Science.gov

Sample records for agn emission lines

  1. SED and Emission Line Properties of Red 2MASS AGN

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Joanna; Wilkes, Belinda J.; Schmidt, Gary; Ghosh, Himel

    2009-09-01

    Radio and far-IR surveys, and modeling of the cosmic X-ray background suggest that a large population of obscured AGN has been missed by traditional, optical surveys. The Two Micron All-Sky Survey (2MASS) has revealed a large population (surface density comparable to that of optically selected AGN with Ks<14.5mag) of mostly nearby (median z=0.25), red, moderately obscured AGN, among which 75% are previously unidentified emission-line AGN, with 85% showing broad emission lines. We present the SED and emission line properties of 44 such red (J-Ks>2) 2MASS AGN observed with Chandra. They lie at z<0.37, span a full range of spectral types (Type 1, intermediate, Type 2),Ks-to-X-ray slopes, and polarization (<13%). Their IR-to-X-ray spectral energy distributions (SEDs) are red in the near-IR/opt/UV showing little or no blue bump. The optical colors are affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The levels of obscuration obtained from optical, X-rays, and far-IR imply N_H emission line equivalent widths, suggest a predominance of inclined objects in which obscuration/inclination allows us to see and study weaker emission components which are generally swamped by the direct AGN light. PCA analysis of the IR-X-ray SED and emission line properties shows that, while obscuration/inclination is important, the dominant cause of variance in the sample (eigenvector 1) is the L/L_{edd} ratio (perhaps because the red near-IR selection limits the range of inclination/obscuration values in our sample). This analysis also distinguishes two sources of obscuration: the host galaxy and circumnuclear absorption.

  2. The stability of QSO/AGN broad emission line clouds

    NASA Astrophysics Data System (ADS)

    Krinsky, I. S.; Puetter, R. C.

    1992-08-01

    Results of a numerical linear stability analysis of QSO/AGN emission-line clouds (ELCs) embedded within a confining hot intercloud medium (HIM) are reported. A first-order linear perturbation analysis reveals two important ionstabilities. The first instability is thermal in nature and arises in the interface region between the HIM and the ELC where thermal convection dominates gas heating; the growth time of the instability is approximately 1000 s, resulting in an ELC evaporation time of about 10 yr. The second instability is dynamic in nature, with the sound wave amplitude growing in response to radiative forces. The growth time of this instability is about 10 exp 6 s and essentially independent of the wavelength. The results suggest that if QSO/AGN ELCs have properties similar to those of the standard ELC model, then the broad-line region is in a constant state of flux in which ELCs continually form, are destroyed, and then re-formed.

  3. The link between broad emission line fluctuations and non-thermal emission from the inner AGN jet

    NASA Astrophysics Data System (ADS)

    León-Tavares, J.; Chavushyan, V.; Lobanov, A.; Valtaoja, E.; Arshakian, T. G.

    2015-03-01

    AGN reverberate when the broad emission lines respond to changes of the ionizing thermal continuum emission. Reverberation measurements have been commonly used to estimate the size of the broad-line region (BLR) and the mass of the central black hole. However, reverberation mapping studies have been mostly performed on radio-quiet sources where the contribution of the jet can be neglected. In radio-loud AGN, jets and outflows may affect substantially the relation observed between the ionizing continuum and the line emission. To investigate this relation, we have conducted a series of multi-wavelength studies of radio-loud AGN, combining optical spectral line monitoring with regular VLBI observations. Our results suggest that at least a fraction of the broad-line emitting material can be located in a sub-relativistic outflow ionized by non-thermal continuum emission generated in the jet at large distances (> 1 pc) from the central engine of AGN. This finding may have a strong impact on black hole mass estimates based on measured widths of the broad emission lines and on the gamma-ray emission mechanisms.

  4. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  5. Long Term Profile Variability of Double-Peaked Emission Lines in AGNs

    NASA Astrophysics Data System (ADS)

    Lewis, K.; Eracleous, M.; Halpern, J.; Storchi-Bergmann, T.

    2004-06-01

    An increasing number of AGNs exhibit broad, double-peaked Balmer emission lines, which are thought to arise from the outer regions of the accretion disk which fuels the AGN. The line profiles are observed to vary on a characteristic timescales of 5-10 years. The variability is not a reverberation effect; it is a manifestation of physical changes in the disk. Our group has monitored a set of 20 double-peaked emitters for the past 8 years (longer for some objects). Here, we characterize the variability of the double-peaked Hα line profiles in five objects from our sample. By experimenting with simple models, we find that disks with a single precessing spiral arm are able to reproduce many of the variability trends that are seen in the data.

  6. The Connections Between the UV and Optical Fe ii Emission Lines in Type 1 AGNs

    NASA Astrophysics Data System (ADS)

    Kovačević-Dojčinović, Jelena; Popović, Luka Č.

    2015-12-01

    We investigate the spectral properties of the UV (λλ2650-3050 Å) and optical (λλ4000-5500 Å) Fe ii emission features in a sample of 293 Type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey database. We explore different correlations between their emission line properties, as well as the correlations with other emission lines from the spectral range. We find several interesting correlations and outline the most interesting results as follows. (i) There is a kinematical connection between the UV and optical Fe ii lines, indicating that the UV and optical Fe ii lines originate from the outer part of the broad line region, the so-called intermediate line region. (ii) The unexplained anticorrelations of the optical Fe ii equivalent width (EW Fe iiopt) versus EW [O iii] 5007 Å and EW Fe iiopt versus FWHM Hβ have not been detected for the UV Fe ii lines. (iii) The significant averaged redshift in the UV Fe ii lines, which is not present in optical Fe ii, indicates an inflow in the UV Fe ii emitting clouds, and probably their asymmetric distribution. (iv) Also, we confirm the anticorrelation between the intensity ratio of the optical and UV Fe ii lines and the FWHM of Hβ, and we find the anticorrelations of this ratio with the widths of Mg ii 2800 Å, optical Fe ii, and UV Fe ii. This indicates a very important role for the column density and microturbulence in the emitting gas. We discuss the starburst activity in high-density regions of young AGNs as a possible explanation of the detected optical Fe ii correlations and intensity line ratios of the UV and optical Fe ii lines.

  7. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E.; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak; Assef, Roberto J.; Bae, Hyun-Jin; Brewer, Brendon J.; Cenko, S. Bradley; Clubb, Kelsey I.; Cooper, Michael C.; Diamond-Stanic, Aleksandar M.; Hiner, Kyle D.; Hönig, Sebastian F.; Hsiao, Eric; Kandrashoff, Michael T.; Lazarova, Mariana S.; Nierenberg, A. M.; Rex, Jacob; Silverman, Jeffrey M.; Tollerud, Erik J.; Walsh, Jonelle L.

    2015-04-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ˜250 km s-1 over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  8. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves

    NASA Technical Reports Server (NTRS)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.; Stern, Daniel; Cenko, S. Bradley

    2016-01-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  9. BAT AGN spectroscopic survey-II. X-ray emission and high-ionization optical emission lines

    NASA Astrophysics Data System (ADS)

    Berney, Simon; Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Baloković, Mislav; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-12-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby (z ≃ 0.04) AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (L_[O III]^{int} ∝ L_{14-195}) with a large scatter (RPear = 0.64, σ = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear = 0.63, σ = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low-ionization lines (H α, [S II]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (σ = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical differences in the scattering of the ionized gas or long-term AGN variability are important.

  10. HST-COS OBSERVATIONS OF AGNs. I. ULTRAVIOLET COMPOSITE SPECTRA OF THE IONIZING CONTINUUM AND EMISSION LINES

    SciTech Connect

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles W. E-mail: matthew.stevans@colorado.edu

    2012-06-20

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting the emission-line spectra of AGNs and for photoionization and heating of the intergalactic medium. Using ultraviolet spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we have directly measured the rest-frame ionizing continua and emission lines for 22 AGNs. Over the redshift range 0.026 < z < 1.44, COS samples the Lyman continuum and many far-UV emission lines (Ly{alpha} {lambda}1216, C IV {lambda}1549, Si IV/O IV] {lambda}1400, N V {lambda}1240, O VI {lambda}1035). Strong EUV emission lines with 14-22 eV excitation energies (Ne VIII {lambda}{lambda}770, 780, Ne V {lambda}569, O II {lambda}834, O III {lambda}833, {lambda}702, O IV {lambda}788, 608, 554, O V {lambda}630, N III {lambda}685) suggest the presence of hot gas in the broad emission-line region. The rest-frame continuum, F{sub {nu}}{proportional_to}{nu}{sup {alpha}{sub {nu}}}, shows a break at wavelengths {lambda} < 1000 A, with spectral index {alpha}{sub {nu}} = -0.68 {+-} 0.14 in the FUV (1200-2000 A) steepening to {alpha}{sub {nu}} = -1.41 {+-} 0.21 in the EUV (500-1000 A). The COS EUV index is similar to that of radio-quiet AGNs in the 2002 HST/FOS survey ({alpha}{sub {nu}} = -1.57 {+-} 0.17). We see no Lyman edge ({tau}{sub HI} < 0.03) or He I {lambda}584 emission in the AGN composite. Our 22 AGNs exhibit a substantial range of FUV/EUV spectral indices and a correlation with AGN luminosity and redshift, likely due to observing below the 1000 A spectral break.

  11. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  12. Using the H-β Emission Line as a Means of Mass Determination for Spiral Galaxy AGNs

    NASA Astrophysics Data System (ADS)

    Cameron, Thomas; Ratz, Lucus; Burris, Debra L.

    2016-01-01

    This study focuses on the AGN of spiral galaxies in hopes to use the H-β line to determine the mass of the central black hole. We are replicating the method of Vestergaard and Peterson by extinction correcting emission spectra from these black holes, both for cosmic redshift and for FeII emissions using IRAF. From there we can accurately measure the full width half max of the H-beta line in these spectrum as well as the lumosity and these paired with the OIII lines give us an estimate on the mass of the black hole. The purpose of this is to compare it to the values to pitch angle measurements and to explore the Mass-Pitch Angle relation as outlined by J. Kennefick from the University of Arkansas.

  13. Comparing Narrow- and Broad-line AGNs in a New Diagnostic Diagram for Emission-line Galaxies Based on WISE Data

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-06-01

    Using a new color-color diagnostic diagram in the mid-infrared (MIR) built from WISE data, the MIRDD, we compare narrow-emission-line galaxies (NELGs) that exhibit different activity types (star-forming galaxies (SFGs) and active galactic nuclei (AGNs), i.e., LINERs, Seyfert 2 galaxies (Sy2s), and Transition-type Objects (TOs)), as determined using one standard diagnostic diagram in the optical (BPT-VO), with broad-line AGNs (QSOs and Sy1s) and BL Lac objects at low redshift (z≤slant 0.25). We show that the BL Lac objects occupy the same region as the LINERs in the MIRDD, whereas the QSOs and Sy1s occupy an intermediate region between the LINERs and the Sy2s. In the MIRDD these galaxies trace a sequence that can be reproduced by a power law, {{F}ν }={{ν }α }, where the spectral index, α, varies from 0 to -2, which is similar to what is observed in the optical/ultraviolet part of the spectra of AGNs with different luminosities. For the NELGs with different activity types, we perform a stellar-population synthesis analysis, confirming that their specific positions in the MIRD depend on their star formation histories (SFH) and demonstrating that the W2-W3 color is tightly correlated with the level of star formation in their host galaxies. In good agreement with the SFH analysis, a comparison of their MIR colors with the colors yielded by spectral energy distributions (SEDs) of galaxies with different activity types shows that the SED of the LINERs is similar to the SEDs of the QSOs and Sy1s, consistent with AGN galaxies with mild star formation, whereas the SEDs of the Sy2s and TOs are consistent with AGN galaxies with strong star formation components. For the BL Lac objects, we show that their blue MIR colors can only be fitted with an SED that has no star formation component, consistent with AGNs in elliptical-type galaxies. From their similarities in MIR colors and SEDs, we infer that, in the nearby universe, the level of star formation activity most probably

  14. A Direct Linkage between AGN Outflows in the Narrow-line Regions and the X-Ray Emission from the Accretion Disks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2016-03-01

    The origin of outflow in the narrow-line region (NLR) of the active galactic nucleus (AGN) is studied in this paper by focusing on the relationship between the [O iii]λ5007 line profile and the hard-X-ray (in a bandpass of 2-10 keV) emission from the central super-massive black hole (SMBH) in type-I AGNs. A sample of 47 local X-ray selected type-I AGNs at z\\lt 0.2 is extracted from the 2XMMi/SDSS-DR7 catalog, which was originally cross-matched by Pineau et al. The X-ray luminosities in an energy band from 2 to 10 keV of these luminous AGNs range from 1042 to {10}44 {erg} {{{s}}}-1. A joint spectral analysis is performed on their optical and X-ray spectra, in which the [O iii] line profile is modeled by a sum of several Gaussian functions to quantify its deviation from a pure Gaussian function. The statistics allow us to identify a moderate correlation with a significance level of 2.78σ: luminous AGNs with stronger [O iii] blue asymmetry tend to have steeper hard-X-ray spectra. By identifying the role of L/{L}{Edd} on the correlation at a 2-3σ significance level in both direct and indirect ways, we argue that the photon index versus the asymmetry correlation provides evidence that the AGN’s outflow commonly observed in its NLR is related to the accretion process occurring around the central SMBH, which favors the wind/radiation model as the origin of the outflow in luminous AGNs.

