZFT annealing. A basal Carboniferous unconformity can be traced from Syria to southern Saudi Arabia, suggesting that the observed Devonian ZFT ages represent a regional tectonothermal event. Similar Devonian ZFT ages were reported from ANS basement outcrops in the Eastern Desert, 500 km south of Eilat. The detrital apatites we studied all have extremely rounded cores suggestive of a distant provenance, but some grains also feature distinct euhedral U-rich apatite overgrowth rims. Authigenic apatite may have grown during the late Devonian thermal event we dated by ZFT, coinciding with existing Rb-Sr ages from authigenic clays in the same deposits and leading to the conclusion that the Devonian event was probably hydrothermal. Like the ZFT ages, the detrital apatite fission track (AFT) ages were also completely reset after deposition. Sixty single grain detrital apatite fission track (AFT) ages group at ~270 Ma with significant dispersion. Inverse modeling of the AFT data indicate extended and/or repeated residence in the AFT partial annealing zone, in turn suggesting an episodic burial-erosion history during the Mesozoic caused by low-amplitude vertical motions. Seven detrital apatite (U-Th)/He ages scatter between 33 and 77 Ma, possibly resulting from extreme compositional zonation associated with the authigenic U-rich overgrowths. The ~70 Ma (U-Th)/He ages are more likely to be accurate, setting 1-2 km as an upper limit (depending on the geothermal gradient) on the post-Cretaceous exhumation of the Cambrian sandstone and showing no evidence for substantial denudation related to Tertiary rifting of the Red Sea.

  3. Optical property analysis of thermally and photolytically aged Eucalyptus Camaldulensis chemithermomechanical pulp (CTMP)

    Treesearch

    Yao Chen; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark; Jianmin Gao

    2012-01-01

    To investigate the optical properties of chemithermomechanical pulp (CTMP) from Eucalyptus camaldulensis, one group of samples of CTMP was aged by heating, and another group was first subjected to bleaching with different bleaching agents, and then aging by exposure to sunlight. Chromophores were analyzed using diffuse reflectance UV-Vis spectra (...

  4. Accelerated aging of preservative-treated structural plywood

    Treesearch

    C. Adam Senalik; Robert J. Ross; Samuel L. Zelinka; Stan T. Lebow; Zhiyong Cai

    2017-01-01

    In this study, the changes in physical properties and preservative retention of high-grade plywood when subjected to artificial aging processes were examined. The plywood was 15/32-in.-thick panels manufactured from southern yellow pine A and C grades of veneer. The artificial aging processes consisted of three primary mechanisms of degradation: thermal degradation,...

  5. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    NASA Astrophysics Data System (ADS)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity Hci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H2 gas. Expansion of the NdFeB crystal lattice in both ATF and H2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets.

  6. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dali; Hubbard, Kevin Mark; Devlin, David James

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in itsmore » composite form.« less

  7. Fractography evolution in accelerated aging of UHMWPE after gamma irradiation in air.

    PubMed

    Medel, F; Gómez-Barrena, E; García-Alvarez, F; Ríos, R; Gracia-Villa, L; Puértolas, J A

    2004-01-01

    We studied the fracture surface evolution of ultra high molecular weight polyethylene (UHMWPE) specimens, manufactured from GUR 1050 compression moulded sheets, after gamma sterilisation in air followed by different aging times after thermal treatment at 120 degrees C. Degradation profiles were obtained by FTIR and DSC measurements after 0, 7, 14, 24 and 36h aging. We observed by SEM the morphology patterns at these aging times, in surface fractographies after uniaxial tensile test of standardised samples. The results pointed out clear differences between short and long aging times. At shorter times, 7h, the behaviour was similar to non-degraded UHMWPE, exhibiting ductile behaviour. At longer times, 24-36h, this thermal protocol provided a highly degraded zone in the subsurface, similar to the white band found after gamma irradiation in air followed by natural aging, although closer to the surface, at 150-200mum. The microstructure of this oxidation zone, similarly found in gamma irradiated samples shelf-aged for 6-7 years, although with different distribution of microvoids, was formed by fibrils, associated with embrittlement of the oxidised UHMWPE. In addition, the evolution of the oxidation index, the enthalpy content, the mechanical parameters, and the depth of the oxidation front deduced from the fractographies versus aging time showed that a changing behaviour in the degradation rate appeared at intermediate aging times.

  8. Early age thermal conditioning immediately reduces body temperature of broiler chicks in a tropical environment.

    PubMed

    De Basilio, V; Requena, F; León, A; Vilariño, M; Picard, M

    2003-08-01

    Early age thermal conditioning (TC) durably improves resistance of broilers to heat stress and reduces body temperature (Tb). Three experiments on broiler chicks were conducted to evaluate the effects of TC at 5 d of age on Tb variation measured by thermometer between 4 and 7 d of age, under a tropical environment. Because manipulation of chickens to measure Tb with a thermometer may increase Tb, a preliminary experiment on 13 3-to-4-wk-old male broilers compared Tb measured by telemetry to Tb measured in the terminal colon during three successive periods at 22, 33, and 22 degrees C. During heat exposure, Tb rapidly increased by 0.9 degrees C and plateaued over 24 h. During the last period, seven of the broilers rapidly reduced Tb to a plateau lower than the initial Tb, although six broilers exhibited more variable Tb. Measurement by thermometer underestimated on average core Tb by 0.28 degrees C at 22 degrees C and by 0.57 degrees C at 33 degrees C, whereas Tb recorded by telemetry was not affected by manipulation of the chickens. TC reduced Tb 24 h later in the three experiments. Compared to unexposed control chicks (N), 12 h of TC at 40 degrees C did not significantly reduce Tb at 7 d of age, although 24 h did. TC at 38 and 40 degrees C over 24 h significantly reduced Tb variation from 4 to 7 d of age compared to N chicks, whereas 36 degrees C did not. Withdrawing feed from the chicks for 2 h prior to measurement did not significantly reduce Tb at 4 and 7 d of age, but Tb reduction due to TC was greater in fed chicks (0.28 degrees C) than in chicks without feed (0.05 degrees C). Early age thermal conditioning at 38 to 40 degrees C at 5 d of age for 24 h reduced body temperature of 7-d-old male broilers.

  9. A Model of Thermal Aging of Hyper-Elastic Materials with an Application to Natural Rubber

    NASA Astrophysics Data System (ADS)

    Korba, Ahmed G.

    Understanding the degradation of material properties and stress-strain behavior of rubber-like materials that has been exposed to elevated temperature is essential for rubber among components design and lifetime prediction. The complexity of the relationship between hyper-elastic materials, crosslinking density, and chemical composition present a difficult problem for the accurate prediction of mechanical properties under thermal aging. In the first part of the current research, a new and relatively simple mathematical formulation is presented to expresses the change in material properties of natural rubber subjected to various elevated temperatures and aging times. The aging temperatures ranged from 76.7 °C to 115.0 °C, and the aging times ranged from 0 to 600 hours. Based on the experimental data, the natural rubber mechanical properties under thermal aging showed a similar behavior to the rate of change of the crosslinking density (CLD) with aging time and temperature as determined as of the research. Three mechanical properties have been chosen to be studied: the ultimate tensile strength, the fracture stretch value, and the secant modulus at 11.0% strain. The proposed phenomenological model relates the mechanical properties with the rate of change of the CLD based on a form of Arrhenius equation. The proposed equations showed promising results compared to the experimental data with an acceptable error margin of less than 10% in most of the cases studied. In the second part of the current research, a closed form set of equations that was based on basic continuum mechanics assumptions has been proposed to define the material stress-strain behavior of natural rubber as an application of hyper-elastic materials. The proposed formulas include the influence of aging time and temperature. The newly proposed "Wight Function Based" (WFB) method has been verified against the historic Treloar's test data for uni-axial, bi-axial and pure shear loadings of Treloar's vulcanized rubber material, showing a promising level of confidence compared to the Ogden and the Yeoh methods. Tensile testing was performed on strip specimens that were thermally aged then subjected uni-axial tension and hardness tests. A non-linear least square optimization tool in Matlab (Lscurvefitt) was used for all fitting purposes.

  10. Kinetics of thermal and photo-initiated release of tris (1,3-dichloro-2-propyl) phosphate (TDCP) flame retardant from polyurethane foam materials.

    PubMed

    Ghanem, Raed A

    2015-01-01

    Kinetics of thermal and photo-initiated release of Tris (1.3-dichloro-2-propyl) phosphate (TDCP) from the polyurethane foam (PUF) materials were studied using a validated chromatographic method with linear calibration curve in the range of 0.03-400 μg mL(-1). Time dependence of TDCP leaching from foam samples was found to follow first-order kinetics; with rate constants directly dependent on ageing temperatures and intensity of UV radiation, rate constants for the thermally and photo initiated were 3.6 × 10(-3), 1.03 × 10(-2), 3.6 × 10(-2) and 3.94 × 10(-2) day(-1), respectively. Migration of TDCP from foam samples simulating skin or oral exposure were observed from all samples regardless of their ageing history, the presence of biological fluids found to enhance the migration rate. Oral exposure to foam material contains TDCP, which was simulated using the Head-over-Heels test, reveals that an average amount of ∼ 1.7% wt./wt. of the total amount of TDCP was found to leach into biological fluids, and it significantly increased to ∼ 6.0% wt./wt. due to ageing conditions. Direct contact between foam material and skin simulated by using the Contact Blotting test reveals that TDCP is transferred from both aged and un-aged samples at different rates, due to the presence of biological fluids; the transferred amount is increased with ageing conditions.

  11. Thermal abuse performance of high-power 18650 Li-ion cells

    NASA Astrophysics Data System (ADS)

    Roth, E. P.; Doughty, D. H.

    High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.

  12. Aroma profile and sensory characteristics of a sulfur dioxide-free mulberry (Morus nigra) wine subjected to non-thermal accelerating aging techniques.

    PubMed

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid

    2017-10-01

    The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ar-40/Ar-39 age of the Shergotty achondrite and implications for its post-shock thermal history

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Nyquist, L. E.; Husain, L.

    1979-01-01

    Ar-40/Ar-39 measurements are used to determine the age of the Shergotty achondrite and the chronology of the shock event responsible for the complete conversion of its plagioclase to maskelynite is discussed. Apparent ages are found to vary between 240 and 640 million years for the whole rock sample, with a plateau age of 254 million years for a maskelynite separate. The Rb-Sr age of 165 million years determined by Nyquist at al (1978) suggests that the maskelynite as well as the whole rock was incompletely degassed. Argon diffusion characteristics indicate a post-shock cooling time greater than 1000 years and a burial depth greater than 300 m for a thermal model of a cooling ejecta blanket of variable thickness. It is concluded that the shock event which degassed the argon and reset the Rb-Sr systematics occurred between 165 and 250 million years ago when the parent body experienced a collision in the asteroid belt.

  14. A Novel Approach to Detect Accelerated Aged and Surface-Mediated Degradation in Explosives by UPLC-ESI-MS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beppler, Christina L

    2015-12-01

    A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less

  15. Long term isothermal aging and thermal analysis of N-CYCAP polyimides

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Waters, John F.; Schverman, Marla A.

    1991-01-01

    The N-CYCAP polyimides utilize a (2,2) paracyclophane endcap that polymerizes and does not generate volatile gases during the cure process. These polyimides have both high glass temperatures (390 C) and an onset of decomposition in air of 560 C. Thermal oxidative stability (TOS) weight loss studies show that replacing 25 percent by weight of the paraphenylene diamine in the polymer backbone with metaphenylene diamine improves the weight loss characteristics. N-CYCAP neat resin samples performed better than PMR-II-50 when exposed at 343 and 371 C in air for up to 1000 hours. Preliminary composite studies show that both PMR-II-50 and N-CYCAP have better thermal stability when fabricated on T-40R. Higher isothermal aging temperatures of longer aging times are needed to determine the differences in TOS between composite samples of PMR-II-50 and N-CYCAP polyimides.

  16. Mechanical and Microstructural Effects of Thermal Aging on Cast Duplex Stainless Steels by Experiment and Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.

    Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less

  17. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.

    PubMed

    Weber, Waldemar; Kraft, Vadim; Grützke, Martin; Wagner, Ralf; Winter, Martin; Nowak, Sascha

    2015-05-15

    The thermal aging process of a commercial LiPF6 based lithium ion battery electrolyte has been investigated in view of the formation of volatile phosphorus-containing degradation products. Aging products were analyzed by GC-MS. Structure determination of the products was performed by support of chemical ionization MS in positive and negative modes. A fraction of the discovered compounds belongs to the group of fluorophosphates (phosphorofluoridates) which are in suspect of potential toxicity. This is well known for relative derivatives, e.g. diisopropyl fluorophosphate. Another fraction of the identified compounds belongs to the group of trialkyl phosphates. These compounds may provide a positive impact on the thermal and electrochemical performance of Li-based batteries as repeatedly described in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    NASA Astrophysics Data System (ADS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  19. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  20. Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-01

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  1. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to trackmore » oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.« less

  2. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    PubMed Central

    Li, Qingde; Gao, Xun; Cheng, Wanli; Han, Guangping

    2017-01-01

    Red pottery clay (RPC) was modified using a silane coupling agent, and the modified RPC (mRPC) was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA) and ultraviolet (UV)-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence) and ΔE* (color) reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading. PMID:28772470

  3. Thermal Aging of Oceanic Asthenosphere

    NASA Astrophysics Data System (ADS)

    Paulson, E.; Jordan, T. H.

    2013-12-01

    To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt-averaged S-velocity variations from an ensemble of global tomographic models onto a 1x1 degree age-based regionalization and average over bins delineated by equal increments in the square-root of crustal age. From comparisons among the bin-averaged S-wave profiles, we estimate age-dependent convergence depths (minimum depths where the age variations become statistically insignificant) as well as S travel times from these depths to a shallow reference surface. Using recently published techniques (Jordan & Paulson, JGR, doi:10.1002/jgrb.50263, 2013), we account for the aleatory variability in the bin-averaged S-wave profiles using the angular correlation functions of the individual tomographic models, we correct the convergence depths for vertical-smearing bias using their radial correlation functions, and we account for epistemic uncertainties through Bayesian averaging over the tomographic model ensemble. From this probabilistic analysis, we can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km; i.e., more than 100 km below the mean depth of the G discontinuity (~70 km). Moreover, the S travel time above the convergence depth decays almost linearly with the square-root of crustal age out to 200 Ma, consistent with a half-space cooling model. Given the strong evidence that the G discontinuity approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper (and probably weakest) part of the oceanic asthenosphere, like the oceanic lithosphere, participates in the cooling that forms the kinematic plates, or tectosphere. In other words, the thermal boundary layer of a mature oceanic plate appears to be more than twice the thickness of its mechanical boundary layer. We do not discount the possibility that small-scale convection creates heterogeneities in the oceanic upper mantle; however, the large-scale flow evidently advects these small-scale heterogeneities along with the plates, allowing the upper part of the asthenosphere to continue cooling with lithospheric age. The dominance of this large-scale horizontal flow may be related to the high stresses associated with its channelization in a thin (~100 km) asthenosphere, as well as the possible focusing of the subtectospheric strain in a low-viscosity channel immediately above the 410-km discontinuity. These speculations aside, the observed thermal aging of oceanic asthenosphere is inconsistent with a tenet of plate tectonics, the LAB hypothesis, which states that lithospheric plates are decoupled from deeper mantle flow by a shear zone in the upper part of the asthenosphere.

  4. 40Ar/39Ar thermochronologic constraints on the tectonothermal evolution of the Northern East Humboldt range metamorphic core complex, Nevada

    USGS Publications Warehouse

    McGrew, A.J.; Snee, L.W.

    1994-01-01

    The northern East Humboldt Range (NEHR) of northeastern Nevada exposes a suite of complexly deformed migmatitic, upper amphibolite-facies rocks in the footwall of the Ruby Mountains-East Humboldt Range (RM-EHR) detachment fault. New 40Ar/39Ar data on hornblende, muscovite, biotite, and potassium feldspar help constrain the kinematic and thermal evolution of this terrain during Tertiary extensional exhumation. Hornblende samples from relatively high structural levels yield discordant age spectra that suggest initial cooling during early Tertiary time (63-49 Ma). When coupled with petrological constraints indicating a strongly decompressional P-T-t path above 550??C, the hornblende data suggest that exhumation of the RM-EHR may have initiated in early Tertiary time, approximately coincident with the initial phases of unroofing in the Wood Hills immediately to the east and with the end of thrusting in the late Mesozoic to early Tertiary Sevier orogenic belt of eastern Nevada and western Utah. This temporal coincidence suggests that gravitational collapse of tectonically thickened crust in the internal zone of the Sevier belt could have driven the initial phases of unroofing. Thermal history during the final stage of exhumation of the NEHR is constrained by discordant hornblende cooling ages of 36-29 Ma from deep structural levels and biotite, muscovite, and potassium feldspar cooling ages of 27-21 Ma from a range of structural levels. Comparison of muscovite, biotite, and potassium feldspar cooling ages with previously published fission-track cooling ages implies very rapid cooling rates at temperatures below the closure temperature for muscovite (270??-350??C), but time gaps of > 7 m.y. between hornblende and mica cooling ages suggest that cooling at higher temperatures was more gradual. In addition, comparison of 40Ar 39Ar mica cooling ages with previously published fission-track apatite cooling ages suggests pronounced thermal gradients between the NEHR and adjacent areas during latest Oligocene to earliest Miocene time. Such thermal gradients could be readily explained if the RM-EHR detachment fault dipped > 30?? between the 300??C and 100??C isotherms. Finally, 40Ar 39Ar biotite cooling ages increase southward through the East Humboldt Range, compatible with northward extrapolation of a previously recognized pattern of WNW-younging biotite cooling ages from the Ruby Mountains. A simple model involving the propagation of footwall uplift in the direction of tectonic transport beneath an initially listric normal fault can explain the principle features of the Oligoce??ne to Miocene thermochronologic data set for the RM-EHR. ?? 1994.

  5. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the depth to a 600 deg C isotherm in continental upper mantle is presented as a proxy to the elastic thickness of the cratonic lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle. The TC1 model of the lithosphere thickness is used to calculate the growth and preservation rates of the lithosphere since the Archean.

  6. Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.

    2011-07-01

    The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.

  7. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  8. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  9. Status Report - Cane Fiberboard Properties And Degradation Rates For Storage Of The 9975 Shipping Package In KAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 10 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAC, these models allow developmentmore » of service life predictions.« less

  10. Obesity and outcomes following burns in the pediatric population.

    PubMed

    Ross, Evan; Burris, Agnes; Murphy, Joseph T

    2014-03-01

    While obesity is associated with increased mortality and decreased functional outcomes in adult burn patients, the ramifications of larger than average body size in the pediatric burn population are less well understood. The present study examines whether obesity was associated with poor outcomes following pediatric burn injuries. Thermal injury data for patients ≤ 18 years of age admitted to a Level III burn center over ten years (n=536) was analyzed. Obesity was defined as ≥ 95 th percentile of weight for height according to the WHO growth charts (<2 years of age) or BMI for age according to the CDC growth charts (2-18 years of age). Outcomes were compared between thermally injured obese (n=154) and non-obese (n=382) children. All data was collected in accordance with IRB regulations. Obese and non-obese thermally-injured children did not differ in TBSA, percentage of full thickness burn, or overall mortality. However, these groups were significantly different with respect to age (obese=7.16 ± 0.46 years, non-obese=9.38 ± 0.32 years, p<0.001) and days requiring mechanical ventilation (obese=4.89 ± 1.3 days, non-obese=2.67 ± 0.49 days, p<0.05). For thermally injured children admitted to the BICU without inhalation injury (n=175); the obese (n=46) and non-obese (n=129) did not differ significantly with respect to age, TBSA, percentage of full thickness burn or other outcome measures. However, significant differences between these groups were noted for ICU LOS (obese=18.59 ± 5.18 days, non-obese=9.51 ± 1.82 days, p<0.05) and number of days requiring mechanical ventilation (obese=11.65 ± 3.91 days, non-obese=3.92 ± 0.85 days, p<0.05). These data show thermally-injured obese pediatric patients required longer and more intensive medical support in the form of BICU care and respiratory intervention. Counter to findings in adult populations, differences in mortality were not observed. Collectively, these findings suggest obesity as a risk factor for increased morbidity in the pediatric burn population. © 2014 Elsevier Inc. All rights reserved.

  11. Statistical Design in Isothermal Aging of Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jobe, Marcus; Crane, Elizabeth A.

    1995-01-01

    Recent developments in research on polyimides for high temperature applications have led to the synthesis of many new polymers. Among the criteria that determines their thermal oxidative stability, isothermal aging is one of the most important. Isothermal aging studies require that many experimental factors are controlled to provide accurate results. In this article we describe a statistical plan that compares the isothermal stability of several polyimide resins, while minimizing the variations inherent in high-temperature aging studies.

  12. Lattice Modeling of Early-Age Behavior of Structural Concrete.

    PubMed

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M; Bolander, John E

    2017-02-25

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential.

  13. Lattice Modeling of Early-Age Behavior of Structural Concrete

    PubMed Central

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590

  14. Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Watanabe, Yutaka

    2008-06-01

    Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.

  15. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential.

    PubMed

    Ferraro, Vincenza; Gaillard-Martinie, Brigitte; Sayd, Thierry; Chambon, Christophe; Anton, Marc; Santé-Lhoutellier, Véronique

    2017-04-01

    Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, K. T.; Celina, M.; Clough, R. L.

    1999-10-01

    Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.

  17. Time-temperature-stress capabilities of composites for supersonic cruise aircraft applications

    NASA Technical Reports Server (NTRS)

    Haskins, J. F.; Kerr, J. R.; Stein, B. A.

    1976-01-01

    A range of baseline properties was determined for representatives of 5 composite materials systems: B/Ep, Gr/Ep, B/PI, Gr/PI, and B/Al. Long-term exposures are underway in static thermal environments and in ones which simultaneously combine programmed thermal histories and mechanical loading histories. Selected results from the environmental exposure studies with emphasis placed on the 10,000-hour thermal aging data are presented. Results of residual strength determinations and changes in physcial and chemical properties during high temperature aging are discussed and illustrated using metallographic, fractographic and thermomechanical analyses. Some initial results of the long-term flight simulation tests are also included.

  18. On volcanism and thermal tectonics on one-plate planets

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.

  19. Effect of thermal implying during ageing process of nanorods growth on the properties of zinc oxide nanorod arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, M., E-mail: rusop@salam.uitm.my

    Undoped and Sn-doped Zinc oxide (ZnO) nanostructures have been fabricated using a simple sol-gel immersion method at 95°C of growth temperature. Thermal sourced by hot plate stirrer was supplied to the solution during ageing process of nanorods growth. The results showed significant decrement in the quality of layer produced after the immersion process where the conductivity and porosity of the samples reduced significantly due to the thermal appliance. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM) electrical properties has been characterized using current voltage (I-V) measurement.

  20. Atomic-scale to Meso-scale Simulation Studies of Thermal Ageing and Irradiation Effects in Fe- Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Eugene; Liu, Li

    In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments

  1. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    NASA Astrophysics Data System (ADS)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  2. Evaluating factors driving population densities of mayfly nymphs in Western Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Kocovsky, Patrick; Bodamer Scarbro, Betsy L.

    2017-01-01

    Mayfly (Hexagenia spp.) nymphs have been widely used as indicators of water and substrate quality in lakes. Thermal stratification and the subsequent formation of benthic hypoxia may result in nymph mortality. Our goal was to identify potential associations between recent increases in temperature and eutrophication, which exacerbate hypoxic events in lakes, and mayfly populations in Lake Erie. Nymphs were collected during April–May 1999–2014. We used wind and temperature data to calculate four measures of thermal stratification, which drives hypoxic events, during summers of 1998–2013. Bottom trawl data collected during August 1998–2013 were used to estimate annual biomass of fishes known to be predators of mayfly nymphs. We used Akaike's Information Criterion to identify the best one- and two-predictor regression models of annual population densities (N/m2) of age-1 and age-2 nymphs, in which candidate predictors included the four measures of stratification, predator fish biomass, competition, and population densities of age-2 (for age-1) and age-1 (for age-2) nymphs from the previous year. Densities of both age classes of nymphs declined over the time series. Population densities of age-1 and age-2 nymphs from the previous year best predicted annual population densities of nymphs of both age classes. However, hypoxic conditions (indicated by stratification) and predation both had negative effects on annual population density of mayflies. Compared with predation, hypoxia had an inconsistent effect on annual nymph density. The increases in temperature and eutrophication in Lake Erie, which exacerbate hypoxic events, may have drastic effects on the mayfly populations.

  3. Contrasting tectonothermal domains and faulting in the Potomac terrane, Virginia-Maryland - Discrimination by 40Ar/39Ar and fission-track thermochronology

    USGS Publications Warehouse

    Kunk, Michael J.; Wintsch, R.P.; Naeser, C.W.; Naeser, N.D.; Southworth, C.S.; Drake, Avery A.; Becker, J.L.

    2005-01-01

    New 40Ar/39Ar data reveal ages and thermal discontinuities that identify mapped and unmapped fault boundaries in the Potomac terrane in northern Virginia, thus confirming previous interpretations that it is a composite terrane. The rocks of the Potomac terrane were examined along the Potomac River, where it has been previously subdivided into three units: the Mather Gorge, Sykesville, and Laurel Formations. In the Mather Gorge Formation, at least two metamorphic thermal domains were identified, the Blockhouse Point and Bear Island domains, separated by a fault active in the late Devonian. Early Ordovician (ca. 475 Ma) cooling ages of amphibole in the Bear Island domain reflect cooling from Taconic metamorphism, whereas the Blockhouse Point domain was first metamorphosed in the Devonian. The 40Ar/39Ar data from muscovites in a third (eastern) domain within the Mather Gorge Formation, the Stubblefield Falls domain, record thrusting of the Sykesville Formation over the Mather Gorge Formation on the Plummers Island fault in the Devonian. The existence of two distinctly different thermal domains separated by a tectonic boundary within the Mather Gorge argues against its status as a formation. Hornblende cooling ages in the Sykesville Formation are Early Devonian (ca. 400 Ma), reflecting cooling from Taconic and Acadian metamorphism. The ages of retrograde and overprinting muscovite in phyllonites from domain-bounding faults are late Devonian (Acadian) and late Pennsylvanian (Alleghanian), marking the time of assembly of these domains and subsequent movement on the Plummers Island fault. Our data indicate that net vertical motion between the Bear Island domain of the Mather Gorge complex and the Sykesville Formation across the Plummers Island fault is east-side-up. Zircon fission-track cooling ages demonstrate thermal equillbrium across the Potomac terrane in the early Permian, and apatite fission-track cooling ages record tilting of the Potomac terrane in the Cretaceous or later with the west side up at least 1 km. ?? 2005 Geological Society of America.

  4. Thermo-Oxidative Stability of Graphite/PMR-15 Composites: Effect of Fiber Surface Modification on Composite Shear Properties

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.

    1994-01-01

    Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.

  5. Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels

    NASA Astrophysics Data System (ADS)

    Fortenberry, Claire F.; Walker, Michael J.; Zhang, Yaping; Mitroo, Dhruv; Brune, William H.; Williams, Brent J.

    2018-02-01

    The chemical complexity of biomass burning organic aerosol (BBOA) greatly increases with photochemical aging in the atmosphere, necessitating controlled laboratory studies to inform field observations. In these experiments, BBOA from American white oak (Quercus alba) leaf and heartwood samples was generated in a custom-built emissions and combustion chamber and photochemically aged in a potential aerosol mass (PAM) flow reactor. A thermal desorption aerosol gas chromatograph (TAG) was used in parallel with a high-resolution time-of-flight aerosol mass spectrometer (AMS) to analyze BBOA chemical composition at different levels of photochemical aging. Individual compounds were identified and integrated to obtain relative decay rates for key molecules. A recently developed chromatogram binning positive matrix factorization (PMF) technique was used to obtain mass spectral profiles for factors in TAG BBOA chromatograms, improving analysis efficiency and providing a more complete determination of unresolved complex mixture (UCM) components. Additionally, the recently characterized TAG decomposition window was used to track molecular fragments created by the decomposition of thermally labile BBOA during sample desorption. We demonstrate that although most primary (freshly emitted) BBOA compounds deplete with photochemical aging, certain components eluting within the TAG thermal decomposition window are instead enhanced. Specifically, the increasing trend in the decomposition m/z 44 signal (CO2+) indicates formation of secondary organic aerosol (SOA) in the PAM reactor. Sources of m/z 60 (C2H4O2+), typically attributed to freshly emitted BBOA in AMS field measurements, were also investigated. From the TAG chemical speciation and decomposition window data, we observed a decrease in m/z 60 with photochemical aging due to the decay of anhydrosugars (including levoglucosan) and other compounds, as well as an increase in m/z 60 due to the formation of thermally labile organic acids within the PAM reactor, which decompose during TAG sample desorption. When aging both types of BBOA (leaf and heartwood), the AMS data exhibit a combination of these two contributing effects, causing limited change to the overall m/z 60 signal. Our observations demonstrate the importance of chemically speciated data in fully understanding bulk aerosol measurements provided by the AMS in both laboratory and field studies.

  6. Status Report and Research Plan for Cables Harvested from Crystal River Unit 3 Nuclear Generating Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    Harvested cables from operating or decommissioned nuclear power plants present an important opportunity to validate models, understanding material aging behavior, and validate characterization techniques. Crystal River Unit 3 Nuclear Generating Plant is a pressurized water reactor that was licensed to operate from 1976 to 2013. Cable segments were harvested and made available to the Light Water Reactor Sustainability research program through the Electric Power Research Institute. Information on the locations and circuits within the reactor from whence the cable segments came, cable construction, sourcing and installation information, and photographs of the cable locations prior to harvesting were provided. The cablemore » variations provided represent six of the ten most common cable insulations in the nuclear industry and experienced service usage for periods from 15 to 42 years. Subsequently, these cables constitute a valuable asset for research to understand aging behavior and measurement of nuclear cables. Received cables harvested from Crystal River Unit 3 Nuclear Generating Plant consist of low voltage, insulated conductor surrounded by jackets in lengths from 24 to 100 feet each. Cable materials will primarily be used to investigate aging under simultaneous thermal and gamma radiation exposure. Each cable insulation and jacket material will be characterized in its as-received condition, including determination of the temperatures associated with endothermic transitions in the material using differential scanning calorimetry and dynamic mechanical analysis. Temperatures for additional thermal exposure aging will be selected following the thermal analysis to avoid transitions in accelerated laboratory aging that do not occur in field conditions. Aging temperatures above thermal transitions may also be targeted to investigate the potential for artifacts in lifetime prediction from rapid accelerated aging. Total gamma doses and dose rates targeted for each material will be determined based on filling gaps in prior work, known limits of material classes and resource constraints. Experimental plans will be developed in the context of existing data for the insulation and jacket materials available in published Department of Energy and Electric Power Research Institute reports toward addressing identified knowledge gaps.« less

  7. Sex-specific developmental models for Creophilus maxillosus (L.) (Coleoptera: Staphylinidae): searching for larger accuracy of insect age estimates.

    PubMed

    Frątczak-Łagiewska, Katarzyna; Matuszewski, Szymon

    2018-05-01

    Differences in size between males and females, called the sexual size dimorphism, are common in insects. These differences may be followed by differences in the duration of development. Accordingly, it is believed that insect sex may be used to increase the accuracy of insect age estimates in forensic entomology. Here, the sex-specific differences in the development of Creophilus maxillosus were studied at seven constant temperatures. We have also created separate developmental models for males and females of C. maxillosus and tested them in a validation study to answer a question whether sex-specific developmental models improve the accuracy of insect age estimates. Results demonstrate that males of C. maxillosus developed significantly longer than females. The sex-specific and general models for the total immature development had the same optimal temperature range and similar developmental threshold but different thermal constant K, which was the largest in the case of the male-specific model and the smallest in the case of the female-specific model. Despite these differences, validation study revealed just minimal and statistically insignificant differences in the accuracy of age estimates using sex-specific and general thermal summation models. This finding indicates that in spite of statistically significant differences in the duration of immature development between females and males of C. maxillosus, there is no increase in the accuracy of insect age estimates while using the sex-specific thermal summation models compared to the general model. Accordingly, this study does not support the use of sex-specific developmental data for the estimation of insect age in forensic entomology.

  8. Assessing degradation of composite resin cements during artificial aging by Martens hardness.

    PubMed

    Bürgin, Stefan; Rohr, Nadja; Fischer, Jens

    2017-05-19

    Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.

  9. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less

  10. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified asmore » open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.« less

  11. Ontogeny of thermoregulatory mechanisms in king penguin chicks (Aptenodytes patagonicus).

    PubMed

    Duchamp, Claude; Rouanet, Jean Louis; Barré, Hervé

    2002-04-01

    The rapid maturation of thermoregulatory mechanisms may be of critical importance for optimising chick growth and survival and parental energy investment under harsh climatic conditions. The ontogeny of thermoregulatory mechanisms was studied in growing king penguin chicks from hatching to the full emancipation observed at 1 month of age in the sub-Antarctic area (Crozet Archipelago). Newly hatched chicks showed small, but significant regulatory thermogenesis (21% rise in heat production assessed by indirect calorimetry), but rapidly became hypothermic. Within a few days, both resting (+32%) and peak (+52%) metabolic rates increased. The first week of life was characterised by a two-fold rise in thermogenic capacity in the cold, while thermal insulation was not improved. During the second and third weeks of age, thermal insulation markedly rose (two-fold drop in thermal conductance) in relation to down growth, while resting heat production was slightly reduced (-13%). Shivering (assessed by electromyography) was visible right after hatching, although its efficiency was limited. Thermogenic efficiency of shivering increased five-fold with age during the first weeks of life, but there was no sign of non-shivering thermogenesis. We conclude that thermal emancipation of king penguin chicks may be primarily determined by improvement of thermal insulation after thermogenic processes have become sufficiently matured. Both insulative and metabolic adaptations are required for the rapid ontogeny of thermoregulation and thermal emancipation in growing king penguin chicks.

  12. Thermal Inactivation of Desiccation-Adapted Salmonella spp. in Aged Chicken Litter

    PubMed Central

    Chen, Zhao; Diao, Junshu; Dharmasena, Muthu; Ionita, Claudia; Rieck, James

    2013-01-01

    Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination. PMID:24014540

  13. Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter.

    PubMed

    Chen, Zhao; Diao, Junshu; Dharmasena, Muthu; Ionita, Claudia; Jiang, Xiuping; Rieck, James

    2013-11-01

    Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter was investigated in comparison with that in a nonadapted control to examine potential cross-tolerance of desiccation-adapted cells to heat treatment. A mixture of four Salmonella serovars was inoculated into the finished compost with 20, 30, 40, and 50% moisture contents for a 24-h desiccation adaptation. Afterwards, the compost with desiccation-adapted cells was inoculated into the aged chicken litter with the same moisture content for heat treatments at 70, 75, 80, 85, and 150°C. Recovery media were used to allow heat-injured cells to resuscitate. A 5-log reduction in the number of the desiccation-adapted cells in aged chicken litter with a 20% moisture content required >6, >6, ∼4 to 5, and ∼3 to 4 h of exposure at 70, 75, 80, and 85°C, respectively. As a comparison, a 5-log reduction in the number of nonadapted control cells in the same chicken litter was achieved within ∼1.5 to 2, ∼1 to 1.5, ∼0.5 to 1, and <0.5 h at 70, 75, 80, and 85°C, respectively. The exposure time required to obtain a 5-log reduction in the number of desiccation-adapted cells gradually became shorter as temperature and moisture content were increased. At 150°C, desiccation-adapted Salmonella cells survived for 50 min in chicken litter with a 20% moisture content, whereas control cells were detectable by enrichment for only 10 min. Our results demonstrated that the thermal resistance of Salmonella in aged chicken litter was increased significantly when the cells were adapted to desiccation. This study also validated the effectiveness of thermal processing being used for producing chicken litter free of Salmonella contamination.

  14. 40Ar/39Ar thermochronology of mesoproterozoic metamorphism in the Colorado Front Range

    USGS Publications Warehouse

    Shaw, C.A.; Snee, L.W.; Selverstone, J.; Reed, J.C.

    1999-01-01

    A low-pressure metamorphic episode in the Colorado Front Range has been identified by the presence of staurolite, andalusite, cordierite, and garnet porphyroblasts overprinting earlier assemblages. The overprinting assemblages and reaction textures are most consistent with porphyroblast growth on a prograde metamorphic path with peak temperatures exceeding ~525??C. Twenty-eight 40Ar/39Ar dates on hornblende, muscovite, biotite, and microcline were used to infer the age and thermal conditions of metamorphism. Muscovite and biotite 40Ar/39Ar ages fall mainly in the interval 1400-1340 Ma, consistent with cooling through the closure temperature interval of micas (~400??-300??C) after about 1400 Ma. In contrast, hornblende apparent ages (T(c)~500??-550??C) between 1600 and 1390 Ma reflect variable retention of radiogenic argon. Forward modeling of argon diffusion shows that the distribution of hornblende and mica ages is consistent with the partial resetting of argon systematics ca. 1400 Ma by a thermal pulse reaching maximum temperatures around 550??C and decaying within <20 m.yr. These temperatures match the conditions inferred from the overprinting assemblage; thus, muscovite and biotite ages are interpreted to date the cooling phase of this metamorphic event. This late metamorphism is broadly coeval with the intrusion of ca. 1400-Ma granitic plutons in the study area and throughout the southwestern United States. However, thermal effects are observed far from pluton margins, suggesting pervasive, regional crustal heating rather than restricted contact metamorphism. Our results suggest that ca. 1400-Ma metamorphism and plutonism are manifestations of a regional thermal episode that both partially melted the lower crust and pervasively metamorphosed middle crustal rocks.

