Science.gov

Sample records for agn active galactic

  1. The softest Einstein AGN (active galactic nuclei)

    SciTech Connect

    Cordova, F.A.; Kartje, J.; Mason, K.O.; Mittaz, J.P.D.; Chicago Univ., IL; University Coll., London . Mullard Space Science Lab.)

    1989-01-01

    We have undertaken a coarse spectral study to find the softest sources detected with the Imaging Proportional Counter (IPC) on the Einstein Observatory. Of the nearly 7700 IPC sources, 226 have color ratios that make them candidate ultrasoft'' sources; of these, 83 have small enough errors that we can say with confidence that they have a spectral component similar to those of the white dwarfs Sirius and HZ 43, nearby stars such as {alpha} Cen and Procyon, and typical polar'' cataclysmic variables. By means of catalog searches and ground-based optical and radio observations we have thus far identified 96 of the 226 candidate soft sources; 37 of them are active galactic nuclei (AGN). In the more selective subset of 83 sources, 47 have been identified, 12 of them with AGN. The list of 47 identifications is given in Cordova et al. For one QSO in our sample, E0132.8--411, we are able to fit the pulse-height data to a power-law model and obtain a best fit for the energy spectral index of 2. 2{sub {minus}0.4}{sup +0.6}. For the remainder of the AGN in the higher confidence sample we are able to infer on the basis of their x-ray colors that they have a similar spectral component. Two-thirds of the AGN are detected below 0.5 keV only, while the remainder evidence a flatter spectral component in addition to the ultra-soft component. 14 refs., 5 figs.

  2. THE GALACTIC SPIN OF AGN GALAXIES

    SciTech Connect

    Cervantes-Sodi, Bernardo; Hernandez, X.; Park, Changbom; Choi, Yun-Young E-mail: xavier@astroscu.unam.mx

    2011-07-01

    Using an extensive sample of galaxies selected from the Sloan Digital Sky Survey Data Release 5, we compare the angular momentum distribution of active galactic nuclei (AGNs) with non-AGN hosting late-type galaxies. To this end we characterize galactic spin through the dimensionless angular momentum parameter {lambda}, which we estimate through simple dynamical considerations. Using a volume-limited sample, we find a considerable difference when comparing the empirical distributions of {lambda} for AGNs and non-AGN galaxies, the AGNs showing typically low {lambda} values and associated dispersions, while non-AGNs present higher {lambda} values and a broader distribution. A more striking difference is found when looking at {lambda} distributions in thin M{sub r} cuts; while the spin of non-AGN galaxies presents an anticorrelation with M{sub r} , with bright (massive) galaxies having low spins, AGN host galaxies present uniform values of {lambda} at all magnitudes, a behavior probably imposed by the fact that most late-type AGN galaxies present a narrow range in color, with a typical constant {lambda} value. We also find that the fraction of AGN hosting galaxies in our sample strongly depends on galactic spin, increasing dramatically for decreasing {lambda}. For AGN host galaxies, we compute the mass of their supermassive black holes and find that this value tends to be higher for low spin galaxies, even at fixed luminosity, a result that could account, to a certain extent, for the spread on the luminosity-black-hole mass relation.

  3. THE 60 MONTH ALL-SKY BURST ALERT TELESCOPE SURVEY OF ACTIVE GALACTIC NUCLEUS AND THE ANISOTROPY OF NEARBY AGNs

    SciTech Connect

    Ajello, M.; Madejski, G. M.; Alexander, D. M.; Greiner, J.; Burlon, D.; Gehrels, N.

    2012-04-10

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent {approx}5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to {approx}10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9{sup +4.1}{sub -2.9} Multiplication-Sign 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 Multiplication-Sign 10{sup 42} erg s{sup -1}. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local ({<=}85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  4. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  5. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGESBeta

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  6. A SEARCH FOR BINARY ACTIVE GALACTIC NUCLEI: DOUBLE-PEAKED [O III] AGNs IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Smith, K. L.; Shields, G. A.; McMullen, C. C.; Salviander, S.; Bonning, E. W.; Rosario, D. J. E-mail: shields@astro.as.utexas.ed E-mail: erin.bonning@yale.ed

    2010-06-10

    We present active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [O III]{lambda}{lambda}5007, 4959 and other narrow emission lines, motivated by the prospect of finding candidate binary AGNs. These objects were identified by means of a visual examination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [O III] profile. Of these, 86 are Type 1 AGNs and 62 are Type 2 AGNs. Only two give the appearance of possibly being optically resolved double AGNs in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [O III] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad-line (Type 1) AGNs that are undetected in the FIRST survey, 0.9% show double-peaked [O III] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGNs rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of {approx}10-100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (<10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.

  7. HST-COS observations of AGNs. II. Extended survey of ultraviolet composite spectra from 159 active galactic nuclei

    SciTech Connect

    Stevans, Matthew L.; Shull, J. Michael; Danforth, Charles W.; Tilton, Evan M. E-mail: michael.shull@colorado.edu E-mail: evan.tilton@colorado.edu

    2014-10-10

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting their emission-line spectra and for photoionizing and heating the intergalactic medium. Using far-ultraviolet (FUV) spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we directly measure the rest-frame ionizing continua and emission lines for 159 AGNs at redshifts 0.001 < z {sub AGN} < 1.476 and construct a composite spectrum from 475 to 1875 Å. We identify the underlying AGN continuum and strong extreme ultraviolet (EUV) emission lines from ions of oxygen, neon, and nitrogen after masking out absorption lines from the H I Lyα forest, 7 Lyman-limit systems (N{sub H} {sub I}≥10{sup 17.2} cm{sup –2}) and 214 partial Lyman-limit systems (14.5AGNs exhibit a wide range of FUV/EUV spectral shapes, F{sub ν}∝ν{sup α{sub ν}}, typically with –2 ≤ α{sub ν} ≤ 0 and no discernible continuum edges at 912 Å (H I) or 504 Å (He I). The composite rest-frame continuum shows a gradual break at λ{sub br} ≈ 1000 Å, with mean spectral index α{sub ν} = –0.83 ± 0.09 in the FUV (1200-2000 Å) steepening to α{sub ν} = –1.41 ± 0.15 in the EUV (500-1000 Å). We discuss the implications of the UV flux turnovers and lack of continuum edges for the structure of accretion disks, AGN mass inflow rates, and luminosities relative to Eddington values.

  8. The development of a color-magnitude diagram for active galactic nuclei (AGN): hope for a new standard candle

    NASA Astrophysics Data System (ADS)

    McGinnis, G.; Chung, S.; Gonzales, E. V.; Gorjian, V.; Pruett, L.

    2015-12-01

    Of the galaxies in our universe, only a small percentage currently have Active Galactic Nuclei (AGN). These galaxies tend to be further out in the universe and older, and are different from inactive galaxies in that they emit high amounts of energy from their central black holes. These AGN can be classified as either Seyferts or quasars, depending on the amount of energy emitted from the center (less or more). We are studying the correlation between the ratio of dust emission and accretion disk emission to luminosities of AGN in order to determine if there is a relationship strong enough to act as a predictive model for distance within the universe. This relationship can be used as a standard candle if luminosity is found to determine distances in space. We have created a color-magnitude diagram depicting this relationship between luminosity and wavelengths, similar to the Hertzsprung-Russell (HR) diagram. The more luminous the AGN, the more dust surface area over which to emit energy, which results in a greater near-infrared (NIR) luminosity. This differs from previous research because we use NIR to differentiate accretion from dust emission. Using data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS), we analyzed over one thousand Type 1 Seyferts and quasars. We studied data at different wavelengths in order to show the relationship between color (the ratio of one wavelength to another) and luminosity. It was found that plotting filters i-K (the visible and mid-infrared regions of the electromagnetic spectrum) against the magnitude absolute K (luminosity) showed a strong correlation. Furthermore, the redshift range between 0.14 and 0.15 was the most promising, with an R2 of 0.66.

  9. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U ‑ Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  10. Studying AGN Feedback with Galactic Outflows in Luminous Obscured Quasar

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    2016-01-01

    Feedback from Active galactic nuclei (AGN) has been proposed as an important quenching mechanism to suppress star formation in massive galaxies. We investigate the most direct form of AGN feedback - galactic outflows - in the most luminous obscured AGN (L>10^45 erg/s) from the SDSS sample in the nearby universe (z<0.2). Using ALMA and Magellan observations to target molecular and ionized outflows, we find that luminous AGN can impact the dynamics and phase of the galactic medium, and confirm the complex multi-phase and multi-scaled nature of the feedback phenomenon. In particular, we found that most of these luminous AGN hosts ionized outflows. The outflow size, velocity, and energetics correlate with the AGN luminosity, and can be very extended (r > 10 kpc) and fast (v > 1000 km/s) for the most luminous ones. I end with presenting a new technique to find extended ionized outflows using broadband imaging surveys, and to characterize their occurrence rate, morphology, size distribution, and their dependence on the AGN luminosity. This technique will open a new window for feedback studies in the era of large-scale optical imaging surveys, e.g., HSC and then LSST.

  11. X-ray spectroscopy of AGN with the AXAF 'Microcalorimeter'. [Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    A novel technique for X-ray spectroscopy has been configured as part of the definition payload of the AXAF Observatory. It is basically a calorimeter which, operating at 0.1 K, senses the total conversion of single photoelectrically absorbed X-rays via the differential temperature rise of the absorber. The technique promises to achieve less than 10 eV FWHM with near-unit efficiency simultaneously over the entire AXAF bandpass. This combination of high resolution and high efficiency allows for the possibility of investigating thermal, fluorescent and absorption X-ray line features in many types of X-ray source, including a large sample of active galactic nuclei.

  12. ACTIVE GALACTIC NUCLEI AS MAIN CONTRIBUTORS TO THE ULTRAVIOLET IONIZING EMISSIVITY AT HIGH REDSHIFTS: PREDICTIONS FROM A {Lambda}-CDM MODEL WITH LINKED AGN/GALAXY EVOLUTION

    SciTech Connect

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.

    2012-08-20

    We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z {approx} 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.

  13. Supernovae and AGN Driven Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Nath, Biman B.

    2013-01-01

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v_\\star ˜ (\\dot{E} / 2 \\dot{M})^{1/2} describes the effect of starburst activity, with \\dot{E} and \\dot{M} as energy and mass injection rate in a central region of radius R; (2) v • ~ (GM •/2R)1/2 for the effect of a central black hole of mass M • on gas at distance R; and (3) v_{s} =(GM_h / 2 {C}r_s)^{1/2}, which is closely related to the circular speed (vc ) for an NFW halo, where rs is the halo scale radius and {C} is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v 2 sstarf + 6(Γ - 1)v • 2 - 4v 2 s )1/2, where Γ is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 1011.5 M ⊙ <= Mh <= 1012.5 M ⊙ galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is ~400-1000 km s-1, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds >~ 1000 km s-1. We also find that the ratio [2v 2 sstarf - (1 - Γ)v • 2]/v 2 c dictates the amount of gas lost through winds. Used in conjunction with an appropriate relation between M • and Mh and an appropriate opacity of dust grains in infrared (K band), this ratio has the attractive property of being minimum at a certain halo

  14. SUPERNOVAE AND AGN DRIVEN GALACTIC OUTFLOWS

    SciTech Connect

    Sharma, Mahavir; Nath, Biman B. E-mail: biman@rri.res.in

    2013-01-20

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v{sub *}{approx}( E-dot / 2 M-dot ){sup 1/2} describes the effect of starburst activity, with E-dot and M-dot as energy and mass injection rate in a central region of radius R; (2) v {sub .} {approx} (GM {sub .}/2R){sup 1/2} for the effect of a central black hole of mass M {sub .} on gas at distance R; and (3) v{sub s}=(GM{sub h} / 2Cr{sub s}){sup 1/2}, which is closely related to the circular speed (v{sub c} ) for an NFW halo, where r{sub s} is the halo scale radius and C is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v {sup 2} {sub *} + 6({Gamma} - 1)v {sub .} {sup 2} - 4v {sup 2} {sub s}){sup 1/2}, where {Gamma} is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 10{sup 11.5} M {sub Sun} {<=} M{sub h} {<=} 10{sup 12.5} M {sub Sun} galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is {approx}400-1000 km s{sup -1}, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds {approx}> 1000 km s{sup -1}. We also find that the ratio [2v {sup 2} {sub *} - (1 - {Gamma})v {sub .} {sup 2}]/v {sup 2} {sub c} dictates the amount of gas lost through winds. Used in conjunction with

  15. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    SciTech Connect

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne E-mail: peterson@astronomy.ohio-state.edu E-mail: netzer@wise.tau.ac.il

    2009-05-20

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the H{beta} R {sub BLR}-L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R {sub BLR}-L relationship.

  16. AGN Zoo and Classifications of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  17. Active Galactic Nuclei flicker on a characteristic timescale of 105 years: implications for black hole growth and AGN feedback

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Koss, Michael; Sartori, Lia F.; Berney, Simon

    2016-01-01

    The total duration of quasar phases has been estimated to be on the order of 100 Myr to 1 Gyr. However, black hole accretion may not be a smooth process and a long-lasting growth phase may actually be composed of maby brief 105 year accretion bursts, interspersed by low-Eddington phases and even quiescence. I present an observational argument for the 105 year timescale, discuss its implications as well as current observational efforts to map out the entire AGN lifecycle.

  18. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  19. UNDERSTANDING DUAL ACTIVE GALACTIC NUCLEUS ACTIVATION IN THE NEARBY UNIVERSE

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Trippe, Margaret; Treister, Ezequiel

    2012-02-20

    We study the fraction of dual active galactic nuclei (AGNs) in a sample of 167 nearby (z < 0.05), moderate-luminosity, ultra-hard X-ray-selected AGNs from the all-sky Swift Burst Alert Telescope (BAT) survey. Combining new Chandra and Gemini observations together with optical and X-ray observations, we find that the dual AGN frequency at scales <100 kpc is {approx}10% (16/167). Of the 16 dual AGNs, only 3 (19%) were detected using X-ray spectroscopy and were not detected using emission line diagnostics. Close dual AGNs (<30 kpc) tend to be more common among the most X-ray luminous systems. In dual AGNs, the X-ray luminosity of both AGNs increases strongly with decreasing galaxy separation, suggesting that the merging event is key in powering both AGNs. Fifty percent of the AGNs with a very close companion (<15 kpc) are dual AGNs. We also find that dual AGNs are more likely to occur in major mergers and tend to avoid absorption line galaxies with elliptical morphologies. Finally, we find that SDSS Seyferts are much less likely than BAT AGNs (0.25% versus 7.8%) to be found in dual AGNs at scales <30 kpc because of a smaller number of companion galaxies, fiber collision limits, a tendency for AGNs at small separations to be detected only in X-rays, and a higher fraction of dual AGN companions with increasing AGN luminosity.

  20. Observational signatures of galactic winds powered by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nims, Jesse; Quataert, Eliot; Faucher-Giguère, Claude-André

    2015-03-01

    We predict the observational signatures of galaxy scale outflows powered by active galactic nuclei (AGN). Most of the emission is produced by the forward shock driven into the ambient interstellar medium (ISM) rather than by the reverse shock. AGN-powered galactic winds with energetics suggested by phenomenological feedback arguments should produce spatially extended ˜1-10 keV X-ray emission ˜ 1041-44 erg s- 1, significantly in excess of the spatially extended X-ray emission associated with normal star-forming galaxies. The presence of such emission is a direct test of whether AGN outflows significantly interact with the ISM of their host galaxy. We further show that even radio-quiet quasars should have a radio luminosity comparable to or in excess of the far-infrared-radio correlation of normal star-forming galaxies. This radio emission directly constrains the total kinetic energy flux in AGN-powered galactic winds. Radio emission from AGN wind shocks can also explain the recently highlighted correlations between radio luminosity and the kinematics of AGN narrow-line regions in radio-quiet quasars.

  1. The 58-month BAT AGN catalogue: results from the Northern Galactic Cap

    NASA Astrophysics Data System (ADS)

    Vasudevan, R.; Mushotzky, R.; Brandt, N.; Winter, L.; Gandhi, P.; Melendez, M.; Baumgartner, W.

    2014-07-01

    The ongoing Swift/Burst Alert Telescope (BAT) all-sky survey is providing the most complete, hard X-ray selected census of local AGN activity, continually probing to deeper flux limits. I will present recent results from the 58-month BAT catalogue in the Northern Galactic Cap (Galactic latitude b > 50°), probing deeper than previous analyses of the 9-month and 36-month AGN catalogues. Our work includes a comprehensive analysis of the 0.1-200 keV properties (luminosity, absorption, spectral shape, Iron line and reflection properties) of 100 AGN in this sky region. This sample has excellent potential for further multi-wavelength study due to a wide range of archival data already available in other bands, and we propose it as a low-redshift analog to the "deep field" observations of AGNs at higher redshifts (e.g., CDFN/S, COSMOS, Lockman Hole). The stacked spectrum from this representative AGN sample looks remarkably like the Cosmic X-ray background (CXB) spectrum, albeit with a different underlying absorption and Compton reflection distributions than previous CXB synthesis models. I will outline various possibilities of how this sample can be used to further our understanding of local supermassive black hole accretion.

  2. Active galactic nuclei and galaxy interactions

    NASA Astrophysics Data System (ADS)

    Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina

    2007-03-01

    We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.

  3. Suzaku View of the Swift/BAT Active Galactic Nuclei (I): Spectral Analysis of Six AGNs and Evidence for Two Types of Obscured Population

    NASA Technical Reports Server (NTRS)

    Eguchi, Satoshi; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tueller, Jack

    2009-01-01

    We present a systematic spectral analysis with Suzaku of six AGNs detected in the Swift/BAT hard X-ray (15-200 keV) survey, Swift J0138.6-4001, J0255.2-0011, J0350.1-5019, J0505.7-2348, J0601.9-8636, and J1628.1-5145. This is considered to be a representative sample of new AGNs without X-ray spectral information before the BAT survey. We find that the 0.5-200 keV spectra of these sources can be uniformly fit with a base model consisting of heavily absorbed (log NH >23.5/sq cm) transmitted components, scattered lights, a reflection component, and an iron-K emission line. There are two distinct groups, three "new type" AGNs (including the two sources reported by Ueda et al. 2007) with an extremely small scattered fraction (f(sub scat) < 0:5%) and strong reflection component (R = omega/2pi > or equal to 0.8 where omega is the solid angle of the reflector), and three "classical type" ones with f(sub scat > 0.5% and R < or approx. 0.8. The spectral parameters suggest that the new type has an optically thick torus for Thomson scattering (N(sub H) approx. 10(exp 25)/sq cm) with a small opening angle theta approx. 20deg viewed in a rather face-on geometry, while the classical type has a thin torus (N(sub H) approx. 10(exp 23-24)/sq cm) with theta > or approx. 30deg. We infer that a significant number of new type AGNs with an edge-on view is missing in the current all-sky hard X-ray surveys. Subject headings: galaxies: active . gamma rays: observations . X-rays: galaxies . X-rays: general

  4. DUST EMISSION FROM UNOBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Thompson, G. D.; Levenson, N. A.; Uddin, S. A.; Sirocky, M. M.

    2009-05-20

    We use mid-infrared (MIR) spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher luminosity quasar counterparts. Silicate dust reprocessing dominates the MIR spectra, and we generally measure the 10 and 18 {mu}m spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring 'torus' of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies' bolometric luminosity attributable to stars decreases with AGN luminosity.

  5. Dust Emission from Unobscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Thompson, G. D.; Levenson, N. A.; Uddin, S. A.; Sirocky, M. M.

    2009-05-01

    We use mid-infrared (MIR) spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher luminosity quasar counterparts. Silicate dust reprocessing dominates the MIR spectra, and we generally measure the 10 and 18 μm spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring "torus" of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies' bolometric luminosity attributable to stars decreases with AGN luminosity.

  6. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  7. The fuelling of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.; Frank, Julian

    1990-01-01

    Accretion mechanisms for powering the central engines of active galactic nuclei (AGN) and possible sources of fuel are reviewed. It is a argued that the interstellar matter in the main body of the host galaxy is channeled toward the center, and the problem of angular momentum transport is addressed. Thin accretion disks are not a viable means of delivering fuel to luminous AGN on scales much larger than a parsec because of the long inflow time and effects of self-gravity. There are also serious obstacles to maintaining and regulating geometrically thick, hot accretion flows. The role of nonaxisymmetric perturbations of the gravitational potential on galactic scales and their triggers is emphasized. A unified model is outlined for fueling AGN, in which the inflow on large scales is driven by gravitational torques, and on small scales forms a mildly self-gravitating disk of clouds with inflow driven by magnetic torques or cloud-cloud collisions.

  8. Reevaluating Active Galactic Nuclei in Rich Clusters

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Flores, R.; Quintana, H.

    1999-06-01

    We have selected 42 candidate Active Galactic Nuclei in 19 Rich Abell Clusters. The candidates were selected using the criteria of Dressler, Thompson & Shectman (1985; DTS) in their analysis of the statistics of 22 AGN in 14 rich cluster fields, which are based on the equivalent width of [OII]3727Å, H β, and [OIII]5007Å emission. These AGN are then separated from HII galaxies in the manner developed by Veilleux & Osterbrock (1987; VO) using the additional information provided by Hα and [NII]6583Å or Hα and [SII]6716 + 6731Å emission, in order to test the reliability of the selection criteria used by DTS. Our sample is very comparable to that of DTS before we discriminate AGN from HII galaxies, and would lead to similar conclusions. However, we find that their method inevitably mixes HII galaxies with AGN. Over the years many authors have attempted to quantify the relative fraction of cluster to field AGN since the study of DTS (Hill & Oegerle 1993; Biviano et al. 1997) and have reached similar conclusions, but using criteria similar to that of DTS to select AGN (or using the [OIII]5007Å/H β flux ratio test that also mixes HII galaxies with AGN).

  9. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  10. Compact radio cores in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-04-01

    Context. The mechanism of radio emission in radio-quiet (RQ) active galactic nuclei (AGNs) is still debated and might arise from the central AGN, from star formation activity in the host, or from either of these sources. A direct detection of compact and bright radio cores embedded in sources that are classified as RQ can unambiguously determine whether a central AGN significantly contributes to the radio emission. Aims: We search for compact, high-surface-brightness radio cores in RQ AGNs that are caused unambiguously by AGN activity. Methods: We used the Australian Long Baseline Array to search for compact radio cores in four RQ AGNs located in the Extended Chandra Deep Field South (ECDFS). We also targeted four radio-loud (RL) AGNs as a control sample. Results: We detected compact and bright radio cores in two AGNs that are classified as RQ and in one that is classified as RL. Two RL AGNs were not imaged because the quality of the observations was too poor. Conclusions: We report on a first direct evidence of radio cores in RQ AGNs at cosmological redshifts. Our detections show that some of the sources that are classified as RQ contain an active AGN that can contribute significantly (~50% or more) to the total radio emission.

  11. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  12. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  13. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  14. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  15. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  16. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  17. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  18. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z∼ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z∼ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z∼ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5–2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}ȯ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  19. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  20. THE GALACTIC CENTER: NOT AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris

    2013-06-01

    We present 10 {mu}m-35 {mu}m Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc Multiplication-Sign 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H{sub 2} emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and H{sub 2} suggest that most of the H{sub 2} 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.

  1. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  2. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  3. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Watson, D.; Denney, K. D.; Vestergaard, M.; Davis, T. M.

    2011-10-20

    Accurate distances to celestial objects are key to establishing the age and energy density of the universe and the nature of dark energy. A distance measure using active galactic nuclei (AGNs) has been sought for more than 40 years, as they are extremely luminous and can be observed at very large distances. We report here the discovery of an accurate luminosity distance measure using AGNs. We use the tight relationship between the luminosity of an AGN and the radius of its broad-line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGNs. All reliable distance measures up to now have been limited to moderate redshift-AGNs will, for the first time, allow distances to be estimated to z {approx} 4, where variations of dark energy and alternate gravity theories can be probed.

  4. Reverberation Mapping Campaign of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban

    In this dissertation, I present results of black hole mass (M BH) measurements of four active galactic nuclei (AGN). AGN activity plays a key part in galaxy formation and evolution as evidenced by relationships like MBH-sigmastar. Accurate measurements of MBH is thus required to better understand these relationships. Luminosity of AGNs is also related to the radius of the broad line region (BLR). I have used reverberation mapping (RM) to obtain measurements of the radius of BLR and MBH of four AGNs. Reverberation data were collected over a period of 180-day span in 2012. None of these objects have been reverberation mapped before. We have also placed our objects on the Radius-Luminosity relationship and three out of four fall on the relationship. The fourth object lies above the Radius-Luminosity relationship and is a minor outlier. Two of these objects are Radio-Loud, which have orientation information available. This has increased the sample of radio-loud AGNs, which have RM from 5 to 7. We have increased the overall sample size of AGNs that have mass measurements from 62 to 66. We obtain masses for these following objects 3C 382 (MBH)= 30.1 -8.7+12.61 x 107 M O, PG2209+184 (MBH)=14.53-8.7 +5.79 x 107 MO, MARK 1040 (MBH)= 30.1-8.7+12.61 x 107 MO and 1ES0206+52(MBH)= 517.3-280+214 x 107 M O.

  5. The complete census of optically selected AGNs in the Coma supercluster: the dependence of AGN activity on the local environment

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Savorgnan, G.; Fumagalli, Mattia

    2011-10-01

    Aims: To investigate the dependence of the occurrence of active galactic nuclei (AGNs) on local galaxy density, we study the nuclear properties of ~5000 galaxies in the Coma supercluster whose density spans two orders of magnitude from the sparse filaments to the cores of rich clusters. Methods: We obtained optical spectra of the nuclei of 283 galaxies using the 1.5 m Cassini telescope of Bologna observatory. Among these galaxies, 177 belong to the Coma supercluster and are added to the 4785 spectra available from SDSS (DR7) to fill-in the incomplete coverage by SDSS of luminous galaxies. We perform a spectral classification of the nuclei of galaxies in this region (with a completeness of 98% at r ≤ 17.77), classifying the nuclear spectra in six classes: three of them (SEY, sAGN, LIN) refer to AGNs and the remaining three (HII, RET, PAS) refer to different stages of starburst activity. We perform this classification as recommended by Cid Fernandes and collaborators using the ratio of λ 6584 [NII] to Hα lines and the equivalent width of Hα (WHAN diagnostic), after correcting the last quantity by 1.3 Å for underlying absorption. Results: We find that 482 (10%) of 5027 galaxies host an AGN: their frequency strongly increases with increasing luminosity of the parent galaxies, such that 32% of galaxies with Log(Li/L⊙) ≥ 10.2 harbor an AGN at their interior. In addition to their presence in luminous galaxies, AGNs are also found in red galaxies with ⟨g - i⟩ ≃ 1.15 ± 0.15 mag. The majority of SEY and sAGN (strong AGNs) are associated with luminous late-type (or S0a) galaxies, while LIN (weak AGNs) and RET ("retired": nuclei that have experienced a starburst phase in the past and are now ionized by their hot evolved low-mass stars), are mostly found among E/S0as. The number density of AGNs, HII region-like, and retired galaxies is found to anti-correlate with the local density of galaxies, such that their frequency drops by a factor of two near the cluster

  6. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  7. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  8. IGM Heating and AGN activity in Fossil Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.; Klöckner, H.-R.; Ponman, T. J.; Jetha, N. N.; Raychaudhury, S.

    2014-07-01

    Fossil galaxy groups are energetically and morphologically ideal environments to study the intergalactic medium (IGM) heating, because their inter-galactic gas is undisturbed due to the lack of recent group scale mergers. We study the role of active galactic nuclei (AGN) in heating the IGM in a sample of five fossil galaxy groups by employing properties at 610 MHz and 1.4 GHz. We find that two of the dominant galaxies in fossil groups, ESO 3060170 and RX J1416.4+2315, are associated with the radio lobes. We evaluate the PdV work of the radio lobes and their corresponding heating power and compare to the X-ray emission loss within cooling radius. Our results show that the power due to mechanical heating is not sufficiently high to suppress the cooling.

  9. What obscures low-X-ray-scattering active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Hönig, S. F.; Gandhi, P.; Asmus, D.; Mushotzky, R. F.; Antonucci, R.; Ueda, Y.; Ichikawa, K.

    2014-02-01

    X-ray surveys have revealed a new class of active galactic nuclei (AGN) with a very low observed fraction of scattered soft X-rays, fscat <0.5 per cent. Based on X-ray modelling, these `X-ray new-type', or low observed X-ray-scattering (hereafter, `low-scattering') sources have been interpreted as deeply buried AGN with a high covering factor of gas. In this paper, we address the questions whether the host galaxies of low-scattering AGN may contribute to the observed X-ray properties, and whether we can find any direct evidence for high covering factors from the infrared (IR) emission. We find that X-ray low-scattering AGN are preferentially hosted by highly inclined galaxies or merger systems as compared to other Seyfert galaxies, increasing the likelihood that the line of sight towards the AGN intersects with high columns of host-galactic gas and dust. Moreover, while a detailed analysis of the IR emission of low-scattering AGN ESO 103-G35 remains inconclusive, we do not find any indication of systematically higher dust covering factors in a sample of low-scattering AGN based on their IR emission. For ESO 103-G35, we constrained the temperature, mass and location of the IR emitting dust which is consistent with expectations for the dusty torus. However, a deep silicate absorption feature probably from much cooler dust suggests an additional screen absorber on larger scales within the host galaxy. Taking these findings together, we propose that the low fscat observed in low-scattering AGN is not necessarily the result of circumnuclear dust but could originate from interference of host-galactic gas with a column density of the order of 1022 cm-2 with the line of sight. We discuss implications of this hypothesis for X-ray models, high-ionization emission lines and observed star formation activity in these objects.

  10. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    SciTech Connect

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup –1} < |Δv| < 410 km s{sup –1}. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup –1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  11. Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Skelton, R. T.; Ling, James C.; Wheaton, William A.; Harmon, Alan; Fishman, G. J.; Meegan, C. A.; Paciesas, William S.; Gruber, Duane E.; Rubin, Brad; Wilson, R. B.

    1992-01-01

    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity.

  12. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W.

    2011-12-10

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with {approx}30 minute sampling, >90% duty cycle, and {approx}<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  13. DUAL ACTIVE GALACTIC NUCLEI: DEPROJECTING THE BINARY CORES

    SciTech Connect

    Wang, X.-W.; Zhou, H.-Y.

    2012-10-01

    Dual active galactic nuclei (AGNs) as a population in a special phase during the evolution of merging galaxies have been found largely from candidates selected from the Sloan Digital Sky Survey (SDSS). In this paper, we develop a simple model of dual AGNs, which are composed of two optically thin spheres emitting narrow lines and co-rotating governed by gravity between them. In order to show how profiles are sensitive to the orientation angles of the orbiting plane and phase angles, we make detailed calculations of profiles for a large space of the two angles. The dual AGNs observationally appear as ones with double-peaked profiles of emission lines, but there are still quite large ranges of orientation and phase angles where they appear only with a single-peaked profile. This implies a large fraction of dual AGN candidate missed by selecting AGNs with double-peaked profiles. We show that the highly sensitive dependence of profiles on orientation and phase angles makes them robust to deproject dual AGN systems. Deprojection by the present model has potential implications for discussion of the triggering mechanism of black hole activity in light of the deprojected distance. We apply the present model to two dual AGN, SDSS J095207.6+255257 and J171544.05+600835.7, for deprojection of the binary cores.

  14. The galactic dynamo, the helical force free field and the emissions of AGN

    SciTech Connect

    Colgate, S.; Li, Hui

    1997-05-01

    We present a theory relating the central galactic black hole (BH) formation to the galactic dynamo through an accretion disk. The associated AGN emissions and the collimated radio sources are then a result of the dynamo process. A unified theory of quasar and BL-Lac formation (hereafter AGN) starts with the collapse of damped Lyman-alpha clouds, presumably proto-galaxies, which then evolve to a central disk and black hole, (BH). An alpha - omega dynamo forms in this accretion disk where the augmentation of the poloidal field from the toroidal field depends upon star disk collisions. The winding number of the inner most orbit of the disk is so large, tilde 10 to the 11th power that the total gain of the dynamo is semi-infinite, and the original seed field of no consequence. The total magnetic flux produced is tilde 10000 times that of the galaxy, sufficient to explain the much larger flux of clusters. The semi-infinite gain of the dynamo implies that the field saturates at the dynamic stress so that most of the free energy of formation of the BH is carried off as magnetic energy in the form of a magnetic helix. The dissipation of this magnetic energy leads to the unique emission spectrum of AGN as well as the equally startling collimated radio and optical sources.

  15. Statistics of Active Galactic Nuclei in Rich Clusters Revisited

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Flores, R. A.; Quintana, H.

    1998-07-01

    Using the spectrophotometry of a large sample of galaxies in 19 Abell clusters, we have selected 42 candidate active galactic nuclei (AGNs) using the criteria used by Dressler and coworkers in their analysis of the statistics of 22 AGNs in 14 rich cluster fields, which are based on the equivalent width of [O II] 3727 Å, Hβ, and [O III] 5007 Å emission. We have then discriminated AGNs from H II region-like galaxies (hereafter H II galaxies) in the manner developed by Veilleux & Osterbrock using the additional information provided by Hα and [N II] 6583 Å or Hα and [S II] 6716 + 6731 Å emission, in order to test the reliability of the selection criteria used by Dressler and coworkers. We find that before we discriminate AGNs from H II galaxies, our sample is very similar to that of Dressler and coworkers and it leads to similar conclusions. However, we find that their method inevitably mixes H II galaxies with AGNs, even for the most luminous objects in our sample. We estimate a contamination of at least 38% at a formal 90% confidence level. Since the study of Dressler and coworkers, other authors have attempted to quantify the relative fraction of cluster-to-field AGNs and have reached similar conclusions, but they have used criteria similar to Dressler and coworkers to select AGNs (or have used the [O III] 5007 Å/Hβ flux ratio test that also mixes H II galaxies with AGNs). Our sample of true AGNs remains too small to reach statistically meaningful conclusions, therefore a new study with a more time-consuming method that includes the other lines will be required to quantify the true relative fraction of cluster-to-field AGNs.

  16. Microvariabilty in Active Galactic Nuclei at Centimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Atwood, James W.; Pannuti, T. G.

    2007-12-01

    Active Galactic Nuclei (AGNs) are some of the most distant objects known in the universe. Quasars, Blazars, and Seyfert galaxies are all categorized as AGNs. One of the interesting characteristics of AGNs is that they vary in brightness over a variety of time scales, ranging from long term (years or decades), to intraday (days or weeks), to extremely short (hours or minutes). Using the Morehead State University 21m Space Tracking Antenna we can measure short term variations (microvariability) of the radio frequency radiation of these distant objects. By monitoring variability we may be able to determine if this observed phenomenon originates from the internal processes of these objects or due to the intervening medium, and to provide insight into the nature and process associated with the AGN central engines. Initial observations of a set of target AGNs have been undertaken. Additional observations of these target objects will be made at 1.4, 2.4, and 12GHz to measure microvariability and to produce data points for broadband SEDs of these AGNs. Few observations have been made in the 12GHz region for these objects. These data sets will be correlated with simultaneous optical (Bell observatory) and The Gamma Ray Large Area Space Telescope (GLAST) observations to produce broad band, multiwavelength observations of a selected target set of AGNs. An additional goal of this project is to become a node in the NASA GLAST network.

  17. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  18. A TALE OF TWO POPULATIONS: THE CONTRIBUTION OF MERGER AND SECULAR PROCESSES TO THE EVOLUTION OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Draper, A. R.; Ballantyne, D. R.

    2012-05-20

    Due to the co-evolution of supermassive black holes and their host galaxies, understanding the mechanisms that trigger active galactic nuclei (AGNs) is imperative to understanding galaxy evolution and the formation of massive galaxies. It is observationally difficult to determine the trigger of a given AGN due to the difference between the AGN lifetime and triggering timescales. Here, we utilize AGN population synthesis modeling to determine the importance of different AGN triggering mechanisms. An AGN population model is computed by combining an observationally motivated AGN triggering rate and a theoretical AGN light curve. The free parameters of the AGN light curve are constrained by minimizing a {chi}{sup 2} test with respect to the observed AGN hard X-ray luminosity function. The observed black hole space density, AGN number counts, and X-ray background spectrum are also considered as observational constraints. It is found that major mergers are not able to account for the entire AGN population. Therefore, non-merger processes, such as secular mechanisms, must also trigger AGNs. Indeed, non-merger processes are the dominant AGN triggering mechanism at z {approx}< 1-1.5. Furthermore, the shape and evolution of the black hole mass function of AGNs triggered by major mergers are intrinsically different from the shape and evolution of the black hole mass function of AGNs triggered by secular processes.

  19. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  20. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  1. The angular clustering of WISE-selected active galactic nuclei: Different halos for obscured and unobscured active galactic nuclei

    SciTech Connect

    Donoso, E.; Yan, Lin; Stern, D.; Assef, R. J.

    2014-07-01

    We calculate the angular correlation function for a sample of ∼170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 – W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of (z) = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects with the photometric Sloan Digital Sky Survey catalog and distinguish obscured sources with r – W2 > 6 from bluer, unobscured AGNs. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGNs are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find that obscured sources at (z) ∼ 0.9 have a bias of b = 2.9 ± 0.6 and are hosted in dark matter halos with a typical mass of log (M/M {sub ☉} h {sup –1}) ∼ 13.5. In contrast, unobscured AGNs at (z) ∼ 1.1 have a bias of b = 1.6 ± 0.6 and inhabit halos of log (M/M {sub ☉} h {sup –1}) ∼ 12.4. These findings suggest that obscured AGNs inhabit denser environments than unobscured AGNs, and they are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  2. Steps Toward Unveiling the True Population of Active Galactic Nuclei: Photometric Characterization of Active Galactic Nuclei in COSMOS

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.; Salvato, Mara

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  3. STEPS TOWARD UNVEILING THE TRUE POPULATION OF ACTIVE GALACTIC NUCLEI: PHOTOMETRIC CHARACTERIZATION OF ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  4. Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ˜105 yr

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Koss, Michael; Berney, Simon; Sartori, Lia F.

    2015-08-01

    We present an observational constraint for the typical active galactic nucleus (AGN) phase lifetime. The argument is based on the time lag between an AGN central engine switching on and becoming visible in X-rays, and the time the AGN then requires to photoionize a large fraction of the host galaxy. Based on the typical light travel time across massive galaxies, and the observed fraction of X-ray-selected AGN without AGN-photoionized narrow lines, we estimate that the AGN phase typically lasts ˜105 yr. This lifetime is short compared to the total growth time of 107-109 yr estimated from e.g. the Soltan argument and implies that black holes grow via many such short bursts and that AGN therefore `flicker' on and off. We discuss some consequences of this flickering behaviour for AGN feedback and the analogy of X-ray binaries and AGN lifecycles.