  15. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  16. Intermediate inclinations of type 2 Coronal-Line Forest AGN

    NASA Astrophysics Data System (ADS)

    Rose, Marvin; Elvis, Martin; Crenshaw, Michael; Glidden, Ana

    2015-07-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe VII], [Fe X] and [Ne V]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6-22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5-30 μm colours become bluer. We show that the [W2-W4] colours for the CLiF AGN (<[W2-W4]> = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (<[W2-W4]> = 5.22 ± 0.01) and type 2 AGN (<[W2-W4]> = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.

  17. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  18. A Deep X-Ray View of the Bare AGN Ark 120. I. Revealing the Soft X-Ray Line Emission

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Porquet, D.; Braito, V.; Nardini, E.; Lobban, A.; Turner, T. J.

    2016-09-01

    The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra/High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our own Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ∼5000 km s‑1, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n e ∼ 1011 cm‑3, while the photoionization calculations infer that the emitting gas covers at least 10% of 4π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical–UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.

  19. Absorption-line measurements of AGN outflows

    NASA Astrophysics Data System (ADS)

    Fields, Dale L.

    Investigations into the elemental abundances in two nearby active galaxies, the narrow-line Seyfert 1 Markarian 1044 and the Seyfert 1 Markarian 279, are reported. Spectra from three space-based observatories HST, FUSE, and CHANDRA, are used to measure absorption lines in material outflowing from the nucleus. I make multi-wavelength comparisons to better convert the ionic column densities into elemental column densities which can then be used to determine abundances (metallicities). Narrow-line Seyfert 1 galaxies are known to have extreme values of a number of properties compared to active galactic nuclei (AGNs) as a class. In particular, emission-line studies have suggested that NLS1s are unusually metal-rich compared to broad-line AGNs of comparable luminosity. To test these suggestions I perform absorption-line studies on the NLS1 Markarian 1044, a nearby and bright AGN. I use lines of H I, C IV, N V, and O VI to properly make the photoionization correction through the software Cloudy and determine abundances of Carbon, Nitrogen and Oxygen. I find two results. The first is that Markarian 1044 has a bulk metallicity greater than five times solar. The second is that the N/C ratio in Markarian 1044 is consistent with a solar mixture. This is in direct contradiction of extrapolations from local H II regions which state N/ C should scale with bulk metallicity. This implies a different enrichment history in Markarian 1044 than in the Galactic disk. I also report discovery of three new low-redshift Lya forest lines with log N HI >= 12:77 in the spectrum of Markarian 1044. This number is consistent with the 2.6 expected Lya forest lines in the path length to Markarian 1044. I also investigate the CHANDRA X-ray spectrum of Markarian 279, a broad-line Seyfert 1. I use a new code, PHASE, to self-consistently model the entire absorption spectrum simultaneously. Using solely the X-ray spectrum I am able to determine the physical parameters of this absorber to a degree only

  20. Database of emission lines

    NASA Astrophysics Data System (ADS)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  1. ALMA Investigation of Vibrationally Excited HCN/HCO+/HNC Emission Lines in the AGN-Hosting Ultraluminous Infrared Galaxy IRAS 20551‑4250

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551‑4250 at HCN/HCO+/HNC J = 3–2 lines at both vibrational ground (v = 0) and vibrationally excited (v 2 = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v 2 = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO+/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v 2 = 1f J = 3–2 emission lines are also detected, but the HCO+ v 2 = 1f J = 3–2 emission line is not. Given the high energy level of v 2 = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μm spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO+ and HNC. The flux ratio and excitation temperature between v 2 = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational (J-level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO+ v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO+ flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO+ abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO+.

  2. A Method of Identifying AGNs Based on Emission-Line Excess and the Nature of Low-Luminosity AGNs in the Sloan Digital Sky Survey. II. The Nature of Low-Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki

    2012-04-01

    We have developed a new method of identifying active galactic nuclei (AGNs) and studied the nature of low-luminosity AGNs in the Sloan Digital Sky Survey. This is the latter part of a series of papers in which we consider correlations between the AGN activities and the host-galaxy properties. Based on a sample of AGNs identified by a new method developed in the former part (2012, PASJ, 64, 36), we found that AGNs typically show extinction of τV = 1.2, and exhibit a wide range of ionization levels. The finding of ionization levels motivated us to use [O II] + [O III] as an indicator of AGN power. We found that AGNs are preferentially located in massive, red, early-type galaxies. Taking into account a selection bias of the Oxygen-excess method, we showed that strong AGNs are located in active star-forming galaxies, and that rapidly growing super-massive black holes are located in rapidly growing galaxies, which clearly shows the coevolution of super-massive black holes and their host galaxies. This is a surprising phenomenon, given that the growths of black holes and host galaxies occur on their respective physical scales which are very different. Interestingly, the AGN power does not strongly correlate with the host-galaxy mass. It seems that the mass works as a ``switch'' for activating AGNs. The absence of AGNs in low-mass galaxies might be due to the absence of super-massive black holes there, but a dedicated observation of the nuclear region of nearby low-mass galaxies would be necessary to obtain a deeper insight into it.

  3. Revisiting correlations between broad-line and jet emission variations for AGNs: 3C 120 and 3C 273

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Bai, J. M.; Feng, H. C.; Li, S. K.

    2015-06-01

    We restudy the issue of cross-correlations between broad-line and jet emission variations, and aim to locate the position of a radio (and gamma-ray) emitting region in a jet of active galactic nuclei. Considering the radial profiles of the radius and number density of clouds in a spherical broad-line region (BLR), we derive new formulae connecting the jet-emitting position Rjet to the time lag τob between broad-line and jet emission variations, and the BLR radius. Also, formulae are derived for a disc-like BLR and a spherical shell BLR. The model-independent flux randomization/random subset selection method is used to estimate τob. For 3C 120, positive lags of about 0.3 yr are found between the 15 GHz emission and the Hβ, Hγ and He II λ4686 lines, including broad-line data in a newly published paper, indicating that the line variations lead the 15 GHz ones. Each of the broad-line light curves corresponds to a radio outburst. Rjet = 1.1-1.5 parsec (pc) is obtained for 3C 120. For 3C 273, a common feature of negative time lags is found in the cross-correlation functions between light curves of radio emission and the Balmer lines, as well as Lyα λ1216 and C IV λ1549 lines. Rjet = 1.0-2.6 pc is obtained for 3C 273. The estimated Rjet is comparable for 3C 120 and 3C 273, and the gamma-ray-emitting positions will be within ˜1-3 pc from the central engines. Comparisons show that the cloud number density and radius radial distributions and the BLR structures have only negligible effects on Rjet.

  4. The origin of N III lambda 990 and C III lambda 977 emission in AGN narrow-line region gas

    NASA Technical Reports Server (NTRS)

    Ferguson, J. W.; Ferland, G. J.; Pradhan, A. K.

    1995-01-01

    We discuss implications of Hopkins Ultraviolet Telescope (HUT) detections of C III lambda 977 and N III lambda 990 emission from the narrow-line region of the Seyfert 2 galaxy NGC 1068. In their discovery paper Kriss et al. showed that the unexpectedly great strength of these lines implies that the emitting gas must be shock-heated if the lines are collisionally excited. Here we investigate other processes which excite these lines in photoionization equilibrium. Recombination, mainly dielectronic, and continuum fluorescence are strong contributors to the line. The resulting intensities are sensitive to the velocity field of the emitting gas and require that the turbulence be of the same order of magnitude as the observed line width. We propose optical observations that will decide whether the gas is collisionally or radiatively heated.

  5. A Model for Type 2 Coronal Line Forest (CLiF) AGNs

    NASA Astrophysics Data System (ADS)

    Glidden, Ana; Rose, Marvin; Elvis, Martin; McDowell, Jonathan

    2016-06-01

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii]λ6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h/r.

  6. Anatomy of the AGN in NGC 5548. V. A clear view of the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J. S.; Mehdipour, M.; Steenbrugge, K. C.; Bianchi, S.; Behar, E.; Ebrero, J.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Kriss, G. A.; Paltani, S.; Peterson, B. M.; Petrucci, P.-O.; Pinto, C.; Ponti, G.

    2015-09-01

    Context. Our consortium performed an extensive multi-wavelength campaign of the nearby Seyfert 1 galaxy NGC 5548 in 2013-14. The source appeared unusually heavily absorbed in the soft X-rays, and signatures of outflowing absorption were also present in the UV. He-like triplets of neon, oxygen and nitrogen, and radiative recombination continuum (RRC) features were found to dominate the soft X-ray spectrum due to the low continuum flux. Aims: Here we focus on characterising these narrow emission features using data obtained from the XMM-Newton RGS (770 ks stacked spectrum). Methods: We use spex for our initial analysis of these features. Self-consistent photoionisation models from Cloudy are then compared with the data to characterise the physical conditions of the emitting region. Results: Outflow velocity discrepancies within the O VII triplet lines can be explained if the X-ray narrow-line region (NLR) in NGC 5548 is absorbed by at least one of the six warm absorber components found by previous analyses. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (~104 K), favouring photoionised conditions. We fit the data with a Cloudy model of log ξ = 1.45 ± 0.05 erg cm s-1, log NH = 22.9 ± 0.4 cm-2 and log vturb = 2.25 ± 0.5 km s-1 for the emitting gas; this is the first time the X-ray NLR gas in this source has been modelled so comprehensively. This allows us to estimate the distance from the central source to the illuminated face of the emitting clouds as 13.9 ± 0.6 pc, consistent with previous work.

  7. AGN coronal emission models - I. The predicted radio emission

    NASA Astrophysics Data System (ADS)

    Raginski, I.; Laor, Ari

    2016-06-01

    Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.

  8. Type 1 AGN at low z- I. Emission properties

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Laor, Ari

    2012-06-01

    We analyse the emission properties of a new sample of 3579 type 1 AGN, selected from Sloan Digital Sky Survey (SDSS) Data Release 7 based on the detection of broad Hα emission. The sample extends over a broad Hα luminosity LbHα of ? and a broad Hα full width at half-maximum (FWHM) of ?, which covers the range of black hole mass 106 < MBH/M⊙ < 109.5 and luminosity in Eddington units 10-3 < L/LEdd < 1. We combine ROSAT, GALEX and 2MASS observations to form the spectral energy distribution (SED) from 2.2 ?m to 2 keV. We find the following. (1) The distribution of the Hα FWHM values is independent of luminosity. (2) The observed mean optical-ultraviolet (optical-UV) SED is well matched by a fixed-shape SED of luminous quasars, which scales linearly with LbHα, and a host galaxy contribution. (3) The host galaxy r-band (fibre) luminosity function follows well the luminosity function of inactive non-emission-line galaxies (NEGs), consistent with a fixed fraction of ˜3 per cent of NEGs hosting an AGN, regardless of the host luminosity. (4) The hosts of lower luminosity AGN have a mean z-band luminosity and u-z colour which are identical to NEGs with the same redshift distribution. With increasing LbHα the AGN hosts become bluer and less luminous than NEGs. The implied increasing star formation rate with LbHα is consistent with the relation for SDSS type 2 AGN of similar bolometric luminosity. (5) The optical-UV SED of the more luminous AGN shows a small dispersion, consistent with dust reddening of a blue SED, as expected for thermal thin accretion disc emission. (6) There is a rather tight relation between ? and LbHα, which provides a useful probe for unobscured (true) type 2 AGN. (7) The primary parameter that drives the X-ray to UV emission ratio is luminosity, rather than MBH or L/LEdd.

  9. Type 1 AGN at low z. I. Emission properties

    NASA Astrophysics Data System (ADS)

    Stern, J.; Laor, A.

    2012-07-01

    We analyze the emission properties of a new sample of 3 596 type 1 AGN, selected from the SDSS DR7 based on the detection of broad Hα emission. The sample extends over a broad Hα luminosity LbHα of 1040-1044 erg s-1 and a broad Hα FWHM of 1 000-25 000 km s-1, which covers the range of black hole mass 106 < MBH/Modot < 109.5 and luminosity in Eddington units 10-3 < L/LEdd < 1. We combine ROSAT, GALEX and 2MASS observations to form the SED from 2.2 μm to 2 keV. We find the following: 1. The distribution of the Hα FWHM values is independent of luminosity. 2. The observed mean optical-UV SED is well matched by a fixed shape SED of luminous quasars, which scales linearly with LbHα, and a host galaxy contribution. 3. The host galaxy r-band (fibre) luminosity function follows well the luminosity function of inactive non-emission line galaxies (NEG), consistent with a fixed fraction of ~ 3% of NEG hosting an AGN, regardless of the host luminosity. 4. The optical-UV SED of the more luminous AGN shows a small dispersion, consistent with dust reddening of a blue SED, as expected for thermal thin accretion disc emission. 5. There is a rather tight relation of νLν(2 keV) and LbHα, which provides a useful probe for unobscured (true) type 2 AGN.

  10. The nature and origin of Narrow Line AGN activity in a sample of isolated SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Plauchu-Frayn, I.; Islas-Islas, J. M.; Ortega-Minakata, R. A.; Neri-Larios, D. M.; Andernach, H.

    2011-10-01

    We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) amounts to 64% of the galaxies. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torres-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. The NLAGNs in our sample are consistent with a scaled-down or powered-down versions of quasars and Broad Line AGNs.