  15. Thermal infrared spectral character of Hawaiian basaltic glasses

    NASA Technical Reports Server (NTRS)

    Crisp, Joy; Kahle, Anne B.; Abbott, Elsa A.

    1990-01-01

    Thermal IR reflectance spectra of exposed surfaces of Hawaiian basalt samples from Mauna Loa and Kilauea show systematic changes with age. Spectra of fresh glass collected from active lava flows showed evidence of a strong degree of disorder. After a few weeks of exposure to the laboratory environment, spectra of the top surfaces of these samples began to exhibit spectral features suggestive of ordering into silicate chainlike ansd sheetlike units. With progressive aging, features of apparent sheetlike structures became the preferred mode.

  16. Fracture toughness of plasma-sprayed thermal barrier ceramics: Influence of processing, microstructure, and thermal aging

    DOE PAGES

    Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay; ...

    2014-06-09

    Fracture toughness has become one of the dominant design parameters that dictates the selection of materials and their microstructure to obtain durable thermal barrier coatings (TBCs). Much progress has been made in characterizing the fracture toughness of relevant TBC compositions in bulk form, and it has become apparent that this property is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma sprayed (APS) TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different spray process conditions inducing different levelsmore » of porosity and interfacial defects. Fracture toughness was measured on free standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative TBC composition, Gd 2Zr 2O 7 (GDZ), which as anticipated shows significantly lower fracture toughness compared to YSZ. Furthermore, the results from these studies not only point towards a need for process and microstructure optimization for enhanced TBC performance but also a framework for establishing performance metrics for promising new TBC compositions.« less

  17. The influence of thermal discomfort on the attention index of teenagers: an experimental evaluation

    NASA Astrophysics Data System (ADS)

    Mazon, Jordi

    2014-07-01

    In order to measure the effect on the attention of teenagers of thermal discomfort due to high temperature and humidity, two experiments were conducted in two different indoor conditions of temperature and humidity in non-air-conditioned classrooms. The participants were a heterogeneous group of 117 teenagers, aged 12 to 18 years, and the experiments reproduced the actual conditions of teaching in a classroom in the Mediterranean climate. In order to measure the attention index, a standard Toulouse-Pieron psychological test was performed on the 117 teenagers in these two conditions, and the Predicted Mean Vote (PMV), the physiologically Equivalent Temperature (PET), the Standard effective Temperature (SET*) and the Universal Thermal Climate Index (UTCI) indices were calculated to estimate the grade of discomfort using the RayMan Pro model. Conditions of greater discomfort decreased the attention index in the whole group, especially in those aged 12-14, among whom the attention index dropped by around 45 % when compared to comfortable conditions. However, teenage attention at ages 17 and 18 shows little variation in discomfort in respect to thermally comfortable conditions. In addition, the attention index for boys and girls shows the same variation in discomfort conditions. However, girls have a slightly higher attention index than boys in discomfort and thermal comfort experiments.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A K; Weese, R K; Adrzejewski, W J

    Accelerated aging tests play an important role in assessing the lifetime of manufactured products. There are two basic approaches to lifetime qualification. One tests a product to failure over range of accelerated conditions to calibrate a model, which is then used to calculate the failure time for conditions of use. A second approach is to test a component to a lifetime-equivalent dose (thermal or radiation) to see if it still functions to specification. Both methods have their advantages and limitations. A disadvantage of the 2nd method is that one does not know how close one is to incipient failure. Thismore » limitation can be mitigated by testing to some higher level of dose as a safety margin, but having a predictive model of failure via the 1st approach provides an additional measure of confidence. Even so, proper calibration of a failure model is non-trivial, and the extrapolated failure predictions are only as good as the model and the quality of the calibration. This paper outlines results for predicting the potential failure point of a system involving a mixture of two energetic materials, HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and CP (2-(5-cyanotetrazalato) pentaammine cobalt (III) perchlorate). Global chemical kinetic models for the two materials individually and as a mixture are developed and calibrated from a variety of experiments. These include traditional thermal analysis experiments run on time scales from hours to a couple days, detonator aging experiments with exposures up to 50 months, and sealed-tube aging experiments for up to 5 years. Decomposition kinetics are determined for HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and CP (2-(5-cyanotetrazalato) pentaammine cobalt (III) perchlorate) separately and together. For high levels of thermal stress, the two materials decompose faster as a mixture than individually. This effect is observed both in high-temperature thermal analysis experiments and in long-term thermal aging experiments. An Arrhenius plot of the 10% level of HMX decomposition by itself from a diverse set of experiments is linear from 120 to 260 C, with an apparent activation energy of 165 kJ/mol. Similar but less extensive thermal analysis data for the mixture suggests a slightly lower activation energy for the mixture, and an analogous extrapolation is consistent with the amount of gas observed in the long-term detonator aging experiments, which is about 30 times greater than expected from HMX by itself for 50 months at 100 C. Even with this acceleration, however, it would take {approx}10,000 years to achieve 10% decomposition at {approx}30 C. Correspondingly, negligible decomposition is predicted by this kinetic model for a few decades aging at temperatures slightly above ambient. This prediction is consistent with additional sealed-tube aging experiments at 100-120 C, which are estimated to have an effective thermal dose greater than that from decades of exposure to temperatures slightly above ambient.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.A.; Atkinson, P.F.; Hammond, E.C.,JR.

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important rolemore » in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.« less

  20. Model 'zero-age' lunar thermal profiles resulting from electrical induction

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.

  1. Thermal and Mechanical Testing of Neoprene Gloves Used in a Space Shuttle Microgravity Glove Box Experiment

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.

  2. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less

  3. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Nishiyama, Y.; Onizawa, K.

    2011-08-01

    The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% δ-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M 23C 6 type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  4. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  5. Investigation of mechanical properties of modern dental composites after artificial aging for one year.

    PubMed

    Hahnel, Sebastian; Henrich, Anne; Bürgers, Ralf; Handel, Gerhard; Rosentritt, Martin

    2010-01-01

    This in vitro study investigated the aging behavior of dental composites with regard to surface roughness (SR), Vickers hardness (VH) and flexural strength (FS), and the study elucidated the impact of artificial aging parameters. One hundred and sixty-five rectangular specimens were prepared from five composites (Filtek Supreme XT, Filtek Silorane, CeramX, Quixfil, experimental ormocer) and subjected to various artificial aging protocols (storage in distilled water/ethanol/artificial saliva for 7, 90 and 365 days; thermal cycling, 2 x 3000 cycles 5/55 degrees C). SR, VH and FS were determined at baseline and after each aging treatment. Means and standard deviations were calculated; statistical analysis was performed using three-way ANOVA and the Tukey-Kramer multiple comparison test (alpha=.05). The results showed a significant influence in the composite and aging duration on mechanical parameters; the aging medium did not have a significant influence on VH and FS, but there was a significant influence on SR. The highest overall VH was found for theexperimental ormocer; Filtek Silorane yielded the lowest values. For FS, the significantly highest values were found for Filtek Silorane, and the lowest values were found for the experimental ormocer. Prolonged aging periods (90 or 365 days) or thermal cycling led to significant decreases in both VH and FS and significant increases in SR. The findings of the current study indicate that composites differ significantly for SR and its mechanical properties with regard to FS and VH, as well as in aging behavior. Generally, artificial aging leads to a significant decrease in mechanical properties, which underlines the relevance of continuous improvement of dental composites.

  6. [sup 40]Ar/[sup 39]Ar mineral ages from southwestern Penobscot Bay, Maine: Evidence for Silurian metamorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, D.P. Jr.; Guidotti, C.V.; Lux, D.R.

    1992-01-01

    The nature and timing of metamorphic events in the Coastal Lithotectonic Block of Maine remain poorly understood. Immediately west and southwest of Penobscot Bay the rocks are polymetamorphic showing evidence for at least two episodes of amphibolite facies metamorphism and later, perhaps regionally extensive, retrograde events. Hornblende mineral separates from two amphibolites din the Port Clyde area have identical Ar-40/Ar-39 plateau ages of 414.0 [+-] 3.3 and 414.0 [+-] 3.9 Ma. These ages are interpreted to reflect the time of cooling following the last significant thermal event in this area. Biotite from an amphibolite in the Port Clyde area givesmore » a total gas age of 346.5 [+-] 3.2 Ma. Hornblende from an amphibolite 7 km to the west near Friendship gives a nearly concordant release spectrum with a plateau age of 369.0 [+-] 3.7 Ma. Coexisting biotite from this amphibolite gives a total gas age of 289.2 [+-] 2.7 Ma. Muscovite from the Waldoboro pluton has a nearly concordant release spectrum with a plateau age of 306.3 [+-] 2.2 Ma. Biotite from this sample gives a total gas age of 288.9 [+-] 2.2 Ma. The 414.0 Ma hornblende cooling ages from the Port Clyde area reflect cooling following a significant high grade Silurian thermal event. This Silurian metamorphism is the same age as tectonothermal events in the Nashoba Terrane in eastern Massachusetts, the Kingston Complex in southern New Brunswick, the Aspy Terrane in Cape Breton island, Nova Scotia, and the Hermitage Flexure in southern Newfoundland.d Thus a distinctive Silurian tectonothermal province located along the western edge of the Avalon Zone appears to extend discontinuously from Massachusetts to Newfoundland.« less

  7. Battery Pack Life Estimation through Cell Degradation Data and Pack Thermal Modeling for BAS+ Li-Ion Batteries. Cooperative Research and Development Final Report, CRADA Number CRD-12-489

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler

    Battery Life estimation is one of the key inputs required for Hybrid applications for all GM Hybrid/EV/EREV/PHEV programs. For each Hybrid vehicle program, GM has instituted multi-parameter Design of Experiments generating test data at Cell level and also Pack level on a reduced basis. Based on experience, generating test data on a pack level is found to be very expensive, resource intensive and sometimes less reliable. The proposed collaborative project will focus on a methodology to estimate Battery life based on cell degradation data combined with pack thermal modeling. NREL has previously developed cell-level battery aging models and pack-level thermal/electricalmore » network models, though these models are currently not integrated. When coupled together, the models are expected to describe pack-level thermal and aging response of individual cells. GM and NREL will use data collected for GM's Bas+ battery system for evaluation of the proposed methodology and assess to what degree these models can replace pack-level aging experiments in the future.« less

  8. Ozone and OH-induced oxidation of monoterpenes: Changes in the thermal properties of secondary organic aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Watne, Ågot K.; Westerlund, Jonathan; Hallquist, Åsa M.; Brune, William H.; Hallquist, Mattias

    2017-12-01

    The behaviour of secondary organic aerosols (SOA) in the atmosphere is highly dependent on their thermal properties. Here we investigate the volatility of SOA formed from alpha-pinene, beta-pinene and limonene upon ozone- and OH-induced oxidation, and the effect of OH-induced ageing on the initially produced SOA. For all three terpenes, the ozone-induced SOA was less volatile than the OH-induced SOA. The thermal properties of the SOA were described using three parameters extracted from the volatility measurements: the temperature at which 50 per cent of the volume has evaporated (TVFR0.5), which is used as a general volatility indicator; a slope factor (SVFR), which describes the volatility distribution; and TVFR0.1, which measures the volatility of the least volatile particle fraction. Limonene-derived SOA generally had higher TVFR0.5 values and shallower slopes than SOA derived from alpha- and beta-pinene. This was especially true for the ozone-induced SOA, partially because the ozonolysis of limonene has a strong tendency to cause SOA formation and to produce extremely low volatility VOCs (ELVOCs). Ageing by OH exposure did not reduce TVFR0.5 for any of the studied terpenes but did increase the breadth of the volatility distribution by increasing the aerosols heterogeneity and contents of substances with different vapour pressures, also leading to increases in TVFR0.1. This stands in contrast to previously reported results from smog chamber experiments, in which TVFR0.5 always increased with ageing. These results demonstrate that there are two opposing processes that influence the evolution of SOAs thermal properties as they age, and that results from both flow reactors and static chambers are needed to fully understand the temporal evolution of atmospheric SOA thermal properties.

  9. Impact of Thermal Aging on the Microstructure Evolution and Mechanical Properties of Lanthanum-Doped Tin-Silver-Copper Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad; Pesci, Raphaël; Cherkaoui, Mohammed

    2013-03-01

    An extensive study is made to analyze the impact of pure lanthanum on the microstructure and mechanical properties of Sn-Ag-Cu (SAC) alloys at high temperatures. Different compositions are tested; the temperature applied for the isothermal aging is 150°C, and aging times of 10 h, 25 h, 50 h, 100 h, and 200 h are studied. Optical microscopy with cross-polarized light is used to follow the grain size, which is refined from 8 mm to 1 mm for as-cast samples and is maintained during thermal aging. Intermetallic compounds (IMCs) present inside the bulk Sn matrix affect the mechanical properties of the SAC alloys. Due to high-temperature exposure, these IMCs grow and hence their impact on mechanical properties becomes more significant. This growth is followed by scanning electron microscopy, and energy-dispersive spectroscopy is used for elemental mapping of each phase. A significant refinement in the average size of IMCs of up to 40% is identified for the as-cast samples, and the coarsening rate of these IMCs is slowed by up to 70% with no change in the interparticle spacing. Yield stress and tensile strength are determined through tensile testing at 20°C for as-cast samples and after thermal aging at 150°C for 100 h and 200 h. Both yield stress and tensile strength are increased by up to 20% by minute lanthanum doping.

  10. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response.

    PubMed

    Perez, Felipe P; Zhou, Ximing; Morisaki, Jorge; Jurivich, Donald

    2008-04-01

    Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.

  11. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness

    NASA Technical Reports Server (NTRS)

    Seale, M. D.; Madaras, E. I.

    1999-01-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  12. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness.

    PubMed

    Seale, M D; Madaras, E I

    1999-09-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  13. SEM/EDX and vis spectrophotometry study of the stability of resin-bound mortars used for casting replicas and filling missing parts of historic stone fountains.

    PubMed

    Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza

    2003-04-01

    A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.

  14. Mechanical properties of 8Cr-2WVTa steel aged for 30 000 h

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Shinozuka, K.; Esaka, H.; Sugimoto, S.; Ishizawa, K.; Masamura, K.

    2000-12-01

    A mill production plate of a reduced activation ferritic steel was thermally aged for up to 30 000 h at 400-650°C. Charpy impact tests, creep rupture tests and hardness tests were conducted. Both Vickers hardness number and creep strength decrease with aging at 650°C. The ductile-brittle transition temperature (DBTT) increases with both aging time and aging temperature. However, the DBTT does not exceed +20°C even after aging at 650°C for 30 000 h. Extracted residues and extraction replicas were analyzed metallurgically. The increase in DBTT is related mainly to the precipitation of Laves phase on the prior austenite grain boundaries. The rather low DBTT after aging is caused by the fine prior austenitic grain size.

  15. Aging Effects on the Properties of Imidazolium-, Quaternary Ammonium-, Pyridinium-, and Pyrrolidinium-Based Ionic Liquids Used in Fuel and Energy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Elise B.; Smith, L. Taylor; Williamson, Tyler K.

    2013-11-21

    Ionic liquids (ILs) are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long-term aging effect of the temperature on these materials. Imizadolium-, quaternary ammonium-, pyridinium-, and pyrrolidnium-based ILs with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 h (15 weeks) at 200 °C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. Finally, it was found that the minor changes in the cation chemistry could greatlymore » affect the properties of the ILs over time.« less

  16. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  17. Thermal Harvesting Potential of the Human Body

    NASA Astrophysics Data System (ADS)

    Thielen, Moritz; Kara, Gökhan; Unkovic, Ivana; Majoe, Dennis; Hierold, Christofer

    2018-06-01

    Thermoelectric energy harvesting of human body heat might supplement or even replace conventional energy storage in wearable devices for healthcare and the Internet of Humans. Although a number of thermal harvesters are presented in the literature, no conclusive data can be found on the amount of available thermal energy provided by different individuals and activities. We here present the results of an observational study with 56 test subjects of different ages (children, adults and elderly) and gender, performing predefined activities (sitting, walking) in varying environments (indoor, outdoor). Our study showed a statistical difference of thermal potential and skin properties between age groups, but not between genders. On average, stationary elderly test subjects produced ˜ 32% less heat flux compared to minors (mean: children = 13.9 mW/cm2, adults = 11.4 mW/cm2, elderly = 9.4 mW/cm2). This potentially correlates with an increase in thermal skin resistance with age (children = 494 cm2 K/W, adults = 549 cm2 K/W, elderly = 835 cm2 K/W). The mean harvested power varied from 12.2 μW/cm2 (elderly) to 26.2 μW/cm2 (children) for stationary, and from 20.2 μW/cm2 (elderly) to 69.5 μW/cm2 (children) for active subjects inside of a building. The findings of this study can be used to better anticipate the available energy for different usage scenarios of thermal harvesters and optimize wearable systems accordingly.

  18. Thermal Harvesting Potential of the Human Body

    NASA Astrophysics Data System (ADS)

    Thielen, Moritz; Kara, Gökhan; Unkovic, Ivana; Majoe, Dennis; Hierold, Christofer

    2018-02-01

    Thermoelectric energy harvesting of human body heat might supplement or even replace conventional energy storage in wearable devices for healthcare and the Internet of Humans. Although a number of thermal harvesters are presented in the literature, no conclusive data can be found on the amount of available thermal energy provided by different individuals and activities. We here present the results of an observational study with 56 test subjects of different ages (children, adults and elderly) and gender, performing predefined activities (sitting, walking) in varying environments (indoor, outdoor). Our study showed a statistical difference of thermal potential and skin properties between age groups, but not between genders. On average, stationary elderly test subjects produced ˜ 32% less heat flux compared to minors (mean: children = 13.9 mW/cm2, adults = 11.4 mW/cm2, elderly = 9.4 mW/cm2). This potentially correlates with an increase in thermal skin resistance with age (children = 494 cm2 K/W, adults = 549 cm2 K/W, elderly = 835 cm2 K/W). The mean harvested power varied from 12.2 μW/cm2 (elderly) to 26.2 μW/cm2 (children) for stationary, and from 20.2 μW/cm2 (elderly) to 69.5 μW/cm2 (children) for active subjects inside of a building. The findings of this study can be used to better anticipate the available energy for different usage scenarios of thermal harvesters and optimize wearable systems accordingly.

  19. TiO2 nanoparticle induced space charge decay in thermal aged transformer oil

    NASA Astrophysics Data System (ADS)

    Lv, Yuzhen; Du, Yuefan; Li, Chengrong; Qi, Bo; Zhong, Yuxiang; Chen, Mutian

    2013-04-01

    TiO2 nanoparticle with good dispersibility and stability in transformer oil was prepared and used to modify insulating property of aged oil. It was found that space charge decay rate in the modified aged oil can be significantly enhanced to 1.57 times of that in the aged oil at first 8 s after polarization voltage was removed. The results of trap characteristics reveal that the modification of nanoparticle can not only greatly lower the shallow trap energy level in the aged oil but also increase the trap density, resulting in improved charge transportation via trapping and de-trapping process in shallower traps.

  20. Effect of geometry on thermal aging behavior of Celion/LARC-160 composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J.B.

    1987-12-01

    Laminates of Celion/LARC-160, fabricated in thicknesses from 4 to 16 ply and in unidirectional, x-ply and fabric ply configurations, were isothermally aged at temperatures of 204, 260 and 316 C for periods up to 15,000 hours. Weight-loss of the test panels was measured at selected intervals during aging. At the lower aging temperatures, it was observed that panel thickness and ply arrangement influenced the apparent stability: i.e., thicker panels degraded less than thin panels and unidirectional panels degraded less than x-ply or fabric reinforced panels. At higher aging temperatures, all panel configurations and thicknesses converged toward the same behavior.

  1. Thermal-electrical properties and resistance stability of silver coated yarns

    NASA Astrophysics Data System (ADS)

    Li, Yafang; Liu, Hao; Li, Xiaojiu

    2017-03-01

    Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.

  2. Dimensional-stability studies of candidate space-telescope mirror-substrate materials

    NASA Technical Reports Server (NTRS)

    Jerke, J. M.; Platt, R. J., Jr.

    1972-01-01

    The effects of aging, vacuum exposure, and thermal cycling on the dimensional stability of mirror-substrate materials, fused silica, Cer-Vit, Kanigen-coated beryllium, polycrystalline silicon, and U.L.E. fused silica were investigated. A multiple-beam interferometer was used to determine nonrecoverable surface-shape changes of the 12.7-cm-diameter mirrors with substrates of these materials. Thermal cycling and aging in vacuum produced the largest changes, but only a few were as large as 1/30 wavelength, where the wavelength was 632.8 nm.

  3. Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Bandfield, Joshua L.; Siegler, Matthew A.; Vasavada, Ashwin R.; Ghent, Rebecca R.; Williams, Jean-Pierre; Greenhagen, Benjamin T.; Aharonson, Oded; Elder, Catherine M.; Lucey, Paul G.; Paige, David A.

    2017-12-01

    We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10-4 W m-1 K-1 at the surface to 3.4 × 10-3 W m-1 K-1 at depths of 1 m, given density values of 1,100 kg m-3 at the surface to 1,800 kg m-3 at 1 m depth. On average, the scale height of these profiles is 7 cm, corresponding to a thermal inertia of 55 ± 2 J m-2 K-1 s-1/2 at 273 K, relevant to the diurnally active near-surface layer, 4-7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an 2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales <1 Gyr. Regional- and local-scale variations show prominent impact features <1 Gyr old, including higher thermal inertia (> 100 J m-2 K-1 s-1/2) in the interiors and ejecta of Copernican-aged impact craters and lower thermal inertia (< 50 J m-2 K-1 s-1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high-thermal inertia deposit near the antipode of Tycho crater.

  4. Thermal history and evolution of the Rio de Janeiro - Barbacena section of the southeastern Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Neri Gezatt, Julia; Stephenson, Randell; Macdonald, David

    2015-04-01

    The transect between the Brazilian cities of Rio de Janeiro and Barbacena (22°54'S, 43°12'W and 21°13'S, 43°46'W, respectively) runs through a segment of a complex range of N-NE/S-SW trending basement units of the Ribeira Belt and southern Sao Francisco Craton, intensely reworked during the Brasiliano-Pan-African orogenic cycle. The ortho- and paragneisses in the area have metamorphic ages between 650 and 540 Ma and are intruded by pre-, syn- and post-tectonic granitic bodies. The transect, perpendicular to the strike direction of the continental margin, crosses the Serra do Mar escarpment, where the sample density is higher in order to better constrain occasional significant age changes. For logistical reasons, the 40 samples collected were processed in two separate batches for apatite fission track (AFT) analysis. The first batch comprised 19 samples, from which 15 produced fission track ages. Analyses were carried out at University College London (UCL), following standard procedures. Preliminary results for the study show AFT ages between 85.9±6.3 and 54.1±4.2 Ma, generally with younger ages close to the coast and progressively older ages towards the continental interior. The highest area sampled, around the city of Teresopolis, ranges from 740 to 1216 m above sea level and shows ages between 85.9±6.3 and 71.3±5.3 Ma. There is no evident lithological or structural distribution control. Medium track length values range from 12.57 to 13.89 µm and distributions are unimodal. Thermal history modelling was done using software QTQt. Individual sample model cooling curves can be divided into two groups: a dominant one, showing a single, slower cooling trend, and a second one with a rapid initial cooling curve, which becomes less steep around 65 Ma. In both groups the maximum paleotemperatures are around 110 Ma. The thermal history model for the first batch of samples is compatible with a single cooling event for the area following continental rifting and formation of the Atlantic Ocean. The preliminary results add to the growing thermochronological data base for the southeastern Brazilian continental margin and to deciphering the complex evolution of the region, as well as to the knowledge about the development and evolution of divergent continental margins in general. In a regional setting, AFT ages from this study, though not broadly variant locally, are distinct from basement rock AFT ages for adjacent areas produced by other authors along the southeastern continental margin. Similar ages are found at the southern Bocaina Plateau, for example, where structural control of age distribution is evident. Such regional thermal age difference has been previously attributed to continental scale structural compartmentalization throughout the continental passive margin, related to Late Cretaceous and Cenozoic reactivation of the E-W fracture zones linked to rifting of the South Atlantic. The present AFT results are compatible with Late Cretaceous reactivation but show no relation with younger events.

  5. Thermal conductivity enhancement of nano-silver particles dispersed ethylene glycol based nanofluids

    NASA Astrophysics Data System (ADS)

    Khamliche, Touria; Khamlich, Saleh; Doyle, Terry B.; Makinde, Daniel; Maaza, Malik

    2018-03-01

    This contribution reports on the thermal conductivity enhancement of nano-silver particles (nAgPs) based nanofluids with various nAgPs’ shapes in view of their potential application in concentrated solar power systems. More accurately, the thermal conductivity behaviour of suspensions of nAgPs dispersed ethylene glycol (nAgPs:EG), prepared by a simple and cost effective chemical synthesis method, is compared with a theoretical prediction. The effect of aging time on the shape of the dispersed nAgPs was clearly observed by the structural, optical and morphological analysis. Spherically shaped and Ag nanowires (AgNWs) with high yields were observed when the nAgPs was aged for 1 and 5 h, respectively. The observed AgNWs showed high aspect ratio (≥200) when EG and polyvinylpyrrolidone (PVP) were used as reductant and structure-directing agents. The thermal conductivity measurements on nAgPs:EG nanofuids with different volume fractions of nAgPs were conducted in a temperature range 25 < T < 50 °C using a guarded hot plate (GHP) method. The thermal conductivity manifested a generally monotonic increase with temperature and an approximately linear relationship with the volume fraction of the nAgPs. Particularly, an enhancement of up to 23% was observed when the nanofluid was aged for 5 h and AgNWs were dominant.

  6. Antarctic polymict eucrite Yamato 792769 and the cratering record on the HED parent body

    NASA Technical Reports Server (NTRS)

    Bogard, D.; Nyquist, L.; Takeda, H.; Mori, H.; Aoyama, T.; Bansal, B.; Wiesemann, H.; Shih, C.-Y.

    1993-01-01

    Compared to most other Yamato polymict eucrites, Yamato Y792769 eucrite includes fewer and smaller eucritic clasts with homogenized pyroxenes, and its fine-grained matrix is shock-compacted and sintered. In this work, the relationships between the Antarctic eucrite Y792769, monomict eucrites, polymict eucrites, and isotopic ages are investigated, using results of Ar-39/Ar-40 method to date the time of the major thermal event on the Y792769 body and the Rb-Sr and Sm-Nd methods to determine whether relict older ages might have been preserved in some of the breccia materials. The Ar-39/Ar-40 time of the last thermal event which produced the Y792769 texture is 3.99 +/- 0.04 Ga. The complete resetting of the Ar-39/Ar-40 age is consistent with the texture of Y792769 observed in TEM, suggesting that shock compaction converted part of the matrix plagioclase to maskelynite. The Sm-Nd data give an age of 4.23 +/- 0.12 Ga, reflecting partial resetting of the Sm-Nd system during breccia formation. The 3.9 Ga Ar-39/Ar-40 age probably reflects a period of intense meteoroid bompardment which affected the entire inner solar system.

  7. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    DOE PAGES

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less

  8. Natto (fermented soybean) extract extends the adult lifespan of Caenorhabditis elegans.

    PubMed

    Ibe, Sachie; Kumada, Kaoru; Yoshida, Keiko; Otobe, Kazunori

    2013-01-01

    We investigated the effects of a water extract of natto on the aging of the nematode Caenorhabditis elegans. The water extract significantly prolonged the adult lifespan of the wild-type worms and rendered them resistant to oxidative and thermal stress. In addition, treatment with natto extract significantly delayed the accumulation of lipofuscin, a characteristic of aging cells. Our findings suggest that components of natto have a beneficial anti-aging effect in vivo.

  9. The Effect of Cooled Perches on Immunological Parameters of Caged White Leghorn Hens during the Hot Summer Months

    PubMed Central

    Strong, Rebecca A.; Hester, Patricia Y.; Eicher, Susan D.; Hu, Jiaying; Cheng, Heng-Wei

    2015-01-01

    The objective of this study was to determine if thermally cooled perches improve hen immunity during hot summer. White Leghorn pullets at 16 week of age were randomly assigned to 18 cages of 3 banks at 9 hens per cage. Each bank was assigned to 1 of the 3 treatments up to 32 week of age: 1) thermally cooled perches, 2) perches with ambient air, and 3) cages without perches. Hens were exposed to natural ambient temperatures from June through September 2013 in Indiana with a 4 h acute heat episode at 27.6 week of age. The packed cell volume, heterophil to lymphocyte (H/L) ratio, plasma concentrations of total IgG, and cytokines of interleukin-1β and interleukin-6, plus lipopolysaccharide-induced tumor necrosis factor-α factor were measured at both 27.6 and 32 week of age. The mRNA expressions of these cytokines, toll-like receptor-4, and inducible nitric oxide synthase were also examined in the spleen of 32 week-old hens. Except for H/L ratio, thermally cooled perches did not significantly improve currently measured immunological indicators. These results indicated that the ambient temperature of 2013 summer in Indiana (24°C, 17.1 to 33.1°C) was not high enough and the 4 h heat episode at 33.3°C (32 to 34.6°C) was insufficient in length to evoke severe heat stress in hens. However, cooled perch hens had a lower H/L ratio than both air perch hens and control hens at 27.6 week of age and it was still lower compared to control hens (P < 0.05, respectively) at 32 week of age. The lowered H/L ratio of cooled perch hens may suggest that they were able to cope with acute heat stress more effectively than control hens. Further studies are needed to evaluate the effectiveness of thermally cooled perches on hen health under higher ambient temperatures. PMID:26495988

  10. Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034

    NASA Astrophysics Data System (ADS)

    Nyquist, Laurence E.; Shih, Chi-Yu; McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Peng, Zhan X.; Burger, Paul V.; Agee, Carl B.

    2016-03-01

    The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm-143Nd and 146Sm-142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45 Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56 Ga and U-Pb ages of phosphates at about 1.35-1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.

  11. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizesmore » Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.« less

  12. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  13. Durability of crosslinked polydimethylsyloxanes: the case of composite insulators

    NASA Astrophysics Data System (ADS)

    Delor-Jestin, Florence; Tomer, Namrata S.; Pal Singh, Raj; Lacoste, Jacques

    2008-04-01

    Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material.

  14. Nb-Base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Hoelzer, David T.; Zinkle, Steven J.

    2009-04-01

    The proposed uses of fission reactors for manned or deep space missions have typically relied on the potential use of refractory metal alloys as structural materials. Throughout the history of these programs, a leading candidate has been Nb-1Zr, due to its good fabrication and welding characteristics. However, the less-than-optimal creep resistance of this alloy has encouraged interest in the more complex FS-85 (Nb-28Ta-10W-1Zr) alloy. Despite this interest, only a relatively small database exists for the properties of FS-85. Database gaps include the potential microstructural instabilities that can lead to mechanical property degradation. In this work, changes in the microstructure and mechanical properties of FS-85 were investigated following 1100 hours of thermal aging at 1098, 1248, and 1398 K. The changes in electrical resistivity, hardness, and tensile properties between the as-annealed and aged materials are compared. Evaluation of the microstructural changes was performed through optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The development of intragranular and grain-boundary precipitation of Zr-rich compounds as a function of aging temperature was followed. Brittle tensile behavior was measured in the material aged at 1248 K, while ductile behavior occurred in samples aged above and below this temperature. The effect of temperature on the under- and overaging of the grain-boundary particles is believed to have contributed to the mechanical property behavior of the aged materials.

  15. Subduction of Young Lithosphere at Critical Thermal Ages (10-20 Ma): Incites From Thermal Models and the Trans-Mexican Subduction System with Emphasis on the Importance of Slab Travel Times

    NASA Astrophysics Data System (ADS)

    Grose, C. J.

    2007-12-01

    The Trans-Mexican Volcanic Belt (TMVB) is a system where the age range of subducting plates is typically thought of as critical in their relation to lithospheric thermal structure (~10-20 Ma). I refer to this age range as "critical" because it is in this range where thermal lithospheres begin to rapidly decrease their correlative influence on the thermal state of the subduction system above the crust/mantle wedge interface for most systems. After ~20 Ma the cool upper portion of downgoing lithosphere becomes sufficiently thick so that crustal reheating and corresponding heat flow in the time between trench subduction and the zone of melt generation, due to the accumulation of conductive and frictional heating, behaves somewhat similarly with little regard to age. Typical slab travel times are on the order of 1.5-2.5 My. However, low dip angles and flat-slab behavior in the Eastern end of the TMVB facilitates anomalously long travel times exceeding 6.5 My! Here I show that while the influence of plate age is clearly significant in determining the holistic thermal geodynamics of subduction systems, the influence can be dampened or enhanced by auxiliary factors. I present thermal modeling cases using a solution for the conduction of heat into an evolving semi-infinite half-space with variable boundary conditions. Preliminary results indicate that extraordinary slab travel times and flat-slab behavior, mantle wedge advection regimes, and plate age thermally enhance and dampen each other. Geochemically, the TMVB shows consistent along-arc changes in light element abundance systematics (B/Be, Li/Yb, Be/Zr). Moderately elevated B/Be (Easterly increases from ~4 to ~12 ppm B/Be) observed in the eastern shallow subduction region is thought to correlate with subduction of an older, cooler portion of the slab. However, greater slab travel times in the Eastern TVMB should simultaneously act to warm the slab and depreciate these values which may partly explain the minimal consistency and magnitude of the TMVB along-arc variations. Li/Yb has a more impressive range of correlative along-arc variation, argued to be the result of greater extents of melting in the east. This can be explained by increased dehydration melting (due to a cooler slab and longer H20 residence times in the slab), a warmer slab affect, or changes in the mean depth of amphibole and garnet crystallization. While elevated B and B/Be values in the eastern TMVB correlate with increased hydration melting, it is likely that the affect is dampened by the positive thermal affects of greater travel times. Comparison to arc rocks in subduction further to the east in Central America, particularly Guatemala, whose B abundance and B/Be ratios are much more elevated (20-70 ppm B/Be) and show convergence on those in the Eastern TMVB. I suggest that the minimal range of B/Be variation seen in the TMVB arc is a result of the extraordinary slab travel times associated with shallow subduction in the eastern TMVB. Furthermore, similar to the B/Be data, the depleted Li/Yb (relative to the rifting region encompassing the Jalisco block) of the Eastern end also continues to converge on values represented in the Central American arc, indicating that the strong variations seen in the TMVB are primarily due to crystallization instead of extents of melting. Thermal modeling results presented here show that sources aside from plate age are capable and likely have influenced the systematic correlations observed in the TMVB and this hypothesis is consistent with the LREE data.

  16. Optoelectronic oscillator with improved phase noise and frequency stability

    NASA Astrophysics Data System (ADS)

    Eliyahu, Danny; Sariri, Kouros; Taylor, Joseph; Maleki, Lute

    2003-07-01

    In this paper we report on recent improvements in phase noise and frequency stability of a 10 GHz opto-electronic oscillator. In our OEO loop, the high Q elements (the optical fiber and the narrow bandpass microwave filter) are thermally stabilized using resistive heaters and temperature controllers, keeping their temperature above ambient. The thermally stabilized free running OEO demonstrates a short-term frequency stability of 0.02 ppm (over several hours) and frequency vs. temperature slope of -0.1 ppm/°C (compared to -8.3 ppm/°C for non thermally stabilized OEO). We obtained an exceptional spectral purity with phase noise level of -143 dBc/Hz at 10 kHz of offset frequency. We also describe the multi-loop configuration that reduces dramatically the spurious level at offset frequencies related to the loop round trip harmonic frequency. The multi-loop configuration has stronger mode selectivity due to interference between signals having different cavity lengths. A drop of the spurious level below -90 dBc was demonstrated. The effect of the oscillator aging on the frequency stability was studied as well by recording the oscillator frequency (in a chamber) over several weeks. We observed reversal in aging direction with logarithmic behavior of A ln(B t+1)-C ln(D t+1), where t is the time and A, B, C, D are constants. Initially, in the first several days, the positive aging dominates. However, later the negative aging mechanism dominates. We have concluded that the long-term aging behavioral model is consistent with the experimental results.

  17. Evidence for differences in the thermal histories of Antarctic and non-Antarctic H chondrites with cosmic-ray exposure ages less than 20 Ma

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G.; Benoit, Paul; Batchelor, J. David

    1991-01-01

    Antarctic H chondrites show a different range of induced thermoluminescence properties compared with those of H chondrites that have fallen elsewhere in the world. Recent noble gas data of Schultz et al. (1991) show that this difference is displayed most dramatically by meteorites with cosmic-ray exposure ages less than 20 Ma, and they confirm that the differences cannot be attributed to weathering or to the presence of a great many fragments of an unusual Antarctic meteorite. Annealing experiments on an H5 chondrite, and other measurements on a variety of ordinary chondrites, have shown that induced TL properties are sensitive to the thermal histories of the meteorities. It is concluded that the events(s) that released the less than 20 Ma samples, which are predominantly those with exposure ages of 8 + or - 2 Ma, produced two groups with different thermal histories, one that came to earth several 100,000 years ago and that are currently only found in Antarctica, and one that is currently falling on the earth.

  18. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10 19 ions/m 2 at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.« less

  19. Simultaneous Thermal and Gamma Radiation Aging of Electrical Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.

    The polymers used for insulation in nuclear power plant electrical cables are susceptible to aging during long term operation. Elevated temperature is the primary contributor to changes in polymer structure that result loss of mechanical and electrical properties, but gamma radiation is also a significant source of degradation for polymers used within relevant plant locations. Despite many years of polymer degradation research, the combined effects of simultaneous exposure to thermal and radiation stress are not well understood. As nuclear operators contemplate and prepare for extended operations beyond initial license periods, a predictive understanding of exposure-based cable material degradation is becomingmore » an increasingly important input to safety, licensing, operations and economic decisions. We are focusing on carefully-controlled simultaneous thermal and gamma radiation accelerating aging and characterization of the most common nuclear cable polymers to understand the relative contributions of temperature, time, dose and dose rate to changes in cable polymer material structure and properties. Improved understanding of cable performance in long term operation will help support continued sustainable nuclear power generation.« less

  20. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    PubMed

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  1. Thermal stresses, differential subsidence, and flexure at oceanic fracture zones

    NASA Technical Reports Server (NTRS)

    Wessel, Pal; Haxby, William F.

