Problems with aging wiring in Naval aircraft
NASA Technical Reports Server (NTRS)
Campbell, Frank J.
1994-01-01
The Navy is experiencing a severe aircraft electrical wiring maintenance problem as a result of the extensive use of an aromatic polyimide insulation that is deteriorating at a rate that was unexpected when this wire was initially selected. This problem has significantly affected readiness, reliability, and safety and has greatly increased the cost of ownership of Naval aircraft. Failures in wire harnesses have exhibited arcing and burning that will propagate drastically, to the interruption of many electrical circuits from a fault initiated by the failure of deteriorating wires. There is an urgent need for a capability to schedule aircraft rewiring in an orderly manner with a logically derived determination of which aircraft have aged to the point of absolute necessity. Excessive maintenance was demonstrated to result from the accelerated aging due to the parameters of moisture, temperature, and strain that exist in the Naval Aircraft environment. Laboratory studies have demonstrated that MIL-W-81381 wire insulation when aged at high humidities followed the classical Arrhenius thermal aging relationship. In an extension of the project a multifactor formula was developed that is now capable of predicting life under varying conditions of these service parameters. An automated test system has also been developed to analyze the degree of deterioration that has occurred in wires taken from an aircraft in order to obtain an assessment of remaining life. Since it is both physically and financially impossible to replace the wiring in all the Navy's aircraft at once, this system will permit expedient scheduling so that those aircraft that are most probable to have wiring failure problems can be overhauled first.
Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2005-01-01
Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.
Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2002-01-01
Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.
Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems
NASA Technical Reports Server (NTRS)
Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)
2000-01-01
We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.
Exact solution for the optimal neuronal layout problem.
Chklovskii, Dmitri B
2004-10-01
Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.
An Overview of the Space Shuttle Orbiter's Aging Aircraft Program
NASA Technical Reports Server (NTRS)
Russell, Richard W.
2007-01-01
The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.
A simple homogeneous model for regular and irregular metallic wire media samples
NASA Astrophysics Data System (ADS)
Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.
2018-02-01
To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.
Nondestructive Evaluation of Aircraft and Spacecraft Wiring
NASA Technical Reports Server (NTRS)
White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.
2004-01-01
Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.
Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo
2016-01-01
For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments. PMID:27213373
Electrical Arc Ignition Testing of Spacesuit Materials
NASA Technical Reports Server (NTRS)
Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold
2006-01-01
A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.
Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade
NASA Technical Reports Server (NTRS)
Ritzert, F. J.; Dreshfield, R. L.
1992-01-01
A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.
2005-02-03
Aging Aircraft 2005 The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft Decision Algorithms for Electrical Wiring Interconnect Systems (EWIS...SUBTITLE Aging Aircraft 2005, The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center, 8W. Taylor St., M/S 190 Hampton, VA 23681 and NAVAIR
Apollo experience report: Electrical wiring subsystem
NASA Technical Reports Server (NTRS)
White, L. D.
1975-01-01
The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.
Electrode carrying wire for GTAW welding
NASA Technical Reports Server (NTRS)
Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)
1990-01-01
A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.
Internal wire guide for GTAW welding
NASA Technical Reports Server (NTRS)
Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)
1989-01-01
A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.
Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2001-01-01
Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.
Oh, Hyoung-Keun; Choo, Suk-Kyu; Kim, Ji-Wan; Lee, Mark
2015-12-01
We present the surgical technique of separate vertical wiring for displaced inferior pole fractures of the patella combined with Krachow suture and report the surgical outcomes. Between September 2007 to May 2012, 11 consecutive patients (mean age, 54.6 years) with inferior pole fractures of the patella (AO/OTA 34-A1) were retrospectively enrolled in this study. Through longitudinal incision, all patients underwent open reduction and internal fixation by separate vertical wiring combined with Krackow suture. The range of motion, loss of fixation, and Bostman score were primary outcome measures. The union time was 10 weeks after surgery on average (range: 8-12). No patient had nonunion, loss of reduction and wire breakage. There was no case of wound problem and irritation from the implant. At final follow-up, the average range of motion arc was 129.4° (range: 120-140). The mean Bostman score at last follow-up was 29.6 points (range: 28-30) and graded excellent in all cases. Separate vertical wiring combined with Krackow suture for inferior pole fractures of the patella is a useful technique that is easy to perform and can provide stable fixation with excellent results in knee function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Home and School Technology: Wired versus Wireless.
ERIC Educational Resources Information Center
Van Horn, Royal
2001-01-01
Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)
[Mechanics analysis of fracture of orthodontic wires].
Wang, Yeping; Sun, Xiaoye; Zhang, Longqi
2003-03-01
Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.
Bound states and propagating modes in quantum wires with sharp bends and/or constrictions
NASA Astrophysics Data System (ADS)
Razavy, M.
1997-06-01
A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.
NASA Technical Reports Server (NTRS)
1983-01-01
NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.
Lunar Module Wiring Design Considerations and Failure Modes
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.
NASA Technical Reports Server (NTRS)
Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming
2012-01-01
Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.
Corrosion of Wires on Wooden Wire-Bound Packaging Crates
Samuel L. Zelinka; Stan Lebow
2015-01-01
Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo; Yang, Kyu Hyun
2014-05-01
Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing.
Design of power cable grounding wire anti-theft monitoring system
NASA Astrophysics Data System (ADS)
An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang
2018-01-01
In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.
Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)
Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.
1986-01-01
Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.
Bogie, Rob; Voss, Laura; Arts, Jacobus J; Lataster, Arno; Willems, Paul C; Brans, Boudewijn; van Rhijn, Lodewijk W; Welting, Tim J M
2016-12-01
An animal study. To explore ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires in spinal surgery and to assess stability and biocompatibility of the UHMWPE instrumentation in an ovine model. Sublaminar wiring is a well-established technique in segmental scoliosis surgery. However, during introduction and/or removal of the metal sublaminar wires, neurological problems can occur. Abrasion after cutting metal wires for removal can lead to damage to the dural sac. Sublaminar wires have to withhold large forces and breakage of the wires can occur. Different types of sublaminar wires have been developed to address these problems. UHMWPE sublaminar wires can potentially substitute currently used metal sublaminar metal wires. In vivo testing and biocompatibility analysis of UHMWPE wires are recommended before clinical use in spinal surgery. In 6 immature sheep, pedicle screws were instrumented at lumbar level L4 and attached with titanium rods to 4 thoracolumbar vertebrae using 3- and 5-mm-wide UHMWPE sublaminar wiring constructions in 5 animals. Titanium sublaminar wires were applied in 1 animal to function as a control subject. After a follow-up period of 16 weeks, the animals were sacrificed and the spines were isolated. Radiographs and computed tomography (CT) scans were made to assess stability of the instrumentation. The vertebrae were dissected for macroscopic and histologic evaluation. None of the wires had loosened and the instrumentation remained stable. CT scans and radiographs showed no signs of failure of the instrumentation and no neurological complications occurred. Although several bony bridges were seen on CT, growth was observed at the operated levels. Biocompatibility was assessed by macroscopical and histologic analysis, showing no signs of dural or epidural inflammation. This pilot animal study shows that UHMWPE sublaminar wiring is a safe technique. The UHMWPE wires are biocompatible and provide sufficient stability in spinal instrumentation. Heterotopic ossification because of periost reactions in the ovine spine led to some restrictions in this study.
Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo
2014-01-01
Purpose Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Materials and Methods Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. Results For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Conclusion Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing. PMID:24719149
Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current
ERIC Educational Resources Information Center
Jimenez, J. L.; Campos, I.; Aquino, N.
2008-01-01
We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…
ERIC Educational Resources Information Center
Thompson, Keith
2009-01-01
This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…
NASA requirements and applications environments for electrical power wiring
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1992-01-01
Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.
Fixed-angle plates in patella fractures - a pilot cadaver study
2011-01-01
Objective Modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring are currently the fixation of choice for patellar fractures. Failure of fixation, migration of the wires, postoperative pain and resulting revision surgery, however, are not uncommon. After preliminary biomechanical testing of a new fixed-angle plate system especially designed for fixation of patella fractures the aim of this study was to evaluate the surgical and anatomical feasibility of implanting such a plate-device at the human patella. Methods In six fresh unfixed female cadavers without history of previous fractures around the knee (average age 88.8 years) a bilateral fixed-angle plate fixation of the patella was carried out after previous placement of a transverse central osteotomy. Operative time, intra-operative problems, degree of retropatellar arthritis (following Outerbridge), quality of reduction and existence of any intraarticular screw placement have been raised. In addition, lateral and anteroposterior radiographs of all specimens were made. Results Due to the high average age of 88.8 years no patella showed an unimpaired retropatellar articular surface and all were severely osteoporotic, which made a secure fixation of the reduction forceps during surgery difficult. The operation time averaged 49 minutes (range: 36-65). Although in postoperative X-rays the fracture gap between the fragments was still visible, the analysis of the retropatellar surface showed no residual articular step or dehiscence > 0.5 mm. Also in a total of 24 inserted screws not one intraarticular malposition was found. No intraoperative complications were noticed. Conclusions Osteosynthesis of a medial third patella fracture with a bilateral fixed-angle plate-device is surgically and anatomically feasible without difficulties. Further studies have to depict whether the bilateral fixed-angle plate-osteosynthesis of the patella displays advantages over the established operative procedures. PMID:21345769
The Development of Electrical Strain Gages
NASA Technical Reports Server (NTRS)
De Forest, A V; Leaderman, H
1940-01-01
The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.
Obstacle Detection Algorithms for Rotorcraft Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.; Huang, Ying; Narasimhamurthy, Anand; Pande, Nitin; Ahumada, Albert (Technical Monitor)
2001-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter.
Effects of δ phase and cold drawing ratio on the LCF properties of alloy 718 wire
NASA Astrophysics Data System (ADS)
Jeong, Yong-Kwon; Jo, Chang-Yong; Kim, In-Bae
2000-10-01
The effects of the amount and distribution of δ particles on the low cycle fatigue (LCF) properties of alloy 718 wire were investigated. The amount and distribution of δ particles were controlled by cold drawing followed by a variety of agings. As the cold drawing ratio and aging time at 1116K increased, the well developed granular δ particles increased in amount and their distribution at grain/twin boundaries became more uniform. Regardless of the aging conditions, the LCF life increased as the cold drawing ratio increased. The granular particles precipitated along the grain boundary also improved the LCF life of alloy 718 wire since they inhibited crack propagation. After Merrick heat treatment, 50% of the cold drawn wire displayed lower 698K tensile and yield strength than 30% of the cold drawn wire. This was because the higher strain induced by the cold drawing prior to the first aging at 1116K appeared to promote the precipitation of the δ phase during aging, which has no influence on the strength of the material but has same stoichiometry with the γ phase as Ni3Nb and, as a result, the higher strain precipitated a smaller quantity of γ particles with subsequent aging, which is a major hardening phase of the alloy. Cold drawing also lowered the precipitation temperature of the δ phase.
[Osteosynthesis by tension band wiring of displaced fractures of the olecranon].
Doursounian, L; Prevot, O; Touzard, R C
1994-01-01
Fifty-two displaced olecranon fractures in adults were treated over a 5-year period. Minimum follow-up was 6 months. Forty-eight fractures were operated and 38 were treated by tension band wiring technique. This technique, applied for all types of fractures, gave good functional results in 33 cases (87%) and fair functional results in 5 cases. Complications include 1 pseudarthrosis, 2 loss of reduction, 2 transient tourniquet palsy and 13 skin problems due to wire protrusion. Tension band wiring is a simple safe and effective technique for displaced olecranon fractures but often requires K-wire removal.
Implementing Cleaner Printed Wiring Board Technologies: Surface Finishes
This document describes the problems, solutions, and time and effort involved in implementing alternative surface finish technologies, and this guide is produced as part of the DfE Printed Wiring Board Project
Space Station Freedom secondary power wiring requirements
NASA Technical Reports Server (NTRS)
Sawyer, C. R.
1994-01-01
Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.
A study on electromigration-inducing intergranular fracture of fine silver alloy wires
NASA Astrophysics Data System (ADS)
Hsueh, Hao-Wen; Hung, Fei-Yi; Lui, Truan-Sheng
2017-01-01
In this study, Pd-coated Cu, Ag (purity = 4 N), and Ag alloy (Ag-8Au-3Pd) wires were employed to measure the tensile properties during current stressing using the so-called dynamic current tensile (DCT) test. Both the tensile strength and elongation of the wires decreased dramatically in the DCT test, particularly of the Ag-based wires, and the fracture morphology of the Cu-based and Ag-based wires was ductile fracture and intergranular fracture, respectively. Compared to the Cu-based wires, electromigration occurred more easily in the Ag-based wires, and it always generated voids and cracks at the grain boundaries; therefore, the fracture morphology of the Ag-based wires was intergranular fracture owing to the weakened grain boundary. Further, the results indicated that the Ag-based wires could not carry a higher current density than the Cu-based wires, primarily because their extremely low strength and elongation in current stressing might cause serious reliability problems.
Autoclaving and clinical recycling: effects on mechanical properties of orthodontic wires.
Oshagh, M; Hematiyan, M R; Mohandes, Y; Oshagh, M R; Pishbin, L
2012-01-01
About half of the orthodontists recycle and reuse orthodontic wires because of their costs. So when talking about reuse and sterilization of wires, their effects on mechanical properties of wires should be clarified. The purpose of this study was to assess the effects of sterilization and clinical use on mechanical properties of stainless steel wires. Thirty stainless steel orthodontic wires were divided into three equal groups of control, autoclave (sterilized by autoclave), and recycle group (wires were used for orthodontic patients up to 4 weeks, cleaned by isopropyl alcohol and sterilized by autoclave). The mechanical properties (tensile test, three-point loading test for load-deflection curve) were determined. Fracture force, yield strength, stiffness and modulus of elasticity in recycle groups were significantly lower than the other groups (P < 0.05). Although recycle wires were softer than those of control group, relatively small differences and also various properties of available wires have obscured the clinical predictability of their application. There is seemingly no problem in terms of mechanical properties to recycle orthodontic wires.
Controlling an indirect hot water heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capano, J.
The procedure for servicing a Dunkirk Empire indirect water heater is presented. In this particular case the serviceman found that a wire was loose on the aquastat on the tank. The serviceman checked the wire and the past and tightened the connection. This took care of the problem. A wiring diagram is presented for the home heating system and the hot water heater.
Complementary Curves of Descent
2012-11-16
a lemniscate of Bernoulli . Alternatively, the wires can be tracks down which round objects undergo a rolling race. The level of presentation is...A common mechanics demonstration consists of racing cars or balls down tracks of various shapes and qualitatively or quantitatively measuring the...problem), which is self complementary. A striking example is a straight wire whose complement is a lemniscate of Bernoulli . Alternatively the wires can
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-19
... power supply to the lamp. The Company said that ``installation of the wiring harness to the... subsupplier such that tension was put on the wiring harness connector'' which can cause it to come loose. To correct this problem, the Company has re-routed the wiring harness to ``push'' rather than ``pull'' on the...
Effects of intraoral aging on surface properties of coated nickel-titanium archwires.
Rongo, Roberto; Ametrano, Gianluca; Gloria, Antonio; Spagnuolo, Gianrico; Galeotti, Angela; Paduano, Sergio; Valletta, Rosa; D'Antò, Vincenzo
2014-07-01
To evaluate the effects of intraoral aging on surface properties of esthetic and conventional nickel-titanium (NiTi) archwires. Five NiTi wires were considered for this study (Sentalloy, Sentalloy High Aesthetic, Superelastic Titanium Memory Wire, Esthetic Superelastic Titanium Memory Wire, and EverWhite). For each type of wire, four samples were analyzed as received and after 1 month of clinical use by an atomic force microscope (AFM) and a scanning electronic microscope (SEM). To evaluate sliding resistance, two stainless steel plates with three metallic or three monocrystalline brackets, bonded in passive configuration, were manufactured; four as-received and retrieved samples for every wire were pulled five times at 5 mm/min for 1 minute by means of an Instron 5566, recording the greatest friction value (N). Data were analyzed by one-way analysis of variance and by Student's t-test. After clinical use, surface roughness increased considerably. The SEM images showed homogeneity for the as-received control wires; however, after clinical use esthetic wires exhibited a heterogeneous surface with craters and bumps. The lowest levels of friction were observed with the as-received Superelastic Titanium Memory Wire on metallic brackets. When tested on ceramic brackets, all the wires exhibited an increase in friction (t-test; P < .05). Furthermore, all the wires, except Sentalloy, showed a statistically significant increase in friction between the as-received and retrieved groups (t-test; P < .05). Clinical use of the orthodontic wires increases their surface roughness and the level of friction.
Zahed Zahedani, SM; Oshagh, M; Momeni Danaei, Sh; Roeinpeikar, SMM
2013-01-01
Statement of Problem: One of the major outcomes of orthodontic treatment is the apical root resorption of teeth moved during the treatment. Identifying the possible risk factors, are necessary for every orthodontist. Purpose: The aim of this study was to compare the rate of apical root resorption after fixed orthodontic treatment with standard edgewise and straight wire (MBT) method, and also to evaluate other factors effecting the rate of root resorption in orthodontic treatments. Materials and Method: In this study, parallel periapical radiographs of 127 patients imaging a total of 737 individual teeth, were collected. A total of 76 patients were treated by standard edgewise and 51 patients by straight wire method. The periapical radiographs were scanned and then the percentage of root resorption was calculated by Photoshop software. The data were analyzed by Paired-Samples t-test and the Generalized Linear Model adopting the SPSS 15.0. Results: In patients treated with straight wire method (MBT), mean root resorption was 18.26% compared to 14.82% in patients treated with standard edgewise technique (p< .05). Male patients had higher rate of root resorption,statistically significant (p< .05). Age at onset of treatment, duration of treatment, type of dental occlusion, premolar extractions and the use of intermaxillary elastics had no significant effect on the root resorption in this study. Conclusion: Having more root resorption in the straight wire method and less in the standard edgewise technique can be attributed to more root movement in pre-adjusted MBT technique due to the brackets employed in this method. PMID:24724131
A review of wiring system safety in space power systems
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1993-01-01
Wiring system failures have resulted from arc propagation in the wiring harnesses of current aerospace vehicles. These failures occur when the insulation becomes conductive upon the initiation of an arc. In some cases, the conductive path of the carbon arc track displays a high enough resistance such that the current is limited, and therefore may be difficult to detect using conventional circuit protection. Often, such wiring failures are not simply the result of insulation failure, but are due to a combination of wiring system factors. Inadequate circuit protection, unforgiving system designs, and careless maintenance procedures can contribute to a wiring system failure. This paper approaches the problem with respect to the overall wiring system, in order to determine what steps can be taken to improve the reliability, maintainability, and safety of space power systems. Power system technologies, system designs, and maintenance procedures which have led to past wiring system failures will be discussed. New technologies, design processes, and management techniques which may lead to improved wiring system safety will be introduced.
Wire Detection Algorithms for Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.
2002-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning method) is the need for a very good set of positive and negative examples since the performance depends on the quality of the training set.
Gan, C L; Hashim, U
2013-06-01
Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t 50 ) have been discussed in this paper.
Test of the wire ageing induced by radiation for the CMS barrel muon chambers
NASA Astrophysics Data System (ADS)
Conti, E.; Gasparini, F.
2001-06-01
We have carried out laboratory tests to measure the ageing of a wire tube due to pollutants outgassed by various materials. The tested materials are those used in the barrel muon drift tubes of the CMS experiment at LHC. An X-ray gun irradiated the test tube to accelerate the ageing process. No ageing effect has been measured for a period equivalent to 10 years of operation at LHC.
Advanced wiring technique and hardware application: Airplane and space vehicle
NASA Technical Reports Server (NTRS)
Ernst, H. L.; Eichman, C. D.
1972-01-01
An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.
Radiation from mixed multi-planar wire arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.
2014-03-15
The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kineticmore » model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.« less
Seyyed Aghamiri, S M; Ahmadabadi, M Nili; Raygan, Sh
2011-04-01
The shape memory nickel-titanium alloy has been applied in many fields due to its unique thermal and mechanical performance. One of the successful applications of NiTi wires is in orthodontics because of its good characteristics such as low stiffness, high spring back, high stored energy, biocompatibility, superelasticity and shape memory effect. The mechanical properties of wires are paid special attention which results in achieving continuous optimal forces and eventually causing rapid tooth movement without any damage. The behavior of the alloy can be controlled by chemical composition and thermo-mechanical treatment during the manufacturing process. In this study two kinds of commercial superelastic NiTi archwires of 0.41 mm diameter were investigated: Copper NiTi and Highland Metal. The chemical analysis of both wires was estimated by energy dispersive spectroscopy (EDS). It was showed that Copper NiTi wire contained copper and chromium. The two types of wires were exposed to different heat treatment conditions at 400 and 500 °C for 10 and 60 min to compare the behavior of the wires at aged and as-received conditions. Phase transformation temperatures clarified by differential scanning calorimetry (DSC) showed B2 <--> R <--> B19 transformation in Highland Metal wire and B2 <--> B19(') transformation in Copper NiTi wire. Three point bending (TPB) tests in the certain designed fixture were performed at 37 °C to evaluate the mechanical behavior of the wires. The experimental results revealed the superelastic behavior of the Highland Metal wire after 60 min ageing at 400 and 500 °C and the plastic deformation of the Copper NiTi wire after annealing due to the effect of copper in the alloy composition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Atac, Muzaffer
1989-01-01
A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.
Technology That's Ready and Able to Inspect Those Cables
NASA Technical Reports Server (NTRS)
2005-01-01
Attempting to locate a malfunctioning wire in a complex bundle of wires or in a cable that is concealed behind a wall is as difficult as trying to find a needle in a haystack. The result of such an effort can also be costly, time-consuming, and frustrating, whether it is the tedious process of examining cable connections for the Space Shuttle or troubleshooting a cable television hookup. Furthermore, other maintenance restrictions can compound the effort required to locate and repair a particular wiring problem. For example, on the Space Shuttle, once a repair is completed, all systems that have a wire passing through any of the connectors that were disconnected during troubleshooting are affected and, therefore, must undergo retesting, an arduous task that is completely unrelated to the original problem. In an effort to streamline wire inspection and maintenance, two contractors supporting NASA's Kennedy Space Center invented the Standing Wave Reflectometer (SWR) in 1999. In doing so, they leveraged technology that was first developed to detect problems that could lead to aircraft accidents, such as the one that resulted in the catastrophic failure of TWA flight 800 in 1996. The SWR performs a non-intrusive inspection that verifies the condition of electrical power and signal-distribution systems inside the Space Shuttle orbiters. Such testing reduces processing delays and ensures safe operation of these systems.
Goffin, N J; Higginson, R L; Tyrer, J R
2016-12-01
In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.
Higginson, R. L.; Tyrer, J. R.
2016-01-01
In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure. PMID:28119550
Investigating the Use of Ultrasound for Evaluating Aging Wiring Insulation
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.
2001-01-01
This paper reviews our initial efforts to investigate the use of ultrasound to evaluate wire insulation. Our initial model was a solid conductor with heat shrink tubing applied. In this model, various wave modes were identified. Subsequently, several aviation classes of wires (MIL-W- 81381, MIL-W-22759/34, and MIL-W-22759/87) were measured. The wires represented polyimide and ethylene-tetraflouroethylene insulations, and combinations of polyimide and flouropolymer plastics. Wire gages of 12, 16, and 20 AWG sizes were measured. Finally, samples of these wires were subjected to high temperatures for short periods of time to cause the insulation to degrade. Subsequent measurements indicated easily detectable changes.
Equilibrium charge distribution on a finite straight one-dimensional wire
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed
2017-09-01
The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.
Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S
2003-07-15
The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 331-340, 2003
NASA Astrophysics Data System (ADS)
Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.
2010-07-01
Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.
FireWire: Hot New Multimedia Interface or Flash in the Pan?
ERIC Educational Resources Information Center
Learn, Larry L., Ed.
1995-01-01
Examines potential solutions to the problem of personal computer cabling and configuration and serial port performance, namely "FireWire" (P1394) and "Universal Serial Bus" (USB). Discusses interface design, technical capabilities, user friendliness, compatibility, costs, and future perspectives. (AEF)
The flying hot wire and related instrumentation
NASA Technical Reports Server (NTRS)
Coles, D.; Cantnell, B.; Wadcock, A.
1978-01-01
A flying hot-wire technique is proposed for studies of separated turbulent flow in wind tunnels. The technique avoids the problem of signal rectification in regions of high turbulence level by moving the probe rapidly through the flow on the end of a rotating arm. New problems which arise include control of effects of torque variation on rotor speed, avoidance of interference from the wake of the moving arms, and synchronization of data acquisition with rotation. Solutions for these problems are described. The self-calibrating feature of the technique is illustrated by a sample X-array calibration.
Far infrared polarizing grids for use at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Novak, Giles; Sundwall, Jeffrey L.; Pernic, Robert J.
1989-01-01
A technique is proposed for the construction of free-standing wire grids for use as far-IR polarizers. The method involves wrapping a strand of wire around a single cylinder rather than around a pair of parallel rods, thus simplifying the problem of maintaining constant wire tension. The cylinder is composed of three separate pieces which are disassembled at a later stage in the grid-making process. Grids have been constructed using 8-micron-diameter stainless steel wire and a grid spacing of 25 microns. The grids are shown to be reliable under repeated cycling between room temperature and 1.5 K.
Modified tension band wiring of medial malleolar ankle fractures.
Georgiadis, G M; White, D B
1995-02-01
Twenty-two displaced medial malleolar ankle fractures that were treated surgically using the modified tension band method of Cleak and Dawson were retrospectively reviewed at an average follow-up of 25 months. The technique involves the use of a screw to anchor a figure-of-eight wire. There were no malreductions and all fractures healed. Problems with the technique included technical errors with hardware placement, medial ankle pain, and asymptomatic wire migration. Despite this, modified tension band wiring remains an acceptable method for fixation of selected displaced medial malleolar fractures. It is especially suited for small fracture fragments and osteoporotic bone.
Wiring Damage Analyses for STS OV-103
NASA Technical Reports Server (NTRS)
Thomas, Walter, III
2006-01-01
This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.
NASA Astrophysics Data System (ADS)
Gavrilov, G. E.; Vakhtel, V. M.; Maysuzenko, D. A.; Tavtorkina, T. A.; Fetisov, A. A.; Shvetsova, N. Yu.
2017-12-01
A method of elimination of silicon compounds from the anode wire of an aged proportional counter is presented. The aging of a counter with a 70%Ar + 30%CO2 and a 60%Ar + 30%CO2 + 10%CF4 working mixture was stimulated by a 90Sr β source. To accelerate the process of aging, the gas mixture flow to the counter was supplied through a pipe with RTV coated wall. As a result, the amplitude of the signal decreased 70% already at accumulated charge of Q = 0.03 C/cm. The etching of the silicon compounds on the wire surface with an 80%CF4 + 20%CO2 gas mixture discharge led to full recovery of the operating characteristics of detector and an increase in the lifetime. A scanning electron microscopy and X-ray spectroscopy analysis of the recovered wire surface were performed. In accordance with the results, a good quality of wire cleaning from SiO2 compounds was obtained.
NASA Astrophysics Data System (ADS)
Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos Leonel
2017-12-01
This study describes two investigations: first, the applicability of NiTi wires in the damping of oscillations induced by wind, rain, or traffic in cable-stayed bridges; and second, the characteristic properties of NiTi, i.e., the effects of wire diameter and particularly the effects of summer and winter temperatures and strain-aging actions on the hysteretic behavior. NiTi wires are mainly of interest because of their high number of available working cycles, reliable results, long service lifetime, and ease in obtaining sets of similar wires from the manufacturer.
Forces on a current-carrying wire in a magnetic field: the macro-micro connection
NASA Astrophysics Data System (ADS)
Karam, R.; Kneubil, F. B.; Robilotta, M. R.
2017-09-01
The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We argue that this approach allows one to discuss different aspects of the physical knowledge, which are relevant in physics education.
First principles cable braid electromagnetic penetration model
Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; ...
2016-01-01
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less
Romagnoli, Anna Noel; Teeter, William; Wasicek, Philip; Gamble, William Bryan; Hu, Fu Peter M; Stein, Deborah; Scalea, Thomas; Brenner, Megan
2018-06-12
A wire-free device is available for REBOA providing aortic occlusion (AO) without lengthy platform guide-wires and large sheaths. This was a retrospective, single-institution review of patients who received REBOA from May 2014-September 2017. Timing of procedural steps was measured in seconds (s) using time-stamped videography. 74 patients received REBOA; 29 with a platform guidewire, 12F sheath, and balloon catheter (W group), and 45 with a 7F sheath and wire-free device (WF group). Mean age (p=0.22) and ISS (p=0.80) were similar between groups. 59 patients received REBOA at Zone 1; 15 patients at Zone 3. There was no difference in median [IQR] time to common femoral artery (CFA) access between the WF (194[98,313]s) and W (193[126,280]s) groups (p=0.96). Both median time to AO after CFA access (WF:158[109,264]s vs. W:307[222,390]s, p<0.001) and median total procedural time (WF:366[263,596]s vs. W:511[441,597]s; p=0.012) were significantly shorter with the wire-free system. The rates of percutaneous versus open CFA access was not different between groups (p=0.48). Both groups had a similar physiologic response to AO as measured by pre- and post-AO SBP (p=0.86). Overall mortality rate was 74%; 90% in the W group, and 64% in the WF group (p = 0.027). The procedure-related complication rate was not significantly different between groups with regard to compartment syndrome (W:3% vs WF:4%, p=1.0), access-related complications (W:0 vs WF:6%, p=0.28) or systemic complication (W:0 vs WF:9%, p=0.15). Once CFA access is obtained, AO with a smaller wire-free device reduces procedural time by approximately 50%. When perfusion to proximal organs is essential, the seconds saved to achieve AO may contribute to improved mortality. Time to obtain CFA access is not dependent on introducer sheath size. Therapeutic, Level V.
Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent
NASA Astrophysics Data System (ADS)
Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi
2007-07-01
NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.
NASA Astrophysics Data System (ADS)
Koopman, D. A.; Paul, C. R.
1984-08-01
Electrical devices (computers, radar systems, communication radios, etc.) are interconnected by wires on most present systems. Electromagnetic fields produced by the excitation of these wires will cause unintentional coupling of signals onto nearby wires. This undesired electromagnetic coupling is termed crosstalk. It is important to be able to determine whether these crosstalk signals will cause the devices at the ends of the wires to malfunction. Wires are often grouped together in cable bundles or harnesses. The close proximity of wires in these bundles enhances the possibility that the crosstalk levels will be sufficiently large to cause malfunctions. The ability to predict crosstalk levels and the means to control crosstalk when it causes a problem are important to optimum system design. It interference of this type is allowed to surface during final system tests, a costly and time consuming retrofit of the wiring or the addition of filters and other interference control measures may be required.
Quench-age method for the fabrication of niobium-aluminum superconductors
Pickus, Milton R.; Ciardella, Robert L.
1978-01-01
A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.
Intrasystem Analysis Program (IAP) code summaries
NASA Astrophysics Data System (ADS)
Dobmeier, J. J.; Drozd, A. L. S.; Surace, J. A.
1983-05-01
This report contains detailed descriptions and capabilities of the codes that comprise the Intrasystem Analysis Program. The four codes are: Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP), General Electromagnetic Model for the Analysis of Complex Systems (GEMACS), Nonlinear Circuit Analysis Program (NCAP), and Wire Coupling Prediction Models (WIRE). IEMCAP is used for computer-aided evaluation of electromagnetic compatibility (ECM) at all stages of an Air Force system's life cycle, applicable to aircraft, space/missile, and ground-based systems. GEMACS utilizes a Method of Moments (MOM) formalism with the Electric Field Integral Equation (EFIE) for the solution of electromagnetic radiation and scattering problems. The code employs both full matrix decomposition and Banded Matrix Iteration solution techniques and is expressly designed for large problems. NCAP is a circuit analysis code which uses the Volterra approach to solve for the transfer functions and node voltage of weakly nonlinear circuits. The Wire Programs deal with the Application of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling for specific classes of problems.
New Materials for the Repair of Polyimide Electrical Wire Insulation
NASA Technical Reports Server (NTRS)
2008-01-01
Two viable polyimide backbone materials have been identified that will allow the repair of polyimide electrical wire insulation found on the Space Shuttle and other aging aircraft. This identification is the outcome of ongoing efforts to assess the viability of using such polyimides and polyimide precursors (polyamic acids [PAAs]) as repair materials for aging polyimide electrical wire insulation. These repair materials were selected because they match the chemical makeup of the underlying wire insulation as closely as possible. This similarity allows for maximum compatibility, coupled with the outstanding physical properties of polyimides. The two polyimide backbone materials allow the polymer to be extremely flexible and to melt at low temperatures. A polymer chain end capping group that allows the polymer to crosslink into a nonflowable repair upon curing at around 200 C was also identified.
Using Ant Colony Optimization for Routing in VLSI Chips
NASA Astrophysics Data System (ADS)
Arora, Tamanna; Moses, Melanie
2009-04-01
Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry K.; Langston, William L.; Basilio, Lorena I.
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplifiedmore » infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less
Employing Tip-Edge brackets on canines to simplify straight-wire mechanics.
Rocke, R T
1994-10-01
The straight-wire appliance was developed in part to reduce wire bending and therefore make treatment results more predictable. Because tip prescription is built into the bracket slots, teeth are held at their final crown angulations throughout treatment. Straight-wire brackets are used in an attempt to produce bodily tooth movement. However, teeth tend to tip when a force is applied. This tipping, especially when canines are retracted, can deflect the arch wire causing supereruption of the incisors with a resultant increase in anterior overbite and an open bite in the canine/premolar area. Placing Tip-Edge brackets (TP Orthodontics, Inc., LaPorte, Ind.) on canines and employing tipping and uprighting mechanics on these teeth can overcome these problems. Two cases are presented to illustrate this approach to treatment.
Chong Leong, Gan; Uda, Hashim
2013-01-01
This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu wire. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The obtained weibull slope, β of three bonding wires are greater than 1.0 and belong to wearout reliability data point. Pd-doped Cu wire exhibits larger time-to-failure and cycles-to-failure in both wearout reliability tests in Highly Accelerated Temperature and Humidity (HAST) and Temperature Cycling (TC) tests. This proves Pd-doped Cu wire has a greater potential and higher reliability margin compared to Au and Pd-coated Cu wires. PMID:24244344
Individual differences in human brain development.
Brown, Timothy T
2017-01-01
This article discusses recent scientific advances in the study of individual differences in human brain development. Focusing on structural neuroimaging measures of brain morphology and tissue properties, two kinds of variability are related and explored: differences across individuals of the same age and differences across age as a result of development. A recent multidimensional modeling study is explained, which was able to use brain measures to predict an individual's chronological age within about one year on average, in children, adolescents, and young adults between 3 and 20 years old. These findings reveal great regularity in the sequence of the aggregate brain state across different ages and phases of development, despite the pronounced individual differences people show on any single brain measure at any given age. Future research is suggested, incorporating additional measures of brain activity and function. WIREs Cogn Sci 2017, 8:e1389. doi: 10.1002/wcs.1389 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiao, Xue; Yang, Bo
2017-10-01
To study the lightning electromagnetic pulse (LEMP) coupling and protection problems of shielding enclosure with penetrating wire, we adopt the model with proper size which is close to the practical engineering and the two-step finite-difference time-domain (FDTD) method is used for calculation in this paper. It is shown that the coupling voltage on the circuit lead inside the enclosure increases about 34 dB, when add 1.0 m long penetrating wire at the aperture, comparing with the case without penetrating wire. Meanwhile, the waveform, has the same wave outline as the lightning current source, shows that the penetrating wire brings a large number of low frequency component into the enclosure. The coupling effect in the enclosure will reduce greatly when penetrating wire has electrical connection with the enclosure at the aperture and the coupling voltage increase only about 12 dB than the case without penetrating wire. Moreover, the results show that though the waveguide pipe can reduce the coupling effect brought by the penetrating wire, the exposing part of penetrating wire can increase the coupling when the penetrating wire outside the enclosure is longer than the waveguide pipe and the longer the exposing part is, the stronger the coupling is.