  11. Type 1 AGN at low z - III. The optical narrow-line ratios

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Laor, Ari

    2013-05-01

    We present the optical narrow-line ratios in a Sloan Digital Sky Survey (SDSS) based sample of 3175 broad Hα selected type 1 active galactic nuclei (AGN), and explore their positions in the BPT diagrams as a function of the AGN and the host properties. We find the following: (1) the luminosities of all measured narrow lines (Hα, Hβ, [O III], [N II], [S II], [O I]) show a Baldwin relation relative to the broad Hα luminosity LbHα, with slopes in the range of 0.53-0.72. (2) About 20 per cent of the type 1 AGN reside within the `Composite' and `star-forming' (SF) regions of the Baldwin, Phillips & Terlevich (BPT) diagrams. These objects also show excess narrow Hα and ultraviolet (UV) luminosities, for their LbHα, consistent with contribution from star formation which dominates the narrow-lines emission, as expected from their positions in the BPT diagrams. (3) The type 1 which reside within the AGN region in the BPT diagrams, are offset to lower [S II]/Hα and [N II]/Hα luminosity ratios, compared to type 2 AGN. This offset is a selection effect, related to the lower AGN/host luminosity selection of the type 2 AGN selected from the SDSS galaxy sample. (4) The [N II]/Hα and [N II]/[S II] ratios in type 1 AGN increase with the host mass, as expected if the mass-metallicity relation of quiescent galaxies holds for the AGN narrow-line region (NLR). (5) The broad lines optical Fe II is higher for a higher [N II]/Hα, at a fixed Lbol and Eddington ratio L/LEdd. This suggests that the broad line region metallicity is also related to the host mass. (6) The fraction of AGN which are low-ionization nuclear emission-line regions (LINERs) increases sharply with decreasing L/LEdd. This fraction is the same for type 1 and type 2 AGN. (7) The BPT position is unaffected by the amount of dust extinction of the optical-UV continuum, which suggests that the extincting dust resides on scales larger than the NLR.

  12. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  13. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not

  14. Iron Line Diagnostics of Narrow Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Nousek, John A.

    1996-05-01

    This report describes the activities at Penn State University supported by NASA Grant NAG5-2528, 'Iron Line Diagnostics of Narrow Emission Line Galaxies'. The aim of this investigation was to accurately measure the iron (Fe K) line emission in two X-ray selected Seyfert 2 galaxies (NGC 2992 and MCG-5-23-16). The astrophysics being probed was to determine whether the Fe line was narrow, broad or both. The broad line component is very important as a probe of the nature of the innermost accretion onto the central engine in AGN's.

  15. EVOLUTION OF [O III] {lambda}5007 EMISSION-LINE PROFILES IN NARROW EMISSION-LINE GALAXIES

    SciTech Connect

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] {lambda}5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  16. Evolution of [O III] λ5007 Emission-line Profiles in Narrow Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] λ5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  17. THE LICK AGN MONITORING PROJECT: REVERBERATION MAPPING OF OPTICAL HYDROGEN AND HELIUM RECOMBINATION LINES

    SciTech Connect

    Bentz, Misty C.; Walsh, Jonelle L.; Barth, Aaron J.; Thornton, Carol E.; Yoshii, Yuzuru; Sakata, Yu; Minezaki, Takeo; Woo, Jong-Hak; Malkan, Matthew A.; Wang, Xiaofeng; Steele, Thea N.; Silverman, Jeffrey M.; Serduke, Frank J. D.; Li, Weidong; Lee, Nicholas; Treu, Tommaso; Street, Rachel A.; Hidas, Marton G.; Hiner, Kyle D.; Greene, Jenny E.

    2010-06-20

    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3 m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range {approx}10{sup 6}-10{sup 7} M{sub sun} and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad H{beta} emission, which we have previously reported. We present here the light curves for the H{alpha}, H{gamma}, He II {lambda}4686, and He I {lambda}5876 emission lines and the time lags for the emission-line responses relative to changes in the continuum flux. Combining each emission-line time lag with the measured width of the line in the variable part of the spectrum, we determine a virial mass of the central supermassive black hole from several independent emission lines. We find that the masses are generally consistent within the uncertainties. The time-lag response as a function of velocity across the Balmer line profiles is examined for six of the AGNs. We find similar responses across all three Balmer lines for Arp 151, which shows a strongly asymmetric profile, and for SBS 1116+583A and NGC 6814, which show a symmetric response about zero velocity. For the other three AGNs, the data quality is somewhat lower and the velocity-resolved time-lag response is less clear. Finally, we compare several trends seen in the data set against the predictions from photoionization calculations as presented by Korista and Goad. We confirm several of their predictions, including an increase in responsivity and a decrease in the mean time lag as the excitation and ionization level for the species increases. Specifically, we find the time lags of the optical

  18. Constraints on Black Hole Spin in a Sample of Broad Iron Line AGN

    NASA Technical Reports Server (NTRS)

    Brenneman, Laura W.; Reynolds, Christopher S.

    2008-01-01

    We present a uniform X-ray spectral analysis of nine type-1 active galactic nuclei (AGN) that have been previously found to harbor relativistically broadened iron emission lines. We show that the need for relativistic effects in the spectrum is robust even when one includes continuum "reflection" from the accretion disk. We then proceed to model these relativistic effects in order to constrain the spin of the supermassive black holes in these AGN. Our principal assumption, supported by recent simulations of geometrically-thin accretion disks, is that no iron line emission (or any associated Xray reflection features) can originate from the disk within the innermost stable circular orbit. Under this assumption, which tends to lead to constraints in the form of lower limits on the spin parameter, we obtain non-trivial spin constraints on five AGN. The spin parameters of these sources range from moderate (a approximates 0.6) to high (a > 0.96). Our results allow, for the first time, an observational constraint on the spin distribution function of local supermassive black holes. Parameterizing this as a power-law in dimensionless spin parameter (f(a) varies as absolute value of (a) exp zeta), we present the probability distribution for zeta implied by our results. Our results suggest 90% and 95% confidence limits of zeta > -0.09 and zeta > -0.3 respectively.

  19. First Constraints on Black Hole Spin in Broad Iron Line AGN

    NASA Astrophysics Data System (ADS)

    Brenneman, Laura

    2006-12-01

    Black holes are arguably the simplest objects in nature, with an ability to be completely defined by two mathematical quantities: mass and spin. Spin, being a general relativistic effect, is the more difficult to discern of the two. One of the most promising and robust methods for constraining this quantity relies on modeling the relativistically altered shape of the iron-K line emitted from the accretion disk around the black hole. With this in mind, I have expanded upon previous emission line model codes to create a new relativistic emission line model, called kerrdisk, which allows the black hole spin to be fit as a free parameter. This allows us to robustly constrain the angular momentum of a black hole for the first time. Herein I present the results of spectral fitting of this model to several AGN with robustly observed broad iron lines in an effort to perform the very first statistically robust study of black hole spin distribution in these types of sources. This is a crucial first step toward taking a census of black hole spin in both AGN and GBHCs. I gratefully acknowledge funding from NSF grant AST0205990, which has contributed to this research.

  20. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; D'Ammando, F.; Escande, L.; Fegan, S. J.; Filippenko, A. V.; Finke, J. D.; Fuhrmann, L.; Fukazawa, Y.; Hays, E.; Healey, S. E.; Ikejiri, Y.; Itoh, R.; Kawabata, K. S.; Komatsu, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  1. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  2. OT1_pgandhi_1: What inflates the torus? Probing the physical properties of geometrically-thick buried AGN with high J CO lines

    NASA Astrophysics Data System (ADS)

    Gandhi, P.

    2010-07-01

    The most significant new population of active galactic nuclei (AGN) discovered in recent years is the 'buried AGN' population, uncovered by the Swift satellite. Sensitive X-ray spectroscopy shows characteristics of heavily obscured AGN in these sources, in addition to a very low scattering fraction of low energy photons, which is interpreted as a result of the AGN being buried in dust and gas tori which have an atypically high geometrical thickness. Comprising up to 20 per cent of the entire AGN population, this class constitutes a very important new family of sources, which may be at an interesting evolutionary phase in the AGN life cycle. Yet, very little is known about them, and usual isotropic indicators such as the optical [OIII] forbidden emission line fail to probe their intrinsic powers. The geometrically thick torus picture can result in 1) high gas and dust masses in the tori; 2) increased velocity dispersions and elevated temperatures and pressures; 3) a broad-band spectral energy distribution dominated by cool optically-thick clouds. Far infrared lines provide excellent probes of the physical conditions in the torus, and we intend to use several high J rotational CO lines to test the above picture with Herschel for the first time on several buried AGN for which detailed X-ray spectroscopy exists. These observations will also enable us to search for dynamical signatures of motion in the torus.

  3. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  4. Spectral classification of emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, M.; Pindao, M.; Maeder, A.; Kunth, D.

    2000-03-01

    The main goal of this work is to further investigate the classification of emission-line galaxies from the ``Spectrophotometric Catalogue of H II galaxies'' by Terlevich et al. (1991) in a homogeneous and objective way, using the three line-ratio diagrams, called diagnostic diagrams, of Veilleux & Osterbrock (1987). On the basis of the resulting catalogue, we critically discuss the classification methods in the optical range. In particular we compare our classification scheme to the one done by Rola et al. (1997) which is efficient for the classification of redshifted galaxies. We also propose a new diagnostic diagram involving the known intensity ratio R23=([O II],l 3727+[O III] l 4959+{[O III] l 5007)/Hb which appears to be a very good criterion allowing to discriminate the Seyfert 2 from H ii galaxies. The revised catalogue including 314 narrow-emission-line galaxies contains H II galaxies, Seyfert 2 galaxies, Low Ionization Nuclear Emission-Line Regions (hereafter LINERs) galaxies and some particular types of galaxies with the most intriguing ones, called ``ambiguous'', due to the ambiguity of their location in the diagnostic diagrams. These galaxies appear as H II galaxies and as active galactic nuclei (hereafter AGNs) in different diagrams of Veilleux & Osterbrock and constitute certainly a sample of particularly interesting candidates for a thorough study of connections between starbursts and AGNs. Available in electronic form only via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  5. ALMA 0.1–0.2 arcsec Resolution Imaging of the NGC 1068 Nucleus: Compact Dense Molecular Gas Emission at the Putative AGN Location

    NASA Astrophysics Data System (ADS)

    俊, Masatoshi Imanishi (今 西 昌; 郎, Kouichiro Nakanishi (中 西 康 一; 磨, Takuma Izumi (泉 拓

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO+ J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3–2 emission lines were detected for HCN and HCO+ across the field of view.

  6. ALMA 0.1-0.2 arcsec Resolution Imaging of the NGC 1068 Nucleus: Compact Dense Molecular Gas Emission at the Putative AGN Location

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    2016-05-01

    We present the results of our ALMA Cycle 2 high angular resolution (0.″1-0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3-2 and HCO+ J = 3-2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5-2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3-2 emission lines were detected for HCN and HCO+ across the field of view.

  7. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.

    2016-06-01

    We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.

  8. Iron K Line Variability in the Low-Luminosity AGN NGC 4579

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.; Yaqoob, Tahir; Kunieda, Hideyo; Misaki, Kazutami; Serlemitsos, Peter J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    We present results of new ASCA observations of the low-luminosity AGN (LLAGN) NGC 4579 obtained in 1998 December 18 and 28, and we report on detection of variability of an iron K emission line. The X-ray luminosities in the 2-10 keV band for the two observations are nearly identical, L(sub X) approximately = 2 x 10(exp 4l) ergs/s, but they are approximately 35% larger than that measured in 1995 July by Terashima et al. (1998). An Fe K emission line is detected at 6.39 +/- 0.09 keV (source rest frame) which is lower than the line energy 6.73(sup +0.13, sub -0.12) keV in the 1995 observation. If we fit the Fe lines with a blend of two Gaussians centered at 6.4 keV and 6.73 KeV, the intensity of the 6.7 keV line decreased, while the intensity of the 6.4 keV line increased, within an interval of 3.5 years. This variability rules out thermal plasmas in the host galaxy as the origin of the ionized Fe line in this LLAGN. The detection and variability of the 6.4 keV line suggest that an optically thick standard accretion disk is present and subtends a large solid angle viewed from the nucleus at the Eddington ratio of L(sub Bol)/L(sub Eddington) approximately 2 x 10(exp -3) (Ho 1999). A broad disk-line profile is not clearly seen and the structure of the innermost part of accretion disk remains unclear.