  5. A NIR Atlas of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Riffel, R.; Pastoriza, M. G.

    2006-06-01

    We present the most comprehensive atlas of near-infrared (NIR) mid-resolution (R=1000) spectra of active galactic nuclei (AGN) made to date in the interval 0.8-2.4 μm. The aim of this work is to provide a homogeneous database suitable to study the nuclear NIR properties of AGN in a region poorly studied spectroscopically but that keeps useful constraints to model the AGN physics. The sample is composed of 49 objects, 39 of them with z <0.05, distributed between 7 quasars, 25 Seyfert 1 (classical and narrow-line Seyfert 1) and 17 Seyfert 2 galaxies. A few LINERS and Starburst galaxies are also included for comparative purposes. The spectra are dominated by strong emission lines of H I, He I, He II, [S III] and conspicuous forbidden lines of low and high ionization species, including coronal lines. In addition, rotational/vibrational lines of H_2 are detected in most objects. Overall, the continuum of quasars and Seyfert 1s are rather similar, being essentially flat or slightly steep in the H and K bands. In J, the shape of the continuum is different from object to object, varying from that displaying a steep rise in flux towards shorter wavelengths, from 1.1 μm bluewards, to that remaining flat. In Seyfert 2s, the continuum smoothly decreases in flux with wavelength, from 1.2 μm redwards. Bluewards, the continuum flux steeply rises in some sources while in others it decreases towards shorter wavelengths, suggesting reddening. Independently of the AGN type, stellar absorption features of CO, Si I and Mg I are present in the H and K bands. They are found to be particularly strong in Seyfert 2s. Line identification and remarks on the most important characteristics observed in the sample are given.

  6. Constraining AGN triggering mechanisms through the clustering analysis of active black holes

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Shankar, F.; Bouillot, V.; Menci, N.; Lamastra, A.; Hirschmann, M.; Fiore, F.

    2016-02-01

    The triggering mechanisms for active galactic nuclei (AGN) are still debated. Some of the most popular ones include galaxy interactions (IT) and disc instabilities (DIs). Using an advanced semi-analytic model (SAM) of galaxy formation, coupled to accurate halo occupation distribution modelling, we investigate the imprint left by each separate triggering process on the clustering strength of AGN at small and large scales. Our main results are as follows: (i) DIs, irrespective of their exact implementation in the SAM, tend to fall short in triggering AGN activity in galaxies at the centre of haloes with Mh > 1013.5 h-1 M⊙. On the contrary, the IT scenario predicts abundance of active central galaxies that generally agrees well with observations at every halo mass. (ii) The relative number of satellite AGN in DIs at intermediate-to-low luminosities is always significantly higher than in IT models, especially in groups and clusters. The low AGN satellite fraction predicted for the IT scenario might suggest that different feeding modes could simultaneously contribute to the triggering of satellite AGN. (iii) Both scenarios are quite degenerate in matching large-scale clustering measurements, suggesting that the sole average bias might not be an effective observational constraint. (iv) Our analysis suggests the presence of both a mild luminosity and a more consistent redshift dependence in the AGN clustering, with AGN inhabiting progressively less massive dark matter haloes as the redshift increases. We also discuss the impact of different observational selection cuts in measuring AGN clustering, including possible discrepancies between optical and X-ray surveys.

  7. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  8. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  9. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  10. Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2004-01-01

    In the last 5 years the first high quality moderate resolution spectra of AGN in the x-ray band have become available thanks to the gratings on Chandra and XMM. Next year this type of data will be extended to E > 3 keV with the launch of Astro-E2. I will summarize some of the outstanding results from these new data and what we may expect from Astro-E2.

  11. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  12. AGN Activity and IGM Heating in the Fossil Cluster RX J1416.4+2315

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.; Sengupta, C.; Raychaudhury, S.; Jetha, N. N.; Abbassi, S.

    2015-12-01

    We study active galactic nucleus (AGN) activity in the fossil galaxy cluster RX J1416.4+2315. Radio observations were carried out using the Giant Metrewave Radio Telescope at two frequencies, 1420 and 610 MHz. A weak radio lobe that extends from the central nucleus is detected in the 610 MHz map. Assuming the radio lobe originated from the central AGN, we show that the energy injection into the intergalactic medium is only sufficient to heat up the central 50 kpc within the cluster core, while the cooling radius is larger (∼130 kpc). In the hardness ratio map, three low energy cavities have been identified. No radio emission is detected for these regions. We evaluated the power required to inflate the cavities and showed that the total energy budget is sufficient to offset the radiative cooling. We showed that the initial conditions would change the results remarkably. Furthermore, the efficiency of the Bondi accretion in powering the AGN has been estimated.

  13. THE CONNECTION BETWEEN 3.3 {mu}m POLYCYCLIC AROMATIC HYDROCARBON EMISSION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Woo, Jong-Hak; Park, Dawoo; Kim, Ji Hoon; Imanishi, Masatoshi

    2012-02-15

    We investigate the connection between starburst and active galactic nucleus (AGN) activity by comparing 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) emission with AGN properties. Utilizing the slitless spectroscopic capability of the AKARI space telescope, we observe a moderate-luminosity Type I AGN at z {approx} 0.4 to measure global starburst activity. The 3.3 {mu}m PAH emissions are detected for 7 out of 26 target galaxies. We find no strong correlation between the 3.3 {mu}m PAH emission and AGN luminosity in the limited range of the observed AGN luminosity, suggesting that global star formation may not be closely related to AGN activity. Combining our measurements with previous 3.3 {mu}m measurements of low-redshift Type I AGNs in the literature, we investigate the connection between nuclear starburst and AGN activity. In contrast to global star formation, the 3.3 {mu}m PAH luminosity measured from the central part of galaxies correlates with AGN luminosity, implying that starburst activity and AGN activity are directly connected in the nuclear region.

  14. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  15. AGN POPULATION IN HICKSON COMPACT GROUPS. I. DATA AND NUCLEAR ACTIVITY CLASSIFICATION

    SciTech Connect

    MartInez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R. E-mail: chony@iaa.es E-mail: rcoziol@astro.ugto.mx

    2010-03-15

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN H{alpha} luminosity of 7.1 x 10{sup 39} erg s{sup -1}, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by MartInez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  16. AGN Population in Hickson Compact Groups. I. Data and Nuclear Activity Classification

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Coziol, R.; Perea, J.

    2010-03-01

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN Hα luminosity of 7.1 × 1039 erg s-1, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by Martínez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  17. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    SciTech Connect

    Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro

    2014-10-10

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  18. Anti-hierarchical Evolution of the Active Galactic Nucleus Space Density in a Hierarchical Universe

    NASA Astrophysics Data System (ADS)

    Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro

    2014-10-01

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  19. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-10-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  20. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  1. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  2. Highlights of recent results from the VERITAS Active Galactic Nuclei Observing Program

    NASA Astrophysics Data System (ADS)

    Abeysekara, Udara; VERITAS Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are the dominant class of the Very High Energy (VHE) gamma-ray sources. The VERITAS Observatory dedicates about 430 hr/year of dark time and 200 hr/year of observations under moonlight, on the AGN observing program. VERITAS is located at the Fred Lawrence Whipple Observatory near Tucson, Arizona, and is sensitive to gamma rays with energies between of 85 GeV and 30 TeV. VERITAS became fully operational in 2007, and has since then detected 34 very high energy (VHE) AGN. The majority of the detected galaxies are blazars, in addition to a few radio galaxies. The VHE emission mechanism, and the location of the VHE emission zone of AGN are still poorly understood. Detailed observations of VHE AGN are necessary for understanding these uncertainties. AGN are plausible source candidates for ultra-high-energy cosmic rays and astrophysical neutrinos. VHE gamma-rays from AGN can also be used as probes to place limits on extragalactic background light density. This presentation will report the most recent results from the VERITAS AGN program including newly discovered AGN, and VHE flares of known TeV AGN. Udara Abeysekara for the VERITAS Collaboration.

  3. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysis revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  4. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  5. Correlations of Circumnuclear Water Maser Luminosity with AGN Activity and SMBH Mass

    NASA Astrophysics Data System (ADS)

    Mei, Ming-Yi Jeffrey; Zaw, I.; Greenhill, L. J.

    2014-01-01

    We examine 53 water masers, the only known resolvable tracers of gas in the sub-parsec disks of active galactic nuclei (AGN). We test if there is a relationship between the isotropic maser luminosity and black hole mass and AGN activity. Black hole mass is estimated from velocity dispersion, sigma, and AGN bolometric luminosity from [OIII]5007 luminosity, from SDSS spectra. The maser are sorted, based on their radio spectra, into disk-type masers, located in the accretion disk, jet-type masers, located in a jet/outflow, or other-type masers, where the location of the masers is unclear. The maser luminosity is fit against black hole mass and AGN luminosity and compared with the theoretical predictions from Neufeld and Maloney (1995). This builds on the result from Zhu et al. (2011) with a doubled sample size and fitting for both variables at the same time. The dependence of isotropic maser luminosity of the disk and jet masers on black hole mass and AGN luminosity agree within error to the model, while the "other" masers show no correlation.

  6. The roles of star formation and AGN activity of IRS sources in the HerMES fields

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Hatziminaoglou, E.; Hernán-Caballero, A.; Fritz, J.; Franceschini, A.; Bock, J.; Cooray, A.; Farrah, D.; Solares, E. A. González; Ibar, E.; Isaak, K. G.; Faro, B. Lo; Marchetti, L.; Oliver, S. J.; Page, M. J.; Rigopoulou, D.; Roseboom, I. G.; Symeonidis, M.; Vaccari, M.

    2013-09-01

    In this work, we explore the impact of the presence of an active galactic nucleus (AGN) on the mid- and far-infrared (IR) properties of galaxies as well as the effects of simultaneous AGN and starburst activity in the same galaxies. To do this, we apply a multicomponent, multiband spectral synthesis technique to a sample of 250 μm selected galaxies of the Herschel Multi-tiered Extragalactic Survey (HerMES), with Infrared Spectrograph (IRS) spectra available for all galaxies. Our results confirm that the inclusion of the IRS spectra plays a crucial role in the spectral analysis of galaxies with an AGN component improving the selection of the best-fitting hot dust (torus) model. We find a correlation between the obscured star formation rate, SFRIR, derived from the IR luminosity of the starburst component, and SFRPAH, derived from the luminosity of the PAH features, LPAH, with SFRFIR taking higher values than SFRPAH. The correlation is different for AGN- and starburst-dominated objects. The ratio of LPAH to that of the starburst component, LPAH/LSB, is almost constant for AGN-dominated objects but decreases with increasing LSB for starburst-dominated objects. SFRFIR increases with the accretion luminosity, Lacc, with the increase less prominent for the very brightest, unobscured AGN-dominated sources. We find no correlation between the masses of the hot (AGN-heated) and cold (starburst-heated) dust components. We interpret this as a non-constant fraction of gas driven by the gravitational effects to the AGN while the starburst is ongoing. We also find no evidence of the AGN affecting the temperature of the cold dust component, though this conclusion is mostly based on objects with a non-dominant AGN component. We conclude that our findings do not provide evidence that the presence of AGN affects the star formation process in the host galaxy, but rather that the two phenomena occur simultaneously over a wide range of luminosities.

  7. Obscuration-dependent Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James; Merloni, Andrea; Ross, Nicholas

    2015-04-01

    We aim to constrain the evolution of active galactic nuclei (AGNs) as a function of obscuration using an X-ray-selected sample of ~2000 AGNs from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS, and XMM-XXL fields. The spectra of individual X-ray sources are analyzed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method that allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift, and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness, and the limited sample size. We find that obscured AGNs with N H > 1022 cm-2 account for {77}+4-5% of the number density and luminosity density of the accretion supermassive black hole population with L X > 1043 erg s-1, averaged over cosmic time. Compton-thick AGNs account for approximately half the number and luminosity density of the obscured population, and {38}+8-7% of the total. We also find evidence that the evolution is obscuration dependent, with the strongest evolution around N H ≈ 1023 cm-2. We highlight this by measuring the obscured fraction in Compton-thin AGNs, which increases toward z ~ 3, where it is 25% higher than the local value. In contrast, the fraction of Compton-thick AGNs is consistent with being constant at ≈35%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is, to first order, a side effect of anti-hierarchical growth.

  8. The dust covering factor in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Stalevski, Marko; Ricci, Claudio; Ueda, Yoshihiro; Lira, Paulina; Fritz, Jacopo; Baes, Maarten

    2016-05-01

    The primary source of emission of active galactic nuclei (AGNs), the accretion disc, is surrounded by an optically and geometrically thick dusty structure (`the so-called dusty torus'). The infrared radiation emitted by the dust is nothing but a reprocessed fraction of the accretion disc emission, so the ratio of the torus to the AGN luminosity (Ltorus/LAGN) should corresponds to the fraction of the sky obscured by dust, i.e. the covering factor. We undertook a critical investigation of the Ltorus/LAGN as the dust covering factor proxy. Using state-of-the-art 3D Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. With this grid of SEDs, we studied the relation between Ltorus/LAGN and the dust covering factor for different parameters of the torus. We found that in the case of type 1 AGNs the torus anisotropy makes Ltorus/LAGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs Ltorus/LAGN always underestimates covering factors. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of our result for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on LAGN, with values in the range of ≈0.6-0.7. Our results also suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys, in part owing to the presence of a Compton-thick AGN population predicted by population synthesis models.

  9. Modelling galaxy and AGN evolution in the infrared: black hole accretion versus star formation activity

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Pozzi, F.; Zamorani, G.; Vignali, C.

    2011-09-01

    We present a new backward evolution model for galaxies and active galactic nuclei (AGNs) in the infrared (IR). What is new in this model is the separate study of the evolutionary properties of different IR populations (i.e. spiral galaxies, starburst galaxies, low-luminosity AGNs, 'unobscured' type 1 AGNs and 'obscured' type 2 AGNs) defined through a detailed analysis of the spectral energy distributions (SEDs) of large samples of IR-selected sources. The evolutionary parameters have been constrained by means of all the available observables from surveys in the mid- and far-IR (source counts, redshift and luminosity distributions, luminosity functions). By decomposing the SEDs representative of the three AGN classes into three distinct components (a stellar component emitting most of its power in the optical/near-IR, an AGN component due to the hot dust heated by the central black hole peaking in the mid-IR, and a starburst component dominating the far-IR spectrum), we have disentangled the AGN contribution to the monochromatic and total IR luminosity emitted by different populations considered in our model from that due to star formation activity. We have then obtained an estimate of the total IR luminosity density [and star formation density (SFD) produced by IR galaxies] and the first ever estimate of the black hole mass accretion density (BHAR) from the IR. The derived evolution of the BHAR is in agreement with estimates from X-rays, though the BHAR values we derive from the IR are slightly higher than the X-ray ones. Finally, we have simulated source counts, redshift distributions, and SFD and BHAR that we expect to obtain with the future cosmological surveys in the mid-/far-IR that will be performed with the JWST-MIRI and SPICA-SAFARI. Outputs of the model are available online.1

  10. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  11. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  12. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Stern, Daniel; Assef, Roberto J.; Eisenhardt, Peter; Benford, Dominic J.; Blain, Andrew; Cutri, Roc; Griffith, Roger L.; Jarrett, T. H.; Masci, Frank; Tsai, Chao-Wei; Yan, Lin; Dey, Arjun; Lake, Sean; Petty, Sara; Wright, E. L.; Stanford, S. A.; Harrison, Fiona; Madsen, Kristin

    2012-07-01

    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 - W2 {>=} 0.8 (i.e., [3.4]-[4.6] {>=}0.8, Vega), which identifies 61.9 {+-} 5.4 active galactic nucleus (AGN) candidates per deg{sup 2} to a depth of W2 {approx} 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 {mu}Jy at 4.6 {mu}m, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

  13. THE PREVALENCE OF NARROW OPTICAL Fe II EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Dong Xiaobo; Wang Jianguo; Wang Tinggui; Wang Huiyuan; Zhou Hongyan; Ho, Luis C.; Fan Xiaohui

    2010-10-01

    From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate-statistically for the first time-that narrow optical Fe II emission lines, both permitted and forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow Fe II-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.

  14. BAR EFFECTS ON CENTRAL STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M{sub r} < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  15. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  16. Chemistry in the Molecular Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Harada, Nanase; Herbst, Eric

    2010-06-01

    Active galactic nuclei (AGNs) are the centers of galaxies with supermassive blackholes whose accretion of mass causes very high luminosities of L˜1044-46erg s-1. An accretion disk has a molecular component that extends to hundreds of pc from the central AGN core. The question of how much central illumination affects the disk and how much star formation is present near the core have been astrophysical interests. Rotational lines from these disks at a sub-kpc scale have been observed for molecules such as CO, HCO+, HCN, and HNC. When ALMA becomes fully operational, it will be able to resolve these disks at much higher resolution than currently. Molecular observations at higher resolution may give some hints on the physics in the molecular disk. We modeled the chemical composition of a molecular disk in an AGN on a scale of tens of pc. To do this, we extended our standard gas-phase OSU network to include important processes at much higher temperatures, approaching 1000 K. We used the density model of Thompson et al., and determined the temperature by the blackbody approximation from the luminosity of the AGN core. The ionization by X-rays from the AGN core, by cosmic-rays from the AGN core, supernovae and stellar winds, and by UV-photons from OB stars are considered. We will briefly mention the effects from other factors that may change the molecular abundances such as shock waves and inhomogeneity of the density of the disk. T. Thompson, E. Quataert, and N. Murray, Astrophysical J. 630, 167 (2005)

  17. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  18. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    SciTech Connect

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L. E-mail: ewilcots@astro.wisc.edu

    2012-08-15

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L{sub 1.4GHz} > 10{sup 23} W Hz{sup -1}) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  19. Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z=2

    NASA Astrophysics Data System (ADS)

    Steinborn, Lisa K.; Dolag, Klaus; Comerford, Julia M.; Hirschmann, Michaela; Remus, Rhea-Silvia; Teklu, Adelheid F.

    2016-05-01

    In the last few years, it became possible to observationally resolve galaxies with two distinct nuclei in their centre. For separations smaller than 10 kpc, dual and offset active galactic nuclei (AGN) are distinguished: in dual AGN, both nuclei are active, whereas in offset AGN only one nucleus is active. To study the origin of such AGN pairs, we employ a cosmological, hydrodynamic simulation with a large volume of (182 Mpc)3 from the set of Magneticum Pathfinder Simulations. The simulation self-consistently produces 35 resolved black hole (BH) pairs at redshift z = 2, with a comoving distance smaller than 10 kpc. 14 of them are offset AGN and nine are dual AGN, resulting in a fraction of (1.2 ± 0.3) per cent AGN pairs with respect to the total number of AGN. In this paper, we discuss fundamental differences between the BH and galaxy properties of dual AGN, offset AGN and inactive BH pairs and investigate their different triggering mechanisms. We find that in dual AGN the BHs have similar masses and the corresponding BH from the less massive progenitor galaxy always accretes with a higher Eddington ratio. In contrast, in offset AGN the active BH is typically more massive than its non-active counterpart. Furthermore, dual AGN in general accrete more gas from the intergalactic medium than offset AGN and non-active BH pairs. This highlights that merger events, particularly minor mergers, do not necessarily lead to strong gas inflows and thus, do not always drive strong nuclear activity.

  20. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  1. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  2. Highlights from the VERITAS Active Galactic Nuclei Observing Program

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; VERITAS Collaboration

    2016-01-01

    The VERITAS Observatory, located at the Fred Lawrence Whipple Observatory near Tucson, Arizona is one of the world's most sensitive detectors of very-high-energy (VHE; E>100GeV) gamma rays. With an array of four 12-m telescopes, VERITAS detects the Cherenkov light emitted from air showers initiated by astrophysical gamma rays. A sequence of upgrades completed in 2012 aimed at lowering the energy threshold resulted in the instrument being sensitive to gamma rays between 85 GeV and 30 TeV. Fully operational since 2007, VERITAS has so far detected 54 VHE gamma-ray objects in eight different source classes. The active galactic nuclei (AGN) class comprises the majority of these detections, with 34 sources that include several radio galaxies but are predominantly blazars (AGN with relativistic jets pointing towards Earth). The scientific importance of VHE detections of AGN includes studying the details of emission mechanisms in blazars and elucidating whether they are sources of ultra-high-energy cosmic rays and astrophysical neutrinos. Additionally VHE gamma-ray observations can be used to gain cosmological insights such as placing limits on the intergalactic magnetic field (IGMF) and the extragalactic background light (EBL), which comprises all the diffuse starlight in the universe. This presentation will summarize the VERITAS AGN observing program and highlight a few recent results.

  3. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  4. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1AGN-ionized gas, the stellar masses of the host galaxies and their star formation rates. We then investigate the relationships between AGN luminosities, specific star formation rates (sSFR) and outflow strengths W_{90} - the 90% velocity width of the [OIII]λ5007Å line power and a proxy for the AGN-driven outflow speed. Outflow strength W_{90} is independent of sSFR for AGN selected based on their mid-IR luminosity. This is in agreement with previous work that demonstrates that star formation is not sufficient to produce the observed ionized gas outflows which have to be powered by AGN activity. More importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  5. THE FERMI BUBBLES. I. POSSIBLE EVIDENCE FOR RECENT AGN JET ACTIVITY IN THE GALAXY

    SciTech Connect

    Guo Fulai; Mathews, William G.

    2012-09-10

    The Fermi Gamma-ray Space Telescope reveals two large gamma-ray bubbles in the Galaxy, which extend about 50 Degree-Sign ({approx}10 kpc) above and below the Galactic center (GC) and are symmetric about the Galactic plane. Using axisymmetric hydrodynamic simulations with a self-consistent treatment of the dynamical cosmic ray (CR)-gas interaction, we show that the bubbles can be created with a recent active galactic nucleus (AGN) jet activity about 1-3 Myr ago, which was active for a duration of {approx}0.1-0.5 Myr. The bipolar jets were ejected into the Galactic halo along the rotation axis of the Galaxy. Near the GC, the jets must be moderately light with a typical density contrast 0.001 {approx}< {eta} {approx}< 0.1 relative to the ambient hot gas. The jets are energetically dominated by kinetic energy, and overpressured with either CR or thermal pressure which induces lateral jet expansion, creating fat CR bubbles as observed. The sharp edges of the bubbles imply that CR diffusion across the bubble surface is strongly suppressed. The jet activity induces a strong shock, which heats and compresses the ambient gas in the Galactic halo, potentially explaining the ROSAT X-ray shell features surrounding the bubbles. The Fermi bubbles provide plausible evidence for a recent powerful AGN jet activity in our Galaxy, providing new insights into the origin of the halo CR population and the channel through which massive black holes in disk galaxies release feedback energy during their growth.

  6. A census of gas outflows in type 2 active galactic nuclei

    SciTech Connect

    Bae, Hyun-Jin; Woo, Jong-Hak E-mail: woo@astro.snu.ac.kr

    2014-11-01

    We perform a census of ionized gas outflows using a sample of ∼23,000 type 2 active galactic nuclei (AGNs) out to z ∼ 0.1. By measuring the velocity offset of narrow emission lines, i.e., [O III] λ5007 and Hα, with respect to the systemic velocity measured from the stellar absorption lines, we find that 47% of AGNs display an [O III] line-of-sight velocity offset ≥ 20 km s{sup –1}. The fraction of the [O III] velocity offset in type 2 AGNs is comparable to that in type 1 AGNs after considering the projection effect. AGNs with a large [O III] velocity offset preferentially have a high Eddington ratio, implying that the detected velocity offsets are related to black hole activity. The distribution of the host galaxy inclination is clearly different between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the combined model of the biconical outflow and dust obscuration. In addition, for ∼3% of AGNs, [O III] and Hα show comparable large velocity offsets, indicating a more complex gas kinematics than decelerating outflows in a stratified narrow-line region.

  7. Photometric Monitoring of the Active Galactic Nucleus in NGC 7469

    NASA Astrophysics Data System (ADS)

    Roberts, Caroline A.; Bentz, M. C.; Stare Collaboration

    2014-01-01

    Reverberation mapping is a technique by which black hole masses in active galactic nuclei (AGN) are determined. The method determines an average radius for the broad line region by measuring the time delay between continuum and emission signatures in an object’s spectrum. Coupled with the broad line region cloud velocity values taken from Doppler emission line broadening and a correction for the angle at which the AGN is viewed, the black hole mass can be constrained. As part of a reverberation mapping campaign targeting NGC 7469, optical B and V photometry was obtained over the span of a 6-month period during the second half of 2011 using 14 different telescopes in the former bandwidth and 15 in the latter. Differential photometry was performed with IRAF and the light curves were compared with those obtained using the image subtraction program ISIS.

  8. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  9. Neutrinos in IceCube from active galactic nuclei

    SciTech Connect

    Kalashev, O.; Semikoz, D.; Tkachev, I.

    2015-03-15

    Recently, the IceCube collaboration reported first evidence for the astrophysical neutrinos. Observation corresponds to the total astrophysical neutrino flux of the order of 3 × 10{sup −8} GeV cm{sup −2} s{sup −1} sr{sup −1} in a PeV energy range [1]. Active galactic nuclei (AGN) are natural candidate sources for such neutrinos. To model the neutrino creation in AGNs, we study photopion production processes on the radiation field of the Shakura-Sunyaev accretion discs in the black hole vicinity. We show that this model can explain the detected neutrino flux and at the same time avoids the existing constraints from the gamma-ray and cosmic-ray observations.

  10. X-ray emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1985-01-01

    It is often held that the X-ray emission from active galactic nuclei (AGN) arises from a region close to the central energy source. Thus X-ray observations may provide the best constraints on the central engine. In particular, the shape of the X-ray continuum gives information about the mechanism for photon generation, X-ray time variability data can constrain the size and mass of the continuum source, and X-ray occultation data give constraints on the relative sizes of the continuum source and the intervening absorbing material (often assumed to be the broad line clouds). In addition, since a fair fraction of the total energy of an AGN is emitted at X-ray wavelengths, direct measurement of the amount and spectral form of this radiation is important for modeling of the optically emitting clouds.

  11. Time Delay Evolution of Five Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, A.; Popović, L. Č.; Shapovalova, A. I.; Ilić, D.; Burenkov, A. N.; Chavushyan, V. H.

    2015-12-01

    Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821 + 643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.

  12. Activity in galactic nuclei of cluster and field galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Hwang, H. S.; Park, C.; Elbaz, D.; Choi, Y.-Y.

    2012-02-01

    Aims: We study the environmental effects on the activity in galactic nuclei by comparing galaxies in clusters and in the field. Methods: Using a spectroscopic sample of galaxies in Abell clusters from the Sloan Digital Sky Survey Data Release 7, we investigate the dependence of nuclear activity on the physical parameters of clusters as well as the nearest neighbor galaxy. We also compare galaxy properties between active galactic nuclei (AGNs) hosts and non-AGN galaxies. Results: We find that the AGN fraction of early-type galaxies starts to decrease around one virial radius of clusters (r200,cl) as decreasing clustercentric radius, while that of late types starts to decrease close to the cluster center (R ~ 0.1-0.5r200,cl). The AGN fractions of early-type cluster galaxies, on average, are found to be lower than those of early-type field galaxies by a factor ~3. However, the mean AGN fractions of late-type cluster galaxies are similar to those of late-type field galaxies. The AGN fraction of early-type brightest cluster galaxies lies between those of other early-type, cluster and field galaxies with similar luminosities. In the field, the AGN fraction is strongly dependent on the morphology of and the distance to the nearest neighbor galaxy. We find an anti-correlation between the AGN fraction and the velocity dispersion of clusters for all subsamples divided by morphology and luminosity of host galaxies. The AGN power indicated by L [OIII] /MBH is found to depend strongly on the mass of host galaxies rather than the clustercentric radius. The difference in physical parameters such as luminosity, (u - r) colors, star formation rates, and (g - i) color gradients between AGN hosts and non-AGN galaxies is seen for both early and late types at all clustercentric radii, while the difference in structure parameters between the two is significant only for late types. Conclusions: These results support the idea that the activity in galactic nuclei is triggered through

  13. THE OPTX PROJECT. IV. HOW RELIABLE IS [O III] AS A MEASURE OF AGN ACTIVITY?

    SciTech Connect

    Trouille, L.; Barger, A. J.

    2010-10-10

    We compare optical and hard X-ray identifications of active galactic nuclei (AGNs) using a uniformly selected (above a flux limit of f{sub 2-8{sub keV}} = 3.5 x 10{sup -15} erg cm{sup -2} s{sup -1}) and highly optically spectroscopically complete (>80% for f{sub 2-8{sub keV}} > 10{sup -14} erg cm{sup -2} s{sup -1} and >60% below) 2-8 keV sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N). We find that empirical emission-line ratio diagnostic diagrams misidentify 50% of the X-ray-selected AGNs that can be put on these diagrams as star formers. We confirm that there is a large (two orders of magnitude) dispersion in the ratio of the [O III]{lambda}5007 (hereafter [O III]) to hard X-ray luminosities for the non-broad-line AGNs, even after applying reddening corrections to the [O III] luminosities. We find that the dispersion is similar for the broad-line AGNs, where there is not expected to be much X-ray absorption from an obscuring torus around the AGN nor much obscuration from the galaxy along the line of sight if the AGN is aligned with the galaxy. We postulate that the X-ray-selected AGNs that are misidentified by the diagnostic diagrams have low [O III] luminosities due to the complexity of the structure of the narrow-line region, which causes many ionizing photons from the AGN not to be absorbed. This would mean that the [O III] luminosity can only be used to predict the X-ray luminosity to within a factor of {approx}3 (1{sigma}). Despite selection effects, we show that the shapes and normalizations of the [O III] and transformed hard X-ray luminosity functions show reasonable agreement, suggesting that the [O III] samples are not finding substantially more AGNs at low redshifts than hard X-ray samples.

  14. Mergers as triggers for nuclear activity: a near-IR study of the close environment of AGN in the VISTA-VIDEO survey

    NASA Astrophysics Data System (ADS)

    Karouzos, M.; Jarvis, M. J.; Bonfield, D.

    2014-03-01

    There is an ongoing debate concerning the driver of nuclear activity in galaxies, with active galactic nuclei (AGN) either being triggered by major or minor galactic mergers or, alternatively, through secular processes like cold gas accretion and/or formation of bars. We investigate the close environment of active galaxies selected in the X-ray, the radio and the mid-IR. We utilize the first data release of the new near-IR VISTA Deep Extragalactic Observations (VIDEO) survey of the XMM-Large Scale Structure field. We use two measures of environment density, namely counts within a given aperture and a finite redshift slice (pseudo-3D density) and closest neighbour density measures Σ2 and Σ5. We select both AGN and control samples, matching them in redshift and apparent Ks-band magnitude. We find that AGN are found in a range of environments, with a subset of the AGN samples residing in overdense environments. Seyfert-like X-ray AGN and flat-spectrum radio-AGN are found to inhabit significantly overdense environments compared to their control sample. The relation between overdensities and AGN luminosity does not however reveal any positive correlation. Given the absence of an environment density-AGN luminosity relation, we find no support for a scheme where high-luminosity AGN are preferentially triggered by mergers. On the contrary, we find that AGN likely trace over dense environments at high redshift due to the fact that they inhabit the most massive galaxies, rather than being an AGN.

  15. The effects of the local environment on active galactic nuclei

    SciTech Connect

    Manzer, L. H.; De Robertis, M. M. E-mail: mmdr@yorku.ca

    2014-06-20

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  16. Tracing the evolution of active galactic nuclei host galaxies over the last 9 Gyr of cosmic time

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Murray, S. S.; Paggi, A.; Ashby, M. L. N.; Huang, J.-S.; Kraft, R.; Willner, S. P.; Hickox, R. C.; Coil, A. L.; Cooper, M. C.; Newman, J. A.; Weiner, B. J.

    2014-03-01

    We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.

  17. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  18. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    SciTech Connect

    Lacy, M.; Ridgway, S. E.; Gates, E. L.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  19. DETERMINING INCLINATIONS OF ACTIVE GALACTIC NUCLEI VIA THEIR NARROW-LINE REGION KINEMATICS. I. OBSERVATIONAL RESULTS

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.

    2013-11-01

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight (LOS). However, except for a few special cases, the specific inclinations of individual AGNs are unknown. We have developed a promising technique for determining the inclinations of nearby AGNs by mapping the kinematics of their narrow-line regions (NLRs), which are often easily resolved with Hubble Space Telescope [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph. Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our LOS. We present NLR analysis of 53 Seyfert galaxies and the resulting inclinations from models of 17 individual AGNs with clear signatures of biconical outflows. Our model results agree with the unified model in that Seyfert 1 AGNs have NLRs inclined further toward our LOS than Seyfert 2 AGNs. Knowing the inclinations of these AGN NLRs, and thus their accretion disk and/or torus axes, will allow us to determine how their observed properties vary as a function of polar angle. We find no correlation between the inclinations of the AGN NLRs and the disks of their host galaxies, indicating that the orientation of the gas in the torus is independent of that of the host disk.

  20. Determining inclinations of active galactic nuclei via their narrow-line region kinematics. II. Correlation with observed properties

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2014-04-10

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight, yet the specific inclinations of all but a few AGNs are generally unknown. By determining the inclinations and geometries of nearby Seyfert galaxies using the kinematics of their narrow-line regions (NLRs) and comparing them with observed properties, we find strong correlations between inclination and total hydrogen column density, infrared color, and Hβ FWHM. These correlations provide evidence that the orientation of AGNs with respect to our line of sight affects how we perceive them beyond the Seyfert 1/2 dichotomy. They can also be used to constrain three-dimensional models of AGN components such as the broad-line region and torus. Additionally, we find weak correlations between AGN luminosity and several modeled NLR parameters, which suggests that the NLR geometry and kinematics are dependent to some degree on the AGN's radiation field.

  1. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  2. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1996-01-01

    The investigation of stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole is presented. Stochastic acceleration has been successfully applied to the problem of ion and electron energization in solar flares, and is capable of accounting for a wide range of both neutral and charged particle emissions. It is also a component in diffusive shock acceleration, since pitch-angle scattering (which is necessary for multiple shock crossings) is accompanied by diffusion in momentum space, which in turn yields a net systematic energy gain; however, stochastic energization will dominate the first-order shock process only in certain parameter regimes. Although stochastic acceleration has been applied to particle energization in the lobes of radio galaxies, its application to the central regions of AGNs (active galactic nuclei) has only recently been considered, but not in detail. We proposed to systematically investigate the plasma processes responsible for stochastic particle acceleration in black hole magnetospheres along with the energy-loss processes which impede particle energization. To this end, we calculated acceleration rates and escape time scales for protons and electrons resonating with Alfven waves, and for electrons resonating with whistlers. We also considered the "hot" topic of gamma-ray line emission from the Orion complex. We proposed that the observed gamma-ray lines are produced by energetic ions that are stochastically accelerated by cascading Alfven waves in the accretion plasma near a black hole. Related research papers that were published in journals are listed.

  3. Variability-based active galactic nucleus selection using image subtraction in the SDSS and LSST era

    SciTech Connect

    Choi, Yumi; Gibson, Robert R.; Becker, Andrew C.; Ivezić, Željko; Connolly, Andrew J.; Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.

    2014-02-10

    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  4. Signs of active galactic nucleus quenching in a merger remnant with radio jets

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kohei; Ueda, Junko; Shidatsu, Megumi; Kawamuro, Taiki; Matsuoka, Kenta

    2016-02-01

    We investigate optical, infrared, and radio active galactic nucleus (AGN) signs in the merger remnant Arp 187, which hosts luminous jets launched in the order of 105 yr ago but whose present-day AGN activity is still unknown. We find AGN signs from the optical Baldwin-Phillips-Telervich diagram and infrared [O IV] 25.89 μm line, originating from the narrow line regions of AGN. On the other hand, Spitzer/IRS show host galaxy dominated spectra, suggesting that the thermal emission from the AGN torus is considerably small or already diminished. Combining the black hole mass, the upper limit of radio luminosity of the core, and the fundamental plane of the black hole enables us to estimate X-ray luminosity, which gives <1040 erg s-1. Those results suggest that the AGN activity of Arp 187 has already been quenched, but the narrow line region is still alive owing to the time delay of emission from the past AGN activity.

  5. SWIFT Observations AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift Burst Alert Telescope (BAT) Active Galactic Nuclei (AGN) survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type.

  6. Gamma-ray monitoring of AGN and galactic black hole candidates by the Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Wheaton, Wm. A.; Ling, James C.; Skelton, R. T.; Harmon, Alan; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.; Rubin, Brad; Wilson, Robert B.; Gruber, Duane E.

    1992-01-01

    The Burst and Transient Spectroscopy Experiment (BATSE) on the Compton Gamma-Ray Observatory has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both AGN and Galactic black hole candidates such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Progress in background modeling indicates that the data accept region, or fit window tau, around the occultation step can be substantially increased over that conservatively assumed in earlier estimates of BATSE's Earth occultation sensitivity. We show samples of large-tau fits to background and source edges. As a result we expect to be able to perform long-term monitoring of Cygnus X-1 and many of the brighter AGN for the duration of the CGRO mission.

  7. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    SciTech Connect

    Lyu, Jianwei; Hao, Lei; Li, Aigen

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  8. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  9. CO Line Emission from Compact Nuclear Starburst Disks around Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Armour, J. N.; Ballantyne, D. R.

    2012-06-01

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale (lsim 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J Upper >~ 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z <~ 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  10. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  11. Host galaxy colour gradients and accretion disc obscuration in AEGIS z ~ 1 X-ray-selected active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Pierce, C. M.; Lotz, J. M.; Salim, S.; Laird, E. S.; Coil, A. L.; Bundy, K.; Willmer, C. N. A.; Rosario, D. J. V.; Primack, J. R.; Faber, S. M.

    2010-10-01

    We describe the effect of active galactic nucleus (AGN) light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z ~ 1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both redshift and stellar mass. We identify as X-ray-selected AGNs 8.7+4-3 per cent of the red-sequence control galaxies, 9.8 +/- 3 per cent of the blue-cloud control galaxies and 14.7+4-3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. A second class of models involving radiative instabilities in hot gas is more promising for red-sequence AGNs but predicts a larger number of point sources in red-sequence AGNs than is observed. Regardless, it appears that multiple AGN models are necessary to explain the

  12. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  13. The Importance of Winds for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Fischer, T. C.; Gagne, J.