Metaphor and analogy in everyday problem solving.
Keefer, Lucas A; Landau, Mark J
2016-11-01
Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Haghighi, Kayvon; Manolakakis, Manolis G; Balog, Connor
2017-06-01
The aim of this study was to determine the feasibility of direct transcortical stabilization of fracture dislocations of the mandibular condyle (FDMCs) using narrow-diameter non-threaded Kirschner wire (K-wire). This retrospective review reports on the treatment outcomes for 12 patients (15 fractures) with FDMCs treated with open reduction using transcortical 0.027-inch K-wire stabilization. Postoperative parameters of relevance included infection, facial nerve function, hardware removal, mandibular range of motion, and radiographic determination of fracture union. Three patients had bilateral FDMCs and 9 had unilateral FDMCs (age range at time of injury, 14 to 72 yr; mean age, 32 yr). Postoperative follow-up ranged from 6 weeks to 2 years. Four patients required removal of K-wire hardware for different reasons. K-wires were removed because of infection in 1 patient. Another patient required removal because of migration of the pin into the joint space. One pin was removed electively and another was removed for nonspecific postoperative symptoms that resolved after pin removal. Persistent facial nerve deficit was observed in 1 patient. Open reduction with transcortical K-wire stabilization can achieve satisfactory outcomes for the treatment of FDMC. Further investigation is needed in determining the efficacy of this fixation technique in the management of FDMC. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Ridley, Taylor J; Freking, Will; Erickson, Lauren O; Ward, Christina Marie
2017-07-01
To determine whether there is a difference in the incidence of infection between exposed and buried K-wires when used to treat phalangeal, metacarpal, and distal radius fractures. We conducted a retrospective review identifying all patients aged greater than 16 years who underwent fixation of phalangeal, metacarpal, or distal radius fractures with K-wires between 2007 and 2015. We recorded patient demographic data, fracture location, number of K-wires used, whether K-wires were buried or left exposed, and duration of K-wire placement. A total of 695 patients met inclusion criteria. Surgeons buried K-wires in 207 patients and left K-wires exposed in 488. Infections occurred more frequently in exposed K-wire cases than in buried K-wire ones. Subgroup analysis based on fracture location revealed a significantly increased risk of being treated for infection when exposed K-wires were used for metacarpal fractures. Patients with exposed K-wires for fixation of phalangeal, metacarpal, or distal radius fractures were more likely to be treated for a pin-site infection than those with K-wires buried beneath the skin. Metacarpal fractures treated with exposed K-wires were 2 times more likely to be treated for a pin-site infection (17.6% of exposed K wire cases vs 8.7% of buried K wire cases). Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
The Use of a Steering Shaping Function to Improve Human Performance in By-Wire Vehicles
2008-03-01
nontrivial ways. Included in the problems induced by the staffing of automated systems are biomechanical (Sirouspour & Salcudean, 2003; Sövényi...device (e.g., brake pedal ) and the actuators of the system (e.g., calipers). In this report, we are specifically interested in steer-by-wire subsystems
Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire
ERIC Educational Resources Information Center
Prentice, A.; Fatuzzo, M.; Toepker, T.
2015-01-01
By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.
Colleges Question Data Used by "Yahoo!" To Rank the "Most Wired" Campus.
ERIC Educational Resources Information Center
Young, Jeffrey R.
1997-01-01
College administrators are complaining that "Yahoo! Internet Life" magazine used a flawed surveying process and inaccurate data to select the institutions it named in a recent ranking of "American's 100 Most Wired Colleges." Even some institutions faring well in the ranking have concerns about the survey, citing problems with…
Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim
2018-05-01
NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.
A quasi-3D wire approach to model pulmonary airflow in human airways.
Kannan, Ravishekar; Chen, Z J; Singh, Narender; Przekwas, Andrzej; Delvadia, Renishkumar; Tian, Geng; Walenga, Ross
2017-07-01
The models used for modeling the airflow in the human airways are either 0-dimensional compartmental or full 3-dimensional (3D) computational fluid dynamics (CFD) models. In the former, airways are treated as compartments, and the computations are performed with several assumptions, thereby generating a low-fidelity solution. The CFD method displays extremely high fidelity since the solution is obtained by solving the conservation equations in a physiologically consistent geometry. However, CFD models (1) require millions of degrees of freedom to accurately describe the geometry and to reduce the discretization errors, (2) have convergence problems, and (3) require several days to simulate a few breathing cycles. In this paper, we present a novel, fast-running, and robust quasi-3D wire model for modeling the airflow in the human lung airway. The wire mesh is obtained by contracting the high-fidelity lung airway surface mesh to a system of connected wires, with well-defined radii. The conservation equations are then solved in each wire. These wire meshes have around O(1000) degrees of freedom and hence are 3000 to 25 000 times faster than their CFD counterparts. The 3D spatial nature is also preserved since these wires are contracted out of the actual lung STL surface. The pressure readings between the 2 approaches showed minor difference (maximum error = 15%). In general, this formulation is fast and robust, allows geometric changes, and delivers high-fidelity solutions. Hence, this approach has great potential for more complicated problems including modeling of constricted/diseased lung sections and for calibrating the lung flow resistances through parameter inversion. Copyright © 2016 John Wiley & Sons, Ltd.
A tool for measuring the bending length in thin wires
NASA Astrophysics Data System (ADS)
Lorenzini, M.; Cagnoli, G.; Cesarini, E.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Viceré, A.
2013-03-01
Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (ϕfs ˜ 10-7 in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained.
A tool for measuring the bending length in thin wires.
Lorenzini, M; Cagnoli, G; Cesarini, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F; Viceré, A
2013-03-01
Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (φfs ∼ 10(-7) in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained.
Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.
Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2016-10-01
The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.
Wire perturbations in the Staffman-Taylor problem
NASA Technical Reports Server (NTRS)
Hong, D. C.
1988-01-01
Zocchi et al. (1987) discovered that when two wires are symmetrically placed along the center of a Hele-Shaw cell, symmetric but narrow fingers of dimensionless width lambda less than 0.5 develop. The value of lambda decreases as the pushing velocity increases, but at a certain critical finger width the finger suddenly undergoes a transition to the asymmetrical state. A simple theory to predict this critical finger width as a function of D, the dimensionless distance between two wires is developed by assuming that the finger opens up a negative angle at the contact point.
Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire
NASA Astrophysics Data System (ADS)
Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng
2016-01-01
Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.
Accelerated aging test results for aerospace wire insulation constructions
NASA Technical Reports Server (NTRS)
Dunbar, William G.
1995-01-01
Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.
Accelerated aging test results for aerospace wire insulation constructions
NASA Astrophysics Data System (ADS)
Dunbar, William G.
1995-11-01
Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.
Inverse scattering for an exterior Dirichlet program
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1981-01-01
Scattering due to a metallic cylinder which is in the field of a wire carrying a periodic current is considered. The location and shape of the cylinder is obtained with a far field measurement in between the wire and the cylinder. The same analysis is applicable in acoustics in the situation that the cylinder is a soft wall body and the wire is a line source. The associated direct problem in this situation is an exterior Dirichlet problem for the Helmholtz equation in two dimensions. An improved low frequency estimate for the solution of this problem using integral equation methods is presented. The far field measurements are related to the solutions of boundary integral equations in the low frequency situation. These solutions are expressed in terms of mapping function which maps the exterior of the unknown curve onto the exterior of a unit disk. The coefficients of the Laurent expansion of the conformal transformations are related to the far field coefficients. The first far field coefficient leads to the calculation of the distance between the source and the cylinder.
Lee, Moses; Guyton, Gregory P; Zahoor, Talal; Schon, Lew C
2016-01-01
As a standard open approach, the lateral oblique incision has been widely used for calcaneal displacement osteotomy. However, just as with other orthopedic procedures that use an open approach, complications, including wound healing problems and neurovascular injury in the heel, have been reported. To help avoid these limitations, a percutaneous technique using a Shannon burr for calcaneal displacement osteotomy was introduced. However, relying on a free-hand technique without direct visualization at the osteotomy site has been a major obstacle for this technique. To address this problem, we developed a technical tip using a reference Kirschner wire. A reference Kirschner wire technique provides a reliable and accurate guide for minimally invasive calcaneal displacement osteotomy. Also, the technique should be easy to learn for surgeons new to the procedure. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Calibration and Measurement in Turbulence Research by the Hot-Wire Method
NASA Technical Reports Server (NTRS)
Kovasznay, Kaszlo
1947-01-01
The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.
NASA Astrophysics Data System (ADS)
Park, D. B.; Lee, J. W.; Lee, Y. S.; Park, K. T.; Nam, W. J.
2008-02-01
The effects of the annealing temperature and annealing time on the microstructural evolution and corresponding mechanical properties of cold-drawn high carbon steel wires were investigated. During the annealing of cold-drawn steel wires, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. To investigate the mechanisms of strain ageing, a thermal analysis using DSC was performed. The mechanisms for the first and second stages were found to be the diffusion of carbon atoms to dislocations in the lamellar ferrite and the decomposition of lamellar cementite. The third peak of the DSC curves was controlled by the re-precipitation of cementite or by the spheroidization of lamellar cementite.
Space-time wiring specificity supports direction selectivity in the retina
Zlateski, Aleksandar; Lee, Kisuk; Richardson, Mark; Turaga, Srinivas C.; Purcaro, Michael; Balkam, Matthew; Robinson, Amy; Behabadi, Bardia F.; Campos, Michael; Denk, Winfried; Seung, H. Sebastian
2014-01-01
How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, we reconstructed Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of “citizen neuroscientists.” Based on quantitative analyses of contact area and branch depth in the retina, we found evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, while another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such “space-time wiring specificity” could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma. PMID:24805243
Space-time wiring specificity supports direction selectivity in the retina.
Kim, Jinseop S; Greene, Matthew J; Zlateski, Aleksandar; Lee, Kisuk; Richardson, Mark; Turaga, Srinivas C; Purcaro, Michael; Balkam, Matthew; Robinson, Amy; Behabadi, Bardia F; Campos, Michael; Denk, Winfried; Seung, H Sebastian
2014-05-15
How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of 'citizen neuroscientists'. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such 'space-time wiring specificity' could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma.
Interaction-induced backscattering in short quantum wires
Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...
2014-10-06
We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less
Customized Hermetic Feedthrough Developed to Isolate Fluids
NASA Technical Reports Server (NTRS)
Meredith, Roger D.
1999-01-01
A common problem occurs when refrigerant fluids wick inside the insulation of thermocouple wires through a compressor's casing feedthrough and then leak into the adjacent disconnect box outside the casing. Leaking fluids create an unfavorable situation inside the disconnect box and may contaminate the fluids. To address this problem, NASA Lewis Research Center s Manufacturing Engineering Division developed a customized hermetic feedthrough for a bank of Worthington compressors. In these compressors, bearing temperatures are measured by internal thermocouples embedded in bearings located inside the compressor casings. The thermocouple wires need to be routed outside the casing and read at another location. These wires are short and are terminated to a disconnect strip inside the casing. The bearings operate at about 170 F, but because the casing is filled with R12 refrigerant oil, the casing has a maximum temperature of about 100 F. The operating conditions of these compressors permit the use of an epoxy that is compatible with the R12 fluid. The desired finished product is a stainless steel tube that has been filled solid with epoxy after thermocouple wires bonded and sealed by epoxy have been inserted through its length. Shrink tubing extends from both ends of the tube. The process that was developed to isolate the thermocouple wires from the R12 fluid follows. For this application, use an 8-in.-long piece of 0.500-in. 304 stainless steel tube with six pairs of 24-gauge stranded, PTFE-insulated (polytetrafluoroethylene) type "T" thermocouple wires for each feedthrough. Use shrink tubing to strain relief the insulated wires at their exit from the stainless steel tube. Cut the wire to length and identify the location of the stainless steel tube sleeve with masking tape. Then, remove the outer insulation from a 2-in. section of wire that will be inside the tube, and carefully strip to bare wire a 1-in. section in the middle of the section with the outer insulation removed. For an effective seal, the epoxy must penetrate between the strands when stranded conductors are used. Make the seal with epoxy bond on the bare wire. The bare wire must be encapsulated with a thin layer of the epoxy that leaves only a very low profile. These encapsulated wires must cure before the assembly can be continued. Then, inspect the cured wires for complete encapsulation before going to the next step. Insert the wires in the stainless steel tube and orient them so that the epoxied stripped sections are staggered within the tube; then, apply shrink tubing to one end of the cleaned wires, positioning it inside the edge of the tube. The small gaps between the wires on the other end will be used to inject the epoxy into the tube. Let the epoxy cure inside the tube, free of any voids. Then, continue to fill the tube until the entire 8-in. length is nearly filled, allowing room for the other strain-relieving shrink tubing. Since this first design, the process has been adjusted to fit many needs and situations. Customized feedthroughs have been assembled from various wire types, wire gauges, and/or stainless steel tube passages. The fittings selected to mount these feedthroughs allow their use in other areas, such as pressure or vacuum systems.
An Apparatus for Monitoring the Health of Electrical Cables
NASA Technical Reports Server (NTRS)
Pai, Devdas M.; Tatum, Paul; Pace, Rachel
2004-01-01
As with most elements of infrastructure, electrical wiring is innocuous; usually hidden away and unnoticed until it fails. Failure of infrastructure, however, sometimes leads to serious health and safety hazards. Electrical wiring fails when the polymeric (usually rubber) insulation material that sheathes the conductor gets embrittled with age from exposure to pressure, temperature or radiation cycling or when the insulation gets removed by the chafing of wires against each other. Miles of such wiring can be found in typical aircraft, with significant lengths of the wiring immersed in aviation fuel - a recipe for an explosion if a spark were to occur. Diagnosing the health of wiring is thus an important aspect of monitoring the health of aging aircraft. Stress wave propagation through wiring affords a quick and non-invasive method for health monitoring. The extent to which a stress wave propagating through the cable core gets attenuated depends on the condition of the surrounding insulation. When the insulation is in good condition - supple and pliable, there is more damping or attenuation of the waveform. As the insulation gets embrittled and cracked, the attenuation is likely to reduce and the waveform of the propagating stress wave is likely to change. The monitoring of these changes provides a potential tool to evaluate wiring or cabling in service that is not accessible for visual inspection. This experiment has been designed for use in an introductory mechanical or materials engineering instrumentation lab. Initial setup (after procuring all the materials) should take the lab instructor about 4 hours. A single measurement can be initiated and saved to disk in less than 3 minutes, allowing for all the students in a typical lab section to take their own data rather than share a single set of data for the entire class.
Material and biofilm load of K wires in toe surgery: titanium versus stainless steel.
Clauss, Martin; Graf, Susanne; Gersbach, Silke; Hintermann, Beat; Ilchmann, Thomas; Knupp, Markus
2013-07-01
Recurrence rates for toe deformity correction are high and primarily are attributable to scar contractures. These contractures may result from subclinical infection. We hypothesized that (1) recurrence of toe deformities and residual pain are related to low-grade infections from biofilm formation on percutaneous K wires, (2) biofilm formation is lower on titanium (Ti) K wires compared with stainless steel (SS) K wires, and (3) clinical outcome is superior with the use of Ti K wires compared with SS K wires. In this prospective nonrandomized, comparative study, we investigated 135 lesser toe deformities (61 patients; 49 women; mean ± SD age, 60 ± 15 years) temporarily fixed with K wires between August 2010 and March 2011 (81 SS, 54 Ti). K wires were removed after 6 weeks. The presence of biofilm-related infections was analyzed by sonication. High bacterial loads (> 500 colony-forming units [CFU]/mL) were detected on all six toes requiring revision before 6 months. Increased bacterial load was associated with pain and swelling but not recurrence of the deformity. More SS K wires had greater than 100 CFU/mL bacteria than Ti K wires. For K wires with a bacterial count greater than 100 CFU/mL, toes with Ti K wires had a lower recurrence rate, less pain, and less swelling than toes with SS K wires. Ti K wires showed superior clinical outcomes to SS K wires. This appears to be attributable to reduced infection rates. Although additional study is needed, we currently recommend the use of Ti K wires for the transfixation of toe deformities. Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Semiconductor measurement technology: Microelectronic ultrasonic bonding
NASA Technical Reports Server (NTRS)
Harman, G. G. (Editor)
1974-01-01
Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.
2018-04-01
Fractures of the metacarpals and phalanges are common. Placement of Kirschner wires (K-wires) is the most common form of surgical fixation. After placement, a key decision is whether to bury the end of a K-wire or leave it protruding from the skin (exposed). A recent systematic review found no evidence to support either approach. The aim of study was to investigate current clinical practice, understand the key factors influencing clinician decision-making, and explore patient preferences to inform the design of a randomized clinical trial. The steering group developed surveys for hand surgeons, hand therapists, and patients. Following piloting, they were distributed across the United Kingdom hand surgery units using the Reconstructive Surgery Trials Network. A total of 423 hand surgeons, 187 hand therapists, and 187 patients completed the surveys. Plastic surgeons and junior surgical trainees preferred to leave K-wires not buried. Ease of removal correlated with a decision to leave wires exposed, whereas perceived risk of infection correlated with burying wires. Cost did not affect the decision. Hand therapists were primarily concerned about infection and patient-related outcomes. Patients were most concerned about wire-related problems and pain. This national survey provides a new understanding of the use of K-wires to manage hand fractures in the United Kingdom. A number of nonevidence-based factors seem to influence the decision to bury or leave K-wires exposed. The choice has important clinical and health economic implications that justify a randomized controlled trial.
1950-12-01
Potentiometer Loading Compensation K. Limiting an Integral - - - L. Deadspace and Backlash - - - M. Accuracy IV. Plugboard Wiring - - - - - - - 110 113... plugboard is the major modification made on the REAC and as a copsequence will receive the major emphasis. This manual demands of the reader a...weeks depending on the problem complexity, while individual runs require the order of a minute once the plugboard has been wired. However, altering
SRTM is removed from Endeavour's payload bay to ease wiring inspections
NASA Technical Reports Server (NTRS)
1999-01-01
In the Orbiter Processing Facility, workers observe as an overhead crane lowers the Shuttle Radar Topography Mission (SRTM) into a payload canister. The payload on mission STS-99, SRTM was removed from orbiter Endeavour's payload bay to allow technicians access to the orbiter's midbody for planned wiring inspections. The entire fleet of orbiters is being inspected for wiring abrasions after the problem was first discovered in Columbia. Shuttle managers are reviewing several manifest options and could establish new target launch dates for the balance of 1999 next week. Shuttle Endeavour currently remains slated for launch in early October.
Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G
2003-04-15
The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.
Optical link by using optical wiring method for reducing EMI
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Kwon, Jong-Hwa; Choi, Sung-Woong; Bondarik, Alexander; Yun, Je-Hoon; Kim, Chang-Joo; Ahn, Seung-Beom; Jeong, Myung-Yung; Park, Hyo Hoon
2008-12-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx) for reducing EMI (electromagnetic interference). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. The key benefit of fiber optic link is the absence of electromagnetic interference (EMI) noise creation and susceptibility. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (i) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (ii) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (iii) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. Electronic interconnections have uniquely electronic problems such as EMI, shorting, and ground loops. Since these problems only arise during transduction (electronics-to-optics or opticsto- electronics), the purely optical part and optical link(interconnection) is free of these problems. 1 An optical link system constructed with TRx modules was fabricated and the optical characteristics about data links and EMI levels were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for reducing EMI of inter-chip interconnect. We successfully achieved a 4.5 Gb/s data transmission rate without EMI problems.
An advanced arc track resistant airframe wire
NASA Technical Reports Server (NTRS)
Beatty, J.
1995-01-01
Tensolite, a custom cable manufacturer specializing in high temperature materials as the dielectric medium, develops an advance arc track resistant airframe wire called Tufflite 2000. Tufflite 2000 has the following advantages over the other traditional wires: lighter weight and smaller in diameter; excellent wet and dry arc track resistance; superior dynamic cut-through performance even at elevated temperatures; flight proven performance on Boeing 737 and 757 airplanes; and true 260 C performance by utilizing Nickel plated copper conductors. This paper reports the different tests performed on Tufflite 2000: accelerated aging, arc resistance (wet and dry), dynamic cut through, humidity resistance, wire-to-wire abrasion, flammability, smoke, weight, notch sensitivity, flexibility, and markability. It particularly focuses on the BSI (British Standards Institute) dry arc resistance test and BSI wet arc tracking.
NASA Hybrid Reflectometer Project
NASA Technical Reports Server (NTRS)
Lynch, Dana; Mancini, Ron (Technical Monitor)
2002-01-01
Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.
NASA Technical Reports Server (NTRS)
Darbro, W.
1978-01-01
In an experiment in space it was found that when a cubical frame was slowly withdrawn from a soap solution, the wire frame retained practically a full cube of liquid. Removed from the frame (by shaking), the faces of the cube became progressively more concave, until adjacent faces became tangential. In the present paper a mathematical model describing the shape a liquid takes due to its surface tension while suspended on a wire frame in zero-g is solved by use of Lagrange multipliers. It is shown how the configuration of soap films so bounded is dependent upon the volume of liquid trapped in the films. A special case of the solution is a soap film naturally formed on a cubical wire frame.
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.
Space Shuttle Columbia Aging Wiring Failure Analysis
NASA Technical Reports Server (NTRS)
McDaniels, Steven J.
2005-01-01
A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.
Improved 3D live-wire method with application to 3D CT chest image analysis
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Higgins, William E.
2006-03-01
The definition of regions of interests (ROIs), such as suspect cancer nodules or lymph nodes in 3D CT chest images, is often difficult because of the complexity of the phenomena that give rise to them. Manual slice tracing has been used widely for years for such problems, because it is easy to implement and guaranteed to work. But the manual method is extremely time-consuming, especially for high-solution 3D images which may have hundreds of slices, and it is subject to operator biases. Numerous automated image-segmentation methods have been proposed, but they are generally strongly application dependent, and even the "most robust" methods have difficulty in defining complex anatomical ROIs. To address this problem, the semi-automatic interactive paradigm referred to as "live wire" segmentation has been proposed by researchers. In live-wire segmentation, the human operator interactively defines an ROI's boundary guided by an active automated method which suggests what to define. This process in general is far faster, more reproducible and accurate than manual tracing, while, at the same time, permitting the definition of complex ROIs having ill-defined boundaries. We propose a 2D live-wire method employing an improved cost over previous works. In addition, we define a new 3D live-wire formulation that enables rapid definition of 3D ROIs. The method only requires the human operator to consider a few slices in general. Experimental results indicate that the new 2D and 3D live-wire approaches are efficient, allow for high reproducibility, and are reliable for 2D and 3D object segmentation.
Electrostatic and electrodynamic response properties of nanostructures
NASA Astrophysics Data System (ADS)
Ayaz, Yuksel
1999-11-01
This thesis addresses the problem of nanostructure dielectric response to excitation by electric fields, both in the electrostatic c→infinity and the electrodynamic regimes. The nanostructures treated include planar quantum wells and quantum wires embedded in the vicinity of the bounding surface of the host semiconductor medium. Various cases are analyzed, including a single well or wire, a double well or wire, a lattice of N wells or wires and an infinite superlattice of wells or wires. The host medium is considered to have phonons and/or a bulk semiconductor plasma which interact with the plasmons of the embedded quantum wells or wires, and the host plasma is treated in both the local "cold" plasma regime and the nonlocal "hot" plasma regime. New hybridized quantum plasma collective modes emerge from these studies. The techniques employed here include the variational differential formulation of integral equations for the inverse dielectric function (in electrostatic case) and the dyadic Green's function (in the electrodynamic case) for the various systems described above. These integral equations are then solved in frequency-position representation by a variety of techniques depending on the geometrical features of the particular problem. Explicit closed form solutions for the inverse dielectric function or dyadic Green's function facilitate identification of the coupled collective modes in terms of their frequency poles, and the residues at the pole positions provide the relative amplitudes with which these normal modes respond to external excitation. Interesting features found include, for example, explicit formulas showing the transference of coupling of a two dimensional (2D) quantum well plasmon from a surface phonon to a bulk phonon as the 2D quantum well is displaced away from the bounding surface, deeper into the medium.
Zhang, Hua; Xu, Zhongwei; Zhou, Aiguo; Yan, Wenlong; Zhao, Pei; Huang, Xiao; Zhang, Jian
2017-01-01
Abstract The aim of this study was to evaluate the efficacy of supplementary fixation in hip arthroplasty with the use of Kirschner-wires and tension band for geriatric patients suffering unstable intertrochanteric osteoporotic fractures. A total of 103 patients aged more than 75 years were recruited. A bipolar or total hip replacement was performed with additional application of Kirschner-wires and tension band, and the participants were followed up for 2 to 11 years. Physical component summary (PCS), mental component summary (MCS), visual analog scale (VAS), and Harris hip score were utilized to evaluate patients’ hip pain and function, as well as the mental condition postoperatively after 1.5 months, 3 months, 6 months, 1 year, and annually thereafter until the latest follow-up in 2015. Patients showed a significant improvement in all scores between 1.5 months and 1 year (P < 0.001), with the good efficacy lasting at least until the 2-year follow-up. None of the patients showed dislocation, implant loosening, or nonunion of the fracture throughout the follow-up period. In conclusion, it was beneficial to treat unstable intertrochanteric osteoporotic fractures in aged patients with hip arthroplasty coupled with Kirschner-wires and tension band. PMID:28072698
Time Distribution Using SpaceWire in the SCaN Testbed on ISS
NASA Technical Reports Server (NTRS)
Lux, James P.
2012-01-01
A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.
Frequency Selective Surface for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack
2018-03-01
Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
SRTM is removed from Endeavour's payload bay to ease wiring inspections
NASA Technical Reports Server (NTRS)
1999-01-01
Inside orbiter Endeavour's payload bay, a crane lifts the Shuttle Radar Topography Mission (SRTM) for its transfer out of the orbiter to a payload canister. The payload on mission STS-99, SRTM is being removed to allow technicians access to the orbiter's midbody for planned wiring inspections. Endeavour is in the Orbiter Processing Facility. The entire fleet of orbiters is being inspected for wiring abrasions after the problem was first discovered in Columbia. Shuttle managers are reviewing several manifest options and could establish new target launch dates for the balance of 1999 next week. Shuttle Endeavour currently remains slated for launch in early October.
Needleless electrospinning with twisted wire spinneret
NASA Astrophysics Data System (ADS)
Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko
2015-01-01
A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h-1 and 1.40 g h-1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.
Perdigão, João Paulo Veloso; Lustosa, Romulo Maciel; Tolentino, Elen de Souza; Iwaki Filho, Liogi; Iwaki, Lilian Cristina Vessoni
2016-01-01
Revalence of impaction of mandibular permanent second molars is between 0.06 and 2.3 percent. In order to reduce treatment time and complications associated with tooth impaction, intervention should take place once the problem is detected. The usual treatment options consists of surgical exposure, luxation of the impacted tooth, extraction of adjacent third molar, orthodontic treatment, and uprighting with brass wires or mini-screws. The present paper reports a case of bilateral impaction of mandibular permanent second molars ' (MM2s) treated with extraction of the mandibular third molars (MM3s) and surgical-orthodontic uprighting with the brass wire technique. The MM3s were removed, and the impacted MM2s were surgically exposed. Brass wire was placed apicaly to the mesial of the MM2 from the lingual tissue out toward the buccal. The lingual end of the wire was bent over the area of contact and twisted with the buccal end Monthly wire tightening gradually moved the MM2s distally and towards the occlusal plane. Uprighting was achieved in 4-5 months, with discrete pain caused by activation of the wire. This technique proved to be a simple, low-cost, and quick treatment option for uprighting impacted mandibular permanent second molars.
Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen
NASA Astrophysics Data System (ADS)
Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey
2017-02-01
Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.
Modern techniques and technologies for unbundled access in the local loop
NASA Astrophysics Data System (ADS)
Bacis Vasile, Irina Bristena; Schiopu, Paul; Marghescu, Cristina
2015-02-01
The efficient and unbundled use of the existing telecommunications infrastructure represents a major goal for the development of the services offered by telecommunications providers. A major telecommunications operator can provide services to a subscriber using a copper wire pair or part of the frequency spectrum of a copper wire pair, together with other operators, through a process of unbundling access in the local loop. Since access to the vocal band is an already solved problem, concerns turn to the broadband access with xDSL service delivery on ungrouped subscriber loops; besides the legal and economic aspects involved this has become an engineering problem also. The local loop unbundling methods have a substantial technical impact. This impact should be taken into account right from the design stage and then in the standardization stage of broadband systems intended to operate on copper wire pairs in the local loop. These systems are known under the generic term of xDSL and began to be analyzed in the late 90s. xDSL became the dominant solution for providing Internet at a reasonable price for both residential and business subscribers. In this massive development scenario, certain problems will arise from the early stages of deployment, and another type of problems will occur later on when a large number of systems will be installed in a single beam.
Atac, M.
1987-05-12
An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.
Horizontal transmission of Salmonella and Campylobacter among caged and cage-free laying hens
USDA-ARS?s Scientific Manuscript database
In each of five trials, laying hens (56-72 wk-of-age) were challenged orally, intracolonally, and intravaginally with Salmonella and Campylobacter. One wk post inoculation, challenged hens (n=3) were commingled with non-challenged hens (n=12) in conventional wire cages, on all wire slats, or on all...
Silicon sensors for catheters and guide wires
NASA Astrophysics Data System (ADS)
Goosen, Hans F.
2001-11-01
One area that can make use of the miniature size of present day micro electromechanical systems (MEMS) is that of the medical field of minimally invasive interventions. These procedures, used for both diagnosis and treatment, use catheters that are advanced through the blood vessels deep into the body, without the need for surgery. However, once inside the body, the doctor performing the procedure is completely reliant on the information the catheter(s) can provide in addition to the projection imaging of a fluoroscope. A good range of sensors for catheters is required for a proper diagnosis. To this end, miniature sensors are being developed to be fitted to catheters and guide wires. As the accurate positioning of these instruments is problematic, it is necessary to combine several sensors on the same guide wire or catheter to measure several parameters in the same location. This however, brings many special problems to the design of the sensors, such as small size, low power consumption, bio-compatibility of materials, robust design for patient safety, a limited number of connections, packaging, etc. This paper will go into both the advantages and design problems of micromachined sensors and actuators in catheters and guide wires. As an example, a multi parameter blood sensor, measuring flow velocity, pressure and oxygen saturation, will be discussed.
Crack width monitoring of concrete structures based on smart film
NASA Astrophysics Data System (ADS)
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-04-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.
Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting
NASA Astrophysics Data System (ADS)
Oumbé Tékam, Gabin T.; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe
2017-02-01
Electromagnetic energy harvesting, i.e., capturing energy from ambient microwave signals, may become an essential part in extending the battery lifetime of wearable devices. Here, we present a design of a microwave energy harvester based on a cut-wire metasurface with an integrated PN junction diode. The cut wire with a quasistatic electric-dipole moment is designed to have a resonance at 6.75 GHz, leading to a substantial cross-section for absorption. The external microwaves create a unidirectional current through the rectifying action of the integrated diode. Using an electrical-circuit model, we design the operating frequency and the resistive load of the cut wire. Subsequently, by optimizing our design using full-wave numerical simulations, we obtain an energy harvesting efficiency of 50% for incident power densities in agreement with the typical power density of WiFi signals. Finally, we study the effect of connecting adjacent unit cells of the metasurface in parallel by a thin highly inductive wire and we demonstrate that this allows for the collection of current from all individual cells, while the microwave resonance of the unit cell is not significantly altered, thus solving the wiring problem that arises in many nonlinear metamaterials.
Research on High Temperature Ceramic Insulation for Electrical Conductors
NASA Technical Reports Server (NTRS)
Kreidler, Eric R.; Bhallamudi, Vidya Praveen
2001-01-01
Three methods for applying ceramic coatings to wires were examined in depth and a fourth (chemical vapor deposition) was studied briefly. CVD coatings were not reported in the thesis because it was realized early in the study that the deposition rate of the coatings was too slow to be used in a commercial process. Of the methods reported in the thesis, slurry coating was the most promising. This method consists of slowly drawing a platinum wire through a thixotropic slurry of alumina in a vehicle composed of polyvinyl butyral, methyl ethyl ketone, and toluene. The coatings produced by this method were continuous and free of cracks after sintering. The sintered coatings crack when the wire is bent around sharp corners, but most of the coating remains in place and still provides electrical insulation between the wire and any metallic structure to which the wire may be attached. The coating thickness was 0.61 mm (16 micrometers). The electrical resistivity of the intact coating was 340 M-Ohm-cm at 800 C and 23 M-Ohm-cm at 1050 C. Therefore, these coatings more than meet the electrical requirements for use in turbine engines. Although adherence of the coating to the wire was generally excellent, a problem was noted in localized areas where the coating flaked off. Further work will be needed to obtain good coating adherence along the entire length of the wire. The next most promising coatings were made by electrophoretic deposition (EPD) of Al2O3 onto platinum wires, using mixtures of ethanol and acetone as the suspending liquid. These EPD coatings were made only on short lengths of wire because the coating is too fragile to allow spooling of the wire. The worst coatings were those made by electrophoretic deposition from aqueous suspensions. Continuous slurry coating of wire was achieved, but due to lack of suitable equipment, the wire had to be cut into short lengths for sintering.
NASA Technical Reports Server (NTRS)
1943-01-01
This is the third of a series of reports covering an investigation of the general instability problem by the California Institute of Technology. The first five reports of this series cover investigations of the general instability problem under the loading conditions of pure bending and were prepared under the sponsorship of the Civil Aeronautics Administration. The succeeding reports of this series cover the work done on other loading conditions under the sponsorship of the National Advisory Committee for Aeronautics. This report is concerned primarily with the continuation of the tests of wire-braced specimens, and preliminary tests of sheet-covered specimens that had been made in the experimental investigation on the problem of the general instability of stiffened metal cylinders at the C.I.T.
[Application of straight wire appliance for pre- and post-surgical orthodontics].
Zhou, Yan-Heng; Sun, Yan-Nan; Hu, Wei; Fu, Min-Kui
2004-11-01
To analyze the surgical patients treated with straight wire appliance for guidelines of clinical using of the appliance. Totally 51 patients from Joint Clinic of Orthodontic Surgery, Peking University School of Stomatology with dentofacial deformities treated with straight wire appliance were analyzed. The patients were aged from 15 years to 34 years 5 months, average 18 years 9 months. Among whom, 16 are males, while the other 35 are females. Eighteen patients were treated with extraction of teeth, while other 33 cases were nonextraction case. The duration of average presurgical orthodontic treatment was 13.3 months, and 10.4 months was for postsurgical orthodontic treatment, totally active treatment time was 25.5 months. Straight wire appliance would benefit a lot for three dimensional control of teeth when doing pre- and post-surgical orthodontic treatment. Good results could be achieved without wire bending.
NASA Technical Reports Server (NTRS)
Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo
2007-01-01
Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.
Electrical and thermal conductance quantization in nanostructures
NASA Astrophysics Data System (ADS)
Nawrocki, Waldemar
2008-10-01
In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.
Individual variation in prelaying behaviour and the incidence of floor eggs.