  9. AGN proximity zone fossils and the delayed recombination of metal lines

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Benjamin D.; Schaye, Joop

    2013-09-01

    We model the time-dependent evolution of metal-enriched intergalactic and circumgalactic gas exposed to the fluctuating radiation field from an active galactic nucleus (AGN). We consider diffuse gas densities (nH = 10-5-10-2.5 cm-3) exposed to the extra-galactic background (EGB) and initially in thermal equilibrium (T ˜ 104-104.5 K). Once the proximate AGN field turns on, additional photo-ionization rapidly ionizes the HI and metals. The enhanced AGN radiation field turns off after a typical AGN lifetime (τAGN = 1-20 Myr) and the field returns to the EGB intensity, but the metals remain out of ionization equilibrium for time scales that can significantly exceed τAGN. We define this phase as the AGN proximity zone `fossil' phase and show that high ionization stages (e.g. OVI, NeVIII, MgX) are in general enhanced, while the abundances of low ions (e.g. CIV, OIV, MgII) are reduced. In contrast, HI re-equilibrates rapidly (≪τAGN) owing to its low neutral fraction at diffuse densities. We demonstrate that metal column densities of intervening gas observed in absorption in quasar sight lines are significantly affected by delayed recombination for a wide range of densities, metallicities, AGN strengths, AGN lifetimes and AGN duty cycles. As an example, we show that a fossil zone model can simultaneously reproduce the observed NeVIII, MgII, HI and other metal columns of the z = 0.927 PG1206+259 absorption system observed by Tripp et al. using a single, T ˜ 104 K phase model. At low redshift even moderate-strength AGN that are off for 90 per cent of the time could significantly enhance the high-ion metal columns in the circum-galactic media of galaxies observed without active AGN. Fossil proximity zones may be particularly important during the quasar era, z ˜ 2-5. Indeed, we demonstrate that at these redshifts a large fraction of the metal-enriched intergalactic medium may consist of out-of-equilibrium fossil zones. AGN proximity zone fossils allow a whole new class

  10. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  11. First systematic search for oxygen-line blobs at high redshift: Uncovering AGN feedback and star formation quenching

    SciTech Connect

    Yuma, Suraphong; Ouchi, Masami; Ono, Yoshiaki; Momose, Rieko; Drake, Alyssa B.; Simpson, Chris; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Akiyama, Masayuki; Mori, Masao; Umemura, Masayuki

    2013-12-10

    We present the first systematic search for extended metal-line [O II] λλ3726, 3729 nebulae, or [O II] blobs (O IIBs), at z = 1.2 using deep narrowband imaging with a survey volume of 1.9 × 10{sup 5} Mpc{sup 3} on the 0.62 deg{sup 2} sky of Subaru-XMM Deep Survey (SXDS) field. We discover a giant O IIB, called 'O IIB 1', with a spatial extent over ∼75 kpc at a spectroscopic redshift of z = 1.18, and also identify a total of 12 O IIBs with a size of >30 kpc. Our optical spectrum of O IIB 1 presents [Ne V] λ3426 line at the 6σ level, indicating that this object harbors an obscured type-2 active galactic nucleus (AGN). The presence of gas outflows in this object is suggested by two marginal detections of Fe II λ2587 absorption and Fe II* λ2613 emission lines both of which are blueshifted at as large as 500-600 km s{sup –1}, indicating that the heating source of O IIB 1 is AGN or associated shock excitation rather than supernovae produced by starbursts. The number density of O IIB 1-type giant blobs is estimated to be ∼5 × 10{sup –6} Mpc{sup –3} at z ∼ 1.2, which is comparable with that of AGNs driving outflow at a similar redshift, suggesting that giant O IIBs are produced only by AGN activity. On the other hand, the number density of small O IIBs, 6 × 10{sup –5} Mpc{sup –3}, compared to that of z ∼ 1 galaxies in the blue cloud in the same M{sub B} range, may imply that 3% of star-forming galaxies at z ∼ 1 are quenching star formation through outflows involving extended [O II] emission.

  12. Quantifying the impact of AGN and nebular emission on stellar population properties with REBETIKO

    NASA Astrophysics Data System (ADS)

    Cardoso, L. S. M.; Gomes, J. M.; Papaderos, P.

    2016-06-01

    Spectral synthesis enables the reconstruction of the star formation and chemical evolution histories (SFH & CEH) of a galaxy that are encoded in its spectral energy distribution (SED). Most state-of-the-art population synthesis codes however consider only purely stellar emission and are hence inadequate for modelling studies of galaxies where non-stellar emission components contribute significantly to the SED. This work combines evolutionary and population synthesis techniques to quantify the impact of active galactic nucleus (AGN) and nebular emission on the determination of the stellar population properties in galaxies. We have developed an evolutionary synthesis code called REBETIKO - Reckoning galaxy Emission By means of Evolutionary Tasks with Input Key Observables - to compute and study the time evolution of the SED of AGN-hosts and starburst galaxies. Our code takes into account the main ingredients of a galaxy's SED (e.g. non-thermal emission and/or nebular continuum and lines) for various commonly used parameterizations of the SFH, such as instantaneous burst, constant, exponentially decreasing, and gradually increasing peaking at a redshift between 1-10. Synthetic SEDs computed with REBETIKO have been subsequently fitted with the STARLIGHT population synthesis code (PSC) which can be regarded as representative for currently available state-of-the-art (i.e. purely stellar) PSCs. The objective is to study the impact of non-stellar SED components on the recovery of the true total stellar mass M_{star} and SFH of a galaxy, as well as other evolutionary properties, such as CEH and light- and mass-weighted mean stellar age and metallicity. We find that purely stellar fits in galaxies with a strong non-stellar continuum (e.g. Seyfert and/or starburst galaxies) can for instance overestimate M_{star} by up to 3 orders of magnitude, while the mean stellar age and metallicity can deviate from their true values up to 2 and 4 dex, respectively. These results imply

  13. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1AGN suggests that the merger of a binary black hole can take longer than 1 Gyr. All AGNs hosted by merging galaxies have companions at distances ⩽150 kpc. The NLRs have large sizes (10 kpc < r < 100 kpc) and consist of compact clumps with considerable relative velocities between components (∼200–650 km s{sup −1}). We detect broad, predominantly blue, wings with velocities up to ∼1500 km s{sup −1} in [OIII], indicative of powerful outflows. The outflows are compact (<5 kpc) and co-spatial with nuclear regions showing considerable reddening, consistent with enhanced star formation. One source shows an offset between gas and stellar kinematics, consistent with either a bipolar flow or a counter-rotating gas disk. In all other sources, the ionized gas

  14. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  15. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  16. THE PREVALENCE OF NARROW OPTICAL Fe II EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Dong Xiaobo; Wang Jianguo; Wang Tinggui; Wang Huiyuan; Zhou Hongyan; Ho, Luis C.; Fan Xiaohui

    2010-10-01

    From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate-statistically for the first time-that narrow optical Fe II emission lines, both permitted and forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow Fe II-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.

  17. CORONAL EMISSION LINES AS THERMOMETERS

    SciTech Connect

    Judge, Philip G.

    2010-01-10

    Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

  18. The emission line - continuum connection in galaxies

    NASA Astrophysics Data System (ADS)

    Sodre, Laerte; Albernaz-Sirico, Ana Carolina

    2015-08-01

    Star-forming galaxies with a blue continuum tend to present prominent emission lines, whereas in red galaxies emission lines are associated mostly to nuclear activity or to certain stellar populations, like post-AGB stars. In this work we have used tools of machine learning to investigate how theemission line equivalent widths of galaxies are related to their optical continuum. From the analysis of a sample of high S/N spectra of SDSS/DR9 we show that indeed it is possible to estimate with good accuracy the equivalent width of the most intense emission lines from galaxy continuum information only for star-forming galaxies and AGNs (LINERS and Seyfer 2 emitters) by using simple relationships (linear and/or polynomial models) between the EWs and the relative flux at certain wavelengths. An important motivation for this work is to produce realistic spectra to test the data reduction pipelines of the new generation of galaxy surveys, like J-PAS and PFS/SuMIRe.

  19. Galaxy evolution across the optical emission-line diagnostic diagrams?

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Fuhrmann, L.; García-Marín, M.; Eckart, A.; Zuther, J.; Hopkins, A. M.

    2015-01-01

    Context. The discovery of the M - σ relation, the local galaxy bimodality, and the link between black-hole and host-galaxy properties have raised the question of whether active galactic nuclei (AGN) play a role in galaxy evolution. AGN feedback is one of the biggest observational challenges of modern extragalactic astrophysics. Several theoretical models implement AGN feedback to explain the observed galaxy luminosity function and, possibly, the color and morphological transformation of spiral galaxies into passive ellipticals. Aims: For understanding the importance of AGN feedback, a study of the AGN populations in the radio-optical domain is crucial. A mass sequence linking star-forming galaxies and AGN has already been noted in previous works, and it is now investigated as a possible evolutionary sequence. Methods: We observed a sample of 119 intermediate-redshift (0.04 ≤ z< 0.4) SDSS-FIRST radio emitters with the Effelsberg 100-m telescope at 4.85 and 10.45 GHz and obtained spectral indices. The sample includes star-forming galaxies, composite galaxies (with mixed contribution to line emission from star formation and AGN activity), Seyferts, and low ionization narrow emission region (LINER) galaxies. With these sources we search for possible evidence of spectral evolution and a link between optical and radio emission in intermediate-redshift galaxies. Results: We find indications of spectral index flattening in high-metallicity star-forming galaxies, composite galaxies, and Seyferts. This "flattening sequence" along the [NII]-based emission-line diagnostic diagram is consistent with the hardening of galaxy ionizing field, thanks to nuclear activity. After combining our data with FIRST measurements at 1.4 GHz, we find that the three-point radio spectra of Seyferts and LINERs show substantial differences, which are attributable to small radio core components and larger (arcsecond sized) jet/lobe components, respectively. A visual inspection of FIRST images

  20. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; Cohen, Seth; Belini, Andrea; Holwerda, Benne W.; Straughn, Amber; Mechtley, Matthew

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  1. THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hbeta

    SciTech Connect

    Bentz, Misty C.; Walsh, Jonelle L.; Barth, Aaron J.; Baliber, Nairn; Bennert, Vardha Nicola; Greene, Jenny E.; Hidas, Marton G.; Canalizo, Gabriela; Hiner, Kyle D.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Lee, Nicholas; Li, Weidong; Serduke, Frank J. D.; Silverman, Jeffrey M.; Steele, Thea N.; Gates, Elinor L.; Malkan, Matthew A.; Minezaki, Takeo; Sakata, Yu

    2009-11-01

    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range approx10{sup 6}-10{sup 7} M {sub sun} and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission. We present here the light curves for all the objects in this sample and the subsequent Hbeta time lags for the nine objects where these measurements were possible. The Hbeta lag time is directly related to the size of the broad-line region (BLR) in AGNs, and by combining the Hbeta lag time with the measured width of the Hbeta emission line in the variable part of the spectrum, we determine the virial mass of the central supermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al., which brings the masses determined by reverberation mapping into agreement with the local M {sub BH}-sigma{sub *}relationship for quiescent galaxies. We also examine the time lag response as a function of velocity across the Hbeta line profile for six of the AGNs. The analysis of four leads to rather ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting BLR clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple gravitational infall model. Further investigation will be necessary to fully understand the constraints placed on the physical models of the BLR by the velocity-resolved response

  2. Eddington Ratio Distribution of X-Ray-selected Broad-line AGNs at 1.0 < z < 2.2

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-01

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Collimation and scattering of the AGN emission in the Sombrero galaxy

    NASA Astrophysics Data System (ADS)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-10-01

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy.

  4. On the emitting region of X-ray fluorescent lines around Compton-thick AGN

    NASA Astrophysics Data System (ADS)

    Liu, Jiren

    2016-06-01

    X-ray fluorescent lines are unique features of the reflection spectrum of the torus when irradiated by the central active galactic nuclei (AGN). Their intrinsic line width can be used to probe the line-emitting region. Previous studies have focused on the Fe K α line at 6.4 keV, which is the most prominent fluorescent line. These studies, however, are limited by the spectral resolution of currently available instruments, the best of which is ˜1860 km s-1 afforded by the Chandra High-Energy Grating (HEG). The HEG spectral resolution is improved by a factor of 4 at 1.74 keV, where the Si K α line is located. We measured the full width at half-maximum of the Si K α line for Circinus, Mrk 3, and NGC 1068, which are 570 ± 240, 730 ± 320, and 320 ± 280 km s-1, respectively. They are 3-5 times smaller than those measured with the Fe K α line previously. It shows that the intrinsic widths of the Fe K α line are most likely to be overestimated. The measured widths of the Si K α line put the line-emitting region outside the dust sublimation radius in these galaxies. It indicates that for Compton-thick AGN, the X-ray fluorescence material are likely to be the same as the dusty torus emitting in the infrared band.

  5. RXTE, Chandra, and XMM Spectroscopy of the Fe-K Lines and Compton Reflection in Type 1 AGN

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir

    2004-01-01

    This award pertains to an RXTE observation of the Seyfert 1 galaxy Akn 120. The purpose of the observation was to measure the Fe-K emission line and the Compton reflection continuum with RXTE, simultaneously with Chandra and XMM. Such measurements can severely constrain accretion disk models of the central engine since the Fe-K line emission and Compton reflection are intimately related in terms of the physics of X-ray reprocessing in optically-thick matter. Akn 120 was selected for this study because it is amongst the brightest AGN in its class and has a particularly strong and apparently broad Fe-K emission line. The results could then also be used to lay the ground work for even higher resolution studies with Astro-E2. Unfortunately, the Chandra observation was not performed but a contemporaneous XMM observation was performed by another group of researchers. Those data recently became public and can be compared with the RXTE data. In addition, non-contemporaneous observations with other missions do still provide additional important constraints (for example any non-varying line or continuum emission components can be established and used to reject or preserve various model scenarios). We analyzed the RXTE data and found a strong Fe-K emission line (resolved even with the poor resolution of RXTE), and a strong Compton-reflection continuum (see Fig. l(a)). We found that the results of archival ASCA data on Akn 120 had not been published in the literature so we analyzed the ASCA data too, in order to compare with the new RXTE data. Fig. l(b) shows that the ASCA data also reveal a strong, broad FeK emission line (but the data are not sensitive to the Compton-reflection continuum). We compared our spectral fitting results for the RXTE and ASCA data with the results from XMM and from previous RXTE observations.