    2014-01-01

    Active galactic nuclei (AGN) are fed by accretion of matter onto supermassive black holes (SMBHs), generating huge amounts of radiation from very small volumes. AGN also provide feedback to their environments via mass outflows of ionized gas, which could play a critical role in the formation of large-scale structure in the early Universe, chemical enrichment of the intergalactic medium, and self-regulation of SMBH and galactic bulge growth. We provide an update on our research on the winds in nearby moderate-luminosity AGN, In particular, we concentrate on winds that occur on relatively large scales (hundreds of parsecs) that are revealed through spatially resolved HST spectra of emission-line gas in the narrow line regions (NLRs) of nearby AGN. We discuss the techniques for measuring the mass outflow rates and kinetic luminosities of these AGN winds and gauge their importance for providing significant AGN feedback.

  14. Constraints on Galactic Center Activity: A Search for Enhanced Galactic Center Lithium and Boron

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.; Turner, B. E.; Hobbs, L. M.

    1998-12-01

    The abundances of lithium and boron provide important information about big bang nucleosynthesis, Galactic chemical evolution, stellar evolution, and cosmic-ray spallation reactions. We conducted the first search for the ground-state hyperfine-structure transitions of Li I (2S1/2; F = 2-1 803 MHz) and B I (2P1/2; F = 2-1 732 MHz). We used the 43 m NRAO radio telescope to search for enhanced Galactic center (GC) Li and B expected from models of Galactic activity. We did not detect Li I or B I and obtained upper limits of N(Li I) < 1.9 × 1016 cm-2, (Li/H) < 3.9 × 10-8, N(B I) < 2.2 × 1018 cm-2, and (B/H) < 9.2 × 10-6 for the dense 20 km s-1 Sgr A molecular cloud where our largest sources of uncertainties are Li I/Li, B I/B, and N(H). Our observations imply (Li/H)GC < 22 (Li/H)disk, (Li/H)GC < 39 (Li/H)disk-spallation, (B/H)GC < 1.2 × 104 (B/H)disk, (B/H)GC < 1.5 × 104 (B/H)disk-spallation. For a simple model combining mass loss from AGB stars (only for Li), spallation reactions, and SN ν-nucleosynthesis, we estimate (Li/H)GC = 1.3 × 10-8 (13 times enhancement) and (B/H)GC = 7.4 × 10-9 (10 times enhancement). If Li is primarily produced via spallation reactions from a cosmic-ray proton flux φp(t) with the same energy and trapping as in the disk, then [\\smallint φp(t)dt]GC < 13[\\smallint φp(t)dt]disk. Comparing our results to AGN models, we conclude that the GC has not had an extended period of AGN activity containing a large cosmic-ray flux (LCR <= 1044 ergs s-1 for 108 yr), a large low-energy cosmic-ray flux (less than 100 times the disk flux), or a large γ-ray flux (Lγ < 1042 ergs s-1 for 109 yr). Furthermore, since any Galactic deuterium production will significantly enhance the abundances of Li and B, our results imply that there are no sources of D in the GC or Galaxy. Therefore, all the Galactic D originated from the infall of primordial matter with the current D/H reduced by astration and mixing.

  15. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  16. OCCUPATION OF X-RAY-SELECTED GALAXY GROUPS BY X-RAY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Allevato, V.; Finoguenov, A.; Hasinger, G.; Cappelluti, N.; Miyaji, T.; Salvato, M.; Brusa, M.; Zamorani, G.; Gilli, R.; George, M. R.; Tanaka, M.; Silverman, J.; Civano, F.; Elvis, M.; Shankar, F.

    2012-10-10

    We present the first direct measurement of the mean halo occupation distribution (HOD) of X-ray-selected active galactic nuclei (AGNs) in the COSMOS field at z {<=} 1, based on the association of 41 XMM and 17 C-COSMOS AGNs with member galaxies of 189 X-ray-detected galaxy groups from XMM-Newton and Chandra data. We model the mean AGN occupation in the halo mass range log M{sub 200} [M{sub Sun }] = 13-14.5 with a rolling-off power law with the best-fit index {alpha} = 0.06(- 0.22; 0.36) and normalization parameter f{sub a} 0.05(0.04; 0.06). We find the mean HOD of AGNs among central galaxies to be modeled by a softened step function at log M{sub h} > log M{sub min} = 12.75(12.10, 12.95) M{sub Sun} while for the satellite AGN HOD we find a preference for an increasing AGN fraction with M{sub h} , suggesting that the average number of AGNs in satellite galaxies grows slower ({alpha}{sub s} < 0.6) than the linear proportion ({alpha}{sub s} = 1) observed for the satellite HOD of samples of galaxies. We present an estimate of the projected autocorrelation function (ACF) of galaxy groups over the range of r{sub p} = 0.1-40 h {sup -1} Mpc at (z) = 0.5. We use the large-scale clustering signal to verify the agreement between the group bias estimated by using the observed galaxy groups ACF and the value derived from the group mass estimates. We perform a measurement of the projected AGN-galaxy-group cross-correlation function, excluding from the analysis AGNs that are within galaxy groups and we model the two-halo term of the clustering signal with the mean AGN HOD based on our results.

  17. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  18. Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Di Mauro, M.; Calore, F.; Donato, F.; Ajello, M.; Latronico, L.

    2014-01-01

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  19. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  20. Grain physics and infrared dust emission in active galactic nucleus environments

    SciTech Connect

    Hensley, Brandon S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2014-07-01

    We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by active galactic nucleus (AGN) feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of 10{sup 46} erg s{sup –1}. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds L {sub BH}/c. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us towards models wherein the dust to metals ratios are ≅ 1% of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN 'on' phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission (≅ 100 K) from dense dusty gas within ≤1 kpc reradiating the AGN UV emission.

  1. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. I. THE FREQUENCY ON {approx}5-100 kpc SCALES

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.; Hao Lei

    2011-08-20

    Galaxy-galaxy mergers and close interactions have long been regarded as a viable mechanism for channeling gas toward the central supermassive black holes (SMBHs) of galaxies which are triggered as active galactic nuclei (AGNs). AGN pairs, in which the central SMBHs of a galaxy merger are both active, are expected to be common from such events. We conduct a systematic study of 1286 AGN pairs at z-bar {approx}0.1 with line-of-sight velocity offsets {Delta}v < 600 km s{sup -1} and projected separations r{sub p} < 100 h{sup -1}{sub 70} kpc, selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). This AGN pair sample was drawn from 138,070 AGNs optically identified based on diagnostic emission line ratios and/or line widths. The fraction of AGN pairs with 5 h{sup -1}{sub 70} kpc {approx}< r{sub p} < 100 h{sup -1}{sub 70} kpc among all spectroscopically selected AGNs at 0.02 < z < 0.16 is 3.6% after correcting for SDSS spectroscopic incompleteness; {approx}30% of these pairs show morphological tidal features in their SDSS images, and the fraction becomes {approx}> 80% for pairs with the brightest nuclei. Our sample increases the number of known AGN pairs on these scales by more than an order of magnitude. We study their AGN and host-galaxy star formation properties in a companion paper.

  2. The active galactic nucleus population in X-ray-selected galaxy groups at 0.5 < Z < 1.1

    SciTech Connect

    Oh, Semyeong; Woo, Jong-Hak; Matsuoka, Kenta; Mulchaey, John S.; Finoguenov, Alexis; Tanaka, Masayuki; Cooper, Michael C.; Ziparo, Felicia; Bauer, Franz E.

    2014-07-20

    We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(L{sub X,H}>10{sup 42};M{sub R}<−20)=8.0{sub −2.3}{sup +3.0}% at z-bar ∼0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of low redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L{sub X,{sub H}} > 10{sup 41} erg s{sup –1}) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.

  3. The Active Galactic Nucleus Population in X-Ray-selected Galaxy Groups at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Mulchaey, John S.; Woo, Jong-Hak; Finoguenov, Alexis; Tanaka, Masayuki; Cooper, Michael C.; Ziparo, Felicia; Bauer, Franz E.; Matsuoka, Kenta

    2014-07-01

    We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(LX,H \\gt 1042;MR < {-20}) = 8.0-2.3+3.0% at \\bar{z} ˜ 0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of low redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L X, H > 1041 erg s-1) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.

  4. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  5. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  6. Search for gamma-ray-emitting active galactic nuclei in the Fermi-LAT unassociated sample using machine learning

    SciTech Connect

    Doert, M.; Errando, M. E-mail: errando@astro.columbia.edu

    2014-02-10

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band. It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm is also presented, that takes into account the differences between associated and unassociated gamma-ray sources. Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the number of unassociated gamma-ray sources and contribute to a more complete characterization of the population of gamma-ray emitting AGNs.

  7. Identification of 1.4 Million Active Galactic Nuclei in the Mid-Infrared using WISE Data

    NASA Astrophysics Data System (ADS)

    Secrest, N. J.; Dudik, R. P.; Dorland, B. N.; Zacharias, N.; Makarov, V.; Fey, A.; Frouard, J.; Finch, C.

    2015-11-01

    We present an all-sky sample of ≈1.4 million active galactic nuclei (AGNs) meeting a two-color infrared photometric selection criteria for AGNs as applied to sources from the Wide-field Infrared Survey Explorer final catalog release (AllWISE). We assess the spatial distribution and optical properties of our sample and find that the results are consistent with expectations for AGNs. These sources have a mean density of ≈38 AGNs per square degree on the sky, and their apparent magnitude distribution peaks at g ≈ 20, extending to objects as faint as g ≈ 26. We test the AGN selection criteria against a large sample of optically identified stars and determine the “leakage” (that is, the probability that a star detected in an optical survey will be misidentified as a quasi-stellar object (QSO) in our sample) rate to be ≤4.0 × 10-5. We conclude that our sample contains almost no optically identified stars (≤0.041%), making this sample highly promising for future celestial reference frame work as it significantly increases the number of all-sky, compact extragalactic objects. We further compare our sample to catalogs of known AGNs/QSOs and find a completeness value of ≳84% (that is, the probability of correctly identifying a known AGN/QSO is at least 84%) for AGNs brighter than a limiting magnitude of R ≲ 19. Our sample includes approximately 1.1 million previously uncataloged AGNs.

  8. Compton thick active galactic nuclei in Chandra surveys

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian

    2014-09-01

    We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the Chandra Deep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model

  9. ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2

    NASA Astrophysics Data System (ADS)

    Cowley, Michael J.; Spitler, Lee R.; Tran, Kim-Vy H.; Rees, Glen A.; Labbé, Ivo; Allen, Rebecca J.; Brammer, Gabriel B.; Glazebrook, Karl; Hopkins, Andrew M.; Juneau, Stéphanie; Kacprzak, Glenn G.; Mullaney, James R.; Nanayakkara, Themiya; Papovich, Casey; Quadri, Ryan F.; Straatman, Caroline M. S.; Tomczak, Adam R.; van Dokkum, Pieter G.

    2016-03-01

    We investigate active galactic nuclei (AGN) candidates within the FourStar Galaxy Evolution Survey (ZFOURGE) to determine the impact they have on star formation in their host galaxies. We first identify a population of radio, X-ray, and infrared-selected AGN by cross-matching the deep Ks-band imaging of ZFOURGE with overlapping multiwavelength data. From this, we construct a mass-complete (log(M_{{*}}/M_{{⊙}}) ≥9.75), AGN luminosity limited sample of 235 AGN hosts over z = 0.2-3.2. We compare the rest-frame U - V versus V - J (UVJ) colours and specific star formation rates (sSFRs) of the AGN hosts to a mass-matched control sample of inactive (non-AGN) galaxies. UVJ diagnostics reveal AGN tend to be hosted in a lower fraction of quiescent galaxies and a higher fraction of dusty galaxies than the control sample. Using 160 μm Herschel PACS data, we find the mean specific star formation rate of AGN hosts to be elevated by 0.34 ± 0.07 dex with respect to the control sample across all redshifts. This offset is primarily driven by infrared-selected AGN, where the mean sSFR is found to be elevated by as much as a factor of ˜5. The remaining population, comprised predominantly of X-ray AGN hosts, is found mostly consistent with inactive galaxies, exhibiting only a marginal elevation. We discuss scenarios that may explain these findings and postulate that AGN are less likely to be a dominant mechanism for moderating galaxy growth via quenching than has previously been suggested.

  10. SPATIALLY RESOLVED SPECTROSCOPY OF SDSS J0952+2552: A CONFIRMED DUAL ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    McGurk, R. C.; Max, C. E.; Rosario, D. J.; Shields, G. A.; Smith, K. L.; Wright, S. A. E-mail: max@ucolick.org E-mail: shieldsga@mail.utexas.edu E-mail: saw@astro.berkeley.edu

    2011-09-01

    Most massive galaxies contain supermassive black holes (SMBHs) in their cores. When galaxies merge, gas is driven to nuclear regions and can accrete onto the central black hole. Thus, one expects to see dual active galactic nuclei (AGNs) in a fraction of galaxy mergers. Candidates for galaxies containing dual AGNs have been identified by the presence of double-peaked narrow [O III] emission lines and by high spatial resolution images of close galaxy pairs. Spatially resolved spectroscopy is needed to confirm these galaxy pairs as systems with spatially separated double SMBHs. With the Keck 2 Laser Guide Star Adaptive Optics system and the OH Suppressing InfraRed Imaging Spectrograph near-infrared integral field spectrograph, we obtained spatially resolved spectra for SDSS J09527.62+255257.2, a radio-quiet quasar shown by previous imaging to consist of a galaxy and its close (1.''0) companion. We find that the main galaxy is a Type 1 AGN with both broad and narrow AGN emission lines in its spectrum, while the companion galaxy is a Type 2 AGN with narrow emission lines only. The two AGNs are separated by 4.8 kpc, and their redshifts correspond to those of the double peaks of the [O III] emission line seen in the Sloan Digital Sky Survey spectrum. Line diagnostics indicate that both components of the double emission lines are due to AGN photoionization. These results confirm that J0952+2552 contains two spatially separated AGNs. As one of the few confirmed dual AGNs at an intermediate separation of <10 kpc, this system offers a unique opportunity to study galaxy mergers and their effect on black hole growth.

  11. CHANDRA DISCOVERY OF A BINARY ACTIVE GALACTIC NUCLEUS IN Mrk 739

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Trippe, Margaret; Ezequiel Treister; Sanders, D. B.; Schawinski, Kevin

    2011-07-10

    We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L{sub 2-10 keV} = 1.1 x 10{sup 43} and 1.0 x 10{sup 42} erg s{sup -1}), unresolved nuclei with a projected separation of 3.4 kpc (5.''8 {+-} 0.''1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (x 2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L{sub [O{sub III}]/L{sub 2-10 keV}} ratio cause the AGN to be missed in optical observations. {sup 12}CO observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M{sub BH} = 7.05 {+-} 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date.

  12. Revisiting the infrared spectra of active galactic nuclei with a new torus emission model

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Franceschini, A.; Hatziminaoglou, E.

    2006-03-01

    We describe improved modelling of the emission by dust in a toroidal-like structure heated by a central illuminating source within active galactic nuclei (AGNs). We have chosen a simple but realistic torus geometry, a flared disc, and a dust grain distribution function including a full range of grain sizes. The optical depth within the torus is computed in detail taking into account the different sublimation temperatures of the silicate and graphite grains, which solves previously reported inconsistencies in the silicate emission feature in type 1 AGNs. We exploit this model to study the spectral energy distributions (SEDs) of 58 extragalactic (both type 1 and type 2) sources using archival optical and infrared data. We find that both AGN and starburst contributions are often required to reproduce the observed SEDs, although in a few cases they are very well fitted by a pure AGN component. The AGN contribution to the far-infrared luminosity is found to be higher in type 1 sources, with all the type 2 requiring a substantial contribution from a circumnuclear starburst. Our results appear in agreement with the AGN unified scheme, because the distributions of key parameters of the torus models turn out to be compatible for type 1 and type 2 AGNs. Further support to the unification concept comes from comparison with medium-resolution infrared spectra of type 1 AGNs by the Spitzer observatory, showing evidence for a moderate silicate emission around 10 μm, which our code reproduces. From our analysis we infer accretion flows in the inner nucleus of local AGNs characterized by high equatorial optical depths (AV~= 100), moderate sizes (Rmax < 100 pc) and very high covering factors (f~= 80 per cent) on average.

  13. IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

    SciTech Connect

    Donley, J. L.; Koekemoer, A. M.; Brusa, M.; Salvato, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J. S.; Miyaji, T.; Sanders, D. B.; Trump, J. R.

    2012-04-01

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L{sub 2-10keV}(erg s{sup -1}) {>=}44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N{sub H} (cm{sup -2}) = 23.5 {+-} 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

  14. A method for determining AGN accretion phase in field galaxies

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Martinović, Nemanja; Sinha, Manodeep

    2016-09-01

    Recent observations of active galactic nucleus (AGN) activity in massive galaxies (log M*/ M⊙ > 10.4) show the following: (1) at z < 1, AGN-hosting galaxies do not show enhanced merger signatures compared with normal galaxies, (2) also at z < 1, most AGNs are hosted by quiescent galaxies and (3) at z > 1, the percentage of AGNs in star-forming galaxies increases and becomes comparable to the AGN percentage in quiescent galaxies at z ˜ 2. How can major mergers explain AGN activity in massive quiescent galaxies that have no merger features and no star formation to indicate a recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger-triggered AGN activity is consistent with the observations. By distinguishing between `peak' AGNs (recently merger-triggered and hosted by star-forming galaxies) and `faded' AGNs (merger-triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star-forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z < 1, the only AGNs left to be observed are the ones triggered by old mergers that are now in the declining phase of their nuclear activity, hosted by quiescent galaxies. As we go towards higher redshifts, the galaxy merger rate increases and the percentages of `peak' AGNs and `faded' AGNs become comparable.

  15. On the Host Galaxy of GRB 150101B and the Associated Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-06-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  16. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    SciTech Connect

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  17. Changing Ionization Conditions in SDSS Galaxies with Active Galactic Nuclei as a Function of Environment from Pairs to Clusters

    NASA Astrophysics Data System (ADS)

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  18. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  19. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  20. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  1. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kouzuma, S.; Yamaoka, H. E-mail: yamaoka@phys.kyushu-u.ac.jp

    2012-03-01

    We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported

  2. X-ray spectra and time variability of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.

    1984-01-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha = .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales.

  3. The effect of active galactic nuclei feedback on the halo mass function

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Borgani, Stefano; Murante, Giuseppe

    2014-06-01

    We investigate baryon effects on the halo mass function (HMF), with emphasis on the role played by active galactic nuclei (AGN) feedback. Haloes are identified with both friends-of-friends (FoF) and spherical overdensity (SO) algorithms. We embed the standard SO algorithm into a memory-controlled frame program and present the Python spherIcAl Overdensity code - PIAO (Chinese character: ). For both FoF and SO haloes, the effect of AGN feedback is that of suppressing the HMFs to a level even below that of dark matter (DM) simulations. The ratio between the HMFs in the AGN and in the DM simulations is ˜0.8 at overdensity Δc = 500, a difference that increases at higher overdensity Δc = 2500, with no significant redshift and mass dependence. A decrease of the halo masses ratio with respect to the DM case induces the decrease of the HMF in the AGN simulation. The shallower inner density profiles of haloes in the AGN simulation witnesses that mass reduction is induced by the sudden displacement of gas induced by thermal AGN feedback. We provide fitting functions to describe halo mass variations at different overdensities, which can recover the HMFs with a residual random scatter ≲5 per cent for halo masses larger than 1013 h-1 M⊙.

  4. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Hao Heng; Huchra, John P.; Merloni, Andrea; Bongiorno, Angela; Brusa, Marcella; Cappelluti, Nico; McCarthy, Patrick J.; Koekemoer, Anton; Nagao, Tohru; Salvato, Mara; Scoville, Nick Z.

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.

  5. Changing-Look Active Galactic Nuclei With The Time Domain Spectroscopic Survey (TDSS)

    NASA Astrophysics Data System (ADS)

    Runnoe, J.

    2015-09-01

    Changing-look active galactic nuclei (CL-AGNs) present a unique opportunity to study AGN unification and physics. They are observed to transformation between the Type 1 and 2 classifications, supporting a picture in which both orientation to the observer and intrinsic spectral and luminosity evolution can play important roles in unification. In the same spirit, CL-AGNs also offer a way to study behavior brought about by abrupt changes in the accretion rate and may represent a previously unappreciated mode of quasar variability: prolonged "on-" and "off-states". CL-AGNs are uncommon, with only a handful identified to date, but several have been discovered in the Time Domain Spectroscopic Survey (TDSS), and these are likely just the tip of the iceberg. The TDSS offers a promising way of discovering substantial numbers of CL-AGN because it will revisit several thousand objects with previous spectra from the SDSS, many of which are selected based on substantial photometric variability. A statistical sample of these objects will allow us to move beyond the detailed case studies and start to understand the underlying physical mechanisms responsible for these dramatic spectral changes. I will describe our systematic search for CL-AGN in the TDSS and discuss what we have learned from a growing sample of these objects.

  6. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY

    SciTech Connect

    Franca, Fabio La; Bianchi, Stefano; Branchini, Enzo; Matt, Giorgio; Ponti, Gabriele

    2014-05-20

    We report the discovery of a luminosity distance estimator using active galactic nuclei (AGNs). We combine the correlation between the X-ray variability amplitude and the black hole (BH) mass with the single-epoch spectra BH mass estimates which depend on the AGN luminosity and the line width emitted by the broad-line region. We demonstrate that significant correlations do exist that allow one to predict the AGN (optical or X-ray) luminosity as a function of the AGN X-ray variability and either the Hβ or the Paβ line widths. In the best case, when the Paβ is used, the relationship has an intrinsic dispersion of ∼0.6 dex. Although intrinsically more disperse than supernovae Ia, this relation constitutes an alternative distance indicator potentially able to probe, in an independent way, the expansion history of the universe. With respect to this, we show that the new mission concept Athena should be able to measure the X-ray variability of hundreds of AGNs and then constrain the distance modulus with uncertainties of 0.1 mag up to z ∼ 0.6. We also discuss how our estimator has the prospect of becoming a cosmological probe even more sensitive than the current supernovae Ia samples by using a new dedicated wide-field X-ray telescope able to measure the variability of thousands of AGNs.

  7. A MULTI-WAVELENGTH ANALYSIS OF NGC 4178: A BULGELESS GALAXY WITH AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Moran, S. M.; Cheung, C. C.; Giroletti, M.; Bergmann, M. P.; Seth, A. C.

    2013-11-10

    We present Gemini longslit optical spectroscopy and Very Large Array radio observations of the nuclear region of NGC 4178, a late-type bulgeless disk galaxy recently confirmed to host an active galactic nucleus (AGN) through infrared and X-ray observations. Our observations reveal that the dynamical center of the galaxy is coincident with the location of the Chandra X-ray point source discovered in a previous work, providing further support for the presence of an AGN. While the X-ray and IR observations provide robust evidence for an AGN, the optical spectrum shows no evidence for the AGN, underscoring the need for the penetrative power of mid-IR and X-ray observations in finding buried or weak AGNs in this class of galaxy. Finally, the upper limit to the radio flux, together with our previous X-ray and IR results, is consistent with the scenario in which NGC 4178 harbors a deeply buried AGN accreting at a high rate.

  8. COSMIC EVOLUTION OF RADIO SELECTED ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD

    SciTech Connect

    Smolcic, V.; Salvato, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Ciliegi, P.; Schinnerer, E.; Bondi, M.; BIrzan, L.; Carilli, C. L.; Elvis, M.; Impey, C. D.; Trump, J. R.; Koekemoer, A. M.; Merloni, A.; Scodeggio, M.; Paglione, T

    2009-05-01

    We explore the cosmic evolution of radio luminous active galactic nuclei (AGNs) with low radio powers (L {sub 1.4GHz} {approx}< 5 x 10{sup 25} W Hz{sup -1}) out to z = 1.3 using to date the largest sample of {approx}600 low-luminosity radio AGN at intermediate redshift drawn from the VLA-COSMOS survey. We derive the radio-luminosity function for these AGNs, and its evolution with cosmic time assuming two extreme cases: (1) pure luminosity and (2) pure density evolution. The former and latter yield L {sub *} {proportional_to} (1 + z){sup 0.8} {sup {+-}} {sup 0.1}, and {phi}{sub *} {proportional_to} (1 + z){sup 1.1} {sup {+-}} {sup 0.1}, respectively, both implying a fairly modest change in properties of low-radio-power AGNs since z = 1.3. We show that this is in stark contrast with the evolution of powerful (L {sub 1.4GHz} > 5 x 10{sup 25} W Hz{sup -1}) radio AGN over the same cosmic time interval, constrained using the 3CRR, 6CE, and 7CRS radio surveys by Willot et al. We demonstrate that this can be explained through differences in black hole fueling and triggering mechanisms, and a dichotomy in host galaxy properties of weak and powerful AGNs. Our findings suggest that high- and low-radio-power AGN activities are triggered in different stages during the formation of massive red galaxies. We show that weak radio AGN occur in the most massive galaxies already at z {approx} 1, and they may significantly contribute to the heating of their surrounding medium and thus inhibit gas accretion onto their host galaxies, as recently suggested for the 'radio mode' in cosmological models.

  9. DISCOVERY OF FOUR kpc-SCALE BINARY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Shen Yue

    2010-05-20

    We report the discovery of four kpc-scale binary active galactic nuclei (AGNs). These objects were originally selected from the Sloan Digital Sky Survey based on double-peaked [O III] {lambda}{lambda}4959, 5007 emission lines in their fiber spectra. The double peaks could result from pairing active supermassive black holes (SMBHs) in a galaxy merger or could be due to bulk motions of narrow-line region gas around a single SMBH. Deep near-infrared (NIR) images and optical slit spectra obtained from the Magellan 6.5 m and the Apache Point Observatory 3.5 m telescopes strongly support the binary SMBH scenario for the four objects. In each system, the NIR images reveal tidal features and double stellar components with a projected separation of several kpc, while optical slit spectra show two Seyfert 2 nuclei spatially coincident with the stellar components, with line-of-sight velocity offsets of a few hundred km s{sup -1}. These objects were drawn from a sample of only 43 objects, demonstrating the efficiency of this technique to find kpc-scale binary AGNs.

  10. The largest mid-infrared atlas of active galactic nuclei at sub-arcsecond spatial scales

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Gandhi, Poshak; Honig, Sebastian F.; Smette, Alain

    2012-12-01

    We present the largest mid-infrared atlas of active galactic nuclei at sub-arcsecond spatial scales containing 249 objects. It comprises all ground-based HR MIR observations performed to date. This catalog includes a large number of new observations. The photometry in multiple filters allows for characterizing the properties of the dust emission for most objects. Because of its size and characteristics, this sample is very well-suited for AGN unification studies. In particular, we discuss the enlarged MIR-X-ray correlation which extends over six orders of magnitude in luminosity and potentially probes different physical mechanisms. Finally, tests for intrinsic differences between the AGN types are presented and we discuss dependencies of MIR-X-ray properties with respect to fundamental AGN parameters such as accretion rate and the column density and covering factor of obscuring material.

  11. Optically selected BLR-less active galactic nuclei from the SDSS Stripe82 Database - I. The sample

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang

    2014-02-01

    This is the first paper in a dedicated series to study the properties of the optically-selected broad-line-region-less (BLR-less) active galactic nuclei (AGNs; with no-hidden central broad emission line regions). We carried out a systematic search for the BLR-less AGNs through the Sloan Digital Sky Survey Legacy Survey (SDSS Stripe82 Database). Based on the spectral decomposition results for all the 136 676 spectroscopic objects (galaxies and quasars) with redshift less than 0.35 covered by the SDSS Stripe82 region, our spectroscopic sample for the BLR-less AGNs includes 22 693 pure narrow line objects without broad emission lines but with apparent AGN continuum emission RAGN > 0.3 and apparent stellar lights Rssp > 0.3. Then, using the properties of the photometry magnitude RMS (RMS) and Pearson's coefficients (R1, 2) between two different SDSS band light curves: RMS_k>3× RMS_{M_k} and R1, 2 > ˜0.8, the final 281 pure narrow line objects with true photometry variabilities are our selected reliable candidates for the BLR-less AGNs. The selected candidates with higher confidence levels not only have the expected spectral features of the BLR-less AGNs, but also show significant true photometry variabilities. The reported sample enlarges at least four times the current sample of the BLR-less AGNs, and will provide more reliable information to explain the lack of the BLRs of AGNs in our following studies.

  12. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    NASA Astrophysics Data System (ADS)

    Galloway, Melanie A.; Willett, Kyle W.; Fortson, Lucy F.; Cardamone, Carolin N.; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J.; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke D.

    2015-04-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19 756 disc galaxies at 0.01 < z < 0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L_{[O III]}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbations.

  13. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    SciTech Connect

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L.; Ellison, S. L.; Fischer, J.

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  14. Pair Plasmas in the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Tsuruta, S.; Tritz, B. G.

    1993-01-01

    As the most promising model for the X-ray emission from a class of Active Galactic Nuclei (AGNs) represented by radio-quiet quasars and Seyfert nuclei, here we introduce the non-thermal pair cascade model, where soft photons are Comptonized by non-thermal electron-positron pair plasmas produced by (gamma)-rays. After summarizing the simplest model of this kind, the "homogeneous spherical cascade model", our most recent work on the "surface cascade model" is presented, where a geometrical effect is introduced. Many characteristics of this model are qualitatively similar to the homogeneous cascade model. However, an important difference is that (gamma)-ray depletion is much more efficient in the surface cascade, and consequently this model naturally satisfies the severe observational constraint imposed by the (gamma)-ray background radiation.

  15. Statistical analysis of the correlation between active galactic nuclei and ultra-high energy cosmic rays

    SciTech Connect

    Kim, Hang Bae; Kim, Jihyun E-mail: jihyunkim@hanyang.ac.kr

    2011-03-01

    We develop the statistical methods for comparing two sets of arrival directions of cosmic rays in which the two-dimensional distribution of arrival directions is reduced to the one-dimensional distributions so that the standard one-dimensional Kolmogorov-Smirnov test can be applied. Then we apply them to the analysis of correlation between the ultra-high energy cosmic rays (UHECR) with energies above 5.7 × 10{sup 19} eV, observed by Pierre Auger Observatory (PAO) and Akeno Giant Air Shower Array (AGASA), and the active galactic nuclei (AGN) within the distance 100 Mpc. For statistical test, we set up the simple AGN model for UHECR sources in which a certain fraction of observed UHECR are originated from AGN within a chosen distance, assuming that all AGN have equal UHECR luminosity and smearing angle, and the remaining fraction are from the isotropic background contribution. For the PAO data, our methods exclude not only a hypothesis that the observed UHECR are simply isotropically distributed but also a hypothesis that they are completely originated from the selected AGN. But, the addition of appropriate amount of isotropic component either through the background contribution or through the large smearing effect improves the correlation greatly and makes the AGN hypothesis for UHECR sources a viable one. We also point out that restricting AGN within the distance bin of 40–60 Mpc happens to yield a good correlation without appreciable isotropic component and large smearing effect. For the AGASA data, we don't find any significant correlation with AGN.

  16. Probing the circumgalactic medium of active galactic nuclei with background quasars

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Churchill, Christopher W.; Murphy, Michael T.; Cooke, Jeff

    2015-01-01

    We performed a detailed study of the extended cool gas, traced by Mg II absorption [Wr(2796) ≥ 0.3 Å], surrounding 14 narrow-line active galactic nuclei (AGNs) at 0.12 ≤ z ≤ 0.22 using background quasar sightlines. The background quasars probe the AGNs at projected distances of 60 ≤ D ≤ 265 kpc. We find that, between 100 ≤ D ≤ 200 kpc, AGNs appear to have lower Mg II gas covering fractions (0.09^{+0.18}_{-0.08}) than quasars (0.47^{+0.16}_{-0.15}) and possibly lower than inactive field galaxies (0.25^{+0.11}_{-0.09}). We do not find a statistically significant azimuthal angle dependence for the Mg IIcovering fraction around AGNs, though the data hint at one. We also study the `down-the-barrel' outflow properties of the AGNs themselves and detect intrinsic Na ID absorption in 8/8 systems and intrinsic Mg II absorption in 2/2 systems, demonstrating that the AGNs have significant reservoirs of cool gas. We find that 6/8 Na ID and 2/2 Mg II intrinsic systems contain blueshifted absorption with Δv > 50 km s-1, indicating outflowing gas. The 2/2 intrinsic Mg II systems have outflow velocities a factor of ˜4 higher than the Na ID outflow velocities. Our results are consistent with AGN-driven outflows destroying the cool gas within their haloes, which dramatically decreases their cool gas covering fraction, while starburst-driven winds are expelling cool gas into their circumgalactic media (CGM). This picture appears contrary to quasar-quasar pair studies which show that the quasar CGM contains significant amounts of cool gas whereas intrinsic gas found `down-the-barrel' of quasars reveals no cool gas. We discuss how these results are complementary and provide support for the AGN unified model.

  17. HerMES: disentangling active galactic nuclei and star formation in the radio source population

    NASA Astrophysics Data System (ADS)

    Rawlings, J. I.; Page, M. J.; Symeonidis, M.; Bock, J.; Cooray, A.; Farrah, D.; Guo, K.; Hatziminaoglou, E.; Ibar, E.; Oliver, S. J.; Roseboom, I. G.; Scott, Douglas; Seymour, N.; Vaccari, M.; Wardlow, J. L.

    2015-10-01

    We separate the extragalactic radio source population above ˜50 μJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC (Infrared Array Camera) and Multiband Imaging Photometer for Spitzer (MIPS) and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ˜1 mJy for the extragalactic radio source population.

  18. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  19. RADIO PROPERTIES OF LOW-REDSHIFT BROAD-LINE ACTIVE GALACTIC NUCLEI INCLUDING EXTENDED RADIO SOURCES

    SciTech Connect

    Rafter, Stephen E.; Crenshaw, D. Michael; Wiita, Paul J.

    2011-03-15

    We present a study of the extended radio emission in a sample of 8434 low-redshift (z < 0.35) broad-line active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. To calculate the jet and lobe contributions to the total radio luminosity, we have taken the 846 radio core sources detected in our previous study of this sample and performed a systematic search in the FIRST database for extended radio emission that is likely associated with the optical counterparts. We found that 51 out of 846 radio core sources have extended emission (>4'' from the optical AGN) that is positively associated with the AGN, and we have identified an additional 12 AGNs with extended radio emission but no detectable radio core emission. Among these 63 AGNs, we found 6 giant radio galaxies, with projected emission exceeding 750 kpc in length, and several other AGNs with unusual radio morphologies also seen in higher redshift surveys. The optical spectra of many of the extended sources are similar to those of typical broad-line radio galaxy spectra, having broad H{alpha} emission lines with boxy profiles and large M{sub BH}. With extended emission taken into account, we find strong evidence for a bimodal distribution in the radio-loudness parameter R ({identical_to}{nu}{sub radio} L{sub radio}/{nu}{sub opt} L{sub opt}), where the lower radio luminosity core-only sources appear as a population separate from the extended sources, with a dividing line at log(R) {approx}1.75. This dividing line ensures that these are indeed the most radio-loud AGNs, which may have different or extreme physical conditions in their central engines when compared to the more numerous radio-quiet AGNs.

  20. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  1. THE HALO OCCUPATION DISTRIBUTION OF X-RAY-BRIGHT ACTIVE GALACTIC NUCLEI: A COMPARISON WITH LUMINOUS QUASARS

    SciTech Connect

    Richardson, Jonathan; Chatterjee, Suchetana; Myers, Adam D.; Zheng Zheng; Hickox, Ryan E-mail: schatte1@uwyo.edu

    2013-09-10

    We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z {approx} 1.2) X-ray-bright active galactic nuclei (AGNs) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGNs in cosmological simulations. At the median redshift of z {approx} 1.2, we derive a median mass of 1.02{sub -0.23}{sup +0.21} Multiplication-Sign 10{sup 13} h{sup -1} M{sub sun} for halos hosting central AGNs and an upper limit of {approx}10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5{sigma} level) that X-ray AGNs reside in more massive halos compared to more bolometrically luminous, optically selected quasars at similar redshift. The modeling also yields constraints on the duty cycle of the X-ray AGN, and we find that at z {approx} 1.2 the average duration of the X-ray AGN phase is two orders of magnitude longer than that of the quasar phase. Our inferred mean occupation function of X-ray AGNs is similar to recent empirical measurements with a group catalog and suggests that AGN halo occupancy increases with increasing halo mass. We project the XMM-COSMOS 2PCF measurements to forecast the required survey parameters needed in future AGN clustering studies to enable higher precision HOD constraints and determinations of key physical parameters like the satellite fraction and duty cycle. We find that N {sup 2}/A {approx} 5 Multiplication-Sign 10{sup 6} deg{sup -2} (with N the number of AGNs in a survey area of A deg{sup 2}) is sufficient to constrain the HOD parameters at the 10% level, which is easily achievable by upcoming and proposed X-ray surveys.

  2. Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Buckalew, Brent A.; Dale, Daniel A.; Draine, Bruce T.; Joseph, Robert D.; Kennicutt, Robert C., Jr.; Sheth, Kartik; Smith, John-David T.; Walter, Fabian; Calzetti, Daniela; Cannon, John M.; Engelbracht, Charles W.; Gordon, Karl D.; Helou, George; Hollenbach, David; Murphy, Eric J.; Roussel, Hélène

    2006-07-01

    We present Spitzer 3.6-160 μm images, Spitzer mid-infrared spectra, and JCMT SCUBA 850 μm images of the Sombrero Galaxy (NGC 4594), an Sa galaxy with a 109 Msolar low-luminosity active galactic nucleus (AGN). The brightest infrared sources in the galaxy are the nucleus and the dust ring. The spectral energy distribution of the AGN demonstrates that, while the environment around the AGN is a prominent source of mid-infrared emission, it is a relatively weak source of far-infrared emission, as had been inferred for AGNs in previous research. The weak nuclear 160 μm emission and the negligible polycyclic aromatic hydrocarbon emission from the nucleus also implies that the nucleus is a site of only weak star formation activity and the nucleus contains relatively little cool interstellar gas needed to fuel such activity. We propose that this galaxy may be representative of a subset of low-ionization nuclear emission region galaxies that are in a quiescent AGN phase because of the lack of gas needed to fuel circumnuclear star formation and Seyfert-like AGN activity. Surprisingly, the AGN is the predominant source of 850 μm emission. We examine the possible emission mechanisms that could give rise to the 850 μm emission and find that neither thermal dust emission, CO line emission, bremsstrahlung emission, nor the synchrotron emission observed at radio wavelengths can adequately explain the measured 850 μm flux density by themselves. The remaining possibilities for the source of the 850 μm emission include a combination of known emission mechanisms, synchrotron emission that is self-absorbed at wavelengths longer than 850 μm, or unidentified spectral lines in the 850 μm band.