Cooper, J J; Appleby, M C
1996-05-01
1. Floor eggs are a problem in non-cage systems for laying hens, as they require secondary egg collecting. Failure to lay in a well-defined nest site may also be a welfare problem for the hens, but only if their nesting motivation has been thwarted. We investigated the relationships between a hen's prelaying behaviour and its tendency to lay on the floor by recording the behaviour of 20 hens housed individually in wire cages with single littered nest boxes. 3. Most floor eggs (80%) were laid by the same 6 hens. These 6 "floor-layers" performed more nest seeking behaviour, less nest-building behaviour and less sitting prior to oviposition than the 14 hens that consistently laid in nest boxes. 4. The incidence of floor eggs declined with age. Both nest and floor laying hens performed less nest seeking behaviour with age. Floor layers, however, increased their performance of nesting behaviour, whilst nest layers performed less nesting behaviour with age. 5. Floor laying hens behaved as if they found the nest box less attractive than nest-laying hens; perhaps because they had lower nesting motivation, or perhaps because their nesting motivation was as high, but they less readily perceived the nest box as an appropriate nest site.
Modelling of power lines in lightning incidence calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousa, A.M.; Srivastava, K.D.
1990-01-01
When applying the electrogeometric model to power lines to determine the frequency and characteristics of the collected lightning strokes, the power line has traditionally been represented by a set of horizontal wires, i.e. both the sag of the wires and the existence of the towers have been ignored. This approach has serious shortcomings including inability to determine the percentage of the strokes terminating on the towers, failure to correctly predict the effect of height on median current, and giving an approximate value for the number of collected strokes without telling the corresponding degree of error. This paper eliminates the abovemore » problems by presenting a computerized solution which takes into consideration the sag of the wires, the existence of the towers, and the inequality of the striking distances to towers and to wires. The features of the program are discussed in the paper, and some of its results are given.« less
NASA Astrophysics Data System (ADS)
Paul, Clayton R.
1991-06-01
Crosstalk is the unintentional electromagnetic coupling between circuits which are connected by parallel conductors that lie in close proximity to each other. Some examples are wires in cable harnesses or metallic lands on printed-circuit boards (PCB's). This unintended interaction between two or more circuits via their electromagnetic fields can cause interference problems. Signals from one circuit that couple to another circuit appear at the terminals of the devices that are interconnected by the wires. If these signals are of sufficient magnitude or spectral content, they may cause unintended operation of the device or a degradation in its performance. A summary of the standard models used for predicting crosstalk in various types of configurations is presented. The discussion focusses on the relative accuracies, regions of applicability, and computational complexity of the models. A simple explanation of the ability (or inability) of shielded wires and twisted pairs of wires to reduce the crosstalk is also given.
Symmetric miniaturized heating system for active microelectronic devices.
McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John
2010-07-01
To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The device is also subjected to 5700 thermal cycles between 55 and 195 degrees C, demonstrating reliability under thermal cycling.
Problem Solvers: Problem--Light It up! and Solutions--Flags by the Numbers
ERIC Educational Resources Information Center
Hall, Shaun
2009-01-01
A simple circuit is created by the continuous flow of electricity through conductors (copper wires) from a source of electrical energy (batteries). "Completing a circuit" means that electricity flows from the energy source through the circuit and, in the case described in this month's problem, causes the light bulb tolight up. The presence of…
A study on the required performance of a 2G HTS wire for HTS wind power generators
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun
2016-05-01
YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.
Induced Voltage in an Open Wire
NASA Astrophysics Data System (ADS)
Morawetz, K.; Gilbert, M.; Trupp, A.
2017-07-01
A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.
"Fly-by-Wireless": A Revolution in Aerospace Vehicle Architecture for Instrumentation and Control
NASA Technical Reports Server (NTRS)
Studor, George
2007-01-01
Aerospace vehicle programs have always counted on the cables and connectors to provide power, grounding, data and time synchronization throughout a vehicle's life-cycle. Even with numerous improvements, wiring and connector problems and sensors continue to be key failure points, causing many hours of troubleshooting and replacement. Costly flight delays have been precipitated by the need to troubleshoot cables/connections, and/or repair a sensor. Wiring continues to be too expensive to remove once it is installed, even with the weight penalties. Miles of test instrumentation and low flight sensor wires still plague the aerospace industry. New technology options for data connectivity, processing and micro/nano manufacturing are making it possible to retrofit existing vehicles, like the Space Shuttle. New vehicles can now develop architectures that provide for and take advantage of alternatives to wired connectivity. This project motivates the aerospace industry and technology providers to establish: (1) A new emphasis for system engineering approaches to reduce cables and connectors. (2) Provisions for modularity and accessibility in the vehicle architecture. (3) A set of technologies that support alternatives to wired connectivity.
HTS thin films: Passive microwave components and systems integration issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.
1994-12-31
The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustratemore » many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.« less
HTS thin films: Passive microwave components and systems integration issues
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Chorey, C. M.; Bhasin, K. B.
1995-01-01
The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and spacebased systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment 2 (HTSSE-2). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.
Thermo-Mechanical Behavior and Shakedown of Shape Memory Alloy Cable Structures
NASA Astrophysics Data System (ADS)
Biggs, Daniel B.
Shape memory alloys (SMAs) are a versatile class of smart materials that exhibit adaptive properties which have been applied to solve engineering problems in wide-ranging fields from aerospace to biomedical engineering. Yet there is a lack of understanding of the fundamental nature of SMAs in order to effectively apply them to challenging problems within these engineering fields. Stranding fine NiTi wires into a cable form satisfies the demands of many aerospace and civil engineering applications which require actuators to withstand large tensile loads. The impact of increased bending and twisting in stranded NiTi wire structures, as well as introducing contact mechanics to the unstable phase transformation is not well understood, and this work aims to fill that void. To study the scalability of NiTi cables, thermo-mechanical characterization tests are conducted on cables much larger than those previously tested. These cables are found to have good superelastic properties and repeatable cyclic behavior with minimal induced plasticity. The behavior of additional cables, which have higher transition temperatures that can be used in a shape memory mode as thermo-responsive, high force actuator elements, are explored. These cables are found to scale up the performance of straight wire by maintaining an equivalent work output. Moreover, this work investigates the degradation of the thermal actuation of SMA wires through novel stress-temperature paths, discovering several path dependent behaviors of transformation-induced plasticity. The local mechanics of NiTi cable structures are explored through experiments utilizing digital image correlation, revealing new periodic transformation instabilities. Finite element simulations are presented, which indicate that the instabilities are caused by friction and relative sliding between wires in a cable. Finally, a study of the convective heat transfer of helical wire involving a suite of wind tunnel experiments, numerical analyses, and an empirical correlation is presented. This provides a method to better model the thermal behavior of helical SMA actuators and highlights the non-monotonic dependence of the convective heat transfer coefficient of helical wire with respect to the angle of the flow.
Lee, Young-Kyun; Koo, Kyung-Hoi
2017-01-01
Purpose Bipolar hemiarthroplasty (HA) is an option for the treatment of unstable intertrochanteric fracture in elderly patients. There is a raising concern regarding cable-grip related complications for the fixation of trochanteric fragments. Therefore, the aim of this study was to evaluate outcome of cementless HA with fixation for the trochanteric fragments using monofilament wires in unstable intertrochanteric fracture. Materials and Methods We reviewed 92 cementless bipolar HAs using a grit-blasted long stem design for unstable intertrochanteric fractures in 91 elderly patients with a mean age of 81.7 years. During the arthroplasty, trochanteric fracture fragments were fixed using 1 or 2 vertical wires and transverse wires. We evaluated the clinical outcomes such as abductor power, ambulatory ability and wire-related complications, and radiologic outcomes including the union of the trochanteric fragment and subsidence of stem. Results Sixty-two patients were followed for a minimum of 2 years (mean, 59 months) postoperatively. The mean abductor power and Koval category was 4.1 (range, 3 to 5) and 4.6 (range, 1 to 6). The wire was broken in 3 hips (4.8%) and the nonunion of the greater trochanter occurred in 1 hips (1.6%). Two stems subsided by 3 mm and 8 mm, respectively, during postoperative 6 weeks, after which the subsidence was not progressive. Conclusion Cerclage wiring of the trochanter using monofilament wire leads to acceptable outcome in cementless HA for senile patients with unstable intertrochanteric fracture. Cerclage wiring using a monofilament wire is recommended for the fixation of trochanteric fragments. PMID:29250501
Biomechanical comparison of fixation methods in transverse patella fractures.
Scilaris, T A; Grantham, J L; Prayson, M J; Marshall, M P; Hamilton, J J; Williams, J L
1998-01-01
To compare monofilament wire versus braided cable for stabilizing transverse patella fractures using the modified AO tension band technique. A randomized blocked (paired) study comparing two fixation methods. Statistical analysis was performed using a nested repeated measures analysis, followed by Bonferroni post hoc testing. Seven paired embalmed knees (mean age 71.8 years, SD 14.6 years) were dissected, and transverse fractures were simulated. The knees were reduced and randomly fixed by either two parallel 0.062-inch Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel monofilament wire tension loop or two Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel braided cable tension loop. Knees were tested by applying a cyclic load through the suprapatellar tendon between twenty and 300 newtons for thirty cycles. The maximum fracture displacement increased with each cycle of loading for both the braided cable and monofilament wire tension loop configurations (p = 0.0001). The average peak displacement at the thirtieth cycle was 2.25 millimeters for monofilament wire and 0.73 millimeters for the cable. When comparing both methods for all cycles, the braided cable allowed less fracture displacement than did the monofilament wire (p = 0.002), and the rate of increase per cycle of maximum fracture displacement was less for the cable than for the wire (p = 0.0001). In transverse, noncomminuted patella fractures, fixation with two Kirschner wires and a 1.0-millimeter braided cable tension loop was superior to the monofilament wire tension loop. Most importantly, the braided cable afforded more predictable results during cyclic loading.
Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam
2018-05-01
The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.
Analyzing Systems Integration Best Practices and Assessment in DoD Space Systems Acquisition
2009-12-01
satellite Insufficient stress relief and insulation caused abrasion of wiring harness. C Product–Product: stress relief and insulation – wiring...delaminated during firing . This problem escaped qualification since slow heating rates (0.1–deg F/sec) used in the lab test provided time for the gas...to escape. Faster rates would have revealed the issue. E Product–Process: material – replace, firing ; rate – test B Process–Process: replace
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopar, Víctor A.
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryding, Kristen E.; Skalski, John R.
1999-06-01
The purpose of this report is to illustrate the development of a stochastic model using coded wire-tag (CWT) release and age-at-return data, in order to regress first year ocean survival probabilities against coastal ocean conditions and climate covariates.
Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.
NASA Technical Reports Server (NTRS)
Knudson, C. I.; Kench, J. R.
1971-01-01
Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.
The Optical Harness: a light-weight EMI-immune replacement for legacy electrical wiring harnesses
NASA Astrophysics Data System (ADS)
Stark, Jason B.; Jackson, B. Scott; Trethewey, William
2006-05-01
Electrical wiring harnesses have been used to interconnect control and communication equipment in mobile platforms for over a century. Although they have served this function successfully, they have three problems that are inherent in their design: they are mechanically heavy and stiff, and they are prone to electrical faults, including arcing and Electro-Magnetic Interference (EMI), and they are difficult to maintain when faults occur. These properties are all aspects of the metallic conductors used to build the harnesses. The Optical Harness TM is a photonic replacement for the legacy electrical wiring harness. The Optical Harness TM uses light-weight optical fiber to replace signal wires in an electrical harness. The original electrical connections to the equipment remain, making the Optical Harness TM a direct replacement for the legacy wiring harness. In the backshell of each connector, the electrical signals are converted to optical, and transported on optical fiber, by a deterministic, redundant and fault-tolerant optical network. The Optical Harness TM: * Provides weight savings of 40-50% and unsurpassed flexibility, relative to legacy signal wiring harnesses; * Carries its signals on optical fiber that is free from arcing, EMI, RFI and susceptibility to HPM weapons; * Is self-monitoring during operation, providing non-intrusive predictive and diagnostic capabilities.
Electron Transport In Nanowires - An Engineer'S View
NASA Astrophysics Data System (ADS)
Nawrocki, W.
In the paper technological problems connected to electron transport in mesoscopic- and nanostructures are considered. The electrical conductance of nanowires formed by metallic contacts in an experimental setup proposed by Costa-Kramer et al. The investigation has been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G o = 2e /h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowirese are also discussed in the paper.
STS-114: Discovery Post MMT Press Conference
NASA Technical Reports Server (NTRS)
2005-01-01
George Diller, NASA Public Affairs, introduces the panel who consist of: Bill Parsons, Space Shuttle Program Manager; Wayne Hale, Space Shuttle Deputy Program Manager; Ed Mango, Deputy Manager JSC Orbiter Project Office; and Mike Wetmore, Director of Shuttle Processing. Bill Parsons begins by expressing that he is still searching for the problem with the low level fuel sensor inside the external tank. Hale talks about more ambient tests that will be performed to fix this problem. Mango expresses his findings from tests in the aft engine compartment, point sensor box, orbiter wiring, and wire resistance. He also talks about looking in detail into the circuit analysis of the point sensor box. Questions from the news media about tanking tests and extending the launch window are addressed.
NASA Astrophysics Data System (ADS)
Shu-sen, Wang; Yuan-wang, Zhang; Da-wei, Yao
2018-04-01
In this work, the Cu-0.5 wt% Ag alloy was prepared and then sold solution treated at 760 °C for 4 h and aged at 400 °C for 4 h. The severe cold plastic deformation treatment with a maximum true strain of 11.48 was applied to obtain the Cu-0.5 wt%Ag fine wires with the diameter of 0.087 mm. Then the fine wires were given eight intermediate heat treatments at 300 °C–350 °C for 10–60 min. Properties of the fine wires with different annealing heat treatments were analyzed, results showed that after the annealing process of 350 °C, 20 min was applied to Cu-0.5 wt% Ag fine wires, their conductivity, tensile strength and elongation could reach 98.6%IACS, 367 MPa and 8%, respectively. This demonstrated that the Cu-0.5 wt% Ag processes high strength and high conductivity properties and was a promising conductive material.
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and production, hohlraum formation, radiation ablation and fuel compression.« less
Bracken, M B; Belanger, K; Hellenbrand, K; Addesso, K; Patel, S; Triche, E; Leaderer, B P
1998-09-01
The home wiring code is the most widely used metric for studies of residential electromagnetic field (EMF) exposure and health effects. Despite the fact that wiring code often shows stronger correlations with disease outcome than more direct EMF home assessments, little is known about potential confounders of the wiring code association. In a study carried out in southern Connecticut in 1988-1991, the authors used strict and widely used criteria to assess the wiring codes of 3,259 homes in which respondents lived. They also collected other home characteristics from the tax assessor's office, estimated traffic density around the home from state data, and interviewed each subject (2,967 mothers of reproductive age) for personal characteristics. Women who lived in very high current configuration wiring coded homes were more likely to be in manual jobs and their homes were older (built before 1949, odds ratio (OR) = 73.24, 95% confidence interval (CI) 29.53-181.65) and had lower assessed value and higher traffic densities (highest density quartile, OR = 3.99, 95% CI 1.17-13.62). Because some of these variables have themselves been associated with health outcomes, the possibility of confounding of the wiring code associations must be rigorously evaluated in future EMF research.
Metikala, Sreenivasulu; Mohammed, Riazuddin
2011-07-01
Extracting broken segments of intramedullay nails from long bones can be an operative challenge, particularly from the distal end. We report a case series where a simple and reproducible technique of extracting broken femoral cannulated nails using a ball-tipped guide wire is described. This closed technique involves no additional equipment or instruments. Eight patients who underwent the described method were included in the study. The technique involves using a standard plain guide wire passed through the cannulated distal broken nail segment after extraction of the proximal nail fragment. The plain guide wire is then advanced distally into the knee joint carefully under fluoroscopy imaging. Over this wire, a 5-millimeter (mm) cannulated large drill bit is used to create a track up to the distal broken nail segment. Through the small knee wound, a ball-tipped guide wire is passed, smooth end first, till the ball engages the end of the nail. The guide wire is then extracted along with the broken nail through the proximal wound. The method was successfully used in all eight patients for removal of broken cannulated intramedullary nail from the femoral canal without any complications. All patients underwent exchange nailing with successful bone union in six months. None of the patients had any problems at the knee joint at the final follow-up. We report a technique for successful extraction of the distal fragment of broken femoral intramedullary nails without additional surgical approaches.
ESTEC wiring test programme materials related properties
NASA Technical Reports Server (NTRS)
Judd, M. D.
1994-01-01
Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.
Detectors Ensure Function, Safety of Aircraft Wiring
NASA Technical Reports Server (NTRS)
2013-01-01
Pedro Medelius waited patiently in his lab at Kennedy Space Center. He had just received word that a colleague was bringing over a cable from a Space Shuttle solid rocket booster to test Medelius new invention. Medelius was calm until his colleague arrived, with about 30 other people. "Talk about testing under pressure," says Medelius. "There were people there from the Navy, the Air Force, and the Federal Aviation Administration." After the group s arrival, Medelius took a deep breath and connected his Standing Wave Reflectometer (SWR) to the cable. He wiggled the cable around, and the display showed a fault (a short or open circuit in wire) about an inch and a half inside the connector on the cable. His colleague questioned the results, because he had already checked that area on the cable. Medelius used the SWR to check again but got the same result. "That is when we took the cable apart and looked inside," Medelius says. "Lo and behold, that was exactly where the fault was." The impetus for Medelius new wire inspection technology came about in 1999 when one of the space shuttles lost power due to a fault somewhere in its more than 200 miles of electrical wiring. "The backup circuit was activated and prevented a major dysfunction, but nevertheless, there was a problem with the wiring," Medelius describes. Even though technicians used a device called a multimeter to measure the electrical current to find which wire had a fault, it could not pinpoint exactly where on the wire the fault was located. For that, technicians had to visually inspect the wire. "Sometimes they would have to remove the whole wire assembly and visually inspect every single wire. It was a very tedious operation because the wires are behind cabinets. They go all over the place in the shuttle," says Medelius. "NASA needed an instrument capable of telling them exactly where the faults were occurring." To meet NASA s needs for a highly precise device to inspect electrical power bundles, wires, and connectors, Medelius devised the SWR. "It came down to what was affected when a wire is short circuited or opened," he says. "We worked out a few equations based on physical principles." The SWR proved very sensitive, and the technology was patented.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems.
Glover, Jack L; Hudson, Lawrence T
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
Glover, Jack L.; Hudson, Lawrence T.
2016-01-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard. PMID:27499586
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
NASA Astrophysics Data System (ADS)
Glover, Jack L.; Hudson, Lawrence T.
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.
Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2003-01-01
Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.
K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.
Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei
2011-02-01
To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.
... Power lines Electrical wiring Microwave ovens Computers Cell phones Some people worry about EMF exposure and cancer. ... cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones ...
Semi-automatic central-chest lymph-node definition from 3D MDCT images
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Higgins, William E.
2010-03-01
Central-chest lymph nodes play a vital role in lung-cancer staging. The three-dimensional (3D) definition of lymph nodes from multidetector computed-tomography (MDCT) images, however, remains an open problem. This is because of the limitations in the MDCT imaging of soft-tissue structures and the complicated phenomena that influence the appearance of a lymph node in an MDCT image. In the past, we have made significant efforts toward developing (1) live-wire-based segmentation methods for defining 2D and 3D chest structures and (2) a computer-based system for automatic definition and interactive visualization of the Mountain central-chest lymph-node stations. Based on these works, we propose new single-click and single-section live-wire methods for segmenting central-chest lymph nodes. The single-click live wire only requires the user to select an object pixel on one 2D MDCT section and is designed for typical lymph nodes. The single-section live wire requires the user to process one selected 2D section using standard 2D live wire, but it is more robust. We applied these methods to the segmentation of 20 lymph nodes from two human MDCT chest scans (10 per scan) drawn from our ground-truth database. The single-click live wire segmented 75% of the selected nodes successfully and reproducibly, while the success rate for the single-section live wire was 85%. We are able to segment the remaining nodes, using our previously derived (but more interaction intense) 2D live-wire method incorporated in our lymph-node analysis system. Both proposed methods are reliable and applicable to a wide range of pulmonary lymph nodes.
Zhang, J; Jiang, X Y; Huang, X W
2016-06-18
To investigate the clinical efficacy and outcomes of two separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella. From January 2013 to January 2015, 15 consecutive patients (mean age 54.5 years) with inferior pole fractures of the patella were retrospectively included in this study. All the patients underwent open reduction and internal fixation by separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire through longitudinal incision, 4.5 d (range: 3.1-5.9 d) after initial injury. A safety check for early knee range of motion was performed before wound closure. The complications including infection, nonunion, loss of fixation and any wire breakage or irritation from implant were recorded. Anteroposterior and lateral views of the knee joint obtained during the follow-up were used to assess bony union based on the time when the fracture line disappeared. At the time of the final outpatient follow up, functional evaluation of the knee joint was conducted by Bostman system. The follow-up time was 13.1 months (range: 12-19 months) after surgery on average, immediate motion without immobilization in all the cases was allowed and there was no case of reduction loss of the fracture and wire breakage. There was no case of irritation from the implant. At the final follow-up, the average range of motion (ROM) arc was 126.7° (range: 115°-140°), the average ROM lag versus contralateral healthy leg was 10.3° (range: 0°-35°). The mean Bostman score at the last follow-up was 28.9 (range: 27-30), and graded excellent in most cases. Two separate vertical wiring is an easy and effective method to reduce the displaced inferior pole fracture of patella. Augmentation of separate vertical wiring with tension band and Kirschner-wire plus cerclage wire in these patients provides enough strength to protected the early exercise of the knee joint and uneventful healing. By this surgical treatment, excellent results in knee function can be expected for cases of displaced inferior pole fractures of the patella.
A reliability analysis tool for SpaceWire network
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
NASA Astrophysics Data System (ADS)
Torres, V.; Quek, S.; Gaydecki, P.
2010-02-01
Aging and deterioration of the main functional parts in civil structures is one of the biggest problems that private and governmental institutions, dedicated to operate and maintain such structures, are facing now days. In the case of relatively old suspension bridges, problems emerge due to corrosion and break of wires in the main cables. Decisive information and a reliable monitoring and evaluation are factors of great relevance required to prevent significant or catastrophic damages caused to the structure, and more importantly, to people. The main challenge for the NDE methods of inspection arises in dealing with the steel wrapping barrier of the suspension cable, which main function is to shield, shape and hold the bundles. The following work, presents a study of a multi-Magnetoresistive sensors system aiming to support the monitoring and evaluation of suspension cables at some of its stages. Modelling, signal acquisition, signal processing, experiments and the initial phases of implementation are presented and discussed widely.
Intravascular ultrasound guided wiring re-entry technique for complex chronic total occlusions.
Huang, Wei-Chieh; Teng, Hsin-I; Hsueh, Chien-Hung; Lin, Shing-Jong; Chan, Wan-Leong; Lu, Tse-Min
2018-05-03
The successful recanalization rate of chronic total occlusion (CTO) lesions without retrograde collaterals available is always low. Intravascular ultrasound (IVUS) may be useful to guide the subintimal guidewire to re-enter the true lumen. We evaluated the clinical feasibility and efficacy of the IVUS-guided wiring re-entry technique for these complex CTO lesions. Twenty consecutive patients (19 male, mean age: 65.3 ± 12.8 years) with both failed antegrade and retrograde approaches were enrolled. The IVUS catheter was introduced into the subintimal space to identify the entry point into the subintimal space, and guide another stiff wire to re-enter the true lumen with the adjacent side-branch or first wire as markers, or using IVUS-guided parallel wire technique. The entry point into the subintimal space was identified by IVUS in all cases, and the IVUS-guided wiring re-entry technique succeeded in 17 cases (85%). No procedure-related complication was noted except one case of delayed cardiac tamponade due to the wire perforation. During the mean follow-up period of 1.9 ± 1.3 years, there was no adverse cardiac event, except one patient died of the complication of cardiac transplantation. The IVUS-guided wiringre-entry technique might be feasible and safe for the recanalization of complex CTO lesions. © 2018, Wiley Periodicals, Inc.
Connectivity, Doping, and Anisotropy in Highly Dense Magnesium Diboride (MgB2)
NASA Astrophysics Data System (ADS)
Li, Guangze
Magnesium diboride (MgB2) is a superconducting material which can be potentially used in many applications such as magnetic resonance imaging system (MRI), wind turbine generators and high energy physics facilities. The major advantages of MgB2 over other superconductors include its relatively high critical temperature of about 39 K, its low cost of raw materials, its simple crystal structure, and its round multifilament form when in the form of superconducting wires. Over the past fourteen years, much effort has been made to develop MgB2 wires with excellent superconducting properties, particularly the critical current density J c. However, this research has been limited by technical difficulties such as high porosity and weak connectivity in MgB2, relatively small flux pinning strength, low upper critical field B c2 and relatively high anisotropy. The goal of this dissertation is to understand the relationship between superconducting properties, microstructure, and reaction mechanisms in MgB 2. In particular, the influences of connectivity, B c2, anisotropy and flux pinning were investigated in terms of the effects of these variables on the Jcs and n-values of MgB2 superconducting wires (n-value is a parameter which indicates the sharpness of resistive V-I transition). The n -values of traditional "Powder in Tube (PIT)" processed MgB2 wires were improved by optimizing precursor species after the identification of microstructural defects such as so-called "sausaging problems". Also, it was found that "high porosity and weak connectivity" was one of the most critical issues which limited the J c performance in typical MgB2. To overcome this problem, highly dense, well-connected MgB2 conductors were successfully fabricated by adopting an innovative "Advanced Internal Magnesium Infiltration (AIMI)" process. A careful study on the reaction kinetics together with the microstructural evidence demonstrated how the MgB2 layer was formed as the infiltration process proceeded. As a result, it is possible to control the MgB2 layer growth in the AIMI-processed MgB 2 wires. The best AIMI wires, with improved density and connectivity, accomplished an outstanding layer Jc, which was 1.0 x 105 A/cm2 at 4.2 K and 10 T, nearly 10 times higher than the Jcs of PIT wires. The engineering Je of AIMI wires, namely the critical current over the whole cross-sectional area in the wire, achieved 1.7 x 104 A/cm2 at 4.2 K, 10 T, 200 % higher than those of PIT wires. Finally, two promising dopants, Dy2O3 and O, were engineered to incorporate with MgB2. Dy 2O3 nanopowders, co-doped with C in AIMI wires, enhanced the Jc performance at elevated temperatures such as 20 K. Oxygen, on the other hand, doped into MgB2 thin films through a newly-developed O2 annealing process, improved Bc2 to 14 T at 21 K. Both of the doping studies were helpful to understand the superconducting nature of MgB2.
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict themore » precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.« less
Evaluation of emissions from simulated commercial meat wrapping operations using PVC wrap.
Smith, T J; Cafarella, J J; Chelton, C; Crowley, S
1983-03-01
Meatwrapper's asthma is an elusive health problem with a suspected relationship to exposure to emissions from polyvinyl chloride (PVC) film cut with a hot wire. A study was conducted to determine how the type of wrap cutter (wire or rod) and its temperature affected the emissions from a simulated occupational wrapping process. The cutting temperatures covered the same range as was measured in Boston retail food stores. A commercial wrapping machine and samples of commercial PVC meat and produce wraps were used. Seventy five percent of the particulate from the hot wire was respirable, and the quantity of emissions was a strong function of the film tension and cutting technique. Particulate emissions did not increase steadily with increasing wire temperature, but plateaued or declined at high temperatures. Particulate emissions from the rod cutter were very low at low temperatures, but exceeded those of the wire at temperatures above 200 degrees C. The particulate was 100% dioctyl adipate (DOA, the plasticizer in the wrap) with wire temperatures below 200 degrees C, and was approximately 80% DOA for temperatures above this. Gaseous HCl was not detected in emissions from a hot wire operated below 150 degrees C, but HCl emissions increased rapidly to a plateau for temperatures above 200 degrees C. Approximately 20% of the HCl produced at temperatures above 200 degrees C was associated with the particulate, which appeared to act as a carrier and transport the HCl through water filled impingers. Field tests are needed to determine if particulate produced in the workplace may also behave as a carrier for HCl.
Development of LaRC (TM): IA thermoplastic polyimide coated aerospace wiring
NASA Technical Reports Server (NTRS)
Keating, Jack
1995-01-01
NASA Langley has invented LaRC(exp TM) IA and IAX which are thermoplastic polyimides with good melting, thermal and chemical resistance properties. It was the objective of this contract to prepare and extrude LaRC (exp TM) polyimide onto aircraft wire and evaluate the polymers performance in this critical application. Based on rheology and chemical resistance studies at Imitec, LaRC (exp TM) IAX melts readily in an extruder, facilitating the manufacture of thin wall coatings. The polyimide does not corode the extruder, develop gel particles nor advance in viscosity. The insulated wire was tested according to MiL-W-22759E test specifications. The resulting wire coated with LaRC (exp TM) IAX displayed exceptional properties: surface resistance, non blocking, non burning, hot fluid resistance, impulse dielectric, insulation resistance, low temperature flexibility, thermal aging, wire weight, dimensions, negligible high temperature shrinkage and stripability. The light weight and other properties merit its application in satellites, missiles and aircraft applications. The extruded IAX results in a polyimide aircraft insulation without seams, outstanding moisture resistance, continuous lengths and abrasion resistance.
Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications
NASA Astrophysics Data System (ADS)
Korobov, Yu. S.; Nevezhin, S. V.; FiliÑpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.
2017-12-01
Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.
High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers
DOE R&D Accomplishments Database
Charpak, G.; Sauli, F.
1973-02-14
In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.
Aortic valve replacement in a patient with severe nickel allergy.
Lusini, Mario; Barbato, Raffaele; Spadaccio, Cristiano; Chello, Massimo
2011-11-01
Nickel allergy can raise clinical problems in patients undergoing cardiac surgery who require sternal closure with stainless steel wire. We describe the case of a 51-year-old woman with severe nickel allergy who underwent aortic valve replacement with a nickel-free ON-X prosthesis and sternal closure by Fiberwire # 2 suture without complications. Considering its biocompatibility and its mechanical characteristics including optimal strength and knot resistance, this suture might be a viable alternative in patients in which the use of stainless steel wire is contraindicated. © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Studor, George
2010-01-01
The presentation reviews what is meant by the term 'fly-by-wireless', common problems and motivation, provides recent examples, and examines NASA's future and basis for collaboration. The vision is to minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus areas are system engineering and integration methods to reduce cables and connectors, vehicle provisions for modularity and accessibility, and a 'tool box' of alternatives to wired connectivity.
78 FR 21218 - Disclosure of Consumer Complaint Data
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... customer service and alleviate problems up front by helping consumers avoid ``bad actors.'' They further... Wire Jan. 31, 2013, available at http://www.businesswire.com/news/home/20130131006068/en/Arc-Analyzes...
NASA Astrophysics Data System (ADS)
Cyuzuzo, Sonia
2014-09-01
The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. Acknowledging NSF and UIUC.
Modeling of bleach plant washer mineral scale
Alan Rudie; Peter Hart
2004-01-01
One of the more common areas of mineral scale formation in bleach plants is on washer face wires and the extraction rings of diffusion washers. Whereas most scale problems can be understood as a mixing of two streams that increase the concentrations of anions and cations and exceed a solubility product, washer problems are often more difficult to understand. The...
Kaliyadan, Antony G; Chawla, Harnish; Fischman, David L; Ruggiero, Nicholas; Gannon, Michael; Walinsky, Paul; Savage, Michael P
2017-02-01
This study assessed the impact of adjunct delivery techniques on the deployment success of distal protection filters in saphenous vein grafts (SVGs). Despite their proven clinical benefit, distal protection devices are underutilized in SVG interventions. Deployment of distal protection filters can be technically challenging in the presence of complex anatomy. Techniques that facilitate the delivery success of these devices could potentially improve clinical outcomes and promote greater use of distal protection. Outcomes of 105 consecutive SVG interventions with attempted use of a FilterWire distal protection device (Boston Scientific) were reviewed. In patients in whom filter delivery initially failed, the success of attempted redeployment using adjunct delivery techniques was assessed. Two strategies were utilized sequentially: (1) a 0.014" moderate-stiffness hydrophilic guidewire was placed first to function as a parallel buddy wire to support subsequent FilterWire crossing; and (2) if the buddy-wire approach failed, predilation with a 2.0 mm balloon at low pressure was performed followed by reattempted filter delivery. The study population consisted of 80 men and 25 women aged 73 ± 10 years. Mean SVG age was 14 ± 6 years. Complex disease (American College of Cardiology/American Heart Association class B2 or C) was present in 92%. Initial delivery of the FilterWire was successful in 82/105 patients (78.1%). Of the 23 patients with initial failed delivery, 8 (35%) had successful deployment with a buddy wire alone, 7 (30%) had successful deployment with balloon predilation plus buddy wire, 4 (17%) had failed reattempt at deployment despite adjunct maneuvers, and in 4 (17%) no additional attempts at deployment were made at the operator's discretion. Deployment failure was reduced from 21.9% initially to 7.6% after use of adjunct delivery techniques (P<.01). No adverse events were observed with these measures. Deployment of distal protection devices can be technically difficult with complex SVG disease. Adjunct delivery techniques are important to optimize deployment success of distal protection filters during SVG intervention.
Performance and welfare of rabbit does in various caging systems.
Mikó, A; Matics, Zs; Gerencsér, Zs; Odermatt, M; Radnai, I; Nagy, I; Szendrő, K; Szendrő, Zs
2014-07-01
The objective of the study was to compare production and welfare of rabbit does and their kits housed in various types of cages. Female rabbits were randomly allocated to four groups with the following cage types: CN: common wire-mesh flat-deck cage, without footrest; CF: cage similar to the CN but with plastic footrest; ECWP: enlarged cage with wire-mesh platform; and ECPP: extra enlarged cage with plastic-mesh platform. All does were inseminated on the same day, 11 days after kindlings. Reproductive performance was evaluated during the first five consecutive kindlings. Severity of sore hocks was scored at each insemination. Location preference of the does and the platform usage of their kits were evaluated. Kindling rate, litter size (total born, born alive, alive at 21 and 35 days) and kit mortality were not significantly influenced by the cage types. The litter weight at 21 days was higher in ECWP and ECPP cages than in the CF group (3516, 3576 and 3291 g, respectively; P2.5 cm) and 3 to 4 (3=callus opened, cracks present; 4=wounds) were 58%, 60%, 78% and 48%, and 0%, 5%, 0% and 48% in groups ECPP, ECWP, CF and CN, respectively. Higher number of daily nest visits was observed for CF does than for ECWP does (12.5 v. 5.9; P2/day) was higher in the CF group than in the ECWP group (12.1 v. 3.2%; P<0.01). Within large cages, the does were observed on the platform more frequently in the ECPP cages compared with the ECWP cages (56.9% v. 31.7%; P<0.001). Similarly, 2.7% and 0.2% of kits at 21 days of age, and 33.2% and 5.2% of kits at 28 days of age, were found on the platforms of ECPP and ECWP cages, respectively. In conclusion, cages larger than the conventional ones improved kits' weaning weight, plastic footrests and plastic-mesh platforms in conventional and/or large cages reduced sore hocks' problems, plastic-mesh platforms were more used by both does and kits compared with the wire-mesh platforms.
Research on the Wire Network Signal Prediction Based on the Improved NNARX Model
NASA Astrophysics Data System (ADS)
Zhang, Zipeng; Fan, Tao; Wang, Shuqing
It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.
An experimental study of the noise generating mechanisms in supersonic jets
NASA Technical Reports Server (NTRS)
Mclaughlin, D. K.