    1990-01-01

    Geosat geoid undulations over four Pacific fracture zones have been analyzed. After correcting for the isostatic thermal edge effect, the amplitudes of the residuals are shown to be proportional to the age offset. The shape of the residuals seems to broaden with increasing age. Both geoid anomalies and available ship bathymetry data suggest that slip must sometimes occur on the main fracture zone or secondary faults. Existing models for flexure at fracture zones cannot explain the observed anomalies. A combination model accounting for slip and including flexure from thermal stresses and differential subsidence is presented. This model accounts for lateral variations in flexural rigidity from brittle and ductile yielding due to both thermal and flexural stresses and explains both the amplitudes and the shape of the anomalies along each fracture zone. The best fitting models have mechanical plate thicknesses that are described by the depth to the 600-700 C isotherms.

  2. Characterization of microstructural, mechanical and thermophysical properties of Th-52U alloy

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Kaity, S.; Kumar, R.; Banerjee, J.; Roy, S. B.; Chaudhari, G. P.; Daniel, B. S. S.

    2016-11-01

    Th-52 wt.% U alloy has a microstructure featuring interspersed networks of uranium rich and thorium rich phases. Room temperature hardness of the alloy is more than twice that of unalloyed thorium. The alloy age hardens (550 °C) only slightly (peak hardness/hardness of solution heated and quenched = 1.05). Room temperature thermal conductivity (25.6 W m-1 °C-1) is close to that of uranium and most of the binary and ternary metallic alloy fuel materials. Average linear coefficient of thermal expansion (CTE) of Th-52 wt.% U alloy [11.2 × 10-06 °C-1 (27-290 °C) and 16.75 × 10-06 °C-1 (27-600 °C)] are comparable with that of many metallic alloy fuel candidates. Th-52 wt.% U alloy with non-age hardenable microstructure, appreciable thermal conductivity, moderate thermal expansion may find metallic fuel applications in nuclear reactors.

  3. Effect of aging at 1040 C (1900 F) on the ductility and structure of a tantalum alloy, T-111

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Stephens, J. R.

    1972-01-01

    The post-aging embrittlement of T-111 (tantalum - 8-percent tungsten - 2-percent hafnium) following exposure for up to about 10,000 hours at 1040 C in either vacuum or liquid lithium was investigated for sheet and tubing samples. This thermal aging was shown to greatly increase the sensitivity of T-111 to hydrogen embrittlement during subsequent room temperature specimen processing or testing. The hydrogen embrittlement problem can be avoided by preventing exposure to the T-111 to moisture during post-aging processing or testing. Aging at 1040 C also resulted in formation of HfO2 particles at grain boundaries, which may contribute to the observed embrittlement.

  4. Influence of thermal stimulation during the late phase of incubation on hatching results and post-hatch broiler performance under commercial conditions.

    PubMed

    Elmehdawi, A S; Hall, M A; Skewes, P A; Wicker, D L; Maurice, D V

    2016-12-01

    Two experiments, which differed in breeder age, strain and season, were conducted to study the influence of low-intensity, short-duration thermal stimuli during the late phase of incubation on hatchability and performance. The first experiment conducted in April-June used eggs from Cobb × Ross broiler breeders at 35-41 weeks of age and the second experiment performed in February-April used eggs from Hubbard × Cobb broiler breeders at 49-53 weeks of age. Eggs in the test group had the same physical environment as eggs in the control group except that incubation temperature was increased by 1˚C for 2 h/d above the control group from 18 to 20 d of incubation (DI). The results demonstrated that thermal stimulation of 1˚C for 2 h/d above control incubation temperature during 18-21DI did not have any adverse effects on hatch and post-hatch performance of broilers. In both experiments, treatment did not significantly alter the secondary sex ratio in hatched chickens, but hatch residue showed that the proportion of unhatched male embryos was significantly lower in the test groups than in the control groups. In the first experiment, thermal stimulation improved feed conversion by 1.82% compared with the control.

  5. Ageing of a neutron shielding used in transport/storage casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nizeyiman, Fidele; Alami, Aatif; Issard, Herve

    2012-07-11

    In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.

  6. Thermal Energy Storage in Phase Change Material.

    DTIC Science & Technology

    1982-03-01

    Graphs of the exnerimental results follow: tney are groupea in the tree categories: tube cross flow, ricked bed, and tube parallel flow. A. Tube Cross... Riordan , Michael, "Thermal Storage: A Rtsic Guile to the Ptate of the Art", Solar Age, Aril, 1978, P. 10. 5. Telkes, Maria, "Thermal Lner y Storage in

  7. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Brunklaus, Gunther; Krafft, Roman; Börner, Markus; Risthaus, Tim; Winter, Martin; Schappacher, Falko M.

    2016-12-01

    The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.

  8. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  9. Microstructure and Aging of Powder-Metallurgy Al Alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  10. Accelerated aging: prediction of chemical stability of pharmaceuticals.

    PubMed

    Waterman, Kenneth C; Adami, Roger C

    2005-04-11

    Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.

  11. Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations

    PubMed Central

    Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.

    2014-01-01

    In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646

  12. The unified mechanism of aging effects in both martensite and parent phase for shape-memory alloys: atomic-level simulations

    NASA Astrophysics Data System (ADS)

    Deng, J.; Ding, X.; Suzuki, T.; Otsuka, K.; Lookman, T.; Saxena, A.; Sun, J.; Ren, X.

    2011-03-01

    Most shape-memory alloys (SMAs) subject to the aging effects not only in the martensite phase but also in the parent phase. These aging effects have been attracted much attention as they strongly affect the practical applications of SMAs. So far, the intrinsic mechanism of them has remained controversial due to the difficulty in visualization of what happens in atomic scale. In the present study, by using a combination of molecular dynamics method and Monte-Carlo method [1], we investigate the aging effects in both martensite and parent phase. We successfully reproduced the thermal behaviors of aging effects for SMAs, i.e., the Af temperature increase with aging time in martensite and the Ms temperature decrease with aging time in parent phase, which keep good agreement with the experimental observations [2]. In addition, quantitative analysis of the atomic configurations during aging reveals that the aging effects are not associated with a change in the average structure.

  13. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  14. The Damage Law of HTPB Propellant under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-wu; Yang, Jian-hong; Wang, Xian-meng; Ma, Yong-kang

    2016-01-01

    By way of measuring the acoustic emission (AE) signals of Hydroxyl-terminated polybutadiene (HTPB) propellant in condition of uniform speed, and combined with the scanning electron microscopy (SEM) fracture surface observation, the damage law of HTPB composite solid propellant under thermomechanical loading was studied. The results show that the effects of thermomechanical loading on HTPB propellant are related to the time and can be divided into three different stages. In the first stage, thermal air aging dominates; in the second stage, interface damage is dominant; and in the third stage, thermal air aging is once again dominant.

  15. Influence of aging on thermal and vibratory thresholds of quantitative sensory testing.

    PubMed

    Lin, Yea-Huey; Hsieh, Song-Chou; Chao, Chi-Chao; Chang, Yang-Chyuan; Hsieh, Sung-Tsang

    2005-09-01

    Quantitative sensory testing has become a common approach to evaluate thermal and vibratory thresholds in various types of neuropathies. To understand the effect of aging on sensory perception, we measured warm, cold, and vibratory thresholds by performing quantitative sensory testing on a population of 484 normal subjects (175 males and 309 females), aged 48.61 +/- 14.10 (range 20-86) years. Sensory thresholds of the hand and foot were measured with two algorithms: the method of limits (Limits) and the method of level (Level). Thresholds measured by Limits are reaction-time-dependent, while those measured by Level are independent of reaction time. In addition, we explored (1) the correlations of thresholds between these two algorithms, (2) the effect of age on differences in thresholds between algorithms, and (3) differences in sensory thresholds between the two test sites. Age was consistently and significantly correlated with sensory thresholds of all tested modalities measured by both algorithms on multivariate regression analysis compared with other factors, including gender, body height, body weight, and body mass index. When thresholds were plotted against age, slopes differed between sensory thresholds of the hand and those of the foot: for the foot, slopes were steeper compared with those for the hand for each sensory modality. Sensory thresholds of both test sites measured by Level were highly correlated with those measured by Limits, and thresholds measured by Limits were higher than those measured by Level. Differences in sensory thresholds between the two algorithms were also correlated with age: thresholds of the foot were higher than those of the hand for each sensory modality. This difference in thresholds (measured with both Level and Limits) between the hand and foot was also correlated with age. These findings suggest that age is the most significant factor in determining sensory thresholds compared with the other factors of gender and anthropometric parameters, and this provides a foundation for investigating the neurobiologic significance of aging on the processing of sensory stimuli.

  16. Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki

    2011-02-01

    Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.

  17. Age-related effects of heat stress on protective enzymes for peroxides and microsomal monooxygenase in rat liver.

    PubMed Central

    Ando, M; Katagiri, K; Yamamoto, S; Wakamatsu, K; Kawahara, I; Asanuma, S; Usuda, M; Sasaki, K

    1997-01-01

    To evaluate the age-related response of essential cell functions against peroxidative damage in hyperthermia, we studied the biochemical response to heat stress in both young and aged rats. Passive hyperthermia was immediately observed in rats after exposure to hot environments. In aged rats, the rectal temperature maintained thermal homeostasis and increased to the same degree as in young rats. In these aged animals, the damage from heat stress was more serious than in young animals. In aged rats under normal environmental conditions, hepatic cytosolic glutathione peroxidase (GSH peroxidase) activities were markedly higher than those activities in younger rats. Hepatic cytosolic GSH peroxidase activities were induced by heat stress in young rats but were decreased by hot environments in aged rats. Hepatic catalase activities in young rats were not affected by hot environments, whereas in aged rats, hepatic catalase activities were seriously decreased. Catalase activities in the kidney of aged rats were also reduced by hot environments. Lipid peroxidation in the liver was markedly induced in both young and aged rats. Because the protective enzymes for oxygen radicals in aged rats were decreased by hot environments, lipid peroxidation in the liver was highly induced. In aged rats, lipid peroxidation in intracellular structures such as mitochondria and microsomes was also markedly induced by hot environments. In both young and aged rats, hyperthermia greatly increased the development of hypertrophy and vacuolated degeneration in hepatic cells. In aged rats, both mitochondria and endoplasmic reticulum of the hepatic cells showed serious distortion in shape as a result of exposures to hot environments. Microsomal electron transport systems, such as cytochrome P450 monooxygenase activities, were seriously decreased by heat stress in aged rats but not in young rats. Although the mitochondrial electron transport systems were not affected by acute heat stress in young rats, their activities were simultaneously inhibited after long-lasting heat exposure. In isolated hepatic cells and polymorphonuclear leukocytes in animals, the 70-kDa heat shock-induced proteins were markedly increased by heat stress. In conclusion, the heat stress-inducible oxygen radical damage becomes more severe according to the age of rats. Because aging and hyperthermia have a synergistic effect on lipid peroxidation, protective enzyme activities for oxygen radicals may be essential for surviving and recovering from thermal injury in aged animals and also in humans. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. Figure 4. Figure 5. Figure 6. A Figure 6. B Figure 7. A Figure 7. B PMID:9294719

  18. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  19. Effect of Aging Treatment on the Compressibility and Recovery of NiTi Shape Memory Alloys as Static Seals

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Li, Gang; Liu, Luwei; Zhu, Xiaolei; Tu, Shan-Tung

    2017-07-01

    The improvement of the compressibility and recovery of the gaskets can decrease the leakage occurrence in bolted flange connections. In this study, the effect of aging treatment on the compressibility and recovery of NiTi shape memory alloys is investigated as static seals together with thermal analysis. The experimental results indicate that different phase transformations of NiTi alloys are exhibited in the DSC curves during aging treatment. The recovery coefficient of NiTi alloys aged at 500 °C for 2 h is quite low accompanied with a large residual strain. With increasing aging time at the aging temperature of 400 °C, the residual strain and area of hysteresis loop of NiTi alloys are both increased, whereas the recovery coefficient is decreased. Since the deformation associates the phase transformation behavior, aging treatment could improve the compressibility and recovery of NiTi alloys as static seals.

  20. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U-Pb study

    USGS Publications Warehouse

    Dalrymple, G.B.; Grove, M.; Lovera, O.M.; Harrison, T.M.; Hulen, J.B.; Lanphere, M.A.

    1999-01-01

    Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yield 207Pb/206Pb vs. 238U/206Pb concordia ages ranging from 1.13 ?? 0.04 Ma to 1.25 ?? 0.04 (1??) Ma. The weighted mean of the U/Pb model ages is 1.18 ?? 0.03 Ma. The U-Pb ages coincide closely with 40Ar/39Ar age spectrum plateau and 'terminal' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350??C by ~0.9-1.0 Ma. Interpretation of the feldspar 40Ar/39Ar age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350??to 300??C between 1.0 and 0.4 Ma or transitory reheating to 300-350??C at about 0.4-0.6 Ma. Subsequent rapid cooling to below 260??C between 0.4 and 0.2 Ma is in agreement with previous proposals that vapor-dominated conditions were initiated within the hydrothermal system at this time. Heat flow calculations constrained with K-feldspar thermal histories and the present elevated regional heat flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2 to 0.6 Ma.

  1. Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Gemignani, Lorenzo; van der Beek, Peter

    2018-03-01

    One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i.e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes.

  2. Kevlar 49/Epoxy COPV Aging Evaluation

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  3. Unraveling the Age Hardening Response in U-Nb Alloys

    DOE PAGES

    Hackenberg, Robert Errol; Hemphill, Geralyn M. Sewald; Forsyth, Robert Thomas; ...

    2016-11-15

    Complicating factors that have stymied understanding of uranium-niobium’s aging response are briefly reviewed, including (1) niobium inhomogeneity, (2) machining damage effects on tensile properties, (3) early-time transients of ductility increase, and (4) the variety of phase transformations. A simple Logistic-Arrhenius model was applied to predict yield and ultimate tensile strengths and tensile elongation of U-4Nb as a function of thermal age. Lastly, fits to each model yielded an apparent activation energy that was compared with phase transformation mechanisms.

  4. SHRIMP U-Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions. Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain

    NASA Astrophysics Data System (ADS)

    Díaz Alvarado, Juan; Fernández, Carlos; Castro, Antonio; Moreno-Ventas, Ignacio

    2013-08-01

    This work shows the results of a U-Pb SHRIMP zircon geochronological study of the central part of the Gredos massif (Spanish Central System batholith). The studied batholith is composed of several granodiorite and monzogranite tabular bodies, around 1 km thick each, intruded into partially molten pelitic metasediments. Granodiorites and monzogranites, belonging to three distinct intrusive bodies, and samples of anatectic leucogranites have been selected for SHRIMP U-Pb zircon geochronology. Distinct age groups, separated by up to 20 Ma, have been distinguished in each sample. Important age differences have also been determined among the most representative age groups of the three analyzed granitoid bodies: 312.6 ± 2.8 Ma for the Circo de Gredos Bt-granodiorites (floor intrusive layer), 306.9 ± 1.5 Ma for the Barbellido-Plataforma granitoids (top intrusive layer) and 303.5 ± 2.8 Ma for Las Pozas Crd-monzogranites (middle intrusive layer). These age differences are interpreted in terms of sequential emplacement of the three intrusive bodies, contemporary with the Late Paleozoic D3 deformation phase. The anatectic leucogranites are coeval to slightly younger than the adjacent intrusive granodiorites and monzogranites (305.4 ± 1.6 Ma for Refugio del Rey leucogranites and 303 ± 2 Ma for migmatitic hornfelses). It is suggested that these anatectic magmas were generated in response to the thermal effects of granodiorite intrusions. Thermal modeling with COMSOL Multiphysics® reveals that sequential emplacement was able to keep the thermal conditions of the batholith around the temperature of zircon crystallization in granitic melts (around 750 °C) for several million of years, favoring the partial melting of host rocks and the existence of large magma chambers composed of crystal mush prone to be rejuvenated after new intrusions.

  5. Summary Report of Cable Aging and Performance Data for Fiscal Year 2014.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celina, Mathias C.; Celina, Mathias C.; Redline, Erica Marie

    2014-09-01

    As part of the Light Water Reactor Sustainability Program, science - based engineering approaches were employed to address cable degradation behavior under a range of exposure environments. Experiments were conducted with the goal to provide best guidance for aged material states, remaining life and expected performance under specific conditions for a range of cable materials. Generic engineering tests , which focus on rapid accelerated aging and tensile elongation , were combined with complementar y methods from polymer degradation science. Sandia's approach, building on previous years' efforts, enabled the generation of some of the necessary data supporting the development of improvedmore » lifetime predictions models, which incorporate known material b ehaviors and feedback from field - returned 'aged' cable materials. Oxidation rate measurements have provided access to material behavior under low dose rate thermal conditions, where slow degradation is not apparent in mechanical property changes. Such da ta have shown aging kinetics consistent with established radiati on - thermal degradation models. ACKNOWLEDGEMENTS We gratefully acknowledge ongoing technical support at the LICA facility and extensive sample handling provided by Maryla Wasiolek and Don Hans on. Sam Durbin and Patrick Mattie are recognized for valuable guidance throughout the year and assistance in the preparation of the final report. Doug Brunson is appreciated for sample analysis, compilation and plotting of experimental data.« less

  6. Evaluation of the effect of organic pro-degradant concentration in polypropylene exposed to the natural ageing

    NASA Astrophysics Data System (ADS)

    Montagna, L. S.; Catto, A. L.; Rossini, K.; Forte, M. M. C.; Santana, R. M. C.

    2014-05-01

    The production and consumption of plastics in the last decade has recorded a remarkable increase in the scientific and industrial interest in environmentally degradable polymer (EDPs). Polymers wastes are deposited improperly, such as dumps, landfills, rivers and seas, causing a serious problem by the accumulation in the environment. The abiotic processes, like the photodegradation, are the most efficient occurring in the open environmental, where the polymers undergo degradation from the action of sunlight that result from direct exposure to solar radiation, however depend of the type of chemical ageing, which is the principal component of climatic ageing. The subject of this work is to study the influence of concentration of organic pro-degradant (1, 2 and 3 % w/w) in the polypropylene (PP) exposed in natural ageing. PP samples with and without the additive were processed in plates square form, obtained by thermal compression molding (TCM) using a press at 200°C under 2 tons for 5 min, and then were exposed at natural ageing during 120 days. The presence of organic additive influenced on PP degradability, this fact was assessed by changes in the thermal and morphology properties of the samples after 120 days of natural ageing. Scanning Electronic Microscopy (SEM) results of the morphological surface of the modified PP samples showed greater degradation photochemical oxidative when compared to neat PP, due to increase of rugosity and formation of microvoids. PP samples with different pro-degradant concentration under natural ageing presented a degree of crystallinity, obtained by Differential Scanning Calorimeter (DSC) increases in comparing the neat PP.

  7. Effects of post-reflow cooling rate and thermal aging on growth behavior of interfacial intermetallic compound between SAC305 solder and Cu substrate

    NASA Astrophysics Data System (ADS)

    Hu, Xiaowu; Xu, Tao; Jiang, Xiongxin; Li, Yulong; Liu, Yi; Min, Zhixian

    2016-04-01

    The interfacial reactions between Cu and Sn3Ag0.5Cu (SAC305) solder reflowed under various cooling rates were investigated. It is found that the cooling rate is an important parameter in solder reflow process because it influences not only microstructure of solder alloy but also the morphology and growth of intermetallic compounds (IMCs) formed between solder and Cu substrate. The experimental results indicate that only scallop-like Cu6Sn5 IMC layer is observed between solder and Cu substrate in case of water cooling and air cooling, while bilayer composed of scallop-like Cu6Sn5 and thin layer-like Cu3Sn is detected under furnace cooling due to sufficient reaction time to form Cu3Sn between Cu6Sn5 IMC and Cu substrate which resulted from slow cooling rate. Samples with different reflow cooling rates were further thermal-aged at 423 K. And it is found that the thickness of IMC increases linearly with square root of aging time. The growth constants of interfacial IMC layer during aging were obtained and compared for different cooling rates, indicating that the IMC layer thickness increased faster in samples under low cooling rate than in the high cooling rate under the same aging condition. The long prismatic grains were formed on the existing interfacial Cu6Sn5 grains to extrude deeply into solder matrix with lower cooling rate and long-term aging, and the Cu6Sn5 grains coarsened linearly with cubic root of aging time.

  8. Nanoindentation on SnAgCu lead-free solder joints and analysis

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.

    2006-12-01

    The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.

  9. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    NASA Astrophysics Data System (ADS)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  10. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  11. Elastically driven intermittent microscopic dynamics in soft solids

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela

    2017-06-01

    Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.

  12. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  13. Chemical and mineralogical characterization of archaeologicam building materials from Seyitomer Hoyuk Kutahya, Turkey.

    NASA Astrophysics Data System (ADS)

    Bilgen, Nejat; Olgun, Asim

    This paper focuses on the spectroscopic and thermal analysis of the archaeological samples of mortar and plaster from middle Bronze Age and Achaemenid period in Seyitömer Höyük. The composition of the samples was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric thermal analysis (TG-DTA). The results showed that human used different types of raw materials in the preperation of the mortar and plaster in the Middle Bronze Age and Achaemenid period. The material used in middle Bronze Age contains muscovite whereas the material in Achaemenid period contains albite. Although, the chemical composition of the mortar and plaster used in the period were similar, the calcium content of the plaster is relatively higher than the one of the mortar indicating people's awareness of the binding properties of calcite.

  14. Mechanistic insights into lithium ion battery electrolyte degradation - a quantitative NMR study.

    PubMed

    Wiemers-Meyer, S; Winter, M; Nowak, S

    2016-09-29

    The changes in electrolyte composition on the molecular level and the reaction mechanisms of electrolyte degradation upon thermal aging are monitored by quantitative NMR spectroscopy, revealing similar rates of degradation for pristine and already aged electrolytes. The data analysis is not in favor of an autocatalytic reaction mechanism based on OPF 3 but rather indicates that the degradation of LiPF 6 in carbonate based solvents proceeds via a complex sequence of "linear" reactions rather than a cyclic reaction pattern which is determined by the amount of water present in the samples. All investigated electrolytes are reasonably stable at temperatures of up to 60 °C in the presence of minor amounts or absence of water hence indicating that chemical instability of electrolyte components against water is decisive for degradation and an increase in temperature ("thermal aging") just accelerates the degradation impact of water.

  15. Thermoluminesence Properties and Ages along the Stony Creek, Hanging Wall of Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Nishikawa, O.; Theeraporn, C.; Takashima, I.; Shigematsu, N.; Little, T. A.; Boulton, C. J.

    2015-12-01

    The Alpine Fault, New Zealand is an oblique slip thrust with significantly high slip rate, and its dip-slip component causes the rapid uplift of the Southern Alps and the extremely high geothermal gradient in it. Thermoluminescence (TL) dating is a method using the phenomenon that energy accumulated in the crystal from radiation of surrounding radioactive elements is reemitted in the form of light when heating the minerals. This method covers a wide range of age from 1,000 to 1,000,000 years, and has relatively low reset temperature for the accumulation of radiation dose. Therefore, TL dating is a feasible geochronometry for the reconstruction of the thermal history of the area with very high uplifting rate. In order to determine uplifting rates and their distribution in the Southern Alps adjacent to the Alpine fault, ten rock samples were collected for TL dating in the distance 1 km from main fault plane along the Stony Creek. All the samples commonly include quartz veins which are folded tightly or in isoclinal form parallel to the foliations. TL dating was performed using quartz grains separated from host rock. A widely ranging TL ages are obtained from the hanging wall of the fault. The rocks within 600m from present shear zone yield ages ranging from 55.2 ka to 88.8 ka, showing older ages with distance from shear zone. Within 600 m to 900 m from the fault, relatively younger ages, 54.7 to 34.4 ka are obtained. Assuming the thermal gradient of 10 °C /100 m and exhumation rate of 10 m / kyr, the zeroing depth and temperature of TL signals is estimated from 350 to 900 m and from 45 to 100 °C, respectively. The range of TL ages is very large amounted to 50,000 years in the narrow zone. This may be responsible for the variety of TL zeroing temperatures in the hanging wall rocks rather than disturbance of thermal structure and/or inhomogeneity of uplifting rate in this area. Annealing tests are necessary to clarify the real properties of TL for each sample tested.

  16. Timing and heat sources for the Barrovian metamorphism, Scotland

    NASA Astrophysics Data System (ADS)

    Viete, Daniel R.; Oliver, Grahame J. H.; Fraser, Geoff L.; Forster, Marnie A.; Lister, Gordon S.

    2013-09-01

    New SHRIMP U/Pb zircon ages of 472.2 ± 5.8 Ma and 471.2 ± 5.9 Ma are presented for the age of peak metamorphism of Barrovian migmatites. 40Ar/39Ar ages for white mica from the Barrovian metamorphic series are presented, and are recalculated using recently-proposed revisions to the 40K decay constants to allow more precise and accurate comparison with U/Pb ages. The 40Ar/39Ar ages are found to vary systematically with increasing metamorphic grade, between c. 465 Ma for the biotite zone and c. 461 Ma for the sillimanite zone. There is no evidence for any significant metamorphic heating during the first 15 Myr of the Grampian Orogeny (before c. 473 Ma) or the final 4 Myr (after c. 465 Ma). The Barrovian metamorphism occurred over a period of ~ 8 Myr within the ~ 27-Myr Grampian Orogeny. The Barrovian metamorphism records punctuated heating, was temporally and spatially associated with large-scale bimodal magmatism, and developed within crust that was not overthickened. The temporally distinct nature of the Barrovian metamorphic episode within the Grampian Orogeny, and its heating pattern and tectonic context, are not consistent with significant heat contribution from thermal equilibration of overthickened crust. Rather, the Barrovian metamorphism records a transient phase of crustal thermal disequilibrium during the Grampian Orogeny. Temporal and spatial association with Grampian bimodal magmatism is consistent with production of the Barrovian metamorphic series within the middle crust as the result of advection of heat from the lower crust and/or mantle. The Barrovian metamorphic series - the classic example of ‘orogenic regional metamorphism’ - did not form in response to crustal thickening and thermal relaxation, but appears to record large-scale contact metamorphism.

  17. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    NASA Astrophysics Data System (ADS)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  18. Thermal characterizations of a large-format lithium ion cell focused on high current discharges

    NASA Astrophysics Data System (ADS)

    Veth, C.; Dragicevic, D.; Merten, C.

    2014-12-01

    The thermal behavior of a large-format lithium ion cell has been investigated during measurements on cell and battery level. High current discharges up to 300 A are the main topic of this study. This paper demonstrates that the temperature response to high current loads provides the possibility to investigate internal cell parameters and their inhomogeneity. In order to identify thermal response caused by internal cell processes, the heat input due to contact resistances has been minimized. The differences between the thermal footprint of a cell during cell and battery measurements are being addressed. The study presented here focuses on the investigation of thermal hot and cold spots as well as temperature gradients in a 50 Ah pouch cell. Furthermore, it is demonstrated that the difference between charge and discharge can have significant influence on the thermal behavior of lithium ion cells. Moreover, the miscellaneous thermal characteristics of differently aged lithium ion cells highlight the possibility of an ex-situ non-destructive post-mortem-analysis, providing the possibility of a qualitative and quantitative characterization of inhomogeneous cell-aging. These investigations also generate excellent data for the validation and parameterization of electro-thermal cell models, predicting the distribution of temperature, current, potential, SOC and SOH inside large-format cells.

  19. Advanced Glycation End Products: Link between Diet and Ovulatory Dysfunction in PCOS?

    PubMed

    Garg, Deepika; Merhi, Zaher

    2015-12-04

    PCOS is the most common cause of anovulation in reproductive-aged women with 70% experiencing ovulatory problems. Advanced glycation end products are highly reactive molecules that are formed by non-enzymatic reactions of sugars with proteins, nucleic acids and lipids. AGEs are also present in a variety of diet where substantial increase in AGEs can result due to thermal processing and modifications of food. Elevation in bodily AGEs, produced endogenously or absorbed exogenously from high-AGE diets, is further exaggerated in women with PCOS and is associated with ovulatory dysfunction. Additionally, increased expression of AGEs as pro-inflammatory receptors in the ovarian tissue has been observed in women with PCOS. In this review, we summarize the role of dietary AGEs as mediators of metabolic and reproductive alterations in PCOS. Once a mechanistic understanding of the relationship between AGEs and anovulation is established, there is a promise that such knowledge will contribute to the subsequent development of targeted pharmacological therapies that will treat anovulation and improve ovarian health in women with PCOS.

  20. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam

    2018-05-01

    The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.

  1. Methodology for Estimating Thermal and Neutron Embrittlement of Cast Austenitic Stainless Steels During Service in Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Rao, A. S.

    2016-04-28

    Cast austenitic stainless steel (CASS) materials, which have a duplex structure consisting of austenite and ferrite phases, are susceptible to thermal embrittlement during reactor service. In addition, the prolonged exposure of these materials, which are used in reactor core internals, to neutron irradiation changes their microstructure and microchemistry, and these changes degrade their fracture properties even further. This paper presents a revision of the procedure and correlations presented in NUREG/CR-4513, Rev. 1 (Aug. 1994) for predicting the change in fracture toughness and tensile properties of CASS components due to thermal aging during service in light water reactors (LWRs) at 280–330more » °C (535–625 °F). The methodology is applicable to CF-3, CF-3M, CF-8, and CF-8M materials with a ferrite content of up to 40%. The fracture toughness, tensile strength, and Charpy-impact energy of aged CASS materials are estimated from known material information. Embrittlement is characterized in terms of room-temperature (RT) Charpy-impact energy. The extent or degree of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a material after long-term aging) is determined from the chemical composition of the material. Charpy-impact energy as a function of the time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The fracture toughness J-R curve for the aged material is then obtained by correlating RT Charpy-impact energy with fracture toughness parameters. A common “predicted lower-bound” J-R curve for CASS materials of unknown chemical composition is also defined for a given grade of material, range of ferrite content, and temperature. In addition, guidance is provided for evaluating the combined effects of thermal and neutron embrittlement of CASS materials used in the reactor core internal components. The correlations for estimating the change in tensile strength, including the Ramberg/Osgood parameters for strain hardening, are also described.« less

  2. Setting Age Limits for TT-OSL Dating - the Local Effect

    NASA Astrophysics Data System (ADS)

    Faershtein, G.; Porat, N.; Guralnik, B.; Matmon, A.

    2017-12-01

    Luminescence dating techniques, especially Optically Stimulated Luminescence (OSL) on quartz, are widely used for dating middle Pleistocene to late Holocene sediments from different geological settings. The dating limit of a particular luminescence method depends on signal saturation and its thermal stability. The OSL signal saturates at doses of 200 Gy, equivalent to ages of 150-300 ka. Thermally Transferred OSL (TT-OSL) is a developmental technique, which potentially extends the luminescence dating range up to 1000 ka. For the Chinese Loess Plateau, experiments have shown that the natural TT-OSL signal saturates at 2200 Gy (Chapot et al., 2016). Regarding thermal stability, different studies report a wide range of estimates (0.24-861 Ma), suggesting that the thermal lifetime of TT-OSL is (i) currently poorly constrained, and (ii) may vary both by sample and region. Here, we investigated the dating limit of TT-OSL, using quartz of Nilotic origin (Israel), obtained from two sediment sections of similar depth but different dose rates. Natural dose response curves (DRC) of the TT-OSL signal were constructed for each section separately. In both sections, luminescence intensity grows sub-linearly up to 450 Gy, beyond which it remains constant with depth. The absence of equivalent doses (De) over 600 Gy, at both sections (as well as elsewhere regionally), suggest that TT-OSL signal saturation may be an intrinsic property, related to quartz provenance, and independent of the specific ionizing dose rate at each section. The thermal stability of TT-OSL was investigated on a modern sample from one section, using a combination of analytical techniques (varying heating rates, and isothermal storage). The obtained TT-OSL lifetimes range between 105-107 ka, and reinforce a significant inter sample variability. A synthesis of our results suggests that TT-OSL ages of Nilotic quartz derived from De values over 450 Gy, are likely underestimates, and should be treated as minimum ages. The limiting value of 600 Gy for local quartz TT-OSL is likely representative of a steady-state between TT-OSL trap filling due to ionizing radiation, and the concurrent thermal empting of these traps.

  3. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  4. Crustal Thickness Mapping of the Rifted Margin Ocean-Continent Transition using Satellite Gravity Inversion Incorporating a Lithosphere Thermal Correction

    NASA Astrophysics Data System (ADS)

    Hurst, N. W.; Kusznir, N. J.

    2005-05-01

    A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  5. Organic petrology of the Aptian-age section in the downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and preliminary implications for thermal maturation history

    USGS Publications Warehouse

    Valentine, Brett J.; Hackley, Paul C.; Enomoto, Catherine B.; Bove, Alana M.; Dulong, Frank T.; Lohr, Celeste D.; Scott, Krystina R.

    2014-01-01

    This study identifies a thermal maturity anomaly within the downdip Mississippi Interior Salt Basin (MISB) of southern Mississippi, USA, through examination of bitumen reflectance data from Aptian-age strata (Sligo Formation, Pine Island Shale, James Limestone, and Rodessa Formation). U.S. Geological Survey (USGS) reconnaissance investigations conducted in 2011–2012 examined Aptian-age thermal maturity trends across the onshore northern Gulf of Mexico region and indicated that the section in the downdip MISB is approaching the wet gas/condensate window (Ro~1.2%). A focused study in 2012–2013 used 6 whole core, one sidewall core, and 49 high-graded cutting samples (depth range of 13,000–16,500 ft [3962.4–5029.2 m] below surface) collected from 15 downdip MISB wells for mineralogy, fluid inclusion, organic geochemistry, and organic petrographic analysis. Based on native solid bitumen reflectance (Ro generally > 0.8%; interpreted to be post-oil indigenous bitumens matured in situ), Ro values increase regionally across the MISB from the southeast to the northwest. Thermal maturity in the eastern half of the basin (Ro range 1.0 to 1.25%) appears to be related to present-day burial depth and shows a gradual increase with respect to depth. To the west, thermal maturity continues to increase even as the Aptian section shallows structurally on the Adams County High (Ro range 1.4 to > 1.8%). After evaluating the possible thermal agents responsible for increasing maturity at shallower depths (i.e., igneous activity, proximity to salt, variations in regional heat flux, and uplift), we tentatively propose that either greater paleoheat flow or deeper burial coupled with uplift in the western part of the MISB could be responsible for the thermal maturity anomaly. Further research and additional data are needed to determine the cause(s) of the thermal anomaly.

  6. Characterization of Volatile Nylon 6.6 Thermal-Oxidative Degradation Products by Selective Isotopic Labeling and Cryo-GC/MS

    NASA Astrophysics Data System (ADS)

    Smith, Jonell N.; V. White, Gregory; White, Michael I.; Bernstein, Robert; Hochrein, James M.

    2012-09-01

    Aged materials, such as polymers, can exhibit modifications to their chemical structure and physical properties, which may render the material ineffective for its intended purpose. Isotopic labeling was used to characterize low-molecular weight volatile thermal-oxidative degradation products of nylon 6.6 in an effort to better understand and predict changes in the aged polymer. Headspace gas from aged (up to 243 d at 138 °C) nylon 6.6 monomers (adipic acid and 1,6-hexanediamine) and polymer were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). Observations regarding the relative concentrations observed in each chromatographic peak with respect to aging time were used in conjunction with mass spectra for samples aged under ambient air to determine the presence and identity of 18 degradation products. A comparison of the National Institute of Standards and Technology (NIST) library, unlabeled, and isotopically labeled mass spectra (C-13 or N-15) and expected fragmentation pathways of each degradation product were used to identify the location of isotopically labeled atoms within the product's chemical structure, which can later be used to determine the exact origin of the species. In addition, observations for unlabeled nylon 6.6 aged in an O-18 enriched atmosphere were used to determine if the source of oxygen in the applicable degradation products was from the gaseous environment or the polymer. Approximations for relative isotopic ratios of unlabeled to labeled products are reported, where appropriate.

  7. Planar defects as Ar traps in trioctahedral micas: A mechanism for increased Ar retentivity in phlogopite

    NASA Astrophysics Data System (ADS)

    Camacho, A.; Lee, J. K. W.; Fitz Gerald, J. D.; Zhao, J.; Abdu, Y. A.; Jenkins, D. M.; Hawthorne, F. C.; Kyser, T. K.; Creaser, R. A.; Armstrong, R.; Heaman, L. W.