  3. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    SciTech Connect

    Edelson, R.; Malkan, M.

    2012-05-20

    We have developed the ''S{sub IX}'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S{sub IX} < 0 have a {approx}>95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S{sub IX} < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J {approx}< 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg{sup 2}, permitting construction of AGN samples in any sufficiently large region of sky.

  4. Reliable Identifications of Active Galactic Nuclei from the WISE, 2MASS, and ROSAT All-Sky Surveys

    NASA Astrophysics Data System (ADS)

    Edelson, R.; Malkan, M.

    2012-05-01

    We have developed the ''S IX'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S IX < 0 have a gsim95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S IX < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J <~ 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg2, permitting construction of AGN samples in any sufficiently large region of sky.

  5. Fermi Observations of TeV-Selected Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Di Bernardo, G.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sellerholm, A.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  6. On the efficient acceleration of clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel

    2016-07-01

    In the broad line region of active galactic nuclei (AGN), acceleration occurs naturally when a cloud condenses out of the hot confining medium due to the increase in line opacity as the cloud cools. However, acceleration by radiation pressure is not very efficient when the flux is time-independent, unless the flow is 1D. Here, we explore how acceleration is affected by a time-varying flux, as AGN are known to be highly variable. If the period of flux oscillations is longer than the thermal time-scale, we expect the gas to cool during the low flux state, and therefore line opacity should quickly increase. The cloud will receive a small kick due to the increased radiation force. We perform hydrodynamical simulations using ATHENA to confirm this effect and quantify its importance. We find that despite the flow becoming turbulent in 2D due to hydrodynamic instabilities, a 20 per cent modulation of the flux leads to a net increase in acceleration - by more than a factor of 2 - in both 1D and 2D. We show that this acceleration is sufficient to produce the observed line widths, although we only consider optically thin clouds. We discuss the implications of our results for photoionization modelling and reverberation mapping.

  7. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s‑1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr‑1 and the mean gas mass is ∼1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH–M * scaling relation.

  8. THE ROLE OF STARBURST-ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME

    SciTech Connect

    Yuan, T.-T.; Kewley, L. J.; Sanders, D. B. E-mail: kewley@ifa.hawaii.ed

    2010-02-01

    We investigate the fraction of starbursts, starburst-active galactic nucleus (AGN) composites, Seyferts, and low-ionization narrow emission-line region galaxies (LINERs) as a function of infrared luminosity (L{sub IR}) and merger progress for approx500 infrared (IR)-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare (<5%) compared with other spectral types. The lack of strong IR emission in LINERs is consistent with recent optical studies suggesting that LINERs contain AGN with lower accretion rates than in Seyfert galaxies. Most previously classified IR-luminous LINERs are classified as starburst-AGN composite galaxies in the new scheme. Starburst-AGN composites appear to 'bridge' the spectral evolution from starburst to AGN in ULIRGs. The relative strength of the AGN versus starburst activity shows a significant increase at high IR luminosity. In ULIRGs (L{sub IR} > 10{sup 12} L{sub sun}), starburst-AGN composite galaxies dominate at early-intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous IR objects.

  9. Ultrafast outflows in radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  10. Probing the central regions of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne Maria

    Active Galactic Nuclei (AGN) are one of the key players in the Universe. Their energy output can strongly affect the growth of their host galaxy and can promote or suppress star formation on galactic scales. Most of the processes that determine the power of an AGN as well as the form in which that power is released take place in the immediate surroundings of its supermassive black hole, a region that is still not entirely understood. A comprehension of these inner regions is, however, crucial to any ultimate understanding of the AGN's vast influence. This dissertation explores these close-in environments of the black hole using two approaches: X-ray spectroscopy and variability studies. We begin by summarizing our current understanding of why AGN play such a significant role in galaxy formation. This is followed by a discussion of why X-ray spectroscopy is one of the best means to investigate them. We point out that, in particular, the X-ray reflection spectrum is interesting as it can directly probe parameters such as the black hole spin or the inclination of the accretion disk. Since the reflection spectrum is a broad band component, that usually only contributes a fraction of the total observed X-ray flux, the entire X-ray spectrum requires careful modeling. To perform such modeling and gain access to the parameters of the reflection spectrum, we first select a target in which the spectral decomposition is simplified by the absence of absorption - the Seyfert 1 galaxy Fairall 9. We apply a multi-epoch fitting method that uses more than one spectrum at a time to get the best possible results on the parameters of the reflection spectrum that are invariant on human timescales. This technique enables us to tightly constrain the reflection parameters and leads us to conclude that Fairall 9 most likely possesses a composite soft X-ray excess, consisting of blurred reflection and a separate component such as Comptonization. The reflection spectrum also provides a way

  11. RADIATION-DRIVEN FOUNTAIN AND ORIGIN OF TORUS AROUND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wada, Keiichi

    2012-10-10

    We propose a plausible mechanism to explain the formation of the so-called obscuring tori around active galactic nuclei (AGNs) based on three-dimensional hydrodynamic simulations including radiative feedback from the central source. The X-ray heating and radiation pressure on the gas are explicitly calculated using a ray-tracing method. This radiation feedback drives a 'fountain', that is, a vertical circulation of gas in the central few to tens parsecs. Interaction between the non-steady outflows and inflows causes the formation of a geometrically thick torus with internal turbulent motion. As a result, the AGN is obscured for a wide range of solid angles. In a quasi-steady state, the opening angles for the column density toward a black hole <10{sup 23} cm{sup -2} are approximately {+-}30 Degree-Sign and {+-}50 Degree-Sign for AGNs with 10% and 1% Eddington luminosity, respectively. Mass inflows through the torus coexist with the outflow and internal turbulent motion, and the average mass accretion rate to the central parsec region is 2 Multiplication-Sign 10{sup -4} {approx} 10{sup -3} M{sub Sun} yr{sup -1}; this is about 10 times smaller than accretion rate required to maintain the AGN luminosity. This implies that relatively luminous AGN activity is intrinsically intermittent or that there are other mechanisms, such as stellar energy feedback, that enhance the mass accretion to the center.

  12. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Nakagawa, Takao; Matsuta, Keiko

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  13. New active galactic nuclei among the INTEGRAL and SWIFT X-ray sources

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Mescheryakov, A. V.; Revnivtsev, M. G.; Sazonov, S. Yu.; Bikmaev, I. F.; Pavlinsky, M. N.; Sunyaev, R. A.

    2008-06-01

    We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17-60 keV) luminosity and the [O III] 5007 line luminosity, log L x/ L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ˜20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.

  14. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  15. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  16. Kepler Photometry of Four Radio-loud Active Galactic Nuclei in 2010-2012

    NASA Astrophysics Data System (ADS)

    Wehrle, Ann E.; Wiita, Paul J.; Unwin, Stephen C.; Di Lorenzo, Paolo; Revalski, Mitchell; Silano, Daniel; Sprague, Dan

    2013-08-01

    We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (AGN; three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Kepler's almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using eight Kepler quarters of long-cadence (30-minute) data for three AGN, six quarters for one AGN and two quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 days, we find red noise with mean power-law slopes ranging from -1.8 to -1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected flares of several days long when brightness increased by 3%-7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks.

  17. KEPLER PHOTOMETRY OF FOUR RADIO-LOUD ACTIVE GALACTIC NUCLEI IN 2010-2012

    SciTech Connect

    Wehrle, Ann E.; Wiita, Paul J.; Di Lorenzo, Paolo; Revalski, Mitchell; Silano, Daniel; Sprague, Dan; Unwin, Stephen C.

    2013-08-20

    We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (AGN; three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Kepler's almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using eight Kepler quarters of long-cadence (30-minute) data for three AGN, six quarters for one AGN and two quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 days, we find red noise with mean power-law slopes ranging from -1.8 to -1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected flares of several days long when brightness increased by 3%-7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks.

  18. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  19. THE REST-FRAME ULTRAVIOLET SPECTRA OF UV-SELECTED ACTIVE GALACTIC NUCLEI AT z {approx} 2-3

    SciTech Connect

    Hainline, Kevin N.; Shapley, Alice E.; Greene, Jenny E.; Steidel, Charles C.

    2011-05-20

    We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z {approx} 2-3. The rest-frame UV composite spectrum for our AGN sample shows several emission lines characteristic of AGNs, as well as interstellar absorption features detected in star-forming Lyman break galaxies (LBGs). We report a detection of N IV] {lambda}1486, which has been observed in high-redshift radio galaxies, as well as in rare optically selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star-forming galaxies. Blueshifted Si IV absorption provides evidence for outflowing highly ionized gas in these objects at speeds of {approx}10{sup 3} km s{sup -1}, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as the Ly{alpha} equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Ly{alpha} emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Ly{alpha} photons. However, the AGN composite does not show the same trends between Ly{alpha} strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high redshift between star-forming galaxies and similar galaxies that host AGN activity.

  20. On different types of instabilities in black hole accretion discs: implications for X-ray binaries and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka; Czerny, Bożena

    2011-07-01

    We discuss two important instability mechanisms that may lead to the limit-cycle oscillations of the luminosity of the accretion discs around compact objects: ionization instability and radiation pressure instability. Ionization instability is well established as a mechanism of X-ray novae eruptions in black hole binary systems, but its applicability to active galactic nuclei (AGN) is still problematic. Radiation pressure theory has still a very weak observational background in any of these sources. In this paper, we attempt to confront the parameter space of these instabilities with the observational data. At the basis of this simple survey of sources properties, we argue that the radiation pressure instability is likely to be present in several Galactic sources with the Eddington ratios being above 0.15 and in AGN with the Eddington ratio above 0.025. Our results favour the parametrization of the viscosity through the geometrical mean of the radiation and gas pressure in both Galactic sources and AGN. More examples of the quasi-regular outbursts in the time-scales of 100 s in Galactic sources and hundreds of years in AGN are needed to formulate firm conclusions. We also show that the disc sizes in the X-ray novae are consistent with the ionization instability. This instability may also considerably influence the lifetime cycle and overall complexity in the supermassive black hole environment.

  1. Inefficient Driving of Bulk Turbulence By Active Galactic Nuclei in a Hydrodynamic Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Balbus, Steven A.; Schekochihin, Alexander A.

    2015-12-01

    Central jetted active galactic nuclei (AGNs) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid three-dimensional hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM, which in turn decays to volume-filling turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, the excitation of turbulence relies on the g-modes’ ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model.

  2. Detailed Shape and Evolutionary Behavior of the X-Ray Luminosity Function of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Miyaji, T.; Hasinger, G.; Salvato, M.; Brusa, M.; Cappelluti, N.; Civano, F.; Puccetti, S.; Elvis, M.; Brunner, H.; Fotopoulou, S.; Ueda, Y.; Griffiths, R. E.; Koekemoer, A. M.; Akiyama, M.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Merloni, A.; Vignali, C.

    2015-05-01

    We construct the rest-frame 2-10 keV intrinsic X-ray luminosity function (XLF) of active galactic nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field South. We use ˜3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two-power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z ≳0.6. Detailed structures of the AGN downsizing have also been revealed, where the number density curves have two clear breaks at all luminosity classes above log {{L}X}\\gt 43. The two-break structure is suggestive of two-phase AGN evolution, consisting of major merger triggering and secular processes.

  3. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  4. ON THE 10 mum SILICATE FEATURE IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark E-mail: moshe@pa.uky.ed

    2009-12-20

    The 10 mum silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 mum silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r {sup -1.5} and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual approx60-80. The source bolometric luminosity is approx3 x 10{sup 12} L{sub sun}. Our modeling suggests that approx<35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 mum emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 mum silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed

  5. Q2122-444: A NAKED ACTIVE GALACTIC NUCLEUS FULLY DRESSED

    SciTech Connect

    Gliozzi, M.; Satyapal, S.; Panessa, F.; Franca, F. La; Saviane, I.; Monaco, L.; Foschini, L.; Kedziora-Chudczer, L.; Sambruna, R. M.

    2010-12-20

    Based on previous spectral and temporal optical studies, Q2122-444 has been classified as a naked active galactic nucleus (AGN) or true type 2 AGN, that is, an AGN that genuinely lacks a broad-line region (BLR). Its optical spectrum seemed to possess only narrow forbidden emission lines that are typical of type 2 (obscured) AGNs, but the long-term optical light curve, obtained from a monitoring campaign over more than two decades, showed strong variability, apparently ruling out the presence of heavy obscuration. Here we present the results from a {approx}40 ks XMM-Newton observation of Q2122-444 carried out to shed light on the energetics of this enigmatic AGN. The X-ray analysis was complemented with Australia Telescope Compact Array radio data to assess the possible presence of a jet, and with new NTT/EFOSC2 optical spectroscopic data to verify the actual absence of a BLR. The higher-quality optical data revealed the presence of strong and broad Balmer lines that are at odds with the previous spectral classification of this AGN. The lack of detection of radio emission rules out the presence of a jet. The X-ray data combined with simultaneous UV observations carried out by the Optical Monitor (OM) aboard XMM-Newton confirm that Q2122-444 is a typical type 1 AGN without any significant intrinsic absorption. New estimates of the black hole mass independently obtained from the broad Balmer lines and from a new scaling technique based on X-ray spectral data suggest that Q2122-444 is accreting at a relatively high rate in Eddington units.

  6. The Low-Luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bentz, Misty C.; Denney, K.; Grier, C.; Barth, A. J.; Peterson, B. M.; Vestergaard, M.

    2014-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α = 0.533^{+0.035}_{-0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  7. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bentz, Misty C.; Denney, Kelly D.; Grier, Catherine J.; Barth, Aaron J.; Peterson, Bradley M.; Vestergaard, Marianne; Bennert, Vardha N.; Canalizo, Gabriela; De Rosa, Gisella; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E.; Li, Weidong; Malkan, Matthew A.; Pogge, Richard W.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of \\alpha = 0.533^{+0.035}_{-0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  8. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  9. Reverberation mapping the dusty torus in Active Galactic Nuclei using Spitzer and optical light curves

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    Dusty molecular tori play a central role in unification models for active galactic nuclei (AGN) and are also the dominant source of their mid-IR emission. Our limited knowledge of the size and structure of AGN tori and how these properties vary with luminosity hinders our ability to understand the observed spectral energy distribution and hence AGN demographics. Ultimately this inhibits our ability to understand the obscured AGN population and the cosmic evolution of super-massive black holes. Although the torus is, in general, inaccessible to direct imaging, its properties can be studied by analyzing the time response of the dust emission from the torus with respect to variations in the AGN continuum luminosity; a technique known as reverberation mapping. With this goal, we have completed a 2.5-year monitoring campaign on 12 broad-line AGN, using the Spitzer Space Telescope supported by ground-based optical observations, to measure the temporal response of thetorus 3.5 and 4.6μm mid-IR dust emission to variations in the AGN UV/optical continuum. The data obtained from the first 1.5 years in Spitzer Cycle 8 have been analysed. The aim of this project is to complete the time series analysis of the complete 2.5 year light curves, and to model these light curves in order extract structural and physical information contained in data, such as the size of the torus, its radial depth, opening angle, inclination and dust composition. This project will help to maximize the scientific returns on a significant investment of Spitzer Space Telescope time and supports the NASA strategic goal to "explore the origin and evolution of the galaxies, stars and planets that make up our universe".

  10. A Growth-rate Indicator for Compton-thick Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Masini, A.; Ballantyne, D. R.; Baloković, M.; Brandt, W. N.; Chen, C.-T.; Comastri, A.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Ricci, C.; Stern, D.; Walton, D. J.

    2016-07-01

    Due to their heavily obscured central engines, the growth rate of Compton-thick (CT) active galactic nuclei (AGNs) is difficult to measure. A statistically significant correlation between the Eddington ratio, λ Edd, and the X-ray power-law index, Γ, observed in unobscured AGNs offers an estimate of their growth rate from X-ray spectroscopy (albeit with large scatter). However, since X-rays undergo reprocessing by Compton scattering and photoelectric absorption when the line of sight to the central engine is heavily obscured, the recovery of the intrinsic Γ is challenging. Here we study a sample of local, predominantly CT megamaser AGNs, where the black hole mass, and thus Eddington luminosity, are well known. We compile results of the X-ray spectral fitting of these sources with sensitive high-energy (E > 10 keV) NuSTAR data, where X-ray torus models, which take into account the reprocessing effects have been used to recover the intrinsic Γ values and X-ray luminosities, L X. With a simple bolometric correction to L X to calculate λ Edd, we find a statistically significant correlation between Γ and λ Edd (p = 0.007). A linear fit to the data yields Γ = (0.41 ± 0.18)log10 λ Edd + (2.38 ± 0.20), which is statistically consistent with results for unobscured AGNs. This result implies that torus modeling successfully recovers the intrinsic AGN parameters. Since the megamasers have low-mass black holes (M BH ≈ 106–107 M ⊙) and are highly inclined, our results extend the Γ–λ Edd relationship to lower masses and argue against strong orientation effects in the corona, in support of AGN unification. Finally this result supports the use of Γ as a growth-rate indicator for accreting black holes, even for CT AGNs.

  11. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  12. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    SciTech Connect

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 {+-} 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  13. The PEP survey: evidence for intense star-forming activity in the majority of radio-selected AGN at z ≳ 1

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Lutz, D.; Santini, P.; Salvato, M.; Popesso, P.; Berta, S.; Pozzi, F.

    2016-02-01

    In order to investigate the far-infrared (FIR) properties of radio-active active galactic nuclei (AGN), we have considered three different fields where both radio and FIR observations are the deepest to date: GOODS-South, GOODS-North and the Lockman Hole. Out of a total of 92 radio-selected AGN, ˜64 per cent are found to have a counterpart in Herschel maps. The percentage is maximum in the GOODS-North (72 per cent) and minimum (˜50 per cent) in the Lockman Hole, where FIR observations are shallower. Our study shows that in all cases FIR emission is associated with star-forming activity within the host galaxy. Such an activity can even be extremely intense, with star-forming rates as high as ˜103-104 M⊙ yr-1. AGN activity does not inhibit star formation in the host galaxy, just as on-site star formation does not seem to affect AGN properties, at least those detected at radio wavelengths and for z ≳ 1. Given the very high rate of FIR detections, we stress that this refers to the majority of the sample: most radio-active AGN are associated with intense episodes of star formation. However, the two processes proceed independently within the same galaxy, at all redshifts but in the local universe, where powerful enough radio activity reaches the necessary strength to switch off the on-site star formation. Our data also show that for z ≳ 1 the hosts of radio-selected star-forming galaxies and AGN are indistinguishable from each other in terms of both mass and IR luminosity distributions. The two populations only differentiate in the very local universe, whereby the few AGN which are still FIR-active are found in galaxies with much higher masses and luminosities.

  14. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  15. Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Pelassa, V.; Pepe, M.; Persic, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Rochester, L. S.; Rodriguez, A. Y.; Ryde, F.; Sadrozinski, H. F.-W.; Sambruna, R.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.; Fermi/LAT Collaboration; Ghisellini, G.; Maraschi, L.; Tavecchio, F.

    2009-12-01

    We report the discovery with Fermi/LAT of γ-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004 - 447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in γ rays, they may form an emerging new class of γ-ray active galactic nuclei (AGNs). These findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.

  16. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  17. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  18. STRUCTURE AND MORPHOLOGY OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEUS HOSTS AT 1 < z < 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan, Lulu; Chen, Yang; Li, Jinrong; Lv, Xuanyi; Kong, Xu; Fang, Guanwen; Knudsen, Kirsten K.

    2014-03-20

    We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ∼ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M {sub 20} index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger.

  19. THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE

    SciTech Connect

    Lusso, E.; Hennawi, J. F.; Richards, G. T.; Comastri, A.; Zamorani, G.; Vignali, C.; Gilli, R.; Treister, E.; Schawinski, K.; Salvato, M.

    2013-11-10

    The fraction of active galactic nucleus (AGN) luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type 1) AGNs, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type 1 AGNs from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18 band COSMOS photometry with a custom spectral energy distribution fitting code, which jointly models emission from hot dust in the AGN torus, from the accretion disk, and from the host galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of L{sub bol}, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGNs, our measurements require a torus height that increases with luminosity as h ∝ L{sub bol}{sup 0.3-0.4}. Our obscured-fraction-luminosity relation agrees with determinations from Sloan Digital Sky Survey censuses of Type 1 and Type 2 quasars and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of the obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGNs. Our analysis shows no clear evidence for evolution of the obscured fraction with redshift.

  20. Towards a complete census of active galactic nuclei in nearby galaxies: the incidence of growing black holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Alexander, D. M.; Lehmer, B. D.; Mullaney, J. R.

    2010-07-01

    We investigate the local supermassive black hole (SMBH) density function and relative mass accretion rates of all active galactic nuclei (AGNs) identified in a volume-limited sample of infrared (IR) bright galaxies (LIR > 3 × 109Lsolar) to D < 15Mpc. A data base of accurate SMBH mass (MBH) estimates is compiled from literature sources using physically motivated AGN modelling techniques (reverberation mapping, maser mapping and gas kinematics) and well-established indirect MBH estimation methods (the M-σ* and MBH-LK,bul relations). For the three sources without previously published MBH estimates, we use Two Micron All Sky Survey (2MASS) K-band imaging and GALFIT to constrain the bulge luminosities, and hence SMBH masses. In general, we find the AGNs in the sample host SMBHs which are spread over a wide mass range [MBH ~ (0.1-30) × 107Msolar], but with the majority in the poorly studied MBH ~ 106-107Msolar region. Using sensitive hard X-ray (2-10keV) and mid-IR constraints we calculate the bolometric luminosities of the AGNs (LBol,AGN) and use them to estimate relative mass accretion rates. We use these data to calculate the volume-averaged SMBH growth rate of galaxies in the local Universe and find that the AGNs hosting SMBHs in the mass range MBH ~ 106-107Msolar are dominated by optically unidentified AGNs. These relatively small SMBHs are acquiring a significant proportion of their mass in the present day, and are amongst the most rapidly growing in the local Universe (SMBH mass-doubling times of ~6Gyr). Additionally, we find tentative evidence for an increasing volume-weighted AGN fraction with decreasing SMBH mass in the MBH ~ 106-108Msolar range. Overall, we conclude that significant mass accretion on to small SMBHs may be missed in even the most sensitive optical surveys due to absent or weak optical AGN signatures.

  1. The subarcsecond mid-infrared view of local active galactic nuclei - I. The N- and Q-band imaging atlas

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.; Smette, A.; Duschl, W. J.

    2014-04-01

    We present the first subarcsecond-resolution mid-infrared (MIR) atlas of local active galactic nuclei (AGN). Our atlas contains 253 AGN with a median redshift of z = 0.016, and includes all publicly available MIR imaging performed to date with ground-based 8-m class telescopes, a total of 895 independent measurements. Of these, more than 60 per cent are published here for the first time. We detect extended nuclear emission in at least 21 per cent of the objects, while another 19 per cent appear clearly point-like, and the remaining objects cannot be constrained. Where present, elongated nuclear emission aligns with the ionization cones in Seyferts. Subarcsecond resolution allows us to isolate the AGN emission on scales of a few tens of parsecs and to obtain nuclear photometry in multiple filters for the objects. Median spectral energy distributions (SEDs) for the different optical AGN types are constructed and individual MIR 12 and 18 μm continuum luminosities are computed. These range over more than six orders of magnitude. In comparison to the arcsecond-scale MIR emission as probed by Spitzer, the continuum emission is much lower on subarcsecond scales in many cases. The silicate feature strength is similar on both scales and generally appears in emission (absorption) in type I (II) AGN. However, the polycyclic aromatic hydrocarbon emission appears weaker or absent on subarcsecond scales. The differences of the MIR SEDs on both scales are particularly large for AGN/starburst composites and close-by (and weak) AGN. The nucleus dominates over the total emission of the galaxy only at luminosities ≳1044 erg s-1. The AGN MIR atlas is well suited not only for detailed investigation of individual sources but also for statistical studies of AGN unification.

  2. J1216+0709: A Radio Galaxy with Three Episodes of AGN Jet Activity

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Kharb, Preeti; Srivastava, Shweta; Janardhan, P.

    2016-08-01

    We report the discovery of a “triple-double radio galaxy,” J1216+0709, detected in deep low-frequency Giant Metrewave Radio Telescope (GMRT) observations. J1216+0709 is only the third radio galaxy, after B0925+420 and Speca, with three pairs of lobes resulting from three different episodes of active galactic nucleus (AGN) jet activity. The 610 MHz GMRT image clearly displays an inner pair of lobes, a nearly coaxial middle pair of lobes, and a pair of outer lobes that is bent with respect to the axis of the inner pair of lobes. The total end-to-end projected sizes of the inner, middle, and outer lobes are 40″ (∼95 kpc), 1.‧65 (∼235 kpc), and 5.‧7 (∼814 kpc), respectively. Unlike the outer pair of lobes, both the inner and middle pairs of lobes exhibit asymmetries in arm lengths and flux densities, but in the opposite sense, i.e., the eastern sides are farther and also brighter than the western sides, thus, suggesting the possibility of the jet being intrinsically asymmetric rather than due to a relativistic beaming effect. The host galaxy is a bright elliptical (m r ∼ 16.56) with M SMBH ∼ 3.9 × 109 M ⊙ and a star formation rate of ∼{4.66}-1.61{{+4.65}} M ⊙ yr‑1. The host galaxy resides in a small group of three galaxies (m r ≤ 17.77) and is possibly going through an interaction with faint dwarf galaxies in the neighborhood, which may have triggered the recent episodes of AGN activity.

  3. J1216+0709: A Radio Galaxy with Three Episodes of AGN Jet Activity

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Kharb, Preeti; Srivastava, Shweta; Janardhan, P.

    2016-08-01

    We report the discovery of a “triple-double radio galaxy,” J1216+0709, detected in deep low-frequency Giant Metrewave Radio Telescope (GMRT) observations. J1216+0709 is only the third radio galaxy, after B0925+420 and Speca, with three pairs of lobes resulting from three different episodes of active galactic nucleus (AGN) jet activity. The 610 MHz GMRT image clearly displays an inner pair of lobes, a nearly coaxial middle pair of lobes, and a pair of outer lobes that is bent with respect to the axis of the inner pair of lobes. The total end-to-end projected sizes of the inner, middle, and outer lobes are 40″ (˜95 kpc), 1.‧65 (˜235 kpc), and 5.‧7 (˜814 kpc), respectively. Unlike the outer pair of lobes, both the inner and middle pairs of lobes exhibit asymmetries in arm lengths and flux densities, but in the opposite sense, i.e., the eastern sides are farther and also brighter than the western sides, thus, suggesting the possibility of the jet being intrinsically asymmetric rather than due to a relativistic beaming effect. The host galaxy is a bright elliptical (m r ˜ 16.56) with M SMBH ˜ 3.9 × 109 M ⊙ and a star formation rate of ˜{4.66}-1.61{{+4.65}} M ⊙ yr‑1. The host galaxy resides in a small group of three galaxies (m r ≤ 17.77) and is possibly going through an interaction with faint dwarf galaxies in the neighborhood, which may have triggered the recent episodes of AGN activity.

  4. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR < tHubble) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed MBH/Mast ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  5. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    SciTech Connect

    Toba, Y.; Matsuhara, H.; Oyabu, S.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K.; Ohyama, Y.; Yamauchi, C.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  6. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    SciTech Connect

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise E-mail: schinner@mpia.de E-mail: burillo@oan.es

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s{sup –1}) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  7. The X-Ray Zurich Environmental Study (X-ZENS). I. Chandra and XMM-Newton Observations of Active Galactic Nuclei in Galaxies in nearby Groups

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Miniati, F.; Finoguenov, A.; Carollo, C. M.; Cibinel, A.; Lilly, S. J.; Schawinski, K.

    2014-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 M group ~ 1-6 × 1013 M ⊙, z ~ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f 0.5 - 8 keV ~ 5 × 10-15 erg cm-2 s-1, corresponding to a limiting luminosity of L 0.5 - 8 keV ~ 3 × 1040 erg s-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L Edd >~ 10-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <1011 M ⊙, central galaxies appear to be a factor of ~4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  8. Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.

    2008-01-01

    We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.

  9. Radio-selected Binary Active Galactic Nuclei from the Very Large Array Stripe 82 Survey

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Myers, A. D.; Djorgovski, S. G.; Yan, Lin; Wrobel, J. M.; Stockton, A.

    2015-01-01

    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg2 covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ~60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z < 0.20. Our color-magnitude diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  11. LUMINOUS X-RAY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    SciTech Connect

    Koulouridis, E.; Plionis, M.

    2010-05-10

    We present a study of X-ray active galactic nucleus (AGN) overdensities in 16 Abell clusters, within the redshift range 0.073 < z < 0.279, in order to investigate the effect of the hot inter-cluster environment on the triggering of the AGN phenomenon. The X-ray AGN overdensities, with respect to the field expectations, were estimated for sources with L{sub x} {>=} 10{sup 42} erg s{sup -1} (at the redshift of the clusters) and within an area of 1 h {sup -1} {sub 72} Mpc radius (excluding the core). To investigate the presence or absence of a true enhancement of luminous X-ray AGNs in the cluster area, we also derived the corresponding optical galaxy overdensities, using a suitable range of r-band magnitudes. We always find the latter to be significantly higher (and only in two cases roughly equal) with respect to the corresponding X-ray overdensities. Over the whole cluster sample, the mean X-ray point-source overdensity is a factor of {approx}4 less than that corresponding to bright optical galaxies, a difference which is significant at a >0.995 level, as indicated by an appropriate student's t-test. We conclude that the triggering of luminous X-ray AGNs in rich clusters is strongly suppressed. Furthermore, searching for optical Sloan Digital Sky Survey counterparts of all the X-ray sources, associated with our clusters, we found that about half appear to be background QSOs, while others are background and foreground AGNs or stars. The true overdensity of X-ray point sources, associated with the clusters, is therefore even smaller than what our statistical approach revealed.

  12. LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sakata, Yu; Minezaki, Takeo; Yoshii, Yuzuru; Uchimoto, Yuka Katsuno; Sugawara, Shota; Kobayashi, Yukiyasu; Koshida, Shintaro; Aoki, Tsutomu; Tomita, Hiroyuki; Enya, Keigo; Suganuma, Masahiro

    2010-03-01

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux-to-flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution Hubble Space Telescope images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux-to-flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region ({approx}4400-7900 A) does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.

  13. RADIO-SELECTED BINARY ACTIVE GALACTIC NUCLEI FROM THE VERY LARGE ARRAY STRIPE 82 SURVEY

    SciTech Connect

    Fu, Hai; Myers, A. D.; Djorgovski, S. G.; Yan, Lin; Wrobel, J. M.; Stockton, A.

    2015-01-20

    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg{sup 2} covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ∼60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.

  14. The systematic search for z ≳ 5 active galactic nuclei in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Urry, C. Megan; Koss, Michael; Trakhtenbrot, Benny

    2015-04-01

    We investigate early black hole (BH) growth through the methodical search for z ≳ 5 active galactic nuclei (AGN) in the Chandra Deep Field South. We base our search on the Chandra 4-Ms data with flux limits of 9.1 × 10-18 (soft, 0.5-2 keV) and 5.5 × 10-17 erg s-1 cm-2 (hard, 2-8 keV). At z ˜ 5, this corresponds to luminosities as low as ˜1042 (˜1043) erg s-1 in the soft (hard) band and should allow us to detect Compton-thin AGN with MBH > 107 M⊙ and Eddington ratios >0.1. Our field (0.03 deg2) contains over 600z ˜ 5 Lyman Break Galaxies. Based on lower redshift relations, we would expect ˜20 of them to host AGN. After combining the Chandra data with Great Observatories Origins Deep Survey (GOODS)/Advanced Camera for Surveys (ACS), CANDELS/Wide Field Camera 3 and Spitzer/Infrared Array Camera data, the sample consists of 58 high-redshift candidates. We run a photometric redshift code, stack the GOODS/ACS data, apply colour criteria and the Lyman Break Technique and use the X-ray Hardness Ratio. We combine our tests and using additional data find that all sources are most likely at low redshift. We also find five X-ray sources without a counterpart in the optical or infrared which might be spurious detections. We conclude that our field does not contain any convincing z ≳ 5 AGN. Explanations for this result include a low BH occupation fraction, a low AGN fraction, short, super-Eddington growth modes, BH growth through BH-BH mergers or in optically faint galaxies. By searching for z ≳ 5 AGN, we are setting the foundation for constraining early BH growth and seed formation scenarios.

  15. THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS

    SciTech Connect

    Volonteri, M.; Lasota, J.-P.; Sikora, M.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ∼ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  16. Star Formation and AGN Activity in Galaxy Clusters from z=1-2: a Multi-Wavelength Analysis Featuring Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Chung, Sun Mi; Cybulski, Ryan; Dey, Arjun; Eisenhardt, Peter R. M.; Galametz, Audrey; Gonzalez, Anthony H.; Jannuzi, Buell T.; Stanford, S. Adam; Snyder, Gregory F.; Stern, Daniel; Zeimann, Gregory R.

    2016-07-01

    We present a detailed, multi-wavelength study of star formation (SF) and active galactic nucleus (AGN) activity in 11 near-infrared (IR) selected, spectroscopically confirmed massive (≳1014 M ⊙) galaxy clusters at 1 < z < 1.75. Using new deep Herschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGNs through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs) and specific SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z ≳ 1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r < 0.5 Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z ∼ 1. Enhanced SFRs are found in lower mass (10.1\\lt {log} {M}\\star /{M}ȯ \\lt 10.8) cluster galaxies. We find significant variation in SF from cluster to cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGNs in clusters from z = 0.5–2, finding an excess AGN fraction at z ≳ 1, suggesting environmental triggering of AGNs during this epoch. We argue that our results—a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGNs—are consistent with a co-evolution between SF and AGNs in clusters and an increased merger rate in massive halos at high redshift.

  17. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  18. Gamma-ray blazars and active galactic nuclei seen by the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Lott, B.; Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.

    2015-03-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25 using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes, |b| > 10 (with 28 duplicate associations, thus corresponding to 1563 gamma-ray sources among 2192 sources in the 3FGL catalog), a 71% increase over the second catalog based on 2 years of data. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.

  19. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  20. AGN Variability Surveys: DASCH from BATSS to EXIST

    NASA Astrophysics Data System (ADS)

    Grindlay, J. E.

    2007-10-01

    Active galactic nuclei (AGN) are variable on a wide range of timescales. Combined with their redshifts and thus luminosity, variability was of course instrumental in their initial identification with accretion onto supermassive black holes. Previous broad-band (both spectral and temporal) variability surveys of AGN are limited in their temporal and spectral bandwidth, despite their promise for probing the central engine and black hole mass. We provide a brief summary of three new AGN variability surveys, two (BATSS and DASCH) about to begin and the third (EXIST) possible within the next decade, which will open new windows on the physics and fundamental properties of AGN.

  1. Uncovering the Deeply Embedded Active Galactic Nucleus Activity in the Nuclear Regions of the Interacting Galaxy Arp 299

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Roche, P. F.; Esquej, P.; González-Martín, O.; Pereira-Santaella, M.; Ramos Almeida, C.; Levenson, N. A.; Packham, C.; Asensio Ramos, A.; Mason, R. E.; Rodríguez Espinosa, J. M.; Alvarez, C.; Colina, L.; Aretxaga, I.; Díaz-Santos, T.; Perlman, E.; Telesco, C. M.

    2013-12-01

    We present mid-infrared (MIR) 8-13 μm spectroscopy of the nuclear regions of the interacting galaxy Arp 299 (IC 694+NGC 3690) obtained with CanariCam (CC) on the 10.4 m Gran Telescopio Canarias (GTC). The high angular resolution (~0.''3-0.''6) of the data allows us to probe nuclear physical scales between 60 and 120 pc, which is a factor of 10 improvement over previous MIR spectroscopic observations of this system. The GTC/CC spectroscopy displays evidence of deeply embedded active galactic nucleus (AGN) activity in both nuclei. The GTC/CC nuclear spectrum of NGC 3690/Arp 299-B1 can be explained as emission from AGN-heated dust in a clumpy torus with both a high covering factor and high extinction along the line of sight. The estimated bolometric luminosity of the AGN in NGC 3690 is 3.2 ± 0.6 × 1044 erg s-1. The nuclear GTC/CC spectrum of IC 694/Arp 299-A shows 11.3 μm polycyclic aromatic hydrocarbon emission stemming from a deeply embedded (AV ~ 24 mag) region of less than 120 pc in size. There is also a continuum-emitting dust component. If associated with the putative AGN in IC 694, we estimate that it would be approximately five times less luminous than the AGN in NGC 3690. The presence of dual AGN activity makes Arp 299 a good example to study such phenomena in the early coalescence phase of interacting galaxies.

  2. UNCOVERING THE DEEPLY EMBEDDED ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE NUCLEAR REGIONS OF THE INTERACTING GALAXY Arp 299

    SciTech Connect

    Alonso-Herrero, A.; Roche, P. F.; Esquej, P.; Colina, L.; González-Martín, O.; Ramos Almeida, C.; Asensio Ramos, A.; Rodríguez Espinosa, J. M.; Alvarez, C.; Pereira-Santaella, M.; Levenson, N. A.; Packham, C.; Mason, R. E.; Aretxaga, I.; Díaz-Santos, T.; Perlman, E.; Telesco, C. M.

    2013-12-10

    We present mid-infrared (MIR) 8-13 μm spectroscopy of the nuclear regions of the interacting galaxy Arp 299 (IC 694+NGC 3690) obtained with CanariCam (CC) on the 10.4 m Gran Telescopio Canarias (GTC). The high angular resolution (∼0.''3-0.''6) of the data allows us to probe nuclear physical scales between 60 and 120 pc, which is a factor of 10 improvement over previous MIR spectroscopic observations of this system. The GTC/CC spectroscopy displays evidence of deeply embedded active galactic nucleus (AGN) activity in both nuclei. The GTC/CC nuclear spectrum of NGC 3690/Arp 299-B1 can be explained as emission from AGN-heated dust in a clumpy torus with both a high covering factor and high extinction along the line of sight. The estimated bolometric luminosity of the AGN in NGC 3690 is 3.2 ± 0.6 × 10{sup 44} erg s{sup –1}. The nuclear GTC/CC spectrum of IC 694/Arp 299-A shows 11.3 μm polycyclic aromatic hydrocarbon emission stemming from a deeply embedded (A{sub V} ∼ 24 mag) region of less than 120 pc in size. There is also a continuum-emitting dust component. If associated with the putative AGN in IC 694, we estimate that it would be approximately five times less luminous than the AGN in NGC 3690. The presence of dual AGN activity makes Arp 299 a good example to study such phenomena in the early coalescence phase of interacting galaxies.