1979-01-01
Flow fluctuation measurements with normal and X-wire hot-wire probes and acoustic measurements with a traversing condenser microphone were carried out in small air jets in the Mach number range from M = 0.9 to 2.5. One of the most successful studies involved a moderate Reynolds number M = 2.1 jet. The large scale turbulence properties in the jet, and the noise radiation were characterized. A parallel study involved similar measurements on a low Reynolds number M = 0.9 jet. These measurements show that there are important differences in the noise generation process of the M = 0.9 jet in comparison with low supersonic Mach number (M = 1.4) jets. Problems encounted while performing X-wire measurements in low Reynolds number jets of M = 2.1 and 2.5, and in installing a vacuum pump are discussed.
[Individual indirect bonding technique (IIBT) using set-up model].
Kyung, H M
1989-01-01
There has been much progress in Edgewise Appliance since E.H. Angle. One of the most important procedures in edgewise appliance is correct bracket position. Not only conventional edgewise appliance but also straight wire appliance & lingual appliance cannot be used more effectively unless the bracket position is accurate. Improper bracket positioning may reveal much problems during treatment, especially in finishing state. It may require either rebonding after the removal of the malpositioned bracket or the greater number of arch wire and the more complex wire bending, causing much difficulty in performing effective treatments. This made me invent Individual Indirect Bonding Technique with the use of multi-purpose set-up model in order to determine a correct and objective bracket position according to individual patients. This technique is more accurate than former indirect bonding techniques in bracket positioning, because it decides the bracket position on a set-up model which has produced to have the occlusal relationship the clinician desired. This technique is especially effective in straight wire appliance and lingual appliance in which the correct bracket positioning is indispensible.
On the electromagnetic scattering from infinite rectangular conducting grids
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1985-01-01
The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.
Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia
2014-01-01
The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.
Eichfeld, Uwe; Dietrich, Arne; Ott, Rudolph; Kloeppel, Rainer
2005-01-01
Peripheral pulmonary nodules are preferably removed by minimally invasive techniques, such as video-assisted thoracoscopic (VATS) surgery. These nodules should be marked preoperatively for better intraoperative detection and removal. Twenty-two cases with a single pulmonary nodule requiring surgical removal for histologic examination were included in a prospective study. Guided by computed tomography, nodules were marked preoperatively using a laser marker system and fixed with a spiral wire. The marked nodules were removed by VATS surgery immediately after the marking. The marking wire was placed in all 22 patients without any complications. The marked nodule was completely removed by VATS surgery in 19 patients. Conversion to thoracotomy was necessary in 3 patients, twice because of thoracoscopy-related problems and once because of a marking failure. The average times for the marking procedure and operation were 24 minutes and 32 minutes, respectively. This new method of computed tomography-guided nodule marking with a spiral wire and subsequent VATS surgery is very efficient in terms of localization and stable fixation of subpleural pulmonary nodules.
Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia
2014-01-01
The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I uv/I vis ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics. PMID:24587716
Modified RF coaxial connector ends vacuum chamber wiring problem
NASA Technical Reports Server (NTRS)
Weiner, D.
1964-01-01
A standard radio frequency coaxial connector is modified so that a plastic insulating sleeve can be mounted in the wall of a vacuum chamber. This eliminates ground loops and interference from cable connections.
Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging
NASA Astrophysics Data System (ADS)
Sarraj, R.; Hassine, T.; Gamaoun, F.
2018-01-01
NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.
Improved Sensing Coils for SQUIDs
NASA Technical Reports Server (NTRS)
Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho
2007-01-01
An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.
Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires.
Natarov, Denys M; Marciniak, Marian; Sauleau, Ronan; Nosich, Alexander I
2014-11-17
We consider the two-dimensional (2-D) problem of the H-polarized plane wave scattering by a linear chain of silver nanowires in a cloud of similar pseudo-randomly located wires, in the visible range. Numerical solution uses the field expansions in local coordinates and addition theorems for cylindrical functions and has a guaranteed convergence. The total scattering cross-sections and near- and far-zone field patterns are presented. The observed resonance effects are studied and compared with their counterparts in the scattering by the same linear chain of wires in free space.
A simple and inexpensive retainer for overdenture prosthesis
Kumar, Lakshya; Rao, Jitendra; Yadav, Akanksha
2013-01-01
This article describes a clinical case report of a 65-year-old male patient in which an overdenture was fabricated by using a simple, logical and inexpensive means of retentive device. The described mandibular overdenture involves a simple modification in the coping design and a wire lock mechanism which was fabricated during denture processing. The problems associated with copings were overcome by putting the patient on a regimen wherein topical fluoride was applied every week on the abutment. The denture, fabricated involving a wire lock mechanism, was highly retentive and stable. Patient was highly satisfied with the outcome of the treatment. PMID:23861281
NASA Technical Reports Server (NTRS)
Brand, J. C.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
SALUTE Grid Application using Message-Oriented Middleware
NASA Astrophysics Data System (ADS)
Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.
2009-10-01
Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.
NASA Technical Reports Server (NTRS)
Bremner, Paul G.; Vazquez, Gabriel; Christiano, Daniel J.; Trout, Dawn H.
2016-01-01
Prediction of the maximum expected electromagnetic pick-up of conductors inside a realistic shielding enclosure is an important canonical problem for system-level EMC design of space craft, launch vehicles, aircraft and automobiles. This paper introduces a simple statistical power balance model for prediction of the maximum expected current in a wire conductor inside an aperture enclosure. It calculates both the statistical mean and variance of the immission from the physical design parameters of the problem. Familiar probability density functions can then be used to predict the maximum expected immission for deign purposes. The statistical power balance model requires minimal EMC design information and solves orders of magnitude faster than existing numerical models, making it ultimately viable for scaled-up, full system-level modeling. Both experimental test results and full wave simulation results are used to validate the foundational model.
Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James
2015-01-01
Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935
Lower incisor intrusion with intraoral transosseous stainless steel wire anchorage in rabbits.
Wu, Jian-chao; Huang, Ji-na; Lin, Xin-ping
2010-06-01
The purpose of this research was to investigate the potential use of intraoral transosseous stainless steel wires as anchorage for intrusion of the lower incisors using a rabbit model. Placement of intraoral transosseous stainless steel wires around incisors is similar to that of intraoral transosseous wiring of edentulous mandibular fractures. Ten male New Zealand rabbits, 9 +/- 1.5 months of age, average weight 1.8 +/- 0.3 kg, were used in this study. One lower incisor was intruded with a 50 g bilateral force using a coil spring for 10 weeks, while the other incisor served as the control. Clinical measurements of the distances between the occlusal edges of the incisors (EE) were performed weekly with a calliper. In addition to standard descriptive statistical calculations, a paired Student's t-test was used for comparison of the two groups. All surgical sites healed uneventfully after insertion of the wires. Significant differences were found in the change of EE between the experimental and control sides from 4 weeks onwards. Intrusion of the incisor, 4 +/- 0.58 mm, was seen on the test side, while EE on the control side remained unchanged. Within the limits of this animal study, it is concluded that the intraoral transosseous stainless steel wire anchorage system is a cost-effective method for intrusion of lower incisors when the use of other anchorage system is not possible.
Mechanization of and experience with a triplex fly-by-wire backup control system
NASA Technical Reports Server (NTRS)
Lock, W. P.; Petersen, W. R.; Whitman, G. B.
1976-01-01
A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.
Is there a link between the crafting of tools and the evolution of cognition?
Taylor, Alex H; Gray, Russell D
2014-11-01
The ability to craft tools is one of the defining features of our species. The technical intelligence hypothesis predicts that tool-making species should have enhanced physical cognition. Here we review how the physical problem-solving performance of tool-making apes and corvids compares to closely related species. We conclude that, while some performance differences have been found, overall the evidence is at best equivocal. We argue that increased sample sizes, novel experimental designs, and a signature-testing approach are required to determine the effect tool crafting has on the evolution of intelligence. WIREs Cogn Sci 2014, 5:693-703. doi: 10.1002/wcs.1322 For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 The Authors. WIREs Cognitive Science published by John Wiley & Sons, Ltd.
Arch bar stabilization of endotracheal tubes in children with facial burns.
Perrotta, V J; Stern, J D; Lo, A K; Mitra, A
1995-01-01
Endotracheal tube stabilization in children with facial burns can be difficult. Several methods rely on straps or complex devices that apply undesirable pressure to the face, potentially destroying skin grafts and making wound care difficult. Techniques that rely on a single wire or suture can be unreliable. Presented here is the arch bar method of endotracheal tube stabilization, which appears to be free of these problems. This method employs a standard dental arch bar secured to four maxillary teeth with 24-gauge stainless steel wire. The endotracheal tube is anchored to the arch bar with two pieces of wire or suture material. The arch bar method of endotracheal tube stabilization was used on three patients in the burn center at St. Christopher's Hospital for Children. Wound care and successful skin grafting were performed without difficulty. No complications related to the arch bars occurred.
Specification and testing for power by wire aircraft
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Kenney, Barbara H.
1993-01-01
A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.
Hanauer, Matthieu; Perentes, Jean Yannis; Krueger, Thorsten; Ris, Hans-Beat; Bize, Pierre; Schmidt, Sabine; Gonzalez, Michel
2016-01-16
Video-assisted thoracic surgery (VATS) is currently performed to diagnose and treat solitary pulmonary nodules (SPN). However, the intra-operative identification of deep nodules can be challenging with VATS as the lung is difficult to palpate. The aim of the study was to report the utility and the results of pre-operative computed tomography (CT)-guided hook wire localization of SPN. All records of the patients undergoing CT-guided hook wire localization prior to VATS resection for SPN between 2002 and 2013 were reviewed. The efficacy in localizing the nodule, hook wire complications, necessity to convert VATS to thoracotomy and the histology of SPN are reported. One hundred eighty-one patients (90 females, mean age 63 y, range 28-82 y) underwent 187 pulmonary resections after CT-guided hook wire localization. The mean SPN diameter was 10.3 mm (range: 4-29 mm). The mean distance of the lesion from the pleural surface was 11.6 mm (range: 0-45 mm). The mean time interval from hook wire insertion to VATS resection was 224 min (range 54-622 min). Hook wire complications included pneumothorax requiring chest tube drainage in 4 patients (2.1%) and mild parenchymal haemorrhage in 11 (5.9%) patients. Migration of the hook wire occurred in 7 patients (3.7%) although it did not affect the success of VATS resection (nodule location guided by the lung puncture site). Three patients underwent additional wedge resection by VATS during the same procedure because no lesion was identified in the surgical specimen. Conversion thoracotomy was required in 13 patients (7 %) for centrally localized lesions (6 patients) and pleural adhesions (7 patients). The mean operative time was 60 min (range 18-135 min). Pathological examination revealed a malignant lesion in 107 patients (59 %). The diagnostic yield was 98.3 %. VATS resection for SPN after CT-guided hook wire localization for SPN is safe and allows for proper diagnosis with a low thoracotomy conversion rate.
Zawawi, Khalid H; Malki, Ghadah A
2014-01-01
Objective: The aim of this study was to compare the amount of root resorption after orthodontic treatment between the bidimensional and the Roth straight-wire techniques. Another objective was to compare the amount of root resorption in the whole sample studied and record the prevalence of root resorption. Materials and Methods: The sample consisted of 40 patients (age ranged between 11 and 18 years) with Angle Class II division 1 malocclusions, treated nonextraction. Twenty patients were treated with bidimensional technique and 20 with a 0.018-inch Roth straight-wire technique. Root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs. Results: The results demonstrated that the bidimensional and Roth straight-wire groups showed significant root resorption after treatment, 1.11 (0.17) and 0.86 (0.05), respectively, P < 0.001. When comparing the amount of root shortening between the bidimensional and Roth straight-wire groups, there was no significant difference between the mean change from pre- to post-treatment between bidimensional group (mean = 1.00 ± 1.34) and Roth straight-wire group (mean = 0.88 ± 0.86), P = 0.63. Considering the whole sample, there was no root resoprtion in 32.5% of the analysed teeth. There was only mild resorption in 56.2%, moderate in 8.8% and severe in only 2.5% of the teeth. Conclusions: Treatment with the bidimensional technique did not produce an increase in the amount of root resorption. The prevalence and amount of root resorption was similar between bidimensional and Roth straight-wire techniques. PMID:25426453
Zawawi, Khalid H; Malki, Ghadah A
2014-10-01
The aim of this study was to compare the amount of root resorption after orthodontic treatment between the bidimensional and the Roth straight-wire techniques. Another objective was to compare the amount of root resorption in the whole sample studied and record the prevalence of root resorption. The sample consisted of 40 patients (age ranged between 11 and 18 years) with Angle Class II division 1 malocclusions, treated nonextraction. Twenty patients were treated with bidimensional technique and 20 with a 0.018-inch Roth straight-wire technique. Root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs. The results demonstrated that the bidimensional and Roth straight-wire groups showed significant root resorption after treatment, 1.11 (0.17) and 0.86 (0.05), respectively, P < 0.001. When comparing the amount of root shortening between the bidimensional and Roth straight-wire groups, there was no significant difference between the mean change from pre- to post-treatment between bidimensional group (mean = 1.00 ± 1.34) and Roth straight-wire group (mean = 0.88 ± 0.86), P = 0.63. Considering the whole sample, there was no root resoprtion in 32.5% of the analysed teeth. There was only mild resorption in 56.2%, moderate in 8.8% and severe in only 2.5% of the teeth. Treatment with the bidimensional technique did not produce an increase in the amount of root resorption. The prevalence and amount of root resorption was similar between bidimensional and Roth straight-wire techniques.
Simulated Three-Point Problems.
ERIC Educational Resources Information Center
Leyden, Michael B.
1979-01-01
The concept of sloping bedrock strata is portrayed by simple construction of a cardboard model. By use of wires and graph paper, students simulate the drilling of wells and use standard mathematical operations to determine strike and dip of the model stratum. (RE)
Safety in the Automated Office.
ERIC Educational Resources Information Center
Graves, Pat R.; Greathouse, Lillian R.
1990-01-01
Office automation has introduced new hazards to the workplace: electrical hazards related to computer wiring, musculoskeletal problems resulting from use of computer terminals and design of work stations, and environmental concerns related to ventilation, noise levels, and office machine chemicals. (SK)
SUPRACONDYLAR FRACTURE OF THE HUMERUS IN CHILDREN: FIXATION WITH TWO CROSSED KIRSCHNER WIRES
Carvalho, Roni Azevedo; Filho, Nelson Franco; Neto, Antonio Batalha Castello; Reis, Giulyano Dias; Dias, Marcos Pereira
2015-01-01
Objective: To analyze and present the surgical results from unstable supracondylar fractures of the humerus in children, treated by means of reduction and percutaneous fixation using two crossed Kirschner wires. Methods: A cross-sectional study was conducted on 20 children, taking into consideration sex, age at the time of the fracture, age at the time of the assessment, side affected, type and mechanism of trauma, postoperative complications and radiographic and clinic variables. Results: Ten fractures were observed in the left arm and ten in the right arm. The age at the time of the fracture ranged from 2 to 13 years (mean: 5.9 ± 2.48 years). Three fractures were classified as type II and 17 as type III. The length of follow-up ranged from four months to three years. Baumann's angle ranged from 69 to 100 (mean: 78.3) and cubitus varus was observed in four patients (values ranging from 84 to 100). According to the modified Flynn's criteria, 20 cases presented satisfactory outcomes: 17 excellent (85%), two good (10%) and one regular (5%). Two patients presented limited range of motion, two had paresthesia in the cubital region and one had transient neuropraxia of the ulnar nerve for six weeks. Conclusion: Percutaneous fixation with two crossed Kirschner wires leads to good results when carried out under direct viewing and with isolation of the ulnar nerve. PMID:27047887
Friederichs, Edgar; Wahl, Siegfried
2017-08-01
The present investigation examined whether changes of electrophysiological late event related potential pattern could be used to reflect clinical changes from therapeutic intervention with coloured glasses in a group of patients with symptoms of central visual processing disorder. Subjects consisted of 13 patients with average age 16years (range 6-51years) with attention problems and learning disability, respectively. These patients were provided with specified coloured glasses which were required to be used during day time. Results indicated that specified coloured glasses significantly improved attention performance. Furthermore electrophysiological parameters revealed a significant change in the late event related potential distribution pattern (latency, amplitudes). This reflects a synchronization of together firing wired neural assemblies responsible for visual processing, suggesting an accelerated neuromaturation process when using coloured glasses. Our results suggest that the visual event related potentials measures are sensitive to changes in clinical development of patients with deficits of visual processing wearing appropriate coloured glasses. It will be discussed whether such a device might be useful for a clinical improvement of distraction symptoms caused by visual processing deficits. A model is presented explaining these effects by inducing the respiratory chain of the mitochondria such increasing the low energy levels of ATP of our patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Creating a Simple Electric Circuit with Children between the Ages of Five and Six
ERIC Educational Resources Information Center
Kada, Vasiliki; Ravanis, Kostantinos
2016-01-01
This paper presents a study of how preschool-aged children go about creating and operating a simple electric circuit (wires, light bulb, and battery), and how they view the elements that comprise it, particularly how they view the role of the battery. The research involved 108 children aged between five and six, who were individually interviewed.…
Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro
2017-03-06
This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.
Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro
2017-01-01
This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623
A novel method for harmless disposal and resource reutilization of steel wire rope sludges.
Zhang, Li; Liu, Yang-Sheng
2016-10-01
Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.
A creative therapy in treating cavernous hemangioma of penis with copper wire.
Zhang, Dong; Zhang, Haiyang; Sun, Peng; Li, Peng; Xue, Aibing; Jin, Xunbo
2014-10-01
Cavernous hemangiomas of penis are rare benign lesions infrequently described in the literature. No completely satisfactory treatment has been found to correct the cosmetic deformities especially the extensive hemangiomas of corpus penis. In light of the promising application of copper wire/needle in vascular malformations, we began a clinical study to investigate the safety, feasibility, and cosmetic effect of copper wire therapy in treating cavernous hemangioma of penis. Seven patients ranging in age from 12 to 32 years with penile cavernous hemangiomas entered our study from 2005 to 2011. All patients received treatments with percutaneous copper wires. Perioperative data including mean operation time, estimated blood loss, length of copper wire retention, and length of hospital stay were analyzed. All possible complications were noted, and cosmetic result was evaluated. Patients were followed up after discharge from the hospital. All operations were successful, and no obvious complications were observed. The patients were satisfied with the aesthetic results. Follow-up time ranged from 1 to 5 years. Recurrence was discovered in a patient with the largest lesion of corpus penis 2 months after the treatment. Secondary procedure was carried out with the same technique, and no lesions were found later. The shortage of studies on this topic prevented us from defining a therapeutic reference standard. The results of our study confirmed that copper wire therapy was a simple, safe, and useful option for penile cavernous hemangioma. © 2013 International Society for Sexual Medicine.
Research on Three-phase Four-wire Inverter
NASA Astrophysics Data System (ADS)
Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.
2017-05-01
The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.
Wideman, R F; Hamal, K R; Stark, J M; Blankenship, J; Lester, H; Mitchell, K N; Lorenzoni, G; Pevzner, I
2012-04-01
Bacterial chondronecrosis with osteomyelitis (BCO) is the most common cause of lameness in commercial broilers. Bacteria entering the blood via translocation from the respiratory system or gastrointestinal tract spread hematogenously to the proximal epiphyseal-physeal cartilage of rapidly growing femora and tibiae, causing BCO. We tested the hypothesis that rearing broilers on wire flooring should increase the incidence of BCO by persistently imposing additional torque and shear stress on susceptible leg joints. We also tested the hypothesis that probiotics might attenuate bacterial translocation and thereby reduce the incidence of BCO. In 5 independent experiments using 4 commercial lines, broilers grown on wire flooring developed lameness attributable predominately to BCO. The fastest-growing birds were not necessarily the most susceptible to lameness on wire flooring, nor did the genders differ in susceptibility in the 2 experiments that included both male and female broilers. The pathogenesis of BCO is not instantaneous, and accordingly, many broilers that did not exhibit lameness, nevertheless, did possess early pathognomonic lesions. These subclinical lesions were equally likely to develop in the right or left leg. The lesion status of the proximal femoral head did not determine the lesion status of the ipsilateral or contralateral proximal tibial head and vice versa. Broilers reared on wire flooring consistently had higher incidences of lameness than hatch-mates reared on wood-shavings litter. Adding probiotics to the diet beginning at 1 d of age consistently reduced the incidence of lameness for broilers reared on wire flooring. These experiments indicate that probiotics administered prophylactically may constitute an alternative to antibiotics for reducing lameness attributable to BCO. Rearing broilers on wire flooring provides an important new research model for investigating the etiology, pathogenesis, and treatment strategies for BCO.
Baig, M N; Baig, Usman; Tariq, Ali; Din, Robert
2017-09-20
Introduction Hallux valgus is one of the most common forefoot deformities worldwide. Females are affected more often than males. The three most common clinical symptoms are the painful bunion, transfer metatarsalgia, and hammer or claw toes. Methods This case series consisted of 20 patients who had chevron osteotomy from January 2015 to January 2016. The clinical assessment was measured by The American Orthopedic Foot and Ankle Score (AOFAS), and radiologic assessment was determined by preoperative and postoperative hallux valgus angle (HVA) and intermetatarsal angle (IMA). Results The patients' mean age was 56 years. Out of 20 patients, 19 were female, and one was male. The mean AOFAS improved from 51 preoperatively to 82 postoperatively. The HVA improved from 26° preoperatively to 14°. There were five complications including four Kirschner (K)-wire complications. Conclusion Distal chevron osteotomy is a reliable and time-tested procedure. The K-wire fixation has a relatively high complication rate. We planned to use other methods of fixation and then compared them with K-wires fixation results for future studies.
Baig, Usman; Tariq, Ali; Din, Robert
2017-01-01
Introduction Hallux valgus is one of the most common forefoot deformities worldwide. Females are affected more often than males. The three most common clinical symptoms are the painful bunion, transfer metatarsalgia, and hammer or claw toes. Methods This case series consisted of 20 patients who had chevron osteotomy from January 2015 to January 2016. The clinical assessment was measured by The American Orthopedic Foot and Ankle Score (AOFAS), and radiologic assessment was determined by preoperative and postoperative hallux valgus angle (HVA) and intermetatarsal angle (IMA). Results The patients’ mean age was 56 years. Out of 20 patients, 19 were female, and one was male. The mean AOFAS improved from 51 preoperatively to 82 postoperatively. The HVA improved from 26° preoperatively to 14°. There were five complications including four Kirschner (K)-wire complications. Conclusion Distal chevron osteotomy is a reliable and time-tested procedure. The K-wire fixation has a relatively high complication rate. We planned to use other methods of fixation and then compared them with K-wires fixation results for future studies. PMID:29167752
Al-Rubaye, Adnan A K; Ekesi, Nnamdi S; Zaki, Sura; Emami, Nima K; Wideman, Robert F; Rhoads, Douglas D
2017-02-01
Lameness in broiler chickens is a significant animal welfare and financial issue. Bacterial chondronecrosis with osteomyelitis (BCO) leading to lameness can be enhanced by rearing young broilers on wire flooring. Using the wire floor system, we identified Staphylococcus agnetis as the predominant isolate in BCO of the proximal tibiae and femora, and blood of lame broilers. Administration of S. agnetis isolates in water can induce lameness. We now report that the wire floor system increases bacterial translocation into the blood stream. We have also determined that approximately 10 5 CFU/mL is the minimum effective dose in the drinking water and that challenge at 10, 20, or 30 days of age produces similar incidences of lameness. BCO isolates of S. agnetis are much more effective than other Staphylococcus species and can overwhelm the protective effects of some commercial probiotics. Finally, we also demonstrated that the BCO lameness induced by administration of S. agnetis in the drinking water is transmissible to unchallenged broilers in the same pen. © 2016 Poultry Science Association Inc.
Fabrication and application of mesoporous TiO2 film coated on Al wire by sol-gel method with EISA
NASA Astrophysics Data System (ADS)
Zhao, Linkang; Lu, Jianjun
2017-04-01
Mesoporous TiO2 film on Al wire was fabricated by sol-gel method with evaporation induced self assembly (EISA) process using F127 as templating agent in the mixed solution of ethanol and Tetra-n-butyl Titanate. The Ni/TiO2 film catalyst supported on Al wire was prepared by impregnation and the catalytic performance on methanation was carried out in a titanium alloy micro-reactor tube. It was shown that anatase mesoporous TiO2 film was prepared in this conditions (1 g F127,calcined at 400 °C and aged for 24 h), which has specific surface area of 127 m2 g-1 and narrow pore size distribution of 5.3 nm. Low calcined temperature (300 °C) cannot transfer film to anatase and decompose F127 completely. Ni/TiO2 film on Al wire catalyst was proved to be active in CO methanation reaction. And the CO conversion reaches 99% and CH4 selectivity close is to 80% when the reaction temperature is higher 360 °C.
Neglected Posterior Dislocation of Hip in Children - A Case Report.
Pal, Chandra Prakash; Kumar, Deepak; Sadana, Ashwani; Dinkar, Karuna Shankar
2014-01-01
Traumatic dislocation of the hip in children is a rare injury. We report the outcome of 2 patients of neglected hip dislocation which were treated by open reduction and internal fixation by k-wires. We treat 2 children both girls (one was of 4 years and other was 7 years of age). In both cases dislocation was unilateral and was not associated with any facture. Both cases were of posterior dislocation. in both cases open reduction and internal fixation was done by k wires. Hip spica was applied post operatively in both cases. The k wire was removed at 3 to 4 weeks. Patients were allowed to bear weight from gradual to full weight bearing after 6 weeks. We conclude that open reduction is a satisfactory treatment for neglected hip dislocation. It prevents not only deformity but also maintains limb length.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System.
Koo, Terry K; Silvia, Nathaniel
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.
Actuator-Assisted Calibration of Freehand 3D Ultrasound System
2018-01-01
Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified “collinear point target” phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration. PMID:29854371
Zinelis, Spiros; Eliades, Theodore; Pandis, Nikolaos; Eliades, George; Bourauel, Christoph
2007-07-01
The aim of this study was to characterize intraorally fractured nickel-titanium (Ni-Ti) archwires, determine the type of fracture, assess changes in the alloy's hardness and structure, and propose a mechanism of failure. Eleven Ni-Ti SE 200 and 19 copper-Ni-Ti (both, Ormco, Glendora, Calif) intraorally fractured archwires were collected. The location of fracture (anterior or posterior), wire type, cross section, and period of service before fracture were recorded. The retrieved wires and brand-, type-, and size-matched specimens of unused wires were subjected to scanning electron microscopy to assess the fracture type and morphological variation of fracture site of retrieved specimens, and to Vickers hardness (HV200) testing to investigate the hardness of as-received and in-vivo fractured specimens. Fracture site distribution was statistically analyzed with the chi-square test (alpha = 0.05), whereas the results of the hardness testing were analyzed with 2-way ANOVA with state (control vs in-vivo fractured) and composition (Ni-Ti SE vs copper-Ni-Ti) serving as discriminating variables and the Student-Newman-Keuls test at the 95% confidence level. The fracture site distribution showed a preferential location at the midspan between the premolar and the molar, suggesting that masticatory forces and complex loading during engagement of the wire to the bracket slot and potential intraoral aging might account for fracture incidence. All retrieved wires had the distinct features of brittle fracture without plastic deformation or crack propagation, whereas no increase in hardness was observed for the retrieved specimens. Most fractures sites were in the posterior region of the arch, probably because of the high-magnitude masticatory forces. Brittle fracture without plastic deformation was observed in most Ni-Ti wires regardless of archwire composition. There was no increase in the hardness of the intraorally exposed specimens regardless of wire type. This contradicts previous in-vitro studies and rules out hydrogen embrittlement as the cause of fracture.
Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces
NASA Astrophysics Data System (ADS)
Kim, Tae Gyo
Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord researches with freely moving animals as well as to BMI researches. In addition this is extensible to various applications.
DOT National Transportation Integrated Search
2009-09-01
A tubular plug-flow reactor under low Reynolds Numbers Re flow regimes, along with a 127 um diameter coiled platinum (Pt) wire, were used to study catalytic surface reactions of nonflammable, fuel-lean mixtures of propane, oxygen, and water vapor dil...
Model Based Inference for Wire Chafe Diagnostics
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Wheeler, Kevin R.; Timucin, Dogan A.; Wysocki, Philip F.; Kowalski, Marc Edward
2009-01-01
Presentation for Aging Aircraft conference covering chafing fault diagnostics using Time Domain Reflectometry. Laboratory setup and experimental methods are presented, along with initial results that summarize fault modeling and detection capabilities.
A Mechanical Coil Insertion System for Endovascular Coil Embolization of Intracranial Aneurysms
Haraguchi, K.; Miyachi, S.; Matsubara, N.; Nagano, Y.; Yamada, H.; Marui, N.; Sano, A.; Fujimoto, H.; Izumi, T.; Yamanouchi, T.; Asai, T.; Wakabayashi, T.
2013-01-01
Summary Like other fields of medicine, robotics and mechanization might be introduced into endovascular coil embolization of intracranial aneurysms for effective treatment. We have already reported that coil insertion force could be smaller and more stable when the coil delivery wire is driven mechanically at a constant speed. Another background is the difficulty in synchronizing operators' minds and hands when two operators control the microcatheter and the coil respectively. We have therefore developed a mechanical coil insertion system enabling a single operator to insert coils at a fixed speed while controlling the microcatheter. Using our new system, the operator manipulated the microcatheter with both hands and drove the coil using foot switches simultaneously. A delivery wire force sensor previously reported was used concurrently, allowing the operator to detect excessive stress on the wire. In vitro coil embolization was performed using three methods: simple mechanical advance of the coil; simple mechanical advance of the coil with microcatheter control; and driving (forward and backward) of the coil using foot switches in addition to microcatheter control. The system worked without any problems, and did not interfere with any procedures. In experimental coil embolization, delivery wire control using the foot switches as well as microcatheter manipulation helped to achieve successful insertion of coils. This system could offer the possibility of developing safer and more efficient coil embolization. Although we aim at total mechanization and automation of procedures in the future, microcatheter manipulation and synchronized delivery wire control are still indispensable using this system. PMID:23693038
Mechanization of and experience with a triplex fly-by-wire backup control system
NASA Technical Reports Server (NTRS)
Lock, W. P.; Petersen, W. R.; Whitman, G. B.
1975-01-01
A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.
Yuan, Ye; Yan, Jian-Feng; Lin, Da-Qiang; Mao, Bing-Wei; Yuan, Yao-Feng
2018-03-07
A novel series of 1,2,3-substituted ferrocene-based wires a1-a2 and b4-b5 have been synthesized by using an iterative Pd-mediated Sonogashira cross-coupling methodology. The molecular structures of a2 and b3 were determined by single-crystal X-ray analysis. Electrochemical data showed that there was a strong electronic communication among the ferrocenyl moieties in b1-b5. The UV absorption spectra indicated that replacing the 1,1'-substituted ferrocene unit with a 1,2,3-substituted ferrocene moiety causes delocalization of electrons in the extended π orbitals. The self-assembled monolayers of wire a1 and a2 on Au surfaces have been comprehensively characterized by electrochemistry and scanning tunneling microscopy break junction. The data demonstrated that 1,2,3-substituted ferrocene-based wires reduced the intermolecular π-π stacking, and furthermore solved the rotation problem in the 1,1'-substituted ferrocene-based wires. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Milshtein, Amy
1998-01-01
Describes how the Hammond School District (Indiana) solved the problem of fitting the correct amount of space needed for students, teachers, and technology. Examines the district's solutions for furniture needs through the use of full-scale mockups of classroom arrangements; and the wiring, power needs, and lighting. (GR)
An Example of Branching in a Variational Problem.
ERIC Educational Resources Information Center
Darbro, Wesley
1978-01-01
Investigates the shape a liquid takes, due to its surface tension while suspended upon a wire frame in zero-g, using Lagrange multipliers. Shows how the configuration of soap films so bounded are dependent upon the volume of liquid trapped in the films. (Author/GA)
Question Generation for Learning by Reading
2005-01-01
Socratic Method has been recognized as a way of guiding students to understanding by prompting them to explore a domain through the use of thorough...questioning. We believe that the Socratic tutor is also role- modeling the appropriate questions to ask when tackling a problem or exploring a new...them when related problem or novel domains present themselves. Because of this, we are wiring the Socratic Method into the heart of the Ruminator’s
Modeling of Composite Scenes Using Wires, Plates and Dielectric Parallelized (WIPL-DP)
2006-06-01
formation and solves the data communications problem. The ability to perform subsurface imaging to depths of 200’ have already been demonstrated by...perform subsurface imaging to depths of 200’ have already been demonstrated by Brown in [3] and presented in Figure 3 above. Furthermore, reference [3...transmitter platform for use in image formation and solves the data communications problem. The ability to perform subsurface imaging to depths of 200
The Image Understanding Architecture Project
1988-04-01
The error resulted in the frame being reduced in size and incorrectly bonded . The problem has been corrected and3 the design has been re-submitted...Promotional literature, Beaverton, OR, 1985. Nii, 1986] Nil, H.P., The Blackboard Model of Problem Solving and the Evolution of Blackboard...microns. This resulted in a reduction in pad sizes to two thirds of the minimum required for safe bonding . All chips had many wire bonds on the die
Transnasal tendon suspension for the paralyzed lower eyelid.
Yoo, John; Matic, Damir
2015-08-01
Paralytic ectropion is a significantly functional and esthetic problem leading to problems with lacrimation, corneal exposure, and poor palpebral closure. Limitations with traditional corrective procedures include poor apposition of the lid to the globe, suboptimal medial canthal position, and high recurrence rates. The objective of this study was to develop a technique of lower-lid suspension using transnasal wiring for the long-term maintenance of lid position. Twenty-three consecutive patients with complete unilateral facial nerve paralysis underwent the procedure, and they were followed up for a median of 27 months (1-73 months). Fifteen of 18 patients maintained their intraoperative lower-lid position beyond the 12-month follow-up. Three patients had a minimal scleral show at 3 months. One of these patients also developed lid laxity seen on the snap test. No perioperative complications were experienced. Transnasal wiring of the lower-lid tendon suspension provides consistent results that are maintained over time. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Khan, I; Dar, M Y; Rashid, S; Butt, M F
2016-07-01
Aims : To evaluate the effectiveness and safety of anterior tension band wiring technique using two cannulated cancellous screws in patients with transverse (AO34-C1) or transverse with mildly comminuted (AO34-C2) patellar fractures. Materials and Methods: This is a prospective study of 25 patients with transverse fracture or transverse fracture with mildly comminuted patella fractures. All the patients were treated with open reduction and internal fixation using two parallel cannulated screws and 18G stainless steel wire as per the tension band principle. Results : There were eighteen males (72%) and seven females (28%). The age group ranged from 24 to 58 years, with mean age of 38 years. The most common mode of injury was fall (72%) followed by road traffic accident (20%) and violent quadriceps contraction (8%). Transverse fracture was present in 60% and transverse fracture with mild comminution in 40% of patients. Mean time to achieve union was 10.7 weeks (range 8-12 weeks). Mean ROM at three months was 113.8 degree (90-130) and at final follow up this improved to 125.4 degrees (range 100-140). There was one case of knee stiffness and no case of implant failure was observed. Patients were evaluated using Bostman scoring, the mean score at three months being 26.04 which improved to 27.36 at the end of final follow up at one year. Conclusion : Cannulated cancellous screws with anterior tension band wiring is a safe, reliable and reproducible method in management of transverse patellar fractures, with less chances of implant failure and soft tissue irritation.