    2012-08-01

    The effects of planar defects and composition on Ar mobility in trioctahedral micas have been investigated in samples from a small marble outcrop (∼500 m2) in the Frontenac Terrane, Grenville Province, Ontario. These micas crystallized during amphibolite-facies metamorphism at ∼1170 Ma and experienced a thermal pulse ∼100 Ma later at shallow crustal levels associated with the emplacement of plutons. 87Rb/86Sr ages of the phlogopites range from ∼950 to ∼1050 Ma, consistent with resetting during the later thermal event. The same phlogopites however, give 40Ar/39Ar ages between ∼950 and 1160 Ma, spanning the age range of the two thermal events. This result is intriguing because these micas have undergone the same thermal history and were not deformed after peak metamorphic conditions. In order to understand this phenomenon, the chemical, crystallographical, and microstructural nature of four mica samples has been characterized in detail using a wide range of analytical techniques. The scanning electron microscope (SEM), electron microprobe (EMP), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data show that the micas are chemically homogeneous (with the exception of Ba) and similar in composition. The Fourier transform infrared spectroscopy and Mossbauer results show that the M sites for three of the micas are dominated by divalent cations and the Fe3+/(Fe2++Fe3+) ratio for all four phlogopites ranges from 0.10 to 0.25. The stable-isotopic data for calcite indicate that this outcrop was not affected by hydrothermal fluids after peak metamorphism. No correlation between chemical composition and 87Rb/86Sr and 40Ar/39Ar age or between crystal size and 40Ar/39Ar age is observed. The only major difference among all of the micas was revealed through transmitted electron microscope (TEM), which shows that the older 1M micas contain significantly more layer stacking defects, associated with crystallization, than the younger micas. We propose that these defect structures, which are enclosed entirely within the mineral grain may serve as Ar traps and effectively increase the Ar retentivity of the mineral. As this phenomenon has not been previously documented in micas, this may have significant implications for the interpretation of 40Ar/39Ar ages of minerals which have similar defect structures.

  8. Effects of Material Degradation on the Structural Integrity of Composite Materials: Experimental Investigation and Modeling of High Temperature Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.; McManus, Hugh L.

    1996-01-01

    It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.

  9. Thermal Aging Characteristics of Insulation Paper in Mineral Oil under Overloaded Operating Transformers

    NASA Astrophysics Data System (ADS)

    Miyagi, Katsunori; Oe, Etsuo; Yamagata, Naoki; Miyahara, Hideyuki

    A sudden capacity increase in demand during the summer peak, or in contingencies such as malfunctioning transformers, may cause overload for normal transformers. In this paper, on the basis of examples of overloaded transformer operation in distributing substations, thermal aging testing in oil was carried out under various overload patterns, such as short time overload and long time overload, but with the winding insulation paper's life loss kept constant. From the results, various characteristics such as mean degree of polymerization and productions of furfural and (CO2+CO), and their effects on the life loss of the insulation paper were obtained.

  10. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  11. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved« less

  12. Low-Temperature Thermochronology of Borehole and Surface Samples From the Wind River and Beartooth Laramide Ranges, Wyoming and Montana, USA

    NASA Astrophysics Data System (ADS)

    Peyton, S. L.; Reiners, P. W.

    2007-12-01

    We dated borehole and surface samples from the Wind River and Beartooth Laramide-age, basement-cored uplifts of the Rocky Mountain foreland using the apatite (U-Th)/He (AHe) system. Comparison of these results to previously published apatite fission-track (AFT) data along with the incorporation of new He diffusion models (Shuster et al., 2006), reveals several new insights into, and poses new interpretational challenges for, the shallow exhumation histories of these ranges. Deep (2.2-2.8 km below surface) borehole samples from the Wind River Range have AHe ages of 9-12 Ma, and suggest at least 600 m of rapid exhumation during the Miocene. Shallower samples range from 35-66 Ma and are consistent with exhumation of a fossil partial retention zone. Previously-published apatite fission track (AFT) data from the same borehole show at least 2 km of rapid exhumation at ~45-38 Ma at depths where AHe ages are 9-50 Ma. This contrasts with the AHe ages which show slow exhumation between 12-66 Ma and have a trend on an age-elevation plot that appears to cut across the AFT age trend. Forward modeling of the cooling ages of these data using well-constrained thermal histories and conventional Durango apatite He diffusion data cannot explain these coupled AFT-AHe age-elevation relationships. However, modeling using diffusion kinetics of the Shuster et al. radiation-damage trapping model can explain the observed age trends, including the apparent presence of a 45-38 Ma exhumation event in the AFT data and its absence in the AHe data. In the model the shallow samples do not reach high enough temperatures for annealing of accumulated radiation damage, so He is trapped and ages are much older than predicted by conventional diffusion models. Previously-published AFT data from the Beartooth Range also show a large Laramide-age exhumation event, dated at 57-52 Ma. Similar to our observations from the Wind River Range, this event is not represented in our AHe results from borehole samples, which instead show slow cooling between at least 63-10 Ma. The trapping model predicts that the observed AHe age of a single apatite grain will be proportional to its effective Uranium content (eU), a proxy for radiation damage. Multiple single-grain replicates from a sample from the Wind River borehole are consistent with this, showing a strong correlation with eU. Although the trapping-diffusion model explains the coupled AFT-AHe data of borehole samples, surface samples from the Fremont Peak area in the Wind River Range have AHe ages that are older than the corresponding previously-published AFT ages over the 1.2 km elevation traverse sampled. AFT ages show ~1 km of rapid exhumation at ~62-58 Ma; corresponding AHe ages are as much as 20 Myr older. Although the radiation damage trapping model predicts that some AHe ages may be older than the corresponding AFT ages, thermal- diffusion forward models cannot explain these large age differences over such a large sampling interval, even if trapping model kinetic parameters are varied by 5%. Thus, discrepancies in AFT and AHe ages of these surficial samples remain problematic. The thermal histories required to approximate the borehole data require burial up to the end of the Cretaceous of ~3-4 km followed by at least two phases of cooling and exhumation. The first and larger cooling event of several tens of degrees (~3-4 km of exhumation) occurred during the Paleocene-Eocene, followed by a smaller cooling event of a few tens of degrees (~1 km of exhumation) during the Miocene.

  13. Simulated aging of lubricant oils by chemometric treatment of infrared spectra: potential antioxidant properties of sulfur structures.

    PubMed

    Amat, Sandrine; Braham, Zeineb; Le Dréau, Yveline; Kister, Jacky; Dupuy, Nathalie

    2013-03-30

    Lubricant oils are complex mixtures of base oils and additives. The evolution of their performance over time strongly depends on its resistance to thermal oxidation. Sulfur compounds revealed interesting antioxidant properties. This study presents a method to evaluate the lubricant oil oxidation. Two samples, a synthetic and a paraffinic base oils, were tested pure and supplemented with seven different sulfur compounds. An aging cell adapted to a Fourier Transform InfraRed (FT-IR) spectrometer allows the continuous and direct analysis of the oxidative aging of base oils. Two approaches were applied to study the oxidation/anti-oxidation phenomena. The first one leads to define a new oxidative spectroscopic index based on a reduced spectral range where the modifications have been noticed (from 3050 to 2750 cm(-1)). The second method is based on chemometric treatments of whole spectra (from 4000 to 400 cm(-1)) to extract underlying information. A SIMPLe-to-use Interactive Self Modeling Analysis (SIMPLISMA) method has been used to identify more precisely the chemical species produced or degraded during the thermal treatment and to follow their evolution. Pure spectra of different species present in oil were obtained without prior information of their existence. The interest of this tool is to supply relative quantitative information reflecting evolution of the relative abundance of the different products over thermal aging. Results obtained by these two ways have been compared to estimate their concordance. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    DOE PAGES

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; ...

    2018-01-04

    In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less

  15. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.

    In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less

  16. Photovoltaic module encapsulation design and materials section, volume 2

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1984-01-01

    Tests for chemical structure, material properties, water absorption, aging and curing agent of Ethylene Vinyl Acetate (EVA) and UV absorption studies are carried out. A computer model was developed for thermal optical modeling, to investigate dependence between module operating temperature and solar insolation, and heat dissapation behavior. Structural analyses were performed in order to determine the stress distribution under wind and heat conditions. Curves are shown for thermal loading conditions. An electrical isolation was carried out to investigate electrical stress aging of non-metallic encapsulation materials and limiting material flaws, and to develop a computer model of electrical fields and stresses in encapsulation materials. In addition, a mathematical model was developed and tests were conducted to predict hygroscopic and thermal expansion and contraction on a plastic coated wooden substrate. Thermal cycle and humidity freezing cycle tests, partial discharge tests, and hail impact tests were also carried out. Finally, the effects of soiling on the surface of photovoltaic modules were investigated. Two antisoiling coatings, a fluorinated silane and perflourodecanoic acid were considered.

  17. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  18. Development of latent fingerprints on thermal paper by the controlled application of heat.

    PubMed

    Bond, John W

    2013-05-01

    Apparatus to produce a spatially and temporally uniform heat source is described and this is used to visualize latent fingerprints deposited onto thermal paper by raising the temperature of the paper. Results show an improvement over previous research when fingerprint deposits are aged or the developed fingerprints faint; visualization being enhanced by the use of a blue LED light source of 465 nm peak wavelength. An investigation of the components in fingerprint sweat likely to affect the solubility and hence color change of the dye present in the thermal paper has shown that polar protic solvents able to donate a proton are favored and a polar amino acid found commonly in eccrine fingerprint sweat (lysine) has been shown able to produce the desired color change. Aged fingerprint deposits on thermal paper from a variety of sources up to 4 years old have been visualized with this technique. © 2013 American Academy of Forensic Sciences.

  19. System-Level Logistics for Dual Purpose Canister Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability ofmore » UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.« less

  20. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less

  1. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  2. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management

    NASA Astrophysics Data System (ADS)

    Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James

    2017-08-01

    It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.

  3. Evaluation on the Photosensitivity of 2,2'-Azobis(2,4-Dimethyl)Valeronitrile with UV.

    PubMed

    Yang, Yi; Tsai, Yun-Ting

    2017-12-14

    Azo compounds have high exothermic characteristics and low thermal stability, which have caused many serious thermal accidents around the world. In general, different locations (e.g., equatorial or polar regions) have different UV intensities. If the azo compound exists in an inappropriately stored or transported condition, the decrease in thermal stability may cause a thermal hazard or ageing. 2,2'-Azobis(2,4-dimethyl)valeronitrile (ADVN) is investigated with respect to the thermal stability affected by UV exposure at 0, 6, 12, and 24 h. When ADVN is exposed to 24 h of UV (100 mW/m² and 254 nm), T ₀ is not only advanced, but the mass loss is also increased during the main decomposition stage. In addition, the apparent activation energy and integral procedural decomposition temperature ( IPDT ) of ADVN exposed to 24 h of UV is calculated by kinetic models. Therefore, the prevention mechanism, thermal characteristics, and kinetic parameters are established in our study. We should isolate UV contacting ADVN under any situations, avoiding ADVN being aged or leading to thermal runaway. This study provided significant information for a safer process under changing UV exposure times for ADVN. Furthermore, the research method may serve as an important benchmark for handling potentially hazardous chemicals, such as azo compounds described herein.

  4. Benchmark Accelerated Aging of Harvested Hypalon/Epr and Cspe/Xlpe Power and I&C Cable in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Frame, Emily; Fifield, Leonard S.

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials thatmore » support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135°C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not occur. Benchmark aging for both jacket and insulation material was carried out in air at a temperature of 125°C or in uniform 140 Gy/h gamma irradiation over a period of 60 days. Their mechanical properties over the course of their exposures were compared with reference data from comparable cable jacket/insulation compositions and aging conditions. For both accelerated thermal and radiation aging, it was observed that the mechanical properties for the Callaway BIW control rod cable were consistent with those previously measured. However, for the San Onofre Rockbestos FRIII, there was an observable functional difference for accelerated thermal aging at 125°C. Details on possible sources for this difference and plans for resolving each source are given in this paper.« less

  5. BENCHMARK ACCELERATED AGING OF HARVESTED HYPALON/EPR AND CSPE/XLPE POWER AND I&C CABLE IN NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C; Fifield, Dr Leonard S

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials thatmore » support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135 C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not occur. Benchmark aging for both jacket and insulation material was carried out in air at a temperature of 125 C or in uniform 140 Gy/h gamma irradiation over a period of 60 days. Their mechanical properties over the course of their exposures were compared with reference data from comparable cable jacket/insulation compositions and aging conditions. For both accelerated thermal and radiation aging, it was observed that the mechanical properties for the Callaway BIW control rod cable were consistent with those previously measured. However, for the San Onofre Rockbestos FRIII, there was an observable functional difference for accelerated thermal aging at 125 C. Details on possible sources for this difference and plans for resolving each source are given in this paper.« less

  6. Study on the behavior and mechanism of polycarbonate with hot-water aging

    NASA Astrophysics Data System (ADS)

    Kong, L. P.; Zhao, Y. X.; Zhou, C. H.; Huang, Y. H.; Tang, M.; Gao, J. G.

    2016-07-01

    The present work was concerned with hot-water aging behavior and mechanism of Bisphenol A polycarbonate (PC) used as food and packaging materials. It indicated that with the aging time prolonged, PC sample had internal defects and the mechanical properties of PC materials changed not too much, molecular weight decreased, thermal stability declined. Phenolic hydroxyl absorption intensity enhanced in IR spectra and the maximum absorption wavelength red shift of benzene in UV-Vis spectra, the level of BPA increased. The color change of PC sample was not apparent.

  7. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1989-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen, and switching means such as a photoelectric switch for turning off the heater during dark periods.

  8. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1990-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen and switching means such as a photoelectric switch for turning off the heater during dark periods.

  9. Looking for a correlation between terrestrial age and noble gas record of H chondrites

    NASA Astrophysics Data System (ADS)

    Loeken, Th.; Schultz, L.

    1994-07-01

    On the basis of statistically significant concentration differences of some trace elements, it has been suggested that H chondrites found in Antarctica and Modern Falls represent members of different extraterrestrial populations with different thermal histories. It was also concluded that H chondrites found in Victoria Land (Allan Hills) differ chemically from those found in Queen Maud Land (Yamato Mountains), an effect that could be based on the different terrestrial age distribution of both groups. This would imply a change of the meteoroid flux hitting the Earth on a timescale that is comparable to typical terrestrial ages of Antarctic chondrites. A comparison of the noble gas record of H chondrites from the Allan Hills icefields and Modern Fall shows that the distributions of cosmic-ray exposure ages and the concentrations of radiogenic He-4 and Ar-40 are very similar. In an earlier paper we compared the noble gas measurements of 20 Yamato H contents with meteorites from the Allan Hills region and Modern Falls. Similar distributions were found. The distribution of cosmic-ray exposure ages and radiogenic He-4 and Ar-40 gas contents as a function of the terrestrial age is investigated in these chondrites. The distribution shows the well-known 7-Ma-cluster indicating that about 40% of the H chondrites were excavated from their parent body in a single event. Both populations, Antarctic Meteorites and Modern Falls, exhibit the same characteristic feature: a major meteoroid-producing event about 7 Ma. This indicates that one H-group population delivers H chondrites to Antarctica and the rest of the world. Cosmic-ray exposure ages and thermal-history indicaters like radiogenic noble gases show no evidence of a change in the H chondrite meteoroid population during the last 200,000 years.

  10. Evaluation of the effect of organic pro-degradant concentration in polypropylene exposed to the natural ageing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montagna, L. S., E-mail: larissambiental@yahoo.com.br, E-mail: andrecatto@terra.com.br, E-mail: katiandry@hotmail.com, E-mail: mmcforte@hotmail.com, E-mail: ruth.santana@ufrgs.br; Catto, A. L., E-mail: larissambiental@yahoo.com.br, E-mail: andrecatto@terra.com.br, E-mail: katiandry@hotmail.com, E-mail: mmcforte@hotmail.com, E-mail: ruth.santana@ufrgs.br; Rossini, K., E-mail: larissambiental@yahoo.com.br, E-mail: andrecatto@terra.com.br, E-mail: katiandry@hotmail.com, E-mail: mmcforte@hotmail.com, E-mail: ruth.santana@ufrgs.br

    The production and consumption of plastics in the last decade has recorded a remarkable increase in the scientific and industrial interest in environmentally degradable polymer (EDPs). Polymers wastes are deposited improperly, such as dumps, landfills, rivers and seas, causing a serious problem by the accumulation in the environment. The abiotic processes, like the photodegradation, are the most efficient occurring in the open environmental, where the polymers undergo degradation from the action of sunlight that result from direct exposure to solar radiation, however depend of the type of chemical ageing, which is the principal component of climatic ageing. The subject ofmore » this work is to study the influence of concentration of organic pro-degradant (1, 2 and 3 % w/w) in the polypropylene (PP) exposed in natural ageing. PP samples with and without the additive were processed in plates square form, obtained by thermal compression molding (TCM) using a press at 200°C under 2 tons for 5 min, and then were exposed at natural ageing during 120 days. The presence of organic additive influenced on PP degradability, this fact was assessed by changes in the thermal and morphology properties of the samples after 120 days of natural ageing. Scanning Electronic Microscopy (SEM) results of the morphological surface of the modified PP samples showed greater degradation photochemical oxidative when compared to neat PP, due to increase of rugosity and formation of microvoids. PP samples with different pro-degradant concentration under natural ageing presented a degree of crystallinity, obtained by Differential Scanning Calorimeter (DSC) increases in comparing the neat PP.« less

  11. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an anhydride/epoxy network used in composite-reinforced conductor cables was investigated to determine the extent of thermal oxidative (surface effect) and non-oxidative (bulk effect) degradation. Thermal oxidation tests were performed in air-circulating and vacuum ovens at 180°C and 200ºC (the maximum emergency temperature for ACCC conductors). The extent of oxidation during aging was determined by monitoring the thickness of the oxidized layer. Results showed that the oxidized layer thickness did not increase monotonically as a function of exposure time, and even decreased for a limited period of time. A phenomenological reaction-diffusion model was implemented to predict the thickness of oxidized layer, and the calculated results were compared with measurements for aging times up to 10,000 hours. The accuracy of the reaction-diffusion-based thickness values for the isothermally aged epoxy specimen was affected by the permeability properties of the oxidized material, and to a lesser extent by the degree of oxidation. The diffusivity varied because of changes in the density of the oxidized layer, the macro-void content, crack formation, and the molecular structures. To investigate the effects on diffusivity, the morphology of the oxidized layer and the void content was monitored over time. In addition, the density of the oxidized specimens was calculated by direct measurements of volume and weight during exposure. An empirically based volume-loss model was developed to predict the changes in volume of the specimen as a function of aging times and hence to predict the effects on the oxidized layer thickness. Volume-loss measurements provide an indication of material degradation by demonstrating a direct measurement of shrinkage rates and insight into crack initiation, as opposed to typical weight-loss measurements that provide no insight into material failure. Thermal oxidation of a unidirectional carbon-fiber/glass-fiber hybrid composite was also investigated in this study. The aim was to determine oxidation kinetics, degradation mechanisms, oxidation thickness growth (a damage indicator), and oxidation effects on mechanical property. The epoxy composite rods were comprised of a carbon-fiber core and a glass-fiber shell. The thickness of the oxidized layer (TOL) was measured experimentally for samples exposed to 180ºC and 200ºC for up to 8,736 hours. A reaction-diffusion model was developed for each of the two hybrid sections to obtain the oxygen-concentration profile and the TOL within the composite rods. The TOL values measured experimentally were similar to the modeling predictions. The glass-fiber shell functioned as a protective layer, limiting the oxidation of the carbon-fiber core. The domain validity for the reaction-diffusion model was determined from gravimetric experiments by measuring the weight-loss of hybrid composite samples exposed isothermally in air and in vacuum at 200°C for up to 13,104 hours (1.5 years). The results showed that after prolonged thermal exposure, the degradation mechanism changed from thermal oxidation to thermal degradation. Thermogravimetric analysis (TGA) was performed to determine the thermal degradation and stability of the aged composite. The results indicated that the onset temperature of matrix degradation increased by increasing exposure time. Inorganic fillers are widely used in pultruded parts to facilitate pultrusion, especially for long production runs. Therefore, another scope of this study was to investigate the effects of filler on oxidation kinetics and degradation mechanisms during thermal aging of prultruded composite rods. Similar aging tests and oxidation modeling to those for the unfilled composites were performed. The predicted and measured TOL values for filled composites were slightly less than those for unfilled composites. The addition of kaolin fillers did not affect the oxidation mechanism or the reaction rate of the epoxy matrix, although it did cause a slight decrease in the oxygen-transport properties (diffusivity and solubility of oxygen). The effect of thermal aging on mechanical properties of the aged composites was investigated. A relationship was derived relating TOL to tensile strength of the hybrid composite. The tensile strength remained essentially unchanged by thermal oxidation after 52 weeks of exposure. On the contrary, the oxidation resulted in a decrease in short-beam-shear (SBS) strength (a matrix-dominated property) due to degradation of matrix and fiber/matrix interface strength. However, the filled composites showed a lower reduction in SBS strength than that of the unfilled one for an identical duration of exposure. In addition, the effect of thermal aging on glass transition temperature (T g) was determined for isothermal exposures at 180ºC and 200ºC. The simultaneous effects of post-curing and thermal degradation resulted in the change in Tg during exposure. Another study on the composite rod was performed to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (Minfinity ). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60°C and 85% relative humidity (RH). Property retention and reversibility of property degradation was also measured. Microscopic inspection revealed no evidence of damage. Prediction of the lifetime of carbon-fiber/fiberglass (GF/CF) hybrid composites under various loads and service life conditions requires fundamental knowledge about the degradation mechanisms associated with overhead conductors with the hybrid GF/CF composite cores. This study provides adequate information on mechanical and thermal behaviors of the composite core under prolong isothermal and hygrothermal exposure, which is necessary for defining a lifetime model.

  12. Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer

    NASA Astrophysics Data System (ADS)

    Brown, Roderick W.; Beucher, Romain; Roper, Steven; Persano, Cristina; Stuart, Fin; Fitzgerald, Paul

    2013-12-01

    Over the last decade major progress has been made in developing both the theoretical and practical aspects of apatite (U-Th)/He thermochronometry and it is now standard practice, and generally seen as best practice, to analyse single grain aliquots. These individual prismatic crystals are often broken and are fragments of larger crystals that have broken during mineral separation along the weak basal cleavage in apatite. This is clearly indicated by the common occurrence of only 1 or no clear crystal terminations present on separated apatite grains, and evidence of freshly broken ends when grains are viewed using a scanning electron microscope. This matters because if the 4He distribution within the whole grain is not homogeneous, because of partial loss due to thermal diffusion for example, then the fragments will all yield ages different from each other and from the whole grain age. Here we use a numerical model with a finite cylinder geometry to approximate 4He ingrowth and thermal diffusion within hexagonal prismatic apatite crystals. This is used to quantify the amount and patterns of inherent, natural age dispersion that arises from analysing broken crystals. A series of systematic numerical experiments were conducted to explore and quantify the pattern and behaviour of this source of dispersion using a set of 5 simple thermal histories that represent a range of plausible geological scenarios. In addition some more complex numerical experiments were run to investigate the pattern and behaviour of grain dispersion seen in several real data sets. The results indicate that natural dispersion of a set of single fragment ages (defined as the range divided by the mean) arising from fragmentation alone varies from c. 7% even for rapid (c. 10 °C/Ma), monotonic cooling to over 50% for protracted, complex histories that cause significant diffusional loss of 4He. The magnitude of dispersion arising from fragmentation scales with the grain cylindrical radius, and is of a similar magnitude to dispersion expected from differences in absolute grain size alone (spherical equivalent radii of 40-150 μm). This source of dispersion is significant compared with typical analytical uncertainties on individual grain analyses (c. 6%) and standard deviations on multiple grain analyses from a single sample (c. 10-20%). Where there is a significant difference in the U and Th concentration of individual grains (eU), the effect of radiation damage accumulation on 4He diffusivity (assessed using the RDAAM model of Flowers et al. (2009)) is the primary cause of dispersion for samples that have experienced a protracted thermal history, and can cause dispersion in excess of 100% for realistic ranges of eU concentration (i.e. 5-100 ppm). Expected natural dispersion arising from the combined effects of reasonable variations in grain size (radii 40-125 μm), eU concentration (5-150 ppm) and fragmentation would typically exceed 100% for complex thermal histories. In addition to adding a significant component of natural dispersion to analyses, the effect of fragmentation also acts to decouple and corrupt expected correlations between grain ages and absolute grain size and to a lesser extent between grain age and effective uranium concentration (eU). Considering fragmentation explicitly as a source of dispersion and analysing how the different sources of natural dispersion all interact with each other provides a quantitative framework for understanding patterns of dispersion that otherwise appear chaotic. An important outcome of these numerical experiments is that they demonstrate that the pattern of age dispersion arising from fragmentation mimics the pattern of 4He distribution within the whole grains, thus providing an important source of information about the thermal history of the sample. We suggest that if the primary focus of a study is to extract the thermal history information from (U-Th)/He analyses then sampling and analytical strategies should aim to maximise the natural dispersion of grain ages, not minimise it, and should aim to analyse circa 20-30 grains from each sample. The key observations and conclusions drawn here are directly applicable to other thermochronometers, such as the apatite, rutile and titanite U-Pb systems, where the diffusion domain is approximated by the physical grain size.

  13. Validating Thermal Inactivation of Salmonella spp. in Fresh and Aged Chicken Litter

    PubMed Central

    Kim, Jinkyung; Diao, Junshu; Shepherd, Marion W.; Singh, Randhir; Heringa, Spencer D.; Gong, Chao

    2012-01-01

    Our results revealed that a 7-log reduction of Salmonella can be achieved by exposing fresh chicken litter for 80.5 to 100.8, 78.4 to 93.1, and 44.1 to 63 min at 70, 75, and 80°C, respectively, depending on initial moisture contents. However, the aged chicken litter requires more heat treatment. PMID:22179246

  14. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  15. Avian Incubation Patterns Reflect Temporal Changes in Developing Clutches

    PubMed Central

    2013-01-01

    Incubation conditions for eggs influence offspring quality and reproductive success. One way in which parents regulate brooding conditions is by balancing the thermal requirements of embryos with time spent away from the nest for self-maintenance. Age related changes in embryo thermal tolerance would thus be expected to shape parental incubation behavior. We use data from unmanipulated Black-capped Chickadee (Poecile atricapillus) nests to examine the temporal dynamics of incubation, testing the prediction that increased heat flux from eggs as embryos age influences female incubation behavior and/or physiology to minimize temperature fluctuations. We found that the rate of heat loss from eggs increased with embryo age. Females responded to increased egg cooling rates by altering incubation rhythms (more frequent, shorter on- and off- bouts), but not brood patch temperature. Consequently, as embryos aged, females were able to increase mean egg temperature and decrease variation in temperature. Our findings highlight the need to view full incubation as more than a static rhythm; rather, it is a temporally dynamic and finely adjustable parental behavior. Furthermore, from a methodological perspective, intra- and inter-specific comparisons of incubation rhythms and average egg temperatures should control for the stage of incubation. PMID:23840339

  16. Hydrolysis of Baltic amber during thermal ageing--an infrared spectroscopic approach.

    PubMed

    Pastorelli, Gianluca; Shashoua, Yvonne; Richter, Jane

    2013-04-01

    To enable conservation of amber in museums, understanding of chemical changes is crucial. While oxidation has been investigated particularly well for this natural polymer, further degradation phenomena in relation to humidity and pollutants are poorly studied or still unknown. Attenuated total reflectance-Fourier transform infrared spectroscopy was explored with regard to Baltic amber. A systematic spectroscopic survey of a wide range of thermally aged model amber samples, exposed to different microclimatic conditions, showed significant changes in their spectra. Samples aged in a humid and acidic environment or exposed to a humid and alkaline atmosphere generally exhibited a higher absorbance intensity of carbonyl groups at frequencies assigned to acids than unaged samples, samples aged in drier conditions and samples immersed in an alkaline solution. Baltic amber comprises succinate ester, which may be hydrolysed into communol and succinic acid. The survey thus provided evidence about the progress of hydrolytic reactions during degradation of Baltic amber. Infrared spectroscopy was shown to have significant potential for providing qualitative and quantitative chemical information on hydrolysis of amber, which will be of interest for the development of preventive conservation techniques for museum collections of amber objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  18. Accelerated aging studies of UHMWPE. II. Virgin UHMWPE is not immune to oxidative degradation.

    PubMed

    Edidin, A A; Villarraga, M L; Herr, M P; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation. Copyright 2002 Wiley Periodicals, Inc.

  19. Advanced Glycation End Products: Link between Diet and Ovulatory Dysfunction in PCOS?

    PubMed Central

    Garg, Deepika; Merhi, Zaher

    2015-01-01

    PCOS is the most common cause of anovulation in reproductive-aged women with 70% experiencing ovulatory problems. Advanced glycation end products are highly reactive molecules that are formed by non-enzymatic reactions of sugars with proteins, nucleic acids and lipids. AGEs are also present in a variety of diet where substantial increase in AGEs can result due to thermal processing and modifications of food. Elevation in bodily AGEs, produced endogenously or absorbed exogenously from high-AGE diets, is further exaggerated in women with PCOS and is associated with ovulatory dysfunction. Additionally, increased expression of AGEs as pro-inflammatory receptors in the ovarian tissue has been observed in women with PCOS. In this review, we summarize the role of dietary AGEs as mediators of metabolic and reproductive alterations in PCOS. Once a mechanistic understanding of the relationship between AGEs and anovulation is established, there is a promise that such knowledge will contribute to the subsequent development of targeted pharmacological therapies that will treat anovulation and improve ovarian health in women with PCOS. PMID:26690206

  20. Relations between habitat variability and population dynamics of bass in the Huron River, Michigan

    USGS Publications Warehouse

    Bovee, Ken D.; Newcomb, Tammy J.; Coon, Thomas G.

    1994-01-01

    One of the assumption of the Instream Flow Incremental Methodology (IFIM) is that the dynamics of fish populations are directly or indirectly related to habitat availability. Because this assumption has not been successfully tested in coolwater streams, questions arise regarding the validity of the methodology in such streams. The purpose of our study was to determine whether relations existed between habitat availability and population dynamics of smallmouth bass (Micropterus dolomieu) and rock bass (Ambloplites rupestris) in a 16-km reach of the Huron River in southeastern Michigan. Both species exhibited strong to moderate carryover of year classes from age 0 through age 2, indicating that adult populations were related to factors affecting recruitment. Year-class strength and subsequent numbers of yearling bass were related to the availability of young-of-year habitat during the first growing season for a cohort. Number of age-0, age-1, and adult smallmouth bass were related to the average length at age 0 for the cohort. Length at age 0 was associated with young-of-year habitat and thermal regime during the first growing season. Rock bass populations exhibited similar associations among age classes and habitat variables. Compared to smallmouth bass, the number of age-2 rock bass was associated more closely with their length at age 0 than with year-class strength. Length at age 0 and year-class strength of rock bass were associated with the same habitat variables as those related to age-0 smallmouth bass. We hypothesize that an energetic mechanism linked thermal regime to length at age 0 and that increased growth resulted in higher survival rates from age 0 to age 1. We also postulate that young-of-year habitat provided protection from predators, higher production of food resources, and increased foraging efficiency. We conclude that the IFIM is a valid methodology for instream flow investigations of coolwater streams. The results for our study support the contention that the dynamics of bass populations are directly or indirectly related to habitat availability in coolwater streams. Our study also revealed several implications related to the operational application of the IFIM in coolwater streams: 1. Greater emphasis should be placed on the alleviation of habitat impacts to early life history phases of bass. 2. Effects of the thermal regime are important in some coolwater streams even if temperatures remain within nonlethal limits. Degree-day analyses should be routinely included in study plans for applications of the IFIM in coolwater streams. 3. The smallest amount of habitat occurring within or across years is not necessarily the most significant event affecting population dynamics. The timing of extreme events can be as important as their magnitude. 4. Population-related habitat limitations were associated with high flows more often than with low flows (although both occurred). Negotiations that focus only on minimum flows may preclude viable water management options and ignore significant biological events. This finding is particularly relevant to negotiations involving hydrospeaking operations. 5. IFIM users are advised to consider the use of binary criteria in place of conventional suitability index curves in microhabitat simulations. Criteria defining the optimal ranges of variables are preferable to broader rangers, and criteria that simply define suitable conditions should be avoided entirely.

  1. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  2. Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation

    NASA Technical Reports Server (NTRS)

    Grant, W. L.

    1969-01-01

    A high-temperature statorette, consisting of an iron-27 percent cobalt magnetic lamination stack and nickel-clad silver conductors, was tested with pyrolytic boron nitride slot insulation. Temperatures were measured in each test to determine characteristics of slot linear heat conductance from statorette conductors. Testing was carried out to temperatures of approximately 1500 F in a vacuum environment of 10-8 torr. Three assemblies were built and tested, each having a different room temperature slot clearance. The final statorette assembly was subjected to a 100-hour vacuum aging test at 1400 F followed by 25 thermal cycles. Temperature data from the three assemblies showed that decreasing slot clearance and increasing compression loading did enhance heat transfer. The temperature difference between slot and lamination at 1400 F increased 4 F during the thermal aging and an additional 10 F during the 25 thermal cycles.

  3. Elastic anomaly and aging of new type of incommensurate phase transition in ferroelectric barium sodium niobate

    NASA Astrophysics Data System (ADS)

    Christy, Yohanes; Matsumoto, Kazuya; Kojima, Seiji

    2015-07-01

    The lattice instability of the incommensurate (IC) phase transition of uniaxial ferroelectric Ba2NaNb5O15 (BNN) was investigated by micro-Brillouin scattering. Spectra of the longitudinal acoustic (LA) mode were observed from room temperature to 750 K. In the vicinity of the IC phase transition temperature TIC = 573 K, elastic anomalies in the form of a sharp peak in the sound velocity and thermal hysteresis during the heating and cooling cycle were observed. During this transition, the crystal point group changed from tetragonal 4mm to orthorhombic 2mm along with the IC modulation. In order to deepen our understanding of the thermal hysteresis, aging experiment in the IC phase was conducted. We can conclude that the appearance of thermal hysteresis related to the relaxation of ferroelastic strain is related to the feature of the new type III IC phase transition mechanism of BNN.

  4. Lethal thermal maxima for age-0 pallid and shovelnose sturgeon: Implications for shallow water habitat restoration

    USGS Publications Warehouse

    Deslauriers, David; Heironimus, Laura B.; Chipps, Steven R.

    2016-01-01

    We evaluated temperature tolerance in age-0 pallid and shovelnose sturgeon (Scaphirhynchus albus and Scaphirhynchus platorynchus), two species that occur sympatrically in the Missouri and Mississippi Rivers. Fish (0.04–18 g) were acclimated to water temperatures of 13, 18 or 24 °C to quantify temperatures associated with lethal thermal maxima (LTM). The results show that no difference in thermal tolerance existed between the two sturgeon species, but that LTM was significantly related to body mass and acclimation temperature. Multiple linear regression analysis was used to estimate LTM, and outputs from the model were compared with water temperatures measured in the shallow water habitat (SWH) of the Missouri River. Observed SWH temperatures were not found to yield LTM conditions. The model developed here is to serve as a general guideline in the development of future SWH.

  5. LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.

    Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy Office (DOE) of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.« less

  6. Relative dating of Hawaiian lava flows using multispectral thermal infrared images - A new tool for geologic mapping of young volcanic terranes

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.

    1988-01-01

    The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.

  7. Report on Understanding and Predicting Effects of Thermal Aging on Microstructure and Tensile Properties of Grade 91 Steel for Structural Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Natesan, K.; Chen, Weiying

    This report provides an update on understanding and predicting the effects of long-term thermal aging on microstructure and tensile properties of G91 to corroborate the ASME Code rules in strength reduction due to elevated temperature service. The research is to support the design and long-term operation of G91 structural components in sodium-cooled fast reactors (SFRs). The report is a Level 2 deliverable in FY17 (M2AT-17AN1602017), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  8. Cluster formation in in-service thermally aged pressurizer welds

    NASA Astrophysics Data System (ADS)

    Lindgren, Kristina; Boåsen, Magnus; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2018-06-01

    Thermal aging of reactor pressure vessel steel welds at elevated temperatures may affect the ductile-to-brittle transition temperature. In this study, unique weld material from a pressurizer, with a composition similar to that of the reactor pressure vessel, that has been in operation for 28 years at 345 °C is examined. Despite the relatively low temperature, the weld becomes hardened during operation. This is attributed to nanometre sized Cu-rich clusters, mainly located at Mo- and C-enriched dislocation lines and on boundaries. The welds have been characterized using atom probe tomography, and the characteristics of the precipitates/clusters is related to the hardness increase, giving the best agreement for the Russell-Brown model.

  9. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.; Dunn, K.; Hackney, B.

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of canemore » fiberboard in elevated temperature – elevated humidity environments.« less

  10. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, W. E.; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  11. A comparison of infrared, radar, and geologic mapping of lunar craters

    USGS Publications Warehouse

    Thompson, T.W.; Masursky, H.; Shorthill, R.W.; Tyler, G.L.; Zisk, S.H.

    1974-01-01

    Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths. ?? 1974 D. Reidel Publishing Company, Dordrecht-Holland.

  12. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond

    NASA Astrophysics Data System (ADS)

    Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin

    2018-04-01

    In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.

  13. Refreshing the Aged Latent Fingerprints with Ionizing Radiation Prior to the Cyanoacrylate Fuming Procedure: A Preliminary Study.

    PubMed

    Ristova, Mimoza M; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe

    2016-05-01

    One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. © 2015 American Academy of Forensic Sciences.

  14. Physical aging in comets

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    1991-01-01

    The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.

  15. Peculiar Features of Thermal Aging and Degradation of Rapidly Quenched Stainless Steels under High-Temperature Exposures

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2017-12-01

    This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic-martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.

  16. Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai

    2009-01-01

    Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.