  3. ACTIVE GALACTIC NUCLEI SELECTED FROM GALEX SPECTROSCOPY: THE IONIZING SOURCE SPECTRUM AT z {approx} 1 ,

    SciTech Connect

    Barger, Amy J.; Cowie, Lennox L. E-mail: cowie@ifa.hawaii.ed

    2010-08-01

    We use a complete sample of Ly{alpha}-emission-line-selected active galactic nuclei (AGNs) obtained from nine deep blank fields observed with the grism spectrographs on the Galaxy Evolution Explorer (GALEX) satellite to measure the normalization and the spectral shape of the AGN contribution to the ionizing background (rest-frame wavelengths 700-900 A) at z {approx} 1. Our sample consists of 139 sources selected in the redshift range z = 0.65-1.25 in the near-ultraviolet (NUV; 2371 A central wavelength) channel. The area covered is 8.2 deg{sup 2} to a NUV magnitude of 20.5 (AB) and 0.92 deg{sup 2} at the faintest magnitude limit of 21.8. The GALEX AGN luminosity function agrees well with those obtained using optical and X-ray AGN samples, and the measured redshift evolution of the ionizing volume emissivity is similar to that previously obtained by measuring the GALEX far-ultraviolet (FUV; 1528 A central wavelength) magnitudes of an X-ray-selected sample. For the first time, we are able to construct the shape of the ionizing background at z {approx} 1 in a fully self-consistent way.

  4. Gamma-ray active galactic nucleus type through machine-learning algorithms

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Mirabal, N.; Contreras, J. L.; Oya, I.

    2013-01-01

    The Fermi Gamma-ray Space Telescope (Fermi) is producing the most detailed inventory of the gamma-ray sky to date. Despite tremendous achievements approximately 25 per cent of all Fermi extragalactic sources in the Second Fermi Large Area Telescope Catalogue (2FGL) are listed as active galactic nuclei (AGN) of uncertain type. Typically, these are suspected blazar candidates without a conclusive optical spectrum or lacking spectroscopic observations. Here, we explore the use of machine-learning algorithms - random forests and support vector machines - to predict specific AGN subclass based on observed gamma-ray spectral properties. After training and testing on identified/associated AGN from the 2FGL we find that 235 out of 269 AGN of uncertain type have properties compatible with gamma-ray BL Lacertae and flat-spectrum radio quasars with accuracy rates of 85 per cent. Additionally, direct comparison of our results with class predictions made after following the infrared colour-colour space of Massaro et al. shows that the agreement rate is over four-fifths for 54 overlapping sources, providing independent cross-validation. These results can help tailor follow-up spectroscopic programmes and inform future pointed surveys with ground-based Cherenkov telescopes.

  5. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  6. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    SciTech Connect

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna; Malkan, Matthew; Woo, Jong-Hak

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  7. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    SciTech Connect

    Hao Heng; Elvis, Martin; Civano, Francesca; Lanzuisi, Giorgio; Brusa, Marcella; Bongiorno, Angela; Lusso, Elisabeta; Zamorani, Gianni; Comastri, Andrea; Impey, Chris D.; Trump, Jonathan R.; Koekemoer, Anton M.; Le Floc'h, Emeric; Sanders, David; Salvato, Mara; Vignali, Cristian E-mail: elvis@cfa.harvard.ed

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energy distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.

  8. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  9. THE GLOBAL IMPLICATIONS OF THE HARD X-RAY EXCESS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Tatum, M. M.; Turner, T. J.; Reeves, J. N.; Miller, L.

    2013-01-10

    Recent evidence for a strong 'hard excess' of flux at energies {approx}> 20 keV in some Suzaku observations of type 1 active galactic nuclei (AGNs) has motivated an exploratory study of the phenomenon in the local type 1 AGN population. We have selected all type 1 AGNs in the Swift Burst Alert Telescope 58 month catalog and cross-correlated them with the holdings of the Suzaku public archive. We find the hard excess phenomenon to be a ubiquitous property of type 1 AGNs. Taken together, the spectral hardness and equivalent width of Fe K{alpha} emission are consistent with reprocessing by an ensemble of Compton-thick clouds that partially cover the continuum source. In the context of such a model, {approx}80% of the sample has a hardness ratio consistent with >50% covering of the continuum by low-ionization, Compton-thick gas. A more detailed study of the three hardest X-ray spectra in our sample reveal a sharp Fe K absorption edge at {approx}7 keV in each of them, indicating that blurred reflection is not responsible for the very hard spectral forms. Simple considerations place the distribution of Compton-thick clouds at or within the optical broad-line region.

  10. Photon-axion mixing within the jets of active galactic nuclei and prospects for detection

    SciTech Connect

    Harris, J.; Chadwick, P.M. E-mail: p.m.chadwick@durham.ac.uk

    2014-10-01

    Very high energy γ-ray observations of distant active galactic nuclei (AGN) generally result in higher fluxes and harder spectra than expected, resulting in some tension with the level of the extragalactic background light (EBL). If hypothetical axions or axion-like particles (ALPs) were to exist, this tension could be relieved since the oscillation of photons to ALPs would mitigate the effects of EBL absorption and lead to softer inferred intrinsic AGN spectra. In this paper we consider the effect of photon-ALP mixing on observed spectra, including the photon-ALP mixing that would occur within AGN jets. We then simulate observations of three AGN with the Cherenkov Telescope Array (CTA), a next generation γ-ray telescope, to determine its prospects for detecting the signatures of photon-ALP mixing on the spectra. We conclude that prospects for CTA detecting these signatures or else setting limits on the ALP parameter space are quite promising. We find that prospects are improved if photon-ALP mixing within the jet is properly considered and that the best target for observations is PKS 2155-304.

  11. Clumpy tori around type II active galactic nuclei as revealed by X-ray fluorescent lines

    NASA Astrophysics Data System (ADS)

    Liu, Jiren; Liu, Yuan; Li, Xiaobo; Xu, Weiwei; Gou, Lijun; Cheng, Cheng

    2016-06-01

    The reflection spectrum of a torus around an active galactic nucleus (AGN) is characterized by X-ray fluorescent lines, which are most prominent for type II AGNs. A clumpy torus allows photons reflected from the back-side of the torus to leak through the front regions that are free of obscuration. The observed X-ray fluorescent lines are therefore sensitive to the clumpiness of the torus. We analysed a sample of type II AGNs observed with the Chandra High Energy Transmission Grating Spectrometer (HETGS), and measured the fluxes for the Si Kα and Fe Kα lines. The measured Fe Kα/Si Kα ratios, spanning a range between 5 and 60, are far smaller than the ratios predicted from simulations of smooth tori, indicating that the tori of the studied sources have clumpy distributions rather than smooth ones. We compared the measured Fe Kα/Si Kα ratios with simulation results of clumpy tori. The Circinus galaxy has a Fe Kα/Si Kα ratio of ˜60, which is close to the simulation results for N = 5, where N is the average number of clumps along the line of sight. The Fe Kα/Si Kα ratios of the other sources are all below the simulation results for N = 2. Overall, this shows that the non-Fe fluorescent lines in the soft X-ray band are a potentially powerful probe of the clumpiness of tori around AGNs.

  12. The hard X-ray luminosity function of high-redshift (3 < z ≲ 5) active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.; Brusa, M.; Cappelluti, N.; Iwasawa, K.

    2014-12-01

    We present the hard-band (2-10 keV) X-ray luminosity function (HXLF) of 0.5-2 keV band selected active galactic nuclei (AGN) at high redshift. We have assembled a sample of 141 AGN at 3 < z ≲ 5 from X-ray surveys of different size and depth, in order to sample different regions in the LX - z plane. The HXLF is fitted in the range log LX ˜ 43-45 with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of ˜10 from z = 3 to 5. A luminosity-dependent density evolution model, which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity (log LX < 44), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density log NH ≥ 23 to be 0.54 ± 0.05, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous (LX > 1044 erg s-1) obscured AGN fraction from z = 0 to z > 3.

  13. Hidden Active Galactic Nuclei in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Civano, Francesca; Pellegrini, Silvia; Elvis, Martin; Kim, Dong-Woo

    2016-06-01

    We present a stacking analysis of the complete sample of early-type galaxies (ETGs) in the Chandra COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0\\lt z\\lt 1.5 and {10}9\\lt {L}K/{L}ȯ \\lt {10}13. Using established scaling relations, we subtract the contribution of X-ray binary populations to estimate the combined emission of hot ISM and active galactic nuclei (AGNs). To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe {L}X,{gas}\\propto {L}K4.5 for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consistent with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (∼1.2) ETGs with average high X-ray luminosity ({L}X {- {LMXB}}≳ 6× {10}42 {{erg}} {{{s}}}-1). These luminosities are consistent with the presence of highly absorbed “hidden” AGNs in these ETGs, which are not visible in their optical–IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminosity in lower stellar mass ETGs ({L}K≲ {10}11{L}ȯ ), relative to the local {L}X,{gas}\\propto {L}K4.5 relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion {10}-5-{10}-4{\\dot{M}}{Edd} onto {M}{BH}∼ {10}6-{10}8 {M}ȯ .

  14. THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS?

    SciTech Connect

    Lutz, D.; Shao, L.; Foerster Schreiber, N. M.; Genzel, R.; Mainieri, V.; Rafferty, D.; Brandt, W. N.; Hasinger, G.; Weiss, A.; Menten, K. M.; Walter, F.; Greve, T. R.; Smail, I.; Coppin, K.; Alexander, D. M.; Chapman, S.; Gawiser, E.; Kurczynski, P.; Ivison, R. J.; Koekemoer, A. M.

    2010-04-01

    We study the co-existence of star formation and active galactic nucleus (AGN) activity in Chandra X-ray-selected AGN by analyzing stacked 870 {mu}m submillimeter emission from a deep and wide map of the Extended Chandra Deep Field South (ECDFS), obtained with the LABOCA instrument at the APEX telescope. The total X-ray sample of 895 sources with median redshift z {approx} 1 drawn from the combined (E)CDFS X-ray catalogs is detected at >11sigma significance at a mean submillimeter flux of 0.49 +- 0.04 mJy, corresponding to a typical star formation rate (SFR) around 30 M{sub sun} yr{sup -1} for a T = 35 K, beta = 1.5 graybody far-infrared spectral energy distribution. The good signal-to-noise ratio permits stacking analyses for major subgroups, splitting the sample by redshift, intrinsic luminosity, and AGN obscuration properties. We observe a trend of SFR increasing with redshift. An increase of SFR with AGN luminosity is indicated at the highest L{sub 2-10{sub keV}} {approx}> 10{sup 44} erg s{sup -1} luminosities only. Increasing trends with X-ray obscuration as expected in some AGN evolutionary scenarios are not observed for the bulk of the X-ray AGN sample but may be present for the highest intrinsic luminosity objects with L{sub 2-10{sub keV}} {approx}> 10{sup 44} erg s{sup -1}. This behavior suggests a transition between two modes in the co-existence of AGN activity and star formation. For the bulk of the sample, the X-ray luminosity and obscuration of the AGN are not intimately linked to the global SFR of their hosts. The hosts are likely massive and forming stars secularly, at rates similar to the pervasive star formation seen in massive galaxies without an AGN at similar redshifts. In these systems, star formation is not linked to a specific state of the AGN and the period of moderately luminous AGN activity may not highlight a major evolutionary transition of the galaxy. The change indicated toward more intense star formation, and a more pronounced increase

  15. THE EFFECTS OF X-RAY FEEDBACK FROM ACTIVE GALACTIC NUCLEI ON HOST GALAXY EVOLUTION

    SciTech Connect

    Hambrick, D. Clay; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2011-09-01

    Hydrodynamic simulations of galaxies with active galactic nuclei (AGNs) have typically employed feedback that is purely local, i.e., an injection of energy to the immediate neighborhood of the black hole (BH). We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the BH and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces three times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.

  16. The cosmological evolution and luminosity function of X-ray selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Avni, Y.; Giommi, P.; Griffiths, R. E.; Liebert, J.; Stocke, J.; Danziger, J.

    1983-01-01

    The cosmological evolution and the X-ray luminosity function of X-ray selected active galactic nuclei (AGNs) are derived and discussed. The sample used consists of 31 AGNs extracted from a fully identified sample of X-ray sources from the Einstein Observatory Medium Sensitivity Survey and is therefore exclusively defined by its X-ray properties. The distribution in space is found to be strongly nonuniform. The amount of cosmological evolution required by the X-ray data is derived in the framework of pure luminosity evolution and is found to be smaller than the amount determined from optically selected samples. The X-ray luminosity function is derived. It can be satisfactorily represented by a single power law only over a limited range of absolute luminosities. Evidence that the luminosity function flattens at low luminosity or steepens at high luminosity, or both, is presented and discussed.

  17. A new approach to the variability characterization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Middei, R.; Vagnetti, F.; Antonucci, M.; Serafinelli, R.

    2016-02-01

    The normalized excess variance is a popular method used by many authors to estimate the variability of active galactic nuclei (AGNs), especially in the X-ray band. We show that this estimator is affected by the cosmological time dilation, so that it should be appropriately corrected when applied to AGN samples distributed in wide redshift intervals. We propose a formula to modify this estimator, based on the use of the structure function. To verify the presence of the cosmological effect and the reliability of the proposed correction, we use data extracted from the XMM-Newton Serendipitous Source Catalogue, data release 5 (XMMSSC-DR5), and cross-matched with the Sloan Digital Sky Survey quasar catalogue, of data release 7 and 12.

  18. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  19. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    SciTech Connect

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Jarvis, M.; Kraft, R. P.; Evans, D. A.

    2013-06-20

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z {approx} 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  20. A polarimetric method for measuring black hole masses in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Silant'ev, N. A.; Natsvlishvili, T. M.; Buliga, S. D.

    2015-11-01

    The structure of the broad emission line region (BLR) in active galactic nuclei (AGN) remains unclear. We test in this paper a flattened configuration model for BLR. The virial theorem, by taking into account the disc shape of BLR, allows us to get a direct connection between the mass of a supermassive black hole (SMBH) and the inclination angle of the accretion flow. The inclination angle itself is derived from the spectropolarimetric data on broad emission lines using the theory for the generation of polarized radiation developed by Sobolev and Chandrasekhar. As the result, the new estimates of SMBH masses in AGN with measured polarization of BLR are presented. It is crucial that the polarimetric data allow also to determine the value of the virial coefficient that is essential for determining SMBH masses.

  1. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; D'Ammando, F.; Escande, L.; Fegan, S. J.; Filippenko, A. V.; Finke, J. D.; Fuhrmann, L.; Fukazawa, Y.; Hays, E.; Healey, S. E.; Ikejiri, Y.; Itoh, R.; Kawabata, K. S.; Komatsu, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  2. MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. II. PROPERTIES OF WISE-SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BOOeTES FIELD

    SciTech Connect

    Assef, R. J.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Kochanek, C. S.; Blain, A. W.; Brodwin, M.; Brown, M. J. I.; Donoso, E.; Jarrett, T. H.; Yan, L.; Jannuzi, B. T.; Stanford, S. A.; Wu, J.

    2013-07-20

    Stern et al. presented a study of Wide-field Infrared Survey Explorer (WISE) selection of active galactic nuclei (AGNs) in the 2 deg{sup 2} COSMOS field, finding that a simple criterion W1-W2 {>=} 0.8 provides a highly reliable and complete AGN sample for W2 < 15.05, where the W1 and W2 passbands are centered at 3.4 {mu}m and 4.6 {mu}m, respectively. Here we extend this study using the larger 9 deg{sup 2} NOAO Deep Wide-Field Survey Booetes field which also has considerably deeper WISE observations than the COSMOS field, and find that this simple color cut significantly loses reliability at fainter fluxes. We define a modified selection criterion combining the W1-W2 color and the W2 magnitude to provide highly reliable or highly complete AGN samples for fainter WISE sources. In particular, we define a color-magnitude cut that finds 130 {+-} 4 deg{sup -2} AGN candidates for W2 < 17.11 with 90% reliability. Using the extensive UV through mid-IR broadband photometry available in this field, we study the spectral energy distributions of WISE AGN candidates. We find that, as expected, the WISE AGN selection can identify highly obscured AGNs, but that it is biased toward objects where the AGN dominates the bolometric luminosity output. We study the distribution of reddening in the AGN sample and discuss a formalism to account for sample incompleteness based on the step-wise maximum-likelihood method of Efstathiou et al. The resulting dust obscuration distributions depend strongly on AGN luminosity, consistent with the trend expected for a receding torus. At L{sub AGN} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1}, 29% {+-} 7% of AGNs are observed as Type 1, while at {approx}4 Multiplication-Sign 10{sup 45} erg s{sup -1} the fraction is 64% {+-} 13%. The distribution of obscuration values suggests that dust in the torus is present as both a diffuse medium and in optically thick clouds.

  3. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  4. Ambartsumyan's concept of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Khachikian, E. Ye.

    2010-01-01

    As Victor Ambartsumyan, himself, noted, the concept of active galactic nuclei occupies a special place among his scientific ideas. It was proposed more than half a century ago and was recognized by the U.S. National Academy of Sciences as revolutionary, on a copernican scale. However, by no means all of its propositions were accepted at once by large parts of the astronomy community. Nevertheless, as the American astrophysicist A. R. Sandage has written, “today, not one astronomer would deny the mystery surrounding the nuclei of galaxies or that the first to recognize the rich reward held in this treasury was Viktor Ambartsumian.” The purpose of this article is to acquaint the reader with the major stages in the formation and development of the concept of active galactic nuclei and with some of the work on this topic done at the Byurakan and other astrophysical observatories throughout the world.

  5. XMM FOLLOW-UP OBSERVATIONS OF THREE SWIFT BAT-SELECTED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Trippe, M. L.; Reynolds, C. S.; Koss, M.; Mushotzky, R. F.; Winter, L. M.

    2011-08-01

    We present XMM-Newton observations of three active galactic nuclei (AGNs) taken as part of a hunt to find very heavily obscured Compton-thick AGNs. For obscuring columns greater than 10{sup 25} cm{sup -2}, AGNs are only visible at energies below 10 keV via reflected/scattered radiation, characterized by a flat power law. We therefore selected three objects (ESO 417-G006, IRAS 05218-1212, and MCG -01-05-047) from the Swift Burst Alert Telescope (BAT) hard X-ray survey catalog with Swift X-ray Telescope (XRT) 0.5-10 keV spectra with flat power-law indices as candidate Compton-thick sources for follow-up observations with the more sensitive instruments on XMM-Newton. The XMM spectra, however, rule out reflection-dominated models based on the weakness of the observed Fe K{alpha} lines. Instead, the spectra are well fit by a model of a power-law continuum obscured by a Compton-thin absorber plus a soft excess. This result is consistent with previous follow-up observations of two other flat-spectrum BAT-detected AGNs. Thus, out of the six AGNs in the 22 month BAT catalog with apparently flat Swift XRT spectra, all five that have had follow-up observations are not likely Compton thick. We also present new optical spectra of two of these objects, IRAS 05218-1212 and MCG -01-05-047. Interestingly, though both the AGNs have similar X-ray spectra, their optical spectra are completely different, adding evidence against the simplest form of the geometric unified model of AGNs. IRAS 05218-1212 appears in the optical as a Seyfert 1, despite the {approx}8.5 x 10{sup 22} cm{sup -2} line-of-sight absorbing column indicated by its X-ray spectrum. MCG -01-05-047's optical spectrum shows no sign of AGN activity; it appears as a normal galaxy.

  6. On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ~0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ~0.13 dex.

  7. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  8. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  9. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    SciTech Connect

    Ajello, M.; Alexander, D.M.; Greiner, J.; Madejski, G.M.; Gehrels, N.; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  10. Determining the radio active galactic nuclei contribution to the radio-far-infrared correlation using the black hole Fundamental Plane relation

    NASA Astrophysics Data System (ADS)

    Wong, O. Ivy; Koss, M. J.; Schawinski, K.; Kapińska, A. D.; Lamperti, I.; Oh, K.; Ricci, C.; Berney, S.; Trakhtenbrot, B.

    2016-08-01

    We investigate the 1.4-GHz radio properties of 92 nearby (z < 0.05) ultra-hard X-ray selected active galactic nuclei (AGNs) from the Swift Burst Alert Telescope (BAT) sample. Through the ultra-hard X-ray selection, we minimize the biases against obscured or Compton-thick AGNs as well as confusion with emission derived from star formation that typically affect AGN samples selected from the ultraviolet, optical and infrared wavelengths. We find that all the objects in our sample of nearby, ultra-hard X-ray selected AGNs are radio quiet; 83 per cent of the objects are classed as high-excitation galaxies and 17 per cent as low-excitation galaxies. While these low-z BAT sources follow the radio-far-infrared correlation in a similar fashion to star-forming galaxies, our analysis finds that there is still significant AGN contribution in the observed radio emission from these radio-quiet AGNs. In fact, the majority of our BAT sample occupy the same X-ray-radio Fundamental Plane as has been observed in other samples, which include radio-loud AGNs - evidence that the observed radio emission (albeit weak) is connected to the AGN accretion mechanism, rather than star formation.

  11. Spitzer, Kepler, and Ground Based Reverberation Mapping of 3 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Malkan, Matthew; Barth, Aaron; Filippenko, Alex; Bloom, Joshua

    2011-05-01

    Near-infrared reverberation measurements have proven to be a valuable tool for mapping the location of hot dust in active galactic nuclei (AGNs). Ground-based campaigns have shown that the K-band continuum varies in response to changes in the optical continuum, and measurements of the K-band lag time give the size scale of the hot dust emission region. Reverberation measurements at longer wavelengths can add valuable information on the dust temperature profile in AGNs and the structure of the putative dusty torus, but there have not previously been any definitive measurements of dust reverberation at wavelengths longer than the K band. In our Cycle 7 campaign we proposed to conduct a campaign of high-cadence monitoring observations (1 observation per ~72 hours) of three bright, low-redshift AGNs in order to detect 3.6 micron variability and to measure the reverberation lag time of the 3.6 micron continuum relative to the optical continuum. Four obstacles needed to be overcome to do reverberation mapping at 3.6 microns: 1. Could we obtain long and well sampled 3.6 micron light curves with high precision? 2. Would the monitored AGN show significant optical variation? 3. Would IRAC detect significant variations during the observing window? 4. Finally, would there be correlated variability between the IR and the optical light curves? Based on our first observed source, Zw 229-015, the answer to all those questions is YES! In addition to Zw 229-105 which is also a Kepler monitoring target and so it has become a key AGN for coordinated multi-wavelength monitoring; our sample includes two well-studied and highly variable AGNs, NGC 4051 and Mrk 817. We will conitnue to obtain ground-based optical (V-band) and near-IR (JHK) monitoring data for these AGNs in order to compare the near-IR and 3.6 micron variability with the optical light curves, providing unique new constraints on the dust temperature profiles in these AGNs.

  12. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role

    SciTech Connect

    Denney, K. D.; De Rosa, G.; Croxall, K.; Gupta, A.; Fausnaugh, M. M.; Grier, C. J.; Martini, P.; Mathur, S.; Peterson, B. M.; Pogge, R. W.; Shappee, B. J.; Bentz, M. C.

    2014-12-01

    We present multiwavelength observations that trace more than 40 yr in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from Hubble Space Telescope, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long-baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a 'changing-look' AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ∼1.9–2, where the only broad emission line still visible in the optical spectrum is a weak component of Hα. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line-of-sight viewing angle toward the nucleus in the presence of a geometrically flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.

  13. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  14. ACTIVE GALACTIC NUCLEUS OBSCURATION THROUGH DUSTY INFRARED-DOMINATED FLOWS. I. RADIATION-HYDRODYNAMICS SOLUTION FOR THE WIND

    SciTech Connect

    Dorodnitsyn, A.; Kallman, T.; Bisnovatyi-Kogan, G. S.

    2011-11-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scales by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the two-dimensional radiation transfer problem in a flux-limited diffusion approximation. We iteratively couple the solution with calculations of stationary one-dimensional models for the wind and obtain the z-component of the velocity. Our results demonstrate that for active galactic nucleus (AGN) luminosities greater than 0.1 L{sub edd}, external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < {tau}{sub T} < 0.6) is comparable to or greater than the escape velocity. In Compton-thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  15. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  16. ACTIVE GALACTIC NUCLEUS FEEDBACK AT z ∼ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES

    SciTech Connect

    Cimatti, A.; Brusa, M.; Talia, M.; Rodighiero, G.; Kurk, J.; Cassata, P.; Halliday, C.; Renzini, A.; Daddi, E.

    2013-12-10

    The relationship between galaxies of intermediate stellar mass and moderate luminosity active galactic nuclei (AGNs) at 1 < z < 3 is investigated with a Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) sample complemented with public data in the GOODS-South field. Using X-ray data, hidden AGNs are identified in unsuspected star-forming galaxies with no apparent signs of non-stellar activity. In the color-mass plane, two parallel trends emerge during the ∼2 Gyr between the average redshifts z ∼ 2.2 and z ∼ 1.3: while the red sequence becomes significantly more populated by ellipticals, the majority of AGNs with L(2-10 keV) > 10{sup 42.3} erg s{sup –1} disappear from the blue cloud/green valley where they were hosted predominantly by star-forming systems with disk and irregular morphologies. These results are even clearer when the rest-frame colors are corrected for dust reddening. At z ∼ 2.2, the ultraviolet spectra of active galaxies (including two Type 1 AGNs) show possible gas outflows with velocities up to about –500 km s{sup –1}, which are observed neither in inactive systems at the same redshift, nor at lower redshifts. Such outflows indicate the presence of gas that can move faster than the escape velocities of active galaxies. These results suggest that feedback from moderately luminous AGNs (log L{sub X} < 44.5 erg s{sup –1}) played a key role at z ≳ 2 by contributing to outflows capable of ejecting part of the interstellar medium and leading to a rapid decrease in star formation in host galaxies with stellar masses 10 < log(M/M{sub ⊙})< 11.

  17. Active galactic nucleus and quasar science with aperture masking interferometry on the James Webb Space Telescope

    SciTech Connect

    Ford, K. E. Saavik; McKernan, Barry; Sivaramakrishnan, Anand; Martel, André R.; Koekemoer, Anton; Lafrenière, David; Parmentier, Sébastien

    2014-03-10

    Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundant mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.

  18. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  19. THE COSMOS ACTIVE GALACTIC NUCLEUS SPECTROSCOPIC SURVEY. I. XMM-NEWTON COUNTERPARTS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared; Kelly, Brandon C.; Elvis, Martin; Huchra, John P.; Civano, Francesca; Hao, Heng; McCarthy, Patrick J.; Scoville, Nick Z.; Smolcic, Vernesa; Brusa, Marcella; Cappelluti, Nico; Hasinger, Gunther; Salvato, Mara; Capak, Peter; Comastri, Andrea; Jahnke, Knud; Schinnerer, Eva; Lilly, Simon J.

    2009-05-10

    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg{sup 2} Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f {sub 0.5-10keV} > 8 x 10{sup -16} erg cm{sup -2} s{sup -1} and i {sup +} {sub AB} < 22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i {sup +} {sub AB} < 23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13 < z < 4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07 < z < 1.29, and 18% absorption line (host-dominated, obscured) AGN at 0 < z < 1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L {sub 0.5-10keV} > 3 x 10{sup 42} erg s{sup -1}) to z < 1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured-to-unobscured AGN ratio at z < 1 increases with redshift and decreases with luminosity.

  20. Spatially Resolved Spectra of the "Teacup" Active Galactic Nucleus: Tracing the History of a Dying Quasar

    NASA Astrophysics Data System (ADS)

    Gagne, J. P.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Fischer, T. C.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a "handle"-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  1. THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wright, Shelley A.; Graham, James R.; Ma, C-P; Larkin, James E.

    2010-03-10

    We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared {integral} field spectrograph OSIRIS. Using previous Halpha and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central {approx}1.5 kpc (0.''2) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Halpha) = -0.22 +- 0.05 and 2sigma limit of log ([O III]/Hbeta) {approx}>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the 'elevated' nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L{sub Halpha} = (3.7 +- 0.5) x 10{sup 41} erg s{sup -1} and L{sub [O{sub III}]} = (5.8 +- 1.9) x 10{sup 41} erg s{sup -1}, making it one of the lowest luminosity AGNs discovered at this early epoch.

  2. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    SciTech Connect

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  3. Obscuring Fraction of Active Galactic Nuclei: Implications from Radiation-driven Fountain Models

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi

    2015-10-01

    Active galactic nuclei (AGNs) are believed to be obscured by an optical thick “torus” that covers a large fraction of solid angles for the nuclei. However, the physical origin of the tori and the differences in the tori among AGNs are not clear. In a previous paper based on three-dimensional radiation-hydorodynamic calculations, we proposed a physics-based mechanism for the obscuration, called “radiation-driven fountains,” in which the circulation of the gas driven by central radiation naturally forms a thick disk that partially obscures the nuclear emission. Here, we expand this mechanism and conduct a series of simulations to explore how obscuration depends on the properties of AGNs. We found that the obscuring fraction fobs for a given column density toward the AGNs changes depending on both the AGN luminosity and the black hole mass. In particular, fobs for NH ≥ 1022 cm-2 increases from ˜0.2 to ˜0.6 as a function of the X-ray luminosity LX in the LX = 1042-44 erg s-1 range, but fobs becomes small (˜0.4) above a luminosity (˜1045 erg s-1). The behaviors of fobs can be understood by a simple analytic model and provide insight into the redshift evolution of the obscuration. The simulations also show that for a given LAGN, fobs is always smaller (˜0.2-0.3) for a larger column density (NH ≥ 1023 cm-2). We also found cases that more than 70% of the solid angles can be covered by the fountain flows.

  4. Determining the Covering Factor of Compton-thick Active Galactic Nuclei with NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fuerst, F.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S.; Puccetti, S.; Rivers, E.; Vasudevan, R.; Walton, D. J.; Zhang, W. W.

    2015-05-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (NH > 1.5 × 1024 cm-2) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman & Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with NH measured from 1024 to 1026 cm-2, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, fc, is a strongly decreasing function of the intrinsic 2-10 keV luminosity, LX, where fc = (-0.41 ± 0.13)log10(LX/erg s-1)+18.31 ± 5.33, across more than two orders of magnitude in LX (1041.5-1044 erg s-1). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with LX > 1042.5 erg s-1.

  5. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  6. OBSCURED GOODS ACTIVE GALACTIC NUCLEI AND THEIR HOST GALAXIES AT z < 1.25: THE SLOW BLACK HOLE GROWTH PHASE

    SciTech Connect

    Simmons, B. D.; Urry, C. M.; Van Duyne, J.; Treister, E.; Koekemoer, A. M.; Grogin, N. A.

    2011-06-20

    We compute black hole masses and bolometric luminosities for 87 obscured active galactic nuclei (AGNs) in the redshift range 0.25 {<=} z {<=} 1.25, selected from the GOODS deep multi-wavelength survey fields via their X-ray emission. We fit the optical images and obtain morphological parameters for the host galaxy, separating the galaxy from its central point source, thereby obtaining a four-band optical spectral energy distribution (SED) for each active nucleus. We calculate bolometric luminosities for these AGNs by reddening a normalized mean SED of GOODS broad-line AGNs to match the observed central point-source SED of each obscured AGN. This estimate of L{sub bol} has a smaller spread than simple bolometric corrections to the X-ray luminosity or direct integration of the observed multi-wavelength SED, suggesting it is a better measure. We estimate central black hole masses from the bulge luminosities. The black hole masses span a wide range, 7 x 10{sup 6} M{sub sun} to 6 x 10{sup 9} M{sub sun}; the median black hole mass is 5 x 10{sup 8} M{sub sun}. The majority of these AGNs have L/L{sub Edd} {<=} 0.01, and we detect no significant evolution of the mean Eddington ratio to z = 1.25. This implies that the bulk of black hole growth in these obscured AGNs must have occurred at z {approx}> 1 and that we are observing these AGNs in a slow- or no-growth state.

  7. Probing Spectroscopic Variability of Galaxies and Narrow-Line Active Galactic Nuclei in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Yip, C. W.; Connolly, A. J.; Vanden Berk, D. E.; Scranton, R.; Krughoff, S.; Szalay, A. S.; Dobos, L.; Tremonti, C.; Taghizadeh-Popp, M.; Budavári, T.; Csabai, I.; Wyse, R. F. G.; Ivezić, Ž.

    2009-06-01

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ~700 days) covering a wavelength range of 3900-8900 Å. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average—the spectroscopic variability of the continuum is 0.07 ± 0.26 mag in the g band and, for the emission-line ratios log10([N II]/Hα) and log10([O III]/Hβ), the variability is 0.02 ± 0.03 dex and 0.06 ± 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be ~30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  8. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.

    2012-01-20

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations r{sub p} < 100 h{sup -1}{sub 70} kpc and velocity offsets <600 km s{sup -1} from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] {lambda}5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger H{delta} absorption and smaller 4000 A break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for r{sub p} {approx}< 10-30 h{sup -1}{sub 70} kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  9. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  10. Spectral-luminosity evolution of active galactic nuclei and the cosmic X- and gamma ray background

    NASA Technical Reports Server (NTRS)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    Coherent electromagnetic dynamo acceleration processes, which act on charge particles within the context of black hole accretion disk scenarios, are generally regarded as the underlying central power source for active galactic nuclei (AGN). If the precursor active galaxies (PAG) for such AGN are formed at high redshift and contain initial seed black holes with mass approximately equal to 10(exp 4) solar masses, then the Eddington limited X-ray radiation emitted during their lifetime will undergo the phenomenon of 'spectral-luminosity evolution'. When accretion disks are first formed at the onset of galaxy formation the accretion rate occurs at very high values of luminosity/size compactness parameter L/R greater than 10(exp 30) erg/cm-sec. In the absence of extended structure, such high values of L/R generate dynamic constraints which suppress coherent, black hole/accretion disk dynamo particle acceleration processes. This inhibits nonthermal radiation processes and causes the spectrum of X-radiation emitted by PAG to be predominantly thermal. A superposition of PAG sources at z is greater than or equal to 6 can account for the residual cosmic X-ray background (CXB) obtained from the total CXB after subtraction of foreground AGN sources associated with present epoch Seyfert galaxies. The manner in which the PAG undergo spectral-luminosity evolution into Seyfert galaxies is investigated.

  11. The X-ray view of radio-loud active galactic nuclei: The central engine and its environment

    NASA Astrophysics Data System (ADS)

    Donato, Davide

    The non-thermal emission from many Active Galactic Nuclei (AGN) is obscured by optically thick circumnuclear matter, particularly at optical and ultraviolet wavelengths. In radio-loud (RL) sources, the AGN activity is coupled with the presence of a bipolar jet that emit radio through g-ray light which is relativistically beamed along the jet axes. The combination of absorption and beaming produces highly anisotropic radiation. The understanding of the origin and magnitude of this radiation allows astronomers to unify different classes of AGN; that is, to identify each single, underlying AGN type that gives rise to different classes through different orientations with respect to the jet axis. This is the fundamental notion behind what are called "unification models" of AGN. Although this general idea is well accepted, many aspects remain matter of debate. In fact, the explanation of the wide and complex variety of AGN phenomena must be searched in a combination of apparent differences (like orientation) and real differences in a number of physical parameters (like gas/dust content and distribution, luminosity, etc.). The goal of this thesis is to address some of the RL unification open questions using X-ray data. The improved sensitivity and angular resolution of a new generation of satellites, combined with the fact that X-rays provide useful information on a variety of AGN phenomena, will allow me to: (1) Study the broadband X-ray continua of BL Lacertae objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs); (2) Probe the emission from the very inner region of an AGN; (3) Determine the presence and characteristic of extended X-ray emission from the AGN environment. The results obtained from theses studies will provide me insights into (1) the X-ray average spectral properties of BL Lacs and FSRQs and the physical processes responsible of the emission; (2) the presence of the obscuring torus and the amount of absorption, (3) the nature of X-ray emission, and (4

  12. COSMIC TRAIN WRECK BY MASSIVE BLACK HOLES: DISCOVERY OF A KILOPARSEC-SCALE TRIPLE ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.

    2011-07-20

    Hierarchical galaxy mergers will lead to the formation of binary and, in the case of a subsequent merger before a binary coalesces, triple supermassive black holes (SMBHs), given that most massive galaxies harbor SMBHs. A triple of SMBHs becomes visible as a triple active galactic nucleus (AGN) when the BHs accrete large amounts of gas at the same time. Here, we report the discovery of a kiloparsec-scale triple AGN, SDSS J1027+1749 at z = 0.066, from our systematic search for hierarchical mergers of AGNs. The galaxy contains three emission-line nuclei, two of which are offset by 450 and 110 km s{sup -1} in velocity and by 2.4 and 3.0 kpc in projected separation from the central nucleus. All three nuclei are classified as obscured AGNs based on optical diagnostic emission line ratios, with black hole mass estimates M{sub .} {approx}> 10{sup 8} M{sub sun} from stellar velocity dispersions measured in the associated stellar components. Based on dynamical friction timescale estimates, the three stellar components in SDSS J1027+1749 will merge in {approx}40 Myr, and their associated SMBHs may evolve into a gravitationally interacting triple system in {approx}< 200 Myr. Our result sets a lower limit of {approx}5 x 10{sup -5} for the fraction of kiloparsec-scale triples in optically selected AGNs at z {approx} 0.1.

  13. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A.; Goulding, Andy D.

    2016-07-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  14. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    SciTech Connect

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza; Siegal-Gaskins, Jennifer M. E-mail: alessandro.cuoco@to.infn.it E-mail: jsg@tapir.caltech.edu

    2014-11-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

  15. The nature and origin of Narrow Line AGN activity in a sample of isolated SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Plauchu-Frayn, I.; Islas-Islas, J. M.; Ortega-Minakata, R. A.; Neri-Larios, D. M.; Andernach, H.

    2011-10-01

    We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) amounts to 64% of the galaxies. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torres-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. The NLAGNs in our sample are consistent with a scaled-down or powered-down versions of quasars and Broad Line AGNs.