Burke, J M; Miller, J E; Brauer, D K
2005-08-10
The objective of the experiment was to determine the effectiveness of copper oxide wire particles (COWP) in pregnant ewes and safety to lambs. COWP have been used recently as an anthelmintic in small ruminants to overcome problems associated with nematode resistance to chemical dewormers. Doses of COWP (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iguchi, Toshihiro, E-mail: iguchi@ba2.so-net.ne.jp; Hiraki, Takao, E-mail: takaoh@tc4.so-net.ne.jp; Gobara, Hideo, E-mail: gobara@cc.okayama-u.ac.jp
PurposeThe aim of the study was to retrospectively evaluate simultaneous multiple hook wire placement outcomes before video-assisted thoracoscopic surgery (VATS).Materials and MethodsThirty-eight procedures were performed on 35 patients (13 men and 22 women; mean age, 59.9 years) with 80 lung lesions (mean diameter 7.9 mm) who underwent simultaneous multiple hook wire placements for preoperative localizations. The primary endpoints were technical success, complications, procedure duration, and VATS outcome; secondary endpoints included comparisons between technical success rates, complication rates, and procedure durations of the 238 single-placement procedures performed. Complications were also evaluated.ResultsIn 35 procedures including 74 lesions, multiple hook wire placements were technically successful;more » in the remaining three procedures, the second target placement was aborted because of massive pneumothorax after the first placement. Although complications occurred in 34 procedures, no grade 3 or above adverse event was observed. The mean procedure duration was 36.4 ± 11.8 min. Three hook wires dislodged during patient transport to the surgical suite. Seventy-four successfully marked lesions were resected. Six lesions without hook wires were successfully resected after detection by palpation with an additional mini-thoracotomy or using subtle pleural changes as a guide. The complication rates and procedure durations of multiple-placement procedures were significantly higher (P = 0.04) and longer (P < 0.001) than those in the single-placement group, respectively, while the technical success rate was not significantly different (P = 0.051).ConclusionsSimultaneous multiple hook wire placements before VATS were clinically feasible, but increased the complication rate and lengthened the procedure time.« less
Arrester Resistive Current Measuring System Based on Heterogeneous Network
NASA Astrophysics Data System (ADS)
Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue
2018-03-01
Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.
Structural analysis and evaluation of actual PC bridge using 950 keV/3.95 MeV X-band linacs
NASA Astrophysics Data System (ADS)
Takeuchi, H.; Yano, R.; Ozawa, I.; Mitsuya, Y.; Dobashi, K.; Uesaka, M.; Kusano, J.; Oshima, Y.; Ishida, M.
2017-07-01
In Japan, bridges constructed during the strong economic growth era are facing an aging problem and advanced maintenance methods have become strongly required recently. To meet this demand, we develop the on-site inspection system using 950 keV/3.95 MeV X-band (9.3 GHz) linac X-ray sources. These systems can visualize in seconds the inner states of bridges, including cracks of concrete, location and state of tendons (wires) and other imperfections. At the on-site inspections, 950 keV linac exhibited sufficient performance. But, for thicker concrete, it is difficult to visualize the internal state by 950 keV linac. Therefore, we proceeded the installation of 3.95 MeV linac for on-site bridge inspection. In addition, for accurate evaluation, verification on the parallel motion CT technique and FEM analysis are in progress.
Evaluation Of Risk And Possible Mitigation Schemes For Previously Unidentified Hazards
NASA Technical Reports Server (NTRS)
Linzey, William; McCutchan, Micah; Traskos, Michael; Gilbrech, Richard; Cherney, Robert; Slenski, George; Thomas, Walter, III
2006-01-01
This report presents the results of arc track testing conducted to determine if such a transfer of power to un-energized wires is possible and/or likely during an arcing event, and to evaluate an array of protection schemes that may significantly reduce the possibility of such a transfer. The results of these experiments may be useful for determining the level of protection necessary to guard against spurious voltage and current being applied to safety critical circuits. It was not the purpose of these experiments to determine the probability of the initiation of an arc track event only if an initiation did occur could it cause the undesired event: an inadvertent thruster firing. The primary wire insulation used in the Orbiter is aromatic polyimide, or Kapton , a construction known to arc track under certain conditions [3]. Previous Boeing testing has shown that arc tracks can initiate in aromatic polyimide insulated 28 volts direct current (VDC) power circuits using more realistic techniques such as chafing with an aluminum blade (simulating the corner of an avionics box or lip of a wire tray), or vibration of an aluminum plate against a wire bundle [4]. Therefore, an arc initiation technique was chosen that provided a reliable and consistent technique of starting the arc and not a realistic simulation of a scenario on the vehicle. Once an arc is initiated, the current, power and propagation characteristics of the arc depend on the power source, wire gauge and insulation type, circuit protection and series resistance rather than type of initiation. The initiation method employed for these tests was applying an oil and graphite mixture to the ends of a powered twisted pair wire. The flight configuration of the heater circuits, the fuel/oxider (or ox) wire, and the RCS jet solenoid were modeled in the test configuration so that the behavior of these components during an arcing event could be studied. To determine if coil activation would occur with various protection wire schemes, 145 tests were conducted using various fuel/ox wire alternatives (shielded and unshielded) and/or different combinations of polytetrafuloroethylene (PTFE), Mystik tape and convoluted wraps to prevent unwanted coil activation. Test results were evaluated along with other pertinent data and information to develop a mitigation strategy for an inadvertent RCS firing. The SSP evaluated civilian aircraft wiring failures to search for aging trends in assessing the wire-short hazard. Appendix 2 applies Weibull statistical methods to the same data with a similar purpose.
K-wire assisted split-thickness skin graft harvesting from the anterior trunk.
Yontar, Yalcin; Coruh, Atilla; Severcan, Mehmet
2016-02-01
Split thickness skin graft (STSG) harvesting from the anterior chest and abdominal wall skin is quite a difficult process. The main reason for the difficulty to perform this process is the unsuitable anatomic characteristics of the anterior trunk, such as irregular wavy-like surface over the ribs and lax abdominal wall skin resulting in collapse due to lack of adequate underneath supporting structures when a downward force is applied by the skin graft dermatome. Lower extremity and especially the thigh are generally chosen as the donor site where the STSGs are easily harvested from. However, extensive lower extremity burns, with or without other region burns, preclude harvesting auto STSGs from this invaluable anatomic site. We harvested K-wire assisted STSGs from the anterior chest and abdominal wall skin of 7 patients with lower extremity burns and also a patient that sustained motor vehicle collision. We encountered no problems in any of our patients both intra and postoperatively by using K-wire assisted STSG harvesting. All of the STSGs donor sites healed uneventfully without complications. In our opinion, K-wire assisted STSG harvesting must always be in the tool-box of any surgeon who deals with extensive burns with or without lower extremity burns and extensive traumas of lower extremities. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Werner, Gerald S
2011-01-01
In view of the improved long-term patency with drug-eluting stents, the challenge with chronic total coronary occlusion remains a low primary success rate. Modes of failure to open a chronic total coronary occlusion are mainly related to the inability to pass a wire through the proximal occlusion cap, and the most difficult part of the procedure is to guide the wire into the distal true lumen. A frequent situation is a subintimal wire position. The BridgePoint (BridgePoint Medical, MN, USA) family of devices is designed to cope with both of these problems. First, the CrossBoss™ catheter aims at passing through the proximal cap by manual rotation of a blunt proximal tip, and second, in case of a subintimal position, the Stingray™ balloon enables guided reentry from the subintimal space into the true lumen. Certain features of an occlusion might favor the CrossBoss device, while the reentry approach may also be used as a standalone bailout method. The aim is to provide a means to resolve otherwise failed attempts and to make it unnecessary to resort to the more complex and time-consuming retrograde wire techniques through collateral channels with the associated potential higher procedural risks.
Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process
NASA Astrophysics Data System (ADS)
Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun
2017-12-01
An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.
Helmy, Tarek A; Sanchez, Carlos E; Bailey, Steven R
2016-03-01
Treatment of aorto-ostial in-stent restenosis lesions represents a challenge for interventional cardiologists. Excessive protrusion of the stent into the aorta may lead to multiple technical problems, such as difficult catheter reengagement of the vessel ostium or inability to re-wire through the stent lumen in repeat interventions. We describe a balloon assisted access to protruding stent technique in cases where conventional coaxial engagement of an aorto-ostial protruding stent with the guide catheter or passage of the guide wire through the true lumen is not feasible. This technique is applicable both in coronary and peripheral arteries. © 2015 Wiley Periodicals, Inc.
Effect of aging on mechanical properties of aluminum-alloy rivets
NASA Technical Reports Server (NTRS)
Roop, Frederick C
1941-01-01
Curves and tabular data present the results of strength tests made during and after 2 1/2 years of aging on rivets and rivet wire of 3/16-inch nominal diameter. The specimens were of aluminum alloy: 24S, 17S, and A17S of the duralumin type and 53S of the magnesium-silicide type.
Effect of aging on mechanical properties of aluminum-alloy rivets
NASA Technical Reports Server (NTRS)
Roop, Frederick C
1941-01-01
Curves and tabular data present the results of strength tests made during and after 2 1/2 years of aging on rivets and rivet wire of 3/16-inch nominal diameter. The specimens were of aluminum alloy: 24s, 17s, and a17s of the duralumin type and 53s of the magnesium-silicide type.
Tan, Onder; Atik, Bekir; Dogan, Ali; Uslu, Mustafa; Alpaslan, Suleyman
2007-01-01
Skin grafting is widely used for the treatment of postburn contractures. Their main disadvantage, a tendency to contract again, can be reduced and better outcomes achieved by postoperative splinting. In this study we compared the outcomes of dynamic and static splinting postoperatively. Of the 57 patients managed by split grafts, 36 (44 hands) had Kirschner (K) wires applied with static splints, whereas 21 (26 hands) had dynamic splinting. The mean age was 11 (range 2-37) and 15 (range 2-50) years in the two groups. Before and after the operation, basic hand functions were evaluated clinically, and the results analysed statistically. The mean follow-up times were 18 and 14 months respectively, and recurrence rates were 22% and 14%. We think that the postoperative dynamic splinting is superior to fixation with K-wires with or without static splints.
14 CFR 29.1353 - Electrical equipment and installations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Equipment § 29.1353 Electrical equipment and installations. (a) Electrical equipment, controls, and wiring... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical equipment and installations. 29... installations has shown that maintaining safe cell temperatures and pressures presents no problem. (3) No...
Ultrasonic Non Linearity Characterization of the Stainless Steel Wire Reinforced Aluminium Composite
NASA Astrophysics Data System (ADS)
Kim, C. S.; Park, T. S.; Park, I. K.; Hyun, C. Y.
2009-03-01
The effectiveness of the ultrasonic nonlinearity measurement for nearly closed cracks was demonstrated for hot pressing and extrusion of stainless steel 304 short wire reinforced aluminum composite. Aluminum based composites show considerable potential in the aerospace industry and the automotive industry due to their high specific strength and low thermal expansion coefficient. The ultrasonic nonlinearity (β/β0) increased with the volume fraction of SSF and aging heat treatment because of the generation of microvoids resulted from localized SSF and matrix precipitation. This study demonstrates the potential for characterization of reinforced composite materials fabricated by the powder metallurgy technique.
1981-03-01
34: ’- o .- _ . ’. . ,,t. 9 t SO 1404 0 -2.5 N 3 3 TEMERAT UR E ATN ETF BA SENSOR NIISELANALORE SITWAL SFig re 2 . Bl ck d agram set- p fo noi...be rebonded. This presented problems in repeating data. To minimize the contact problem, we replaced our wire bonds with gold ribbons to relieve...Note that the noise exhibits an almost perfect 1/f behavior. (Actually these curves were taken before the gold ribbons were introduced, but the
NASA Astrophysics Data System (ADS)
Shrestha, Ishor Kumar
The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3Á) and cold L-shell spectral lines (1-1.54Á) in the HXR region were observed only during the interaction of electron beam with load material and anode surface. These observations suggest that the mechanism of HXR emission should be associated with non-thermal mechanisms such as the interaction of the electron beam with the load material. In order to estimate the characteristics of the high-energetic electron beam in Z-pinch plasmas, a hard x-ray polarimeter (HXP) has been developed and used in experiments on the Zebra generator. The electron beams (energy more than 30keV) have been investigated with measurements of the polarization state of the emitted bremsstrahlung radiation from plasma. We also analyzed characteristics of energetic electron beams produced by implosions of multi-planar wire arrays, compact cylindrical and nested wire arrays as well as X-pinches. Direct indications of electron beams (electron cutoff energy EB from 42-250 keV) were obtained by using the measured current of a Faraday cup placed above the anode or mechanical damage observed in the anode surface. A comparison of total electron beam energy and the spatial and spectral analysis of the parameters of plasmas were investigated for different wire materials. The dependences of the total electron beam energy (E b) on the wire material and the geometry of the wire array load were studied.
Rethinking Use of the OML Model in Electric Sail Development
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2016-01-01
In 1924, Irvin Langmuir and H. M. Mott-Smith published a theoretical model for the complex plasma sheath phenomenon in which they identified some very special cases which greatly simplified the sheath and allowed a closed solution to the problem. The most widely used application is for an electrostatic, or "Langmuir," probe in laboratory plasma. Although the Langmuir probe is physically simple (a biased wire) the theory describing its functional behavior and its current-voltage characteristic is extremely complex and, accordingly, a number of assumptions and approximations are used in the LMS model. These simplifications, correspondingly, place limits on the model's range of application. Adapting the LMS model to real-life conditions is the subject of numerous papers and dissertations. The Orbit-Motion Limited (OML) model that is widely used today is one of these adaptions that is a convenient means of calculating sheath effects. Since the Langmuir probe is a simple biased wire immersed in plasma, it is particularly tempting to use the OML equation in calculating the characteristics of the long, highly biased wires of an Electric Sail in the solar wind plasma. However, in order to arrive at the OML equation, a number of additional simplifying assumptions and approximations (beyond those made by Langmuir-Mott-Smith) are necessary. The OML equation is a good approximation when all conditions are met, but it would appear that the Electric Sail problem lies outside of the limits of applicability.
NASA Astrophysics Data System (ADS)
Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie
2003-07-01
Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.
NASA Astrophysics Data System (ADS)
Adabi, Saba; Pajewski, Lara
2014-05-01
This work deals with the electromagnetic wire-grid modelling of metallic cylindrical objects, buried in the ground or embedded in a structure, for example in a wall or in a concrete slab. Wire-grid modelling of conducting objects was introduced by Richmond in 1966 [1] and, since then, this method has been extensively used over the years to simulate arbitrarily-shaped objects and compute radiation patterns of antennas, as well as the electromagnetic field scattered by targets. For any wire-grid model, a fundamental question is the choice of the optimum wire radius and grid spacing. The most widely used criterion to fix the wire size is the so-called same-area rule [2], coming from empirical observation: the total surface area of the wires has to be equal to the surface area of the object being modelled. However, just few authors have investigated the validity of this criterion. Ludwig [3] studied the reliability of the rule by examining the canonical radiation problem of a transverse magnetic field by a circular cylinder fed with a uniform surface current, compared with a wire-grid model; he concluded that the same-area rule is optimum and that too thin wires are just as bad as too thick ones. Paknys [4] investigated the accuracy of the same-area rule for the modelling of a circular cylinder with a uniform current on it, continuing the study initiated in [3], or illuminated by a transverse magnetic monochromatic plane wave; he deduced that the same-area rule is optimal and that the field inside the cylinder is most sensitive to the wire radius than the field outside the object, so being a good error indicator. In [5], a circular cylinder was considered, embedded in a dielectric half-space and illuminated by a transverse magnetic monochromatic plane wave; the scattered near field was calculated by using the Cylindrical-Wave Approach and numerical results, obtained for different wire-grid models in the spectral domain, were compared with the exact solution. The Authors demonstrated that the well-known same-area criterion yields affordable results but is quite far from being the optimum: better results can be obtained with a wire radius shorter than what is suggested by the rule. In utility detection, quality controls of reinforced concrete, and other civil-engineering applications, many sought targets are long and thin: in these cases, two-dimensional scattering methods can be employed for the electromagnetic modelling of scenarios. In the present work, the freeware tool GPRMAX2D [6], implementing the Finite-Difference Time-Domain method, is used to implement the wire-grid modelling of buried two-dimensional objects. The source is a line of current, with Ricker waveform. Results obtained in [5] are confirmed in the time domain and for different geometries. The highest accuracy is obtained by shortening the radius of about 10%. It seems that fewer (and larger) wires need minor shortening; however, more detailed investigations are required. We suggest to use at least 8 - 10 wires per wavelength if the field scattered by the structure has to be evaluated. The internal field is much more sensitive to the modelling configuration than the external one, and more wires should be employed when shielding effects are concerned. We plan to conduct a more comprehensive analysis, in order to extract guidelines for wire sizing, to be validated on different shapes. We also look forward to verifying the possibility of using the wire-grid modelling method for the simulation of slotted objects. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors thanks COST for funding COST Action TU1208. References [1] J.H. Richmond, A wire grid model for scattering by conducting bodies, IEEE Trans. Antennas Propagation AP-14 (1966), pp. 782-786. [2] S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propagation AP-30 (1982), pp. 409-418. [3] A.C. Ludwig, Wire grid modeling of surfaces, IEEE Trans. Antennas Propagation AP-35 (1987), pp. 1045-1048. [4] R.J. Paknys, The near field of a wire grid model, IEEE Trans. Antennas Propagation 39 (1991), pp. 994-999. [5] F. Frezza, L. Pajewski, C. Ponti, G. Schettini, Accurate wire-grid modelling of buried conducting cylindrical scatterers, Nondestructive Testing and Evaluation (2012), 27, pp. 199-207. [6] A. Giannopoulos, Modelling ground penetrating radar by GPRMAX. Construction and Building Materials (2005), 19, pp. 755-762.
Biomedical digital assistant for ubiquitous healthcare.
Lee, Tae-Soo; Hong, Joo-Hyun; Cho, Myeong-Chan
2007-01-01
The concept of ubiquitous healthcare service, which emerged as one of measures to solve healthcare problems in aged society, means that patients can receive services such as prevention, diagnosis, therapy and prognosis management at any time and in any place with the help of advanced information and communication technology. This service requires not only biomedical digital assistant that can monitor continuously the patients' health condition regardless of time and place, but also wired and wireless communication devices and telemedicine servers that provide doctors with data on patients' present health condition. In order to implement a biomedical digital assistant that is portable and wearable to patients, the present study developed a device that minimizes size, weight and power consumption, measures ECG and PPG signals, and even monitors moving patients' state. The biomedical sensor with the function of wireless communication was designed to be highly portable and wearable, to be operable 24 hours with small-size batteries, and to monitor the subject's heart rate, step count and respiratory rate in his daily life. The biomedical signal receiving device was implemented in two forms, PDA and cellular phone. The movement monitoring device embedded in the battery pack of a cellular phone does not have any problem in operating 24 hours, but the real-time biomedical signal receiving device implemented with PDA operated up to 6 hours due to the limited battery capacity of PDA. This problem is expected to be solved by reducing wireless communication load through improving the processing and storage functions of the sensor. The developed device can transmit a message on the patient's emergency to the remote server through the cellular phone network, and is expected to play crucial roles in the health management of chronic-aged patients in their daily life.
Working in a Text Mine; Is Access about to Go down?
ERIC Educational Resources Information Center
Emery, Jill
2008-01-01
The age of networked research and networked data analysis is upon us. "Wired Magazine" proclaims on the cover of their July 2008 issue: "The End of Science. The quest for knowledge used to begin with grand theories. Now it begins with massive amounts of data. Welcome to the Petabyte Age." Computing technology is sufficiently complex at this point…
The Importance of Parent Intuition & Observation in Recognizing Highly Creative Children
ERIC Educational Resources Information Center
Haydon, Kathryn P.
2016-01-01
Sometimes it's not easy for highly creative children to "comply" with a regular curriculum, even at the preschool age. They are wired to explore, experiment, build, imagine, and create. If forced at a young age into a diet heavy on rote learning and directed work, they may struggle. It's not that these children can't do the work, it's…
Use of epicardial pacing wires after coronary artery bypass surgery.
Sorensen, E R; Manna, D; McCourt, K
1994-01-01
To replicate a previous study that described the incidence and characteristics of patients after coronary artery bypass graft surgery who required the use of epicardial pacing wires and to explore the reasons for epicardial pacing wire use in this patient population. Ex post facto descriptive correlational. Cardiothoracic intensive care and step down units of a 500-bed medical center. Convenience sample of 196 patients after coronary artery bypass graft surgery, 165 who did not use the epicardial pacing wires and 31 who used the epicardial pacing wires to augment cardiac output, diagnose dysrhythmias, suppress dysrhythmias, or treat heart block. Patients receiving other surgical techniques in combination with coronary artery bypass graft surgery were not included. Recording of demographic and clinical data for all of the sample population, with additional data collected when the epicardial pacing wires were used. Independent t test and chi-square analysis were used to determine significance between the means and frequencies in the variables of the patients who used the epicardial pacing wires and those who did not. The significance level was set at 0.05. There were no statistically significant differences between the groups in terms of age or previous or recent myocardial infarction, which was opposite of the replicated study's findings. A statistically significant difference (p < 0.001) was found between the groups for the use of inotropic support, which was also opposite of the findings of that study. The group requiring epicardial pacing wire utilization demonstrated a greater need for diuretics in the preoperative phase than those who did not (p < 0.01), as well as a higher use of digitalis therapy before surgery (p < 0.01). Additionally, those who were paced experienced a greater cardiac output (p = 0.013) and cardiac index (p = 0.018) after pacing was initiated. The variation in findings between this study and the one replicated may be the result of variations in the patient populations, treatment practices, or preoperative condition. Replication of this study at a future date may reveal variables not identified here.
Calamaro, Christina J; Yang, Kyeongra; Ratcliffe, Sarah; Chasens, Eileen R
2012-01-01
Two problems affecting school-aged children in the United States are inadequate sleep and an increased prevalence of obesity. The purpose of this study was to quantify media-related technology use and caffeine consumption in order to assess their potential effects on sleep duration and body mass index (BMI) in children. The study was a secondary analysis of children 6 to 10 years of age (N = 625) from the National Sleep Foundation's Sleep in America Poll. Regression analysis was used to assess the relationship between caffeine and technology use, sleep variables, and BMI, adjusting for age, race, gender, and general health. Almost 30% (29.5%) of the children consumed a daily caffeinated beverage, and 42.4% had a television in the bedroom. Children who drank caffeinated beverages had 15 fewer minutes of sleep per night than did children who did not drink such beverages (b = -0.27, p = .002). Children with three technology items in their bedroom received 45 fewer minutes of sleep than did children without these items in their bedroom (b = -0.75, p = .010). Having adjusted for variables, only drinking caffeinated beverages was associated with a BMI z score. The complex relationships between caffeine intake and the use of technology with shortened periods of sleep and increased BMI need further study. Future research should explore how these risk factors for shortened periods of sleep can be modified in this young population. Copyright © 2012. Published by Mosby, Inc.
Smith, Brandon W; Joseph, Jacob R; Kirsch, Michael; Strasser, Mary Oakley; Smith, Jacob; Park, Paul
2017-08-01
OBJECTIVE Percutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy. METHODS Patients undergoing PPSI utilizing the K-wire-less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement. RESULTS Thirty-six patients (18 male and 18 female) were included. The patients' mean age was 60.4 years (range 23.8-78.4 years), and their mean body mass index was 28.5 kg/m 2 (range 20.8-40.1 kg/m 2 ). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4-14) were placed over a mean of 2.61 levels (range 1-7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort. CONCLUSIONS This streamlined 2-step K-wire-less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.
Annual Coded Wire Tag Program; Missing Production Groups, 1996 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastor, Stephen M.
1997-01-01
In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the ''Missing Production Groups''. Production fish released by the U.S. Fish and Wildlife Service (USFWS) without representative coded-wire tags during the 1980's are indicated as blank spaces on the survival graphs in this report. The objectives of the ''Missing Production Groups'' program are: (1) to estimate the total survival of each production group, (2) to estimate the contribution of each production group to various fisheries, and (3) to prepare an annual reportmore » for all USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern. In order to meet these objectives, a minimum of one marked group of fish is necessary for each production release. The level of marking varies according to location, species, and age at release. In general, 50,000 fish are marked with a coded-wire tag (CWT) to represent each production release group at hatcheries below John Day Dam. More than 100,000 fish per group are usually marked at hatcheries above John Day Dam. All fish release information, including marked/unmarked ratios, is reported to the Pacific States Marine Fisheries Commission (PSMFC). Fish recovered in the various fisheries or at the hatcheries are sampled to recover coded-wire tags. This recovery information is also reported to PSMFC.« less
STS-44 MS Voss "Bilge Man" under OV-104's middeck subfloor repairs separator
1991-12-01
STS-44 Mission Specialist (MS) James S. Voss works under the middeck subfloor of Atlantis, Orbiter Vehicle (OV) 104, to repair humidity separator leakage problems. Voss is surrounded by several water tanks and a maze of shuttle wiring and plumbing. Voss earned the nickname of "Bilge Man" because of his time spent on the lower deck tending to the leakage problem. This is the first photo released of a crewmember in this area of the shuttle.
Wireless sensing and vibration control with increased redundancy and robustness design.
Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan
2014-11-01
Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Ozsoy, T.; Ochs, J. B.
1984-01-01
The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks cables and wires that will be used in the Time Domain Reflectometry, or TDR, test on engine cut-off sensors, or ECO, in space shuttle Atlantis' external tank. The test equipment -- blue monitor at left-- will be used to validate the circuit on the test wiring before hooking it up to the test box. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1979-01-01
Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.
NASA Astrophysics Data System (ADS)
Hanson, A. G.
1987-03-01
The learning experience of a group of Federal-agency planners who face upgrading or augmenting existing on-premises communication systems and building wiring is documented. In July 1984, an interagency Fiber Optics Task Group was formed under the aegis of the Federal Telecommunication Standards Committee to study on-premises distribution systems, with emphasis on optical fiber implementation, sharing mutual problems and potential solutions for them. Chronological summary records of technical content of 11 Task Group meetings through September 1986 are summarized. Also condensed are the engineering presentations to the Task Group by industry on applicable state-of-the-art technology, including local area networks, private automatic branch exchanges, building wiring architecture, and optic fiber systems and components.
Blast Off into Space Science with Fuses.
ERIC Educational Resources Information Center
Bombaugh, Ruth
2000-01-01
Introduces an activity in which students build a fuse with steel, wood, light bulbs, copper wire, clay, and batteries. Uses the cross-age instructional approach to teach about the value of instructional time. Contains directions for building a fuse. (YDS)
Superelasticity of NiTi Ring-Shaped Springs Induced by Aging for Cranioplasty Applications
NASA Astrophysics Data System (ADS)
Morawiec, Henryk Z.; Lekston, Zdzisław H.; Kobus, Kazimierz F.; Węgrzyn, Marek C.; Drugacz, Jan T.
2009-08-01
This paper concerns the application of titanium-nickel rings in modeling the cranium. After being fixed to the osseous margins, the ring’s expansion at the same time broadens and shortens the cranium vault. The rings formed from a straight superelastic wire, flattened to an ellipse, do not show the presence of a typical force plateau but rather a pseudoelastic loop during loading-unloading in the relationship between the force and the deflection. Based on the idea that superelasticity in more complex shape-springs may be induced by the precipitation hardening process, the further studies were carried out on alloys with higher nickel contents (51.06 at.% Ni). The rings that had been formed were welded and aged at an optimal temperature and time. The improved superelastic behavior during compression and unloading the rings was obtained by introducing small deformation by drawing the quenched wires before forming the rings and aging. Very positive clinical reshaping by long-term distraction with the superelastic ring-shaped springs was achieved in young children under one year and a less spectacular effect was observed in the group of older children.
Werner, Gerald S; Schofer, Joachim; Sievert, Horst; Kugler, Chad; Reifart, Nicolaus J
2011-06-01
The major challenge for the interventional treatment of chronic total coronary occlusion (CTO) is a low primary success rate. A common problem is the passage of the recanalisation wire into a subintimal position. New devices, which were evaluated in the first multicentre study in CTOs resistant to a conventional wire approach, may help to facilitate a controlled re-entry into the true lumen. The aim of this study was to assess the safety and efficacy of this approach, with successful true lumen distal wire passage as the primary endpoint. Forty-two patients were enrolled in four centres with high expertise in PCI for CTOs. All CTOs were of at least three months duration, and were initially attempted with dedicated recanalisation wires. After failure to pass or creation of a subintimal dissection, the BridgePoint devices were applied, consisting of a ball-tipped catheter (CrossBoss) to pass the proximal occlusion cap, and a flat-shaped balloon catheter (Stingray catheter) to be inflated within the subintimal space to guide the re-entry into the true vessel lumen with a special wire (Stingray guidewire). The primary endpoint was met in 67% of all patients. A higher success rate seemed to be possible when all devices were used in sequenced beginning with the CrossBoss, and in the case of a subintimal passage, followed by the Stingray. True lumen re-entry failed because of the loss of distally contrast filling and thus loss of a target for re-entry, and by a failure to advance the Stingray balloon far enough distal and parallel to the distal lumen. There were no severe device related complications. In patients with complex CTOs referred to dedicated centres with high experience in CTOs, these results demonstrate the potential of a guided re-entry from a subintimal wire position by use of the BridgePoint devices.
Kos, Sebastian; Gürke, Lorenz; Jacob, Augustinus L
2011-12-01
This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and "cheese-wire" technique for fenestration of abdominal aortic dissection membranes. Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. The membrane was then fenestrated using the cheese-wire maneuver. We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.
Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.
Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua
2015-04-13
Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.
Demonstration test of burner liner strain measuring system
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1984-01-01
A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.
Intraoperative reduction of the scapular body--a technical trick.
Bartonícek, Jan; Fric, Vladimír; Tucek, Michal
2009-04-01
When internal fixation of the scapular neck and body fractures is performed, a problem may occur with reduction and retention of position of the lateral border of the scapula during surgery. For this purpose, the authors have developed their own technique of stabilization using a K-wire in a novel way. The technique is indicated in a 2-part shear unstable fracture of the lateral border. It cannot be used in fractures with an intercalated segment. A 2.5-mm drill bit is used to drill a 1.5-cm deep hole into the "medullary cavity" of each of the 2 fragments of the lateral border. A K-wire, 1.5 mm in diameter and 2.5-cm long, is inserted into the distal fragment. The protruding end of the K-wire is inserted into the hole in the proximal fragment. This intramedullary peg helps to maintain reduction and keeps both fragments stable. Subsequently, the lateral border is stabilized with a 3.5-mm reconstruction plate. This technique is quite simple and allows for a temporary stabilization of fragments without compromising the subsequent fixation by plate screws.
Chen, Yu Ming; Yu, Xin Yao; Li, Zhen; Paik, Ungyu; Lou, Xiong Wen (David)
2016-01-01
Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g−1 at a current density of 0.1 A g−1, exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage. PMID:27453938
On the evolution of a retracting straight liquid sheet edge: experimental study
NASA Astrophysics Data System (ADS)
Krechetnikov, Rouslan; Mayer, Hans C.
2011-11-01
The evolution of the initially straight edge of a retracting liquid sheet is still a subject of debate. Theoretical and numerical studies have provided conflicting results, and experimental efforts have, to our knowledge, never been attempted owing to the difficulty in achieving a uniform edge. However, recent advances in experimental techniques, specifically those presented in detail in Poster #72 of APS-DFD 2010 (H.C. Mayer and R. Krechetnikov), have allowed us to uniformly detach a soap film from a straight edge using an impulsively heated wire frame. The detachment, retraction, and breakup of soap films (h ~ 10 μm) is analyzed using high speed photography. Owing to the Plateau border that connects the uniform film to the wire frames (wire diameter 25-250 μm) - a feature not present when rupturing films from a point - the early stages of retraction are dominated by a relatively large rim mass. We explore the phenomena at very early times (t < 100 μs) associated with the birth of these detached films which may add complexity to the problem of determining what instability mechanism(s) are responsible for their breakup.
Cornelius, Carl-Peter; Ehrenfeld, Michael
2010-01-01
Mandibulo-maxillary fixation (MMF) screws are inserted into the bony base of both jaws in the process of fracture realignment and immobilisation. The screw heads act as anchor points to fasten wire loops or rubber bands connecting the mandible to the maxilla. Traditional interdental chain-linked wiring or arch bar techniques provide the anchorage by attached cleats, hooks, or eyelets. In comparison to these tooth-borne appliances MMF screws facilitate and shorten the way to achieve intermaxillary fixation considerably. In addition, MMF screws help to reduce the hazards of glove perforation and wire stick injuries. On the downside, MMF screws are attributed with the risk of tooth root damage and a lack of versatility beyond the pure maintenance of occlusion such as stabilizing loose teeth or splinting fragments of the alveolar process. The surgical technique of MMF screws as well as the pros and cons of the clinical application are reviewed. The adequate screw placement to prevent serious tooth root injuries is still an issue to rethink and modify conceptual guidelines. PMID:22110819
2008-01-11
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, Lockheed Martin engineer Ray Clark splices wires between space shuttle Atlantis' external tank and the engine cutoff, or ECO, sensor system. The replacement feed-through connector in the ECO sensor system will be installed later. Some of the tank's ECO sensors gave failed readings during propellant tanking for Atlantis' STS-122 mission launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. The pins in the replacement connector have been precisely soldered to create a connection that allows sensors inside the tank to send signals to the computers onboard Atlantis. No problems with the ECO sensors themselves have been found. NASA's Space Shuttle Program has proposed a target launch date of Feb. 7 for the STS-122 mission. That proposed launch date remains under evaluation pending coordination with all partners in the International Space Station Program. Photo credit: NASA/George Shelton
2008-01-11
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, Lockheed Martin engineer Ray Clark splices wires between space shuttle Atlantis' external tank and the engine cutoff, or ECO, sensor system. The replacement feed-through connector in the ECO sensor system will be installed later. Some of the tank's ECO sensors gave failed readings during propellant tanking for Atlantis' STS-122 mission launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. The pins in the replacement connector have been precisely soldered to create a connection that allows sensors inside the tank to send signals to the computers onboard Atlantis. No problems with the ECO sensors themselves have been found. NASA's Space Shuttle Program has proposed a target launch date of Feb. 7 for the STS-122 mission. That proposed launch date remains under evaluation pending coordination with all partners in the International Space Station Program. Photo credit: NASA/George Shelton
2008-01-11
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, Lockheed Martin engineer Ray Clark splices wires between space shuttle Atlantis' external tank and the engine cutoff, or ECO, sensor system. The replacement feed-through connector in the ECO sensor system will be installed later. Some of the tank's ECO sensors gave failed readings during propellant tanking for Atlantis' STS-122 mission launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. The pins in the replacement connector have been precisely soldered to create a connection that allows sensors inside the tank to send signals to the computers onboard Atlantis. No problems with the ECO sensors themselves have been found. NASA's Space Shuttle Program has proposed a target launch date of Feb. 7 for the STS-122 mission. That proposed launch date remains under evaluation pending coordination with all partners in the International Space Station Program. Photo credit: NASA/George Shelton
Testing sTGC with small angle wire edges for the ATLAS new small wheel muon detector upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Itamar; Klier, Amit; Duchovni, Ehud
The LHC upgrade scheduled for 2018 is expected to significantly increase the accelerator's luminosity, and as a result the radiation background rates in the ATLAS Muon Spectrometer will increase too. Some of its components will have to be replaced in order to cope with these high rates. Newly designed small-strip Thin Gap chambers (sTGC) will replace them at the small wheel region. One of the differences between the sTGC and the currently used TGC is the alignment of the wires along the azimuthal direction. As a result, the outermost wires approach the detector's edge with a small angle. Such amore » configuration may be a cause for various problems. Two small dedicated chambers were built and tested in order to study possible edge effects that may arise from the new configuration. The sTGC appears to be stable and no spark have been observed, yet some differences in the detector response near the edge is seen and further studies should be carried out. (authors)« less
Placement of trans-sternal wires according to an ellipsoid pressure vessel model of sternal forces.