  17. Pathways of the Maillard reaction under physiological conditions.

    PubMed

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  18. THERMAL SENSITIVITY ACROSS AGES AND DURING CHRONIC FENTANYL ADMINISTRATION IN RATS

    PubMed Central

    Mitzelfelt, Jeremiah D.; Carter, Christy S.; Morgan, Drake

    2013-01-01

    Rationale Chronic pain is becoming a more common medical diagnosis and is especially prevalent in older individuals. As such, prescribed use of opioids is on the rise, even though the efficacy for pain management in older individuals is unclear. Objectives Thus the present preclinical study assessed the effectiveness of chronic fentanyl administration to produce antinociception in aging rats (16, 20, 24 months). Methods Animals were tested in a thermal sensitivity procedure known to involve neural circuits implicated in chronic pain in humans. Sensitivity to heat and cold thermal stimulation was assessed during 28 days of fentanyl administration (1.0 mg/kg/day), and 28 days of withdrawal. Results Fentanyl resulted in decreased thermal sensitivity to heat but not cold stimulation indicated by more time spent in the hot compartment relative to time spent in the cold or neutral compartments. Unlike previous findings using a hot-water tail withdrawal procedure, tolerance did not develop to the antinociceptive effects of fentanyl over a 28-day period of drug administration. The oldest animals were least sensitive, and the youngest animals most sensitive to the locomotor-stimulating effects of fentanyl. The effect on the antinociceptive response to fentanyl in the oldest group of rats was difficult to interpret due to profound changes in the behavior of saline-treated animals. Conclusions Overall, aging modifies the behavioral effects of opioids, a finding that may inform future studies for devising appropriate treatment strategies. PMID:23900640

  19. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  20. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  1. [Aging of silorane- and methacrylate-based composite resins: effects on color and translucency].

    PubMed

    Liu, Chang; Pan, Jie; Lin, Hong; Shen, Song

    2015-10-01

    To evaluate the color stability and translucency of silorane-based low shrinkage composite after in vitro aging procedures of thermal cycling and water storage respectively, and to compare with those of conventional methacrylate-based posterior composite. Three light-cured composite resins, dimethacrylate-based composite A (Filtek™ Z350), B (Filtek™ P60) and silorane-based composite C (Filtek™ P90), were tested in this study. Ten specimens (10 mm in diameter, 1 mm in height) of each composite were prepared. The ten specimens in each group were then divided into two subgroups (n = 5). One subgroup underwent thermal cycling [(5.0 ± 0.5)~(55.0 ± 1.0) °C, 10 000 cycles] and the other was stored in 37 C° distilled water for 180 days. With a spectrophotometer, the CIE L * a * b * parameters of the specimens were tested before and after artificial aging against white, medium grey and black backgrounds, respectively. △E, TP and △TP were calculated and data were analyzed using independent-samples t test and partial analysis (P < 0.05). With regard to color stability, silorane-based composite showed color alteration above the clinically acceptable levels (△E > 3.3), and also showed higher △E with a statistically significant difference in comparison with the other composites (B and C) (P < 0.05) after artificial aging. With regard to translucency, composite C showed more alteration compared with composite B (P < 0.05) after thermal cycling. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and translucency.

  2. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: An ion microprobe and chemical abrasion study

    USGS Publications Warehouse

    Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.

    2004-01-01

    Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.

  3. Early Thermal History of Eucrites by Ar-39-Ar-40

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Garrison, D. H.

    2001-01-01

    Ar-39-Ar-40 ages for Piplia Kalan (3.58 +/- 0.02 Ga) and two other eucrites indicate later impact resetting. Older Ar-39-Ar-40 ages exist for the Moama cumulate eucrite (4.42 +/- 0.01 Ga) and the PCA82502 (4.506 +/- 0.009 Ga) and PCA91007 non-brecciated eucrites. Additional information is contained in the original extended abstract.

  4. High temperature (1200 C) ceramic-to-metal seal development

    NASA Technical Reports Server (NTRS)

    Mckisson, R. L.; Ervin, G., Jr.

    1972-01-01

    Two phases have been completed, of a program whose ultimate objective is the development of an alkali metal resistant, thermal shock resistant, leak-tight, and neutron radiation resistant ceramic-to-metal seal capable of operation at 1200 C for three to five years. The first phase involved the screening of platinum-base, vanadium-base and vanadium-niobium base brazes for the joining of Cb-1Zr or T-111 alloys to high purity alumina. The second phase involved studies of the performance of sealed capsule samples during 5000-hour aging tests at 800, 1000, and 1200 C in high vacuum. Sealed capsules which were made using pure vanadium braze, and were brazed at 1850 C for one minute, survived 64 thermal cycles to 1200 C at the heating/cooling rate of 100 C/minute. Vanadium braze samples survived 5000-hour aging tests at 800, 1000, and 1200 C. One thermally cycled sample survived a subsequent 5000-hour aging period at 1000 C, but another, at 1200 C, did not survive. It was concluded that a pure vanadium braze used to bond high purity alumina to Cb-1Zr alloy is the best of the systems studied, but that additional studies must be performed to establish its service temperature limitations for the desired three to five years' service.

  5. The effect of thermal aging and color pigments on the Egyptian linen properties evaluated by physicochemical methods

    NASA Astrophysics Data System (ADS)

    El-Gaoudy, H.; Kourkoumelis, N.; Varella, E.; Kovala-Demertzi, D.

    2011-11-01

    Archaeologists in Egypt discovered ancient colored textiles in great quantities in comparison with the analogous uncolored ones. Furthermore, the latter are far more deteriorated. Most research investigations into archaeological linen have been concerned with manufacture, restoration, and conservation but little information is available about the properties of the fibers, and particularly their chemical and physical properties after dyeing with natural dyes or painted with pigments. The aim of this study is to evaluate the physicochemical properties of Egyptian linen textiles coloring with a variety of pigments used in painting in ancient times after thermally aged to get linen samples which are similar as possible to the ancient linen textiles. The evaluations were based on Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction and tensile strength, and elongation measurements. Results showed that beyond cosmetic reasons, colored textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration. Specifically, in the molecular level, pigments under study seem to interact to cellulose and lignin compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Electron microscopy confirms that pigment particles are deposited on and between the fibers' surfaces.

  6. Postoperative morbidity and histopathologic characteristics of tonsillar tissue following coblation tonsillectomy in children: a prospective randomized single-blind study.

    PubMed

    Roje, Zeljka; Racić, Goran; Dogas, Zoran; Pisac, Valdi Pesutić; Timms, Michael

    2009-03-01

    The aim of this prospective randomized single blind study was to determine the depth of thermal damage to tonsillar tissue due to coblation, and to compare it with thermal damage to tonsillar tissue following conventional tonsillectomy; to correlate the depth of thermal damage to tonsillar tissue with the parameters of postoperative morbidity, to compare intraoperative blood loss, postoperative pain severity, time to resuming normal physical activity, and incidence of postoperative bleeding between two groups of tonsillectomized children aged up to 16 years. 72 children aged 3-16 years scheduled for tonsillectomy randomly assigned into two groups submitted either to conventional tonsillectomy with bipolar diathermy coagulation or to coblation tonsillectomy, with a 14-day follow up. Statistically significant differences were observed in the depth of thermal damage to tonsillar tissue (p < 0.001), intraoperative blood loss (p < 0.004), in postoperative pain severity (p < 0.05) and in time to resuming normal physical activity between the two groups (p < 0.001). There was no case of reactionary or secondary bleeding in either group. In this paper for the first time we have correlated postoperative morbidity and thermal tissue damage: less thermal damage is associated with less postoperative morbidity.

  7. Comparison of circulation times of thermal waters discharging from the Idaho batholith based on geothermometer temperatures, helium concentrations, and 14C measurements

    USGS Publications Warehouse

    Mariner, R.H.; Evans, William C.; Young, H.W.

    2006-01-01

    Circulation times of waters in geothermal systems are poorly known. In this study, we examine the thermal waters of the Idaho batholith to verify whether maximum system temperatures, helium concentrations, and 14C values are related to water age in these low-to-moderate temperature geothermal systems. He/N2 values of gas collected from thermal waters that circulate solely through distinct units of the Idaho batholith correlate linearly with Na-K-(4/3)Ca geothermometer temperatures, showing that both variables are excellent indicators of relative water age. Thermal waters that circulate in early Tertiary (45-50 Ma) granite of the Sawtooth batholith have 3.5 times more helium than thermal waters of the same aquifer temperature that circulate through the main Cretaceous granite (average 91 Ma). Hot spring waters circulating in hydrothermally altered parts of the batholith have very little dissolved helium and no correlation between He/N2 values and geothermometer temperatures. Thermal waters discharging from the Idaho batholith are more depleted in deuterium than modern precipitation in the area. Recharge to these geothermal systems occurred from at least 10,000 BP for the cooler systems up to about 33,000 BP for the hotter systems.

  8. Power Plant Retirements: Trends and Possible Drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Andrew D.; Wiser, Ryan H.; Seel, Joachim

    This paper synthesizes available data on historical and planned power plant retirements. Specifically, we present data on historical generation capacity additions and retirements over time, and the types of plants recently retired and planned for retirement. We then present data on the age of plants that have recently retired or that have plans to retire. We also review the characteristics of plants that recently retired or plan to retire vs. those that continue to operate, focusing on plant size, age, heat rate, and SO 2 emissions. Finally, we show the level of recent thermal plant retirements on a regional basismore » and correlate those data with a subset of possible factors that may be contributing to retirement decisions. This basic data synthesis cannot be used to precisely estimate the relative magnitude of retirement drivers. Nor do we explore every possible driver for retirement decisions. Moreover, future retirement decisions may be influenced by different factors than those that have affected past decisions. Nonetheless, it is clear that recently retired plants are relatively old, and that plants with stated planned retirement dates are—on average—no younger. We observe that retired plants are smaller, older, less efficient, and more polluting than operating plants. Based on simple correlation graphics, the strongest predictors of regional retirement differences appear to include SO 2 emissions rates (for coal), planning reserve margins (for all thermal units), variations in load growth or contraction (for all thermal units), and the age of older thermal plans (for all thermal units). Additional apparent predictors of regional retirements include the ratio of coal to gas prices and delivered natural gas prices. Other factors appear to have played lesser roles, including the penetration variable renewable energy (VRE), recent non-VRE capacity additions, and whether the region hosts an ISO/RTO.« less

  9. The thermal history of the Miocene Ibar Basin (Southern Serbia): new constraints from apatite and zircon fission track and vitrinite reflectance data

    NASA Astrophysics Data System (ADS)

    Andrić, Nevena; Fügenschuh, Bernhard; Životić, Dragana; Cvetković, Vladica

    2015-02-01

    The Ibar Basin was formed during Miocene large scale extension in the NE Dinaride segment of the Alpine- Carpathian-Dinaride system. The Miocene extension led to exhumation of deep seated core-complexes (e.g. Studenica and Kopaonik core-complex) as well as to the formation of extensional basins in the hanging wall (Ibar Basin). Sediments of the Ibar Basin were studied by apatite and zircon fission track and vitrinite reflectance in order to define thermal events during basin evolution. Vitrinite reflectance (VR) data (0.63-0.90 %Rr) indicate a bituminous stage for the organic matter that experienced maximal temperatures of around 120-130 °C. Zircon fission track (ZFT) ages indicate provenance ages. The apatite fission track (AFT) single grain ages (45-6.7 Ma) and bimodal track lengths distribution indicate partial annealing of the detrital apatites. Both vitrinite reflectance and apatite fission track data of the studied sediments imply post-depositional thermal overprint in the Ibar Basin. Thermal history models of the detritial apatites reveal a heating episode prior to cooling that began at around 10 Ma. The heating episode started around 17 Ma and lasted 10-8 Ma reaching the maximum temperatures between 100-130 °C. We correlate this event with the domal uplift of the Studenica and Kopaonik cores where heat was transferred from the rising warm footwall to the adjacent colder hanging wall. The cooling episode is related to basin inversion and erosion. The apatite fission track data indicate local thermal perturbations, detected in the SE part of the Ibar basin (Piskanja deposit) with the time frame ~7.1 Ma, which may correspond to the youngest volcanic phase in the region.

  10. Determination of Coefficient of Thermal Expansion (CTE) of 20MPa Mass Concrete Using Granite Aggregate

    NASA Astrophysics Data System (ADS)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the coefficient of thermal expansion (CTE) value of 20MPa mass concrete using granite aggregate. The CTE value was established using procedure proposed by Kada et al. 2002 in determining the magnitude of early-ages CTE through laboratory test which is a rather accurate way by eliminating any possible superimposed effect of others early-age thermal deformation shrinkages such as autogenous, carbonation, plastic and drying shrinkage. This was done by submitting granite concrete block samples instrumented with ST4 vibrating wire extensometers to thermal shocks. The response of the concrete samples to this shock results in a nearly instantaneous deformation, which are measured by the sensor. These deformations, as well as the temperature signal, are used to calculate the CTE. By repeating heat cycles, the variation in the early-ages of concrete CTE over time was monitored and assessed for a period of upto 7 days. The developed CTE value facilitating the verification and validation of actual maximum permissible critical temperature differential limit (rather than arbitrarily follow published value) of cracking potential. For thick sections, internal restraint is dominant and this is governed by differentials mainly. Of the required physical properties for thermal modelling, CTE is of paramount importance that with given appropriate internal restraint factor the condition of cracking due to internal restraint is governs by equation, ΔTmax= 3.663ɛctu / αc. Thus, it can be appreciated that an increase in CTE will lower the maximum allowable differential for cracking avoidance in mass concrete while an increase of tensile strain capacity will increase the maximum allowable temperature differential.

  11. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    PubMed

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  12. Cold adaptation, aging, and Korean women divers haenyeo.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Kim, Siyeon

    2017-08-08

    We have been studying the thermoregulatory responses of Korean breath-hold women divers, called haenyeo, in terms of aging and cold adaptation. During the 1960s to the 1980s, haenyeos received attention from environmental physiologists due to their unique ability to endure cold water while wearing only a thin cotton bathing suit. However, their overall cold-adaptive traits have disappeared since they began to wear wetsuits and research has waned since the 1980s. For social and economic reasons, the number of haenyeos rapidly decreased to 4005 in 2015 from 14,143 in 1970 and the average age of haenyeos is about 75 years old at present. For the past several years, we revisited and explored older haenyeos in terms of environmental physiology, beginning with questionnaire and field studies and later advancing to thermal tolerance tests in conjunction with cutaneous thermal threshold tests in a climate chamber. As control group counterparts, older non-diving females and young non-diving females were compared with older haenyeos in the controlled experiments. Our findings were that older haenyeos still retain local cold tolerance on the extremities despite their aging. Finger cold tests supported more superior local cold tolerance for older haenyeos than for older non-diving females. However, thermal perception in cold reflected aging effects rather than local cold acclimatization. An interesting finding was the possibility of positive cross-adaptation which might be supported by greater heat tolerance and cutaneous warm perception thresholds of older haenyeos who adapted to cold water. It was known that cold-adaptive traits of haenyeos disappeared, but we confirmed that cold-adaptive traits are still retained on the face and hands which could be interpreted by a mode switch to local adaptation from the overall adaptation to cold. Further studies on cross-adaptation between chronic cold stress and heat tolerance are needed.

  13. Long-term tensile bond strength of differently cemented nanocomposite CAD/CAM crowns on dentin abutment.

    PubMed

    Stawarczyk, Bogna; Stich, Nicola; Eichberger, Marlis; Edelhoff, Daniel; Roos, Malgorzata; Gernet, Wolfgang; Keul, Christine

    2014-03-01

    To test the tensile bond strength of luted composite computer aided design/computer aided manufacturing (CAD/CAM) crowns after use of different adhesive systems combined with different resin composite cements on dentin abutments. Human molars (n=200) were embedded in acrylic resin, prepared in a standardized manner and divided into 20 groups (n=10). The crowns were treated as follows: (i) Monobond Plus/Heliobond (MH), (ii) Ambarino P60 (AM), (iii) Visio.link (VL), (iv) VP connect (VP), and (v) non-treated as control groups (CG) and luted with Variolink II (VAR) or Clearfil SA Cement (CSA). Tensile bond strength (TBS) was measured initially (24h water, 37°C) and after aging (5000 thermal cycles, 5/55°C). The failure types were evaluated after debonding. TBS values were analyzed using three-way and one-way ANOVA, followed by post hoc Scheffé-test, and two-sample Student's t-tests. Among VAR and after aging, CG presented significantly higher TBS (p=0.007) than groups treated with MH, AM and VP. Other groups showed no impact of pre-treatment. A decrease of TBS values after thermal aging was observed within CSA: CG (p=0.002), MH (p<0.001), VL (p<0.001), AM (p=0.002), VP (p<0.001) and within VAR: MH (p=0.002) and AM (p=0.014). Groups cemented with VAR showed significantly higher TBS then groups cemented with CSA: non-aged groups: CG (p<0.001), and after thermal aging: CG (p=0.003), MH (p<0.001), VL (p=0.005), VP (p=0.010). According to the study results nano-composite CAD/CAM crowns should be cemented with VAR. Pre-treatment is not necessary if the tested resin composite cements are used. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, K.C.; Noel, D.; Hechler, J.-J.

    Samples of Narmco Rigidite 5208/WC3000 carbon-epoxy composite prepreg were exposed to ambient temperature and 50 percent relative humidity for different periods up to 66 days. The aging has a significant effect on prepreg physical properties such as tack, volatiles content, and gel time. A set of four-ply laminates made from aged prepreg was subjected to tensile testing, ultrasonic inspection, and optothermal inspection. No relationship could be discerned between laminate properties and prepreg aging time. However, variations in panel homogeneity were observed, and these correlated with thermal diffusivity and tensile modulus measurements, but not with ultimate tensile strength or elongation. Amore » set of six-ply laminates was used to measure compressive properties, interlaminar shear strength, and physical properties. These panels also showed variations in porosity, again unrelated to aging, but in addition, the fiber-resin ratio was observed to decrease with aging time. Both factors were found to affect mechanical properties. The implications concerning the importance of monitoring the aging by physicochemical methods are discussed. 30 refs.« less

  16. Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.

    2017-12-01

    Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.

  17. Residence in Proximity of a Coal-Oil-Fired Thermal Power Plant and Risk of Lung and Bladder Cancer in North-Eastern Italy. A Population-Based Study: 1995-2009.

    PubMed

    Collarile, Paolo; Bidoli, Ettore; Barbone, Fabio; Zanier, Loris; Del Zotto, Stefania; Fuser, Simonetta; Stel, Fulvio; Panato, Chiara; Gallai, Irene; Serraino, Diego

    2017-07-31

    This study investigated the risk of lung and bladder cancers in people residing in proximity of a coal-oil-fired thermal power plant in an area of north-eastern Italy, covered by a population-based cancer registry. Incidence rate ratios (IRR) by sex, age, and histology were computed according to tertiles of residential exposure to benzene, nitrogen dioxide (NO2), particular matter, and sulfur dioxide (SO2) among 1076 incident cases of lung and 650 cases of bladder cancers. In men of all ages and in women under 75 years of age, no significant associations were observed. Conversely, in women aged ≥75 years significantly increased risks of lung and bladder cancers were related to high exposure to benzene (IRR for highest vs. lowest tertile: 2.00 for lung cancer and 1.94 for bladder cancer) and NO2 (IRR: 1.72 for lung cancer; and 1.94 for bladder cancer). In these women, a 1.71-fold higher risk of lung cancer was also related to a high exposure to SO2. Acknowledging the limitations of our study, in particular that we did not have information regarding cigarette smoking habits, the findings of this study indicate that air pollution exposure may have had a role with regard to the risk of lung and bladder cancers limited to women aged ≥75 years. Such increased risk warrants further analytical investigations.

  18. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    NASA Astrophysics Data System (ADS)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  19. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods < 100 s, the phase velocity variations are strongly controlled by seafloor age and shown to be consistent with temperature variations predicted by the half-space-cooling model for a mantle potential temperature of 1400°C. The inferred thermal structure beneath the Indian Ocean is most similar to the structure of the Pacific upper mantle, where phase velocities can also be explained by a half-space-cooling model. The thermal structure is not consistent with that of the Atlantic upper mantle, which is best fit by a plate-cooling model and requires a thin plate. Removing age-dependent phase velocity from the 2-D maps of the Indian Ocean highlights anomalously high velocities at the Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  20. Crosslinking of SAVY-4000 O-rings as a Function of Aging Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buskirk, Caleb Griffith

    SAVY-4000 containers were developed as a part of DOE M 441.1-1 to protect workers who handle stored nuclear material from exposure due to loss of containment.1 The SAVY-4000 is comprised of three parts: a lid, a container, and a cross-linked fluoropolymer O-ring. Degradation of the O-ring during use could limit the lifetime of the SAVY-4000. In order to quantify the chemical changes of the Oring over time, the molecular weight between crosslinks was determined as a function of aging conditions using a swelling technique. Because the O-ring is a cross-linked polymer, it will absorb solvent into its matrix without dissolving.more » The relative amount of solvent uptake can be related to the degree of crosslinking using an equation developed by Paul Flory and John Rehner Jr3. This method was used to analyze O-ring samples aged under thermal and ionizing-radiation conditions. It was found that at the harsher thermal gaining conditions in absence of ionizing-radiation the average molecular weight between crosslinks decreased, indicating a rise in crosslinks, which may be attributable to advanced aging with no ionizing radiation present. Inversely, in the presence of ionizing radiation it was found that material has a higher level of cross-linking with age. This information could be used to help predict the lifetime of the O-rings in SAVY-4000 containers under service conditions.« less

  1. Long-term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650-35 Fabric-reinforced PMR-15 Composites-data

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.

    2003-01-01

    A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.

  2. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.

    PubMed

    Toulkeridis, T; Goldstein, S L; Clauer, N; Kroner, A; Lowe, D R

    1994-03-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  3. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  4. Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaeili, Shahrzad; Lloyd, David J.

    2005-11-15

    Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less

  5. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes.

    PubMed

    Fu, Ye; Zhao, Detao; Yao, Pengjun; Wang, Wencai; Zhang, Liqun; Lvov, Yuri

    2015-04-22

    A novel aging-resistant styrene-butadiene rubber (SBR) composite is prepared using the antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine (4010NA) loaded inside of halloysite clay nanotubes and used as filler. Loading the antioxidant inside of halloysite allows for its sustained release for nine months in the rubber matrix. By utilizing modified halloysite, the antioxidant concentration in this rubber nanoformulation is tripled without causing "blooming" defects. Furthermore, the halloysite is silanized to enhance its miscibility with rubber. The aging resistance of SBR-halloysite composites is studied by comparing the mechanical properties before and after thermal-oxidative aging. A seven-day test at 90 °C shows preservation of mechanical properties, and no 4010NA blooming is observed, even after one month. Styrene-butadiene rubber with 27 wt % halloysite loaded with 4010NA shows marked increase in aging resistance and promising future of halloysite as a functional rubber filler.

  6. Behavior of Al-Mg alloy subjected to thermal processing

    NASA Astrophysics Data System (ADS)

    Cristian, AchiÅ£ei Dragoş; Georgiana, Minciunǎ Mirabela; Victor, Sandu Andrei; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    In the paper are shown the experimental results obtained for aluminum alloy, after application of the heat treatments by quenching solution and artificial ageing. The purpose of quenching solution treatment is to decrease the hardness and improve the machining for industrial parts made from this material. By artificial ageing treatment, the Al-Mg structure is modified, the hardness increase to the values necessary for a long exploitation of the parts.

  7. Performance of bolted closure joint elastomers under cask aging conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Sindelar, R.; Skidmore, E.

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperaturemore » and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.« less

  8. Evidence for a late thermal event of unequilibrated enstatite chondrites: a Rb-Sr study of Qingzhen and Yamato 6901 (EH3) and Khairpur (EL6)

    USGS Publications Warehouse

    Torigoye, N.; Shima, M.

    1993-01-01

    The Rb-Sr whole rock and internal systematics of two EH3 chondrites, Qingzhen and Yamato 6901, and of one EL6 chondrite, Khairpur, were determined. The internal Rb-Sr systematics of the EH3 chondrites are highly disturbed. Fractions corresponding to sulfide phases show excess 87Sr, while other fractions corresponding to silicate phases produce a linear trend on a Rb-Sr evolution diagram. If these linear relations are interpreted as isochrons, the ages of the silicate phases are 2.12?? 0.23 Ga and 2.05 ??0.33 Ga with the initial Sr isotopic ratios of 0.7112 ?? 0.0018 and 0.7089 ?? 0.0032, for Qingzhen and Yamato 6901, respectively. The Rb-Sr results are interpeted as indicative of a late thermal event about 2Ga ago on the parent bodies of these EH3 chondrites. These ages agree well with previously published K-Ar ages. An older isochron age of 4.481 ?? 0.036 Ga with a low initial Sr isotopic ratio of 0.69866 ?? 0.00038 was obtained for the data from silicate fractions of Khairpur, indicating early petrological equilibrium on the parent body of EL6 chondrites. -from Authors

  9. Thermal/Mechanical Durability of Polymer-Matrix Composites in Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Whitley, Karen S.; Grenoble, Ray W.; Bandorawalla, Tozer

    2003-01-01

    In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric-matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 as a function of temperature and aging. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimens ply lay-ups. Specimens were preconditioned with one set of coupons being isothermally aged for 576 hours at -184 C, in an unloaded state. Another set of corresponding coupons were mounted in constant strain fixtures such that a constant uniaxial strain was applied to the specimens for 576 hours at -184 C. A third set was mechanically cycled in tension at -184 C. The measured properties indicated that temperature, aging, and loading mode can all have significant influence on performance. Moreover, this influence is a strong function of laminate stacking sequence. Thermal-stress calculations based on lamination theory predicted that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material because of aging at cryogenic temperatures. ________________

  10. THE LAWS OF ENERGY CONSUMPTION IN NUTRITION,

    DTIC Science & Technology

    NUTRITION , THERMAL ANALYSIS), HEAT, BIOMETRY, BODY TEMPERATURE, ENERGY, LABORATORY ANIMALS, HUMANS, FOOD, CALORIMETRY, BIOCHEMISTRY, PROTEINS...DIET, METABOLISM, LOW TEMPERATURE, AGING(PHYSIOLOGY), STARVATION, MIXTURES, CLOTHING , COOLING.

  11. Microstructural changes caused by thermal treatment and their effects on mechanical properties of a gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Microstructural changes due to thermal treatments of a directionally solidified gamma/gamma'-delta eutectic alloy were investigated. Aging treatments of 8 to 48 hours and ranging from 750 to 1120 C were given to the alloy in both its as directionally solidified condition and after gamma' solutioning. Aging resulted in gamma' coarsening gamma precipitates in delta, and delta and gamma'' precipitates in delta. The tensile strength was increased about 12 percent at temperatures up to 900 C by a heat treatment. Times to rupture were essentially the same or greater than for as directionally solidified material. Tensile and rupture ductility in the growth direction of the alloy were reduced by the heat treatment.

  12. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Schmalstieg, Johannes; Käbitz, Stefan; Ecker, Madeleine; Sauer, Dirk Uwe

    2014-07-01

    Knowledge on lithium-ion battery aging and lifetime estimation is a fundamental aspect for successful market introduction in high-priced goods like electric mobility. This paper illustrates the parameterization of a holistic aging model from accelerated aging tests. More than 60 cells of the same type are tested to analyze different impact factors. In calendar aging tests three temperatures and various SOC are applied to the batteries. For cycle aging tests especially different cycle depths and mean SOC are taken into account. Capacity loss and resistance increase are monitored as functions of time and charge throughput during the tests. From these data physical based functions are obtained, giving a mathematical description of aging. To calculate the stress factors like temperature or voltage, an impedance based electric-thermal model is coupled to the aging model. The model accepts power and current profiles as input, furthermore an ambient air temperature profile can be applied. Various drive cycles and battery management strategies can be tested and optimized using the lifetime prognosis of this tool. With the validation based on different realistic driving profiles and temperatures, a robust foundation is provided.

  13. Effect of ageing on precipitation and impact energy of 2101 economical duplex stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Wei; College of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240; Jiang Laizhu

    2009-01-15

    The impact energy and microstructure of a thermally aged 2101 duplex stainless steel with composition of Fe-21.4Cr-1.2Ni-5.7Mn-0.23 N-0.31Mo were studied. The results showed that the room temperature impact energy of specimens decreased gradually with ageing temperature up to 700 deg. C and then increased with aging over 700 deg. C. The minimum value of impact energy was 37 J after 700 deg. C aging, which was only 34% of that for as-annealed specimens. For specimens aged at 700 deg. C, the room temperature impact energy decreased significantly after 3 min and was halved after 10 min. Fractographs showed that, withmore » increasing aging time, the fracture morphology changed from fibrous fracture to transgranular and intragranular fracture. Scanning electron micrographs revealed that many precipitates were distributed along {alpha}/{gamma} and {alpha}/{alpha} interfaces. The precipitates were extracted and confirmed by X-ray diffraction to be Cr{sub 2}N. Therefore, it can be concluded that precipitation of Cr{sub 2}N is the main reason for the decrease of impact energy in aged 2101 duplex stainless steel.« less

  14. Does artificial aging affect mechanical properties of CAD/CAM composite materials.

    PubMed

    Egilmez, Ferhan; Ergun, Gulfem; Cekic-Nagas, Isil; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-01

    The purpose of this study was to determine the flexural strength and Weibull characteristics of different CAD/CAM materials after different in vitro aging conditions. The specimens were randomly assigned to one of the six in vitro aging conditions: (1) water storage (37°C, 3 weeks), (2) boiling water (24h), (3) hydrochloric acid exposure (pH: 1.2, 24h), (4) autoclave treatment (134°C, 200kPa, 12h), (5) thermal cycling (5000 times, 5-55°C), (6) cyclic loading (100N, 50,000 cycles). No treatment was applied to the specimens in control group. Three-point bending test was used for the calculation of flexural strength. The reliability of the strength was assessed by Weibull distribution. Surface roughness and topography was examined by coherence scanning interferometry. Evaluated parameters were compared using the Kruskall-Wallis or Mann-Whitney U test. Water storage, autoclave treatment and thermal cycling significantly decreased the flexural strength of all materials (p<0.05), whereas HCl exposure or cyclic loading did not affect the properties (p>0.05). Weibull moduli of Cerasmart™ and Lava™ Ultimate were similar with control. Vita Enamic ® exhibited similar Weibull moduli in all aging groups except the HCl treated group (p>0.05). R a values of Cerasmart™ and Lava™ Ultimate were in the range of 0.053-0.088μm in the aged groups. However R a results of Vita Enamic ® were larger than 0.2μm. Flexural strength of newly developed restorative CAD/CAM materials was significantly decreased by artificial aging. Cyclic loading or HCl exposure does not affect to the flexural strength and structural reliability of Cerasmart™ and Lava™ Ultimate. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. The solar wind in time: a change in the behaviour of older winds?

    NASA Astrophysics Data System (ADS)

    O'Fionnagáin, D.; Vidotto, A. A.

    2018-05-01

    In this paper, we model the wind of solar analogues at different ages to investigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray luminosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in Time' project with ages between 120 and 7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (\\dot{M}) at roughly 2 Gyr, with \\dot{M} (t < 2 Gyr) ∝ t-0.74 and \\dot{M} (t > 2 Gyr) ∝ t-3.9. This steep decay in \\dot{M} at older ages could be the reason why older stars are less efficient at carrying away angular momentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected. Combining our models with dynamo evolution models for the magnetic field of the Earth, we find that, at early ages (≈100 Myr), our Earth had a magnetosphere that was three or more times smaller than its current size.

  16. Evaluation of Crack Arrest Toughness ( K IA) of P91 Steel in Various Cold Worked and Thermally Aged Conditions

    NASA Astrophysics Data System (ADS)

    Sathyanarayanan, S.; Moitra, A.; Sasikala, G.; Bhaduri, A. K.

    2015-02-01

    K IA is increasingly being regarded as a characteristic fracture toughness below which cleavage fracture does not occur. Its evaluation from small-sized Charpy specimens would be advantageous for applications in power plant industries. In this study, K IA has been evaluated for P91 steel in various cold worked and thermally aged conditions. Evaluation of K IA requires determination of crack arrest load( P arrest) and crack arrest length( a arrest). The main challenge is in the determination of a arrest due to the non-availability of standard methodologies and the absence of unequivocal microstructural signatures on the fracture surface in this steel to identify crack arrest. a arrest has been determined using the analytical Key- Curve methodology which has proven successful for this steel in unaged condition. The applicability of the Key- Curve method is validated by the good agreement of the determined final crack length with that measured optically on unbroken specimens of N&T and subsequently 15% cold-worked P91 steel which had been previously aged at 650 °C for 5000 h. Mean K IA varies from 47.46 MPa√m (NT steel aged at 600 °C for 5000 h) to 69.85 MPa√m(NT + 15% cw steel aged at 650 °C for 10000 h) for the various cold worked and aged datasets. K IA is found to be an average property unlike initiation toughness ( K Jd) which shows statistical scatter. Mean K IA is found to be in reasonable agreement with the lower bound values of cleavage initiation toughness ( K Jd) for the datasets in this study.

  17. ­Oligo-Miocene Monazite Ages in the Lesser Himalaya Sequence, Arunachal Pradesh, India; Geological Content of Age Variations

    NASA Astrophysics Data System (ADS)

    Clarke, G. L.; Bhowmik, S. K.; Ireland, T. R.; Aitchison, J. C.; Chapman, S. L.; Kent, L.

    2016-12-01

    A telescoped and inverted greenschist-upper amphibolite facies sequence in the in the Siyom Valley of eastern Arunachal Pradesh is tectonically overlain by an upright (grade decreasing upward) granulite to lower amphibolite facies sequence. Such grade relationships would normally attribute the boundary to a Main Central Thrust (MCT) structure, and predict a change from underlying Lesser Himalaya Sequence (LHS) to Greater Himalaya Sequence rocks across the boundary. However, all pelitic and psammitic samples have similar detrital zircon age spectra, involving c. 2500, 1750-1500, 1200 and 1000 Ma Gondwanan populations correlated with the LHS. Isograds are broadly parallel to a penetrative NW-dipping S2 foliation, developed contemporaneously with the inversion. Garnet growth in garnet, staurolite and kyanite zone schists beneath the thrust commenced at P>8 kbar and T≈550°C, before syn- to post-S2 heating of staurolite and kyanite zone rocks to T≈640°C at P≈8.5 kbar, most probably at c. 18.5 Ma. Kyanite-rutile-garnet migmatite immediately above the thrust records peak conditions of P≈10 kbar and T≈750°C and c. 21.5 Ma monazite ages. Complexity in c. 21-1000 Ma monazite ages in overlying amphibolite facies schists reflects the patchy recrystallization of detrital grains, intra-grain complexity being dependent on whole rock composition, metamorphic grade and evolition. Slip on a SE-propagating thrust was likely contemporaneous with early Miocene metamorphism, based on the distribution of structure, metamorphic textures, and overlap of age relationships. It is inferred to have initially controlled the uplift of granulite to mid-crustal levels between 22 and 19 Ma, thermal relaxation within a disrupted LHS metamorphic profile inducing a post-S2 thermal peak in lower grade footwall rocks.

  18. Thermal durations and heating behaviour for the Barrovian metamorphism, Scotland

    NASA Astrophysics Data System (ADS)

    Viete, D. R.; Lister, G. S.; Hermann, J.; Forster, M. A.; Oliver, G. J.

    2008-12-01

    Published U/Pb ages for the syn-metamorphic gabbros and granites of the Grampian Terrane, Scotland, that provided heat for the classical Barrovian metamorphism, suggests that they were emplaced between 473.5 and 470 Ma. New SHRIMP U/Pb ages of 472.2 ± 5.8 Ma and 470.4 ± 6.1 Ma for peak metamorphism in the highest-grade units of the Barrovian metamorphic series are consistent with a 473.5 to 470 Ma heating episode in the highest-grade units. U/Pb-calibrated 40Ar/39Ar ages for white mica from the Barrovian metamorphic series vary from c. 465 Ma for the biotite zone to c. 461 Ma for the sillimanite zone and suggest that the Barrovian thermal episode lasted less than 8.5 million years in the biotite zone and less than 12.5 million years in the sillimanite zone. The lowest-grade units of the Barrovian metamorphic series retain detrital ages in white mica 40Ar/39Ar step-heating spectra, while units metamorphosed to temperatures of 475°C or more yield Grampian 40Ar/39Ar plateau ages. Forward modelling of Ar diffusion from white mica grains was carried out for different grain sizes and thermal histories to match the position of the across-metamorphic-grade transition from detrital 40Ar/39Ar patterns to Grampian 40Ar/39Ar plateau ages. The results of Ar diffusion modelling are consistent with thermal durations of between one and 4.5 million years for the Barrovian metamorphism of the biotite zone. Microstructural observations suggest that peak metamorphism and cooling occurred earliest in the lowest-grade units of the Barrovian metamorphic series and metamorphism in the higher-grade units continued for longer. We propose metamorphic durations of between 3.5 and eight million years for the Barrovian metamorphism of the sillimanite zone. Geochemical textures preserved within high-grade garnets from the Barrovian metamorphic series record evidence of Mn diffusion over c. 1000 μm lengthscales during the Barrovian metamorphism. In addition, sillimanite-grade garnets from the Barrovian metamorphic series preserve c. 100 μm diffusion textures between sillimanite-grade rim domains and lower-grade cores. Timescales for Fickian diffusion processes increase with the square of the diffusion lengthscale. Lengthscales of diffusion are considered within the context of 3.5- to eight-million-year duration for the Barrovian thermal event. Heat associated with regional metamorphism appears to have accumulated within the metamorphosed units following numerous, short- timescale (tens of thousands of year) heating events. Shear zones that occur in the highest-grade parts of the Barrovian metamorphic series provide a suitably narrow heating region for regional metamorphism over a several million years and, with episodic movement histories, can account for self-similar heating behaviour (by mechanical work and/or the introduction of magmas and hot fluids).