  6. A study for testing the Kerr metric with AGN iron line eclipses

    NASA Astrophysics Data System (ADS)

    Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo

    2016-04-01

    Recently, two of us have studied iron line reverberation mapping to test black hole candidates, showing that the time information in reverberation mapping can better constrain the Kerr metric than the time-integrated approach. Motivated by this finding, here we explore the constraining power of another time-dependent measurement: an AGN iron line eclipse. An obscuring cloud passes between the AGN and the distant observer, covering different parts of the accretion disk at different times. Similar to the reverberation measurement, an eclipse might help to better identify the relativistic effects affecting the X-ray photons. However, this is not what we find. In our study, we employ the Johannsen-Psaltis parametrisation, but we argue that our conclusions hold in a large class of non-Kerr metrics. We explain our results pointing out an important difference between reverberation and eclipse measurements.

  7. Dependence of the broad Fe Kα line on the physical parameters of AGN

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Yuan, Weimin; Lu, Youjun; Carrera, Francisco J.; Falocco, Serena; Dong, Xiao-Bo

    2016-08-01

    In this paper, the dependence of the broad Fe Kα line on the physical parameters of AGN, such as the black hole mass MBH, accretion rate (equivalently represented by Eddington ratio λEdd), and optical classification, is investigated by applying the X-ray spectra stacking method to a large sample of AGN which have well measured optical parameters. A broad line feature is detected (>3σ) in the stacked spectra of the high λEdd sub-sample (log λEdd > -0.9). The profile of the broad line can be well fitted with relativistic broad line model, with the line energy consistent with highly ionized Fe Kα line (i.e. Fe XXVI). A model consisting of multiple narrow lines cannot be ruled out, however. We found hints that the Fe K line becomes broader as the λEdd increases. No broad line feature is shown in the sub-sample of broad-line Seyfert 1 (BLS1) galaxies and in the full sample, while a broad line might be present, though at low significance, in the sub-sample of narrow-line Seyfert 1 (NLS1) galaxies. We find no strong dependence of the broad line on black hole masses. Our results indicate that the detection/properties of the broad Fe Kα line may strongly depend on λEdd, which can be explained if the ionization state and/or truncation radius of the accretion disc changes with λEdd. The non-detection of the broad line in the BLS1 sub-sample can be explained if the the average EW of the relativistic Fe Kα line is weak or/and the fraction of sources with relativistic Fe Kα line is small in BLS1 galaxies.

  8. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. II. Optically Elusive X-Ray AGNs

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-06-01

    In the Chandra-COSMOS (C-COSMOS) survey, we have looked for X-ray-selected active galactic nuclei (AGNs), which are not detected as such in the optical, the so-called elusive AGNs. A previous study based on XMM-Newton and Sloan Digital Sky Survey observations has found a sample of 31 X-ray AGNs optically misclassified as star-forming (SF) galaxies at z\\lt 0.4, including 17 elusive Sy2s. Using Chandra observations provides a sample of fainter X-ray sources and so, for a given X-ray luminosity, extends to higher redshifts. To study the elusive Sy2s in the C-COSMOS field, we have removed the NLS1s that contaminate the narrow-line sample. Surprisingly, the contribution of NLS1s is much lower in the C-COSMOS sample (less than 10% of the optically misclassified X-ray AGNs) than in Pons & Watson. The optical misclassification of the X-ray AGNs ({L}{{X}}\\gt {10}42 {erg} {{{s}}}-1) can be explained by the intrinsic weakness of these AGNs, in addition to, in some cases, optical dilution by the host galaxies. Interestingly, we found the fraction of elusive Sy2s (narrow emission-line objects) optically misclassified as SF galaxies up to z∼ 1.4 to be 10% ± 3% to 17% ± 4%, compared to the 6% ± 1.5% of the Pons & Watson work (up to z∼ 0.4). This result seems to indicate an evolution with redshift of the number of elusive Sy2s.

  9. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  10. The Importance of Winds for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Fischer, T. C.; Gagne, J.

    2014-01-01

    Active galactic nuclei (AGN) are fed by accretion of matter onto supermassive black holes (SMBHs), generating huge amounts of radiation from very small volumes. AGN also provide feedback to their environments via mass outflows of ionized gas, which could play a critical role in the formation of large-scale structure in the early Universe, chemical enrichment of the intergalactic medium, and self-regulation of SMBH and galactic bulge growth. We provide an update on our research on the winds in nearby moderate-luminosity AGN, In particular, we concentrate on winds that occur on relatively large scales (hundreds of parsecs) that are revealed through spatially resolved HST spectra of emission-line gas in the narrow line regions (NLRs) of nearby AGN. We discuss the techniques for measuring the mass outflow rates and kinetic luminosities of these AGN winds and gauge their importance for providing significant AGN feedback.

  11. Exploring Dual and Binary AGN via Radio Emission

    NASA Astrophysics Data System (ADS)

    Burke Spolaor, Sarah; Lazio, J.

    2012-05-01

    Dual and binary supermassive black holes (SMBHs) are thought to form as a direct result of a major galaxy merger. The discovery of late-stage SMBH pairs could critically inform upcoming gravitational wave science and cosmological formation models, and could provide fascinating studies of post-merger dynamics and merger-induced SMBH growth. However, it has been notoriously difficult to identify clear electromagnetic markers for dual and binary SMBHs in late-stage merger systems. Accordingly, few definitive discoveries of paired SMBHs have yet been made, with only a handful of known systems at projected separations below 1kpc. We will review the unique contributions that radio imaging observations can make to this field: particularly in the search for new systems, the confirmation of candidate small-orbit binary systems, and the potential for multi-messenger gravitational wave science when combined with pulsar timing methods. We will also provide an update on recent radio searches for binary AGN. We acknowledge that a portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. On-line Java Tools for Analyzing AGN Outflows

    NASA Astrophysics Data System (ADS)

    Chamberlain, Carter

    2011-10-01

    We present six interactive programs created to aid in the analysis of outflows from Active Galactic Nuclei. 1. An interactive plot showing the ionic fraction versus the ionization parameter, for each ion of several elements and for different SEDs. 2. An interactive plot showing the excitation ratio versus electron number density for several elements. 3. A tool for finding the ionization parameter solution from the measured column densities. The user provides the measured ionic column densities and chooses an SED. Then the program displays the locus of possible models in a plot of Hydrogen column density versus ionization parameter. The program also calculates and overlays a chi-squared map for one- or two-ionization parameter solutions. 4. A spectral identification tool displays a spectrum, and allows the user to interactively identify the absorption features. This will give the redshift of each outflow and intervening system along the line of sight to the quasar. 5. Two calculators a) Calculate the velocity of an outflow given the systemic redshift and the absorber redshift. b) Convert GALEX flux to units of 10-15ergs/s/cm^2/å.

  13. Plasma simulations of emission line regions in high energy environments

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  14. AGN Zoo and Classifications of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  15. Quantifying correlations between galaxy emission lines and stellar continua

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Yip, Ching-Wa; Szalay, Alexander S.; Csabai, István

    2016-03-01

    We analyse the correlations between continuum properties and emission line equivalent widths of star-forming and active galaxies from the Sloan Digital Sky Survey. Since upcoming large sky surveys will make broad-band observations only, including strong emission lines into theoretical modelling of spectra will be essential to estimate physical properties of photometric galaxies. We show that emission line equivalent widths can be fairly well reconstructed from the stellar continuum using local multiple linear regression in the continuum principal component analysis (PCA) space. Line reconstruction is good for star-forming galaxies and reasonable for galaxies with active nuclei. We propose a practical method to combine stellar population synthesis models with empirical modelling of emission lines. The technique will help generate more accurate model spectra and mock catalogues of galaxies to fit observations of the new surveys. More accurate modelling of emission lines is also expected to improve template-based photometric redshift estimation methods. We also show that, by combining PCA coefficients from the pure continuum and the emission lines, automatic distinction between hosts of weak active galactic nuclei (AGNs) and quiescent star-forming galaxies can be made. The classification method is based on a training set consisting of high-confidence starburst galaxies and AGNs, and allows for the similar separation of active and star-forming galaxies as the empirical curve found by Kauffmann et al. We demonstrate the use of three important machine learning algorithms in the paper: k-nearest neighbour finding, k-means clustering and support vector machines.

  16. The galactic dynamo, the helical force free field and the emissions of AGN

    SciTech Connect

    Colgate, S.; Li, Hui

    1997-05-01

    We present a theory relating the central galactic black hole (BH) formation to the galactic dynamo through an accretion disk. The associated AGN emissions and the collimated radio sources are then a result of the dynamo process. A unified theory of quasar and BL-Lac formation (hereafter AGN) starts with the collapse of damped Lyman-alpha clouds, presumably proto-galaxies, which then evolve to a central disk and black hole, (BH). An alpha - omega dynamo forms in this accretion disk where the augmentation of the poloidal field from the toroidal field depends upon star disk collisions. The winding number of the inner most orbit of the disk is so large, tilde 10 to the 11th power that the total gain of the dynamo is semi-infinite, and the original seed field of no consequence. The total magnetic flux produced is tilde 10000 times that of the galaxy, sufficient to explain the much larger flux of clusters. The semi-infinite gain of the dynamo implies that the field saturates at the dynamic stress so that most of the free energy of formation of the BH is carried off as magnetic energy in the form of a magnetic helix. The dissipation of this magnetic energy leads to the unique emission spectrum of AGN as well as the equally startling collimated radio and optical sources.

  17. Probing the gaseous halo of galaxies through non-thermal emission from AGN-driven outflows

    NASA Astrophysics Data System (ADS)

    Wang, Xiawei; Loeb, Abraham

    2015-10-01

    Feedback from outflows driven by active galactic nuclei (AGN) can affect the distribution and properties of the gaseous haloes of galaxies. We study the hydrodynamics and non-thermal emission from the forward outflow shock produced by an AGN-driven outflow. We consider a few possible profiles for the halo gas density, self-consistently constrained by the halo mass, redshift and the disc baryonic concentration of the galaxy. We show that the outflow velocity levels off at ˜ 103 km s- 1 within the scale of the galaxy disc. Typically, the outflow can reach the virial radius around the time when the AGN shuts off. We show that the outflows are energy-driven, consistent with observations and recent theoretical findings. The outflow shock lights up the haloes of massive galaxies across a broad wavelength range. For Milky Way mass haloes, radio observations by the Jansky Very Large Array and the Square Kilometre Array and infrared/optical observations by the James Webb Space Telescope and Hubble Space Telescope can detect the emission signal of angular size ˜8 arcsec from galaxies out to redshift z ˜ 5. Millimetre observations by the Atacama Large Millimeter/submillimeter Array are sensitive to non-thermal emission of angular size ˜18 arcsec from galaxies at redshift z ≲ 1, while X-ray observations by Chandra, XMM-Newton and the Advanced Telescope for High Energy Astrophysics are limited to local galaxies (z ≲ 0.1) with an emission angular size of ˜2 arcmin. Overall, the extended non-thermal emission provides a new way of probing the gaseous haloes of galaxies at high redshifts.

  18. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  19. X-Ray Emission from the Host Clusters of Powerful AGN

    NASA Astrophysics Data System (ADS)

    Hall, Patrick B.; Ellingson, Erica; Green, Richard F.

    1997-04-01

    We report the detection of X-ray emission from the host cluster of the unusual radio-quiet quasar \\1821\\ using the ROSAT HRI, and the non-detection of X-ray emission from the host cluster of the radio-loud quasar 3C 206 (3sigma \\ upper limit of 1.63 10(44) ergs s(-1) ) using the EINSTEIN HRI. The host cluster of \\1821\\ is one of the most X-ray luminous clusters known, with a rest-frame 0.1-2.4 keV luminosity of 3.74+/-0.57 h50(-2) 10(45) ergs s(-1) , %(\\qo=0.5), 38% of which is from a barely resolved cooling flow component. The cluster emission complicates interpretation of previous X-ray spectra of this field. In particular, the observed Fe Kalpha emission can probably be attributed entirely to the cluster and either the quasar is relatively X-ray quiet for its optical luminosity or the cluster has a relatively low temperature for its luminosity. We combine these data with the recent detection of X-ray emission from the host cluster of the `buried' radio-quiet quasar \\9104 (\\cite{fc95}), our previous upper limits for the host clusters of two z ~ 0.7 radio-loud quasars, and literature data on FR II radio galaxies. We compare this dataset to the predictions of three models for the presence and evolution of powerful AGN in clusters: the low-velocity-dispersion model, the low-ICM-density model, and the cooling flow model. Neither the low-ICM-density model nor the cooling flow model can explain all the observations. We suggest that strong interactions with gas-containing galaxies may be the only mechanism needed to explain the presence and evolution of powerful AGN in clusters, a scenario consistent with the far-IR and optical properties of the host galaxies studied here, all of which show some evidence for past interactions. However, the cooling flow model cannot be ruled out for at least some objects, and it is likely that both processes are at work in creating and fueling powerful AGN in clusters. Each scenario makes testable predictions for future

  20. Radio-Quiet Quasars in the VIDEO Survey: Evidence for AGN-powered radio emission below 1 mJy

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Haeussler, Boris; Maddox, Natasha

    2015-01-01

    Several lines of evidence suggest that the interaction between active galactic nucleus (AGN) activity and star formation is responsible for the co-evolution of black hole mass with galaxy bulge mass. Therefore studying this interplay is crucial to our understanding of galaxy formation and evolution. The new generation of radio surveys are able to play a key role in this area, as both processes produce radio emission.We use a combination of optical and near-infrared photometry to select a sample of 72 quasars from the VISTA Deep Extragalactic Observations (VIDEO) Survey, over 1 deg2. The depth of VIDEO allows us to study very low accretion rates and/or lower-mass black holes. 26% of the candidate quasar sample has been spectroscopically confirmed using the Southern African Large Telescope and the VIMOS VLT Deep Survey. We then use a radio-stacking technique to sample below the nominal flux-density threshold of existing Very Large Array data at 1.4 GHz. In agreement with other work, we show that a power-law fit to the radio number counts is inadequate, with an upturn in the counts being observed at these faint luminosities. Previous authors attribute this to an emergent star-forming population. However, by comparing radio emission from our quasars with that from a control sample of galaxies, we suggest that this emission is predominantly caused by accretion activity. Further support for an AGN origin is provided by a comparison of two independent estimates of star formation rate. These findings have important implications for modelling radio populations below 1 mJy, which is necessary for the development of the Square Kilometre Array.