  16. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    SciTech Connect

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-12-20

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 {mu}m silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log {nu}L{sub {nu}}(7.8 {mu}m)/L(X) = -0.31 {+-} 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log {nu}L{sub {nu}}(7.8 {mu}m) = (37.2 {+-} 0.5) + 0.87 log BHM for luminosity in erg s{sup -1} and BHM in M{sub Sun }. The 100 most luminous type 1 quasars as measured in {nu}L{sub {nu}}(7.8 {mu}m) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 {mu}m from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 {mu}m using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 < z < 5, reaching total infrared luminosity L{sub IR} = 10{sup 14.4} L{sub Sun }. Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L{sub bol} estimated from rest-frame optical or ultraviolet luminosities are compared to L{sub IR}. For the local AGN, the median log L{sub IR}/L{sub bol} = -0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L

  17. The Subarcsecond Mid-infrared View of Local Active Galactic Nuclei. III. Polar Dust Emission

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-05-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs. Based on European Southern Observatory (ESO) observing programmes 60.A-9242, 074.A-9016, 075.B-0182, 075.B-0621, 075.B-0631, 075.B-0727, 075.B-0791, 075.B-0844, 076.B-0194, 076.B-0468, 076.B-0599, 076.B-0621, 076.B-0656, 076.B-0696, 076.B-0743, 077.B-0060, 077.B-0135, 077.B-0137, 077.B-0728, 078.B-0020, 078.B-0173, 078.B-0255, 078.B-0303, 080.B-0240, 080.B-0860, 081.B-0182, 082.B-0299, 083.B-0239, 083.B-0452, 083.B-0536, 083.B-0592, 084.B-0366, 084.B-0606, 084.B-0974, 085.B-0251, 085.B-0639, 086.B-0242, 086.B-0257, 086

  18. Stellar populations in Active Galactic Nuclei III

    NASA Astrophysics Data System (ADS)

    Boisson, C.; Joly, M.; Pelat, D.; Ward, M. J.

    2004-12-01

    In this paper we apply the stellar population synthesis method previously described in Boisson et al. (\\cite{Boisson2000}) to five more AGN. The analysis of these new data strengthen our previous conclusions: i) homogeneity of the stellar population within a class of nuclear activity regardless of the morphological type of the host galaxy; ii) populations within the nuclear regions of LINERs and Seyfert 2s are different: LINERs have a very old metal-rich population while in the Seyfert 2s a contribution of a weak burst of star formation is observed together with the old high metallicity component; iii) in the circum-nuclar region (200 pc ≤D≤1 kpc) of all the active galaxies in our sample, except for NGC 2992, we detect an old burst of star formation (0.2-1 Gyr),which is contrary to what is observed in normal galaxies. We note that the broad OIλ8446 Å emission line detected in the spectrum of the nucleus of NGC 2992 confirms its classification as a Seyfert 1. Based on observations collected at the New Technology Telescope of the European Southern Observatory, La Silla, Chile.

  19. Decreased specific star formation rates in AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J.

    2015-09-01

    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.

  20. VizieR Online Data Catalog: AGN activity in isolated SDSS galaxies (Coziol+, 2011)

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Plauchu-Frayn, I.; Islas-Islas, J. M.; Ortega-Minakata, R. A.; Neri-Larios, D. M.; Andernach, H.

    2011-09-01

    We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. All these galaxies are spiral like and show some kind of nuclear activity. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) is relatively high, amounting to 64% of the galaxies. There is a definite trend for the NLAGNs to appear in early-type spirals, while the star forming galaxies and TOs are found in later-type spirals. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torres-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. Consistent with this interpretation, we establish a strong connection between the astration rate -- the efficiency with which the gas is transformed into stars - the AGN phenomenon, and the gravitational binding energy of the galaxies: the higher the binding energy, the higher the astration rate and the higher the probability to find an AGN. The NLAGNs in our sample are consistent with scaled-down or powered-down versions of quasars and Broad Line AGNs. (2 data files).

  1. Constraints on Feedback in the Local Universe: The Relation between Star Formation and AGN Activity in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi A.; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2016-02-01

    We address the relation between star formation and active galactic nucleus (AGN) activity in a sample of 231 nearby (0.0002 < z < 0.0358) early-type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR, and radio. Our results indicate that early-type galaxies in the current epoch are rarely powerful AGNs, with P\\lt {10}22 {{WHz}}-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The star formation rate (SFR) of these galaxies is less than 0.1 M⊙ yr-1. They also tend to be radio faint (P\\lt {10}22 {{WHz}}-1). There is a nearly equal fraction of star-forming galaxies in radio faint (P\\lt {10}22 {{WHz}}-1) and radio bright galaxies (P≥slant {10}22 {{WHz}}-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  2. Constraints on two active galactic nuclei in the merger remnant cosmos J100043.15+020637.2

    SciTech Connect

    Wrobel, J. M.; Comerford, J. M.; Middelberg, E. E-mail: julie.comerford@colorado.edu

    2014-02-20

    COSMOS J100043.15+020637.2 is a merger remnant at z = 0.36 with two optical nuclei, NW and SE, offset by 500 mas (2.5 kpc). Prior studies suggest two competing scenarios for these nuclei: (1) SE is an active galactic nucleus (AGN) lost from NW due to a gravitational-wave recoil. (2) NW and SE each contain an AGN, signaling a gravitational-slingshot recoil or inspiralling AGNs. We present new images from the Very Large Array (VLA) at a frequency ν = 9.0 GHz and a FWHM resolution θ = 320 mas (1.6 kpc), and the Very Long Baseline Array (VLBA) at ν = 1.52 GHz and θ = 15 mas (75 pc). The VLA imaging is sensitive to emission driven by AGNs and/or star formation, while the VLBA imaging is sensitive only to AGN-driven emission. No radio emission is detected at these frequencies. Folding in prior results, we find: (a) The properties of SE and its adjacent X-ray feature resemble those of the Type 1 AGN in NGC 4151, albeit with a much higher narrow emission-line luminosity. (b) The properties of NW are consistent with it hosting a Compton-thick AGN that warms ambient dust, photoionizes narrow emission-line gas, and is free-free absorbed by that gas. Finding (a) is consistent with scenarios (a) and (b). Finding (b) weakens the case for scenario (a) and strengthens the case for scenario (b). Follow-up observations are suggested.

  3. Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Trump, Jonathan; Athanassoula, Lia; Bamford, Steven; Bell, Eric F.; Bosma, Albert; Cardamone, Carolin N.; Casteels, Kevin; Faber, Sandra M.; Fang, Jerome J.; Fortson, Lucy; Kocevski, Dale; Koo, David C.; Laine, Seppo J.; Lintott, Chris; Masters, Karen; Melvin, Tom; Nichol, Robert; Schawinski, Kevin; Simmons, Brooke D.; Smethurst, Rebecca; Willett, Kyle; Galaxy Zoo, Aegis, Cosmos, Goods

    2015-01-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disk galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 1042 erg s-1 < LX < 1044erg s-1, with inactive control galaxies matched in stellar mass, rest-frame color, size, Sérsic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the bar fraction in the control sample by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2 < z < 1.0. This result, coupled with previous results at z = 0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z = 1. Furthermore, given the low bar fractions at z > 1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.

  4. Galaxy Zoo: Are bars responsible for the feeding of active galactic nuclei at 0.2 < z < 1.0?

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Trump, Jonathan R.; Athanassoula, E.; Bamford, Steven P.; Bell, Eric F.; Bosma, A.; Cardamone, Carolin N.; Casteels, Kevin R. V.; Faber, S. M.; Fang, Jerome J.; Fortson, Lucy F.; Kocevski, Dale D.; Koo, David C.; Laine, Seppo; Lintott, Chris; Masters, Karen L.; Melvin, Thomas; Nichol, Robert C.; Schawinski, Kevin; Simmons, Brooke; Smethurst, Rebecca; Willett, Kyle W.

    2015-02-01

    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 1042 erg s-1 < LX < 1044 erg s-1, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sérsic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of 2, at 99.7 per cent confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2 < z < 1.0. This result, coupled with previous results at z = 0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z = 1. Furthermore, given the low bar fractions at z > 1, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growth.

  5. Line-driven disk winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Proga, D.; Stone, J. M.; Kallman, T. R.

    2001-01-01

    We present the results of axisymmetric time-dependent hydrodynamic calculations of line-driven winds from accretion disks in active galactic nuclei (AGN). We assume the disk is flat, Keplerian, geometrically thin, and optically thick, radiating according to the α-disk prescription. The central engine of the AGN is a source of both ionizing X-rays and wind-driving ultraviolet (UV) photons. To calculate the radiation force, we take into account radiation from the disk and the central engine. The gas temperature and ionization state in the wind are calculated self-consistently from the photoionization and heating rate of the central engine. We find that a disk accreting onto a 10 8 M ⊙ yr -1 black hole at the rate of 1.8 M ⊙ yr -1 can launch a wind at ˜ 10 16 cm from the central engine. The X-rays from the central object are significantly attenuated by the disk atmosphere so they cannot prevent the local disk radiation from pushing matter away from the disk. However in the supersonic portion of the flow high above the disk, the X-rays can overionize the gas and decrease the wind terminal velocity. For a reasonable X-ray opacity, e.g., κ X = 40 g -1 cm 2, the disk wind can be accelerated by the central UV radiation to velocities of up to 15000 km s -1 at a distance of ˜ 10 17 cm from the central engine. The covering factor of the disk wind is ˜ 0.2. The wind is unsteady and consists of an opaque, slow vertical flow near the disk that is bounded on the polar side by a high-velocity, stream. A typical column density through the fast stream is a few 10 23 cm -2 so the stream is optically thin to the UV radiation. This low column density is precisely why gas can be accelerated to high velocities. The fast stream contributes nearly 100% to the total wind mass loss rate of 0.5 M ⊙ yr -1.

  6. A statistical analysis of the broadband 0.1 to 3.5 keV spectral properties of X-ray-selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Cordova, F. A.

    1994-01-01

    We survey the broadband spectral properties of approximately 500 X-ray-selected active galactic nuclei (AGNs) observed with the Einstein Observatory. Included in this survey are the approximately 450 AGNs in the Extended Medium Sensitivity Survey (EMSS) of Gioia et al. (1990) and the approximately 50 AGNs in the Ultrasoft Survey of Cordova et al. (1992). We present a revised version of the latter sample, based on the post publication discovery of a software error in the Einstein Rev-1b processing. We find that the mean spectral index of the AGNs between 0.1 and 0.6 keV is softer, and the distribution of indices wider, than previous estimates based on analyses of the X-ray spectra of optically selected AGNs. A subset of these AGNs exhibit flux variabiulity, some on timescales as short as 0.05 days. A correlation between radio and hard X-ray luminosity is confirmed, but the data do not support a correlation between the radio and soft X-ray luminosities, or between radio loudness and soft X-ray spectral slope. Evidence for physically distinct soft and hard X-ray components is found, along with the possibility of a bias in previous optically selected samples toward selection of AGNs with flatter X-ray spectra.

  7. Finding binary active galactic nuclei candidates by the centroid shift in imaging surveys. II. Testing the method with SDSS J233635.75-010733.7

    NASA Astrophysics Data System (ADS)

    Liu, Yuan

    2016-07-01

    We have previously proposed selecting binary active galactic nuclei (AGNs) candidates using the centroid shift of the images that is induced by the non-synchronous variations of the two nuclei. In this paper, a known binary AGN (SDSS J233635.75-010733.7) is employed to verify the functioning of this method. Using 162 exposures in the R band of the Palomar Transient Factory (PTF), an excess of dispersion in the positional distribution of the binary AGN is detected, although the two nuclei cannot be resolved in the images of PTF. We also propose a new method to compare the position of the binary AGN in PTF g and R band and find that the difference is highly significant even with only 20 exposures. This new method is efficient for two nuclei with different spectral energy distributions such as type I + type II AGN or an off-set AGN. Large-scale surveys such as the Panoramic Survey Telescope and Rapid Response System, and the Large Synoptic Survey Telescope are expected to discover a large sample of binary AGN candidates with these methods.

  8. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    La Mura, G.; Berton, M.; Ciroi, S.; Cracco, V.; Di Mille, F.; Rafanelli, P.

    2014-10-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r⩽0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ⩾ 2000 km s-1) and narrow line (1000 km s-1 ⩽FWHMHβ ⩽ 2000 km s-1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.

  9. Investigating the Variability of Active Galactic Nuclei Using Combined Multi-quarter Kepler Data

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-01

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ~2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of -1.5 to -2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ~15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ~1%-2%, fluctuations in brightness.

  10. The standard model and some new directions. [for scientific theory of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Rees, M. J.

    1992-01-01

    A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.

  11. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  12. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  13. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Kai-Xing; Li, Yan-Rong; Bi, Shao-Lan; Wang, Jian-Min

    2016-06-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum. The nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion discs surrounding single black holes, such as the Keplerian rotational periods of 5100 Å photon-emission regions and self-gravity dominated regions and the precessing period of warped discs. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behaviour is associated with supermassive black hole binary systems in particular, we compare the separations (r {D}_{bullet }) against characteristic radii of broad-line regions (R_riptscriptstyle BLR) of the binaries and find r {D}_{bullet }≈ 0.05R_riptscriptstyle BLR. This interestingly implies that these binaries have only circumbinary BLRs.

  14. Long Term Optical and Infrared Reverberation Mapping of High and Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; Joner, Mike; Kenney, John; McGreer, Ian; Nordgren, Tyler; Schneider, Donald; Shen, Yue; Tao, Charling

    2016-08-01

    Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust have been limited to very low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle (~1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. By combining ground based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. We propose to continue this project to capitalize on the continuing optical motnoring from the ground and to increase the confidence in the detected lags. Additionally, the Call for Proposals asks for up to 1000 hours of observations in the Spitzer CVZ to accommodate battery charging needs. We propose to add to our quasar sample five lower luminosity Seyfert galaxies from the Pan-STARRS ground based optical survey that are in the Spitzer CVZ, which will increase the luminosity range of AGN we are studying and, combined with additional ground based observatories, provide for a continuous monitoring campaign lasting 2 years and thus provide the most detailed study of dust around AGN to date.

  15. THE INVARIANT TWIST OF MAGNETIC FIELDS IN THE RELATIVISTIC JETS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes E-mail: dimitris_christodoulou@uml.edu E-mail: gabuzda@physics.ucc.ie

    2009-09-10

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in active galactic nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1%. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.

  16. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    SciTech Connect

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ∼1%-2%, fluctuations in brightness.

  17. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    SciTech Connect

    Dong, X. Y.; De Robertis, M. M.

    2013-10-01

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks.

  18. THE BALDWIN EFFECT IN THE NARROW EMISSION LINES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang, Kai; Wang, Ting-Gui; Dong, Xiao-Bo; Gaskell, C. Martin E-mail: twang@ustc.edu.cn E-mail: martin.gaskell@uv.cl

    2013-01-01

    The anti-correlations between the equivalent widths of emission lines and the continuum luminosity in active galactic nuclei (AGNs), known as the Baldwin effect, are well established for broad lines, but are less well studied for narrow lines. In this paper we explore the Baldwin effect of narrow emission lines over a wide range of ionization levels and critical densities using a large sample of broad-line, radio-quiet AGNs taken from Sloan Digital Sky Survey Data Release 4. These type 1 AGNs span three orders of magnitude in continuum luminosity. We show that most narrow lines show a similar Baldwin effect slope of about -0.2, while the significant deviations of the slopes for [N II] {lambda}6583, [O II] {lambda}3727, [Ne V] {lambda}3425, and the narrow component of H{alpha} can be explained by the influence of metallicity, star formation contamination, and possibly by the difference in the shape of the UV-optical continuum. The slopes do not show any correlation with either the ionization potential or the critical density. We show that a combination of 50% variations in continuum near 5100 A and a lognormal distribution of observed luminosity can naturally reproduce a constant Baldwin effect slope of -0.2 for all narrow lines. The variations of the continuum could be due to variability, intrinsic anisotropic emission, or an inclination effect.

  19. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Kai-Xing; Li, Yan-Rong; Bi, Shao-Lan; Wang, Jian-Min

    2016-04-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum, the nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion disks surrounding single black holes, such as the Keplerian rotational periods of 5100 Å photon-emission regions and self-gravity dominated regions and the precessing period of warped disks. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behavior is associated with SMBHB systems in particular, we compare the separations (D_{bullet }) against characteristic radii of broad-line regions (RBLR) of the binaries and find D_{bullet }≈ 0.05R_{BLR}. This interestingly implies that these binaries have only circumbinary BLRs.

  20. Long-term variability of active galactic nuclei from the "Planck" catalog

    NASA Astrophysics Data System (ADS)

    Volvach, A. E.; Kardashev, N. S.; Larionov, M. G.; Volvach, L. N.

    2016-07-01

    A complete sample of 104 bright active galactic nuclei (AGNs) from the "Planck" catalog (early results) were observed at 36.8 GHz with the 22-m radio telescope of the Crimean Astrophysical Observatory (CrAO).Variability indices of the sources at this frequency were determined based on data from theWMAP space observatory, theMetsa¨ hovi RadioObservatory (Finland), and the CrimeanAstrophysical Observatory. New observational results confirm that the variability of these AGNs is stronger in the millimeter than at other radio wavelengths. The variability indices probably change as a result of the systematic decrease in the AGN flux densities in the transition to the infrared. Some radio sources demonstrate significant flux-density variations, including decreases, which sometimes cause them to fall out of the analysed sample. The change of the variability index in the millimeter is consistent with the suggestion that this variability is due to intrinsic processes in binary supermassive black holes at an evolutionary stage close to coalescence. All 104 of the sources studied are well known objects that are included in various radio catalogs and have flux densities exceeding 1 Jy at 36.8 GHz.

  1. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Du, Pu; Wang, Jian-Min; Hu, Chen; Ho, Luis C.; Li, Yan-Rong; Bai, Jin-Ming

    2016-02-01

    Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by {{ D }}{{H}β }={{FWHM}}/{σ }{{H}β }, the ratio of full width at half maximum to the dispersion of broad Hβ, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate (\\overset{\\quad \\cdot }{{M}}) or Eddington ratio ({L}{{bol}}/{L}{{Edd}}). At the same time, \\overset{\\quad \\cdot }{{M}} and {L}{{bol}}/{L}{{Edd}} correlate with {{ R }}{{Fe}}, the ratio of optical Fe ii to Hβ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad Hβ, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form {log}(\\overset{\\quad \\cdot }{{M}},{L}{{bol}}/{L}{{Edd}})=α +β {{ D }}{{H}β }+γ {{ R }}{{Fe}}, where α = (2.47, 0.31), β = -(1.59, 0.82), and γ = (1.34, 0.80). We refer to this as the fundamental plane of the BLR. We apply the plane to a sample of z < 0.8 quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.

  2. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  3. Reflections of Active Galactic Nucleus Outbursts in the Gaseous Atmosphere of M87

    NASA Astrophysics Data System (ADS)

    Forman, W.; Nulsen, P.; Heinz, S.; Owen, F.; Eilek, J.; Vikhlinin, A.; Markevitch, M.; Kraft, R.; Churazov, E.; Jones, C.

    2005-12-01

    We combined deep Chandra, ROSAT HRI, and XMM-Newton observations of M87 to study the impact of active galactic nucleus (AGN) outbursts on its gaseous atmosphere. Many X-ray features appear to be a direct result of repetitive AGN outbursts. In particular, the X-ray cavities around the jet and counterjet are likely due to the expansion of radio plasma, while rings of enhanced emission at 14 and 17 kpc are probably shock fronts associated with outbursts that began 1-2×107 yr ago. The effects of these shocks are also seen in brightenings within the prominent X-ray arms. On larger scales, ~50 kpc from the nucleus, depressions in the surface brightness may be remnants of earlier outbursts. As suggested for the Perseus Cluster by Fabian and his coauthors, our analysis of the energetics of the M87 outbursts argues that shocks may be the most significant channel for AGN energy input into the cooling-flow atmospheres of galaxies, groups, and clusters. For M87, the mean power driving the shock outburst, 2.4×1043 ergs s-1, is 3 times greater than the radiative losses from the entire cooling flow. Thus, even in the absence of other energy inputs, outbursts every 3×107 yr are sufficient to quench the flow.

  4. Low-mass Active Galactic Nuclei with Rapid X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Ho, Luis C.; Kim, Minjin

    2016-04-01

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad Hα emission in all the sources, allowing us to estimate robust virial BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median MBH = 1.2 × 106 M⊙ and median Lbol/LEdd = 0.44. The sample follows the MBH–σ* relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O ii] λ3727, [O iii] λ5007, and X-rays.

  5. He II EMISSION IN Lyalpha NEBULAE: ACTIVE GALACTIC NUCLEUS OR COOLING RADIATION?

    SciTech Connect

    Scarlata, C.; Colbert, J.; Teplitz, H. I.; Bridge, C.; Francis, P.; Palunas, P.; Siana, B.; Williger, G. M.; Woodgate, B.

    2009-12-01

    We present a study of an extended Lyalpha nebula located in a known overdensity at z approx 2.38. The data include multiwavelength photometry covering the rest-frame spectral range from 0.1 to 250 mum, and deep optical spectra of the sources associated with the extended emission. Two galaxies are associated with the Lyalpha nebula. One of them is a dust enshrouded active galactic nucleus (AGN), while the other is a powerful starburst, forming stars at approx>400 M{sub sun} yr{sup -1}. We detect the He II emission line at 1640 A in the spectrum of the obscured AGN, but detect no emission from other highly ionized metals (C IV or N V) as is expected from an AGN. One scenario that simultaneously reproduces the width of the detected emission lines, the lack of C IV emission, and the geometry of the emitting gas, is that the He II and the Lyalpha emission are the result of cooling gas that is being accreted on the dark matter halo of the two galaxies, Ly1 and Ly2. Given the complexity of the environment associated with our Lyalpha nebula it is possible that various mechanisms of excitation are at work simultaneously.

  6. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  7. Starbursts in Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2005-05-01

    Low Luminosity Active Galactic Nuclei (LLAGN), which comprise low-ionization nuclear emission-line regions (LINERs) and transition-type objects (TOs), represent the most common type of nuclear activity. Here, we search for spectroscopic signatures of starbursts and post-starbursts in LLAGN, and investigate their relationship to the ionization mechanism in LLAGN. The method used is based on the stellar population synthesis of the circumnuclear optical continuum of these galaxies. We have found that intermediate-age populations (108-109 yr) are very common in weak-[O I] LLAGN, but that very young stars (≤107 yr) contribute very little to the central optical continuum of these objects. However, ˜ 1 Gyr ago these nuclei harboured starbursts of size ˜ 100 pc and masses 107-108 M⊙. Meanwhile, most of the strong-[O I] LLAGN have predominantly old stellar populations.

  8. Reverberation mapping of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    1993-01-01

    The broad emission lines in the spectra of active galactic nuclei respond to variations in the luminosity of the central continuum source with a delay due to light-travel time effects within the emission-line region. It is therefore possible through the process of 'reverberation mapping' to determine the geometry and kinematics of the emission-line region by careful monitoring of the continuum variations and the resulting emission-line response. In this review, I will discuss progress in application of the reverberation mapping technique. I will describe the underlying assumptions and limitations of the method, discuss how the results obtained to date are changing our understanding of active nuclei, and outline several new questions that might be addressed through further reverberation mapping programs.

  9. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068

    SciTech Connect

    Yoast-Hull, Tova M.; Zweibel, Ellen G.; Gallagher III, J. S.; Everett, John E.

    2014-01-10

    The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in γ-rays by Fermi. Previously, we developed and tested a model for cosmic-ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nucleus (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming a constant cosmic-ray acceleration efficiency by supernova remnants with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and γ-ray spectra, and compare with published measurements. We find that our models easily fit the observed γ-ray spectrum for NGC 253 while constraining the cosmic-ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed γ-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of γ-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.

  10. The X-ray luminosity function of active galactic nuclei in the redshift interval z=3-5

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Aird, J.; Buchner, J.; Salvato, M.; Menzel, M.-L.; Brandt, W. N.; McGreer, I. D.; Dwelly, T.; Mountrichas, G.; Koki, C.; Georgantopoulos, I.; Hsu, L.-T.; Merloni, A.; Liu, Z.; Nandra, K.; Ross, N. P.

    2015-10-01

    We combine deep X-ray survey data from the Chandra observatory and the wide-area/shallow XMM-XXL field to estimate the active galactic nuclei (AGN) X-ray luminosity function in the redshift range z = 3-5. The sample consists of nearly 340 sources with either photometric (212) or spectroscopic (128) redshift in the above range. The combination of deep and shallow survey fields also provides a luminosity baseline of three orders of magnitude, LX(2-10 keV) ≈ 1043-1046 erg s- 1 at z > 3. We follow a Bayesian approach to determine the binned AGN space density and explore their evolution in a model-independent way. Our methodology properly accounts for Poisson errors in the determination of X-ray fluxes and uncertainties in photometric redshift estimates. We demonstrate that the latter is essential for unbiased measurement of space densities. We find that the AGN X-ray luminosity function evolves strongly between the redshift intervals z = 3-4 and z = 4-5. There is also suggestive evidence that the amplitude of this evolution is luminosity dependent. The space density of AGN with LX(2-10 keV) < 1045 erg s- 1 drops by a factor of 5 between the redshift intervals above, while the evolution of brighter AGN appears to be milder. Comparison of our X-ray luminosity function with that of ultraviolet (UV)/optical selected quasi-stellar objects at similar redshifts shows broad agreement at bright luminosities, LX(2-10 keV) > 1045 erg s- 1. At fainter luminosities X-ray surveys measure higher AGN space densities. The faint-end slope of UV/optical luminosity functions, however, is steeper than for X-ray selected AGN. This implies that the Type I AGN fraction increases with decreasing luminosity at z > 3, opposite to trends established at lower redshift. We also assess the significance of AGN in keeping the hydrogen ionized at high redshift. Our X-ray luminosity function yields ionizing photon rate densities that are insufficient to keep the Universe ionized at redshift z > 4. A

  11. Broad Band Properties of the BAT Selected AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard; Winter, Lisa; Tueller, jack

    2008-01-01

    We will present the x-ray spectral properties of approximately 150 Burst Alert Telescope (BAT) selected active galactic nuclei (AGN) focusing on the issues of spectral complexity, x-ray absorption and its distribution and that contribution of sources to the x-ray background. If time permits we will also present the nature of the host galaxies of the AGN and their relationship to merger candidates.

  12. A UV to mid-IR study of AGN selection

    SciTech Connect

    Chung, Sun Mi; Kochanek, Christopher S.; Assef, Roberto; Brown, Michael J. I.; Stern, Daniel; Jannuzi, Buell T.; Gonzalez, Anthony H.; Hickox, Ryan C.; Moustakas, John

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  13. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    SciTech Connect

    Diaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  14. Towards advanced study of Active Galactic Nuclei with visible light adaptive optics

    NASA Astrophysics Data System (ADS)

    Ammons, Stephen Mark

    It is thought that the immense energies associated with accretion of matter onto black holes in Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSOs) may "feedback," via intense photon flux or outward motion of gas, and affect certain properties of the host galaxy. In particular, AGN feedback may contribute to "quenching," or ceasing, of star formation by the expulsion or heating of cold gas, causing the host galaxy to evolve onto the red sequence (e.g., Di Matteo et al. 2005, Hopkins et al. 2006). I probe for the effects of feedback on the stellar populations of 60 X-ray-selected AGN hosts at a redshift of 1 in the Great Observatories Origins Deep Survey (GOODS) Southern field. Combining high spatial resolution optical imaging from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS), and high spatial resolution near infrared data from Keck Laser Guide Star Adaptive Optics (AO) and HST Near-Infrared Camera and Multi-Object Spectrograph (NICMOS), I test for the presence of young stars on sub-kiloparsec scales, independent of dust extinction. Testing for correlations between near-ultraviolet/optical ( NUV- R ) colors and gradients and X-ray parameters such as hardness ratio and luminosity reveals new information about the nature of AGN-driven feedback. These AGN hosts display color gradients in rest-frame NUV - R as far inward as ~400 pc, suggesting stellar mixtures with nonuniform age distributions. There is little (< 0.3 mags) difference between the NUV - R gradients of the obscured (hard in X-ray) sources and the unobscured (soft in X-ray) sources, suggesting that the unobscured sources are not increasingly quenched of star formation. I compare the NUV - R colors of spiral galaxies that host AGN to non-active spirals, finding similar color gradients, but redder colors. These observations support the notion that unobscured intermediate-luminosity AGN hosts do not appear to be increasingly quenched of star formation relative to obscured sources

  15. Elliptical accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Eracleous, Michael; Livio, Mario; Halpern, Jules P.; Storchi-Bergmann, Thaisa

    1995-01-01

    We present a calculation of the profiles of emission lines originating in a relativistic, eccentric disk, and show examples of the resulting model profiles. Our calculations are motivated by the fact that in about one-quarter of the double-peaked emission lines observed in radio-loud active galactic nuclei (and in the mildly active nucleus of NGC 1097), the red peak is stronger than the blue peak, which is contrary to the prediction of relativistic, circular disk models. Using the eccentric disk model we fit some of the observed profiles that cannot be fitted with a circular disk model. We propose two possible scenarios for the formation of an eccentric disk in an active galactic nucleus: (a) tidal perturbation of the disk around a supermassive black hole by a smaller binary companion, and (b) formation of an elliptical disk from the debris resulting from the tidal disruption of a star by the central black hole. In the former case we show that the eccentricity can be long-lived because of the presence of the binary companion. In the latter case, although the inner parts of the disk may circularize quickly, we estimate that the outer parts will maintain their eccentricity for times much longer than the local viscous time. We suggest that it may be possible to detect profile variability on much shorter timescales than those ranging from a decade to several centuries by comparing the evolution of the line profile with detailed model predictions. We argue that line-profile variability may also be the most promising discriminant among competing models for the origin of asymmetric, double-peaked emission lines.

  16. The origins of active galactic nuclei obscuration: the 'torus' as a dynamical, unstable driver of accretion

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Hayward, Christopher C.; Narayanan, Desika; Hernquist, Lars

    2012-02-01

    Recent multiscale simulations have made it possible to follow gas inflows responsible for high-Eddington ratio accretion on to massive black holes (BHs) from galactic scales to the BH accretion disc. When sufficient gas is driven towards a BH, gravitational instabilities generically form lopsided, eccentric discs that propagate inwards from larger radii. The lopsided stellar disc exerts a strong torque on the gas, driving inflows that fuel the growth of the BH. Here, we investigate the possibility that the same disc, in its gas-rich phase, is the putative 'torus' invoked to explain obscured active galactic nuclei (AGN) and the cosmic X-ray background. The disc is generically thick and has characteristic ˜1-10 pc sizes and masses resembling those required of the torus. Interestingly, the scale heights and obscured fractions of the predicted torii are substantial even in the absence of strong stellar feedback providing the vertical support. Rather, they can be maintained by strong bending modes and warps/twists excited by the inflow-generating instabilities. A number of other observed properties commonly attributed to 'feedback' processes may in fact be explained entirely by dynamical, gravitational effects: the lack of alignment between torus and host galaxy, correlations between local star formation rate (SFR) and turbulent gas velocities and the dependence of obscured fractions on AGN luminosity or SFR. We compare the predicted torus properties with observations of gas surface density profiles, kinematics, scale heights and SFR densities in AGN, and find that they are consistent in all cases. We argue that it is not possible to reproduce these observations and the observed column density distribution without a clumpy gas distribution, but allowing for simple clumping on small scales the predicted column density distribution is in good agreement with observations from NH˜ 1020-1027 cm-2. We examine how the NH distribution scales with galaxy and AGN properties

  17. A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Yi, Sukyoung K.; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Soto, Kurt

    2015-07-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z\\lt 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [O iii] λ 5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles.

  18. ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Rosario, D. J.; McGurk, R. C.; Max, C. E.; Shields, G. A.; Smith, K. L.; Ammons, S. M. E-mail: mcgurk@ucsc.edu E-mail: shieldsga@mail.utexas.edu E-mail: ammons@as.arizona.edu

    2011-09-20

    Active galaxies hosting two accreting and merging supermassive black holes (SMBHs)-dual active galactic nuclei (AGNs)-are predicted by many current and popular models of black-hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near-infrared laser guide star adaptive optics imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet quasi-stellar objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the 12 AGNs imaged, we find 6 with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec scales: {approx}0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGNs and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.

  19. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  20. The Near-infrared Coronal Line Spectrum of 54 nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Prieto, M. A.; Portilla, J. G.; Tejeiro, J. M.

    2011-12-01

    The relationship between the emission of coronal lines (CLs) and nuclear activity in 36 Type 1 and 18 Type 2 active galactic nuclei (AGNs) is analyzed, for the first time, based on near-infrared (0.8-2.4 μm) spectra. The eight CLs studied, of Si, S, Fe, Al, and Ca elements and corresponding to ionization potentials (IPs) in the range 125-450 eV, are detected (3σ) in 67% (36 AGNs) of the sample. Our analysis shows that the four most frequent CLs [Si VI] 1.963 μm, [S VIII] 0.9913 μm, [S IX] 1.252 μm, and [Si X] 1.430 μm display a narrow range in luminosity, with most lines located in the interval log L 39-40 erg s-1. We found that the non-detection is largely associated with either loss of spatial resolution or increasing object distance: CLs are essentially nuclear and easily lose contrast in the continuum stellar light for nearby sources or get diluted by the strong AGN continuum as the redshift increases. Yet, there are AGNs where the lack of coronal emission, i.e., lines with IP >= 100 eV, may be genuine. The absence of these lines reflects a non-standard AGN ionizing continuum, namely, a very hard spectrum lacking photons below a few Kev. The analysis of the line profiles points out a trend of increasing FWHM with increasing IPs up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IPs. We ascribe this effect to an increasing density environment as we approach the innermost regions of these AGNs, where densities above the critical density of the CLs with IPs larger than 300 eV are reached. This sets a strict range limit for the density in the boundary region between the narrow and the broad region of 108-109 cm-3. A relationship between the luminosity of the CLs and that of the soft and hard X-ray emission and the soft X-ray photon index is observed: the coronal emission becomes stronger with both increasing X-ray emission (soft and hard) and steeper X

  1. A CORRELATION BETWEEN THE HIGHEST ENERGY COSMIC RAYS AND NEARBY ACTIVE GALACTIC NUCLEI DETECTED BY FERMI

    SciTech Connect

    Nemmen, Rodrigo S.; Bonatto, Charles; Storchi-Bergmann, Thaisa

    2010-10-10

    We analyze the correlation of the positions of {gamma}-ray sources in the Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) and the First LAT Active Galactic Nuclei (AGNs) Catalog (1LAC) with the arrival directions of ultra-high-energy cosmic rays (UHECRs) observed with the Pierre Auger Observatory, in order to investigate the origin of UHECRs. We find that Galactic sources and blazars identified in the 1FGL are not significantly correlated with UHECRs, while the 1LAC sources display a mild correlation (2.6{sigma} level) on an {approx}2.{sup 0}4 angular scale. When selecting only the 1LAC AGNs closer than 200 Mpc, we find a strong association (5.4{sigma}) between their positions and the directions of UHECRs on an {approx}17{sup 0} angular scale; the probability of the observed configuration being due to an isotropic flux of cosmic rays is 5 x 10{sup -8}. There is also a 5{sigma} correlation with nearby 1LAC sources on a 6.{sup 0}5 scale. We identify seven '{gamma}-ray loud' AGNs which are associated with UHECRs within {approx}17{sup 0} and are likely candidates for the production sites of UHECRs: Centaurus A, NGC 4945, ESO 323-G77, 4C+04.77, NGC 1218, RX J0008.0+1450, and NGC 253. We interpret these results as providing additional support to the hypothesis of the origin of UHECRs in nearby extragalactic objects. As the angular scales of the correlations are large, we discuss the possibility that intervening magnetic fields might be considerably deflecting the trajectories of the particles on their way to Earth.

  2. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Carpenter, B.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Abrusco, R.; D'Ammando, F.; de Angelis, A.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Focke, W. B.; Franckowiak, A.; Fuhrmann, L.; Fukazawa, Y.; Furniss, A. K.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kataoka, J.; Kawano, T.; Krauss, F.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Leto, C.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Paggi, A.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romani, R. W.; Salvetti, D.; Schaal, M.; Schinzel, F. K.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Sokolovsky, K. V.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Winer, B. L.; Wood, K. S.; Zimmer, S.

    2015-09-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected between 100 MeV and 300 GeV with a Test Statistic greater than 25, between 2008 August 4 and 2012 July 31. The 3LAC includes 1591 AGNs located at high Galactic latitudes (| b| \\gt 10^\\circ ), a 71% increase over the second catalog based on 2 years of data. There are 28 duplicate associations, thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. Most of them (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their gamma-ray spectral properties, these sources are evenly split between flat-spectrum radio quasars (FSRQs) and BL Lacs. The most abundant detected BL Lacs are of the high-synchrotron-peaked (HSP) type. About 50% of the BL Lacs have no measured redshifts. A few new rare outliers (HSP-FSRQs and high-luminosity HSP BL Lacs) are reported. The general properties of the 3LAC sample confirm previous findings from earlier catalogs. The fraction of 3LAC blazars in the total population of blazars listed in BZCAT remains non-negligible even at the faint ends of the BZCAT-blazar radio, optical, and X-ray flux distributions, which hints that even the faintest known blazars could eventually shine in gamma-rays at LAT-detection levels. The energy-flux distributions of the different blazar populations are in good agreement with extrapolation from earlier catalogs.

  3. Optical Counterparts of Undetermined Type γ-Ray Active Galactic Nuclei with Blazar-Like Spectral Energy Distributions

    NASA Astrophysics Data System (ADS)

    La Mura, Giovanni; Chiaro, Graziano; Ciroi, Stefano; Rafanelli, Piero; Salvetti, David; Berton, Marco; Cracco, Valentina

    2015-12-01

    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 γ-ray sources above a 4 σ significance level. Although most of the extra-galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections (˜30%) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN γ-ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet, which, in the case of blazars, is oriented very close to our line-of-sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with γ-rays, providing a much better source localization potential, we focused our attention on a sample of γ-ray Blazar Candidates of Undetermined type (BCUs), starting a campaign of optical spectroscopic observations. The main aims of our investigation include a census of the AGN families that contribute to γ-ray emission and a study of their redshift distribution, with the subsequent implications on the intrinsic source power. We furthermore analyze which γ-ray properties can better constrain the nature of the source, thus helping in the study of objects not yet associated with a reliable low frequency counterpart. Here we report on the instruments and techniques used to identify the optical counterparts of γ-ray sources, we give an overview on the status of our work, and we discuss the implications of a large scale study of γ-ray emitting AGNs.

  4. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E.; Altieri, B.; Coia, D.; Charmandaris, V.; Daddi, E.; Le Floc'h, E.; Leiton, R.; Dasyra, K.; Dickinson, M.; Kartaltepe, J.; Hickox, R. C.; Ivison, R. J.; Magnelli, B.; Popesso, P.; Rosario, D.; and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  5. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  6. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  7. DIRECT MEASUREMENT OF THE X-RAY TIME-DELAY TRANSFER FUNCTION IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Legg, E.; Miller, L.; Turner, T. J.; Giustini, M.; Reeves, J. N.; Kraemer, S. B.