  19. FIRST STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    2010-01-08

    Samples have been prepared from a softwood fiberboard lower subassembly. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples. Some of the observed differences result from the limited exposure periods of the softwood fiberboard samples, and the impact of seasonal humidity levels. Testing following additional conditioning will continue and should eliminate this bias. Post-conditioning data have been measured on a single softwood fiberboardmore » assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but much of the compression strength data tends toward the lower end of that range. Further understanding of the variability of softwood fiberboard properties will require testing of additional material. Cane fiberboard wall sheathing is specified for thermal insulation and impact resistance in 9975 shipping packages. Softwood fiberboard manufactured by Knight-Celotex was approved as an acceptable substitute for transportation in 2008. Data in the literature [1] show a consistent trend in thermal properties of fiberboard as a function of temperature, density and/or moisture content regardless of material source. Thermal and mechanical properties were measured for un-aged softwood fiberboard samples, and found to be sufficiently similar to those of un-aged cane fiberboard to support the acceptance of 9975 packages with softwood fiberboard overpack into KAMS for storage. The continued acceptability of aged softwood fiberboard to meet KAMS storage requirements was the subject of subsequent activities. This is an interim status report for experiments carried out per Task Technical Plan WSRC-TR-2008-00024 [2], which is part of the comprehensive 9975 package surveillance program [3]. The primary goal of this task is to validate the preliminary assessment that Knight-Celotex softwood fiberboard is an acceptable substitute for cane fiberboard in the 9975 shipping package overpack, and that the long-term performance of these two materials in a storage environment is comparable.« less

  20. Monitoring the degradation of physical properties and fire hazards of high-impact polystyrene composite with different ageing time in natural environments.

    PubMed

    Wang, Bibo; Zhang, Yan; Tao, Youji; Zhou, Xia; Song, Lei; Jie, Ganxin; Hu, Yuan

    2018-06-15

    The current study aims at monitoring the role of the different natural environments on the physical properties and fire hazards of HIPS composites ageing in Turpan and Qionghai. The results indicated that the chromatic aberration and degradation of surface appearance intensified with the increasing ageing time. More flame retardants migrated and were eroded for HIPS composites ageing in Qionghai than those ageing in Turpan, which was caused by the combination of sunlight, high temperature and rainwater in Qionghai. After degradation in the natural environments, the HIPS composites possessed the lower thermal stability and char residues, more toxic gases release, higher peak heat release rate and fire hazard. For example, the peak heat release rate in Qionghai increased by 88.9%, which is much higher than that of in Turpan (55.6%). Moreover, the tensile strength and elongation at break decreased by 46% and 59% for HIPS composites ageing in Turpan and reduced by 53% and 67% for HIPS composites aged in Qionghai, respectively. The results demonstrate that more serious degradation of physical properties and higher fire hazard for HIPS composites ageing in Qionghai than those in Turpan due to the different natural ageing environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  2. Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering.

    PubMed

    Lossec, G; Lebreton, Y; Hulin, J C; Fillaut, M; Herpin, P

    1998-11-01

    Newborn pigs rely essentially on shivering thermogenesis in the cold. In order to understand the rapid postnatal enhancement of thermogenic capacities in piglets, the oxygen and nutrient uptake of hindquarters was measured in vivo in 1- (n = 6) and 5-day-old (n = 6) animals at thermal neutrality and during cold exposure. The hindquarters were considered to represent a skeletal muscle compartment. Indirect calorimetry and arterio-venous techniques were used. The cold challenge (23 C at 1 day old and 15 C at 5 days old for 90 min) induced a similar increase (+90 %) in regulatory heat production at both ages. Hindquarters blood flow was higher at 5 days than 1 day old at thermal neutrality (26 +/- 3 vs. 17 +/- 1 ml min-1 (100 g hindquarters)-1) and its increase in the cold was much more marked (+65 % at 5 days old vs. +25 % at 1 day old). Oxygen extraction by the hindquarters rose from 30-35 % at thermal neutrality to 65-70 % in the cold at both ages. The calculated contribution of skeletal muscle to total oxygen consumption averaged 34-40 % at thermal neutrality and 50-64 % in the cold and skeletal muscle was the major contributor to regulatory thermogenesis. Based on hindquarters glucose uptake and lactate release, carbohydrate appeared to be an important fuel for shivering. However, net uptake of fatty acids increased progressively during cold exposure at 5 days old. The enhancement in muscular blood supply and fatty acid utilization during shivering is probably related to the postnatal improvement in the thermoregulatory response of the piglet.

  3. Effects of Potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Kim, Do Heui

    2014-03-31

    The effects of K loading and thermal aging on the structural properties and high temperature performance of Pt/K/Al2O3 lean NOx trap (LNT) catalysts were investigated using in situ X-ray diffraction (XRD), temperature-programmed decomposition/desorption of NOx (NOx-TPD), transmission electron microscopy (TEM), NO oxidation and NOx storage tests. In situ XRD results demonstrate that KNO3 becomes extremely mobile on the Al2O3 surface, and experiences complex transformations between orthorhombic and rhombohedral structures, accompanied by sintering, melting and thermal decomposition upon heating. NOx storage results show an optimum K loading around 10% for the best performance at high temperatures. At lower K loadings wheremore » the majority of KNO3 stays as a surface layer, the strong interaction between KNO3 and Al2O3 promotes KNO3 decomposition and deteriorates high-temperature performance. At K loadings higher than 10%, the performance drop is not caused by NOx diffusion limitations as for the case of barium-based LNTs, but rather from the blocking of Pt sites by K species, which adversely affects NO oxidation. Thermal aging at 800 ºC severely deactivates the Pt/K/Al2O3 catalysts due to Pt sintering. However, in the presence of potassium, some Pt remains in a dispersed and oxidized form. These Pt species interact strongly with K and, therefore, do not sinter. After a reduction treatment, these Pt species remain finely dispersed, contributing to a partial recovery of NOx storage performance.« less

  4. Applications of detrital geochronology and thermochronology from glacial deposits to the Paleozoic and Mesozoic thermal history of the Ross Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Welke, Bethany; Licht, Kathy; Hennessy, Andrea; Hemming, Sidney; Pierce Davis, Elizabeth; Kassab, Christine

    2016-07-01

    Till from moraines at the heads of six major outlet glaciers in the Transantarctic Mountains (TAM) and from till beneath three West Antarctic ice streams have a ubiquitous zircon U-Pb age population spanning the time of the Ross/Pan-African Orogenies (610-475 Ma). Geochronology and thermochronology of detrital minerals in these Antarctic glacial tills reveal two different thermal histories for the central and southern TAM. Double-dating of the zircons reveals a geographically widespread (U-Th)/He (ZHe) population of 180-130 Ma in most of the till samples. Sandstone outcrops at Shackleton Glacier, and three Beacon Supergroup sandstone clasts from three moraines, have ZHe ages that fall entirely within this range. The similar population and proximity of many of the till samples to Beacon outcrops lead us to suggest that this extensive ZHe population in the tills is derived from Beacon Supergroup rocks and reflects the thermal response of the Beacon Basin to the breakup of Gondwana. A second population of older (>200 Ma) ZHe ages in tills at the head of Byrd, Nimrod, and Reedy Glaciers. For the tills at the head of the Nimrod and Byrd Glaciers, integrating the double-dated zircon results with 40Ar/39Ar of hornblende, muscovite and biotite, and U-Pb and (U-Th-Sm)/He double-dates on apatite yields a typical pattern of early rapid orogenic cooling (˜4-10°C/Myr) 590-475 Ma after the emplacement of the Granite Harbour Intrusives. Low temperature thermochronometers at these sites yield variable but quite old ages (ZHe 480-70 Ma and AHe 200-70 Ma) that require a long history at low temperature.

  5. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  6. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  7. Life history attributes of fishes along the latitudinal gradient of the Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Guy, C.S.

    2002-01-01

    Populations of two short-lived species (emerald shiner Notropis atherinoides and sicklefin chub Macrhybopsis meeki) and three long-lived species (freshwater drum Aplodinotus grunniens, river carpsucker Carpiodes carpio, and sauger Stizostedion canadense) were studied in the Missouri River to examine spatial variations in life history characteristics across a latitudinal and thermal gradient (38??47???N to 48??03???N). The life history characteristics included longevity (maximum age), the rate at which asymptotic length was approached (K from the von Bertalanffy growth equation), the mean back-calculated length at age, and growth rates during the first year of life (mm/degree-day and mm/d). The mean water temperature and number of days in the growing season averaged 1.3 times greater in the southern than in the northern latitudes, while degree-days averaged twice as great. The longevity of all species except freshwater drum increased significantly from south to north, but the relationships between maximum age and latitude were curvilinear for short-lived species and linear for long-lived species. The von Bertalanffy growth coefficient for river carpsuckers and saugers increased from north to south, as indicated by significant negative relationships between K and latitude. Mean back-calculated length at age was negatively related to latitude for freshwater drums (???age 4) and saugers (ages 1-5) but positively related to latitude for river carpsuckers (???age 6). One of the growth rates examined (mm/degree-day) increased significantly from low to high latitudes for emerald shiners, sicklefin chubs, freshwater drums, and river carpsuckers during the first growing season. The other growth rate (mm/d) increased significantly from low to high latitudes for emerald shiners but was inversely related to latitude for saugers. These results suggest that the thermal regime related to latitude influences the life history characteristics of fishes in the Missouri River.

  8. 2017 Accomplishments – Tritium Aging Studies on Stainless Steel Weldments and Heat-Affected Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.; Hitchcock, Dale; Krentz, Tim

    In this study, the combined effects tritium and decay helium in forged and welded Types 304L and 21-6-9 stainless steels were studied. To measure these effects, fracture mechanic specimens were thermally precharged with tritium and aged for approximately 17 years to build in decay helium from tritium decay prior to testing. The results are compared to earlier measurements on the same alloys and weldments (4-5, 8-9). In support of Enhanced Surveillance, “Tritium Effects on Materials”, the fracture toughness properties of long-aged tritium-charged stainless-steel base metals and weldments were measured and compared to earlier measurements. The fracture-toughness data were measured bymore » thermally precharging as-forged and as-welded specimens with tritium gas at 34.5 MPa and 350°C and aging for approximately 17 years to build-in decay helium prior to testing. These data result from the longest aged specimens ever tested in the history of the tritium effects programs at Savannah River and the fracture toughness values measured were the lowest ever recorded for tritium-exposed stainless steel. For Type 21-6-9 stainless steel, fracture toughness values were reduced to less than 2-4% of the as-forged values to 41 lbs / in specimens that contained more than 1300 appm helium from tritium decay. The fracture toughness properties of long-aged weldments were also measured. The fracture toughness reductions were not as severe because the specimens did not retain as much tritium from the charging and aging as did the base metals. For Type 304L weldments, the specimens in this study contained approximately 600 appm helium and their fracture toughness values averaged 750 lbs / in. The results for other steels and weldments are reported and additional tests will be conducted during FY18.« less

  9. Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age

    USDA-ARS?s Scientific Manuscript database

    The thermal environment in poultry housing is a primary influence on production efficiency and live performance. Heavy broilers (body weight > 3.2 kg) typically require high ventilation rates to maintain thermal comfort and production efficiency. However, large birds are observed to pant in mild to ...

  10. Electronic Health Management

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Sankalita; Goebel, Kai

    2011-01-01

    Accelerated aging methodologies for electrolytic components have been designed and accelerated aging experiments have been carried out. The methodology is based on imposing electrical and/or thermal overstresses via electrical power cycling in order to mimic the real world operation behavior. Data are collected in-situ and offline in order to periodically characterize the devices' electrical performance as it ages. The data generated through these experiments are meant to provide capability for the validation of prognostic algorithms (both model-based and data-driven). Furthermore, the data allow validation of physics-based and empirical based degradation models for this type of capacitor. A first set of models and algorithms has been designed and tested on the data.

  11. Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael

    2011-01-01

    This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.

  12. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  13. The use of thermomagnetic analysis for detection and quantification of 475°C embrittlement of duplex stainless steels

    NASA Astrophysics Data System (ADS)

    da Silva, M. R.; Tavares, S. S. M.; Fruchart, D.; Miraglia, S.; Neto, J. M.

    2001-05-01

    A duplex stainless steel was aged at 475°C for different times up to 500 h. The thermal embrittlement was investigated by thermomagnetic analysis using a vibrating sample magnetometer and a thermomagnetic balance. The results obtained with the two equipment were similar and show that the Curie temperature increases with the ageing time. Relationships between Tc and mechanical properties (hardness and toughness) were proposed.

  14. Fission-track dating applied to mineral exploration

    USGS Publications Warehouse

    Naeser, C.W.

    1984-01-01

    The partial to total resetting of fission-track ages of minerals in country rock near a mineralized area can be used to (1) locate a thermal anomaly, and (2) date the mineralizing event. Two mining districts in Colorado have been studied - Rico and Gilman. Rico is a precious- and base-metal mining district. Initial fission-track dating of a sill located about 6 km from the center of the district gave ages of 20 Myr and 65 Myr for apatite and zircon, respectively. The Eagle Mine in the Gilman District is the largest producer of zinc in the state of Colorado. Fission-track dating of zircon from a 70 Myr-old sill shows partial resetting of the zircon (45 Myr). The thermal anomaly identified by fission-track dating is seen in both districts far outside the area affected by obvious alteration. Based on the results of these two pilot studies, fission-track dating can be a useful exploration method for thermal anomalies associated with buried or otherwise poorly expressed mineral deposits.

  15. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  16. Thermal fluctuations and elastic relaxation in the compressed exponential dynamics of colloidal gels

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Del Gado, Emanuela

    Colloidal gels belong to the class of amorphous systems, they are disordered elastic solids that can form at very low volume fraction, via aggregation into a rich variety of networks. They exhibit a slow relaxation process in the aging regime similar to the glassy dynamics. A wide range of experiments on colloidal gels show unusual compressed exponential of the relaxation dynamical properties. We use molecular dynamics simulation to investigate how the dynamic change with the age of the system. Upon breaking and reorganization of the network structure, the system may display stretched or compressed exponential relaxation. We show that the transition between these two regimes is associated to the interplay between thermally activated rearrangements and the elastic relaxation of internal stresses. In particular, ballistic-like displacements emerge from the non local relaxation of internal stresses mediated by a series of ''micro-collapses''. When thermal fluctuations dominate, the gel restructuring involves instead more homogeneous displacements across the heterogeneous gel network, leading to a stretched exponential type of relaxation.

  17. Case control study of thermal environment preceding haemorrhagic shock encephalopathy syndrome

    PubMed Central

    Bacon, C; Bell, S; Gaventa, J; Greenwood, D

    1999-01-01

    The purpose of the study was to investigate whether the thermal environment in which babies slept before developing haemorrhagic shock encephalopathy syndrome (HSES) differed from that of other babies. Data were collected by standardised interview from parents of 31 babies who had had HSES before the age of 7 months and compared with equivalent data for 124 control babies, with matching for outside temperature on the relevant night and for age. Multivariate analysis showed a strong association between HSES and covering of the baby's head by bedding, the odds ratio being 30.7 (95% confidence interval, 2.5 to 384). There were weaker associations with other aspects of the thermal environment. This suggests a link between HSES and some cases of cot death, supports the suggestion that HSES may be caused by overheating, and reinforces advice that babies should be placed to sleep in such a way that they are less likely to become totally covered.

 PMID:10490526

  18. Some studies on the behavior of W-RE thermocouple materials at high temperatures

    NASA Technical Reports Server (NTRS)

    Burns, G. W.; Hurst, W. S.

    1972-01-01

    Bare 0.25 mm diameter W-Re alloy thermoelements (W, W-3% Re, W-5% Re and W-25%) and BeO-insulated W-3% Re and W-25% Re thermoelements were examined for metallurgical, chemical and thermal emf changes after testing for periods up to 1000 hours at temperatures principally in the range 2000 to 2400 K. Environments for the tests consisted of high purity argon, hydrogen, helium or nitrogen gases. Commercially obtained bare-wire thermoelements typically exhibited a shift in their emf-temperature relationship upon initial exposure. The shift was completed by thermally aging the W-3% Re thermoelement for 1 hour and the W-25% Re thermoelement for 2 minutes at 2400 K in argon or hydrogen. Aged thermoelements experienced no appreciable drift with subsequent exposure at 2400 K in the gaseous environments. The chemically doped W3% Re thermoelement retained a small-grained structure for exposure in excess of 50 hours at 2400 K. BeO-insulated thermoelement assemblies showed varied behavior that depended upon the method of exposure. However, when the assemblies were heated in a furnace, no serious material incompatibility problems were found if the materials were given prior thermal treatments. Thermocouples, assembled from aged W-3% Re and W-25% Re thermoelements and degassed sintered BeO insulators, exhibited a drift of only 2 to 3 K during exposure in argon at 2070 K for 1029 hours.

  19. Resolving Io's Volcanoes from a Mutual Event Observation at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    de Kleer, K.; Skrutskie, M.; Leisenring, J.; Davies, A. G.; Resnick, A.; Conrad, A.; De Pater, I.; Hinz, P.; Defrere, D.; Veillet, C.

    2016-12-01

    Near-infrared observations of Io during occultation by Jupiter and the other Galilean satellites have been central to ground-based studies of Io's volcanism for decades. When such observations are made using adaptive optics on 8-10m telescopes, the infrared emission from individual features can be resolved at a resolution approaching a few km on Io's surface. On March 8, 2015, the Large Binocular Telescope Interferometer (LBTI) observed Io during a Europa mutual occultation event. Images were obtained at a wavelength of 4.8 microns every 123 milliseconds, corresponding to 2 km on Io's surface. The thermal emission from four hot spots including Loki Patera, Pillan Patera, and Kurdalagon Patera is clearly resolved. The latter two hot spots hosted bright eruptions in early 2015; the thermal emission from these sites likely represents the aftermath of those eruptions. The occultation light curves are used to construct a brightness temperature map for each of the four hot spots, from which the lava age is estimated using a model for cooling basaltic lavas. The thermal mapping of Loki Patera has produced the first-ever temperature map of the entire patera floor at high (10 km) spatial resolution, and the corresponding age distribution yields the resurfacing rate. For each hot spot, the age and spatial extent of the lava is interpreted in the context of its activity during the surrounding months.

  20. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  1. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    PubMed

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  2. Interdiffusion behavior of tungsten or rhenium and group 5 and 6 elements and alloys of the periodic table, part 1. [at dissimilar metal joints

    NASA Technical Reports Server (NTRS)

    Arcella, F. G.

    1974-01-01

    Arc cast W, CVD W, CVD Re, and powder metallurgy Re materials were hot isostatically pressure welded to ten different refractory metals and alloys (Cb, Cb-1Zr, Ta, Ta-10W, T-111, ASTAR-811C, W-25Re, Mo-50Re, W-30Re-20Mo, ect.) and thermally aged at 10 to the minus 8th power torr at 1200, 1500, 1630, 1800, and 2000 C for 100 to 2000 hours. Electron beam microprobe analysis was used to characterize the interdiffusion zone width of each couple system as a function of age time and temperature. Extrapolations of interdiffusion zone thickness to 10,000 hours were made. Classic interdiffusion analysis was performed for several of the systems by Boltzmann-Matano analysis. A method of inhibiting Kirkendall voids from forming during thermal ageing of dissimilar metal junctions was devised and experimentally demonstrated. An electron beam weld study of Cb-1Zr to Re and W-25Re demonstrated the limited acceptability of these welds.

  3. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai, China.

    PubMed

    Jiao, Yu; Yu, Hang; Wang, Tian; An, Yusong; Yu, Yifan

    2017-12-01

    The relationship between thermal environmental parameters and clothing insulation is an important element in improving thermal comfort for the elderly. A field study was conducted on the indoor, transition space, and outdoor thermal environments of 17 elderly facilities in Shanghai, China. A random questionnaire survey was used to gather data from 672 valid samples. A statistical analysis of the data was conducted, and multiple linear regression models were established to quantify the relationships between clothing insulation, respondent age, indoor air temperature, and indoor relative humidity. Results indicated that the average thermal insulation of winter and summer clothing is 1.38 clo and 0.44 clo, respectively, for elderly men and 1.39 clo and 0.45 clo, respectively, for elderly women. It was also found that the thermal insulation of winter clothing is linearly correlated with age, and that there were seasonal differences in the relationship between clothing insulation and the environment. During winter, the clothing insulation is negatively correlated only with indoor temperature parameters (air temperature and operative temperature) for elderly males, while it is negatively correlated with indoor temperature parameters as well as transition space and outdoor air temperature for elderly females. In summer, clothing insulation for both elderly males and females is negatively correlated with outdoor temperature, as well as indoor temperature parameters (air temperature and operative temperature). The thermal insulation of summer clothing is also negatively correlated with transitional space temperature for males. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ar-39-Ar-40 Ages of Euerites and the Thermal History of Asteroid 4-Vesta

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.

    2002-01-01

    Eucrite meteorites are igneous rocks that derive from a large asteroid, probably 4 Vesta. Prior studies have shown that after eucrites formed, most were subsequently metamorphosed to temperatures up to equal to or greater than 800 C, and much later many were brecciated and heated by large impacts into the parent body surface. The uncommon basaltic, unbrecciated eucrites also formed near the surface but presumably escaped later brecciation, whereas the cumulate eucrites formed at depth where metamorphism may have persisted for a considerable period. To further understand the complex HED parent body thermal history, we determined new Ar-39-Ar-40 ages for nine eucrites classified as basaltic but unbrecciated, six eucrites classified as cumulate, and several basaltic-brecciated eucrites. Relatively precise Ar-Ar ages of two cumulate eucrites (Moama and EET87520) and four unbrecciated eucrites give a tight cluster at 4.48 +/1 0.01 Gyr. Ar-Ar ages of six additional unbrecciated eucrites are consistent with this age, within their larger age uncertainties. In contrast, available literature data on Pb-Pb isochron ages of four cumulate eucrites and one unbrecciated eucrite vary over 4.4-4.515 Gyr, and Sm-147 - Nd-143 isochron ages of four cumulate and three unbrecciated eucrites vary over 4.41-4.55 Gyr. Similar Ar-Ar ages for cumulate and unbrecciated eucrites imply that cumulate eucrites do not have a younger formation age than basaltic eucrites, as previously proposed. Rather, we suggest that these cumulate and unbrecciated eucrites resided at depth where parent body temperatures were sufficiently high to cause the K-Ar and some other chronometers to remain open diffusion systems. From the strong clustering of Ar-Ar ages at approximately 4.48 Gyr, we propose that these meteorites were excavated from depth in a single large impact event approximately 4.48 Gyr ago, which quickly cooled the samples and started the K-Ar chronometer. A large (approximately 460 km) crater postulated to exist on Vesta may be the source of these eucrites and of many smaller asteroids thought to be spectrally or physically associated with Vesta. Some Pb-Pb and Sm-Nd ages of cumulate and unbrecciated eucrites are consistent with the 4.48 Gyr Ar-Ar age, and the few older Pb-Pb and Sm-Nd ages may reflect isotopic closure prior to the large cratering event. One cumulate eucrite gives an Ar-Ar age of 4.25 Gyr; three additional cumulate eucrites give Ar-Ar ages of 3.4-3.7 Gyr; and two unbrecciated eucrites give Ar-Ar ages of approximately 3.55 Gyr. We attribute these younger ages to later impact heating. In addition, we find Ar-Ar impact-reset ages of several brecciated eucrites and eucritic clasts in howardites to fall in the range of 3.5-4.1 Gyr. Among these, Piplia Kalan, the first eucrite to show evidence for extinct 26 Al, was strongly impact heated approximately3.5 Gyr ago. When these data are combined with eucrite Ar-Ar ages in the literature, they confirm the previous suggestion that several large impact heating events occurred on Vesta over the time period approximately 4.1-3.4 Gyr ago. The onset of major impact heating may have occurred at similar times for both Vesta and the Moon, but impact heating appears to have persisted to a somewhat later time on Vesta compared to the Moon.

  5. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodesmore » on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry, anode resistance, circuit resistance, electrochemical age, and air and water permeability. Models are presented for the operation of periodically-wetted and unwetted thermal spray Zn anodes from the initial energizing of the anode to the end of its service life. The models were developed in terms of bond strength, circuit resistance, anode-concrete interfacial chemistry, electrochemical age, and anode condition. The most significant results of the research are: (1) preheating concrete surfaces prior to coating with Zn is unnecessary; (2) anodes generally fail due to loss of bond strength rather than Zn consumption; (3) Unwetted anodes fail more quickly than periodically-wetted anodes; (4) 0.47-0.60 mm (12-15 mil) anode thickness is adequate for most Oregon DOT coastal impressed current CP (ICCP) installations; (5) based on bond strength, thermal spray Zn ICCP anode service life is approximately 27 years at 0.0022 A/m2 (0.2 mA/ft2); (6) anode reaction products alter the anode-concrete interface by rejecting Ca from the cement paste, by replacing it with Zn, and by the accumulation of a Zn mineral layer that includes chloride and sulfur compounds; (7) CP system circuit resistance provides an effective means for monitoring the condition of Zn ICCP anodes as they age.« less

  6. Mineralogy and Ar-39 - Ar-40 of an old pristine basalt: Thermal history of the HED parent body

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Mori, Hiroshi; Bogard, Donald D.

    1994-01-01

    Previous investigations of mineral chemistry and Rb-Sr and Sm-Nd ages indicated that clast,84 from eucrite Yamato 75011 had preserved the pristine nature of its initial crystallization during an early stage of the HED parent body. Microscale mineralogy and Ar-39-Ar-40 ages of this clast, however, revealed local disturbance of microtextures and partially reset ages. This evidence suggests that, in addition to initial crystallization and rapid cooling, the Y75011,84 clast experienced shock deformation, reheating of short duration at higher temperature, and brecciation. These characteristics suggest two or more impact events. Fe-rich olivine filling fractures in pyroxene may have been introduced during the accompanying shock fracturing. The inferred Ar-39-Ar-40 degassing ages for Y75011 matrix and clast, 84 are 3.94 +/- 0.04 Ga and 3.98 +/- 0.03 Ga, respectively. The suggested degassing age for a clast from Y790020, believed to be paired with Y75011, is approximately 4.03 Ga, but could be younger. We consider it likely that all three samples experienced a common degassing event 3.95 +/- 0.05 Ga ago, but we cannot rule out two or more events spaced over a approximately 0.1 Ga interval. Higher temperature extractions of the two clast samples show significantly older apparent ages up to approximately 4.5 Ga and suggest that the time/temperature regime of this event was not sufficient to degas Ar totally. Most likely, the K-Ar ages were reset by thermal metamorphism associated with one or more impact events associated with shock fracturing, formation of Fe-rich olivine veins, and/or meteorite brecciation. The pyroxene annealing that commonly occurs in many eucrites is likely to be a much earlier process than the impact-produced textural changes and reset K-Ar ages observed in these meteorites. The existence of mineralogical and chronological evidence for metamorphism in an otherwise pristine eucrite suggests that the HED parent body experienced an extensive degree of early cratering.

  7. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition, degradation of the matrix and migration of nanoparticles to the surface was observed as well in the different types of SiO2 NP aged NC. Oppositely, compatibilized MWCNT (MWCNTMB) decreased the degradation of the polymer. Nevertheless, the nanomaterial migrated likewise to the surface during the ageing process. In order to evaluate the possible changes in the structure of nanomaterials due to the aging process, NM were extracted from the polymer by calcination. The nanomaterials extracted were analyzed by TGA, Fourier transform infrared spectroscopy (FT-IR), BET and TEM and its properties compared with calcinated raw NM. SiO2 hydrophilic nanoparticles were not affected by the aging process. However, both types of MWCNT were affected by the aging of the NC.

  8. Origins of Negative Strain Rate Dependence of Stress Corrosion Cracking Initiation in Alloy 690, and Intergranular Crack Formation in Thermally Treated Alloy 690

    NASA Astrophysics Data System (ADS)

    Kim, Young Suk; Kim, Sung Soo

    2016-09-01

    We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.

  9. Radiation resistant polypropylene blended with mobilizer,. antioxidants and nucleating agent

    NASA Astrophysics Data System (ADS)

    Shamshad, A.; Basfar, A. A.

    2000-03-01

    Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70°C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70°C for prolonged periods.

  10. Is Absence of Evidence of UHPM Evidence of Absence: Did Conditions on Earth Before the Ediacaran Period Allow Formation of UHP Rocks but Only Rarely Their Exhumation?

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2008-12-01

    UHPM provides petrologic evidence of transport of continental lithosphere to asthenospheric depth and return of some of these materials to crustal depth. The rock record registers UHPM since the Ediacaran Period, and studies of inclusion assemblages in zircon have increased the evidence of UHPM in Phanerozoic orogens and enabled an assessment of the real estate involved. Plots of apparent thermal gradient vs. age of metamorphism and P vs. age of metamorphism reveal two dramatic changes in inferred thermal environment and inferred depth of metamorphism from which continental lithosphere has been recovered during Earth evolution. First, from the Mesoarchean Era to the Neoproterozoic Era, sutures in subduction-to- collision orogens are marked by eclogite and high-pressure granulite metamorphism (characterized by apparent thermal gradients of 750-350 C/GPa). The P of metamorphism in sutures jumped from <1 GPa during the Eoarchean-Paleoarchean up to 2 GPa during the Paleoproterozoic. Second, from the Cryogenian- Ediacaran to the present, many sutures in subduction-to-collision orogens, and sometimes intracratonic sutures in the overriding plate, are marked by UHPM (characterized by apparent thermal gradients of <350 C/GPa) with P of metamorphism >2.7GPa. Given this pattern of secular change to colder apparent thermal gradients in sutures, the recent discovery of diamonds in zircons of crustal paragenesis in Neoarchean sedimentary rocks is surprising. Maybe UHPM has been possible since the Neoarchean but the evidence was rarely exhumed or if exhumed maybe the evidence was rarely preserved? The Appalachian/Caledonian-Variscide-Altaid and the Cimmerian-Himalayan-Alpine orogenic systems were formed by successive closure of short-lived oceans by transfer and suturing of ribbon-continent terranes derived from the Gondwanan side. Subduction of young ocean lithosphere followed by choking of the subduction channel by arc or terrane collision limited transport of water to the mantle wedge, and suppressed development of small-scale convection, arc magmatism and backarc formation. This allowed the retro- continental margin to remain strong, which favored efficient exhumation of UHPM rocks (Warren et al., 2008, EPSL). How should we interpret the presence of diamonds in detrital zircons (age range 3,050-4,260 Ma) from the Narryer terrane? Menneken et al. (2007, Nature) argue that the age range indicates repeated conditions for diamond formation (or recycling of ancient diamond) and that diamonds imply thick continental lithosphere and crust-mantle interactions since 4,260 Ma! This implies thermal environments and tectonics in the Hadean and Archean Eons similar to the Phanerozoic Eon. However, these ancient zircons originally crystallized from low-T melts (Watson and Harrison, 2006, Science) and the 'age' of the diamonds is only constrained to be > the age of deposition and <3,050 Ma. Williams (2007, Science) suggests that C was introduced as graphite precipitated from COH fluid in fractures/imperfections in zircon prior to deep burial to form diamond during a single event. COH fluid was involved in the formation of diamonds from Phanerozoic UHPM localities, so the hypothesis is viable if an appropriate tectonic model can be developed. I will present a model for the formation and exhumation of an overriding plate source terrane for the diamond-bearing detrital zircons that is consistent with periodic changes in the tectonic regime of Earth (Brown, 2006, Geology), and the geology and likely tectonic setting of the Narryer Terrane-Yilgarn Craton during the Neoarchean. Finally, I will speculate about UMPM during the Proterozoic and exhumation vs. relamination (Hacker et al., Eos, 2007).

  11. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.

    2017-04-01

    Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

  12. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO 2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virginmore » unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO 2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO 2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO 2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.« less

  13. A mass spectrometry and electron paramagnetic resonance study of photochemical and thermal aging of triterpenoid varnishes.

    PubMed

    Dietemann, P; Kälin, M; Zumbühl, S; Knochenmuss, R; Wülfert, S; Zenobi, R

    2001-05-01

    Photochemical and thermal aging of triterpenoid dammar and mastic resins used as varnishes on paintings were studied using graphite-assisted laser desorption/ionization mass spectrometry. This extends an earlier study on similar materials (Zumbühl et al., Anal. Chem. 1998, 70, 707-715) that focused on photoaging. Progressive aging results in development of groups of signals spaced by 14 and 16 Da, indicating incorporation of oxygen as well as simultaneous loss of hydrogen. Oligomers up to tetramers are formed, while cleavage reactions lead to increased signal intensities in the mass ranges between the oligomers and below the monomers. No major differences were found between the mass spectra of samples aged in light or darkness, except that deterioration was faster in light. Electron paramagnetic resonance spectroscopy revealed similar and significant amounts of radicals in films of dammar stored either in light or in darkness. It is concluded that oxidative radical reactions also take place in darkness and that differences in light and dark aging pathways are minor, although rates may differ. These findings lead to a unified explanation for yellowing of natural resin varnishes, one of the major degenerative changes in the appearance of paintings. It is also shown that the commercially available, nominally fresh resins are already in an advanced stage of oxidation and degradation. Energy-rich substances are formed upon irradiation with sunlight and are believed to restart the autoxidative chain reactions, regardless of storage conditions. As a result, varnishes are oxidized quite quickly (months) even when kept in darkness.

  14. Low-Temperature Thermochronology of Laramide Ranges in Montana and Wyoming Provides Information on Exhumation and Tectonics Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Armenta, M.; Carrapa, B.; DeCelles, P. G.

    2014-12-01

    Timing of exhumation of Laramide basement uplifts can be used as a proxy for tectonic processes associated with thick-skinned deformation resulting from flat-slab subduction. Despite its significance, the timing and pattern of Laramide deformation remains poorly constrained in Montana. Thermochronological data from Wyoming indicate exhumation of Laramide ranges during the late Cretaceous and Paleogene. Whereas a few data exist for the Bearthooth Range in Montana; the exhumation history of most of the Montana ranges remains unexplored preventing testing of current tectonic models. We report apatite fission track thermochronologic (AFT) data from modern river sands derived from Laramide ranges, bedrock basement samples, and synorogenic conglomerate clasts to determine the regional exhumation history of the Beartooth, Gravelly, Tobacco Root, Ruby, the Highland Mountains, and the Wind River Range. AFT permits reconstruction of thermal histories and rates of erosion of the upper few kilometers of the crust. In particular detrital AFT of river sands provides information on regional exhumation of the drainage area. AFT detrital ages derived from the southern end of the Beartooth Range are dominated by a 60-80 Ma signal, consistent with ages reported for bedrock basement samples in the Beartooth Range. A Cenozoic synorogenic conglomerate clast was obtained from the Highland Mountains, AFT results show a 69.56 +/- 5.45 Ma cooling age. In the Wind River Range, Wyoming AFT data from a Cenozoic synorogenic conglomerate clast from the Wind River Formation indicates a 59.32 +/- 4.83 Ma cooling age. This age is consistent with AFT ages from Gannett Peak indicating rapid cooling at ~60 Ma and ~50 Ma (Fan and Carrapa, 2014). Overall, samples from the easternmost ranges, the Beartooth and Bighorn, clearly preserve a Cretaceous signal; samples from Wind River Range and the rest of southwest Montana mainly record a Cenozoic signal. This suggests deeper and younger exhumation to the west than to the east. These results combined with thermal modeling provide additional constraints on the tectono-thermal history of Laramide ranges. In addition, these results allow for a temporal-spatial comparison between cooling and exhumation in the Montana and Wyoming Laramide regions and help test current models of the Laramide Orogeny.

  15. Incorporation of Copper Enhances the Anti-Ageing Property of Flame-Sprayed High-Density Polyethylene Coatings

    NASA Astrophysics Data System (ADS)

    Jia, Zhengmei; Huang, Jing; Gong, Yongfeng; Jin, Peipeng; Suo, Xinkun; Li, Hua

    2017-02-01

    High-density polyethylene (HDPE)-copper (Cu) composite coatings were prepared through depositing HDPE-Cu core-shell particles by flame spraying. The HDPE-Cu composite coatings and the HDPE coatings were aged in xenon lamp ageing testing chamber. The variations of chemical compositions and surface morphology of the coatings before and after the ageing testing were analyzed using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and ultraviolet-visible spectrophotometer. Results show that there is no chemical composition variation in the HDPE-Cu coatings. Cracks were found on the surfaces of the HDPE coatings, while the HDPE-Cu coating shows almost intact surface morphology. These results suggest that the HDPE-Cu coatings present better anti-ageing performances than the HDPE coatings. Further assessment of the function of Cu shells on the anti-ageing property reveals that Cu shells not only enhanced the absorption of the coatings to ultraviolet, but also increased their reflectivity to visible light. Additionally, the Cu shells enhanced the decomposition temperature and thermal stability of HDPE in the composite coatings. These results give bright insight into potential anti-ageing applications of the polymer-based structures.

  16. Age differences in suprathreshold sensory function.

    PubMed

    Heft, Marc W; Robinson, Michael E

    2014-02-01

    While there is general agreement that vision and audition decline with aging, observations for the somatosensory senses and taste are less clear. The purpose of this study was to assess age differences in multimodal sensory perception in healthy, community-dwelling participants. Participants (100 females and 78 males aged 20-89 years) judged the magnitudes of sensations associated with graded levels of thermal, tactile, and taste stimuli in separate testing sessions using a cross-modality matching (CMM) procedure. During each testing session, participants also rated words that describe magnitudes of percepts associated with differing-level sensory stimuli. The words provided contextual anchors for the sensory ratings, and the word-rating task served as a control for the CMM. The mean sensory ratings were used as dependent variables in a MANOVA for each sensory domain, with age and sex as between-subject variables. These analyses were repeated with the grand means for the word ratings as a covariate to control for the rating task. The results of this study suggest that there are modest age differences for somatosensory and taste domains. While the magnitudes of these differences are mediated somewhat by age differences in the rating task, differences in warm temperature, tactile, and salty taste persist.