Casha, Aaron R; Manché, Alex; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Schembri-Wismayer, Pierre; Sant, Zdenka; Gatt, Ruben; Grima, Joseph N
2012-03-01
Dehiscence of median sternotomy wounds remains a clinical problem. Wall forces in thin-walled pressure vessels can be calculated by membrane stress theory. An ellipsoid pressure vessel model of sternal forces is presented together with its application for optimal wire placement in the sternum. Sternal forces were calculated by computational simulation using an ellipsoid chest wall model. Sternal forces were correlated with different sternal thicknesses and radio-density as measured by computerized tomography (CT) scans of the sternum. A comparison of alternative placement of trans-sternal wires located either at the levels of the costal cartilages or the intercostal spaces was made. The ellipsoid pressure vessel model shows that higher levels of stress are operative at increasing chest diameter (P < 0.001). CT scans show that the thickness of the sternal body is on average 3 mm and 30% thicker (P < 0.001) and 53% more radio-dense (P < 0.001) at the costal cartilage levels when compared with adjacent intercostal spaces. This results in a decrease of average sternal stress from 438 kPa at the intercostal space level to 338 kPa at the costal cartilage level (P = 0.003). Biomechanical modelling suggests that placement of trans-sternal wires at the thicker bone and more radio-dense level of the costal cartilages will result in reduced stress.
Distributed genetic algorithms for the floorplan design problem
NASA Technical Reports Server (NTRS)
Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.
1991-01-01
Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.
Space and time in the context of equilibrium-point theory.
Feldman, Anatol G
2011-05-01
Advances to the equilibrium-point (EP) theory and solutions to several classical problems of action and perception are suggested and discussed. Among them are (1) the posture-movement problem of how movements away from a stable posture can be made without evoking resistance of posture-stabilizing mechanisms resulting from intrinsic muscle and reflex properties; (2) the problem of kinesthesia or why our sense of limb position is fairly accurate despite ambiguous positional information delivered by proprioceptive and cutaneous signals; (3) the redundancy problems in the control of multiple muscles and degrees of freedom. Central to the EP hypothesis is the notion that there are specific neural structures that represent spatial frames of reference (FRs) selected by the brain in a task-specific way from a set of available FRs. The brain is also able to translate or/and rotate the selected FRs by modifying their major attributes-the origin, metrics, and orientation-and thus substantially influence, in a feed-forward manner, action and perception. The brain does not directly solve redundancy problems: it only limits the amount of redundancy by predetermining where, in spatial coordinates, a task-specific action should emerge and allows all motor elements, including the environment, to interact to deliver a unique action, thus solving the redundancy problem (natural selection of action). The EP theory predicts the existence of specific neurons associated with the control of different attributes of FRs and explains the role of mirror neurons in the inferior frontal gyrus and place cells in the hippocampus. WIREs Cogni Sci 2011 2 287-304 DOI: 10.1002/wcs.108 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
1978-01-01
Three wafering demonstration runs were completed on the Yasunaga wire saw. Wafer thickness/taper uniformity is excellent. Many small problems were encountered with Yasunaga accessories, slowing the effort. A wafer characterization cycle was defined and will be initiated during the next period.
The Wired Nation. Cable TV: The Electronic Communications Highway.
ERIC Educational Resources Information Center
Smith, Ralph Lee
The problems and potentials of cable television are examined in this book, which begins by describing the technological basis and current state of cable television. Topics covered include the economic base of the industry and the struggles for economic control, the development of a regulatory structure, the relationship between cable television…
ERIC Educational Resources Information Center
San Jose State Coll., CA.
The papers from a conference on computer communication networks are divided into five groups--trends, applications, problems and impairments, solutions and tools, impact on society and education. The impact of such developing technologies as cable television, the "wired nation," the telephone industry, and analog data storage is…
Teaching Discrete and Programmable Logic Design Techniques Using a Single Laboratory Board
ERIC Educational Resources Information Center
Debiec, P.; Byczuk, M.
2011-01-01
Programmable logic devices (PLDs) are used at many universities in introductory digital logic laboratories, where kits containing a single high-capacity PLD replace "standard" sets containing breadboards, wires, and small- or medium-scale integration (SSI/MSI) chips. From the pedagogical point of view, two problems arise in these…
REACH Impact on Aerospace Materials - U.S. Perspective
2012-08-01
Case of Di-isobutyl Phthalate - OR- How ECHA Can Greatly Accelerate Phase-Out •In 2008, Di-isobutyl Phthalate (DIBP) was not a CMR but was a...Problems • Phthalates – Used to make stuff flexible •Aerospace Uses – sleeving, wire sheath, plastic panels, adhesives, etc, etc •Out of 30 most
Creating Technology Infrastructures in a Rural School District: A Partnership Approach.
ERIC Educational Resources Information Center
Jensen, Dennis
Rural schools face significant challenges in upgrading their technology infrastructures. Rural school districts tend to have older school buildings that have multiple problems and lack climate control, adequate space, and necessary wiring. In rural districts, it may be difficult to find the leadership and expertise needed to provide professional…
Cyberbullying: Victimization through Electronic Means
ERIC Educational Resources Information Center
Bailey, Gahan
2013-01-01
Cyberbullying is a 21st Century phenomenon that represents a problem of significant magnitude in schools across the country. It is most prevalent in middle schools and is rapidly increasing among adolescents who exist in a "wired" culture. Schools have not been equipped with appropriate ways to deal with this new form of aggression which…
Density of Electronic States in Impurity-Doped Quantum Well Wires
NASA Astrophysics Data System (ADS)
Sierra-Ortega, J.; Mikhailov, I. D.
2003-03-01
We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)
Evaluation of Weldability for MAG and LASER with Galvannealed Steel.
Kim, Jong-Hee; Bang, Han-Sur; Bang, Hee-Seon
2018-03-01
Lower-arm, one of the components in automotive suspension module, has been fabricated by MAG welding in general which is lap jointed with 2 mm thick galvannealed steel sheet (SGAPH440). This welding process produces some problems such as significantly much spatters and weld defects of porosity in welded joint, which degrades productivity and weldability. Therefore, in order to solve these problems, this study has been tried to apply two types of solid wires with different chemical composition rate of Si and Mn, in MAG welding process. Moreover, the laser welding process has been adopted to fabricate the low-arm and compared with those of MAG welding, in terms of mechanical and metallurgical characteristics. It was observed that in MAG welded joints, much more spatters were occurred in using solid wire with higher Si and Mn contains. The maximum tensile-shear strength in laser welded joints was approximately 16.7 kN, which was almost equal to that of in MAG welded joints. The microstructure showed ferrite and martensite in weld metal in MAG and laser welded joints indicating no significantly grain size change.
Transient fields produced by a cylindrical electron beam flowing through a plasma
NASA Astrophysics Data System (ADS)
Firpo, Marie-Christine
2012-10-01
Fast ignition schemes (FIS) for inertial confinement fusion should involve in their final stage the interaction of an ignition beam composed of MeV electrons laser generated at the critical density surface with a dense plasma target. In this study, the out-of-equilibrium situation in which an initially sharp-edged cylindrical electron beam, that could e.g. model electrons flowing within a wire [1], is injected into a plasma is considered. A detailed computation of the subsequently produced magnetic field is presented [2]. The control parameter of the problem is shown to be the ratio of the beam radius to the electron skin depth. Two alternative ways to address analytically the problem are considered: one uses the usual Laplace transform approach, the other one involves Riemann's method in which causality conditions manifest through some integrals of triple products of Bessel functions.[4pt] [1] J.S. Green et al., Surface heating of wire plasmas using laser-irradiated cone geometries, Nature Physics 3, 853--856 (2007).[0pt] [2] M.-C. Firpo, http://hal.archives-ouvertes.fr/hal-00695629, to be published (2012).
Structural Integrity and Aging-Related Issues of Helicopters
2000-10-01
inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...
Setup optimization toward accurate ageing studies of gas filled detectors
NASA Astrophysics Data System (ADS)
Abuhoza, A.; Schmidt, H. R.; Biswas, S.; Frankenfeld, U.; Hehner, J.; Schmidt, C. J.
2013-08-01
An infrastructure has been set up at the GSI detector laboratory to study the influence of construction materials on the ageing properties of gas filled detectors, such as multi-wire proportional chamber (MWPC), gas electron multiplier (GEM). Optimization of an ageing setup was performed by observing the variation of the normalized gain obtained using two identical MWPCs. An accuracy in the relative gain measurement below 1% has been achieved by monitoring environmental conditions and by systematic improvements of the measuring equipment. Ageing test of fiberglass G11 has been performed.
Sixty-four-Channel Inline Cable Tester
NASA Technical Reports Server (NTRS)
2008-01-01
Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.
Wired Widgets: Agile Visualization for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Gerschefske, K.; Witmer, J.
2012-09-01
Continued advancement in sensors and analysis techniques have resulted in a wealth of Space Situational Awareness (SSA) data, made available via tools and Service Oriented Architectures (SOA) such as those in the Joint Space Operations Center Mission Systems (JMS) environment. Current visualization software cannot quickly adapt to rapidly changing missions and data, preventing operators and analysts from performing their jobs effectively. The value of this wealth of SSA data is not fully realized, as the operators' existing software is not built with the flexibility to consume new or changing sources of data or to rapidly customize their visualization as the mission evolves. While tools like the JMS user-defined operational picture (UDOP) have begun to fill this gap, this paper presents a further evolution, leveraging Web 2.0 technologies for maximum agility. We demonstrate a flexible Web widget framework with inter-widget data sharing, publish-subscribe eventing, and an API providing the basis for consumption of new data sources and adaptable visualization. Wired Widgets offers cross-portal widgets along with a widget communication framework and development toolkit for rapid new widget development, giving operators the ability to answer relevant questions as the mission evolves. Wired Widgets has been applied in a number of dynamic mission domains including disaster response, combat operations, and noncombatant evacuation scenarios. The variety of applications demonstrate that Wired Widgets provides a flexible, data driven solution for visualization in changing environments. In this paper, we show how, deployed in the Ozone Widget Framework portal environment, Wired Widgets can provide an agile, web-based visualization to support the SSA mission. Furthermore, we discuss how the tenets of agile visualization can generally be applied to the SSA problem space to provide operators flexibility, potentially informing future acquisition and system development.
Diluted povidone-iodine versus saline for dressing metal-skin interfaces in external fixation.
Chan, C K; Saw, A; Kwan, M K; Karina, R
2009-04-01
To compare infection rates associated with 2 dressing solutions for metal-skin interfaces. 60 patients who underwent distraction osteogenesis with external fixators were equally randomised into 2 dressing solution groups (diluted povidone-iodine vs. saline). Fixations were attained using either rigid stainless steel 5-mm diameter half pins or smooth stainless steel 1.8-mm diameter wires. Half-pin fixation had one metal-skin interface, whereas wire fixation had 2 interfaces. Patients were followed up every 2 weeks for 6 months. Of all 788 metal-skin interfaces, 143 (18%) were infected: 72 (19%) of 371 in the diluted povidone-iodine group and 71 (17%) of 417 in the saline group. Dressing solution and patient age did not significantly affect infection rates. Half-pin fixation was more likely to become infected than wire fixation (25% vs 15%). Saline is as effective as diluted povidone-iodine as a dressing solution for metal-skin interfaces of external fixators. Saline is recommended in view of its easy availability and lower costs.
Suspended circummandibular wire fixation for mixed-dentition pediatric mandible fractures.
Nishioka, G J; Larrabee, W F; Murakami, C S; Renner, G J
1997-07-01
To introduce and evaluate the technique of cirummandibular wires with piriform rim suspension (CMW-PRS) combined with arch bars and a fracture site bridle in the treatment of mixed-dentition pediatric mandible fractures. Five male patients (mean age, 8.2 years [age range, 7-10 years]) with an isolated mixed-dentition mandible fracture were treated with the CMW-PRS technique at the University of Texas Health Science Center, San Antonio, from 1985 to 1987 and at the University of Missouri, Columbia, from 1992 to 1995. Clinical and radiographic fracture healing, somatosensory status, and complications were evaluated. All patients demonstrated clinical union to their preinjury occlusion by 3 or 4 weeks. They remained without complications until they were no longer available for follow-up. Panoramic radiographs supported the findings of clinical examinations throughout the study, and no radiographic abnormalities were found. There were no somatosensory disturbances of the lingual or mental/inferior alveolar nerves. One patient required a tracheostomy unrelated to the procedure. The CMW-PRS technique combined with arch bars and a fracture site bridle wire achieved equivalent historical results when compared with the dental splint. The potential advantages and disadvantages of the CMW-PRS technique compared with those of monocortical bone plating, as well as the significant advantages of the CMW-PRS over the dental splint, are discussed in the text.
Cho, Jae-Woo; Kim, Jinil; Cho, Won-Tae; Gujjar, Pranay H; Oh, Chang-Wug; Oh, Jong-Keon
2018-02-01
We present the surgical technique of rim-plate-augmented separate vertical wiring for comminuted inferior pole fracture of the patella and report the clinical outcomes. Between July 2013 and January 2016, 13 patients (7 male and 6 female) who were diagnosed with comminuted inferior pole fracture of the patella in preoperative computed tomography and underwent a minimum of 1 year of follow-up were enrolled in this study. Mean patient age was 57.7 years (range 28-72 years). All patients underwent open reduction and internal fixation by rim-plate-augmented separate vertical wiring. Bony union, complications, range of motion and Bostman score were the clinical outcomes. Bony union was achieved in all cases at an average of 10 weeks after surgery (range 8-12). There was no loss of reduction and fixative failure during follow-up. The average range of motion was 127° (range 120°-130°). The mean Bostman score at last follow-up was 29.6 points (range 27-30) and graded excellent in 12 patients. Rim-plate-augmented separate vertical wiring demonstrated secure fixation and favorable clinical outcomes. This study provides evidence for its effectiveness as a fixation method for treating displaced, comminuted inferior pole fracture of the patella.
Mars Exploration Rover Potentiometer Problems, Failures and Lessons Learned
NASA Technical Reports Server (NTRS)
Balzer, Mark
2006-01-01
During qualification testing of three types of non-wire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.
ERIC Educational Resources Information Center
Nixon, Charles W.
1998-01-01
Examines renovation issues involving 30- and 40-year-old school facilities. Explores ways a school district can renovate old buildings to first-class cost-effective facilities while avoiding excessive transition costs. Discussions include installation of new technology and the resulting wiring demands, and developing more energy-efficient heating…
Heat transfer monitoring by means of the hot wire technique and finite element analysis software.
Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E
2014-01-01
It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.
How Can Magnetic Forces Do Work? Investigating the Problem with Students
ERIC Educational Resources Information Center
Onorato, Pasquale; De Ambrosis, Anna
2013-01-01
We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…
Zahed Zahedani, Sm; Oshagh, M; Momeni Danaei, Sh; Roeinpeikar, Smm
2013-09-01
One of the major outcomes of orthodontic treatment is the apical root resorption of teeth moved during the treatment. Identifying the possible risk factors, are necessary for every orthodontist. The aim of this study was to compare the rate of apical root resorption after fixed orthodontic treatment with standard edgewise and straight wire (MBT) method, and also to evaluate other factors effecting the rate of root resorption in orthodontic treatments. In this study, parallel periapical radiographs of 127 patients imaging a total of 737 individual teeth, were collected. A total of 76 patients were treated by standard edgewise and 51 patients by straight wire method. The periapical radiographs were scanned and then the percentage of root resorption was calculated by Photoshop software. The data were analyzed by Paired-Samples t-test and the Generalized Linear Model adopting the SPSS 15.0. In patients treated with straight wire method (MBT), mean root resorption was 18.26% compared to 14.82% in patients treated with standard edgewise technique (p< .05). Male patients had higher rate of root resorption,statistically significant (p< .05). Age at onset of treatment, duration of treatment, type of dental occlusion, premolar extractions and the use of intermaxillary elastics had no significant effect on the root resorption in this study. Having more root resorption in the straight wire method and less in the standard edgewise technique can be attributed to more root movement in pre-adjusted MBT technique due to the brackets employed in this method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...
Dual wire welding torch and method
Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.
2009-04-28
A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.
NASA Technical Reports Server (NTRS)
1943-01-01
This is the second of a series of reports covering an investigation of the general instability problem by the California Institute of Technology. The first five reports of this series cover investigations of the general instability problem under the loading conditions of pure bending and were prepared under the sponsorship of the Civil Aeronautics Administration. The succeeding reports of this series cover the work done on other loading conditions under the sponsorship of the National Advisory Committee for Aeronautics.
Malunited fracture of the body and condyle of the mandible : A Case Report.
Yeluri, Ramakrishna; Baliga, Sudhindra; Munshi, Autar Krishen
2010-07-01
Mandibular fractures are the most common facial fractures seen in hospitalized children and their incidence increases with age. Treatment options include soft diet, intermaxillary fixation with eyelet wires, arch bars, circummandibular wiring, or stents. Alternative options include open reduction and internal fixation through either an intraoral or extraoral approach. Many factors complicate the management of pediatric mixed-dentition mandibular fractures: tooth eruption, short roots, developing tooth buds and growth issues. One major factor is the inherent instability of the occlusion in the mixed deciduous-permanent tooth phase. This case report documents a child in mixed dentition period with a complication arising due to direct fixation of the fractured mandible.
Some studies on the behavior of W-RE thermocouple materials at high temperatures
NASA Technical Reports Server (NTRS)
Burns, G. W.; Hurst, W. S.
1972-01-01
Bare 0.25 mm diameter W-Re alloy thermoelements (W, W-3% Re, W-5% Re and W-25%) and BeO-insulated W-3% Re and W-25% Re thermoelements were examined for metallurgical, chemical and thermal emf changes after testing for periods up to 1000 hours at temperatures principally in the range 2000 to 2400 K. Environments for the tests consisted of high purity argon, hydrogen, helium or nitrogen gases. Commercially obtained bare-wire thermoelements typically exhibited a shift in their emf-temperature relationship upon initial exposure. The shift was completed by thermally aging the W-3% Re thermoelement for 1 hour and the W-25% Re thermoelement for 2 minutes at 2400 K in argon or hydrogen. Aged thermoelements experienced no appreciable drift with subsequent exposure at 2400 K in the gaseous environments. The chemically doped W3% Re thermoelement retained a small-grained structure for exposure in excess of 50 hours at 2400 K. BeO-insulated thermoelement assemblies showed varied behavior that depended upon the method of exposure. However, when the assemblies were heated in a furnace, no serious material incompatibility problems were found if the materials were given prior thermal treatments. Thermocouples, assembled from aged W-3% Re and W-25% Re thermoelements and degassed sintered BeO insulators, exhibited a drift of only 2 to 3 K during exposure in argon at 2070 K for 1029 hours.
NASA Astrophysics Data System (ADS)
Macher, W.; Oswald, T. H.
2011-02-01
In the investigation of antenna systems which consist of one or several monopoles, a realistic modeling of the monopole radii is not always feasible. In particular, physical scale models for electrolytic tank measurements of effective length vectors (rheometry) of spaceborne monopoles are so small that a correct scaling of monopole radii often results in very thin, flexible antenna wires which bend too much under their own weight. So one has to use monopoles in the model which are thicker than the correct scale diameters. The opposite case, where the monopole radius has to be modeled too thin, appears with certain numerical antenna programs based on wire grid modeling. This problem arises if the underlying algorithm assumes that the wire segments are much longer than their diameters. In such a case it is eventually not possible to use wires of correct thickness to model the monopoles. In order that these numerical and experimental techniques can be applied nonetheless to determine the capacitances and effective length vectors of such monopoles (with an inaccurate modeling of monopole diameters), an analytical correction method is devised. It enables one to calculate the quantities for the real antenna system from those obtained for the model antenna system with wrong monopole radii. Since a typical application of the presented formalism is the analysis of spaceborne antenna systems, an illustration for the monopoles of the WAVES experiment on board the STEREO-A spacecraft is given.
Report on accelerated corrosion studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert
2011-03-01
Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documentsmore » the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.« less
NASA Astrophysics Data System (ADS)
Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao
2015-11-01
A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.
Theoretical modeling of electronic transport in molecular devices
NASA Astrophysics Data System (ADS)
Piccinin, Simone
In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a simple two level model. Finally the transport properties of alkanethiol monolayers are analyzed by means of the local density of states at the Fermi energy: we find an exponential dependence of the current on the length of the chain, in quantitative agreement with the corresponding experiments.
Niu, Jie; Yang, Qianqian; Wang, Xiaoyun; Song, Rong
2017-01-01
Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC) scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.
NASA Astrophysics Data System (ADS)
FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.
2009-12-01
This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.
2008-01-04
KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, aerospace technicians with the United Launch Alliance inspect an electrical wiring harness that has been inserted into a replacement feed-through connector during preparations to solder the pins to the socket of the connector that will be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technicians performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and were specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett
2008-01-04
KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, a Lockheed Martin technician prepares an electrical wiring harness during a procedure to solder the pins to the socket of the replacement feed-through connector that will be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. Two United Launch Alliance technicians, who performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994, will be doing the soldering. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett
2008-01-04
KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, Kevin Wyckoff, an aerospace technician with the United Launch Alliance, inserts an electrical wiring harness into a replacement feed-through connector during preparations to solder the pins to the socket of the connector. The connector will later be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technician performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and was specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett
Heo, Youn Moo; Kim, Sang Bum; Yi, Jin Woong; Kim, Tae Gyun; Lim, Byoung Gu
2016-02-01
As intramedullary (IM) fixation is one of the fixation methods used in neck fractures of the fifth metacarpal, an early motion of injured finger can be allowed. The purpose of this study is to evaluate whether immediate active motion affects the stability of antegrade IM fixation in surgical treatment of neck fractures of the fifth metacarpal bone and to assess related factors. Thirty one patients treated by closed reduction and antegrade IM fixation were consecutively enrolled. All patients started active motion of the little finger since 7 postoperative days and only daily activities including writing, typing or washing were allowed until the union of fracture. All fractures were healed within four to eight weeks. The changes of angulation, fifth metacarpal length and tip to head distance of K-wire were compared between immediate postoperative radiographs and radiographs at eight weeks. In addition, the effects by age, gender, initial angulation and comminution of the metacarpal neck were assessed. The average change of angulation was 0.12°, 5th metacarpal length was 1.49mm and tip to head distance of K-wire was 1.31mm. There was no significant difference in the change of angulation (p = 0.137). But, there were significant differences in the change of 5th metacarpal length and tip to head distance of K-wire ([Formula: see text]). The change of angulation was related to a comminution of the metacarpal neck and that of 5th metacarpal length was related to age and sex. The change of 5th metacarpal length and tip to head distance of K-wire can occur by an early mobilization in the antegrade IM fixation for neck fractures of the fifth metacarpal. However, we thought that an early active motion after surgery is important to increase the patients' satisfaction, even though careful selection of candidates is necessary.
Reliability Criteria for Thick Bonding Wire.
Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa
2018-04-17
Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.
Reliability Criteria for Thick Bonding Wire
Yavuz, Mustafa
2018-01-01
Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194
Spooled packaging of shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Redmond, John A.
A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators with mitigated material, power, and packaging costs and compact, customizable form factors. By examining the multi-faceted connections between performance, packaging, and cost, this dissertation builds a knowledge base that goes beyond implementing SMA actuators for particular applications. Rather, it provides a well-developed strategy for realizing the advantages of SMA actuation for a broadened range of applications, thereby enabling opportunities for new functionality and capabilities in industry.
Three-dimensional curvilinear device reconstruction from two fluoroscopic views
NASA Astrophysics Data System (ADS)
Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge
2015-03-01
In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.
Improving the Nation's Health. Step One: Reduce Toxic Stress in Early Childhood. Perspectives
ERIC Educational Resources Information Center
Louv, Richard
2006-01-01
To reduce risk factors for adult disease in our society, we must tackle the problem of toxic stress in early childhood. This condition is associated with the excessive release of a stream of hormones whose persistent elevation can disrupt the wiring of the developing brain and the functioning of the immune system. Children who experience toxic…
The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2016-01-01
Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.
Unique Results and Lessons Learned from the TSS Missions
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2016-01-01
In 1924, Irvin Langmuir and H. M. Mott-Smith published a theoretical model for the complex plasma sheath phenomenon in which they identified some very special cases which greatly simplified the sheath and allowed a closed solution to the problem. The most widely used application is for an electrostatic, or "Langmuir," probe in laboratory plasma. Although the Langmuir probe is physically simple (a biased wire) the theory describing its functional behavior and its current-voltage characteristic is extremely complex and, accordingly, a number of assumptions and approximations are used in the LMS model. These simplifications, correspondingly, place limits on the model's range of application. Adapting the LMS model to real-life conditions is the subject of numerous papers and dissertations. The Orbit-Motion Limited (OML) model that is widely used today is one of these adaptions that is a convenient means of calculating sheath effects. The OML equation for electron current collection by a positively biased body is simply: I is approximately equal to A x j(sub eo) x 2/v??(phi)(exp ½) where A is the area of the body and phi is the electric potential on the body with respect to the plasma. Since the Langmuir probe is a simple biased wire immersed in plasma, it is particularly tempting to use the OML equation in calculating the characteristics of the long, highly biased wires of an Electric Sail in the solar wind plasma. However, in order to arrive at the OML equation, a number of additional simplifying assumptions and approximations (beyond those made by Langmuir-Mott-Smith) are necessary. The OML equation is a good approximation when all conditions are met, but it would appear that the Electric Sail problem lies outside of the limits of applicability.
Creating raptor benefits from powerline problems
Kochert, Michael N.; Olendorff, R.R.
1999-01-01
Powerlines benefit raptors by providing enhanced nesting and roosting sites. However, they also can kill raptors by electrocution and raptors can interfere with power transmission. The electrocution problem has been reduced by correcting existing lethal lines and implementing electrocution safe designs for new lines. Remedial actions include pole modifications, perch management and insulation of wires and hardware. New line designs provide for proper insulation and adequate spacing of conductors and grounded hardware. Nesting platforms can reduce power transmission problems and enhance the benefits of nesting on powerlines. A combination of perch deterrents and insulator shields is a positive, cost-effective approach to managing bird contamination that allows birds to continue roosting on the towers.
Use of optical technique for inspection of warpage of IC packages
NASA Astrophysics Data System (ADS)
Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng
2001-06-01
The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, Sebastian, E-mail: skos@gmx.de; Guerke, Lorenz; Jacob, Augustinus L.
Purpose: This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and 'cheese-wire' technique for fenestration of abdominal aortic dissection membranes. Methods: Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. Themore » membrane was then fenestrated using the cheese-wire maneuver. Results: We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. Conclusions: The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.« less
Li, Jia; Sun, Jin-Ke; Wang, Chen-Lin
2017-06-25
To investigate surgical skills and clinical effects of manipulative reduction and percutaneous Kirschner wire internal fixation in treating grade IV supination-external rotation ankle fractures. From May 2013 to October 2016, 35 patients with grade IV supination-external rotation ankle fractures were treated with percutaneous Kirschner wire internal fixation, involving 22 males and 13 females with an average age of 38.2 years ranged from 18 to 65 years old. The time from injury to operation ranged from 2 h to 10 d with an average of 5 d. Reduction quality was assessed by Burwell-Charnley radiological criteria. Baird-Jackson ankle scoring system was used to assess clinical effects. Thirty-three patients were followed up from 10 to 28 months with an average of 14 months. Fracture healing time ranged from 10 to 18 weeks with an average of 12 weeks. According to Burwell-Charnley radiological criteria, 30 cases were obtained anatomic reduction, 3 cases moderate. According to Baird-Jackson ankle scoring system, total score was 93.8±5.4, 17 cases got excellent result, 12 good, 2 fair and 2 poor. Manipulative reduction and percutaneous Kirschner wire internal fixation in treating grade IV supination-external rotation ankle fractures has advantages of reliable efficacy, less complications. But higher require techniques were required for closed reduction. It is not suitable for severe crushed fracture and compressive articular surface fracture.
2012-07-06
Foreign object ingestion is a common reason for visiting an emergency department (ED), particularly for children. In recent years, internal injuries have been reported following unintentional ingestions of wire grill-cleaning brush bristles by both children and adults. A series of six cases from a single hospital system with two EDs during July 2009-November 2010 was reported previously. This report describes a series of six more cases identified at the same hospital system during March 2011-June 2012. The six patients ranged in age from 31 to 64 years; five were men. Like the patients in the previous series (4), all six reported outdoor residential food grilling and use of commercially available wire grill-cleaning brushes. The severity of injury ranged from puncture of the soft tissues of the neck, causing severe pain on swallowing, to perforation of the gastrointestinal tract requiring emergent surgery. Awareness of this potential injury among health-care professionals is critical to facilitate timely diagnosis and treatment. Additionally, awareness among the public, manufacturers who make wire grill-cleaning brushes, and retailers who sell these products can reduce exposures and decrease the likelihood of further occurrences. Before cooking, persons should examine the grill surface carefully for the presence of bristles that might have dislodged from the grill brush and could embed in cooked food. Alternative residential grill-cleaning methods or products might be considered.
Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal
2015-01-01
To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.
Exposure to residential electric and magnetic fields and risk of childhood leukemia.
London, S J; Thomas, D C; Bowman, J D; Sobel, E; Cheng, T C; Peters, J M
1991-11-01
The relation between exposure to electric and magnetic fields in the home, as assessed by measurements, wiring configuration, and self-reported appliance use, and risk of leukemia was investigated in a case-control study among children from birth to age 10 years in Los Angeles County, California. Cases were ascertained through a population-based tumor registry from 1980 to 1987. Controls were drawn from friends and by random digit dialing. Interviews were obtained from 232 cases and 232 controls. Available for analysis were measurements of the magnetic field in the child's bedroom over 24 hours or longer (164 cases and 144 controls), spot measurements of magnetic and electric fields (140 cases and 109 controls), and wiring configuration (219 cases and 207 controls). No clear associations between leukemia risk and measured magnetic or electric fields were seen. An association between the Denver Wertheimer-Leeper wiring configuration and childhood leukemia risk was observed (odds ratio for very high relative to very low current and underground configuration combined = 2.15, 95% confidence interval 1.08-4.28; p for trend = 0.008) and was not substantially altered by adjustment for potential confounding factors. Cases were more likely than controls to report use of several appliances that produce high electric and magnetic fields. Our results support an association between childhood leukemia risk and wiring configuration, but not direct measurements of electric and magnetic fields.
Khatri, Kishor; Kharel, Krishna; Byanjankar, Subin; Sharma, Jay R; Shrestha, Rahul; Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul
2017-01-01
Background: Displaced Colles’ fractures are treated by manipulation and below elbow cast application. Malunion is a common complication, resulting in pain, mid-carpal instability, and post-traumatic arthritis. Fracture stabilization by percutaneous pinning is a simple, minimally invasive technique that helps prevent displacement of the fracture, thereby minimizing complications. This study aims to assess the amount of collapse after closed manipulation and percutaneous pinning with Kirschner wires (K-wires) and its correlation with the functional outcome of the wrist after union. Methods: A prospective study was conducted from May 2015 to May 2016 in a tertiary orthopedic center. Ninety patients (60 females, 30 males) with an average age of 54.93 years with Type II fractures underwent closed manipulation and percutaneous pinning with crossed K-wires as the primary procedure. Serial radiographs were taken to document the amount of collapse. The functional outcome was assessed using the Cooney Wrist Score. Results: At the final follow-up at six months, the collapse in the mean dorsal angle was 0.94 and mean ulnar variance was 0.51. Functionally, 48 patients (53.33%) had an excellent outcome, 36 patients (40%) had a good outcome, and six patients (6.67%) had a fair outcome. Conclusions: Displaced Colles’ fractures should be reduced and stabilized with percutaneous K-wires to achieve an excellent functional outcome. PMID:28191366
Panthi, Sagar; Khatri, Kishor; Kharel, Krishna; Byanjankar, Subin; Sharma, Jay R; Shrestha, Rahul; Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul
2017-01-06
Displaced Colles' fractures are treated by manipulation and below elbow cast application. Malunion is a common complication, resulting in pain, mid-carpal instability, and post-traumatic arthritis. Fracture stabilization by percutaneous pinning is a simple, minimally invasive technique that helps prevent displacement of the fracture, thereby minimizing complications. This study aims to assess the amount of collapse after closed manipulation and percutaneous pinning with Kirschner wires (K-wires) and its correlation with the functional outcome of the wrist after union. A prospective study was conducted from May 2015 to May 2016 in a tertiary orthopedic center. Ninety patients (60 females, 30 males) with an average age of 54.93 years with Type II fractures underwent closed manipulation and percutaneous pinning with crossed K-wires as the primary procedure. Serial radiographs were taken to document the amount of collapse. The functional outcome was assessed using the Cooney Wrist Score. At the final follow-up at six months, the collapse in the mean dorsal angle was 0.94 and mean ulnar variance was 0.51. Functionally, 48 patients (53.33%) had an excellent outcome, 36 patients (40%) had a good outcome, and six patients (6.67%) had a fair outcome. Displaced Colles' fractures should be reduced and stabilized with percutaneous K-wires to achieve an excellent functional outcome.
30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...
30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...
Non-abelian anyons and topological quantum information processing in 1D wire networks
NASA Astrophysics Data System (ADS)
Alicea, Jason
2012-02-01
Topological quantum computation provides an elegant solution to decoherence, circumventing this infamous problem at the hardware level. The most basic requirement in this approach is the ability to stabilize and manipulate particles exhibiting non-Abelian exchange statistics -- Majorana fermions being the simplest example. Curiously, Majorana fermions have been predicted to arise both in 2D systems, where non-Abelian statistics is well established, and in 1D, where exchange statistics of any type is ill-defined. An important question then arises: do Majorana fermions in 1D hold the same technological promise as their 2D counterparts? In this talk I will answer this question in the affirmative, describing how one can indeed manipulate and harness the non-Abelian statistics of Majoranas in a remarkably simple fashion using networks formed by quantum wires or topological insulator edges.
Rigatelli, G L; Carraro, U; Barbiero, M; Zanchetta, M; Rigatelli, G
2002-02-01
There are no data regarding real cardiac assistance in demand dynamic cardiomyoplasty (DDCMP). A test of the use of Doppler flow wire is presented to demonstrate cardiac assistance in DDCMP. Comparative study in hospitalized care. A peripheral Flex Doppler flow wire of 0.018 inch was advanced through a 4F introducer femoral arterial in seven DDCMP patients (age=57.1+/-6.2 years; NYHA= 1.4+/-0.5). A short period of 10 sec with stimulator off and a following period of 15 sec with clinical stimulation were recorded. We measured the maximum peak aortic flow velocity (MPAV) in all beats. Latissimus dorsi (LD) mechanogram was simultaneously recorded. Statistical analysis showed an increase not only in MPAV in assisted period versus rest, but also in assisted beats versus unassisted (8.42+/-6.98% and 7.55+/-3.07%). Intravascular Doppler proved real systolic assistance in DDCMP; in DDCMP systolic assistance is correlated to the LD wrap speed of contraction, suggesting that demand stimulation could be the most effective protocol in dynamic cardiomyoplasty.