  1. MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. EMISSION-LINE DIAGNOSTICS

    SciTech Connect

    Weaver, K. A.; Melendez, M.; Mushotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth, E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-06-20

    We compare mid-infrared emission-line properties from high-resolution Spitzer spectra of a hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) active galactic nuclei (AGNs) detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission lines, [O IV] 25.89 {mu}m, [Ne II] 12.81 {mu}m, [Ne III] 15.56 {mu}m, and [Ne V] 14.32/24.32 {mu}m, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations; however, six newly discovered BAT AGNs are under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT fluxes and luminosities suggests that the emission lines primarily arise in gas ionized by the AGNs. We also compare the mid-infrared emission lines in the BAT AGNs with those from published studies of ULIRGs, Palomar-Green quasars, star-forming galaxies, and LINERs. We find that the BAT AGN sample falls into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] ratios. These line ratios are lower in sources that have been previously classified in the mid-infrared/optical as AGNs than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGNs represent the main contribution to the observed line emission. These ratios represent a new emission line diagnostic for distinguishing between AGNs and star-forming galaxies.

  2. CO Line Emission from Compact Nuclear Starburst Disks around Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Armour, J. N.; Ballantyne, D. R.

    2012-06-01

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale (lsim 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J Upper >~ 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z <~ 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  3. Mid-infrared interferometry of 23 AGN tori: On the significance of polar-elongated emission

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Burtscher, L.; Tristram, K. R. W.; Meisenheimer, K.; Schartmann, M.

    2016-06-01

    Context. Detailed high-resolution studies of active galactic nuclei (AGN) with mid-infrared (MIR) interferometry have revealed parsec-sized dust emission that is elongated in the polar direction in four sources. Aims: Using a larger, coherently analyzed sample of AGN observed with MIR interferometry, we aim to identify elongated MIR emission in a statistical sample of sources. More specifically, we wish to determine if there is indeed a preferred direction of the elongation and whether this direction is consistent with a torus-like structure or with a polar emission. Methods: We investigated the significance of the detection of an elongated shape in the MIR emission by fitting elongated Gaussian models to the interferometric data at 12 μm. We paid special attention to (1) the uncertainties caused by an inhomogeneous (u,v) coverage; (2) the typical errors in the measurements; and (3) the spatial resolution achieved for each object. Results: From our sample of 23 sources, we are able to find elongated parsec-scale, MIR emission in five sources: three type 2s, one type 1i, and one type 1. Elongated emission in four of these sources has been published before; NGC 5506 is a new detection. The observed axis ratios are typically around 2 and the position angle of the 12 μm emission for all the elongated sources always seems to be closer to the polar axis of the system than to the equatorial axis. Two other objects, NGC 4507 and MCG-5-23-16, with reasonably well-mapped (u,v) coverage and good signal-to-noise ratios, appear to have a less elongated 12 μm emission. Conclusions: Our finding that sources showing elongated MIR emission are preferentially extended in polar direction sets strong constraints on torus models or implies that both the torus and NLR/outflow region have to be modeled together. In addition, models used for SED fitting will have to be revised to include emission from polar dust.

  4. WISE J233237.05-505643.5: A Double-Peaked Broad-Lined AGN with Spiral-Shaped Radio Morphology

    NASA Technical Reports Server (NTRS)

    Tsai, Chao Wei; Jarrett, Thomas H.; Stern, Daniel; Emonts, Bjorn; Barrows, R. Scott; Assef, Roberto J.; Norris, Ray P.; Eisenhardt, Peter R. M.; Lonsdale, Carol; Blain, Andrew W.; Benford, Dominic J.; Wu, Jingwen; Stalder, Brian; Stubbs, Christopher W.; High, F. William; Li, K. L.; Kong, Albert K. H.

    2013-01-01

    We present radio continuum mapping, optical imaging and spectroscopy of the newly discovered double-peaked broad-lined AGN WISE J233237.05-505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid-morphology, characterized by bright core, jet, and Doppler-boosted lobe structures in ATCA continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332-5056 is hosted by a disk-like galaxy. The core has a projected 5" linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch optical-near-IR photometric measurements indicate significant variability over a 3-20 year baseline from the AGN component. Gemini-South optical data shows an unusual double-peaked emission-line features: the centroids of the broad-lined components of H-alpha and H-beta are blueshifted with respect to the narrow lines and host galaxy by approximately 3800 km/s. We examine possible cases which involve single or double supermassive black holes in the system, and discuss required future investigations to disentangle the mystery nature of this system.

  5. NIR spectroscopy of Palomar emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Mason, Rachel; Alonso-Herrero, Almudena; Bluck, Asa; Colina, Luis; Diaz, Ruben; Diaz-Santos, Tanio; Flohic, Helene; Gomez, Percy; Gonzalez-Martin, Omaira; Ho, Luis; Jorgensen, Inger; Lemoine-Busserolle, Marie; Levenson, Nancy; Lira, Paulina; McDermid, Richard; Perlman, Eric; Rodriguez-Ardila, Alberto; Riffel, Rogerio; Schiavon, Ricardo; Ramos Almeida, Cristina; Thanjavur, Karun; Winge, Claudia

    2012-02-01

    We propose GNIRS cross-dispersed spectroscopy of 60 Seyferts and LINERs from the Palomar galaxy sample. The spectra will advance our knowledge of AGN physics and lifecycles by demonstrating whether the accretion disk and nuclear dust properties change as a function of accretion rate, as predicted by theoretical models. They will be used to investigate the contribution of evolved stars to the line emission in LINERs, with implications for AGN demographics, and to make new stellar kinematic measurements for black hole mass estimates. The number and variety of spectral features that will appear in the data are expected to enable a wide range of science besides that highlighted in this proposal. For this reason, we plan a reduced proprietary period and to make the reduced spectra available to the community. We anticipate applying for time to observe the remaining emission-line galaxies in the (near-complete) Palomar sample over the next few semesters. The targets are distributed throughout the northern sky, making Gemini's queue mode ideal for this work. The fairly short observations are easily scheduled and can be carried out in suboptimal observing conditions.

  6. Coronal accretion: the power of X-ray emission in AGN

    NASA Astrophysics Data System (ADS)

    Liu, B.-F.; Taam, R. E.; Qiao, E.; Yuan, W.

    2016-02-01

    The optical/UV and X-ray emissions in luminous AGN are commonly believed to be produced in an accretion disk and an embedded hot corona respectively. We explore the possibility that a geometrically thick coronal gas flow, which is supplied by gravitational capture of interstellar medium or stellar wind, condenses partially to a geometrically thin cold disk and accretes via a thin disk and a corona onto the supermassive black hole. We found that for mass supply rates less than about 0.01 (expressed in Eddington units), condensation does not occur and the accretion flow takes the form of a corona/ADAF. For higher mass supply rates, corona gas condenses to the disk. As a consequence, the coronal mass flow rate decreases and the cool mass flow rate increases towards the black hole. Here the thin disk is characterized by the condensation rate of hot gas as it flows towards the black hole. With increase of mass supply rate, condensation becomes more efficient, while the mass flow rate of the coronal gas attains values of order 0.02 in the innermost regions of the disk, which can help to elucidate the production of strong X-ray with respect to the optical and ultraviolet radiation in high luminosity AGN.

  7. THE BALDWIN EFFECT IN THE NARROW EMISSION LINES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang, Kai; Wang, Ting-Gui; Dong, Xiao-Bo; Gaskell, C. Martin E-mail: twang@ustc.edu.cn E-mail: martin.gaskell@uv.cl

    2013-01-01

    The anti-correlations between the equivalent widths of emission lines and the continuum luminosity in active galactic nuclei (AGNs), known as the Baldwin effect, are well established for broad lines, but are less well studied for narrow lines. In this paper we explore the Baldwin effect of narrow emission lines over a wide range of ionization levels and critical densities using a large sample of broad-line, radio-quiet AGNs taken from Sloan Digital Sky Survey Data Release 4. These type 1 AGNs span three orders of magnitude in continuum luminosity. We show that most narrow lines show a similar Baldwin effect slope of about -0.2, while the significant deviations of the slopes for [N II] {lambda}6583, [O II] {lambda}3727, [Ne V] {lambda}3425, and the narrow component of H{alpha} can be explained by the influence of metallicity, star formation contamination, and possibly by the difference in the shape of the UV-optical continuum. The slopes do not show any correlation with either the ionization potential or the critical density. We show that a combination of 50% variations in continuum near 5100 A and a lognormal distribution of observed luminosity can naturally reproduce a constant Baldwin effect slope of -0.2 for all narrow lines. The variations of the continuum could be due to variability, intrinsic anisotropic emission, or an inclination effect.

  8. MODELING MOLECULAR HYPERFINE LINE EMISSION

    SciTech Connect

    Keto, Eric; Rybicki, George

    2010-06-20

    In this paper, we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transition rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH{sub 3}, N{sub 2}H{sup +}, and C{sup 17}O. The intensities of these spectral lines can be modeled by numerical techniques such as {Lambda}-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium, distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermal equilibrium (LTE). The second method, the proportional method, approximates the collision rates between the hyperfine levels as fractions of the net rotational rates apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N{sub 2}H{sup +} hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.

  9. A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Yi, Sukyoung K.; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Soto, Kurt

    2015-07-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z\\lt 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [O iii] λ 5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles.

  10. The lick AGN monitoring project 2011: Fe II reverberation from the outer broad-line region

    SciTech Connect

    Barth, Aaron J.; Cooper, Michael C.; Pancoast, Anna; Treu, Tommaso; Bennert, Vardha N.; Brewer, Brendon J.; Canalizo, Gabriela; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Clubb, Kelsey I.; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Sand, David J.; Stern, Daniel; Assef, Roberto J.; Woo, Jong-Hak; Bae, Hyun-Jin; Buehler, Tabitha; and others

    2013-06-01

    The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limited success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including Hβ and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases, the measured lag (τ{sub cen}) of Fe II is longer than that of Hβ, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Véron-Cetty et al., we find τ{sub cen}(Fe II)/τ{sub cen}(Hβ) = 1.9 ± 0.6 in NGC 4593 and 1.5 ± 0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.

  11. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  12. AGN Black Hole Masses from Reverberation Mapping

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.

    2004-01-01

    Emission-line variability data on bright AGNs indicates that the central objects in these sources have masses in the million to few-hundred million solar mass range. The time-delayed response of the emission lines to continuum variations can be used to infer the size of the line-emitting region via light travel-time arguments. By combining these sizes with the Doppler widths of the variable part of the emission lines, a virial mass estimate can be obtained. For three especially well-studied sources, NGC 5548, NGC 7469, and 3C 390.3, data on multiple emission lines can be used to test the virial hypothesis. In each of these cases, the response time of the various emission lines is anticorrelated with the line width, with the dependence as expected for gravitationally bound motion of the line-emitting clouds, i.e., that the square of the Doppler line width is inversely proportional to the emission-line time delay. Virial masses based on the Balmer lines have now been measured for about three dozen AGNs. Systematic effects currently limit the accuracy of these masses to a factor of several, but characteristics of the radius-luminosity and mass-luminosity relationships for AGNs are beginning to emerge.

  13. Spectral classification indicators of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Li, Pei-Yu; Yu, Ming; Lei, Yu-Ming; Wang, Jian

    2015-07-01

    To find efficient spectral classification diagrams to classify emission-line galaxies, especially in large surveys and huge data bases, an artificial neural network (ANN) supervised learning algorithms is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey data release 9 provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU) (http://www.sdss3.org/dr9/spectro/spectroaccess.php). A two-step approach is adopted. (i) The ANN network must be trained with a subset of objects that are known to be active galactic nuclei (AGNs) hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After the network is trained on a sample of galaxies, the remaining galaxies are classified in the automatic test analysis as AGN hosts, composites or star-forming galaxies. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959 + [O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 98 per cent for classification of AGN hosts, composites or star-forming galaxies. The other diagrams above except the diagram of [N II]/Hα versus [O III]/Hβ give an accuracy of ˜90 per cent. The code in the paper is available on the web (http://fshi5388.blog.163.com).