  17. Change in the microstructure and mechanical properties of drawn pearlitic steel with low-temperature aging

    NASA Astrophysics Data System (ADS)

    Hirakami, D.; Ushioda, K.; Manabe, T.; Noguchi, K.; Takai, K.; Hata, Y.; Hata, S.; Nakashima, H.

    2017-07-01

    Hydrogen embrittlement is a serious problem in high-strength steels. Drawn pearlitic steel shows excellent resistance to hydrogen embrittlement despite its high strength, and aging treatment at a low temperature can simultaneously improve its strength and hydrogen-embrittlement resistance. To clarify the mechanism for this we have used thermal desorption analysis (TDA) and the newly developed precession electron diffraction analysis method in the transmission electron microscope. After aging at 100 °C for 10 min, the amount of hydrogen seen amount on the TDA curve reduced at around 100 °C. In contrast, when aging was performed at 300 °C, the hydrogen amount further reduced at around 100 °C and the unevenly deformed lamellar ferrite zone was locally recovered. For the samples that were aged at the low temperature, we confirmed that their yield strength and relaxation stress ratios increased simultaneously with improvement in the hydrogen-embrittlement property. We infer that segregation of carbon or formation of very fine carbide in dislocations during aging is the cause of these behaviors.

  18. Physical ageing of polyethylene terephthalate under natural sunlight: correlation study between crystallinity and mechanical properties

    NASA Astrophysics Data System (ADS)

    Aljoumaa, Khaled; Abboudi, Maher

    2016-01-01

    Semi-crystalline polyethylene terephthalate (PET) was aged under the effect of natural UV exposure and outdoor temperature during 670 days. The variation in the mechanical and thermal properties beside to the morphology was tracked by applying different analytical techniques, including scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry and wide angle X-ray diffraction, in addition to tensile strength and hardness measurements. It has been confirmed that the ageing process is the results of physical trend only. The aged PET showed a decrease in both tensile strength and strain with an increase in the degree of crystallinity of aged PET samples during the whole period. These changes in crystallinity were examined by various analysis methods: density, calorimetric and infrared spectroscopy. New peaks in FTIR analysis at 1115 and 1090 cm-1 were characterized and proved that this technique is considered to be an easy tool to track the change in the surface crystallinity of aged PET samples directly. The results of this study showed that an augmentation in the degree of crystallinity of outdoor aged PET samples from 18 to 36 %, accompanied with a decrease in tensile strength from 167.9 to 133.7 MPa. Moreover, a good exponential correlation was found between the degree of crystallinity and the mechanical properties of the aged PET.

  19. Simulated Space Environment Effects on a Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sail vehicles, the sail material needs to survive the harsh space environment as the degradation of the sail material determines its operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, the effect of simulated space environments of ionizing radiation and thermal aging were investigated. In order to assess some of the potential damage effects on the mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane. The solar sail membrane was exposed to high energy electrons [about 70 keV and 10 nA/cm(exp. 2)], and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by 20 to 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The mechanical properties of a precracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film, will be discussed.

  20. Simulated Space Environment Effects on a Candidate Solar Sail Material

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  1. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Porter, Wallace D.; Shyam, Amit

    2017-05-01

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.

  2. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Qiu, Y.; Kuffel, E.

    2004-08-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics.

  3. Effects of alloying on aging and hardening processes of steel with 20% nickel

    NASA Technical Reports Server (NTRS)

    Bogachev, I. N.; Zvigintsev, N. V.; Maslakova, T. M.

    1981-01-01

    Measurements of hardness, thermal emf, and electrical resistance were used to study the effects of Co, Mo, Ti and Al contents on aging and hardening processes in Fe 20%Ni steel. It is shown that the effects of these alloying elements differ substantially. Anomalies which arise in the temperature dependence of physical properties due to the presence of cobalt and molybdenum are reduced by the inclusion of titanium and aluminum (and vice versa).

  4. Active Pattern Factor Control for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    May, James E.

    1998-01-01

    Small variations in fuel/air mixture ratios within gas turbine combustors can result in measurable, and potentially detrimental, exit thermal gradients. Thermal gradients can increase emissions, as well as shorten the design life of downstream turbomachinery, particularly stator vanes. Uniform temperature profiles are usually sought through careful design and manufacturing of related combustor components. However, small componentto-component variations as well as numerous aging effects degrade system performance. To compensate for degraded thermal performance, researchers are investigating active, closed-loop control schemes.

  5. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    PubMed

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  6. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.; McCormick, R.; Luecke, J.

    2011-04-01

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experiencedmore » a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.« less

  7. Shear bond strength of orthodontic metal brackets to aged composite using three primers

    PubMed Central

    Tayebi, Ali; Fallahzadeh, Farnoosh

    2017-01-01

    Background This study aimed to assess the effect of surface preparation with sandblasting and diamond bur along with the use of three primers on shear bond strength (SBS) of metal brackets to aged composite. Material and Methods In this in vitro, experimental study, 60 Filtek Z250 composite discs were fabricated (10×2mm), immersed in distilled water for 24 hours and subjected to 5000 thermal cycles. They were randomly divided into two groups (n=30) of sandblasting with aluminum oxide particles for 10 seconds and surface roughening with bur. Each group was randomly divided into three subgroups (n=10) for use of Transbond XT, Assure Plus and Composite Primer. Metal brackets were bonded and the samples were stored in distilled water for 24 hours followed by 2000 thermal cycles. The SBS of brackets was measured and the adhesive remnant index (ARI) score was calculated. The data were analyzed by one-way ANOVA, t-test and Chi square test. Results The difference in the mean SBS was not significant among the six subgroups. Conclusions All combinations of primers and surface preparation methods provided adequately high SBS between brackets and aged composite surfaces. Considering the ARI scores, surface roughening by bur is superior to sandblasting. Key words:Shear strength, composite resins, orthodontic brackets, aged composite, surface preparation. PMID:28638550

  8. Expression profile of HSP genes during different seasons in goats (Capra hircus).

    PubMed

    Dangi, Satyaveer Singh; Gupta, Mahesh; Maurya, Divakar; Yadav, Vijay Prakash; Panda, Rudra Prasanna; Singh, Gyanendra; Mohan, Nitai Haridas; Bhure, Sanjeev Kumar; Das, Bikash Chandra; Bag, Sadhan; Mahapatra, Ramkrishna; Taru Sharma, Guttalu; Sarkar, Mihir

    2012-12-01

    The present study has demonstrated the expression of HSP60, HSP70, HSP90, and UBQ in peripheral blood mononuclear cells (PBMCs) during different seasons in three different age groups (Groups I, II, and III with age of 0-2, 2-5, and >5 years, respectively) of goats of tropical and temperate regions. Real-time polymerase chain reaction was applied to investigate mRNA expression of examined factors. Specificity of the desired products was documented using analysis of the melting temperature and high-resolution gel electrophoresis to verify that the transcripts are of the exact molecular size predicted. The mRNA expression of HSP60, HSP90, and UBQ was significantly higher (P < 0.05) in all age groups during peak summer season as compared with peak winter season in both tropical and temperate region goats. HSP70 mRNA expression was significantly higher (P < 0.05) during summer season as compared with winter season in tropical region goats. However, in the temperate region, in goats from all the three age groups studied, a non-significant difference of HSP70 expression between summer and winter seasons was noticed. In conclusion, results demonstrate that (1) HSP genes are expressed in caprine PBMCs and (2) higher expression of HSPs during thermal stress suggest possible involvement of them to ameliorate deleterious effect of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  9. Rapid fabrication of superhydrophobic Al/Fe2O3 nanothermite film with excellent energy-release characteristics and long-term storage stability

    NASA Astrophysics Data System (ADS)

    Ke, Xiang; Zhou, Xiang; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei

    2017-06-01

    One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe2O3 nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al2O3 shell and FAS-17. Superhydrophobic Al/Fe2O3 nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in natural aging test and 60.5% in accelerated aging test. This study is instructive to the practical applications of nanothermites, especially in highly humid environment.

  10. Charged kaon ratios and yields measured with the STAR detector at the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Kunz, Christopher Lee

    The mid-rapidity charged kaon ratios and yields are reported for the 200 AGeV Au+Au, 130 AGeV Au+Au, and 200 GeV pp data sets. The K -/K+ ratios are shown to be flat as a function of rapidity, transverse momentum, and centrality for the ranges investigated. The integrated ratios are 0.928 +/- 0.0028 (stat.) +/- 0.03 (sys.), 0.953 +/- 0.0.0012 (stat.) +/- 0.01 (sys.), and 0.964 +/- 0.0039 (stat.) +/- 0.01 (sys.) for 130 AGeV Au+Au, 200 AGeV Au+Au, and 200 GeV pp respectively. Thermal fits are applied to the ratios to extract the baryo-chemical potential and chemical freeze-out temperature. The baryo-chemical potential, as well as the kaon ratio, suggest that the net-baryon density at mid-rapidity is approaching zero at RHIC energies. A quark coalescence model suggests quark degrees of freedom are important in the formation of the ratios. The corrected yields are fit with an exponential in mt and the dN/dy and inverse slope parameter are extracted. The inverse slope parameter is used along with the average collective flow velocity in a simple relationship to extract the thermal freeze-out temperature. A more sophisticated hydrodynamically motivated fit, using pion, kaon, and proton data, shows agreement with the trend from this simple relationship.

  11. Growth rates of young-of-year shovelnose sturgeon in the Upper Missouri River

    USGS Publications Warehouse

    Braaten, P. J.; Fuller, D.B.

    2007-01-01

    Information on growth during the larval and young-of-year life stages in natural river environments is generally lacking for most sturgeon species. In this study, methods for estimating ages and quantifying growth were developed for field-sampled larval and young-of-year shovelnose sturgeon Scaphirhynchus platorynchus in the upper Missouri River. First, growth was assessed by partitioning samples of young-of-year shovelnose sturgeon into cohorts, and regressing weekly increases in cohort mean length on sampling date. This method quantified relative growth because ages of the cohorts were unknown. Cohort increases in mean length among sampling dates were positively related (P < 0.05, r2 > 0.59 for all cohorts) to sampling date, and yielded growth rate estimates of 0.80–2.95 mm day−1 (2003) and 0.44–2.28 mm day−1 (2004). Highest growth rates occurred in the largest (and earliest spawned) cohorts. Second, a method was developed to estimate cohort hatch dates, thus age on date of sampling could be determined. This method included quantification of post-hatch length increases as a function of water temperature (growth capacity; mm per thermal unit, mm TU−1), and summation of mean daily water temperatures to achieve the required number of thermal units that corresponded to post-hatch lengths of shovelnose sturgeon on sampling dates. For six of seven cohorts of shovelnose sturgeon analyzed, linear growth models (r2 ≥ 0.65, P < 0.0001) or Gompertz growth models (r2 ≥ 0.83, P < 0.0001) quantified length-at-age from hatch through 55 days post-hatch (98–100 mm). Comparisons of length-at-age derived from the growth models indicated that length-at-age was greater for the earlier-hatched cohorts than later-hatched cohorts. Estimated hatch dates for different cohorts were corroborated based on the dates that newly-hatched larval shovelnose sturgeon were sampled in the drift. These results provide the first quantification of growth dynamics for field-sampled age-0 shovelnose sturgeon in a natural river environment, and provide an accurate method for estimating age of wild-caught individuals. Methods of age determination used in this study have applications to sturgeons in other regions, but require additional testing and validation.

  12. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Katharina, E-mail: katharina.strobel@aol.com; Lay, Matthew D.H., E-mail: mlay@fbrice.com; Easton, Mark A., E-mail: mark.easton@rmit.edu.au

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated withmore » the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.« less

  13. The rheology and microstructure of aging thermoreversible colloidal gels & attractive driven glasses

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    The properties of colloidal gels and glasses are known to change with age, but the particle-level mechanisms by which aging occurs is are fully understood, which limits our ability to predict macroscopic behavior in these systems. In this work, we quantitatively relate rheological aging to structural aging of a model, homogenous gel and attractive driven glass by simultaneously measuring the bulk properties and gel microstructure using rheometry and small angle neutron scattering (Rheo-SANS), respectively. Specifically, we develop a quantitative and predictive relationship between the macroscopic properties and the underlying microstructure (i . e . , the effective strength of attraction) of an aging colloidal gel and attractive driven glass and study it as a function of the thermal and shear history. Analysis with mode coupling theory is consistent with local particle rearrangements as the mechanism of aging, which lead to monotonically increasing interaction strengths in a continuously evolving material and strongly supports aging as a trajectory in the free energy landscape dominated by local particle relaxations. The analyses and conclusions of this study may be 1) industrially relevant to products that age on commercial timescales, such as paints and pharmaceuticals, 2) applicable to other dynamically arrested systems, such as metallic glasses, and 3) used in the design of new materials. NIST Center for Neutron Research CNS cooperative agreement number #70NANB12H239 and NASA Grant No. NNX15AI19H.

  14. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    PubMed

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly people to heat the room somehow in winter. Moreover, it is particularly important for elderly people to avoid a decrease in peripheral skin temperature, and maintain awareness of the warmth of peripheral areas, such as the leg, in order to ensure thermal comfort.

  15. Investigation on thermal oxidative aging of nitrile rubber (NBR) O-rings under compression stress

    NASA Astrophysics Data System (ADS)

    Liu, X. R.; Zhang, W. F.; Lou, W. T.; Huang, Y. X.; Dai, W.

    2017-11-01

    The degradation behaviors of nitrile rubber O-rings exposure to air under compression were investigated at three elevated temperatures. The physical and mechanical properties of the aging samples before and after exposure at selected time were studied by measuring weight loss, tensile strength and elongation at break. The Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and fracture morphology were used to reveal the microstructural changes of the aging samples. The results indicate that the weight decreased with exposure time and temperature. Based on the results of the crosslinking density, the crosslinking predominates during the most of aging process. The significant changes in tensile strength and elongation at break also indicate the severe degradation in air. The fracture morphology results show that the fracture surface after 64 days of exposure to air turns rough and present defects. The ATR-FTIR results demonstrate that the hydroxyl groups were formed for the samples aged in air.

  16. Reverse Aging of Composite Materials for Aeronautical Applications

    NASA Astrophysics Data System (ADS)

    lannone, Michele

    2008-08-01

    Hygro-thermal ageing of polymer matrix composite materials is a major issue for all the aeronautical structures. For carbon-epoxy composites generally used in aeronautical applications the major effect of ageing is the humidity absorption, which induces a plasticization effect, generally decreasing Tg and elastic moduli, and finally design allowables. A thermodynamical and kinetic study has been performed, aimed to establish a program of periodic heating of the composite part, able to reversing the ageing effect by inducing water desorption. The study was founded on a simple model based on Fick's law, coupled with a concept of "relative saturation coefficient" depending on the different temperature of the composite part and the environment. The behaviour of some structures exposed to humidity and "reverse aged" by heating has been virtually tested. The conclusion of the study allowed to issue a specific patent application for aeronautical structures to be designed on the basis of a "humidity free" concept which allows the use of higher design allowables; having as final results lighter composite structures with a simplified certification process.

  17. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  18. Quantitative sensory testing profiles in children, adolescents and young adults (6-20 years) with cerebral palsy: Hints for a neuropathic genesis of pain syndromes.

    PubMed

    Blankenburg, M; Junker, J; Hirschfeld, G; Michel, E; Aksu, F; Wager, J; Zernikow, B

    2018-05-01

    Many patients with cerebral palsy (CP) suffer chronic pain as one of the most limiting factors in their quality of life. In CP patients, pain mechanisms are not well understood, and pain therapy remains a challenge. Quantitative sensory testing (QST) might provide unique information about the functional status of the somatosensory system and therefore better guide pain treatment. To understand better the underlying pain mechanisms in pediatric CP patients, we aimed to assess clinical and pain parameters, as well as QST profiles, which were matched to the patients' cerebral imaging pathology. Thirty CP patients aged 6-20 years old (mean age 12 years) without intellectual impairment underwent standardized assessments of QST. Cerebral imaging was reassessed. QST results were compared to age- and sex-matched controls (multiple linear regression; Fisher's exact test; linear correlation analysis). CP patients were less sensitive to all mechanical and thermal stimuli than healthy controls but more sensitive to all mechanical pain stimuli (each p < 0.001). Fifty percent of CP patients showed a combination of mechanical hypoesthesia, thermal hypoesthesia and mechanical hyperalgesia; 67% of CP patients had periventricular leukomalacia (PVL), which was correlated with mechanic (r = 0.661; p < 0.001) and thermal (r = 0.624; p = 0.001) hypoesthesia. The combination of mechanical hypoesthesia, thermal hypoesthesia and mechanical hyperalgesia in our CP patients implicates lemniscal and extralemniscal neuron dysfunction in the thalamus region, likely due to PVL. We suspect that extralemniscal tracts are involved in the original of pain in our CP patients, as in adults. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block, SE China

    NASA Astrophysics Data System (ADS)

    Xu, Yonghang; Wang, Christina Yan; Zhao, Taiping

    2016-07-01

    Detrital zircons from the Minjiang and Zhujiang Rivers in SE China have been analyzed for U/Pb ages and Lu-Hf isotopic compositions to constrain their provenance and the growth history of the continental crust of the Cathaysia Block. Zircon U/Pb ages show five major populations at 90-250 Ma, 400-500 Ma, 0.7-1.2 Ga, 1.6-2.0 Ga and 2.3-2.6 Ga. Proterozoic zircons have Hf isotopic signatures consistent with the remelted ancient crust and the involvement of juvenile crust. However, Phanerozoic zircons have Hf isotopic signatures indicative of reworked or recycled ancient crust. Crustal growth rates based on the two-stage Hf model ages of the detrital zircons indicate that 30% and 90% of present crust in the northeastern Cathaysia Block was formed by 2.5 Ga and 1.6 Ga, respectively, whereas <20% continental crust was formed by 2.5 Ga, and 80% by 1.6 Ga in the southwestern Cathaysia Block. Therefore, Neoarchean and Paleoproterozoic were two major periods of crustal growth of the Cathaysia Block. Our results also reveal that the tectono-thermal events at ∼370 Ma and ∼117 Ma may have occurred to the Wuyishan terrane in the northeastern Cathaysia Block. Jurassic zircon grains have Hf isotopic compositions more variable than Cretaceous grains, which may have been derived from different source rocks. The 140-120 Ma tectono-thermal events were likely related to the change of the subduction direction of the Paleo-Pacific plate from northward to northwestward at 140 Ma. The 112-90 Ma tectono-thermal events may be correlated with the rollback of the subducted paleo-Pacific plate at ∼110 Ma.

  20. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  1. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    NASA Astrophysics Data System (ADS)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a general trend of improvement for the AE testing of the embrittlement temperature.

  2. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study

    NASA Astrophysics Data System (ADS)

    Fernandes, Paulo; Cogné, Nathan; Chew, David M.; Rodrigues, Bruno; Jorge, Raul C. G. S.; Marques, João; Jamal, Daud; Vasconcelos, Lopo

    2015-12-01

    The Moatize-Minjova Basin is a Karoo-aged rift basin located in the Tete Province of central Mozambique along the present-day Zambezi River valley. In this basin the Permian Moatize and Matinde formations consist of interbedded carbonaceous mudstones and sandstones with coal seams. The thermal history has been determined using rock samples from two coal exploration boreholes (ca. 500 m depth) to constrain the burial and exhumation history of the basin. Organic maturation levels were determined using vitrinite reflectance and spore fluorescence/colour. Ages and rates of tectonic uplift and denudation have been assessed by apatite fission track analysis. The thermal history was modelled by inverse modelling of the fission track and vitrinite reflectance data. The Moatize Formation attained a coal rank of bituminous coals with low to medium volatiles (1.3-1.7%Rr). Organic maturation levels increase in a linear fashion downhole in the two boreholes, indicating that burial was the main process controlling peak temperature maturation. Calculated palaeogeothermal gradients range from 59 °C/km to 40 °C/km. According to the models, peak burial temperatures were attained shortly (3-10 Ma) after deposition. Apatite fission track ages [146 to 84 Ma (Cretaceous)] are younger than the stratigraphic age. Thermal modelling indicates two episodes of cooling and exhumation: a first period of rapid cooling between 240 and 230 Ma (Middle - Upper Triassic boundary) implying 2500-3000 m of denudation; and a second period, also of rapid cooling, from 6 Ma (late Miocene) onwards implying 1000-1500 m of denudation. The first episode is related to the main compressional deformation event within the Cape Fold Belt in South Africa, which transferred stress northwards on pre-existing transtensional fault systems within the Karoo rift basins, causing tectonic inversion and uplift. During the Mesozoic and most of the Cenozoic the basin is characterized by very slow cooling. The second period of fast cooling and denudation during the Pliocene was likely related to the southward propagation of the East African Rift System into Mozambique.

  3. Constraining the thermal conditions of impact environments through integrated low-temperature thermochronometry and numerical modeling

    NASA Astrophysics Data System (ADS)

    Kelly, N. M.; Marchi, S.; Mojzsis, S. J.; Flowers, R. M.; Metcalf, J. R.; Bottke, W. F., Jr.

    2017-12-01

    Impacts have a significant physical and chemical influence on the surface conditions of a planet. The cratering record is used to understand a wide array of impact processes, such as the evolution of the impact flux through time. However, the relationship between impactor size and a resulting impact crater remains controversial (e.g., Bottke et al., 2016). Likewise, small variations in the impact velocity are known to significantly affect the thermal-mechanical disturbances in the aftermath of a collision. Development of more robust numerical models for impact cratering has implications for how we evaluate the disruptive capabilities of impact events, including the extent and duration of thermal anomalies, the volume of ejected material, and the resulting landscape of impacted environments. To address uncertainties in crater scaling relationships, we present an approach and methodology that integrates numerical modeling of the thermal evolution of terrestrial impact craters with low-temperature, (U-Th)/He thermochronometry. The approach uses time-temperature (t-T) paths of crust within an impact crater, generated from numerical simulations of an impact. These t-T paths are then used in forward models to predict the resetting behavior of (U-Th)/He ages in the mineral chronometers apatite and zircon. Differences between the predicted and measured (U-Th)/He ages from a modeled terrestrial impact crater can then be used to evaluate parameters in the original numerical simulations, and refine the crater scaling relationships. We expect our methodology to additionally inform our interpretation of impact products, such as lunar impact breccias and meteorites, providing robust constraints on their thermal histories. In addition, the method is ideal for sample return mission planning - robust "prediction" of ages we expect from a given impact environment enhances our ability to target sampling sites on the Moon, Mars or other solar system bodies where impacts have strongly shaped the surface. Bottke, W.F., Vokrouhlicky, D., Ghent, B., et al. (2016). 47th LPSC, Abstract #2036.

  4. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.

  5. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for a duration of 10,000 hours are reported.

  6. Ridge Jumps Associated with Plume-Ridge Interaction 1: Off-axis Heating due to Lithospheric Magma Penetration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2005-12-01

    In many hot spot-ridge systems, changes in the ridge axis geometry occur between the hot spot centers and nearby mid-ocean ridges in the form of ridge jumps. Such ridge jumps likely occur as a result of anomalous lithospheric stresses associated with mantle plume-lithosphere interaction, as well as weakening of the hot spot lithosphere due to physical and thermal thinning caused by rising buoyant asthenosphere and magma transport through the lithosphere. In this study, we use numerical models to quantify the effects of excess magmatism through the near-ridge lithosphere. Hot spot magmatism can weaken the lithosphere both mechanically through fracturing and thermally through conduction and advection of heat into the plate. Here we focus on the effects of thermal weakening. Using a plane-strain approximation, we examine deformation in a 2-D cross section of a visco-elastic-plastic lithosphere with the finite element code FLAC. The model has isothermal top and bottom boundaries and a prescribed velocity equal to the half spreading rate is imposed on the sides to drive seafloor spreading. The initial condition, as predicted for normal mid-ocean ridges, is a square root of lithospheric age cooling curve with a corner flow velocity field symmetric about the ridge axis. A range of heat inputs are introduced at various plate ages and spreading rates to simulate off-axis magma transport. To reveal the physical conditions that allow for a ridge jump and control its timing, we vary 4 parameters: spreading rate, lithospheric age, crustal thickness and heat input. Results indicate that the heating rate required to produce a ridge jump increases as a function of lithospheric age at the location of magma intrusion. The time necessary for a ridge jump to develop in lithosphere of a particular age decreases with increasing crustal thicknesses. For magma fluxes comparable to those estimated for Galapagos and Iceland, lithospheric heating by the penetrating magma alone is sufficient to cause a ridge jump, even without the other effects.

  7. Biomechanical Effect of Ferrule on Incisors Restored with a Fiberglass Post and Lithium-Disilicate Ceramic Crown after Thermal Cycling and Fatigue Loading.

    PubMed

    Valdivia, Andréa Dolores Correia Miranda; Rodrigues, Monise de Paula; Bicalho, Aline Aredes; Van Meerbeek, Bart; Sloten, Jos Vander; Pessoa, Roberto Sales E; Soares, Carlos José

    2018-04-19

    To evaluate the biomechanics of endodontically treated incisors restored with a fiberglass post and a CAD/CAM lithium-disilicate ceramic crown with/without a ferrule after thermal and mechanical aging. Twenty bovine incisors were divided into two groups (n = 10): 1. Fe, with a ferrule of 2 mm, and 2. NFe, without a ferrule. After endodontic treatment, the teeth were restored using a fiberglass post (Exacto 3, Angelus) and composite core (Tetric Ceram, Ivoclar Vivadent). They then received a CAD/CAM lithium-disilicate ceramic crown (IPS e.max CAD) luted using a self-adhesive composite (RelyX Unicem 2, 3M Oral Care). All specimens were subjected to 20,000 thermocycles and 2,400,000 simulated chewing cycles. Ceramic crown and root dentin strains (μS) were measured using strain gauges (n = 10) during 100-N loading before and after the thermal and mechanical aging, and upon fracture loading. The specimens were subsequently loaded to fracture (N). The stress distribution was analyzed using 3D individualized finite-element models created by micro-CT of experimental samples (n = 3). Strain data were analyzed using two-way ANOVA and Tukey's HSD test. Fracture resistance was analyzed using Student's t-test and fracture mode was analyzed using the chi-squared test (α = 0.05). After aging, NFe exhibited significantly higher root dentin deformation (buccal: 1248.0 ± 282.8; lingual: 516.2 ± 195.0; p < 0.001) than Fe (buccal, 554.0 ± 233.8; lingual: 311.8 ± 159.0; p < 0.001). The deformation measured on ceramic crowns was not influenced by ferrule presence or aging process. Significantly higher fracture resistance (N) was observed for the Fe (1099.6 ± 214.8) than the NFe group (675.3 ± 113.8) (p < 0.001). The NFe group revealed a lower fracture resistance:root strain ratio than did the Fe group. The stress levels on root dentin and fiberglass were lower for the Fe group. The NFe group showed increased root dentin strain after the aging process. The Fe group revealed higher fracture resistance, lower stress concentration on root dentin and fewer catastrophic fractures.

  8. Dating an actively exhuming metamorphic core complex, the Suckling Dayman Massif in SE Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Oesterle, J.; Seward, D.; Little, T.; Stockli, D. F.; Mizera, M.

    2016-12-01

    Low-temperature thermochronology is a powerful tool for revealing the thermal and kinematic evolution of metamorphic core complexes (MCCs). Most globally studied MCCs are ancient, partially eroded, and have been modified by deformation events that postdate their origin. The Mai'iu Fault is a rapidly slipping active low-angle normal fault (LANF) in the Woodlark Rift in Papua New Guinea that has exhumed a >25 km-wide (in the slip direction), and over 3 km-high domal fault surface in its footwall called the Suckling-Dayman massif. Some knowledge of the present-day thermal structure in the adjacent Woodlark Rift, and the pristine nature of this active MCC make it an ideal candidate for thermochronological study of a high finite-slip LANF. To constrain the thermal and kinematic evolution of this MCC we apply the U/Pb, fission-track (FT) and (U-Th)/He methods. Zircon U/Pb analyses from the syn-extensional Suckling Granite that intrudes the footwall of the MCC yield an intrusion age of 3.3 Ma. Preliminary zircon FT ages from the same body indicate cooling below 300 °C at 2.7 Ma. Ages decrease to 2.0 Ma with increasing proximity to the Mai'iu Fault and imply cooling controlled by tectonic exhumation. Almost coincident zircon U/Pb and FT ages from the nearby syn-extensional Mai'iu Monzonite, on the other hand, record extremely rapid cooling from magmatic temperatures to 300 °C at 2 Ma. As apparent from the preliminary He extraction stage, these syn-extensional plutons have young zircon and apatite (U-Th)/He ages. These initial results suggest that the Mai'iu Fault was initiated as an extensional structure by 3.3 Ma. We infer that it reactivated an older ophiolitic suture that had emplaced the Papuan Ultramafic body in the Paleogene. Rapid cooling of the Mai'iu Monzonite indicates that it was intruded into a part of the MCC's footwall that was already shallow in the crust by 2 Ma. This inference is further supported by the mineral andalusite occurring in the contact aureole of the monzonite.

  9. Symmetric miniaturized heating system for active microelectronic devices.

    PubMed

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The device is also subjected to 5700 thermal cycles between 55 and 195 degrees C, demonstrating reliability under thermal cycling.

  10. Assessment of man's thermal comfort in practice

    PubMed Central

    Fanger, P. O.

    1973-01-01

    Fanger, P. O. (1973).British Journal of Industrial Medicine,30, 313-324. Assessment of man's thermal comfort in practice. A review is given of existing knowledge regarding the conditions for thermal comfort. Both physiological and environmental comfort conditions are discussed. Comfort criteria are shown diagrammatically, and their application is illustrated by numerous practical examples. Furthermore, the effect on the comfort conditions of age, adaptation, sex, seasonal and circadian rhythm, and unilateral heating or cooling of the body is discussed. The term `climate monotony' is considered. A method is recommended for the evaluation of the quality of thermal environments in practice. Images PMID:4584998

  11. Design data for brazed Rene 41 honeycomb sandwich

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Arnquist, J.; Koetje, E. L.; Esposito, J. J.; Lindsay, V. E. J.; Swegle, A. R.

    1981-01-01

    Strength data, creep data and residual strength data after cyclic thermal exposure were obtained at temperatures from 78 K to 1144 K (-320 F to 1600 F). The influences of face thickness, core depth, core gage, cell size and thermal/stress exposure conditions on the mechanical design properties were investigated. A braze alloy and process was developed that is adequate to fully develop the strength of the honeycomb core while simultaneously solution treating and aging the Rene 41 fact sheets. New test procedures and test specimen configurations were developed to avoid excessive thermal stresses during cyclic thermal exposure.

  12. Thermal Resistance and Gene Expression of both Desiccation-Adapted and Rehydrated Salmonella enterica Serovar Typhimurium Cells in Aged Broiler Litter

    PubMed Central

    Chen, Zhao

    2017-01-01

    ABSTRACT The objective of this study was to investigate the thermal resistance and gene expression of both desiccation-adapted and rehydrated Salmonella enterica serovar Typhimurium cells in aged broiler litter. S. Typhimurium was desiccation adapted in aged broiler litter with a 20% moisture content (water activity [aw], 0.81) for 1, 2, 3, 12, or 24 h at room temperature and then rehydrated for 3 h. As analyzed by quantitative real-time reverse transcriptase PCR (qRT-PCR), the rpoS, proV, dnaK, and grpE genes were upregulated (P < 0.05) under desiccation stress and could be induced after 1 h but in less than 2 h. Following rehydration, fold changes in the levels of these four genes became significantly lower (P < 0.05). The desiccation-adapted ΔrpoS mutant was less heat resistant at 75°C than was the desiccation-adapted wild type (P < 0.05), whereas there were no differences in heat resistance between desiccation-adapted mutants in two nonregulated genes (otsA and PagfD) and the desiccation-adapted wild type (P > 0.05). Survival characteristics of the desiccation-adapted ΔPagfD (rdar [red, dry, and rough] morphotype) and ΔagfD (saw [smooth and white] morphotype) mutants were similar (P > 0.05). Trehalose synthesis in the desiccation-adapted wild type was not induced compared to a nonadapted control (P > 0.05). Our results demonstrated the importance of the rpoS, proV, dnaK, and grpE genes in the desiccation survival of S. Typhimurium. By using an ΔrpoS mutant, we found that the rpoS gene was involved in the cross-protection of desiccation-adapted S. Typhimurium against high temperatures, while trehalose synthesis or rdar morphology did not play a significant role in this phenomenon. In summary, S. Typhimurium could respond rapidly to low-aw conditions in aged broiler litter while developing cross-protection against high temperatures, but this process could be reversed upon rehydration. IMPORTANCE Physical heat treatment is effective in eliminating human pathogens from poultry litter used as biological soil amendments. However, prior to physical heat treatment, some populations of microorganisms may be adapted to the stressful conditions in poultry litter during composting or stockpiling, which may cross-protect them against subsequent high temperatures. Our previous study demonstrated that desiccation-adapted S. enterica cells in aged broiler litter exhibited enhanced thermal resistance. However, there is limited research on the underlying mechanisms of the extended survival of pathogens under desiccation conditions in animal wastes and cross-tolerance to subsequent heat treatment. Moreover, no information is available about the thermal resistance of desiccation-adapted microorganisms in response to rehydration. Therefore, in the present study, we investigated the gene expression and thermal resistance of both desiccation-adapted and rehydrated S. Typhimurium in aged broiler litter. This work will guide future research efforts to control human pathogens in animal wastes used as biological soil amendments. PMID:28389541

  13. Micrometer-scale U-Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body

    NASA Astrophysics Data System (ADS)

    Hopkins, M. D.; Mojzsis, S. J.; Bottke, W. F.; Abramov, O.

    2015-01-01

    Meteoritic zircons are rare, but some are documented to occur in asteroidal meteorites, including those of the howardite-eucrite-diogenite (HED) achondrite clan (Rubin, A. [1997]. Meteorit. Planet. Sci. 32, 231-247). The HEDs are widely considered to originate from the Asteroid 4 Vesta. Vesta and the other large main belt asteroids record an early bombardment history. To explore this record, we describe sub-micrometer distributions of trace elements (U, Th) and 235,238U-207,206Pb ages from four zircons (>7-40 μm ∅) separated from bulk samples of the brecciated eucrite Millbillillie. Ultra-high resolution (∼100 nm) ion microprobe depth profiles reveal different zircon age domains correlative to mineral chemistry and to possible impact scenarios. Our new U-Pb zircon geochronology shows that Vesta's crust solidified within a few million years of Solar System formation (4561 ± 13 Ma), in good agreement with previous work (e.g. Carlson, R.W., Lugmair, G.W. [2000]. Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, pp. 25-44). Younger zircon age domains (ca. 4530 Ma) also record crustal processes, but these are interpreted to be exogenous because they are well after the effective extinction of 26Al (t1/2 = 0.72 Myr). An origin via impact-resetting was evaluated with a suite of analytical impact models. Output shows that if a single impactor was responsible for the ca. 4530 Ma zircon ages, it had to have been ⩾10 km in diameter and at high enough velocity (>5 km s-1) to account for the thermal field required to re-set U-Pb ages. Such an impact would have penetrated at least 10 km into Vesta's crust. Later events at ca. 4200 Ma are documented in HED apatite 235,238U-207,206Pb ages (Zhou, Q. et al. [2011]. Early basaltic volcanism and Late Heavy Bombardment on Vesta: U-Pb ages of small zircons and phosphates in eucrites. Lunar Planet. Sci. 42. Abstract #2575) and 40-39Ar age spectra (Bogard, D.D. [2011]. Chem. Erde 71, 207-226). Yet younger ages, including those coincident with the Late Heavy Bombardment (LHB; ca. 3900 Ma), are absent from Millbillillie zircon. This is attributable to primordial changes to the velocity distributions of impactors in the asteroid belt, and differences in mineral closure temperatures (Tc zircon ≫ apatite).

  14. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body

    USGS Publications Warehouse

    Hopkins, M.D.; Mojzsis, S.J.; Bottke, W.F.; Abramov, Oleg

    2015-01-01

    Meteoritic zircons are rare, but some are documented to occur in asteroidal meteorites, including those of the howardite–eucrite–diogenite (HED) achondrite clan (Rubin, A. [1997]. Meteorit. Planet. Sci. 32, 231–247). The HEDs are widely considered to originate from the Asteroid 4 Vesta. Vesta and the other large main belt asteroids record an early bombardment history. To explore this record, we describe sub-micrometer distributions of trace elements (U, Th) and 235,238U–207,206Pb ages from four zircons (>7–40 μm ∅) separated from bulk samples of the brecciated eucrite Millbillillie. Ultra-high resolution (∼100 nm) ion microprobe depth profiles reveal different zircon age domains correlative to mineral chemistry and to possible impact scenarios. Our new U–Pb zircon geochronology shows that Vesta’s crust solidified within a few million years of Solar System formation (4561 ± 13 Ma), in good agreement with previous work (e.g. Carlson, R.W., Lugmair, G.W. [2000]. Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, pp. 25–44). Younger zircon age domains (ca. 4530 Ma) also record crustal processes, but these are interpreted to be exogenous because they are well after the effective extinction of 26Al (t1/2 = 0.72 Myr). An origin via impact-resetting was evaluated with a suite of analytical impact models. Output shows that if a single impactor was responsible for the ca. 4530 Ma zircon ages, it had to have been ⩾10 km in diameter and at high enough velocity (>5 km s−1) to account for the thermal field required to re-set U–Pb ages. Such an impact would have penetrated at least 10 km into Vesta’s crust. Later events at ca. 4200 Ma are documented in HED apatite 235,238U–207,206Pb ages (Zhou, Q. et al. [2011]. Early basaltic volcanism and Late Heavy Bombardment on Vesta: U–Pb ages of small zircons and phosphates in eucrites. Lunar Planet. Sci. 42. Abstract #2575) and 40–39Ar age spectra (Bogard, D.D. [2011]. Chem. Erde 71, 207–226). Yet younger ages, including those coincident with the Late Heavy Bombardment (LHB; ca. 3900 Ma), are absent from Millbillillie zircon. This is attributable to primordial changes to the velocity distributions of impactors in the asteroid belt, and differences in mineral closure temperatures (Tc zircon ≫ apatite).