    2012-11-20

    The origin of the observed time lags, in nearby active galactic nuclei (AGNs), between hard and soft X-ray photons is investigated using new XMM-Newton data for the narrow-line Seyfert I galaxy Ark 564 and existing data for 1H 0707-495 and NGC 4051. These AGNs have highly variable X-ray light curves that contain frequent, high peaks of emission. The averaged light curve of the peaks is directly measured from the time series, and it is shown that (1) peaks occur at the same time, within the measurement uncertainties, at all X-ray energies, and (2) there exists a substantial tail of excess emission at hard X-ray energies, which is delayed with respect to the time of the main peak, and is particularly prominent in Ark 564. Observation (1) rules out that the observed lags are caused by Comptonization time delays and disfavors a simple model of propagating fluctuations on the accretion disk. Observation (2) is consistent with time lags caused by Compton-scattering reverberation from material a few thousand light-seconds from the primary X-ray source. The power spectral density and the frequency-dependent phase lags of the peak light curves are consistent with those of the full time series. There is evidence for non-stationarity in the Ark 564 time series in both the Fourier and peaks analyses. A sharp 'negative' lag (variations at hard photon energies lead soft photon energies) observed in Ark 564 appears to be generated by the shape of the hard-band transfer function and does not arise from soft-band reflection of X-rays. These results reinforce the evidence for the existence of X-ray reverberation in type I AGN, which requires that these AGNs are significantly affected by scattering from circumnuclear material a few tens or hundreds of gravitational radii in extent.

  8. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  9. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  10. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  11. DEEP SILICATE ABSORPTION FEATURES IN COMPTON-THICK ACTIVE GALACTIC NUCLEI PREDOMINANTLY ARISE DUE TO DUST IN THE HOST GALAXY

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Trichas, M.; Alexander, D. M.; Mullaney, J. R.; Bauer, F. E.; Hickox, R. C.

    2012-08-10

    We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona fide Compton-thick (N{sub H} > 1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) active galactic nuclei (AGNs) with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at {lambda} {approx} 9.7 {mu}m in archival low-resolution (R {approx} 57-127) Spitzer Infrared Spectrograph spectroscopy, and show that only a minority ( Almost-Equal-To 45%) of nearby Compton-thick AGNs have strong Si-absorption features (S{sub 9.7} = ln (f{sub int}/f{sub obs}) {approx}> 0.5) which would indicate significant dust attenuation. The majority ( Almost-Equal-To 60%) are star formation dominated (AGN:SB < 0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission lines are optically extinguished. Those Compton-thick AGNs hosted in low-inclination-angle galaxies exhibit a narrow range in Si-absorption (S{sub 9.7} {approx} 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies, dust lanes, galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.

  12. Polarization insights for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    Optical spectropolarimetry and broadband polarimetry in other wavebands has been a key to understanding many diverse aspects of AGN. In some cases polarization is due to synchrotron radiation, and in other cases it's due to scattering. Recognition of relativistically beamed optical synchrotron emission by polarization was vital for understanding blazars (BL Lacs and Optically Violently Variable quasars), both physically and geometrically. Radio polarimetry of quiescent AGN is equally important, again for both purposes. Scattering polarization was central to the Unified Model for Seyferts, Radio Galaxies and (high ionization) Ultraluminous Infrared Galaxies. It provides a periscope for viewing AGN from other directions. Finally, if we could understand its message, polarization would also provide major insights regarding the nature of the AGN "Featureless Continuum" and Broad (emission) Line Region. I point out that high ionization ULIRGs have all the exact right properties to the called Quasar 2s. Mid-IR observations generally don't penetrate to the nucleus, greatly reducing their ability to diagnose the energy source. In particular, LINER ULIRGs aren't necessarily starburst-dominated, as has been claimed.

  13. The Discovery of X-ray Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2013-01-01

    Back in 1974 the UHURU catalog (3U) had been published with many UHGLS - unidentified high galactic latitude sources. Identifications were hampered by the square degree sized error boxes (positional uncertainties). Could these explain the cosmic X-ray background? Could UHGLS be "X-ray galaxies"? Only three active galaxies (AGNs) had been found as X-ray sources: 3C273, Cen A and NGC 4151, while others had upper limits. What was the difference between X-ray and non-X-ray AGNs? It turned out that the slightly better positioning capability and slightly deeper sensitivity of the Ariel V Sky Survey Instrument (SSI), launched in October 1974, were just enough to show that the UHGLS were Seyfert galaxies. And I was lucky enough that I'd joined the Leicester X-ray group and had taken on the UHGLS for my PhD thesis, with Ken Pounds as my supervisor. With the SSI we made a catalog of high latitude sources, the "2A" catalog, including about a dozen known Seyfert galaxies (lowish luminosity nearby AGNs) and, with Mike Penston and Martin Ward, we went on to identify many of them with both newly discovered normal broad emission line AGNs and a few new "narrow emission line galaxies", or NELGs, as we called them. We are now convinced that it is summation of many obscured NELGs that produce the flat spectrum of the X-ray background, and we are still searching for them in Chandra deep surveys and at higher energies with NuSTAR. There was an obvious connection between the X-ray obscuration and the optical reddening, which must lie outside the region emitting the broad optical spectral lines. Andy Lawrence and I, following a clue from Bill Keel, put this together into what we now call the Unified Scheme for AGN structure. This idea of a flattened torus obscuring the inner regions of the AGN was so dramatically confirmed a few years later -- by Ski Antonucci and Joe Miller's discovery of polarized broad emission lines in NGC1068 -- that the precursor papers became irrelevant. But Ariel

  14. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. EMISSION-LINE DIAGNOSTICS

    SciTech Connect

    Weaver, K. A.; Melendez, M.; Mushotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth, E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-06-20

    We compare mid-infrared emission-line properties from high-resolution Spitzer spectra of a hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) active galactic nuclei (AGNs) detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission lines, [O IV] 25.89 {mu}m, [Ne II] 12.81 {mu}m, [Ne III] 15.56 {mu}m, and [Ne V] 14.32/24.32 {mu}m, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations; however, six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar-Green quasars, star-forming galaxies, and LINERs. We find that the BAT AGN sample falls into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGNs than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGNs represent the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGNs and star-forming galaxies.

  15. The NGC 3341 minor merger: a panchromatic view of the active galactic nucleus in a dwarf companion

    NASA Astrophysics Data System (ADS)

    Bianchi, Stefano; Piconcelli, Enrico; Pérez-Torres, Miguel Ángel; Fiore, Fabrizio; La Franca, Fabio; Mathur, Smita; Matt, Giorgio

    2013-11-01

    We present X-ray (Chandra), radio (Expanded Very Large Array and European VLBI Network) and archival optical data of the triple-merging system in NGC 3341. Our panchromatic analysis confirms the presence of a Seyfert 2 active galactic nucleus (AGN) in NGC 3341B, one of the secondary dwarf companions. On the other hand, the nucleus of the primary galaxy, consistent with a star-forming region of a few solar masses per year, and NGC 3341C are very unlikely to host an AGN. We therefore suggest that NGC 3341 is an exceptional example of an AGN triggered in the satellite galaxy of a minor-merging system. The existence of such a system can have important implications in the models of hierarchical growth of structures. Further observational and theoretical efforts on NGC 3341 and potentially similar sources are needed in order to understand the role of minor mergers on the onset of AGN activity, and in the evolution of massive galaxies.

  16. 1.75 h {sup -1} kpc SEPARATION DUAL ACTIVE GALACTIC NUCLEI AT z = 0.36 IN THE COSMOS FIELD

    SciTech Connect

    Comerford, Julia M.; Davis, Marc; Griffith, Roger L.; Stern, Daniel; Gerke, Brian F.; Newman, Jeffrey A.

    2009-09-01

    We present strong evidence for dual active galactic nuclei (AGNs) in the z = 0.36 galaxy COSMOS J100043.15+020637.2. COSMOS Hubble Space Telescope (HST) imaging of the galaxy shows a tidal tail, indicating that the galaxy recently underwent a merger, as well as two bright point sources near the galaxy's center. The luminosities of these sources (derived from the HST image) and their emission line flux ratios (derived from Keck/DEIMOS slit spectroscopy) suggest that both are AGNs and not star-forming regions or supernovae. Observations from zCOSMOS, the Sloan Digital Sky Survey, XMM-Newton, Spitzer, and the Very Large Array fortify the evidence for AGN activity. With HST imaging we measure a projected spatial offset between the two AGNs of 1.75 {+-} 0.03 h {sup -1} kpc, and with DEIMOS we measure a 150 {+-} 40 km s{sup -1} line-of-sight velocity offset between the two AGNs. Combined, these observations provide substantial evidence that COSMOS J100043.15+020637.2 is a merger-remnant galaxy with dual AGNs.

  17. Violent interaction between the active galactic nucleus and the hot gas in the core of the galaxy cluster Sérsic 159-03

    NASA Astrophysics Data System (ADS)

    Werner, N.; Sun, M.; Bagchi, J.; Allen, S. W.; Taylor, G. B.; Sirothia, S. K.; Simionescu, A.; Million, E. T.; Jacob, J.; Donahue, M.

    2011-08-01

    We present a multiwavelength study of the energetic interaction between the central active galactic nucleus (AGN), the intracluster medium (ICM) and the optical emission-line nebula in the galaxy cluster Sérsic 159-03. We use X-ray data from Chandra, high-resolution X-ray spectra and ultraviolet (UV) images from XMM-Newton, Hα images from the Southern Astrophysics Research Telescope, Hubble Space Telescope optical imaging, and Very Large Array and Giant Metrewave Radio Telescope radio data. The cluster centre displays signs of powerful AGN feedback, which has cleared the central regions (r < 7.5 kpc) of a dense, X-ray-emitting ICM. X-ray spectral maps reveal a high-pressure ring surrounding the central AGN at a radius of r˜ 15 kpc, indicating an AGN-driven weak shock. The cluster harbours a bright, 44 kpc long Hα+[N II] filament extending from the centre of the cD galaxy to the north. Along the filament, we see low-entropy, high-metallicity, cooling X-ray gas. The gas in the filament has most likely been uplifted by 'radio mode' AGN activity and subsequently stripped from the galaxy due to its relative southward motion. Because this X-ray gas has been removed from the direct influence of the AGN jets, part of it cools and forms stars as indicated by the observed dust lanes, molecular and ionized emission-line nebulae and the excess UV emission.

  18. A two-parameter model for the infrared/submillimeter/radio spectral energy distributions of galaxies and active galactic nuclei

    SciTech Connect

    Dale, Daniel A.; Helou, George; Magdis, Georgios E.; Armus, Lee; Díaz-Santos, Tanio; Shi, Yong

    2014-03-20

    A two-parameter semi-empirical model is presented for the spectral energy distributions of galaxies with contributions to their infrared-submillimeter-radio emission from both star formation and accretion disk-powered activity. This model builds upon a previous one-parameter family of models for star-forming galaxies, and includes an update to the mid-infrared emission using an average template obtained from Spitzer Space Telescope observations of normal galaxies. Star-forming/active galactic nucleus (AGN) diagnostics based on polycyclic aromatic hydrocarbon equivalent widths and broadband infrared colors are presented, and example mid-infrared AGN fractional contributions are estimated from model fits to the Great Observatories All-Sky LIRG Survey sample of nearby U/LIRGS and the Five mJy Unbiased Spitzer Extragalactic Survey sample of 24 μm selected sources at redshifts 0 ≲ z ≲ 4.

  19. The influence of local environment on the emergence of AGN activity in galaxies

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R.; Focardi, P.

    2011-11-01

    We have carried out a spectroscopic study to determine the frequency and nature of the nuclear activity found in compact groups. With this aim we chose two samples, one selected from the Hickson Compact Groups Catalogue and another one from the Updated Zwicky Catalogue of Compact Groups. With the analysis of 1056 galaxies we found that more than 71% present some kind of emission, most of them, being low luminosity AGN (L_{Hα}=10^{39} erg s^{-1}). From these we only detect broad components in 16 which means a remarkable deficiency of broad line AGNs as compared to narrow lineAGNs, despite the high frequency of active galaxies encountered ingeneral in these groups.

  20. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  1. Detection of a High Brightness Temperature Radio Core in the Active-galactic-nucleus-driven Molecular Outflow Candidate NGC 1266

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Alatalo, Katherine; Wrobel, J. M.; Young, Lisa M.; Morganti, Raffaella; Davis, Timothy A.; de Zeeuw, P. T.; Deustua, Susana; Bureau, Martin

    2013-12-01

    We present new high spatial resolution Karl G. Jansky Very Large Array (VLA) H I absorption and Very Long Baseline Array (VLBA) continuum observations of the active-galactic-nucleus-(AGN-)driven molecular outflow candidate NGC 1266. Although other well-known systems with molecular outflows may be driven by star formation (SF) in a central molecular disk, the molecular mass outflow rate of 13 M ⊙ yr-1 in NGC 1266 reported by Alatalo et al. exceeds SF rate estimates from a variety of tracers. This suggests that an additional energy source, such as an AGN, may play a significant role in powering the outflow. Our high spatial resolution H I absorption data reveal compact absorption against the radio continuum core co-located with the putative AGN, and the presence of a blueshifted spectral component re-affirms that gas is indeed flowing out of the system. Our VLBA observations at 1.65 GHz reveal one continuum source within the densest portion of the molecular gas, with a diameter d < 8 mas (1.2 pc), a radio power P rad = 1.48 × 1020 W Hz-1, and a brightness temperature T b > 1.5 × 107 K that is most consistent with an AGN origin. The radio continuum energetics implied by the compact VLBA source, as well as archival VLA continuum observations at lower spatial resolution, further support the possibility that the AGN in NGC 1266 could be driving the molecular outflow. These findings suggest that even low-level AGNs may be able to launch massive outflows in their host galaxies.

  2. Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.; Vignail, C.

    2012-01-01

    The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.

  3. IDENTIFICATION OF OUTFLOWS AND CANDIDATE DUAL ACTIVE GALACTIC NUCLEI IN SDSS QUASARS AT z = 0.8-1.6

    SciTech Connect

    Barrows, R. Scott; Lacy, Claud H. Sandberg; Kennefick, Julia; Kennefick, Daniel; Berrier, Joel C.; Comerford, Julia M.

    2013-06-01

    We present a sample of 131 quasars from the Sloan Digital Sky Survey at redshifts 0.8 < z < 1.6 with double peaks in either of the high-ionization narrow emission lines [Ne V] {lambda}3426 or [Ne III] {lambda}3869. These sources were selected with the intention of identifying high-redshift analogs of the z < 0.8 active galactic nuclei (AGNs) with double-peaked [O III] {lambda}5007 lines, which might represent AGN outflows or dual AGNs. Lines of high ionization potential are believed to originate in the inner, highly photoionized portion of the narrow line region, and we exploit this assumption to investigate the possible kinematic origins of the double-peaked lines. For comparison, we measure the [Ne V] {lambda}3426 and [Ne III] {lambda}3869 double peaks in low-redshift (z < 0.8) [O III]-selected sources. We find that [Ne V] {lambda}3426 and [Ne III] {lambda}3869 show a correlation between line splitting and line width similar to that of [O III] {lambda}5007 in other studies, and the velocity splittings are correlated with the quasar Eddington ratio. These results suggest an outflow origin for at least a subset of the double peaks, allowing us to study the high-ionization gas kinematics around quasars. However, we find that a non-negligible fraction of our sample show no evidence for an ionization stratification. For these sources, the outflow scenario is less compelling, leaving the dual AGN scenario as a viable possibility. Finally, we find that our sample shows an anti-correlation between the velocity-offset ratio and luminosity ratio of the components, which is a potential dynamical argument for the presence of dual AGNs. Therefore, this study serves as a first attempt at extending the selection of candidate dual AGNs to higher redshifts.

  4. Detection of a high brightness temperature radio core in the active-galactic-nucleus-driven molecular outflow candidate NGC 1266

    SciTech Connect

    Nyland, Kristina; Young, Lisa M.; Alatalo, Katherine; Wrobel, J. M.; Morganti, Raffaella; Davis, Timothy A.; De Zeeuw, P. T.; Deustua, Susana; Bureau, Martin

    2013-12-20

    We present new high spatial resolution Karl G. Jansky Very Large Array (VLA) H I absorption and Very Long Baseline Array (VLBA) continuum observations of the active-galactic-nucleus-(AGN-)driven molecular outflow candidate NGC 1266. Although other well-known systems with molecular outflows may be driven by star formation (SF) in a central molecular disk, the molecular mass outflow rate of 13 M {sub ☉} yr{sup –1} in NGC 1266 reported by Alatalo et al. exceeds SF rate estimates from a variety of tracers. This suggests that an additional energy source, such as an AGN, may play a significant role in powering the outflow. Our high spatial resolution H I absorption data reveal compact absorption against the radio continuum core co-located with the putative AGN, and the presence of a blueshifted spectral component re-affirms that gas is indeed flowing out of the system. Our VLBA observations at 1.65 GHz reveal one continuum source within the densest portion of the molecular gas, with a diameter d < 8 mas (1.2 pc), a radio power P {sub rad} = 1.48 × 10{sup 20} W Hz{sup –1}, and a brightness temperature T {sub b} > 1.5 × 10{sup 7} K that is most consistent with an AGN origin. The radio continuum energetics implied by the compact VLBA source, as well as archival VLA continuum observations at lower spatial resolution, further support the possibility that the AGN in NGC 1266 could be driving the molecular outflow. These findings suggest that even low-level AGNs may be able to launch massive outflows in their host galaxies.

  5. FE Features in Highly Obscured AGN

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.

    1999-01-01

    This final report is a summary of the combined study of ASCA (Advanced Satellite for Cosmology and Astrophysics) observations of NGC 7582 with archival ROSAT HRI (High Resolution Imager) and PSPC (Position Sensitive Proportional Counter) data. These observations were important in that they established that X-ray emission in NGC 7582, the most narrow-line of NLXGs (narrow-line X-ray galaxies), is associated with an AGN (Active Galactic Nuclei). Thus implying that all NLXGs are obscured AGN, as has been hypothesized to explain the X-ray spectral background paradox.

  6. On the electron-positron cascade in AGN central engines

    NASA Astrophysics Data System (ADS)

    Ford, Alex; Keenan, Brett; Medvedev, Mikhail

    2016-03-01

    Processes around spinning supermassive black holes (BH) in active galactic nuclei (AGN) are believed to determine how relativistic jets are launched and how the BH energy is extracted. The key ``ingredient'' is the origin of plasma in BH magnetospheres. In order to explore the process of the electron-positron plasma production, we developed a numerical code which models a one-dimensional (along a magnetic field line) dynamics of the cascade. Our simulations show that plasma production is controlled by the spectrum of the ambient photon field, the B-field strength, the BH spin and mass. Implications of our results to the Galactic Center and AGNs are discussed.

  7. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  8. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  9. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  10. The VLA Survey of Chandra Deep Field South. V. Evolution and Luminosity Functions of Sub-millijansky Radio Sources and the Issue of Radio Emission in Radio-quiet Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Miller, N.; Kellermann, K. I.; Mainieri, V.; Rosati, P.; Tozzi, P.

    2011-10-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ~5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P >~ 3 × 1024 W Hz-1) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ~30% of the sample and ~60% of all AGNs, and outnumbering radio-loud AGNs at <~ 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  11. Cold-gas outflows in typical low-redshift galaxies are driven by star formation, not AGN

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc; Kaviraj, Sugata; Nedelchev, Borislav; Tiffany, Joshua; Shabala, Stanislav S.; Deller, Adam T.; Middelberg, Enno

    2016-02-01

    Energetic feedback from active galactic nuclei (AGN) is an important ingredient for regulating the star formation history of galaxies in models of galaxy formation, which makes it important to study how AGN feedback actually occurs in practice. In order to catch AGNs in the act of quenching star formation, we have used the interstellar Na I λλ5890, 5895(NaD) absorption lines to look for cold-gas outflows in a sample of 456 nearby galaxies for which we could unambiguously ascertain the presence of radio-AGN activity, thanks to radio imaging at milli-arcsecond scales. While compact radio emission indicating a radio AGN was found in 103 galaxies (23 per cent of the sample), and 23 objects (5 per cent) exhibited NaD absorption-line kinematics suggestive of cold-gas outflows, not one object showed evidence of a radio AGN and of a cold-gas outflow simultaneously. Radio-AGN activity was found predominantly in early-type galaxies, while cold-gas outflows were mainly seen in spiral galaxies with central star formation or composite star formation/AGN activity. Optical AGNs also do not seem capable of driving galactic winds in our sample. Our work adds to a picture of the low-redshift Universe, where cold-gas outflows in massive galaxies are generally driven by star formation and where radio-AGN activity occurs most often in systems in which the gas reservoir has already been significantly depleted.

  12. Angular Clustering of Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Garcet, O.; Disseau, L.; Pacaud, F.; Pierre, M.; Gueguen, A.; Alloin, D.; Chiappetti, L.; Gosset, E.; Maccagni, D.; Surdej, J.; Valtchanov, I.

    2006-09-01

    We describe the properties of X-ray point-like sources detected over 4.2 sq. degs. of the largest contiguous survey with XMM-Newton to date (the XMM-LSS survey) to fluxes of F2-10 keV 8x10-15 erg/s/cm2 and F0.5-2 keV 2x10-15 erg/s/cm2 respectively. For 1200 sources in the soft band, we find a two-point angular correlation function (ACF) signal similar to previous work, but no correlation for 400 sources in the hard band. A sample of 200 faint sources with hard X-ray spectra does show a 2-3 sigma positive signal with a power-law normalization theta0>40 arcsec. We discuss implications, including the fact that a large correlation length for obscured AGN is inconsistent with simple AGN Unification based on orientation only.

  13. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  14. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wang Huiyuan; Wang Tinggui; Zhou Hongyan; Liu Bo; Dong Xiaobo; Wang Jianguo

    2011-09-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  15. The formation of the brightest cluster galaxies in cosmological simulations: the case for active galactic nucleus feedback

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben

    2012-03-01

    We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the centre of the halo. We compared two simulations; one incorporating only supernova feedback and a second that also includes prescriptions for black hole growth and the resulting active galactic nucleus (AGN) feedback from gas accretion. As previous work has shown, with supernova feedback alone we are unable to reproduce any of the observed properties of massive cluster ellipticals. The resulting BCG rotates quickly, has a high Sérsic index, a strong mass excess in the centre and a total central density profile falling more steeply than isothermal. Furthermore, it is far too efficient at converting most of the available baryons into stars which is strongly constrained by abundance matching. With a treatment of black hole dynamics and AGN feedback the BCG properties are in good agreement with data: they rotate slowly, have a cored surface density profile, a flat or rising velocity dispersion profile and a low stellar mass fraction. The AGN provides a new mechanism to create cores in luminous elliptical galaxies; the core expands due to the combined effects of heating from dynamical friction of sinking massive black holes and AGN feedback that ejects gaseous material from the central regions.

  16. A NEW SAMPLE OF BURIED ACTIVE GALACTIC NUCLEI SELECTED FROM THE SECOND XMM-NEWTON SERENDIPITOUS SOURCE CATALOGUE

    SciTech Connect

    Noguchi, Kazuhisa; Terashima, Yuichi; Awaki, Hisamitsu

    2009-11-01

    We present the results of X-ray spectral analysis of 22 active galactic nuclei (AGNs) with a small scattering fraction selected from the Second XMM-Newton Serendipitous Source Catalogue using hardness ratios. They are candidates of buried AGNs, since a scattering fraction, which is a fraction of scattered emission by the circumnuclear photoionized gas with respect to direct emission, can be used to estimate the size of the opening part of an obscuring torus. Their X-ray spectra are modeled by a combination of a power law with a photon index of 1.5-2 absorbed by a column density of approx10{sup 23-24} cm{sup -2}, an unabsorbed power law, narrow Gaussian lines, and some additional soft components. We find that scattering fractions of 20 among 22 objects are less than a typical value (approx3%) for Seyfert 2s observed so far. In particular, those of eight objects are smaller than 0.5%, which are in the range for buried AGNs found in recent hard X-ray surveys. Moreover, [O III] lambda5007 luminosities at given X-ray luminosities for some objects are smaller than those for Seyfert 2s previously known. This fact could be interpreted as a smaller size of optical narrow emission-line regions produced in the opening direction of the obscuring torus. These results indicate that they are strong candidates for the AGN buried in a very geometrically thick torus.

  17. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma-ray backgrounds

    SciTech Connect

    Letter, D.; Boldt, E.

    1982-09-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually have emerged from an earlier stage at zroughly-equal4 in which they are the thermal X-ray sources responsible for most of the comic X-ray background (CXB). We pursue the conjecture that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx.10/sup 8/ years these central black holes are spun up to a ''canonical'' Kerr equilibriuim state (a/M = 0.998) and shown how they can lead to spectral evolution involving nonthermal emission extending to gamma-rays, at the expense of reduced thermal disk radiation. A superposition of sources in the precursor stage can thereby account for that major portion of the CXB remaining after the contributions of usual AGN are considered, while a superposition of AGN sources at z<1 can account for the gamima-ray background. Extensive X-ray measurements carried out with the HEAO 1 and HEAO 2 missions, as well as gamma-ray and optical data, are shown to compare favorably with principal features of this model. Several further observational tests are suggested for establishing the validity of this scenario for AGN spectral evolution.

  18. NEW CLASS OF VERY HIGH ENERGY {gamma}-RAY EMITTERS: RADIO-DARK MINI SHELLS SURROUNDING ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Kino, Motoki; Kawakatu, Nozomu; Orienti, Monica

    2013-02-20

    We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobe and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.

  19. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  20. Quasi periodic oscillations in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alston, W.; Fabian, A.; Markevičiutė, J.; Parker, M.; Middleton, M.; Kara, E.

    2016-05-01

    Quasi-periodic oscillations (QPOs) are coherent peaks of variability power observed in the X-ray power spectra (PSDs) of stellar mass X-ray binaries (XRBs). A scale invariance of the accretion process implies they should be present in the active galactic nuclei. The first robust detection was a ∼ 1 h periodicity in the Seyfert galaxy RE J1034+396 from a ∼ 90 ks XMM-Newton observation; however, subsequent observations failed to detect the QPO in the 0.3-10.0 keV band. In this talk we present the recent detection of the ∼ 1 h periodicity in the 1.0-4.0 keV band of 4 further low-flux/spectrally-harder observations of RE J1034+396 (see Alston et al. 2014). We also present recent work on the discovery of a QPO in the Seyfert galaxy, MS 2254.9-3712, which again is only detected in energy bands associated with the primary power-law continuum emission (Alston et al. 2015). We conclude these features are most likely analogous to the high-frequency QPOs observed in XRBs. In both sources, we also see evidence for X-ray reverberation at the QPO frequency, where soft X-ray bands and Iron Kα emission lag the primary X-ray continuum. These time delays may provide another diagnostic for understanding the underlying QPO mechanism observed in accreting black holes.

  1. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  2. MOIRCS DEEP SURVEY. III. ACTIVE GALACTIC NUCLEI IN MASSIVE GALAXIES AT z = 2-4

    SciTech Connect

    Yamada, T.; Kajisawa, M.; Akiyama, M.; Ichikawa, T.; Tokoku, C.; Yoshikawa, T.; Konishi, M.; Nishimura, T.; Omata, K.; Suzuki, R.; Tanaka, I.; Uchimoto, Y. K.

    2009-07-10

    We investigate the X-ray properties of the K-band-selected galaxies at redshift 2 < z < 4 by using our deep near-infrared images obtained in the Multi-Object Infrared Camera and Spectrograph Deep Survey project and the published Chandra X-ray source catalog. Sixty-one X-ray sources with the 2-10 keV luminosity L{sub X} = 10{sup 42}-10{sup 44} erg s{sup -1} are identified with the K-selected galaxies and we found that they are exclusively (90%) associated with the massive objects with a stellar mass larger than 10{sup 10.5} M{sub sun}. Our results are consistent with the idea that the M {sub BH}/M{sub str} ratio of the galaxies at z = 2-4 is similar to the present-day value. On the other hand, the active galactic nucleus (AGN) detection rate among the very massive galaxies with a stellar mass larger than 10{sup 11} M{sub sun} is high, 33% (26/78). They are active objects in the sense that the black hole mass accretion rate is {approx}1%-50% of the Eddington limit if they indeed have similar M {sub BH}/M {sub str} ratio with those observed in the local universe. The active duration in the AGN duty cycle of the high-redshift massive galaxies seems large.

  3. Intermediate inclinations of type 2 Coronal-Line Forest AGN

    NASA Astrophysics Data System (ADS)

    Rose, Marvin; Elvis, Martin; Crenshaw, Michael; Glidden, Ana

    2015-07-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe VII], [Fe X] and [Ne V]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6-22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5-30 μm colours become bluer. We show that the [W2-W4] colours for the CLiF AGN (<[W2-W4]> = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (<[W2-W4]> = 5.22 ± 0.01) and type 2 AGN (<[W2-W4]> = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.

  4. PRIMUS: The Relationship between Star Formation and AGN Accretion

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Aird, James; Coil, Alison L.; Moustakas, John; Mendez, Alexander J.; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun

    2015-06-01

    We study the evidence for a connection between active galactic nuclei (AGNs) fueling and star formation by investigating the relationship between the X-ray luminosities of AGNs and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGNs with {10}41\\lt {L}X\\lt {10}44 erg s-1 at 0.2\\lt z\\lt 1.2 in the PRIMUS redshift survey. We find AGNs in galaxies with a wide range of SFR at a given LX. We do not find a significant correlation between SFR and the observed instantaneous LX for star-forming AGN host galaxies. However, there is a weak but significant correlation between the mean LX and SFR of detected AGNs in star-forming galaxies, which likely reflects that LX varies on shorter timescales than SFR. We find no correlation between stellar mass and LX within the AGN population. Within both populations of star-forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star-forming galaxy ˜2-3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGNs, but AGNs are often hosted by quiescent galaxies.

  5. The host galaxies of X-ray selected active galactic nuclei to z = 2.5: Structure, star formation, and their relationships from CANDELS and Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; Alexander, D. M.; Bauer, F. E.; Bell, E. F.; Berta, S.; Brandt, W. N.; Conselice, C. J.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Genzel, R.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Lotz, J. M.; Magnelli, B.; Maiolino, R.; Mozena, M.; Mullaney, J. R.; Papovich, C. J.; Popesso, P.; Tacconi, L. J.; Trump, J. R.; Avadhuta, S.; Bassett, R.; Bell, A.; Bernyk, M.; Bournaud, F.; Cassata, P.; Cheung, E.; Croton, D.; Donley, J.; DeGroot, L.; Guedes, J.; Hathi, N.; Herrington, J.; Hilton, M.; Lai, K.; Lani, C.; Martig, M.; McGrath, E.; Mutch, S.; Mortlock, A.; McPartland, C.; O'Leary, E.; Peth, M.; Pillepich, A.; Poole, G.; Snyder, D.; Straughn, A.; Telford, O.; Tonini, C.; Wandro, P.

    2015-01-01

    We study the relationship between the structure and star formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z ~ 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z ~ 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise from a more pronounced bulge in AGN hosts or extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favor one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z> 1.5. At z< 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift, towards a minor role for mergers and interactions at z> 1.5. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  6. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES

    SciTech Connect

    Liu, Xin; Civano, Francesca; Shen, Yue; Green, Paul; Greene, Jenny E.; Strauss, Michael A.

    2013-01-10

    Kiloparsec-scale binary active galactic nuclei (AGNs) signal active supermassive black hole (SMBH) pairs in merging galaxies. Despite their significance, unambiguously confirmed cases remain scarce and most have been discovered serendipitously. In a previous systematic search, we optically identified four kpc-scale binary AGNs from candidates selected with double-peaked narrow emission lines at z = 0.1-0.2. Here, we present Chandra and Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging of these four systems. We critically examine and confirm the binary-AGN scenario for two of the four targets, by combining high angular resolution X-ray imaging spectroscopy with Chandra ACIS-S, better nuclear position constraints from WFC3 F105W imaging, and direct starburst estimates from WFC3 F336W imaging; for the other two targets, the existing data are still consistent with the binary-AGN scenario, but we cannot rule out the possibility of only one AGN ionizing gas in both merging galaxies. We find tentative evidence for a systematically smaller X-ray-to-[O III] luminosity ratio and/or higher Compton-thick fraction in optically selected kpc-scale binary AGNs than in single AGNs, possibly caused by a higher nuclear gas column due to mergers and/or a viewing angle bias related to the double-peak narrow-line selection. While our result lends some further support to the general approach of optically identifying kpc-scale binary AGNs, it also highlights the challenge and ambiguity of X-ray confirmation.

  7. An Atlas of Warm Active Galactic Nuclei and Starbursts from the IRAS Deep Fields

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Irby, Bryan K.; May, Alana; Miley, George K.; Golombek, Daniel; de Grijp, M. H. K.; Gallimore, Jack F.

    2005-06-01

    We present a set of 180 active galactic nucleus (AGN) candidates based on color selection from the IRAS slow-scan deep observations, with color criteria broadened from the initial Point Source Catalog samples so as to include similar objects with redshifts up to z=1 and allowing for two-band detections. Spectroscopic identifications have been obtained for 80 (44%); some additional identifications are secure based on radio detections or optical morphology, although yet unobserved spectroscopically. These spectroscopic identifications include 13 type 1 Seyfert galaxies, 17 type 2 Seyferts, 29 starburst galaxies, 7 LINER systems, and 13 emission-line galaxies so heavily reddened as to remain of ambiguous classification. The optical magnitudes range from R=12.0 to 20.5; the counts suggest that incompleteness is important fainter than R=15.5. Redshifts extend to z=0.51, with a significant part of the sample at z>0.2. Even with the relaxed color criteria, this sample includes slightly more AGNs than star-forming systems among those where the spectra contain enough diagnostic feature to make the distinction. The active nuclei include several broad-line objects with strong Fe II emission, and composite objects with the absorption-line signatures of fading starbursts. These AGNs with warm far-IR colors have little overlap with the ``red AGNs'' identified with 2MASS; only a single Seyfert 1 was detected by 2MASS with J-K>2. Some reliable IRAS detections have either very faint optical counterparts or only absorption-line galaxies, potentially being deeply obscured AGNs. The IRAS detections include a newly identified symbiotic star, and several possible examples of the ``Vega phenomenon,'' including dwarfs as cool as type K. Appendices detail these candidate stars, and the optical-identification content of a particularly deep set of high-latitude IRAS scans (probing the limits of optical identification from IRAS data alone). Based on observations from the European Southern

  8. Simulations of cosmic-ray feedback by active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sijacki, Debora; Pfrommer, Christoph; Springel, Volker; Enßlin, Torsten A.

    2008-07-01

    Feedback processes by active galactic nuclei (AGN) appear to be a key for understanding the nature of the very X-ray luminous cool cores found in many clusters of galaxies. We investigate a numerical model for AGN feedback where for the first time a relativistic particle population in AGN-inflated bubbles is followed within a full cosmological context. In our high-resolution simulations of galaxy cluster formation, we assume that black hole accretion is accompanied by energy feedback that occurs in two different modes, depending on the accretion rate itself. At high accretion rates, a small fraction of the radiated energy is coupled thermally to the gas surrounding the quasar, while in a low-accretion state, mechanically efficient feedback in the form of hot, buoyant bubbles that are inflated by radio activity is considered. Unlike previous work, we inject a non-thermal particle population of relativistic protons into the AGN bubbles, instead of adopting a purely thermal heating. We then follow the subsequent evolution of the cosmic-ray (CR) plasma inside the bubbles, considering both its hydrodynamical interactions and dissipation processes relevant to the CR population. This permits us to analyse the impact of CR bubbles on the surrounding intracluster medium, and in particular, how this contrasts with the purely thermal case. Due to the different buoyancy of relativistic plasma and the comparatively long CR dissipation time-scale, we find substantial changes in the evolution of clusters as a result of CR feedback. In particular, the non-thermal population can provide significant pressure support in central cluster regions at low thermal temperatures, providing a natural explanation for the decreasing temperature profiles found in cool core clusters. At the same time, the morphologies of the bubbles and of the induced X-ray cavities show a striking similarity to observational findings. AGN feedback with CRs also proves efficient in regulating cluster cooling

  9. The X-ray Zurich environmental study (X-zens). I. Chandra and XMM-Newton observations of active galactic nuclei in galaxies in nearby groups

    SciTech Connect

    Silverman, J. D.; Miniati, F.; Carollo, C. M.; Cibinel, A.; Lilly, S. J.; Schawinski, K.; Finoguenov, A.

    2014-01-01

    We describe X-ray observations with Chandra and XMM-Newton of 18 M {sub group} ∼ 1-6 × 10{sup 13} M {sub ☉}, z ∼ 0.05 galaxy groups from the Zurich ENvironmental Study. The X-ray data aim at establishing the frequency and properties, unaffected by host galaxy dilution and obscuration, of active galactic nuclei (AGNs) in central and satellite galaxies, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of the 177 galaxies, down to a sensitivity level of f {sub 0.5} {sub –} {sub 8} {sub keV} ∼ 5 × 10{sup –15} erg cm{sup –2} s{sup –1}, corresponding to a limiting luminosity of L {sub 0.5} {sub –} {sub 8} {sub keV} ∼ 3 × 10{sup 40} erg s{sup –1}. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L {sub Edd} ≳ 10{sup –4}), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift and compare the structural and morphological properties between AGN-active and non-active galaxies. At galaxy mass scales <10{sup 11} M {sub ☉}, central galaxies appear to be a factor of ∼4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to be hosted by massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner parts of group halos, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data indicate that the rate of decline with redshift of AGN activity in galaxy groups matches that of the global AGN population, indicating that either AGN activity occurs preferentially in group halos or that the evolution rate is independent of halo mass.

  10. POLYCYCLIC AROMATIC HYDROCARBONS IN GALAXIES AT z approx 0.1: THE EFFECT OF STAR FORMATION AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, S.; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2009-11-01

    We present the analysis of the polycyclic aromatic hydrocarbon (PAH) spectra of a sample of 92 typical star-forming galaxies at 0.03 < z < 0.2 observed with the Spitzer intensified Reticon spectrograph (IRS). We compare the relative strengths of PAH emission features with Sloan Digital Sky Survey optical diagnostics to probe the relationship between PAH grain properties and star formation and active galactic nuclei (AGNs) activity. Short-to-long wavelength PAH ratios, and in particular the 7.7 mum-to-11.3 mum feature ratio, are strongly correlated with the star formation diagnostics D{sub n} (4000) and Halpha equivalent width, increasing with younger stellar populations. This ratio also shows a significant difference between active and non-active galaxies, with the active galaxies exhibiting weaker 7.7 mum emission. A hard radiation field as measured by [O{sub III}]/Hbeta and [Ne{sub III}]{sub 15.6m}u{sub m}/[Ne{sub II}]{sub 12.8m}u{sub m} effects PAH ratios differently depending on whether this field results from starburst activity or an AGN. Our results are consistent with a picture in which larger PAH molecules grow more efficiently in richer media and in which smaller PAH molecules are preferentially destroyed by the AGN.