  14. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    La Mura, G.; Berton, M.; Ciroi, S.; Cracco, V.; Di Mille, F.; Rafanelli, P.

    2014-10-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r⩽0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ⩾ 2000 km s-1) and narrow line (1000 km s-1 ⩽FWHMHβ ⩽ 2000 km s-1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.

  15. Galaxy emission line classification using three-dimensional line ratio diagrams

    SciTech Connect

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Scharwächter, Julia; Basurah, Hassan M.; Ali, Alaa; Amer, Morsi A.

    2014-10-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and the ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.

  16. Compton Thick AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, Giorgio; Cosmos Collaboration

    2015-09-01

    I will present the results we published in a couple of recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, arXiv 1505.01153) on the properties of X-ray selected Compton Thick (CT, NH>10^24 cm^-2) AGN, in the COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems.We also demonstrated the detectability of even more heavily obscured AGN (NH>10^25 cm^-2), thanks to a truly multi-wavelength approach in the same field. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line.The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.We will also present estimates on the detectability of such extreme sources up to redshift ~6-7 with Athena. Combining the most up to date models for the Luminosity Function of CT AGN at high z, aggressive data analysis techniques on faint sources, and the current Athena survey design, we demonstrate that we will detect, and recognize as such, a small (few to ten) but incredibly valuable sample of CT AGN at such high redshift.

  17. THE LICK AGN MONITORING PROJECT: ALTERNATE ROUTES TO A BROAD-LINE REGION RADIUS

    SciTech Connect

    Greene, Jenny E.; Hood, Carol E.; Barth, Aaron J.; Bentz, Misty C.; Walsh, Jonelle L.; Bennert, Vardha N.; Treu, Tommaso; Filippenko, Alexei V.; Gates, Elinor; Malkan, Matthew A.; Woo, Jong-Hak

    2010-11-01

    It is now possible to estimate black hole (BH) masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central BHs coevolve. Unfortunately, there are many outstanding uncertainties associated with these 'virial' mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region (BLR). Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the BLR scales as the square root of the X-ray and H{beta} luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the BLR correlates most tightly with H{beta} luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of 2. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.

  18. Multiwavelength Observations of AGN Jets: Untangling the Coupled Problems of Emission Mechanism and Jet Structure

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Avachat, Sayali S.; Clautice, Devon; Georganopoulos, Markos; Meyer, Eileen; Cara, Mihai

    2016-04-01

    The discovery of X-ray and optical emission from large numbers of AGN jets is one of the key legacies of the Chandra X-ray Observatory and Hubble Space Telescope. Several dozen optical and X-ray emitting jets are now known, most of which are seen in both bands as well as in the radio, where they were first discovered. Jets carry prodigious amounts of energy and mass out from the nuclear regions out to tens to hundreds of kiloparsecs distant from the central black hole, depositing it into the host galaxy and cluster. Interpreting their multiwavelength emissions has not been easy: while in most jets, the optical and radio emission in many objects is believed to emerge via the synchrotron process, due to its characteristic spectral shape and high radio polarization, the X-ray emission has been a tougher nut to crack. In less powerful, FR I jets, such as M87, the X-ray emission is believed to be synchrotron emission from the highest energy electrons, requiring in situ particle acceleration due to the short radiative lifetimes of the particles. However, in FR II and quasar jets, a variety of emission mechanisms are possible. Until the last few years, the leading interpretation had been inverse-Comptonization of Cosmic Microwave Background photons (the IC/CMB mechanism). This requires the jet to be relativistic out to hundreds of kiloparsecs from the nucleus, and requires an electron spectrum that extends to very low Lorentz factors. However, that now appears less likely, due to observed high optical polarizations in jets where the optical and X-ray emission appears to lie on the same spectral component, as well as limits derived from Fermi observations in the GeV gamma-rays. It now appears more likely that the X-rays must arise as synchrotron emission from a second, high energy electron population. With this revelation, we must tackle anew the coupling between jet structure and emission mechanisms. Multiwavelength imaging and polarimetry can give us clues to the

  19. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect

    Moloney, Joshua; Michael Shull, J. E-mail: michael.shull@colorado.edu

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  20. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  1. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  2. Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk 110

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.

    2003-08-01

    Detailed line profile variability studies of the narrow line Seyfert 1 galaxy Mrk 110 are presented. We obtained the spectra in a variability campaign carried out with the 9.2 m Hobby-Eberly Telescope at McDonald Observatory. The integrated Balmer and helium (He I, II) emission lines are delayed by 3 to 33 light days to the optical continuum variations respectively. The outer wings of the line profiles respond much faster to continuum variations than the central regions. The comparison of the observed profile variations with model calculations of different velocity fields indicates an accretion disk structure of the broad line emitting region in Mrk 110. Comparing the velocity-delay maps of the different emission lines among each other a clear radial stratification in the BLR can be recognized. Furthermore, delays of the red line wings are slightly shorter than those of the blue wings. This indicates an accretion disk wind in the BLR of Mrk 110. We determine a central black hole mass of M = 1.8x 107 Msun. Because of the poorly known inclination angle of the accretion disk this is a lower limit only. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  3. COEXISTENCE OF GRAVITATIONALLY-BOUND AND RADIATION-DRIVEN C IV EMISSION LINE REGIONS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wang Huiyuan; Wang Tinggui; Zhou Hongyan; Liu Bo; Dong Xiaobo; Wang Jianguo

    2011-09-01

    There are mutually contradictory views in the literature of the kinematics and structure of high-ionization line (e.g., C IV) emitting regions in active galactic nuclei (AGNs). Two kinds of broad emission line region (BELR) models have been proposed, outflow and gravitationally-bound BELR, which are supported, respectively, by blueshift of the C IV line and reverberation mapping observations. To reconcile these two apparently different models, we present a detailed comparison study between the C IV and Mg II lines using a sample of AGNs selected from the Sloan Digital Sky Survey. We find that the kinematics of the C IV region is different from that of Mg II, which is thought to be controlled by gravity. A strong correlation is found between the blueshift and asymmetry of the C IV profile and the Eddington ratio. This provides strong observational support for the postulation that the outflow is driven by radiation pressure. In particular, we find robust evidence that the C IV line region is largely dominated by outflow at high Eddington ratios, while it is primarily gravitationally-bounded at low Eddington ratios. Our results indicate that these two emitting regions coexist in most AGNs. The emission strength from these two gases varies smoothly with Eddington ratio in opposite ways. This explanation naturally reconciles the apparently contradictory views proposed in previous studies. Finally, candidate models are discussed which can account for both the enhancement of outflow emission and suppression of normal BEL in AGNs with high Eddington ratios.

  4. The Structure of the Broad-Line Region in Well-Studied AGNs

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ferland, Gary J.

    1997-01-01

    Large amounts of high quality UV and optical data have been obtained in massive multi-wavelength monitoring campaigns on a small number of active galactic nuclei, and these data are changing our understanding of the central engines in these sources in a fundamental way. Preliminary analyses have shown that more comprehensive approaches will be necessary to make full use of these data. We propose to undertake a complete set of photoionization equilibrium calculations with a state-of-the-art computer code in order to determine the radial structure of the broad-line region in a way that is consistent with the emission-line fluxes, profiles, and transfer functions.

  5. Rest-frame Optical Emission Lines in Far-infrared-selected Galaxies at z < 1.7 from the FMOS-COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Silverman, J. D.; Kashino, D.; Chu, J.; Zahid, H.; Hasinger, G.; Kewley, L.; Matsuoka, K.; Nagao, T.; Riguccini, L.; Salvato, M.; Schawinski, K.; Taniguchi, Y.; Treister, E.; Capak, P.; Daddi, E.; Ohta, K.

    2015-06-01

    We have used FMOS on Subaru to obtain near-infrared spectroscopy of 123 far-infrared-selected galaxies in COSMOS and the key rest-frame optical emission lines. This is the largest sample of infrared galaxies with near-infrared spectroscopy at these redshifts. The far-infrared selection results in a sample of galaxies that are massive systems that span a range of metallicities in comparison with previous optically selected surveys, and thus has a higher active galactic nucleus (AGN) fraction and better samples the AGN branch. We establish the presence of AGNs and starbursts in this sample of (U)LIRGs selected as Herschel-PACS and Spitzer-MIPS detections in two redshift bins (z∼ 0.7 and z∼ 1.5) and test the redshift dependence of diagnostics used to separate AGNs from star formation dominated galaxies. In addition, we construct a low-redshift (z∼ 0.1) comparison sample of infrared-selected galaxies and find that the evolution from z∼ 1.5 to today is consistent with an evolving AGN selection line and a range of ISM conditions and metallicities from the models of Kewley et al. We find that a large fraction of (U)LIRGs are BPT-selected AGNs using their new redshift-dependent classification line. We compare the position of known X-ray-detected AGNs (67 in total) with the BPT selection and find that the new classification line accurately selects most of these objects (\\gt 70%). Furthermore, we identify 35 new (likely obscured) AGNs not selected as such by their X-ray emission. Our results have direct implications for AGN selection at higher redshift with either current (MOSFIRE, KMOS) or future (PFS, MOONS) spectroscopic efforts with near-infrared spectral coverage.

  6. FE Features in Highly Obscured AGN

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.

    1999-01-01

    This final report is a summary of the combined study of ASCA (Advanced Satellite for Cosmology and Astrophysics) observations of NGC 7582 with archival ROSAT HRI (High Resolution Imager) and PSPC (Position Sensitive Proportional Counter) data. These observations were important in that they established that X-ray emission in NGC 7582, the most narrow-line of NLXGs (narrow-line X-ray galaxies), is associated with an AGN (Active Galactic Nuclei). Thus implying that all NLXGs are obscured AGN, as has been hypothesized to explain the X-ray spectral background paradox.

  7. Extended X-ray emission in the IC 2497 - Hanny's Voorwerp system: energy injection in the gas around a fading AGN

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Koss, Michael; Treister, Ezequiel; Maksym, W. Peter; Keel, William C.; Urry, C. Megan; Lintott, Chris J.; Wong, O. Ivy

    2016-04-01

    We present deep Chandra X-ray observations of the core of IC 2497, the galaxy associated with Hanny's Voorwerp and hosting a fading AGN. We find extended soft X-ray emission from hot gas around the low intrinsic luminosity (unobscured) AGN (Lbol ˜ 1042-1044 erg s-1). The temperature structure in the hot gas suggests the presence of a bubble or cavity around the fading AGN ({{E}}_bub ˜ 10^{54}{-}10^{55} erg). A possible scenario is that this bubble is inflated by the fading AGN, which after changing accretion state is now in a kinetic mode. Other possibilities are that the bubble has been inflated by the past luminous quasar (Lbol ˜ 1046 erg s-1), or that the temperature gradient is an indication of a shock front from a superwind driven by the AGN. We discuss the possible scenarios and the implications for the AGN-host galaxy interaction, as well as an analogy between AGN and X-ray binaries lifecycles. We conclude that the AGN could inject mechanical energy into the host galaxy at the end of its lifecycle, and thus provide a source for mechanical feedback, in a similar way as observed for X-ray binaries.

  8. Outflows in infrared-luminous galaxies: Absorption-line spectroscopy of starbursts and AGN

    NASA Astrophysics Data System (ADS)

    Rupke, David S.

    Large-scale galactic outflows, better known as superwinds, are driven by the powerful energy reservoirs in star forming and active galaxies. They play a significant role in galaxy formation, galaxy evolution, and the evolution of the intergalactic medium. We have performed a survey of over 100 infrared-luminous galaxies in order to address the exact frequency with which they occur in different galaxy types, the dependence of their properties on those of their host galaxies, and their properties in the most luminous starburst and active galaxies. Most of our sample consists of ultraluminous infrared galaxies (ULIRGs), and we use moderate- resolution spectroscopy of the Na I D interstellar absorption feature (which directly probes the neutral gas phase). We find superwinds in the majority of these galaxies at typical maximum, deprojected velocities of 500 700 km s-1. The detection rate increases with star formation rate (SFR) in starbursts, while the mass outflow rate appears constant with SFR, contrary to theoretical expectations. The resulting mass entrainment efficiencies in ULIRGs are quite low, of order a few percent of the star formation rate. There is some dependence of outflow velocity on host galaxy properties; the outflow velocities in LINERs are higher than those in H II galaxies, and the highest column density gas in each galaxy may have an upper envelope in velocity that increases with SFR. Outflows in most galaxies hosting a dominant AGN have very similar properties to those in starbursts, so discerning their power source is difficult. The velocities in Seyfert 2 outflows may be slightly higher than those in starbursts, and the fraction of neutral gas escaping Seyfert 2s is higher than that in starbursts (˜50% vs. ≲ 20%). The outflows in our Seyfert 1 galaxies have extreme velocities of up to ˜104 km s-1, and two of three Seyfert is with outflows possess broad absorption lines. Finally, we find that spectroscopy of a few galaxies at very high

  9. RESOLVING THE OPTICAL EMISSION LINES OF Ly{alpha} BLOB ''B1'' AT z = 2.38: ANOTHER HIDDEN QUASAR

    SciTech Connect

    Overzier, R. A.; Nesvadba, N. P. H.; Dijkstra, M.; Hatch, N. A.; Lehnert, M. D.; Villar-Martin, M.; Wilman, R. J.; Zirm, A. W.