Zhao, Weimin; Dai, Tao; Yuan, Depin; Zhang, Gongbao
2011-11-01
To observe the effectiveness of skin graft combined with thorax wire fastening for repairing postoperative coloboma after resection of chest back giant nevus. Between June 2007 and October 2010, 17 cases of chest back giant nevus were treated. There were 7 males and 10 females, aged from 3 years and 6 months to 15 years (mean, 8 years). The size of giant nevus was 20 cm x 12 cm to 60 cm x 50 cm. Two cases of them were ever treated by laser, while the others were never treated. The check before operation showed ulcer of the skin and effusion in 2 cases, hard skin in 3 cases, hair growth in 7 cases, and normal in 5 cases. Five cases had serious itch. After giant nevus was cut off, thorax wire was fastened to reduce the wound area, and then the intermediate split thickness skin graft of thigh was used to repair the wound. Comprehensive anti-scar treatment was given postoperatively. The wound size was (2 110.74 +/- 725.69) cm2 after resection of giant nevus, and was (1 624.94 +/- 560.57) cm2 after thorax wire fastening, showing significant difference (t = 9.006, P = 0.001). All the grafting skin survived; the incision and wound at donor site healed by first intention. The patients were followed up 6 months to 2 years (mean, 13 months). No scar proliferation or contracture occurred. The skin color and elasticity were similar to the normal skin; the nipple, navel, and other local apparatus were not shifted after operation. It can reduce donor site of skin and postoperative scar, and achieve satisfactory appearance to cover the wound by skin graft combined with thorax wire fastening after chest back giant nevus was cut off.
Karatasakis, Aris; Tarar, Muhammad Nauman J; Karmpaliotis, Dimitri; Alaswad, Khaldoon; Yeh, Robert W; Jaffer, Farouc A; Wyman, R Michael; Lombardi, William L; Grantham, J Aaron; Kandzari, David E; Lembo, Nicholas J; Moses, Jeffrey W; Kirtane, Ajay J; Parikh, Manish; Garcia, Santiago; Doing, Anthony; Pershad, Ashish; Shah, Alpesh; Patel, Mitul; Bahadorani, John; Shoultz, Charles A; Danek, Barbara A; Thompson, Craig A; Banerjee, Subhash; Brilakis, Emmanouil S
2017-03-01
We sought to describe contemporary guidewire and microcatheter utilization for antegrade wire escalation (AWE) during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Equipment utilization for AWE has been variable and evolving over time. We examined device utilization during 694 AWE attempts in 679 patients performed at 15 experienced US centers between May 2012 and April 2015. Mean age was 65.6 ± 9.7 years, and 85% of the patients were men. Successful wiring occurred in 436 AWE attempts (63%). Final technical and procedural success was 91% and 89%, respectively. The mean number of guidewire types used for AWE was 2.2 ± 1.4. The most frequently used guidewire types were the Pilot 200 (Abbott Vascular, 56% of AWE procedures), Fielder XT (Asahi Intecc, 45%), and the Confianza Pro 12 (Asahi Intecc, 28%). The same guidewires were the ones that most commonly crossed the occlusion: Pilot 200 (36% of successful AWE crossings), Fielder XT (20%), and Confianza Pro 12 (11%). A microcatheter or over-the-wire balloon was used for 81% of AWE attempts; the Corsair microcatheter (Asahi Intecc) was the most commonly used (44%). No significant association was found between guidewire type and incidence of major adverse cardiac events (MACE). Our contemporary, multicenter CTO PCI registry demonstrates that the most commonly used wires for AWE are polymer-jacketed guidewires. "Stiff" and polymer-jacketed guidewires appear to provide high crossing rates without an increase in MACE or perforation, and may thus be considered for upfront use. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kostrzewa, Michael; Kara, Kerim; Rathmann, Nils; Tsagogiorgas, Charalambos; Henzler, Thomas; Schoenberg, Stefan O; Hohenberger, Peter; Diehl, Steffen J; Roessner, Eric D
2017-06-01
Minimally invasive resection of small, deep intrapulmonary lesions can be challenging due to the difficulty of localizing them during video-assisted thoracoscopic surgery (VATS). We report our preliminary results evaluating the feasibility of an image-guided, minimally invasive, 1-stop-shop approach for the resection of small, deep intrapulmonary lesions in a hybrid operating room (OR). Fifteen patients (5 men, 10 women; mean age, 63 years) with a total of 16 solitary, deep intrapulmonary nodules of unknown malignant status were identified for intraoperative wire marking. Patients were placed on the operating table for resection by VATS. A marking wire was placed within the lesion under 3D laser and fluoroscopic guidance using a cone beam computed tomography system. Then, wedge resection by VATS was performed in the same setting without repositioning the patient. Complete resection with adequate safety margins was confirmed for all lesions. Marking wire placement facilitated resection in 15 of 16 lesions. Eleven lesions proved to be malignant, either primary or secondary; 5 were benign. Mean lesion size was 7.7 mm; mean distance to the pleural surface was 15.1 mm (mean lesion depth-diameter ratio, 2.2). Mean procedural time for marking wire placement was 35 minutes; mean VATS duration was 36 minutes. Computed tomography-assisted thoracoscopic surgery is a new, safe, and effective procedure for minimally invasive resection of small, deeply localized intrapulmonary lesions. The benefits of computed tomography-assisted thoracoscopic surgery are 1. One-stop-shop procedure, 2. Lower risk for the patient (no patient relocation, no marking wire loss), and 3. No need to coordinate scheduling between the CT room and OR.
[Reinforcement for overdentures on abutment teeth].
Osada, Tomoko
2006-04-01
This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01). There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks. The breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.
ERIC Educational Resources Information Center
Chretien, Wendy
2007-01-01
The residential services group is lobbying to dump its aging hard-wired phone system because students don't use it. The town and campus public safety officials are demanding that their portable two-way radios operate well not only outdoors, but within campus buildings. Students are now expecting text messaging and WiFi service to work everywhere…
Electrically isolated, high melting point, metal wire arrays and method of making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, John T.; Cunningham, Joseph P.; D'Urso, Brian R.
2016-01-26
A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rodmore » with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.« less
49 CFR 234.241 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...
49 CFR 234.241 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...
Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates
NASA Astrophysics Data System (ADS)
Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.
2012-05-01
This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.
Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)
NASA Astrophysics Data System (ADS)
Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.
2018-01-01
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.
Brokenshire, B; Cairns, F J; Koelmeyer, T D; Smeeton, W M; Tie, A B
1984-03-14
This paper reviews the circumstances of 95 fatalities from electrical injuries. Eighty-nine were accidental, four were suicides and two occurred during autoerotic electrical stimulation. Forty-nine of the accidental fatalities occurred at work, Twenty-eight in the home and twelve in the course of outside recreational activities. In many accidents the circumstances were distressingly similar and included: (1) Contact with overhead distribution lines by a length of conductor such as a yacht mast or crane. (2) Faulty wiring or electrical repairs performed by unqualified people. (3) Badly deteriorated cords, plugs and occasionally appliances. (4) Failure to use isolating transformers when indicated. Deaths involving children are a particular cause of concern. Nine fatalites involved children under the age of five years who contacted inadequately protected wires.
30 CFR 75.517 - Power wires and cables; insulation and protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...
30 CFR 75.517 - Power wires and cables; insulation and protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...
30 CFR 75.517 - Power wires and cables; insulation and protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...
30 CFR 75.517 - Power wires and cables; insulation and protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... exporters of galvanized steel wire (galvanized wire) from the People's Republic of China (the PRC). For... investigation are Davis Wire Corporation, Johnstown Wire Technologies, Inc., Mid- South Wire Company, Inc...
30 CFR 75.517 - Power wires and cables; insulation and protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires and cables; insulation and...-General § 75.517 Power wires and cables; insulation and protection. [Statutory Provisions] Power wires and cables, except trolley wires, trolley feeder wires, and bare signal wires, shall be insulated adequately...
Orbiter Kapton wire operational requirements and experience
NASA Technical Reports Server (NTRS)
Peterson, R. V.
1994-01-01
The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.
30 CFR 75.701-4 - Grounding wires; capacity of wires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...
30 CFR 75.701-4 - Grounding wires; capacity of wires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Improved Plow Steel, Independent Wire Rope Core, Wire Rope and Wire Rope Slings [In tons of 2,000 pounds... for Improved Plow Steel, Independent Wire Rope Core, Wire Rope Slings [in tons of 2,000 pounds] Two...-4—Rated Capacities for Improved Plow Steel, Fiber Core, Wire Rope and Wire Rope Slings [in tons of 2...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Improved Plow Steel, Independent Wire Rope Core, Wire Rope and Wire Rope Slings [In tons of 2,000 pounds... for Improved Plow Steel, Independent Wire Rope Core, Wire Rope Slings [in tons of 2,000 pounds] Two...-4—Rated Capacities for Improved Plow Steel, Fiber Core, Wire Rope and Wire Rope Slings [in tons of 2...
NASA Technical Reports Server (NTRS)
de Groh, Henry C.
2017-01-01
NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.
Characterization of copper and nichrome wires for safety fuse
NASA Astrophysics Data System (ADS)
Murdani, E.
2016-11-01
Fuse is an important component of an electrical circuit to limiting the current through the electrical circuit for electrical equipment safety. Safety fuses are made of a conductor such as copper and nichrome wires. The aim of this research was to determine the maximum current that can flow in the conductor wires (copper and nichrome). In the experiment used copper and nichrome wires by varying the length of wires (0.2 cm to 20 cm) and diameter of wires (0.1, 0.2, 0.3, 0.4 and 0.5) mm until maximum current reached that marked by melted or broken wire. From this experiment, it will be obtained the dependences data of maximum current to the length and diameter of wires. All data are plotted and it's known as a standard curve. The standard curve will provide an alternative choice of replacing fuse wire according to the maximum current requirement, including the wire type (copper and nichrome wires) and wire dimensions (length and diameter of wire).
Length-dependent structural stability of linear monatomic Cu wires
NASA Astrophysics Data System (ADS)
Singh, Gurvinder; Kumar, Krishan; Singh, Baljinder; Moudgil, R. K.
2018-05-01
We present first-principle calculations based on density functional theory for the finite-length monatomic Cu atom linear wires. The structure and its stability with increasing wire length in terms of number of atoms (N) is determined. Interestingly, the bond length is found to exhibit an oscillatory structure (the so-called magic length phenomenon), with a qualitative change in oscillatory behavior as one moves from even N wire to odd N wire. The even N wires follow simple even-odd oscillations whereas odd N wires show a phase change at the half length of the wires. The stability of the wire structure, determined in terms of the wire formation energy, also contains even-odd oscillation as a function of wire length. However, the oscillations in formation energy reverse its phase after the wire length is increased beyond N=12. Our findings are seen to be qualitatively consistent with recent simulations for a similar class finite-length metal atom wires.
Vural, A Hakan; Yalçinkaya, Serhat; Türk, Tamer; Oztürk, Alpaslan; Sezen, Mustafa; Yavuz, Senol; Ozyazicioglu, Ahmet
2007-01-01
When a sternotomy cannot be performed at the midline and/or there is infection at the operation site, sternotomy revision can cause problems that increase the mortality and morbidity of the patients. There is no agreement on the best treatment method. In this paper we present a modified wiring technique. This technique consisted of wrapping wires twice around each rib head and placing standard circumferential wire sutures, thus providing full stability by decreasing the load on the sternum using only steel wires. The study group included 23 patients with sternal dehiscence because of inappropriate sternotomy (n = 10) and/or mediastinitis (n = 13). Two mediastinal tubes were placed for irrigation in 13 patients with mediastinitis and/or wound infection, and mobilization and interposition of omentum as an axial graft was performed in 2 patients. Irrigation and antibiotherapy were continued for 4 to 6 weeks. Complete wound healing was obtained in all patients. Twenty-two patients treated with this technique survived. One patient died on postoperative 42nd day because of renal insufficiency and multi-organ failure. Early and aggressive debridement of infected and necrotic tissue, irrigation, and antibiotics are necessary for successful treatment, but we believe that the most important factor is full stabilization of the sternal tissue with minimal use of foreign stabilization material. Despite the limited number of cases, we suggest that our stabilization technique seems to be successful in achieving full stabilization even in infected and fragile sternal bony tissue in patients with sternal dehiscence and/or inappropriate sternotomy.
Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin
2013-05-01
Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...
Residential photovoltaic module and array requirements study, appendices
NASA Technical Reports Server (NTRS)
Nearhoof, S. L.; Oster, J. R.
1979-01-01
Regional building code variations, federal and city codes, and the national electric code are reviewed for their possible effects on the design of photovoltaic modules. Problems that photovoltaic arrays may impose on the insurability of residences are also discussed. Mounting configurations are developed for the modules, and grounding, wiring, terminal, and voltage requirements are established. Installation and materials costs are presented along with performance criteria.
USSR Report, International Affairs
1986-03-04
AFRIKA SEGODNYA, No 10, Oct 85).. 50 Socioeconomic Progress, Problems in Nigeria Viewed (V. Novikov; AZIYA I AFRIKA SEGODNYA, No 10, Oct 85...USSR, for example, Nigeria is carrying out the construc- tion of a metallurgical plant. The light-section and wire mills for this enterprise...and Poland created a consortium to build an agrarian complex in Nigeria for growing and processing sugar-cane. Having achieved some definite
Electrical aging markers for EPR-based low-voltage cable insulation wiring of nuclear power plants
NASA Astrophysics Data System (ADS)
Verardi, L.; Fabiani, D.; Montanari, G. C.
2014-01-01
This paper presents results of electrical property measurements on EPR-based insulations of low-voltage power cables used in nuclear power plants. The specimens underwent accelerated aging through the simultaneous application of high temperature and gamma-radiation. Mechanical properties and the dielectric response at different frequencies were investigated. Results showed significant variation of the electrical and mechanical properties of aged cables at low frequencies, i.e. lower than 10-2 Hz. In particular, the real and imaginary parts of permittivity increase with aging time, accumulated dose and stress levels applied showing good correlation with elongation at break, which decreases as a function of extent of insulation aging.
Magnetic sensor technology based on giant magneto-impedance effect in amorphous wires
NASA Astrophysics Data System (ADS)
Wang, X.; Teng, Y.; Wang, C.; Li, Q.
2012-12-01
This project focuses on giant magneto-impedance (GMI) effect that found in the soft magnetic amorphous wires in recent years, when AC current through the amorphous wire, induced voltage in the wires would change sensitively with a small external magnetic field along the wire vertical imposed changes. GMI magnetic sensor could compensate for the shortcomings of the traditional magnetic sensors and detect weak magnetic field, meanwhile the characteristics of high stability, high sensitivity, high resolution, fast response and low power consumption, which makes it becoming the focus of extensive research at home and abroad and being new mode of the next age of the physical geography observation. The emphasis of the project is the research on the high sensitivity amorphous wire detector and the low noise capability circuit design. In this paper, it is analyzed the theory of the Amorphous Wire Giant-Magneto-Impedance (AWGMI) effect and its influence factors in details, and expatiated the sensor principle based on AWGMI. On the basis of AWGMI, the experimental system of the micro-magnetic sensor is designed, which is composed of the detecting signals, processing and collecting data, display and transmitting data circuit and corresponding functional software etc. The properties of this kind of micro-magnetic sensor are studied by experiments, such as its linearity, sensitivity, frequency response, noise, stability and temperature properties and so on, especially analyzed the relation of the drive signals with all kinds of characteristics. The results show that there is no direct relationship between the frequency of the drive signals and linear property of the sensor. But with the increase of its frequency, some fluctuation appears on the characteristic curves; the direct relation is found between the frequency of the drive signal and sensitivity, with the increase of the frequency, AWGMI effect increases monotonously. It leads to the amplitude of the output voltage increase with the change of the outer magnetic field and results in the increase of the sensor sensitivity; it can be enhanced the corresponding rate of the sensor to the low frequency magnetic field by increasing the drive signal frequency. By experiments, the best sensitivity and noise valves is 0.5225 mV/nT, 1.566nT respectively.
Predictors of temporary epicardial pacing wires use after valve surgery
2014-01-01
Background Although temporary cardiac pacing is infrequently needed, temporary epicardial pacing wires are routinely inserted after valve surgery. As they are associated with infrequent, but life threatening complications, and the decreased need for postoperative pacing in a group of low risk patients; this study aims to identify the predictors of temporary cardiac pacing after valve surgery. Methods A retrospective analysis of data collected prospectively on 400 consecutive valve surgery patients between May 2002 and December 2012 was performed. Patients were grouped according to avoidance or insertion of temporary pacing wires, and were further subdivided according to temporary cardiac pacing need. Multiple logistic regression was used to determine the predictors of temporary cardiac pacing. Results 170 (42.5%) patients did not have insertion of temporary pacing wires and none of them needed temporary pacing. 230 (57.5%) patients had insertion of temporary pacing wires and among these, only 55 (23.9%) required temporary pacing who were compared with the remaining 175 (76.1%) patients in the main analysis. The determinants of temporary cardiac pacing (adjusted odds ratios; 95% confidence interval) were as follows: increased age (1.1; 1.1, 1.3, p = 0.002), New York Heart Association class III- IV (5.6; 1.6, 20.2, p = 0.008) , pulmonary artery pressure ≥ 50 mmHg (22.0; 3.4, 142.7, p = 0.01), digoxin use (8.0; 1.3, 48.8, p = 0.024), multiple valve surgery (13.5; 1.5, 124.0, p = 0.021), aorta cross clamp time ≥ 60 minutes (7.8; 1.6, 37.2, p = 0.010), and valve annulus calcification (7.9; 2.0, 31.7, p = 0.003). Conclusion Although limited by sample size, the present results suggest that routine use of temporary epicardial pacing wires after valve surgery is only necessary for high risk patients. Preoperative identification and aggressive management of predictors of temporary cardiac pacing and the possible modulation of intraoperative techniques can decrease the need of temporary cardiac pacing. Prospective randomized controlled studies on a larger number of patients are necessary to draw solid conclusions regarding the selective use of temporary epicardial pacing wires in valve surgery. PMID:24521215
Wosar, Marc A; Marcellin-Little, Denis J; Roe, Simon C
2002-01-01
To evaluate the effects of bolt torque, wire size, and component reuse on the ability to maintain wire tension in 3 external skeletal fixation systems. Biomechanical study. Yield strength in tension of 1.0-, 1.2-, 1.5-, and 1.6-mm-diameter wires, and yield strength in torque of Hofmann Small Bone Fixation (SBF) cannulated and slotted bolts and IMEX regular and miniature bolts were determined on a testing machine. The minimum bolt tightening torque needed to prevent wire slippage at clinically recommended wire tensions was determined. Components were tested 10 times, and loads at slippage were recorded. The IMEX system required a mean of 8 Nm of bolt tightening torque to maintain 900 N (1.6-mm wires). The SBF system required a mean of 3 Nm bolt torque to maintain 300 N (1.0-mm wires) and 5 Nm to maintain 600 N (1.2-mm wires). The SBF cannulated bolt required 9 Nm of torque to maintain 900 N (1.5-mm wires). The SBF slotted bolts could only maintain 800 N before yield. The IMEX miniature system required a mean bolt torque of 1.1 Nm to maintain 300 N. The cannulated and slotted bolts from both manufacturers failed to maintain 70% of initial wire tension after 7 and 4 uses, respectively. The IMEX systems and the SBF system using 1.0- and 1.2-mm wires could maintain clinically recommended wire tension safely. Only the IMEX system could maintain clinically recommended wire tension safely using 1.5- or 1.6-mm wires. The SBF system using 1.0- and 1.2-mm wires and the IMEX system using all wire sizes can maintain clinically relevant wire tension. The SBF system using 1.5-mm wires could not. Cannulated and slotted bolts should not be used more than 6 and 3 times, respectively. Nuts should not be reused. Copyright 2002 by The American College of Veterinary Surgeons
Acoustic Emission Analysis of Prestressed Concrete Structures
NASA Astrophysics Data System (ADS)
Elfergani, H. A.; Pullin, R.; Holford, K. M.
2011-07-01
Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.
How to Make a Synthetic Multicellular Computer
Macia, Javier; Sole, Ricard
2014-01-01
Biological systems perform computations at multiple scales and they do so in a robust way. Engineering metaphors have often been used in order to provide a rationale for modeling cellular and molecular computing networks and as the basis for their synthetic design. However, a major constraint in this mapping between electronic and wet computational circuits is the wiring problem. Although wires are identical within electronic devices, they must be different when using synthetic biology designs. Moreover, in most cases the designed molecular systems cannot be reused for other functions. A new approximation allows us to simplify the problem by using synthetic cellular consortia where the output of the computation is distributed over multiple engineered cells. By evolving circuits in silico, we can obtain the minimal sets of Boolean units required to solve the given problem at the lowest cost using cellular consortia. Our analysis reveals that the basic set of logic units is typically non-standard. Among the most common units, the so called inverted IMPLIES (N-Implies) appears to be one of the most important elements along with the NOT and AND functions. Although NOR and NAND gates are widely used in electronics, evolved circuits based on combinations of these gates are rare, thus suggesting that the strategy of combining the same basic logic gates might be inappropriate in order to easily implement synthetic computational constructs. The implications for future synthetic designs, the general view of synthetic biology as a standard engineering domain, as well as potencial drawbacks are outlined. PMID:24586222
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...
Atom chips in the real world: the effects of wire corrugation
NASA Astrophysics Data System (ADS)
Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.
2005-02-01
We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.
Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System
2015-10-01
fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
An Obstacle Alerting System for Agricultural Application
NASA Technical Reports Server (NTRS)
DeMaio, Joe
2003-01-01
Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.
NASA Astrophysics Data System (ADS)
Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko
2018-04-01
We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.
Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image
Wang, Xin; Sommer, Friedrich T.; Hirsch, Judith A.
2014-01-01
Summary It is widely assumed that mosaics of retinal ganglion cells establish the optimal representation of visual space. However, relay cells in the visual thalamus often receive convergent input from several retinal afferents and, in cat, outnumber ganglion cells. To explore how the thalamus transforms the retinal image, we built a model of the retinothalamic circuit using experimental data and simple wiring rules. The model shows how the thalamus might form a resampled map of visual space with the potential to facilitate detection of stimulus position in the presence of sensor noise. Bayesian decoding conducted with the model provides support for this scenario. Despite its benefits, however, resampling introduces image blur, thus impairing edge perception. Whole-cell recordings obtained in vivo suggest that this problem is mitigated by arrangements of excitation and inhibition within the receptive field that effectively boost contrast borders, much like strategies used in digital image processing. PMID:24559681
Periurban Trypanosoma cruzi–infected Triatoma infestans, Arequipa, Peru
Bowman, Natalie M.; Kawai, Vivian; Waller, Lance A.; Cornejo del Carpio, Juan Geny; Benzaquen, Eleazar Cordova; Gilman, Robert H.; Bern, Caryn
2006-01-01
In Arequipa, Peru, vectorborne transmission of Chagas disease by Triatoma infestans has become an urban problem. We conducted an entomologic survey in a periurban community of Arequipa to identify risk factors for triatomine infestation and determinants of vector population densities. Of 374 households surveyed, triatomines were collected from 194 (52%), and Trypanosoma cruzi–carrying triatomines were collected from 72 (19.3%). Guinea pig pens were more likely than other animal enclosures to be infested and harbored 2.38× as many triatomines. Stacked brick and adobe enclosures were more likely to have triatomines, while wire mesh enclosures were protected against infestation. In human dwellings, only fully stuccoed rooms were protected against infestation. Spatially, households with triatomines were scattered, while households with T. cruzi–infected triatomines were clustered. Keeping small animals in wire mesh cages could facilitate control of T. infestans in this densely populated urban environment. PMID:17073082
Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics
NASA Technical Reports Server (NTRS)
Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.
1994-01-01
Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.
Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)
NASA Astrophysics Data System (ADS)
Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen
2007-04-01
Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.
NASA Astrophysics Data System (ADS)
Ciofu, C.; Stan, G.
2016-11-01
Elephant's trunk robotic arms driven by wires and pulley mechanisms have issues with wires stiffness because of the entailed elastic deformations that is causing errors of positioning. Static and dynamic loads from each joint of the robotic arm affect the stiffness of driving wires and precision positioning. The influence of wires elastic deformation on precision positioning decreases with the increasing of wires stiffness by using different pre-tensioning devices. In this paper, we analyze the variation of driving wires stiffness particularly to each wire driven joint. We obtain optimum wires stiffness variation by using an analytical method that highlights the efficiency of pre-tensioning mechanism. The analysis of driving wires stiffness is necessary for taking appropriate optimization measures of robotic arm dynamic behavior and, thus, for decreasing positioning errors of the elephant's trunk robotic arm with inner actuation through wires/cables.
Hydrogen in Mono-Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu
2004-03-01
Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.
2013-05-01
In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, themore » gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.« less
47 CFR 76.802 - Disposition of cable home wiring.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... alternative video programming service provider connects its wiring to the home wiring before the incumbent... alternative video programming service provider shall be responsible for ensuring that the incumbent's wiring...
Mingo-Robinet, Juan; Torres-Torres, Miguel; Moreno-Barrero, María; Alonso, Juan Antonio; García-González, Sara
2015-01-01
The treatment of subtrochanteric fractures in the elderly remains technically challenging, due to instability and osteoporosis, with high reoperation rates. Even if intramedullary nailing is the most reliable treatment, reduction is difficult and cerclage wiring remains controversial. The purpose of this study was to evaluate 26 consecutive subtrochanteric fractures in elderly patients treated with a minimally invasive clamp-assisted reduction and cephalomedullary nailing without cerclage wiring. A retrospective analysis was conducted between January 2010 and September 2013. Data obtained from the medical records included patient's age, sex, classification of the fracture, the quality of reduction after surgery, and the presence of postoperative complications, especially fracture displacement and delayed union or nonunion. Twenty-six patients had adequate radiographic and clinical follow-up. Mean age was 84.4 (range 75-96) years. The mean duration of follow-up was 7.6 months (6-14 months). Mean surgical time was 74.42 min (range 45-115 min). Twenty-four (92.3%) showed acceptable varus/valgus alignment, and no sagittal plane malunions were noted. The tip-apex distance was <25 mm in all cases. Distraction at the fracture was <10mm in 21 fractures. Three patients had limb length discrepancy of 1cm. All fractures healed uneventfully. Reducing the fracture before nailing is mandatory to achieve good results. Minimally invasive clamp reduction without cerclage wires, even if challenging, has proven to be a safe, reproducible, and effective surgical technique, with at least the same results as other series. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of three different orthodontic wires for bonded lingual retainer fabrication
Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan
2012-01-01
Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930
Effectiveness of copper oxide wire particles for Haemonchus contortus control in sheep.
Knox, M R
2002-04-01
To assess the efficacy of copper oxide wire particles (COWP) for the control of H contortus infections in grazing sheep. In experiment 1, 40 worm-free Merino hoggets (11 to 12 months of age) were divided into four equal groups and allocated to separate 0.8 ha pasture plots. Two groups then received 2.5 g COWP whereas the other two groups were untreated. From 1 week after COWP treatment all lambs received a weekly infection of 2000 H contortus larvae. At week 8, six sheep from the untreated group were then allocated to two groups and treated with either 2.5 or 5.0 g of COWP to establish therapeutic efficacy of treatment. Experiment 2 followed a similar protocol but was conducted with 40 worm-free Merino lambs (3 to 4 months of age) and no assessment of therapeutic efficacy was made. In experiment 1 no significant difference in faecal worm egg counts was observed between treatments and faecal worm egg counts remained less than 3000 epg in all animals. Total worm counts were reduced by 37% by COWP treatment (P = 0.055). Both 2.5 g and 5.0 g doses of COWP at 8 weeks of infection reduced faecal worm egg counts by > 85% with the higher dose giving an earlier response to treatment. In experiment 2, faecal worm egg counts at 4 and 6 weeks were reduced by more than 90% in the COWP treated lambs and worm numbers were 54% lower after 6 weeks when all remaining untreated lambs had to be treated for haemonchosis. Mean faecal worm egg counts in the COWP lambs remained below 3500 epg and clinical disease did not develop in the majority of lambs before the end of the experiment at 10 weeks. Treatment with COWPs appears to have the potential to reduce establishment and worm fecundity of Haemonchus spp for an extended period and may offer livestock producers a supplementary means of reducing larval contamination of pasture particularly in areas where anthelmintic resistance is a problem and copper supplementation is likely to be beneficial.
Non-linear Multidimensional Optimization for use in Wire Scanner Fitting
NASA Astrophysics Data System (ADS)
Henderson, Alyssa; Terzic, Balsa; Hofler, Alicia; Center Advanced Studies of Accelerators Collaboration
2014-03-01
To ensure experiment efficiency and quality from the Continuous Electron Beam Accelerator at Jefferson Lab, beam energy, size, and position must be measured. Wire scanners are devices inserted into the beamline to produce measurements which are used to obtain beam properties. Extracting physical information from the wire scanner measurements begins by fitting Gaussian curves to the data. This study focuses on optimizing and automating this curve-fitting procedure. We use a hybrid approach combining the efficiency of Newton Conjugate Gradient (NCG) method with the global convergence of three nature-inspired (NI) optimization approaches: genetic algorithm, differential evolution, and particle-swarm. In this Python-implemented approach, augmenting the locally-convergent NCG with one of the globally-convergent methods ensures the quality, robustness, and automation of curve-fitting. After comparing the methods, we establish that given an initial data-derived guess, each finds a solution with the same chi-square- a measurement of the agreement of the fit to the data. NCG is the fastest method, so it is the first to attempt data-fitting. The curve-fitting procedure escalates to one of the globally-convergent NI methods only if NCG fails, thereby ensuring a successful fit. This method allows for the most optimal signal fit and can be easily applied to similar problems.
Le Vu, B; Boucher, S
2014-10-01
In 2013, about 6000 patients were treated with brachytherapy, the number diminishing by 2.6% per year since 2008. Prostate, breast and gynecological cancers are the most common types of cancers. Since 2008, the number of brachytherapy facilities has decreased by 18%. In medicoeconomic terms, brachytherapy faces many problems: the coding system is outdated; brachytherapy treatments cost as much as internal radiation; fees do not cover costs; since iridium wire has disappeared from the market, the technique will be transferred to more expensive high-speed or pulse dose rates. The French financing grid based on the national study of costs lags behind changes in such treatments and in the best of cases, hospitals resorting to alternatives such as in-hospital brachytherapy are funded at 46% of their additional costs. Brachytherapy is a reference technique. With intense pressure on hospital pricing, financing brachytherapy facilities will become even more problematic as a consequence of the disappearance of iridium 192 wires. The case of brachytherapy illustrates the limits of the French financing system and raises serious doubts as to its responsiveness. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuszynski, Jack A.; Woolf, Nancy
This chapter provides an introduction to the rest of the book, which has a multidisciplinary approach to the physics of consciousness. We summarize the various contributions and present our own point of view, which is that there are some deficiencies in defining higher-order consciousness in strict terms of classic physics. We favor a proposal that considers some aspects of quantum-mechanical operations among molecules involved with neurotransmission and mechanical transport of synaptic proteins. In our view, the wiring of the brain is not as complex, and certainly not as integrated, as commonly assumed. Instead, the wiring pattern redundantly obeys a few general principles focused on high resolution rather than crossmodal integration. Basing cognitive functions, such as higher-order consciousness, solely on electrophysiological responses in neural networks thus wired may not suffice. On the other hand, coherent quantum computing, executed by tubulins, the protein subunits of microtubules, may exert en masse influences over the transport of many receptor and scaffolding proteins to various activated synapses, thereby accounting for the unity of conscious experience. We discuss the potential problems of quantum computing, such as decoherence, and also present counterarguments, as well as recent empirical results consistent with the notion that quantum computing in the interiors of neurons, in particular, within the interiors of dendrites may indeed be possible.
Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing
NASA Astrophysics Data System (ADS)
Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.
2000-06-01
The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.
2008-01-04
KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, Bob Arp, an aerospace technician with the United Launch Alliance, inserts a wire from an electrical harness onto the pin of a replacement feed-through connector during preparations to solder the pins to the socket of the connector. The connector will be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technician performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and was specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett
2008-01-04
KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, Kevin Wyckoff, an aerospace technician with the United Launch Alliance, examines an electrical wiring harness. The harness will be inserted into a replacement feed-through connector during preparations to solder the pins to the socket of the connector. The connector will later be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technician performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and was specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett
Kwon, Young Ho; Kwon, Se Hwan; Oh, Joo Hyeong; Jeong, Kyung Hwan; Lee, Tae Won
2014-06-01
To assess the efficacy of fluoroscopic guide wire manipulation in patients with malfunctioning peritoneal dialysis (PD) catheters that were initially placed by interventional radiologists under fluoroscopic guidance. From January 2002 to April 2012, 52 patients (mean age, 52.8 y ± 2.10s; range, 12-79 y) with malfunctioning PD catheters in whom fluoroscopic guide wire manipulation was performed were retrospectively reviewed. Technical success, clinical success, and complications were evaluated. Technical success was defined as fluoroscopically verified, successful catheter repositioning and adequate dialysate drainage after the procedure. Clinical success was defined as maintenance of PD catheter function for at least 30 days after the manipulation. During the study period, 72 manipulations (68 initial manipulations and 4 remanipulations) for malfunctioning PD catheters were done. The technical success rate was 74% (50 of 68) for initial manipulations and 75% (3 of 4) for remanipulations. The overall clinical success rate was 47% (32 of 68) for initial manipulations and 0% (0 of 4) for remanipulations. The primary causes of catheter malfunction were extraluminal obstruction by omental wrapping or adhesions in 43 of 68 cases (63.2%) and catheter malposition in 25 of 68 (36.8%) cases. There were no procedure-related major complications. Fluoroscopic guide wire manipulation in patients with malfunctioning PD catheters initially placed by interventional radiologists is a simple procedure, an effective way of prolonging PD catheter life, and a recommended procedure before invasive surgical procedures. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.
Current concepts review: Fractures of the patella
Gwinner, Clemens; Märdian, Sven; Schwabe, Philipp; Schaser, Klaus-D.; Krapohl, Björn Dirk; Jung, Tobias M.
2016-01-01
Fractures of the patella account for about 1% of all skeletal injuries and can lead to profound impairment due to its crucial function in the extensor mechanism of the knee. Diagnosis is based on the injury mechanism, physical examination and radiological findings. While the clinical diagnosis is often distinct, there are numerous treatment options available. The type of treatment as well as the optimum timing of surgical intervention depends on the underlying fracture type, the associated soft tissue damage, patient factors (i.e. age, bone quality, activity level and compliance) and the stability of the extensor mechanism. Regardless of the treatment method an early rehabilitation is recommended in order to avoid contractures of the knee joint capsule and cartilage degeneration. For non-displaced and dislocated non-comminuted transverse patellar fractures (2-part) modified anterior tension band wiring is the treatment of choice and can be combined – due to its biomechanical superiority – with cannulated screw fixation. In severe comminuted fractures, open reduction and fixation with small fragment screws or new angular stable plates for anatomic restoration of the retropatellar surface and extension mechanism results in best outcome. Additional circular cerclage wiring using either typical metal cerclage wires or resorbable PDS/non-resorbable FiberWires increases fixation stability and decreases risk for re-dislocation. Distal avulsion fractures should be fixed with small fragment screws and should be protected by a transtibial McLaughlin cerclage. Partial or complete patellectomy should be regarded only as a very rare salvage operation due to its severe functional impairment. PMID:26816667
NASA Astrophysics Data System (ADS)
Sai Anuhya, Danam; Gupta, Ashutosh; Nayan, Niraj; Narayana Murty, S. V. S.; Manna, R.; Sastry, G. V. S.