  11. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  12. Detailed Analysis of Starburst and AGN Activity in Blue E/S0 Galaxies in RESOLVE

    NASA Astrophysics Data System (ADS)

    Bittner, Ashley; Snyder, Elaine M.; Kannappan, Sheila; Norman, Dara J.; Norris, Mark A.; Moffett, Amanda J.; Hoversten, Erik A.; Stark, David; RESOLVE Team

    2016-01-01

    We identify a population of ~120 blue E/S0 galaxies among the ~1350 galaxies that are targeted for spectroscopy and have measured morphologies in the highly complete REsolved Spectroscopy Of a Local Volume (RESOLVE) survey. Blue E/S0s are identified as being early type objects morphologically classified between E and S0/a that fall on the blue sequence. Most (~85%) of our blue E/S0s have stellar masses <10^10 M_sun. Using pPXF, we have measured the stellar velocity dispersions (sigma values) from high resolution 485 - 550 nm spectroscopy for ~15% of the blue E/S0 sample. Using three variations of the M_BH -- sigma relation, this kinematic subsample is estimated to typically host central black holes within the range log M_BH = 4-6 M_sun. Following up on previous suggestions of nuclear activity in the blue E/S0 population, we investigate nuclear starburst and/or AGN activity occurring within the full sample. Preliminary results from cross-checking known AGN catalogs with the blue E/S0 sample have revealed nuclear activity in ~20 of these galaxies based on heterogeneous criteria (BPT line ratio analysis, spectral line broadening, etc.), some of which may not entirely distinguish starburst from AGN activity. In an attempt to break the degeneracy between AGN and starburst activity, we perform detailed spectral analysis for a few of the galaxies with kinematic data. We also consider the viability of alternate AGN detection methods based on L_Edd estimates calculated from the M_BH estimates. This research has been supported by the National Science Foundation through the CAP REU Program (ACI-1156614) and the RESOLVE Survey (AST-0955368) as well as the National Space Grant College and Fellowship Program and the NC Space Grant Consortium.

  13. The COSMOS Active Galactic Nucleus Spectroscopic Survey. I. XMM-Newton Counterparts

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, Chris D.; Elvis, Martin; McCarthy, Patrick J.; Huchra, John P.; Brusa, Marcella; Salvato, Mara; Capak, Peter; Cappelluti, Nico; Civano, Francesca; Comastri, Andrea; Gabor, Jared; Hao, Heng; Hasinger, Gunther; Jahnke, Knud; Kelly, Brandon C.; Lilly, Simon J.; Schinnerer, Eva; Scoville, Nick Z.; Smolčić, Vernesa

    2009-05-01

    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg2 Cosmic Evolution Survey field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the Inamori Magellan Areal Camera and Spectrograph instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f 0.5-10 keV > 8 × 10-16 erg cm-2 s-1 and i + AB < 22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to i + AB < 23. The corrected sample includes a 57% broad emission line (Type 1, unobscured) active galactic nucleus (AGN) at 0.13 < z < 4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07 < z < 1.29, and 18% absorption line (host-dominated, obscured) AGN at 0 < z < 1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical fluxes include nearly all X-ray AGNs (defined by L 0.5-10 keV > 3 × 1042 erg s-1) to z < 1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured-to-unobscured AGN ratio at z < 1 increases with redshift and decreases with luminosity. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the Magellan Telescope, which is operated by the Carnegie Observatories; and the MMT, operated by the MMT Observatory, a joint venture of the

  14. Active galactic nucleus X-ray variability in the XMM-COSMOS survey

    SciTech Connect

    Lanzuisi, G.; Ponti, G.; Salvato, M.; Brusa, M.; Nandra, P. K.; Merloni, A.; Rosario, D.; Hasinger, G.; Sanders, D.; Cappelluti, N.; Comastri, A.; Gilli, R.; Bongiorno, A.; Lusso, E.; Steinhardt, C.; Silverman, J.; Schramm, M.; Trump, J.; and others

    2014-02-01

    We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measure it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.

  15. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  16. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric; Mullaney, James; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Salmi, Fadia; Dekel, Avishai; Dickinson, Mark

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emission line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of

  17. Effects of Shocks on Emission from Central Engines of Active Galactic Nuclei. I

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Caditz, D.; Tsuruta, S.

    1996-01-01

    In this paper we show that perturbations of the accretion flow within the central engines of some active galactic nuclei (AGNS) are likely to form shock waves in the accreting plasma. Such shocks, which may be either collisional or collisionless, can contribute to the observed high-energy temporal and spectral variability. Our rationale is the following: Observations show that the continuum emission probably originates in an optically thin, hot plasma in the AGN central engine. The flux and spectrum from this hot plasma varies significantly over light crossing timescales. Several authors have suggested that macroscopic perturbations contained within this plasma are the sources of this variability. In order to produce the observed emission the perturbations must be radiatively coupled with the optically thin hot matter and must also move with high velocities. We suggest that shocks, which can be very effective in randomizing the bulk motion of the perturbations, are responsible for this coupling. Shocks should form in the central engine, because the temperatures and magnetic fields are probably reduced below their virial values by radiative dissipation. Perturbations moving at Keplerian speeds, or strong non-linear excitations, result in supersonic and super-Alfvenic velocities leading to shock waves within the hot plasma. We show that even a perturbation smaller than the emitting region can form a shock that significantly modifies the continuum emission in an AGN, and that the spectral and temporal variability from such a shock generally resembles those of radio-quiet AGNS. As an example, the shock inducing perturbation in our model is a small main-sequence star, the capturing and eventual accretion of which are known to be a plausible process. We argue that shocks in the central engine may also provide a natural triggering mechanism for the "cold" component of Guilbert & Rees two-phase medium and an efficient mecha- nism for angular momentum transfer. Current and

  18. Search for correlations between HiRes stereo events and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amman, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Benzvi, S. Y.; Bergman, D. R.; Blake, S. A.; Boyer, J. H.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, N.; Schnetzer, S. R.; Scott, L. M.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration

    2008-11-01

    We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and active galactic nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for sources visible to their southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found occurred with a chance probability of 24%.

  19. Time-dependent behavior of active galactic nuclei with pair production

    NASA Technical Reports Server (NTRS)

    Li, H.; Dermer, C. D.

    1994-01-01

    We study the properties of coupled partial differential equations describing the time-dependent behavior of the photon and electron occupation numbers for conditions likely to be found near active galactic nuclei (AGN). The processes governing electron acceleration are modeled by a stochastic accelerator, and we include acceleration by Alfvenic and whistler turbulence. The acceleration of electrons is limited by Compton and synchrotron losses, and the number density of electrons depends on pair production and annihilation processes. We also treat particle escape from the system. We examine the steady, (possibly) oscillatory, and unstable solutions that arise for various choices of parameters. We examine instabilities related to pair production and trapping and consider the formation of pair jets.

  20. COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/XMM-NEWTON DEEP SURVEY

    SciTech Connect

    Hiroi, Kazuo; Ueda, Yoshihiro; Akiyama, Masayuki; Watson, Mike G.

    2012-10-10

    We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts (3 < z < 5) in the Subaru/XMM-Newton Deep Survey field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at z > 3 with intrinsic (de-absorbed and rest-frame 2-10 keV) luminosities of L{sub X} = 10{sup 44-45} erg s{sup -1} detected in the 0.5-2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the 1/V{sub max} method, we confirm that the comoving space density of luminous AGNs decreases with redshift above z > 3. When combined with the Chandra-COSMOS result of Civano et al., the density decline of AGNs with L{sub X} = 10{sup 44-45} erg s{sup -1} is well represented by a power law of (1 + z){sup -6.2{+-}0.9}. We also determine the fraction of X-ray obscured AGNs with N{sub H} > 10{sup 22} cm{sup -2} in the Compton-thin population to be 0.54{sup +0.17}{sub -0.19}, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59 {+-} 0.09. Comparing our result with that obtained in the local universe, we conclude that the obscured fraction of luminous AGNs increases significantly from z = 0 to z > 3 by a factor of 2.5 {+-} 1.1.

  1. RADIO STACKING REVEALS EVIDENCE FOR STAR FORMATION IN THE HOST GALAXIES OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEI AT z < 1

    SciTech Connect

    Pierce, C. M.; Ballantyne, D. R.; Ivison, R. J.

    2011-11-20

    Nuclear starbursts may contribute to the obscuration of active galactic nuclei (AGNs). The predicted star formation rates (SFRs) are modest, and, for the obscured AGNs that form the X-ray background at z < 1, the associated faint radio emission lies just beyond the sensitivity limits of the deepest surveys. Here, we search for this level of star formation by studying a sample of 359 X-ray-selected AGNs at z < 1 from the Cosmic Evolution Survey field that are not detected by current radio surveys. The AGNs are separated into bins based on redshift, X-ray luminosity, obscuration, and mid-infrared characteristics. An estimate of the AGN contribution to the radio flux density is subtracted from each radio image, and the images are then stacked to uncover any residual faint radio flux density. All of the bins containing 24 {mu}m detected AGNs are detected with a signal-to-noise >3{sigma} in the stacked radio images. In contrast, AGNs not detected at 24 {mu}m are not detected in the resulting stacked radio images. This result provides strong evidence that the stacked radio signals are likely associated with star formation. The estimated SFRs derived from the radio stacks range from 3 M{sub Sun} yr{sup -1} to 29 M{sub Sun} yr{sup -1}. Although it is not possible to associate the radio emission with a specific region of the host galaxies, these results are consistent with the predictions of nuclear starburst disks in AGN host galaxies.

  2. INFRARED AND HARD X-RAY DIAGNOSTICS OF ACTIVE GALACTIC NUCLEUS IDENTIFICATION FROM THE SWIFT/BAT AND AKARI ALL-SKY SURVEYS

    SciTech Connect

    Matsuta, K.; Dotani, T.; Yamamura, I.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Stawarz, L.; Ueda, Y.; Ichikawa, K.; Terashima, Y.; Oyabu, S.

    2012-07-10

    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10 keV) properties for local active galactic nuclei (AGNs). The Swift Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray-detected AGNs. Cross-correlating the 22 month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGNs detected by the AKARI instruments. We find a strong correlation for most AGNs between the infrared (9, 18, and 90 {mu}m) and hard X-ray (14-195 keV) luminosities, and quantify the correlation for various subsamples of AGNs. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1 galaxies, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick (CT) sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-ray luminosities. We propose two photometric diagnostics for source classification: one is an X-ray luminosity versus infrared color diagram, in which type 1 radio-loud AGNs are well isolated from the others in the sample. The other uses the X-ray versus infrared color as a useful redshift-independent indicator for identifying CT AGNs. Importantly, CT AGNs and starburst galaxies in composite systems can also be differentiated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new and upcoming surveys such as WISE and NuSTAR.

  3. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  4. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang

    2016-08-01

    The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, i.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the fundamental plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black-hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when L_X⪆ 1.5 × 10^{42} erg s^{-1}. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.

  5. What is the Nature of Accretion in Active Galactic Nuclei?

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    The purpose of this grant was to support theoretical research on the nature of accretion in active galactic nuclei. In the brief time of the award, four papers that appeared in refereed journals were written, as well as two invited reviews in conference proceedings. These papers significantly advanced our understanding of the structure of the most important parts of bright accretion disks around accreting black holes, such as active galactic nuclei.

  6. Research on the Nature of Accretion in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1999-01-01

    he purpose of this grant was to support theoretical research on the nature of accretion in active galactic nuclei. In the brief time of the award (one year), four papers that appeared in refereed journals were written, as well as two invited reviews in conference proceedings These papers significantly advanced our understanding of the structure of the most important parts of bright accretion disks around accreting black holes, such as active galactic nuclei.

  7. Non-thermal AGN models

    SciTech Connect

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  8. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    SciTech Connect

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-08-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution {sigma}{sub torus}, and the average number of clouds along radial equatorial rays N{sub 0}. We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P{sub esc} {approx} 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L{sub bol}(AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L{sub bol}(AGN) {approx} 10{sup 43}-10{sup 47} erg s{sup -1}, we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f{sub 2} {approx} 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f{sub 2} {approx} 0.9-1 at {approx}10{sup 43}-10{sup 44} erg s{sup -1}). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger {sigma}{sub torus}) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to

  9. A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE GALACTIC NUCLEUS ABUNDANCE

    SciTech Connect

    Shi, Yong; Helou, George; Armus, Lee

    2013-11-01

    We estimate the abundance of Compton-thick (CT) active galactic nuclei (AGNs) based on our joint model of X-ray and infrared backgrounds. At L{sub rest2-10{sub keV}} > 10{sup 42} erg s{sup –1}, the CT AGN density predicted by our model is a few ×10{sup –4} Mpc{sup –3} from z = 0 up to z = 3. CT AGNs with higher luminosity cuts (>10{sup 43}, 10{sup 44}, and 10{sup 45} erg s{sup –1}) peak at higher redshift and show a rapid increase in number density from z = 0 to z ∼ 2-3. The CT AGN to all AGN ratio appears to be low (2%-5%) at f{sub 2-10{sub keV}} > 10{sup –15} erg s{sup –1} cm{sup –2} but rises rapidly toward fainter flux levels. The CT AGNs account for ∼38% of the total accreted supermassive black hole mass and contribute ∼25% of the cosmic X-ray background spectrum at 20 keV. Our model predicts that the majority (90%) of luminous and bright CT AGNs (L{sub rest2-10keV} > 10{sup 44} erg s{sup –1} or f{sub 2-10{sub keV}} > 10{sup –15} erg s{sup –1} cm{sup –2}) have detectable hot dust 5-10 μm emission, which we associate with a dusty torus. The fraction drops for fainter objects, to around 30% at L{sub rest2-10{sub keV}} > 10{sup 42} erg s{sup –1} or f{sub 2-10{sub keV}} > 10{sup –17} erg s{sup –1} cm{sup –2}. Our model confirms that heavily obscured AGNs (N{sub H{sub I}} > 10{sup 23} cm{sup –2}) can be separated from unobscured and mildly obscured ones (N{sub H{sub I}} < 10{sup 23} cm{sup –2}) in the plane of observed frame X-ray hardness versus mid-IR/X-ray ratio.

  10. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  11. Measuring Mass Flux, Kinetic Luminosities and Abundances in Outflows from Active Galactic Nuclei using the FUSE Archive

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    Previous studies of active galactic nuclei (AGN) show that over half of all AGN show outflows from their nuclear regions as evidenced by blue-shifted absorption lines. Measuring the energetics of outflows is a high priority for NASA's science objective of understanding the effect of energetic processes around supermassive black holes on the surrounding environment in galaxies, clusters and the intergalactic medium. Therefore, the most important goals in the study of these outflows are to measure their mass flux, kinetic luminosity, and chemical abundances in order to assess their importance to AGN feedback on their environment. The broad range of redshifts and the access to short rest wavelengths made possible by Far Ultraviolet Spectroscopic Explorer (FUSE) observations of AGN opens a vast discovery space using the many more diagnostic lines (compared to longer wavelengths) in the 500-1050 A range (rest wavelengths) that show up as absorption troughs in AGN outflows. This is especially true for the density- sensitive excited-state transitions of highly ionized elements (e.g., OIV* 790) that can yield the distance of the outflows from the central source, and the increasingly higher ionization species (O VI, Ne VIII, Na IX and Mg X) that supply the crucial connection between the UV and X-ray (so-called warm absorbers) manifestation of AGN outflows. Over the course of its 10 years of operation, FUSE observed nearly two hundred active galactic nuclei (AGN) at redshifts from less than 0.01 to nearly 3. While a select few of the brightest individual objects have been studied in detail, the surveys of the overall data set done to date examined only the lowest redshift objects (z<0.15), and only using data from the first 6 years or so of the mission. Our preliminary examination of the FUSE archive reveals dozens of AGN with appropriate characteristics for us to carry out our proposed program of study. Many of the best objects also have HST spectra available, and we will

  12. FULL SPECTRAL SURVEY OF ACTIVE GALACTIC NUCLEI IN THE ROSSI X-RAY TIMING EXPLORER ARCHIVE

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2013-08-01

    We have analyzed spectra for all active galactic nuclei (AGNs) in the Rossi X-ray Timing Explorer archive. We present long-term average values of absorption, Fe line equivalent width (EW), Compton reflection, and photon index, and calculate fluxes and luminosities in the 2-10 keV band for 100 AGN with sufficient brightness and overall observation time to yield high-quality spectral results. We compare these parameters across the different classifications of Seyferts and blazars. Our distributions of photon indices for Seyfert 1s and 2s are consistent with the idea that Seyferts share a common central engine; however, our distributions of Compton reflection hump strengths do not support the classical picture of absorption by a torus and reflection off a Compton-thick disk with type depending only on inclination angle. We conclude that a more complex reflecting geometry such as a combined disk and torus or clumpy torus is likely a more accurate picture of the Compton-thick material. We find that Compton reflection is present in {approx}85% of Seyferts and by comparing Fe line EW's to Compton reflection hump strengths we have found that on average 40% of the Fe line arises in Compton thick material; however, this ratio was not consistent from object to object and did not seem to be dependent on optical classification.

  13. Simulating Galaxies and Active Galactic Nuclei in the LSST Image Simulation Effort

    NASA Astrophysics Data System (ADS)

    Pizagno, James; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Chang, C.; Gibson, R. R.; Gilmore, K.; Grace, E.; Hannel, M.; Jernigan, J. G.; Jones, L.; Kahn, S. M.; Krughoff, S. K.; Lorenz, S.; Marshall, S.; Shmakova, S. M.; Sylvestri, N.; Todd, N.; Young, M.

    2011-01-01

    We present an extragalactic source catalog, which includes galaxies and Active Galactic Nuclei, that is used for the Large Survey Synoptic Telescope Imaging Simulation effort. The galaxies are taken from the De Lucia et. al. (2006) semi-analytic modeling (SAM) of the Millennium Simulation. The LSST Image Simulation effort requires full SED information and galaxy morphological information, which is added to the catalog by fitting Bruzual & Charlot (2003) stellar population models, with Cardelli, Clayton, Mathis (1989) dust models, to the BVRIK colors provided by the De Lucia et. al. (2006) SAM. Galaxy morphology is modeled as a double Sersic profile for the disk and bulge. Galaxy morphological information and number counts are matched to existing observations. The catalog contains galaxies with a limiting r-band magnitude of mr=28, which results in roughly 1E6 galaxies per square degree. An existing AGN catalog (MacLeod et. al. 2010) is matched to galaxy hosts in the galaxy catalog using SDSS observations. AGN are morphologically modeled as variable point sources located at the center of the host galaxy. We demonstrate how this extragalactic source catalog allows LSST to plan for extended object extraction, variable extragalactic source detection, sensitivity level determination after image stacking, and perform various other cosmological tests.

  14. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  15. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  16. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  17. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ˜ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ˜ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  18. X-ray induced stellar mass loss near active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark; Shull, J. Michael

    1988-01-01

    The effects of UV and X-ray radiation on stars in active galactic nuclei (AGN) are critically evaluated. Mass loss rates in X-ray-induced winds are evaluated for realistic red giant models, and the effects of the ablation of stellar envelopes by radiation pressure are considered. The importance of X-ray-induced mass loss in the standard quasar model is evaluated and whether it can provide a source of accretion fuel or emission-line clouds is discussed. It is concluded that thermal winds driven by X-ray heating are a minor total supply of mass to AGN, but that thermal plus line-driven winds and stellar ablation may increase the mass loss and improve the chances for supplying a fraction of the necessary mass supply to the central object. It is speculated that when steady winds are inefficient, complex time-dependent processes due to X-ray energy injection deep into a stellar atmosphere could still release significant mass from stars.

  19. X-ray spectral parameters for a sample of 95 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vasylenko, A. A.; Zhdanov, V. I.; Fedorova, E. V.

    2015-12-01

    We present a broadband X-ray analysis of a new homogeneous sample of 95 active galactic nuclei (AGN) from the 22-month Swift/BAT all-sky survey. For this sample we treated jointly the X-ray spectra observed by XMM-Newton and INTEGRAL missions for the total spectral range of 0.5-250 keV. Photon index \\varGamma, relative reflection R, equivalent width of Fe K_{α} line EW_{FeK}, hydrogen column density NH, exponential cut-off energy Ec and intrinsic luminosity L_{corr} are determined for all objects of the sample. We investigated correlations \\varGamma-R, EW_{FeK}-L_{corr}, \\varGamma-Ec, EW_{FeK}-NH. Dependence "\\varGamma-R" for Seyfert 1/2 galaxies has been investigated separately. We found that the relative reflection parameter at low power-law indexes for Seyfert 2 galaxies is systematically higher than for Seyfert 1 ones. This can be related to an increasing contribution of the reflected radiation from the gas-dust torus. Our data show that there exists some anticorrelation between EW_{FeK} and L_{corr}, but it is not strong. We have not found statistically significant deviations from the AGN Unified Model.

  20. Submillimeter recombination lines in dust-obscured starbursts and active galactic nuclei

    SciTech Connect

    Scoville, N.; Murchikova, L.

    2013-12-10

    We examine the use of submillimeter (submm) recombination lines of H, He, and He{sup +} to probe the extreme ultraviolet (EUV) luminosity of starbursts (SBs) and active galactic nuclei (AGNs). We find that the submm recombination lines of H, He, and He{sup +} are in fact extremely reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6 eV. At submm wavelengths, the recombination lines originate from low energy levels (n = 20-50). The maser amplification, which poses significant problems for quantitative interpretation of the higher n, radio frequency recombination lines, is insignificant. Lastly, at submm wavelengths, the dust extinction is minimal. The submm line luminosities are therefore directly proportional to the emission measures (EM{sub ION} = n{sub e} × n {sub ion} × volume) of their ionized regions. We also find that the expected line fluxes are detectable with ALMA and can be imaged at ∼0.''1 resolution in low redshift ultraluminous infrared galaxies. Imaging of the H I lines will provide accurate spatial and kinematic mapping of the star formation distribution in low-z IR-luminous galaxies, and the relative fluxes of the H I and He II recombination lines will strongly constrain the relative contributions of SBs and AGNs to the luminosity. The H I lines should also provide an avenue to constraining the submm dust extinction curve.

  1. Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nokhrina, E. E.; Beskin, V. S.; Kovalev, Y. Y.; Zheltoukhov, A. A.

    2015-03-01

    The analysis of the frequency dependence of the observed shift of the cores of relativistic jets in active galactic nuclei (AGNs) allows us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ = ne/nGJ, where nGJ is the Goldreich-Julian number density. We have obtained the median value for λmed = 3 × 1013 and the median value for the Michel magnetization parameter σM, med = 8 from an analysis of 97 sources. Since the magnetization parameter can be interpreted as the maximum possible Lorentz factor Γ of the bulk motion which can be obtained for relativistic magnetohydrodynamic (MHD) flow, this estimate is in agreement with the observed superluminal motion of bright features in AGN jets. Moreover, knowing these key parameters, one can determine the transverse structure of the flow. We show that the poloidal magnetic field and particle number density are much larger in the centre of the jet than near the jet boundary. The MHD model can also explain the typical observed level of jet acceleration. Finally, casual connectivity of strongly collimated jets is discussed.

  2. The Case for Standard Irradiated Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chelouche, Doron

    2013-07-01

    We analyze the broadband photometric light curves of Seyfert 1 galaxies from the Sergeev et al. sample and find that (1) perturbations propagating across the continuum emitting region are a general phenomenon securely detected in most cases, (2) it is possible to obtain reliable time delays between continuum emission in different wavebands, which are not biased by the contribution of broad emission lines to the signal, and (3) such lags are consistent with the predictions of standard irradiated accretion disk models, given the optical luminosity of the sources. These findings provide new and independent support for standard accretion disks being responsible for the bulk of the (rest) optical emission in low-luminosity active galactic nuclei (AGNs). We interpret our lag measurements in individual objects within the framework of this model and estimate the typical mass accretion rate to be <~ 0.1 M ⊙ yr&-1, with little dependence on the black hole mass. Assuming bolometric corrections typical of type I sources, we find tentative evidence for the radiative efficiency of accretion flows being a rising function of the black hole mass. With upcoming surveys that will regularly monitor the sky, we may be able to better quantify possible departures from standard self-similar models, and identify other modes of accretion in AGNs.

  3. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    NASA Astrophysics Data System (ADS)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  4. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  5. The hunt for red active galactic nuclei: a new infrared diagnostic

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Rodighiero, Giulia

    2014-10-01

    We introduce a new infrared diagnostic to separate galaxies on the basis of their dominant infrared emission: stellar or nuclear. The main novelty with respect to existing diagnostics is the use of a broad band encompassing at the same time the 9.7-μm silicate absorption feature and one of the adjacent broad polycyclic aromatic hydrocarbon (PAH) features. This provides a robust estimate of the near- to mid-infrared continuum slope and enables a clear distinction among different classes of galaxies up to a redshift z ˜ 2.5. The diagnostic can be applied to a wealth of archival data from the ISO, Spitzer and Akari surveys, as well as future James Webb Space Telescope surveys. Based on data in the Great Observatories Origins Deep Survey (GOODS), Lockman Hole and North Ecliptic Pole fields, we find that approximately 70 per cent of active galactic nuclei (AGNs) detected with X-ray and optical spectroscopy dominate the total mid-infrared emission. Finally, we estimate that AGNs contribute less than 30 per cent of the mid-infrared extragalactic integrated emission.

  6. EVIDENCE FOR ACTIVE GALACTIC NUCLEUS DRIVEN OUTFLOWS IN YOUNG RADIO QUASARS

    SciTech Connect

    Kim, Minjin; Ho, Luis C.; Lonsdale, Carol J.; Lacy, Mark; Kimball, Amy E.; Blain, Andrew W.

    2013-05-01

    We present near-infrared spectra of young radio quasars (P{sub 1.4GHz} Almost-Equal-To 26-27 W Hz{sup -1}) selected from the Wide-Field Infrared Survey Explorer. The detected objects have typical redshifts of z Almost-Equal-To 1.6-2.5 and bolometric luminosities {approx}10{sup 47} erg s{sup -1}. Based on the intensity ratios of narrow emission lines, we find that these objects are mainly powered by active galactic nuclei (AGNs), although star formation contribution cannot be completely ruled out. The host galaxies experience moderate levels of extinction, A{sub V} Almost-Equal-To 0-1.3 mag. The observed [O III] {lambda}5007 luminosities and rest-frame J-band magnitudes constrain the black hole masses to lie in the range {approx}10{sup 8.9}-10{sup 9.7} M{sub Sun }. From the empirical correlation between black hole mass and host galaxy mass, we infer stellar masses of {approx}10{sup 11.3}-10{sup 12.2} M{sub Sun }. The [O III] line is exceptionally broad, with FWHM {approx}1300-2100 km s{sup -1}, significantly larger than that of ordinary distant quasars. We argue that these large line widths can be explained by jet-induced outflows, as predicted by theoretical models of AGN feedback.

  7. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ∼ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ∼ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  8. Evidence for Active Galactic Nucleus Driven Outflows in Young Radio Quasars

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Ho, Luis C.; Lonsdale, Carol J.; Lacy, Mark; Blain, Andrew W.; Kimball, Amy E.

    2013-05-01

    We present near-infrared spectra of young radio quasars (P 1.4 GHz ≈ 26-27 W Hz-1) selected from the Wide-Field Infrared Survey Explorer. The detected objects have typical redshifts of z ≈ 1.6-2.5 and bolometric luminosities ~1047 erg s-1. Based on the intensity ratios of narrow emission lines, we find that these objects are mainly powered by active galactic nuclei (AGNs), although star formation contribution cannot be completely ruled out. The host galaxies experience moderate levels of extinction, AV ≈ 0-1.3 mag. The observed [O III] λ5007 luminosities and rest-frame J-band magnitudes constrain the black hole masses to lie in the range ~108.9-109.7 M ⊙. From the empirical correlation between black hole mass and host galaxy mass, we infer stellar masses of ~1011.3-1012.2 M ⊙. The [O III] line is exceptionally broad, with FWHM ~1300-2100 km s-1, significantly larger than that of ordinary distant quasars. We argue that these large line widths can be explained by jet-induced outflows, as predicted by theoretical models of AGN feedback. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. Radiation pressure confinement - II. Application to the broad-line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-02-01

    Active galactic nuclei (AGN) are characterized by similar broad emission lines properties at all luminosities (1039 - 1047 erg s-1). What produces this similarity over a vast range of 108 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the broad-line region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas with a large enough column for gravity to dominate. The photoionized surface layer of the gas must develop a pressure gradient due to the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly ionized surface layer, a density rise inwards and a uniform-density cooler inner region, where the gas pressure reaches the incident radiation pressure. This radiation pressure confinement (RPC) of the photoionized layer leads to a universal ionization parameter U ˜ 0.1 in the inner photoionized layer, independent of luminosity and distance. Thus, RPC appears to explain the universality of the BLR properties in AGN. We present predictions for the BLR emission per unit covering factor, as a function of distance from the ionizing source, for a range of ionizing continuum slopes and gas metallicity. The predicted mean strength of most lines (excluding H β), and their different average-emission radii, are consistent with available observations.

  10. THE MICROARCSECOND STRUCTURE OF AN ACTIVE GALACTIC NUCLEUS JET VIA INTERSTELLAR SCINTILLATION

    SciTech Connect

    Macquart, J.-P.; Godfrey, L. E. H.; Bignall, H. E.

    2013-03-10

    We describe a new tool for studying the structure and physical characteristics of ultracompact active galactic nucleus (AGN) jets and their surroundings with {mu}as precision. This tool is based on the frequency dependence of the light curves observed for intra-day variable radio sources, where the variability is caused by interstellar scintillation. We apply this method to PKS 1257-326 to resolve the core-shift as a function of frequency on scales well below {approx}12 {mu}as. We find that the frequency dependence of the position of the scintillating component is r{proportional_to}{nu}{sup -0.1{+-}0.24} (99% confidence interval) and the frequency dependence of the size of the scintillating component is d{proportional_to}{nu}{sup -0.64{+-}0.006}. Together, these results imply that the jet opening angle increases with distance along the jet: d{proportional_to}r{sup n{sub d}} with n{sub d} > 1.8. We show that the flaring of the jet, and flat frequency dependence of the core position is broadly consistent with a model in which the jet is hydrostatically confined and traversing a steep pressure gradient in the confining medium with p{proportional_to}r{sup -n{sub p}} and n{sub p} {approx}> 7. Such steep pressure gradients have previously been suggested based on very long baseline interferometry studies of the frequency dependent core shifts in AGNs.

  11. GPU-based Monte Carlo Dust Radiative Transfer Scheme Applied to Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Heymann, Frank; Siebenmorgen, Ralf

    2012-05-01

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman & Wood method to reduce the calculation time, and the Fleck & Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

  12. THE INTEGRAL HIGH-ENERGY CUT-OFF DISTRIBUTION OF TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Malizia, A.; Molina, M.; Bassani, L.; Stephen, J. B.; Bazzano, A.; Ubertini, P.; Bird, A. J.

    2014-02-20

    In this Letter we present the primary continuum parameters, the photon index Γ, and the high-energy cut-off E {sub c} of 41 type-1 Seyfert galaxies extracted from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) complete sample of active galactic nuclei (AGNs). We performed broadband (0.3-100 keV) spectral analysis by simultaneously fitting the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT, respectively, in order to investigate the general properties of these parameters, in particular their distribution and mean values. We find a mean photon index of 1.73 with a standard deviation of 0.17 and a mean high-energy cut-off of 128 keV with a standard deviation of 46 keV for the whole sample. This is the first time that the cut-off energy is constrained in such a large number of AGNs. We have 26 measurements of the cut-off, which corresponds to 63% of the entire sample, distributed between 50 and 200 keV. There are a further 11 lower limits mostly below 300 keV. Using the main parameters of the primary continuum, we have been able to obtain the actual physical parameters of the Comptonizing region, i.e., the plasma temperature kT {sub e} from 20 to 100 keV and the optical depth τ < 4. Finally, with the high signal-to-noise ratio spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGNs, allowing the determination of more physical models and thus better understand the continuum emission and geometry of the region surrounding black holes.

  13. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  14. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ∼3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  15. Role of active galactic nuclei in the luminous infrared galaxy phase at z ≤ 3

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Hashimoto, Yasuhiro; Foucaud, Sébastien

    2016-03-01

    To understand the interactions between active galactic nuclei (AGNs) and star formation during the evolution of galaxies, we investigate 142 galaxies detected in both X-ray and 70 μm observations in the COSMOS (Cosmic Evolution Survey) field. All of our data are obtained from the archive X-ray point-source catalogues from Chandra and XMM-Newton observations, and the far-infrared 70 μm point-source catalogue from Spitzer-MIPS observations. Although the IRAC [3.6 μm]-[4.5 μm] versus [5.8 μm]-[8.0 μm] colours of our sample indicate that only ˜63 per cent of our sources would be classified as AGNs, the ratio of the rest-frame 2-10 keV luminosity to the total infrared luminosity (8-1000 μm) shows that the entire sample has comparatively higher X-ray luminosity than that expected from pure star-forming galaxies, suggesting the presence of an AGN in all of our sources. From an analysis of the X-ray hardness ratio, we find that sources with both 70 μm and X-ray detection tend to have a higher hardness ratio relative to the whole X-ray-selected source population, suggesting the presence of more X-ray absorption in the 70 μm detected sources. In addition, we find that the observed far-infrared colours of 70 μm detected sources with and without X-ray emission are similar, suggesting the far-infrared emission could be mainly powered by star formation.

  16. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Heymann, Frank; Siebenmorgen, Ralf

    2012-05-20

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

  17. The INTEGRAL High-energy Cut-off Distribution of Type 1 Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Molina, M.; Bassani, L.; Stephen, J. B.; Bazzano, A.; Ubertini, P.; Bird, A. J.

    2014-02-01

    In this Letter we present the primary continuum parameters, the photon index Γ, and the high-energy cut-off E c of 41 type-1 Seyfert galaxies extracted from the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) complete sample of active galactic nuclei (AGNs). We performed broadband (0.3-100 keV) spectral analysis by simultaneously fitting the soft and hard X-ray spectra obtained by XMM and INTEGRAL/IBIS-Swift/BAT, respectively, in order to investigate the general properties of these parameters, in particular their distribution and mean values. We find a mean photon index of 1.73 with a standard deviation of 0.17 and a mean high-energy cut-off of 128 keV with a standard deviation of 46 keV for the whole sample. This is the first time that the cut-off energy is constrained in such a large number of AGNs. We have 26 measurements of the cut-off, which corresponds to 63% of the entire sample, distributed between 50 and 200 keV. There are a further 11 lower limits mostly below 300 keV. Using the main parameters of the primary continuum, we have been able to obtain the actual physical parameters of the Comptonizing region, i.e., the plasma temperature kT e from 20 to 100 keV and the optical depth τ < 4. Finally, with the high signal-to-noise ratio spectra starting to come from NuSTAR it will soon be possible to better constrain the cut-off values in many AGNs, allowing the determination of more physical models and thus better understand the continuum emission and geometry of the region surrounding black holes.

  18. Ensemble X-ray variability of active galactic nuclei from serendipitous source catalogues

    NASA Astrophysics Data System (ADS)

    Vagnetti, F.; Turriziani, S.; Trevese, D.

    2011-12-01

    Context. The X-ray variability of the active galactic nuclei (AGN) has been most often investigated with studies of individual, nearby sources, and only a few ensemble analyses have been applied to large samples in wide ranges of luminosity and redshift. Aims: We aim to determine the ensemble variability properties of two serendipitously selected AGN samples extracted from the catalogues of XMM-Newton and Swift, with redshift between ~0.2 and ~4.5, and X-ray luminosities, in the 0.5-4.5 keV band, between ~1043 erg/s and ~1046 erg/s. Methods: We used the structure function (SF), which operates in the time domain, and allows for an ensemble analysis even when only a few observations are available for individual sources and the power spectral density (PSD) cannot be derived. The SF is also more appropriate than fractional variability and excess variance, because these parameters are biased by the duration of the monitoring time interval in the rest-frame, and therefore by cosmological time dilation. Results: We find statistically consistent results for the two samples, with the SF described by a power law of the time lag, approximately as SF ∝ τ0.1. We do not find evidence of the break in the SF, at variance with the case of lower luminosity AGNs. We confirm a strong anti-correlation of the variability with X-ray luminosity, accompanied by a change of the slope of the SF. We find evidence in support of a weak, intrinsic, average increase of X-ray variability with redshift. Conclusions: The change of amplitude and slope of the SF with X-ray luminosity provides new constraints on both single oscillator models and multiple subunit models of variability. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  19. X-ray variability and the inner region in active galactic nuclei

    SciTech Connect

    Mohan, P.; Mangalam, A. E-mail: mangalam@iiap.res.in

    2014-08-20

    We present theoretical models of X-ray variability attributable to orbital signatures from an accretion disk including emission region size, quasi-periodic oscillations (QPOs), and its quality factor Q, and the emergence of a break frequency in the power spectral density shape. We find a fractional variability amplitude of F{sub var}∝M{sub ∙}{sup −0.4}. We conduct a time series analysis on X-ray light curves (0.3-10 keV) of a sample of active galactic nuclei (AGNs). A statistically significant bend frequency is inferred in 9 of 58 light curves (16%) from 3 AGNs for which the break timescale is consistent with the reported BH spin but not with the reported BH mass. Upper limits of 2.85 × 10{sup 7} M {sub ☉} in NGC 4051, 8.02 × 10{sup 7} M {sub ☉} in MRK 766, and 4.68 × 10{sup 7} M {sub ☉} in MCG-6-30-15 are inferred for maximally spinning BHs. For REJ 1034+396 where a QPO at 3733 s was reported, we obtain an emission region size of (6-6.5) M and a BH spin of a ≲ 0.08. The relativistic inner region of a thin disk, dominated by radiation pressure and electron scattering, is likely to host the orbital features as the simulated Q ranges from 6.3 × 10{sup –2} to 4.25 × 10{sup 6}, containing the observed Q. The derived value of Q ∼ 32 for REJ 1034+396 therefore suggests that the AGN hosts a thin disk.

  20. The Fe II Emission in Active Galactic Nuclei: Excitation Mechanisms and Location of the Emitting Region

    NASA Astrophysics Data System (ADS)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  1. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the