  15. Regionalization of the Arctic Region, Siberia and Eurasian Continental Area

    DTIC Science & Technology

    1976-05-31

    inverted the data under the assumption that a sim- ple ray theory for surface waves applies. That is, the phase shift for a seismic wave passing through...of Parker and Oldenburg (1973), the lithospheric thickness Is a function of the age .(0=9.4^^ .with t the age in my. Thus, assuming that the lid...and D.E. Oldenburg (1973). Thermal model of ocean ridges, Nature Physical Science, 242, 137-139. Pilant, W.L. and L. Knopoff (1970). Inversion of

  16. Effects of Prior Aging at Elevated Temperature in Air and in Argon Environments on Creep Response of PMR-15 Neat Resin at 288 deg C

    DTIC Science & Technology

    2007-03-01

    either inert gases or air to distinguish between the pyrolytic and oxidative degradation mechanisms. This exposure is commonly called “aging” of...and performance under use conditions. 4 This thesis explores the effects of both pyrolytic and thermal oxidative degradation on the mechanical...fatigue. A third assumption is that the mechanical properties of the pyrolytically aged samples will approximate the mechanical properties of the inner

  17. Microstructure evolution of heat treated NiTi alloys

    NASA Astrophysics Data System (ADS)

    Losertová, M.; Štencek, M.; Matýsek, D.; Štefek, O.; Drápala, J.

    2017-11-01

    Superelastic behavior of off-stoichiometric NiTi alloys is significantly affected by microstructure changes due to heat treatment. Applying appropriate thermal treatments important effects on microstructural changes, transformation temperatures and thermomechanical properties of final NiTi products can be achieved. The experimental samples of NiTi alloy with 55.8 wt.% Ni were submitted to heat treatment and the microstructures before and after the treatment were observed. The thermal regimes consisted of annealing treatment at 600 °C for 1 hour followed by water quenching and of ageing at eight different temperatures (250, 270, 290, 300, 350, 400, 450 and 500 °C) for 30 minutes. Microstructure features studied by means of optical and scanning electron microscopies, EDX microanalyses, X-ray diffraction analyses and microhardness measurement, have shown that higher ageing temperatures led to microstructure changes and corresponding increase in microhardness.

  18. Primordial and cosmogenic noble gases in the Sutter's Mill CM chondrite

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Nagao, Keisuke

    2017-04-01

    The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni-rich Fe-Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic-ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.

  19. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  20. Single-Grain (U-Th)/He Ages of Phosphates from St. Severin Chondrite

    NASA Astrophysics Data System (ADS)

    Min, K. K.; Reiners, P. W.; Shuster, D. L.

    2010-12-01

    Thermal evolution of chondrites provides valuable information on the heat budget, internal structure and dimensions of their parent bodies once existed before disruption. St. Severin LL6 ordinary chondrite is known to have experienced relatively slow cooling compared to H chondrites. The timings of primary cooling and subsequent thermal metamorphism were constrained by U/Pb (4.55 Ga), Sm/Nd (4.55 Ga), Rb/Sr (4.51 Ga) and K/Ar (4.4 Ga) systems. However, cooling history after the thermal metamorphism in a low temperature range (<200 °C) is poorly understood. In order to constrain the low-T thermal history of this meteorite, we performed (1) single-grain (U-Th)/He dating for five chlorapatite and fourteen merrillite aggregates from St. Severin, (2) examination of textural and chemical features of the phosphate aggregates using a scanning electron microscope (SEM), and (3) proton-irradiation followed by 4He and 3He diffusion experiments for single grains of chlorapatite and merrillite from Guarena meteorite, for general characterization of He diffusivity in these major U-Th reservoirs in meteorites. The α-recoil-uncorrected ages from St. Severin are distributed in a wide range of 333 ± 6 Ma and 4620 ± 1307 Ma. The probability density plot of these data shows a typical younging-skewed age distribution with a prominent peak at ~ 4.3 Ga. The weighted mean of the nine oldest samples is 4.284 ± 0.130 Ga, which is consistent with the peak of the probability plot. The linear dimensions of the phosphates are generally in the range of ~50 µm to 200 µm. The α recoil correction factor (FT) based on the morphology of the phosphate yields improbably old ages (>4.6 Ga), suggesting that within the sample aggregates, significant amounts of the α particles ejected from phosphates were implanted into the adjacent phases and therefore that this correction may not be appropriate in this case. The minimum FT value of 0.95 is calculated based on the peak (U-Th)/He age and 40Ar/39Ar data which provide the upper limit of the α-recoil-corrected (U-Th)/He ages. From these data, we conclude that the St. Severin cooled through the closure temperatures of chlorapatite and merrillite during ~4.3 - 4.4 Ga. The radiogenic 4He and proton-induced 3He diffusion experiments yield two well-defined linear trends in Arrhenius plot for chlorapatite (r = 43 µm) and merrillite (r = 59 µm) grains. The linear regression of 3He data for chlorapatite yields Ea = 128.1 ± 2.4 kJ/mol, and ln(Do/a2) = 11.6 ± 0.5 ln(s-1) which are generally consistent with the terrestrial Durango apatite and meteoritic Acapulco apatite. Linear regression to the merrillite data corresponds to Ea = 135.1 ± 2.5 kJ/mol, and ln(Do/a2) = 5.73 ± 0.37 ln(s-1). The new data indicate that diffusive retentivity of He within merrillite is significantly higher than that of chlorapatite, which has implications for quantitative interpretation of He ages measured in meteoritic phosphates.

  1. Enhancing the Oxidation Stability of Polydivinylbenzene Films via Residual Pendant Vinyl Passivation

    DOE PAGES

    Lepro, Xavier; Ehrmann, Paul; Rodriguez, Jennifer; ...

    2018-01-11

    Polydivinylbenzene (PDVB) is a thermally stable, optically transparent, crosslinked polymer that until recently has been difficult to synthesize as a thin film. With the recent demonstration of initiated chemical vapor deposition (iCVD) of thin PDVB films, a renewed interest in the material properties of PDVB has developed. In particular, attention is now focused on its oxidation pathways and long-term stability under the desired application use conditions. In this paper, we report on the thermal and environmental stability of PDVB films and show that unreacted pendant vinyl groups drive polymer oxidation upon exposure to either air or light. We demonstrate thatmore » such vinyls can be effectively passivated by a simple ex-situ thermal annealing at ca. 300 °C in inert atmosphere that induces an 87% reduction of the PDVB oxidation rate in air and slows light (λ=405 nm) induced oxidation by 56%. While the thermal annealing is less effective at preventing oxidation under higher energy (λ = 365 nm) UV light, we demonstrate that this aging pathway is based on the presence of reactive oxygen species rather than traditional photo-oxidation. Finally, vinyl removal through ex-situ thermal annealing improves the chemical stability of iCVD PDVB to continuous air (over 500 days) or light (70 hours) exposure and offers a simple option to improve its environmental aging resistance which is important for long-term protective applications.« less

  2. Investigation of thermal aging effects on the tensile properties of Alloy 617 by in-situ synchrotron wide-angle X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Mo, Kun; Miao, Yinbin

    The nickel-base Alloy 617 has been considered as the lead candidate structural material for the intermediate heat exchanger (IHX) of the Very-High-Temperature Reactor (VHTR). In order to assess the long-term performance of Alloy 617, thermal aging experiments up to 10,000 h in duration were performed at 1000 degrees C. Subsequently, in-situ synchrotron wide-angle X-ray scattering (WAXS) tensile tests were carried out at ambient temperature. M23C6 carbides were identified as the primary precipitates, while a smaller amount of M6C was also observed. The aging effects were quantified in several aspects: (1) macroscopic tensile properties, (2) volume fraction of the M23C6 Phase,more » (3) the lattice strain evolution of both the matrix and the M23C6 precipitates, and (4) the dislocation density evolution during plastic deformation. The property-microstructure relationship is described with a focus on the evolution of the M23C6 phase. For aging up to 3000 h, the yield strength (YS) and ultimate tensile strength (UTS) showed little variation, with average values being 454 MPa and 787 MPa, respectively. At 10,000 h, the YS and UTS reduced to 380 MPa and 720 MPa, respectively. The reduction in YS and UTS is mainly due to the coarsening of the M23C6 Precipitates. After long term aging, the volume fraction of the M23C6 phase reached a plateau and its maximum internal stress was reduced, implying that under large internal stresses the carbides were more susceptible to fracture or decohesion from the matrix. Finally, the calculated dislocation densities were in good agreement with transmission electron microscopy (TEM) measurements. The square roots of the dislocation densities and the true stresses displayed typical linear behavior and no significant change was observed in the alloys in different aging conditions.« less

  3. First report of (U-Th)/He thermochronometric data across Northeast Japan Arc: implications for the long-term inelastic deformation

    NASA Astrophysics Data System (ADS)

    Sueoka, Shigeru; Tagami, Takahiro; Kohn, Barry P.

    2017-06-01

    (U-Th)/He thermochronometric analyses were performed across the southern part of the Northeast Japan Arc for reconstructing the long-term uplift and denudation history in the region. Apatite (U-Th-Sm)/He ages ranged from 64.3 to 1.5 Ma, while zircon (U-Th)/He ages ranged between 39.6 and 11.0 Ma. Apatite (U-Th-Sm)/He ages showed obvious contrast among the morphostructural provinces; older ages of 64.3-49.6 Ma were obtained in the Abukuma Mountains on the fore-arc side, whereas younger ages of 11.4-1.5 Ma were determined in the Ou Backbone Range (OBR) along the volcanic front and the Asahi Mountains on the back-arc side. The age contrasts are basically interpreted to reflect the differences in the uplift and the denudation histories of the provinces considering the thermal effects of magmatism and timing of the known uplift episodes. Denudation rates were calculated to be <0.1 mm/year in the Abukuma Mountains, 0.1 to 1 mm/year in the Ou Backbone Range, and 0.1 to 0.3 mm/year in the Asahi Mountains. The denudation rates tend to increase from the mountain base to the ridges in the OBR (and the Asahi Mountains). This relationship shows a contrast with the previous findings in fault-block mountains in the Southwest (SW) Japan Arc, where the highest denudation rates were estimated near fault(s) along the base(s). This observation might reflect a difference in mountain uplift mechanisms between the NE and the SW Japan Arcs and imply that thermochronometric approaches are useful for constraining uplift and denudation histories at the scale of an island arc, as well as continental orogens. However, careful discussion of magmatic thermal effects is required.[Figure not available: see fulltext.

  4. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.

    PubMed

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu

    2015-12-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  5. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  6. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  7. Ar-40/Ar-39 and U-Th-Pb dating of separated clasts from the Abee E4 chondrite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Unruh, D. M.; Tatsumoto, M.

    1983-01-01

    Ar-40/Ar-39 and U-Th-Pb are investigated for three clasts from the Abee (E4) enstatite chondrite, yielding Ar-40/Ar-39 plateau ages (and/or maximum ages) of 4.5 Gy, while two of the clasts give average ages of 4.4 Gy. The 4.4-4.5 Gy range does not resolve possible age differences among the clasts. The U-Th-Pb data are consistent with the interpretation that initial clast formation occurred 4.58 Gy ago, and that the clasts have since remained closed systems which have been contaminated with terrestrial Pb. The thermal history of Abee deduced from Ar data seems consistent with that deduced from magnetic data, suggesting that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, experiencing no significant subsequent heating.

  8. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  9. Interdiffusion behavior of tungsten or rhenium and group 5 and 6 elements and alloys of the periodic table. Part 2A: Appendices A-G

    NASA Technical Reports Server (NTRS)

    Arcella, F. G.

    1974-01-01

    Arc cast W, CVD, W, CVD Re, and powder metallurgy Re materials were hot isostatically pressure welded to ten different refractory metals and alloys and thermally aged at 10 to the minus 8th power torr at 1200 C, 1500 C, 1630 C, 1800 C, and 2000 C for 100 hours to 2000 hours. Electron beam microprobe analysis was used to characterize the interdiffusion zone width of each couple system as a function of age time and temperature. Each system was least squares fitted to the equation: In (delta X sq/t) = B/T + A, where delta X is net interdiffusion zone width, t is age time, and T is age temperature. Detailed descriptions of experimental and analytical procedures utilized in conducting the experimental program are provided. For Vol. 1, see N74-34046.

  10. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    PubMed Central

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  11. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications

    NASA Astrophysics Data System (ADS)

    Coventry, Joe; Burge, Patrick

    2017-06-01

    In this paper we present the results of solar absorptance measurements of four metallic substrate materials, either coated with Pyromark 2500 at various thicknesses, or uncoated and oxidised. Absorptance is measured prior to aging, and during and after aging at three elevated temperatures. In many cases, thin coatings perform as well, or better than thick coatings and do not appear to have a higher rate of failure. However, a thicker coating did show an advantage after aging at the highest temperature tested (850°C), and it is expected that with longer exposure, similar trends may emerge for the 600°C and 750°C aging cases. Another finding is that the two nickel-based alloys tested, Haynes 230 and Inconel 625, both formed an oxide with very good absorptance, although durability requires further testing.

  12. Stabilization of Co{sup 2+} in layered double hydroxides (LDHs) by microwave-assisted ageing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrero, M.; Benito, P.; Labajos, F.M.

    2007-03-15

    Co-containing layered double hydroxides at different pH have been prepared, and aged following different routes. The solids prepared have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric and differential thermal analyses (both in nitrogen and in oxygen), FT-IR and Vis-UV spectroscopies, temperature-programmed reduction and surface area assessment by nitrogen adsorption at -196 deg. C. The best conditions found to preserve the cobalt species in the divalent oxidation state are preparing the samples at controlled pH, and then submit them to ageing under microwave irradiation. - Graphical abstract: The use of microwave-hydrothermal treatment, controlling both temperature and ageing time,more » permits to synthesize well-crystallized nanomaterials with controlled surface properties. An enhancement in the crystallinity degree and an increase in the particle size are observed when the irradiation time is prolonged.« less

  13. Rhenium-osmium-isotope constraints on the age of iron meteorites

    NASA Technical Reports Server (NTRS)

    Horan, M. F.; Morgan, J. W.; Walker, R. J.; Grossman, J. N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately +/-31 million years for meteorites about 4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of Re-187, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  14. Rhenium-osmium isotope constraints on the age of iron meteorites

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately ??31 million years for meteorites ???4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of 187Re, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  15. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    NASA Astrophysics Data System (ADS)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie

    2016-05-01

    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  16. Lower Critical Solubility Temperature Behavior in Membranes Formed from a 2-(2-Methoxyethoxy)ethoxy-Containing Polyphosphazene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, F.F.; Lash, R.P.

    A phosphazene polymer with three pendant groups was synthesized and characterized as a membrane material. Substitution of the phosphazene with 64% 2-(2-methoxyethoxy)ethanol (MEE), 27% 4-methoxyphenol, and 9% 2-allyphenol yielded a hydrophilic elastomer with considerable flow at room temperature. Solution behavior showed significant aging effects where, using fresh solutions, membranes could not cast on porous ceramic supports (0.2-micron pore size) without significant polymer penetration into the pores. Solutions aged for two weeks were found to readily penetrate into the pores of the ceramic support. Analysis of fresh and aged solutions by laser light scattering showed significant loss in molecular weight withmore » time. Pervaporation of water-dye solutions using dimensionally stabilized membranes revealed in inverse correlation between flux and temperature, suggesting thermally induced morphological changes within the polymer. This polymer was found to exhibit, in the bulk state, lower critical solubility temperature (LCST) behavior where the material becomes less hydrophilic with increasing temperature. LCST behavior was probed thermally and gravimetrically and has been attributed to the anomalous pervaporation results. The degree to which LCST effects membrane transport was influenced by changes in the crosslink density and permeate side pressure.« less

  17. Comparative Analysis of Pain Behaviours in Humanized Mouse Models of Sickle Cell Anemia

    PubMed Central

    Lei, Jianxun; Benson, Barbara; Tran, Huy; Ofori-Acquah, Solomon F.; Gupta, Kalpna

    2016-01-01

    Pain is a hallmark feature of sickle cell anemia (SCA) but management of chronic as well as acute pain remains a major challenge. Mouse models of SCA are essential to examine the mechanisms of pain and develop novel therapeutics. To facilitate this effort, we compared humanized homozygous BERK and Townes sickle mice for the effect of gender and age on pain behaviors. Similar to previously characterized BERK sickle mice, Townes sickle mice show more mechanical, thermal, and deep tissue hyperalgesia with increasing age. Female Townes sickle mice demonstrate more hyperalgesia compared to males similar to that reported for BERK mice and patients with SCA. Mechanical, thermal and deep tissue hyperalgesia increased further after hypoxia/reoxygenation (H/R) treatment in Townes sickle mice. Together, these data show BERK sickle mice exhibit a significantly greater degree of hyperalgesia for all behavioral measures as compared to gender- and age-matched Townes sickle mice. However, the genetically distinct “knock-in” strategy of human α and β transgene insertion in Townes mice as compared to BERK mice, may provide relative advantage for further genetic manipulations to examine specific mechanisms of pain. PMID:27494522

  18. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide

    Here, chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn– 53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn– 53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as 2.4 +1.8 -1.3 Myr after calcium–aluminium-rich inclusions (CAIs), the oldest Solar Systemmore » solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and 4.2 +0.8 -0.7 Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn– 53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8–2.5 Myr after CAIs.« less

  19. Microstructural evolution and thermal stability after aging of a cobalt-containing martensitic bearing steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong, E-mail: uniquelsh@163.com

    The microstructural changes and thermal stability of a cobalt-containing martensitic heat resistance bearing steel have been investigated in this paper. The hardness variation showed a progressive hardness decrease associated with coarsening of fine carbides at elevated temperatures. The precipitation of secondary phases during tempering at 500 °C for 10 h and 100 h has been characterized and identified in detail using transmission electron microscopy. The results revealed that the aging treatment induced very fine secondary M{sub 6}C precipitates which were responsible for the secondary hardening peak when tempered at 500 °C for 30 h. But the hardness gradually decreased duemore » to the coarsening of M{sub 6}C carbide and other secondary phases (such as μ phase, σ phase, and χ phase) precipitation when the samples were tempered over 30 h at 500 °C. - Highlights: •Retained austenite fraction was reduced after cryogenic treatment. •Secondary hardening was responsible for M{sub 6}C precipitates. •TEM study to investigate different phases characteristics •Coarsening of carbides during aging has a significant effect on mechanical properties.« less

  20. The timing of alkali metasomatism in paleosols

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Holland, H. D.

    1991-01-01

    We have measured the concentrations of rubidium and strontium and 87Sr/86Sr values of whole-rock samples from three paleosols of different ages. The oldest of the three weathering horizons, the 2,760 Ma Mt. Roe #1 paleosol in the Fortescue Group of Western Australia, experienced addition of Rb, and probably Sr, at 2,168 +/- 10 Ma. The intermediate paleosol, developed on the Hekpoort Basalt in South Africa, is estimated to have formed at 2,200 Ma, and yields a Rb-Sr isochron age of 1,925 +/- 32 Ma. The youngest of the three paleosols, developed on the Ongeluk basalt in Griqualand West, South Africa ca. 1,900 Ma, yielded a Rb-Sr age of 1,257 +/- 11 Ma. The Rb-Sr systematics of all three paleosols were reset during post-weathering metasomatism related to local or regional thermal disturbances. The Rb-Sr systematics of the paleosols were not subsequently disturbed. The near-complete removal of the alkali and alkaline earth elements from these paleosols during weathering made them particularly susceptible to resetting of their Rb-Sr systematics. Paleosols of this type are therefore sensitive indicators of the timing of thermal disturbances.

  1. Theory of Aging, Rejuvenation, and the Nonequilibrium Steady State in Deformed Polymer Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kang

    The nonlinear Langevin equation theory of segmental relaxation, elasticity, and mechanical response of polymer glasses is extended to describe the coupled effects of physical aging, mechanical rejuvenation, and thermal history. The key structural variable is the amplitude of density fluctuations, and segmental dynamics proceeds via stress-modified activated barrier hopping on a dynamic free-energy profile. Mechanically generated disorder rejuvenation is quantified by a dissipative work argument and increases the amplitude of density fluctuations, thereby speeding up relaxation beyond that induced by the landscape tilting mechanism. The theory makes testable predictions for the time evolution and nonequilibrium steady state of the alphamore » relaxation time, density fluctuation amplitude, elastic modulus, and other properties. Model calculations reveal a rich dependence of these quantities on preaging time, applied stress, and temperature that reflects the highly nonlinear competition between physical aging and mechanical disordering. Thermal history is erased in the long-time limit, although the nonequilibrium steady state is not the literal fully rejuvenated freshly quenched glass. The present work provides the conceptual foundation for a quantitative treatment of the nonlinear mechanical response of polymer glasses under a variety of deformation protocols.« less

  2. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    DOE PAGES

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; ...

    2015-06-23

    Here, chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn– 53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn– 53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as 2.4 +1.8 -1.3 Myr after calcium–aluminium-rich inclusions (CAIs), the oldest Solar Systemmore » solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and 4.2 +0.8 -0.7 Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn– 53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8–2.5 Myr after CAIs.« less

  3. Out-Life Characteristics of IM7/977-3 Composites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Sutter, James K.; Hou, Tan-Hung; Scheiman, Daniel A.; Martin, Richard E.; Maryanski, Michael; Schlea, Michelle; Gardner, John M.; Schiferl, Zack R.

    2010-01-01

    The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-time limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-time limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The effects of room temperature aging on the thermal and visco-elastic properties of the materials were investigated. Neat resin was evaluated by differential scanning calorimetry to characterize thermal properties and change in activation energy of cure. Neat resin was also evaluated by rheometry to characterize its processability in composite fabrication. IM7/977-3 prepreg was evaluated by dynamic mechanical analysis to characterize the curing behavior. Prepreg tack was also evaluated over 60 days. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.

  4. Holistic Framework for Understanding the Evolution of Stellar Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Blackman, Eric; Owen, James

    2017-10-01

    Understanding how how the coronal X-ray activity of stars depends on magnetic field strength, dynamos, rotation, mass loss and age is of interest not only for the basic plasma physics of stars, but also for stellar age determination and implications for habitability. Approximate relations between field strength, activity, spin down, mass loss and age have been measured, but remain to be understood theoretically. The saturation of plasma activity of the fastest rotators and the decoupling of spin-down from magnetic field strengths for slow rotators are particular puzzles. To explain the observed trends, I discuss our minimalist holistic theoretical framework that combines a Parker wind with (i) magnetic dynamo sourcing of thermal energy, wind energy and x-ray luminosity (ii) dynamo saturation based on magnetic helicity conservation and shear-induced eddy shredding and (iii) coronal equilibrium to determine how the magnetic energy divides into wind, x-ray, and thermal conduction sinks. We find conduction to be important for older stars where it can reduce the efficacy of wind angular momentum loss, offering an alternative explanation of this trend to those which require dynamo transitions. Overall, the framework shows promise and provides opportunity for further Grant NSF-AST1515648 is acknowledged.

  5. Thermal and chemical stabilization of ethylene/vinyl acetate/vinyl alcohol (EVA-OH) terpolymers under nitroplasticizer environments

    DOE PAGES

    Yang, Dali; Hubbard, Kevin M.; Henderson, Kevin C.; ...

    2014-09-17

    Here, we compare the aging behaviors of cross-linked ethylene/vinyl acetate/vinyl alcohol terpolymers, also referred to as EVA-OH, when they are either immersed in nitroplasticizer (NP) liquid or exposed to NP vapor at different temperatures. And while thermogravimetric analysis and differential scanning calorimetry are used to probe the thermal stability of aged NP and polymers, Fourier transform infrared, gel permeation chromatography, ultra-violet/vis, and nuclear magnetic resonance are used to probe their structural changes over the aging process. Our study confirms that NP degrades through C[BOND]N cleavage, and releases HONO molecules at a slightly elevated temperature (<75°C). As these molecules accumulate inmore » the vapor phase, they react among themselves to create an acidic environment. Therefore, these chemical constituents in the NP vapor significantly accelerate the hydrolysis of EVA-OH polymer. When the hydrolysis occurs in both vinyl acetate and urethane groups and the scission at the cross-linker progresses, EVA-OH becomes vulnerable to further degradation in the NP vapor environment. Finally, through the comprehensive characterization, the possible degradation mechanisms of the terpolymers are proposed.« less

  6. Thermal aging of interfacial polymer chains in ethylene-propylene-diene terpolymer/aluminum hydroxide composites: solid-state NMR study.

    PubMed

    Gabrielle, Brice; Lorthioir, Cédric; Lauprêtre, Françoise

    2011-11-03

    The possible influence of micrometric-size filler particles on the thermo-oxidative degradation behavior of the polymer chains at polymer/filler interfaces is still an open question. In this study, a cross-linked ethylene-propylene-diene (EPDM) terpolymer filled by aluminum trihydrate (ATH) particles is investigated using (1)H solid-state NMR. The time evolution of the EPDM network microstructure under thermal aging at 80 °C is monitored as a function of the exposure time and compared to that of an unfilled EPDM network displaying a similar initial structure. While nearly no variations of the topology are observed on the neat EPDM network over 5 days at 80 °C, a significant amount of chain scission phenomena are evidenced in EPDM/ATH. A specific surface effect induced by ATH on the thermodegradative properties of the polymer chains located in their vicinity is thus pointed out. Close to the filler particles, a higher amount of chain scissions are detected, and the characteristic length scale related to these interfacial regions displaying a significant thermo-oxidation process is determined as a function of the aging time.

  7. The birth, growth and ageing of the Kaapvaal subcratonic mantle

    NASA Astrophysics Data System (ADS)

    Brey, Gerhard P.; Shu, Qiao

    2018-06-01

    The Kaapvaal craton and its underlying mantle is probably one of the best studied Archean entity in the world. Despite that, discussion is still vivid on important aspects. A major debate over the last few decades is the depth of melting that generated the mantle nuclei of cratons. Our new evaluation of melting parameters in peridotite residues shows that the Cr2O3/Al2O3 ratio is the most useful pressure sensitive melting barometer. It irrevocably constrains the pressure of melting (melt separation) to less than 2 GPa with olivine (ol), orthopyroxene (opx) and spinel (sp) as residual phases. Garnet (grt) grows at increasing pressure during lithosphere thickening and subduction via the reaction opx + sp → grt + ol. The time of partial melting is constrained by Re-depletion model ages (TRD) mainly to the Archean (Pearson and Wittig 2008). However, only 3% of the ages are older than 3.1 Ga while crustal ages lie mainly between 3.1 to 2.8 Ga for the W- and 3.7 to 2.8 Ga for the E-block. Many TRD-ages are probably falsified by metasomatism and the main partial melting period was older than 3.1 Ga. Also, Nd- and Hf- model ages of peridotitic lithologies from the W-block are 3.2 to 3.6 Ga old. The corresponding very negative ɛNd (-40) and ɛHf values (-65) signal the presence of subducted crustal components in these old mantle portions. Subducted components diversify the mantle in its chemistry and thermal structure. Adjustment towards a stable configuration occurs by fluid transfer, metasomatism, partial melting and heat transfer. Ages of metasomatism from the Lu-Hf isotope system are 3.2 Ga (Lace), 2.9 Ga (Roberts Victor) and 2.62 Ga (Finsch) coinciding with the collision of cratonic blocks, the growth of diamonds, metamorphism of eclogites and of Ventersdoorp magmatism. The cratonic lithosphere was stabilized thermally by the end of the Archean and cooled since then with a rate of 0.07 °C/Ma.

  8. Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure

    NASA Astrophysics Data System (ADS)

    Liu, Lilin; Ling, Minjie; Yang, Jianfu; Xiong, Wang; Jia, Weiqing; Wang, Gang

    2012-05-01

    With this work, we demonstrate a three-stage degradation behavior of GaN based LED chips under current/thermal co-stressing. The three stages in sequence are the initial improvement stage, the platform stage, and the rapid degradation stage, indicating that current/thermal co-stressing activates positive effects and negative ones simultaneously, and the dominant degradation mechanisms evolve with aging time. Degradation mechanisms are discussed. Electric current stress has dual characters: damaging the active layers by generating defects and at the same time improving the p-type conductivity by activating the Mg-dopant. High temperature stresses will promote the effects from electric current stresses. The activation of the Mg-dopant will saturate, whereas the generation of defects is carried on in a progressive way. Other mechanisms, such as deterioration of ohmic contacts, also operate. These mechanisms compete/cooperate with each other and evolve with aging time, resulting in the observed three-stage degradation behavior. There exist risks to predict the lifetime of LEDs by a model with a constant accelerated factor.

  9. The tectonothermal evolution of the Venezuelan Caribbean Mountain System: 40Ar/39Ar age insights from a Rodinian-related rock, the Cordillera de la Costa and Margarita Island

    NASA Astrophysics Data System (ADS)

    Fournier, Herbert W.; Lee, James K. W.; Urbani, Franco; Grande, Sebastián

    2017-12-01

    The Caribbean Mountain System in Venezuela contains rocks formed at high-pressure/low-temperature (HP/LT) conditions by the Cretaceous-Paleocene oblique collision occurred between the Caribbean and South American plates and involving Rodinian-related blocks. 40Ar/39Ar dating of rocks from the Cordillera de la Costa and Margarita Island has constrained key pre- and syntectonothermal events associated with the emplacement of this system. In a Rodinian marble, two phlogopite crystals of different grain sizes yield plateau ages of 888 ± 4 Ma and 874 ± 4 Ma. These results are interpreted as cooling ages after a major anorthosite-mangerite-charnockite-granite-suite intrusion at 920 Ma related to the break-up of Rodinia along the Amazonian-Baltica collisional zone - the Putumayo Orogen. Current plate reconstructions during the Neoproterozoic and previous age results indicate a correlation between the anorthositic complexes located in northwestern Venezuela (Yumare Complex) and southern Norway (Rogaland Complex), suggesting a similar tectonic setting during orogenic relaxation along the Amazonian and Baltica suture. A temperature-time path based on calculated Ar-closure temperatures of phlogopite indicates rapid cooling of 14 ± 4 °C Ma-1 from 920 Ma to 888 Ma, and a very slow to almost isothermal cooling of 4 ± 2 °C Ma-1 from 888 Ma to 874 Ma. On Margarita Island, magnesiohornblende and (alumino) barroisite from HP/LT rocks and muscovite from a leucocratic rock that was intruded before the HP/LT event yield identical ages within error at c. 54-47 Ma, consistent with previous dating results across the island utilizing different isotopic systems. The close association of these rocks and the Manzanillo Shear Zone indicates a main pathway for Ca-rich, 40Ar-free and hot fluids that locally raised the ambient T of the already exhumed and juxtaposed rock units. These fluids crystallized new hornblende and muscovite and thermally reset barroisite. This fluid activity event is 5 Ma younger than the last magmatic activity in the Aves Arc (c. 59 Ma) along its southern edge and related to the opening of the Grenada Basin. In the Cordillera de la Costa, magnesiohornblende, phengite, magnesian siderophyllite, ferroan phlogopite and K-feldspar from rock units of the Carayaca and Ávila terranes yield a wide range of ages (275-20 Ma). The oldest ages (275 Ma and 120 Ma) obtained from the Caruao Metatonalite suggest at least two thermal events at these times and are in agreement with the amalgamation of Pangaea and fluid infiltration, respectively. The remaining ages (35-20 Ma) are consistent with previous results and reflect short-lived fluid infiltrations related to tectonothermal events. A phengite age of 35 Ma from an omphacitite lens in the Antímano Marble of the Carayaca Terrane indicates a younger HP/LT event than previously stated. The preservation of this phengite age and constant Si-content profile indicate a short-lived HP/LT event followed by a very rapid exhumation. At 35-20 Ma rocks from the Ávila Terrane remained at shallower crustal levels than the ones of the Carayaca Terrane, but were thermally affected by tectonism and the infiltration of relatively cold and 40Ar-free fluids causing widespread chloritization of trioctahedral micas.

  10. Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaza, K.E.; Diercks, D.R.; Holland, J.W.

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters,more » 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.« less

  11. Influence of copper on the by-products of different oil-paper insulations

    NASA Astrophysics Data System (ADS)

    Hao, Jian; Liao, Ruijin; Chen, George; Ma, Chao

    2011-08-01

    Transformer failure caused by the corrosion of copper material in transformer attracts great attention of researchers and engineers. In this paper, Karamay No. 25 naphthenic mineral oil, Karamay No. 25 paraffinic mineral oil, Kraft paper and copper were used to compose four combinations of oil-paper insulation samples. The ageing by-products and dielectric properties of the four combinations of oil-paper insulation samples were compared after they were thermally aged at 130°C. The influence of copper on the by-products and dielectric properties of different oil-paper insulations was obtained. The results show that copper can accelerate the ageing rate of insulation oils and reduce their AC breakdown voltage. The content of copper substance dissolved in insulating oil increases with ageing time at first and then decreases. The paper aged in the oil-paper insulation sample with copper has higher moisture content than the one without copper. Results of energy dispersive spectroscopy (EDS) in the scanning electron microscope (SEM) show that there is copper product deposited on the surface of insulation paper. The insulation oil and paper aged in the oil-paper insulation sample with copper have higher dielectric loss and conductivity than that without copper.

  12. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.

    PubMed

    Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan

    2015-12-01

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Spatial and temporal variation in recruitment and growth of Channel Catfish Alabama bass and Tallapoosa Bass in the Tallapoosa River and associated tributaries

    USGS Publications Warehouse

    Irwin, Elise R.; Goar, Taconya

    2015-01-01

    Effects of hydrology on growth and hatching success of age-0 black basses and Channel Catfish were examined in regulated and unregulated reaches of the Tallapoosa River, Alabama. Species of the family Centrarchidae, Ictalurus punctatus Channel Catfish and Pylodictis olivaris Flathead Catfish were also collected from multiple tributaries in the basin. Fish were collected from 2010-2014 and were assigned daily ages using otoliths. Hatch dates of individuals of three species (Micropterus henshalli Alabama Bass, M. tallapoosae Tallapoosa Bass and Channel Catfish) were back calculated, and growth histories were estimated every 5 d post hatch from otolith sections using incremental growth analysis. Hatch dates and incremental growth were related to hydrologic and temperature metrics from environmental data collected during the same time periods. Hatch dates at the regulated sites were related to and typically occurred during periods with low and stable flow conditions; however no clear relations between hatch and thermal or flow metrics were evident for the unregulated sites. Some fish hatched during unsuitable thermal conditions at the regulated site suggesting that some fish may recruit from unregulated tributaries. Ages and growth rates of age-0 black basses ranged from 105 to 131 d and 0.53 to 1.33 mm/day at the regulated sites and 44 to 128 d and 0.44 to 0.96 mm/d at the unregulated sites. In general, growth was highest among age-0 fish from the regulated sites, consistent with findings of other studies. Mortality of age-0 to age-1 fish was also variable among years and between sites and with the exception of one year, was lower at regulated sites. Multiple and single regression models of incremental growth versus age, discharge, and temperature metrics were evaluated with Akaike’s Information Criterion (AICc) to assess models that best described growth parameters. Of the models evaluated, the best overall models predicted that daily incremental growth was positively related to low flow parameters and negatively related to the number of times the hydrograph changed direction (e.g., reversals). These results suggest that specific flow and temperature criteria provided from the dam could potentially enhance growth and hatch success of these important sport fish species.

  14. 135Cs/ 137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/ 137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/ 137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/ 137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/ 137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data aremore » in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/ 137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/ 137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/ 137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.« less

  15. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  16. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    PubMed Central

    Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃–55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns. PMID:26949485

  17. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    PubMed

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  18. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Weisgraber, T. H.; Small, W.

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component inmore » our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.« less

  19. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    NASA Astrophysics Data System (ADS)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  20. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2—geochemistry

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Ring, Uwe; Kemp, Anthony I. S.; Whitehouse, Martin J.; Weaver, Steve D.; Woodhead, Jon D.; Uysal, I. Tonguc; Turnbull, Rose

    2012-12-01

    Zircons from 14 compositionally variable granitic rocks were examined in detail using CL image-guided micro-analysis to unravel the complex magmatic history above the southward retreating Hellenic subduction zone system in the Aegean Sea. Previously published U-Pb ages document an episodic crystallisation history from 17 to 11 Ma, with peraluminous (S-type) granitic rocks systematically older than closely associated metaluminous (I-type) granitic rocks. Zircon O- and Hf isotopic data, combined with trace element compositions, are highly variable within and between individual samples, indicative of open-system behaviour involving mantle-derived melts and evolved supracrustal sources. Pronounced compositional and thermal fluctuations highlight the role of magma mixing and mingling, in accord with field observations, and incremental emplacement of distinct melt batches coupled with variable degrees of crustal assimilation. In the course of partial fusion, more fertile supracrustal sources dominated in the earlier stages of Aegean Miocene magmatism, consistent with systematically older crystallisation ages of peraluminous granitic rocks. Differences between zircon saturation and crystallisation temperatures (deduced from zircon Ti concentrations), along with multimodal crystallisation age spectra for individual plutons, highlight the complex and highly variable physico-compositional and thermal evolution of silicic magma systems. The transfer of heat and juvenile melts from the mantle varied probably in response to episodic rollback of the subducting lithospheric slab, as suggested by punctuated crystallisation age spectra within and among individual granitic plutons.

Top