2014-08-01
Al-Cu-Mg alloys are extensively used for riveting applications in aerospace industries due to their relatively high shear strength coupled with high plasticity. The significant advantage of using V65 aluminum alloy ((Al-4Cu-0.2Mg) for rivet application also stems from its significantly slower natural aging kinetics, which gives operational flexibility to carryout riveting operation even after 4 days of solution heat treatment, in contrast to its equivalent alloy AA2024.Rivets are usually made by cold heading of wire rods. In order to form a defect free rivet head, grain size control in wire rods is essential at each and every stage of processing right from casting onwards upto the final wire drawing stage. Wire drawing is carried out at room temperature to reduce diameter as well as impart good surface finish. In the present study, different microstructures in V65 alloy bars were produced by rolling at different temperatures (room temperature to 523K) and subsequently deformed by equal channel angular pressing (ECAP) at 423K upto an equivalent strain of 7. ECAP was carried out to study the effect of initial microstructure on grain refinement and degree of deformation on the evolution of ultrafine grain structure. The refinement of V65 alloy by ECAP is significantly influenced by Initial microstructure but amount of deformation strongly affects the evolution processes as revealed by optical microscopy and transmission electron microscopy.
Rubartelli, Paolo; Brusa, Giulia; Arrigo, Alessandro; Abbadessa, Francesco; Giachero, Corinna; Vischi, Massimo; Ricca, Maria Maddalena; Ottonello, Gian Andrea
2006-08-01
To compare the efficacy of 2 emboli protection devices in preventing embolization during carotid artery stenting (CAS). The GuardWire distal occlusion system (n=19) and the distal FilterWire EX (n=12) were compared in 31 consecutive patients (24 men; mean age 71+/-10 years) monitored with transcranial Doppler for microembolic signals before, during, and after CAS. The choice of the protection device was based on availability and on the patency of the contralateral carotid artery. The baseline characteristics were similar in the patients treated under protection from either device. Placement and retrieval of the protection device, stenting, and postdilation were technically successful in all patients. Two patients suffered a transient ischemic attack shortly after the procedure; no other adverse cardiovascular events occurred at 30 days. Compared to the GuardWire, the use of the FilterWire was associated with more microembolic signals during stent deployment (77.4+/-33.5 versus 1.07+/-1.94, p<0.0001), postdilation (63.9+/-21.0 versus 2.06+/-2.58, p<0.0001), and retrieval of the protection device (21.4+/-15.4 versus 10.9+/-8.3, p=0.051). Consequently, the total amount of microembolic signals during the procedure was higher when the filter device was employed (183.0+/-42.1 versus 31.7+/-12.0, p<0.0001). The distal occlusion device appears to be more effective than the filter in reducing distal embolization detected by transcranial Doppler monitoring.
30 CFR 77.1430 - Wire ropes; scope.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...
49 CFR 234.231 - Fouling wires.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...
30 CFR 77.1430 - Wire ropes; scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...
49 CFR 234.231 - Fouling wires.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... Wire Strand from Mexico: Rescission of Antidumping Duty Administrative Review AGENCY: Import... request an administrative review of the antidumping duty order on prestressed concrete steel wire strand... received a timely request from American Spring Wire Corp., Insteel Wire Products Co., and Sumiden Wire...
29 CFR 1926.1413 - Wire rope-inspection.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...
29 CFR 1926.1413 - Wire rope-inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...
29 CFR 1926.1413 - Wire rope-inspection.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...
International space station wire program
NASA Technical Reports Server (NTRS)
May, Todd
1995-01-01
Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.
U.S. Navy Wire-Rope Handbook. Volume 2. Wire-Rope Analysis and Design Data
1976-01-01
beneficial from the standpoint of wire - bending stress. How- ever, there is a design trade-off here in that the smaller L/d becomes, the lower are the...wires of a rope, it is first necessary to determine the radii of curvature of the wires prior to and after bending the rope. The wire - bending stress can... wire bending stress. 4.3. CONTACT STRESSES Contact stresses in a wire rope are one of the most important determinants of its fatigue life and are, by far
Prevalence of information stored in arrays of magnetic nanowires against external fields
NASA Astrophysics Data System (ADS)
Ceballos, D.; Cisternas, E.; Vogel, E. E.; Allende, S.
2018-04-01
Arrays of magnetic nanowires in porous alumina can be used to store information inscribed on the system by orienting the magnetization of selected wires pointing in a desired direction, so symbols can be read as ferromagnetic sectors. However, this information is subject to aging and the stored information could be gradually lost. We investigate here two mechanisms proposed to improve the prevalence of the stored information: opposite ferromagnetic band at the center of the symbol and bi-segmented nanowires acting as two layers of nanowires storing the same information. Both mechanisms prove to increase resistance to the action of external magnetic fields for the case of Ni wires in a geometry compatible with actually grown nanowires. Advantages and disadvantages of these mechanisms are discussed.
NASA Astrophysics Data System (ADS)
Williams, R. J. P.
Electron transfer is one of the key reactions of biology not just in catalysis of oxidation/reduction reactions but in the conversion of sources of energy such as light to usable form for chemical transformations. There are then two intriguing problems. What is the nature of the matrix in which electrons flow in a biological cell after the initial charge separation due for example to the absorption of light. Here we are examining biological structures similar to man's electronic wires and the construction must be of low resistance in what are apparently insulators - organic polymers. It has been found that the electronic conduction system is largely made from metallo-proteins associated with lipid membranes. We understand much about these biological wires today. The second problem concerns the conversion of the energy captured from the light into usable chemical form. The major synthetic step in the production of biological polymers, including proteins, DNA, RNA, polysaccharides and fats, is condensation, i.e. the removal of water in the formation of amides, esters and so on. Now these condensation reactions are driven in biology by using a drying agent in water, namely the anhydride, pyrophosphate, in a special compound ATP, adenosine triphosphate. The central problem is to discover exactly how the flow of electrons can be related to the synthesis of (bound) pyrophosphate. (In a thermodynamic sense pyrophosphate is a water soluble kinetically stable drying agent comparable with solid P2O5.) In the biological systems the connection between these different classes of reaction, electron transfer and condensation, is known to be via the production of an energized gradient of protons across the biological membrane which arises from the flow of electrons across the same membrane in the electron transport wires of biology. However we do not understand thoroughly the steps which lead from electron flow in a membrane to proton gradients in that membrane, i.e. electron/proton coupling. Again we do not understand thoroughly how subsequently the proton gradient across a membrane makes ATP, pyrophosphate. Today there is good experimental evidence as to the likely answers in principle. These analyse the coupling devices in mechanical terms. In this article I describe at first the 'wires' of biology, uncoupled simple electron flow, and then go on to the ways in which electron flow could be transduced by mechanical devices, also proteins, into proton gradients and then ATP. This will be termed coupled electron flow. The objective of the article is to stimulate participation by physical chemists in the further description of biological energy capture from light or the oxidation of hydrocarbons to a form suitable for driving chemical syntheses in a controlled manner.
Forming Refractory Insulation On Copper Wire
NASA Technical Reports Server (NTRS)
Setlock, J.; Roberts, G.
1995-01-01
Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.
30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...
75 FR 36678 - Prestressed Concrete Steel Wire Strand From China; Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Concrete Steel Wire Strand From China; Determinations On the basis of the record \\1\\ developed in the... prestressed concrete steel wire strand (PC strand), provided for in subheading 7312.10.30 of the Harmonized... Spring Wire Corp. (Bedford Heights, OH); Insteel Wire Products Co. (Mt. Airy, NC); and Sumiden Wire...
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation are...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... Wire From the People's Republic of China and Mexico: Initiation of Antidumping Duty Investigations...'') received petitions concerning imports of galvanized steel wire from the PRC and Mexico filed in proper form on behalf of Davis Wire Corporation (``Davis Wire''), Johnstown Wire Technologies, Inc., Mid-South...
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation are...
30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...
49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...
49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...
Plasma arc torch with coaxial wire feed
Hooper, Frederick M
2002-01-01
A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.
Wire ablation dynamics model and its application to imploding wire arrays of different geometries.
Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C
2012-10-01
The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.
Method of fabricating a homogeneous wire of inter-metallic alloy
Ohriner, Evan Keith; Blue, Craig Alan
2001-01-01
A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.
NASA Astrophysics Data System (ADS)
Thomas, Syju; Varghese, Neson; Rahul, S.; Devadas, K. M.; Vinod, K.; Syamaprasad, U.
2012-12-01
The effect of bending strain on current carrying capacity of MgB2 multifilamentary wires was studied with 4, 8 and 16 multifilamentary wires. The critical current density (JC) of straight wires and bent wires with 5, 10, and 15 cm diameter was measured. Both annealed & bent and bent & annealed wires were used for measurement. The JC of annealed & bent wires were found to decrease with decrease in bent diameter and the rate of degradation of JC decreased with increasing number of filaments, while bent & annealed wires almost retained its JC at all diameters studied.
Thin-Wire Modeling Techniques Applied to Antenna Analysis.
1974-10-11
Ol- MULT11 CRN LOOP ANTENNA ... 30 2.4.1 Balanced vs unbalanced operation ... 3 1 2.4.2 Horizontal vs vertical configuration ... 33 3.0...of the Ml A-l Mimloop ... 28 Hl; multiturn loop antenna of Ohio State University ...31 Configurations ot balanced and unbalanced MTLs ... 32...4. Evaluation of Multiturn Loop Antenna In each example the specific project is outlined and the antenna analysis problems of particular interest
NASA Astrophysics Data System (ADS)
Medgyesimitschang, L. N.; Putnam, J. M.
1982-05-01
A general analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with off-surface (wire) and aperture radiators on finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins and aircraft fuselages.
Precision wire feeder for small diameter wire
Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.
1992-01-01
A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.
Precision wire feeder for small diameter wire
Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.
1992-08-11
A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.
MISSE-6 Post-Flight Examination, Disassembly and Analysis Results
2010-12-21
Wiring, QCM wiring, and Rotor/ Sensor wiring. The data wiring for the Boeing experiments including QCMs and Rotor/ Sensor were labeled, removed, and...for a QCM In addition, Q9 was properly wired into datalogger D8, and the rotor sensor was properly wired into datalogger D9. Datalogger D9 was a...Wiring. Appendix B – Time-Temperature Results from Thermal Sensors distributed on MISSE-6A and MISSE-6B Appendix C - Atomic Oxygen Calculation
NASA Technical Reports Server (NTRS)
1972-01-01
The practical use of small-gage round wire for electrical wiring in manned air and space vehicle environments is discussed. The investigation consisted on a study of wire construction and candidate wire harness concepts, fabrication of small-gage wire harnesses, and verification of promising configurations by laboratory evaluation. The wire constructions selected for harness fabrication are described. Results of the laboratory evaluation are included.
Linear and nonlinear evolution of azimuthal clumping instabilities in a Z-pinch wire array
Tang, Wilkin; Strickler, T. S.; Lau, Y. Y.; ...
2007-01-31
This study presents an analytic theory on the linear and nonlinear evolution of the most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array. In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction of the wires which carry current in the same direction. The analytic solution displays two regimes, where the collective interactions of all wires dominate, versus where the interaction of the neighboring, single wire dominates. This solution was corroborated by two vastly different numerical codes which were used to simulate arrays with both high wire numbers (upmore » to 600) and low wire number (8). All solutions show that azimuthal clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, absence of azimuthal clumping of wires in comparison with the wires’ radial motion may imply substantial lack of wire currents. Finally, while the present theory and simulations have ignored the plasma corona and axial variations, it is argued that their effects, and the complete account of the three-dimensional feature of the pi-mode, together with a scaling study of the wire number, may be expediently simulated by using only one single wire in an annular wedge with a reflection condition imposed on the wedge’s boundary.« less
The HayWired Scenario - How Can the San Francisco Bay Region Bounce Back Better?
NASA Astrophysics Data System (ADS)
Hudnut, K. W.; Wein, A. M.; Cox, D. A.; Perry, S. C.; Porter, K.; Johnson, L. A.; Strauss, J. A.
2017-12-01
The HayWired scenario is a hypothetical yet scientifically realistic and quantitative depiction of a moment magnitude (Mw) 7.0 earthquake occurring on April 18, 2018, at 4:18 p.m. on the Hayward Fault in the east bay part of the San Francisco Bay area, California. The hypothetical earthquake has its epicenter in Oakland, and strong ground shaking from the scenario causes a wide range of severe impacts throughout the greater bay region. In the scenario, the Hayward Fault is ruptured along its length for 83 kilometers (about 52 miles). Building on a decades-long series of efforts to reduce earthquake risk in the SF Bay area, the hypothetical HayWired earthquake is used to examine the well-known earthquake hazard of the Hayward Fault, with a focus on newly emerging vulnerabilities. After a major earthquake disaster, reestablishing water services and food-supply chains are, of course, top priorities. However, problems associated with telecommunication outages or "network congestion" will increase and become more urgent as the bay region deepens its reliance on the "Internet of Things." Communications at all levels are crucial during incident response following an earthquake. Damage to critical facilities (such as power plants) from earthquake shaking and to electrical and telecommunications wires and fiber-optic cables that are severed where they cross a fault rupture can trigger cascading Internet and telecommunications outages, and restoring these services is crucially important for emergency-response coordination. Without good communications, emergency-response efficiency is reduced, and as a result, life-saving response functions can be compromised. For these reasons, the name HayWired was chosen for this scenario to emphasize the need to examine our interconnectedness and reliance on telecommunications and other lifelines (such as water and electricity). Earthquake risk in the SF Bay area has been greatly reduced as a result of previous concerted efforts; for example, a roughly $50 billion investment in strengthening infrastructure was motivated in large part by the 1989 magnitude (M) 6.9 Loma Prieta earthquake. The earthquake hazard from the Hayward Fault remains high, however, and work still needs to be done to ensure that the region is ready for an earthquake like that in the HayWired scenario.
In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.
Weis, J C; Cunningham, B W; Kanayama, M; Parker, L; McAfee, P C
1996-09-15
The biomechanical stability of six different methods of cervical spine stabilization, three using multistrand cables, were evaluated in a bovine model. To quantify and compare the in vitro biomechanical properties of multistrand cables used for posterior cervical wiring to standard cervical fixation techniques. Fixation of the posterior cervical spine with monofilament stainless steel wire is a proven technique for stabilization of the cervical spine. Recently, multistrand braided cables have been used as a substitute for monofilament stainless steel wires. These cables, made of stainless steel, titanium, or polyethylene, are reported to be stronger, more flexible, and fatigue resistant than are monofilament wire based on mechanical testing. However, no in vitro biomechanical studies have been performed testing a standard posterior cervical wiring technique using multistrand cables. Thirty-six fresh frozen cervical calf spines consistent in size and age were mounted and fixed rigidly to isolate the C4-C5 motion segment. Six different reconstruction techniques were evaluated for Rogers' posterior cervical wiring technique using: 1) 20-gauge stainless steel monofilament wire, 2) stainless steel cable, 3) titanium cable, 4) polyethylene cables, 5) anterior locking plate construct with interbody graft, and 6) posterior plate construct. Six cervical spines were included in each group (n = 6), with each specimen statically evaluated under three stability conditions: 1) intact, 2) reconstructed, and 3) postfatigue. The instability model created before the reconstruction consisted of a distractive flexion Stage 3 injury at C4-C5. Nondestructive static biomechanical testing, performed on an material testing machine (MTS 858 Bionix test system, Minneapolis, MN), included axial compression, axial rotation, flexion-extension, and lateral bending. After reconstruction and static analysis, the specimens were fatigued for 1500 cycles and then statically retested. Data analysis included normalization of the reconstructed and postfatigue data to the intact condition. The calculated static parameters included operative functional unit stiffness and range of motion. Posterior cervical reconstruction with stainless steel monofilament wire proved inadequate under fatigue testing. Two of the six specimens failed with fatigue, and this construct permitted the greatest degree of flexion-extension motion after fatigue in comparison with all other constructs (P < 0.05). There were no significant differences in flexural stiffness or range of motion between stainless steel, titanium, or polyethylene cable constructs before or after fatigue testing. The posterior cervical plate constructs were the stiffest constructs under flexion, extension, and lateral bending modes, before and after fatigue testing (P < 0.05). Multistrand cables were superior to monofilament wire with fatigue testing using an in vitro calf cervical spine model. There were no failures or detectable differences in elongation after fatigue testing between the stainless steel, titanium, and polyethylene cables, as shown by the flexion-extension range of motion. The posterior cervical plate construct offered the greatest stability compared with all other constructs.
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...
47 CFR 76.804 - Disposition of home run wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... DEPARTMENT OF COMMERCE International Trade Administration [A-201-840] Galvanized Steel Wire From... determines that galvanized steel wire (galvanized wire) from Mexico is being, or is likely to be, sold in the... investigation on galvanized wire from Mexico. See Galvanized Steel Wire from the People's Republic of China and...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cable and wire facilities expenses-Account 6410... Operating Expenses and Taxes Cable and Wire Facilities Expenses § 36.341 Cable and wire facilities expenses... network cable, aerial wire, and conduit systems. (b) The general method of separating cable and wire...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... Steel Wire Rod From Mexico: Affirmative Preliminary Determination of Circumvention of the Antidumping.... SUMMARY: We preliminarily determine that carbon and certain alloy steel wire rod (wire rod) with an actual.... de C.V. (Deacero) is circumventing the antidumping duty order on wire rod from Mexico (Wire Rod Order...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Cable and wire facilities expenses-Account 6410... Operating Expenses and Taxes Cable and Wire Facilities Expenses § 36.341 Cable and wire facilities expenses... network cable, aerial wire, and conduit systems. (b) The general method of separating cable and wire...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... the compliance times specified, unless already done. Installation of New Relay and Wiring Bundle (g... certain wiring changes, installing a new relay and necessary wiring in the cabin air conditioning and... for changing the wire bundle route and wiring, installing a new relay and applicable wiring in the...
Babu, K Pradeep; Keerthi, V Naga; Madathody, Deepika; Prasanna, A Laxmi; Gopinath, Vidhya; Kumar, M Senthil; Kumar, A Nanda
2016-05-01
Recent metallurgical research and advancement in material science has benefited orthodontists in the selection of an appropriate wire size and alloy type, which is necessary to provide an optimum and predictable treatment results. The purpose of the study was to clinically evaluate and compare the surface characteristics of 16 x 22 stainless steel, Titanium molybdenum alloy, timolium, and titanium-niobium before and after placing them in a patient's mouth for 3 months using a scanning electron microscope (SEM). The total sample size was 40, which were divided into four groups (group 1 - stainless steel wires, 10 samples, group 2 - TMA wires, 10 samples, group 3 - timolium wires, 10 samples, and group 4 - titanium-niobium wires, 10 samples), and these were further subdivided into 5 each. The first subgroup of five samples was placed in the patient's mouth and was evaluated under SEM, and another subgroup of five samples was directly subjected to the SEM. Scanning electron microscopic evaluation of surface characteristics of unused 16 x 22 rectangular stainless steel wire under 500 x magnification showed an overall smooth surface. Stainless steel wire samples placed in the patient's mouth showed black hazy patches, which may be interoperated as areas of stress. TMA unused wires showed multiple small voids of areas and small craters with fewer elevated regions. The TMA wire samples placed in the patient's mouth showed black hazy patches and prominent ridges, making the wire rougher. Timolium unused archwires showed heavy roughness and voids, whereas wires tested in the patient's mouth showed homogeneous distribution of deep cracks and craters. Unused titanium-niobium archwires showed uniform prominent striations and ridges with occasional voids, whereas wires used in the patient's mouth showed prominent huge voids that could be interpreted as maximum stress areas. Stainless steel (group 1) used and unused wires showed smooth surface characteristics when compared with all the other three groups followed by timolium, which was superior to titanium-niobium wires and TMA wires. Timolium wires are superior to titanium-niobium wires and TMA wires.
Magnet-wire wrapping tool for integrated circuits
NASA Technical Reports Server (NTRS)
Takahashi, T. H.
1972-01-01
Wire-dispensing tool which resembles mechanical pencil is used to wrap magnet wire around integrated circuit terminals uniformly and securely without damaging insulative coating on wire. Tool is hand-held and easily manipulated to execute wire wrapping movements.
Frequency response of a thermocouple wire: Effects of axial conduction
NASA Technical Reports Server (NTRS)
Forney, L. J.; Fralick, G. C.
1990-01-01
Theoretical expressions are derived for the steady-state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a uniform thermocouple wire and a nonuniform wire with unequal material properties and wire diameters across the junction. For the case of a uniform wire, the amplitude ratio and phase angle compare favorably with the series solution of Scadron and Warshawsky (1952) except near the ends of the wire. For the case of a non-uniform wire, the amplitude ratio at low frequency omega yields 0 agrees with the results of Scadron and Warshawsky for a steady-state temperature distribution. Moreover, the frequency response for a non-uniform wire in the limit of infinite length l yields infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties.
Photovoltaic system with improved AC connections and method of making same
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony
2018-02-13
An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.
Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires
NASA Astrophysics Data System (ADS)
Choi, Eunsoo; Nam, Tae-Hyun; Yoon, Soon-Jong; Cho, Sun-Kyu; Park, Joonam
2010-05-01
This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mm×300 mm (phi×L). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.
Temperature Rise in Kirschner Wires Inserted Using Two Drilling Methods: Forward and Oscillation.
Anderson, Scott Richard; Inceoglu, Serkan; Wongworawat, Montri D
2017-05-01
Kirschner wires (K-wires) are commonly used in orthopedic surgery. However, the loosening of the pins can lead to delayed or improper healing or infection. Wire loosening can occur by thermal necrosis that occurs due to heat produced during wire insertion. Although the parameters that affect temperature rise in cortical bone during wire insertion and drilling have been studied, the effect of drilling mode (oscillation versus forward) is unknown. The purpose of this study was to compare the temperature changes occurring in cortical bone during wire insertions by oscillating and forward drills. Our hypothesis is that oscillation drilling would produce less heat compared with forward drilling in K-wire insertion with 2 commonly used wire diameters. We drilled K-wires in a pig metacarpal model and measured the temperature rise between forward and oscillation drilling modes using diamond-tipped 0.062- and 0.045-inch-diameter K-wires. There were 20 holes drilled for each group (n = 20). The average temperature rise using the 0.062-inch K-wire under forward and oscillation insertion was 14.0 ± 5.5°C and 8.8 ± 2.6°C, respectively. For the 0.045-inch K-wire, under forward and oscillation insertion, the average temperature rise was 11.4 ± 2.6°C and 7.1 ± 1.9°C, respectively. The effects of the drilling mode and wire diameter on temperature rise were significant ( P < .05). In conclusion, the oscillation of K-wires during insertion causes a lower temperature rise when compared with forward drilling.
Assessing human exposure to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal- exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Wiring codes and measured magnetic fields (but not electric fields) are associated weakly. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at-home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are determinants of human health effects. PMID:8206021
ERIC Educational Resources Information Center
Kaltwasser, Stan; Flowers, Gary; Blasingame, Don
Basic Wiring, first in a series of three wiring publications, serves as the foundation for students enrolled in a wiring program. It is a prerequisite to Commercial and Industrial Wiring or Residential Wiring. Instructional materials include a teacher edition, student guide, and two student workbooks. The teacher edition begins with introductory…
NASA Technical Reports Server (NTRS)
Solimani, Jason A.; Rosanova, Santino
2015-01-01
Thermocouples require two thin wires to be routed out of the spacecraft to connect to the ground support equipment used to monitor and record the temperature data. This large number of wires that exit the observatory complicates integration and creates an undesirable heat path during testing. These wires exiting the spacecraft need to be characterized as a thermal short that will not exist during flight. To minimize complexity and reduce thermal variables from these ground support equipment (GSE) wires, MMS pursued a hybrid path for temperature monitoring, utilizing thermocouples and digital 1-wire temperature sensors. Digital 1-wire sensors can greatly reduce harness mass, length and complexity as they can be spliced together. For MMS, 350 digital 1-wire sensors were installed on the spacecraft with only 18 wires exiting as opposed to a potential 700 thermocouple wires. Digital 1-wire sensors had not been used in such a large scale at NASAGSFC prior to the MMS mission. During the MMS thermal vacuum testing a lessons learned matrix was formulated that will assist future integration of 1-wires into thermal testing and one day into flight.
Behavior of NiTiNb SMA wires under recovery stress or prestressing.
Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong
2012-01-05
The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.
Electromagnetic scattering by a straight thin wire
NASA Technical Reports Server (NTRS)
Shamansky, Harry T.; Dominek, Allen K.; Peters, Leon, Jr.
1989-01-01
The traveling-wave energy, which multiply diffracts on a straight thin wire, is represented as a sum of terms, each with a distinct physical meaning, that can be individually examined in the time domain. Expressions for each scattering mechanism on a straight thin wire are cast in the form of four basic electromagnetic wave concepts: diffraction, attachment, launch, and reflection. Using the basic mechanisms from P. Ya. Ufimtsev (1962), each of the scattering mechanisms is included into the total scattered field for the straight thin wire. Scattering as a function of angle and frequency is then compared to the moment-method solution. These analytic expressions are then extended to a lossy wire with a simple approximate modification using the propagation velocity on the wire as derived from the Sommerfeld wave on a straight lossy wire. Both the perfectly conducting and lossy wire solutions are compared to moment-method results, and excellent agreement is found. As is common with asymptotic solutions, when the electrical length of wire is smaller than 0.2 lambda the results lose accuracy. The expressions modified to approximate the scattering for the lossy thin wire yield excellent agreement even for lossy wires where the wire radius is on the order of skin depth.
Patient care in a technological age.
Dragon, Natalie
2006-07-01
In this electronically wired world of the 21 st century, the health care system has tapped into technology available at the touch of a button. Scientific discoveries, high-tech equipment, electronic medical records, Smarticards, and long distance diagnosis using telehealth technology have all been embraced. But Natalie Dragon asks, what are the implications for nurses and the outcomes on patient care?
Young Canadians in a Wired World: How Canadian Kids Are Using the Internet.
ERIC Educational Resources Information Center
Taylor, Anne
2001-01-01
Canadian surveys of approximately 1,000 parents and 5,600 students aged 9-17 revealed student behaviors related to surfing the Web and engaging in online communication; differences in parent and student perceptions of students' Internet activities and the extent of parental supervision; and students' access to pornographic and violent Web sites.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Zhonghua, E-mail: z.sun@curtin.edu.a; Chaichana, Thanapong
The purpose of the study was to investigate the hemodynamic effect of stent struts (wires) on renal arteries in patients with abdominal aortic aneurysms (AAAs) treated with suprarenal stent-grafts. Two sample patients with AAA undergoing multislice CT angiography pre- and postsuprarenal fixation of stent-grafts were selected for inclusion in the study. Eight juxtarenal models focusing on the renal arteries were generated from the multislice CT datasets. Four types of configurations of stent wires crossing the renal artery ostium were simulated in the segmented aorta models: a single wire crossing centrally, a single wire crossing peripherally, a V-shaped wire crossing centrally,more » and multiple wires crossing peripherally. The blood flow pattern, flow velocity, wall pressure, and wall shear stress at the renal arteries pre- and post-stent-grafting were analyzed and compared using a two-way fluid structure interaction analysis. The stent wire thickness was simulated with a diameter of 0.4, 1.0, and 2.0 mm, and hemodynamic analysis was performed at different cardiac cycles. The interference of stent wires with renal blood flow was mainly determined by the thickness of stent wires and the type of configuration of stent wires crossing the renal ostium. The flow velocity was reduced by 20-30% in most of the situations when the stent wire thickness increased to 1.0 and 2.0 mm. Of the four types of configuration, the single wire crossing centrally resulted in the highest reduction of flow velocity, ranging from 21% to 28.9% among three different wire thicknesses. Wall shear stress was also dependent on the wire thickness, which decreased significantly when the wire thickness reached 1.0 and 2.0 mm. In conclusion, our preliminary study showed that the hemodynamic effect of suprarenal stent wires in patients with AAA treated with suprarenal stent-grafts was determined by the thickness of suprarenal stent wires. Research findings in our study are useful for follow-up of patients treated with suprarenal stent-grafts to ensure long-term safety of the suprarenal fixation.« less
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
49 CFR 236.723 - Circuit, double wire; line.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, double wire; line. 236.723 Section 236... § 236.723 Circuit, double wire; line. An electric circuit not employing a common return wire; a circuit formed by individual wires throughout. ...
49 CFR 236.723 - Circuit, double wire; line.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, double wire; line. 236.723 Section 236... § 236.723 Circuit, double wire; line. An electric circuit not employing a common return wire; a circuit formed by individual wires throughout. ...
High strength, wire-reinforced electroformed structures
NASA Technical Reports Server (NTRS)
Kazaroff, J. M.; Duscha, R. A.; Mccandless, L. C.
1974-01-01
Using half-round reinforcing wires, electrodeposited matrix metal readily fills spaces between wires in intimate contact with wires and without voids. Procedure combines advantages of electroforming with high-strength of commonly available wire to produce non-welded shell structures for high pressure uses.
Dua, R; Nandlal, B
2004-03-01
The present study was conducted to compare and evaluate the tensile strength of silver soldered joints of stainless steel and cobalt-chromium orthodontic wires with band material. An attempt was made to observe the effect of joint site preparation by incorporation of tack welding and increasing metal to metal surface contact area by flattening an end of the wire prior to soldering along with the regularly used round wires without tack welding. A total of 180 wire specimens were soldered to 180 band specimens. Fifteen samples according to joint site preparation were included for each of the wire groups i.e. Gloria (S.S.), Remanium (S.S.) and Remaloy (Co-Cr) wires of 0.036" in diameter. The findings of the study were suggestive that all three wires may be used for preparing silver soldered joints irrespective of the quality of the wire. However, when subjecting the wire to joint site preparation, Gloria (S.S.) wire showed less tensile strength as compared to Remanium and Remaloy.
Method and apparatus for laying wire arrays
Horowitz, Seymour M.; Nesbitt, Dale D.
1986-01-01
Wire arrays (11) having a continuous wire (12) which is formed into a predetermined pattern and adhered to a backing material or substrate (13) are fabricated by applying adhesive material (16a, 16b) along opposite edge portions (17, 18) of the substrate, positioning a row of winding spools (21) along each of the edge portions and repeatedly extending the wire between and around successive spools at the opposite edge portions. The wound wire is then traveled along each spool toward the substrate and into contact with the adhesive. The spools are then removed and a coating of hardenable material (54) is applied to secure the wound wire to the substrate. Tension in the wire is relieved prior to contact of the wire with the adhesive and a small amount of slack is introduced into the wire before the final coating step. Mechanism (32) is provided for lifting the spools away from the substrate without disturbing the wound wire. The method and apparatus enable manufacture of precisely configured wire arrays without complex or costly equipment and do not require structural alterations in the substrate for the purpose of accommodating to fabrication equipment.
Splicing Wires Permanently With Explosives
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Kushnick, Anne C.
1990-01-01
Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.
29 CFR 1919.24 - Limitations on use of wire rope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... number of visible broken wires exceeds 10 percent of the total number of wires, or if the rope shows... 29 Labor 7 2012-07-01 2012-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a...
29 CFR 1919.24 - Limitations on use of wire rope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... number of visible broken wires exceeds 10 percent of the total number of wires, or if the rope shows... 29 Labor 7 2013-07-01 2013-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a...
29 CFR 1919.24 - Limitations on use of wire rope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... number of visible broken wires exceeds 10 percent of the total number of wires, or if the rope shows... 29 Labor 7 2014-07-01 2014-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a...
Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad
2015-01-01
This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations. (e) The term strip, sheet, and miscellaneous products means steel products other than wire products and fasteners. (f) The term wire products and fasteners means steel wire, products manufactured from steel wire, and steel fasteners manufactured from steel wire or other steel shapes. ...
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operations. (e) The term strip, sheet, and miscellaneous products means steel products other than wire products and fasteners. (f) The term wire products and fasteners means steel wire, products manufactured from steel wire, and steel fasteners manufactured from steel wire or other steel shapes. ...
ERIC Educational Resources Information Center
Kaltwasser, Stan; And Others
This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…
Spring control of wire harness loops
NASA Technical Reports Server (NTRS)
Curcio, P. J.
1979-01-01
Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.
Tight Placement of Erich Arch Bar While Avoiding Wire Fatigue Failure.
Kirk, Daniel; Whitney, Joseph; Shafer, David; Song, Liansheng
2016-03-01
To determine the number of wire twists needed to acquire ideal Erich arch bar tightness before wire fatigue failure (fracture) in relation to different distances and angles at which different gauge wires are grasped to provide information to improve the efficiency of arch bar application. This study mimicked surgical placement of arch bars with 24- and 26-gauge wires. The number of twists to tightness and failure was evaluated when the wire distance between the arch bar and wire holder tip changed (5 vs 10 mm) and when the degree at which the wire was held relative to the tooth axis was changed (45° vs 90°). A wire shearing test also was used to investigate the fatigability of wires tightened under these same conditions. Wires twisted to tightness, past tightness, and after shearing test movements were visualized with electron microscopy. For 24-gauge wire held at 5 mm, 2.6 to 2.8 twists were needed for wire tightness, with failure after 1.7 to 1.9 twists past tightness; for 24-gauge wire held at 10 mm, 4.4 to 4.9 twists produced tightness, with failure after 2.3 to 2.9 twists past tightness. For 26-gauge wire held at 5 mm, 3.3 to 3.5 twists provided tightness, with 1.6 to 1.8 twists past tightness causing failure; for 26-gauge wire held at 10 mm, 5.1 to 5.5 twists produced tightness, with 3.1 to 3.7 twists past tightness causing failure. At a 45° angle, the wire tightened with fewer twists and showed more resistance to failure with twists past tightness compared with 90° using 24- and 26-gauge wires. In contrast, 24-gauge wire held at a 5-mm distance showed the opposite result, with decreased resistance to failure at the 45° angle. However, the differences were not statistically meaningful. Scanning election microscopy showed no wire fatigue for either angle for 26-gauge wire held at a 5-mm distance and twisted to tightness. After overtightening and oscillation, the 90° angle trials showed fatigue, whereas the 45° angle trials did not. Holding a 24-gauge wire at 45° to the tooth axis is recommended owing to fewer twists to tightness and more resistance to failure. A 5-mm grasping distance is recommended for experienced surgeons owing to fewer twists to tightness, whereas a 10-mm grasping distance is recommended for novice surgeons owing to a greater tolerance for over-twisting before failure. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Wang, Hong-mei; Wang, Bang-kang; Ren, Chao-chao; Bai, Yu-xing
2011-03-01
To investigate the mechanical properties of Ni-Ti wires with direct electric resistance heat treatment (DERHT) method in three-point bending tests. Two superelastic Ni-Ti wires (wire A: Smart SE, wire B: SENTALLOY SE, 0.406 mm × 0.559 mm) and 2 heat-actived Ni-Ti wires (wire C: Smart SM, wire D: L&H TITAN, 0.406 mm × 0.559 mm) were selected. They were heat-treated using the DERHT method by a controlled electric current (6.36 A) applied for different period of time [0 (control), 1.0, 1.5, 2.0, 2.5 seconds). Then, a three-point bending test was performed under controlled temperature (37°C) to examine the relationships between the deflection and the load in the bending of wires. After DERHT treatment, the plateau in the force-deflection curve of superelastic Ni-Ti wires and heat-activated Ni-Ti wires were increased. When the wires were heated for 2.0 seconds and deflected to 1.5 mm, the loading force of A, B, C and D Ni-Ti wires increased from (3.85 ± 0.11), (3.62 ± 0.07), (3.28 ± 0.09), (2.91 ± 0.23) N to (4.33 ± 0.07), (4.07 ± 0.05), (4.52 ± 0.08), (3.27 ± 0.15) N respectively. DERHT method is very convenient for clinical use. It is possible to change the arch form and superelastic force of NiTi wires. The longer the heating time is, the more the superelastic characteristics of the wires are altered.