    2013-07-10

    We have used the SINFONI near-infrared integral field unit on the Very Large Telescope to resolve the optical emission line structure of one of the brightest (L{sub Ly{alpha}} Almost-Equal-To 10{sup 44} erg s{sup -1}) and nearest (z Almost-Equal-To 2.38) of all Ly{alpha} blobs (LABs). The target, known in the literature as object {sup B}1{sup ,} lies at a redshift where the main optical emission lines are accessible in the observed near-infrared. We detect luminous [O III] {lambda}{lambda}4959, 5007 and H{alpha} emission with a spatial extent of at least 32 Multiplication-Sign 40 kpc (4'' Multiplication-Sign 5''). The dominant optical emission line component shows relatively broad lines (600-800 km s{sup -1}, FWHM) and line ratios consistent with active galactic nucleus (AGN) photoionization. The new evidence for AGN photoionization, combined with previously detected C IV and luminous, warm infrared emission, suggest that B1 is the site of a hidden quasar. This is confirmed by the fact that [O II] is relatively weak compared with [O III] (extinction-corrected [O III]/[O II] of about 3.8), which is indicative of a high, Seyfert-like ionization parameter. From the extinction-corrected [O III] luminosity we infer a bolometric AGN luminosity of {approx}3 Multiplication-Sign 10{sup 46} erg s{sup -1}, and further conclude that the obscured AGN may be Compton-thick given existing X-ray limits. The large line widths observed are consistent with clouds moving within the narrow-line region of a luminous QSO. The AGN scenario is capable of producing sufficient ionizing photons to power the Ly{alpha}, even in the presence of dust. By performing a census of similar objects in the literature, we find that virtually all luminous LABs harbor obscured quasars. Based on simple duty-cycle arguments, we conclude that AGNs are the main drivers of the Ly{alpha} in LABs rather than the gravitational heating and subsequent cooling suggested by cold stream models. We also conclude that the

  10. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Charlot, S.; Gutkin, J.

    2016-03-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as C IV λλ1548, 1551, O III] λλ1661, 1666, N III] λ1750, [Si III] λ1883+Si III] λ1892 and [C III] λ1907+C III] λ1909, with the He II λ1640 recombination line are individually good discriminants of the nature of the ionizing source. Diagrams involving at least three of these lines allow an even more stringent distinction between active and inactive galaxies, as well as valuable constraints on interstellar gas parameters and the shape of the ionizing radiation. Several line ratios involving Ne-based emission lines, such as [Ne IV] λ2424, [Ne III] λ3343 and [Ne V] λ3426, are also good diagnostics of nuclear activity. Our results provide a comprehensive framework to identify the sources of photoionization and physical conditions of the ionized gas from the ultraviolet and optical nebular emission from galaxies. This will be particularly useful to interpret observations of high-redshift galaxies with future facilities, such as the James Webb Space Telescope and extremely large ground-based telescopes.

  11. X-ray long-term variations in the low-luminosity AGN NGC 835 and its circumnuclear emission

    NASA Astrophysics Data System (ADS)

    González-Martín, O.; Hernández-García, L.; Masegosa, J.; Márquez, I.; Rodríguez-Espinosa, J. M.; Acosta-Pulido, J. A.; Alonso-Herrero, A.; Dultzin, D.; Esparza Arredondo, D.

    2016-03-01

    Context. Obscured active galactic nuclei (AGNs) are thought to be very common in the Universe. Observations and surveys have shown that the number of sources increases for near galaxies and at the low-luminosity regime (the so-called LLAGNs). Furthermore, many AGNs show changes in their obscuration properties at X-rays that may suggest a configuration of clouds very close to the accretion disk. However, these variations could also be due to changes in the intrinsic continuum of the source. It is therefore important to study nearby AGN to better understand the locus and distribution of clouds in the neighbourhood of the nucleus. Aims: We aim to study the nuclear obscuration of LLAGN NGC 835 and its extended emission using mid-infrared observations. Methods: We present sub-arcsecond-resolution mid-infrared 11.5 μm imaging of the LLAGN galaxy NGC 835 obtained with the instrument CanariCam in the Gran Telescopio CANARIAS (GTC), archival Spitzer/IRS spectroscopy, and archival Chandra data observed in 2000, 2008, and 2013. Results: The GTC/CanariCam 11.5 μm image reveals faint extended emission out to ~6 arcsec. We obtained a nuclear flux of F(11.5 μm) ~ 18 mJy, whereas the extended emission accounts for 90% of the total flux within the 6 arcsec. This means that the low angular resolution (~4 arcsec) IRS spectrum is dominated by this extended emission and not by the AGN. This is clearly seen in the Spitzer/IRS spectrum, which resembles that of star-forming galaxies. Although the extended soft X-ray emission shows some resemblance with that of the mid-infrared, the knots seen at X-rays are mostly located in the inner side of this mid-infrared emission. The nuclear X-ray spectrum of the source has undergone a spectral change between 2000/2008 and 2013. We argue that this variation is most probably due to changes in the hydrogen column density from ~8 × 1023 cm-2 to ~3 × 1023 cm-2. NGC 835 therefore is one of the few LLAGN, together with NGC 1052, in which changes in

  12. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  13. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  14. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  15. STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT

    SciTech Connect

    Koss, Michael; Casey, Caitlin M.; Mushotzky, Richard; Veilleux, Sylvain; Baumgartner, Wayne; Tueller, Jack; Markwardt, Craig

    2013-03-10

    We present the first analysis of the all-sky Swift Burst Alert Telescope (BAT) ultra-hard X-ray (14-195 keV) data for a targeted list of objects. We find that the BAT data can be studied at three-times-fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the active galactic nucleus (AGN) fraction in 134 nearby (z < 0.05) luminous infrared galaxies (LIRGs) from the GOALS sample. We find that LIRGs have a higher detection frequency than galaxies matched in stellar mass and redshift at 14-195 keV and 24-35 keV. In agreement with work at other wavelengths, the AGN detection fraction increases strongly at high IR luminosity with half of the high-luminosity LIRGs (50%, 6/12, log L{sub IR}/L{sub Sun} > 11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM-Newton AGN classification using hardness ratios or detection of an iron K{alpha} line. This confirms our statistical analysis and supports the use of the Swift/BAT all-sky survey to study fainter populations of any category of sources in the ultra-hard X-ray band. BAT AGNs in LIRGs tend to show higher column densities with 40% {+-} 9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N{sub H} > 24 cm{sup -2}), compared to only 12% {+-} 5% of non-LIRG BAT AGNs. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.

  16. A UV to mid-IR study of AGN selection

    SciTech Connect

    Chung, Sun Mi; Kochanek, Christopher S.; Assef, Roberto; Brown, Michael J. I.; Stern, Daniel; Jannuzi, Buell T.; Gonzalez, Anthony H.; Hickox, Ryan C.; Moustakas, John

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  17. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1AGN-ionized gas, the stellar masses of the host galaxies and their star formation rates. We then investigate the relationships between AGN luminosities, specific star formation rates (sSFR) and outflow strengths W_{90} - the 90% velocity width of the [OIII]λ5007Å line power and a proxy for the AGN-driven outflow speed. Outflow strength W_{90} is independent of sSFR for AGN selected based on their mid-IR luminosity. This is in agreement with previous work that demonstrates that star formation is not sufficient to produce the observed ionized gas outflows which have to be powered by AGN activity. More importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  18. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  19. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  20. Observations of emission lines in M supergiants

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1979-01-01

    Copernicus observations of Mg 2 h and k emission lines from M giants and supergiants are described. Supergiants with extensive circumstellar gas shells show an asymmetric k line. The asymmetry is ascribed to superimposed lines of Fe 1 and Mn 1. The Mg 2 line width fit the Wilson-Bappu relation derived from observations of G and K Stars. Results of correlated ground-based observations include (1) the discovery of K 1 fluorescent emission from the Betelgeuse shell; (2) extimates of the mass-loss rates; and (3) the proposal that silicate dust grains must account for the major fraction of the Si atoms in the Betelgeuse shell.

  1. Exploring AGN-starburst coexistence in galaxies at z ˜ 0.8 using the [O III]4959+5007/[O III]4363 line ratio

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-09-01

    Using detailed modelling, we analyse the spectra observed from the sample galaxies at z ˜ 0.8 presented by Ly et al., constraining the models by the [O III]5007+4959/[O III]4363 line ratios. Composite models (shock + photoionization) are adopted. Shock velocities ≥100 km s-1 and pre-shock densities n0 ˜ 200 cm-3 characterize the gas surrounding the starburst (SB), while n0 are higher by a factor of 1.5-10 in the AGN emitting gas. SB effective temperatures are similar to those of quiescent galaxies (T* ˜ 4-7 × 104 K). Cloud geometrical thicknesses in the SB are ≤1016 cm, indicating major fragmentation, while in AGN they reach >10 pc. O/H are about solar for all the objects, except for a few AGN clouds with O/H = 0.3-0.5 solar. SB models reproduce most of the data within the observational errors. About half of the objects' spectra are well fitted by an accreting AGN. Some galaxies show multiple radiation sources, such as SB + AGN, or a double AGN.

  2. Compton Thick AGN in the XMM-COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Gruppioni, C.; Comastri, A.

    2016-06-01

    I will present results we published in two recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, A&A 578A 120) on the properties of X-ray selected Compton Thick (CT, NH>10^{24} cm^{-2}) AGN, in the XMM-COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems. We also demonstrated the detectability of even more heavily obscured AGN (NH>10^{25} cm^{-2}), thanks to a truly multi-wavelength approach in the same field, and to the unrivaled XMM sensitivity. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line. The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.

  3. Compton Thick AGN in the XMM-COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Gruppioni, C.; Comastri, A.

    2016-06-01

    I will present results we published in two recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, A≈A 578A 120) on the properties of X-ray selected Compton Thick (CT, NH>10^{24} cm^{-2}) AGN, in the XMM-COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems. We also demonstrated the detectability of even more heavily obscured AGN (NH>10^{25} cm^{-2}), thanks to a truly multi-wavelength approach in the same field, and to the unrivaled XMM sensitivity. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line. The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.

  4. Long Timescale Variability of AGN with RXTE

    NASA Astrophysics Data System (ADS)

    McHardy, I. M.; Uttley, P.; Taylor, R. D.; Seymour, N.

    2004-07-01

    In this paper we review the very large contribution made by RXTE to our understanding of Active Galaxies (AGN). We discuss the relationship between AGN and Galactic Black Hole X-ray binary systems (GBHs) and show, by comparison of their powerspectral densities (PSDs) that some AGN are the equivalent of GBHs in their `high' state, rather than in their `low' state as has previously been assumed. We plot the timescale at which the PSD slope steepens from -1 to -2 against the black hole mass for a sample of AGN, and for Cyg X-1 in its high and low states. We find it is not possible to fit all AGN to the same linear scaling of break timescale with black hole mass. However broad line AGN are consistent with a linear scaling of break timescale with mass from Cyg X-1 in its low state and NLS1 galaxies scale better with Cyg X-1 in its high state, although there is an exception, NGC3227. We suggest that the relationship between black hole mass and break timescale is a function of another underlying parameter which may be accretion rate or black hole spin or, probably, both. We examine X-ray spectral variability and show how simple `flux-flux' plots can distinguish between `two-component' and `spectral pivoting' models. We also examine the relationship between the X-ray emission and that in other wavebands. In the case of X-ray/optical variability we show how cooler discs in AGN with larger mass black holes lead to greater proximity of the X-ray and optical emission regions and hence to more highly correlated variability. The very large amplitude of optical variability then rules out reprocessing as the origin of the optical emission. We show how the radio emission in NGC 4051 is strongly correlated with the X-ray emission, implying some contribution to the X-ray emission from a jet for which there is some evidence in radio images. We point out, however, that we have only studied in detail the X-ray variability of a handful of AGN. There is a strong requirement to extend such

  5. PROFIT: Emission-line PROfile FITting routine

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.

    2012-04-01

    The PROFIT is an IDL routine to do automated fitting of emission-line profiles by Gaussian curves or Gauss-Hermite series otimized for use in Integral Field and Fabry-Perot data cubes. As output PROFIT gives two-dimensional FITS files for the emission-line flux distribution, centroid velocity, velocity dispersion and higher order Gauss-Hermite moments (h3 and h4).

  6. MERGING AND CLUSTERING OF THE SWIFT BAT AGN SAMPLE

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa

    2010-06-20

    We discuss the merger rate, close galaxy environment, and clustering on scales up to an Mpc of the Swift BAT hard X-ray sample of nearby (z<0.05), moderate-luminosity active galactic nuclei (AGNs). We find a higher incidence of galaxies with signs of disruption compared to a matched control sample (18% versus 1%) and of close pairs within 30 kpc (24% versus 1%). We also find a larger fraction with companions compared to normal galaxies and optical emission line selected AGNs at scales up to 250 kpc. We hypothesize that these merging AGNs may not be identified using optical emission line diagnostics because of optical extinction and dilution by star formation. In support of this hypothesis, in merging systems we find a higher hard X-ray to [O III] flux ratio, as well as emission line diagnostics characteristic of composite or star-forming galaxies, and a larger IRAS 60 {mu}m to stellar mass ratio.

  7. Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi

    1993-01-01

    Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new

  8. DOUBLE-PEAKED NARROW EMISSION-LINE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. I. SAMPLE AND BASIC PROPERTIES

    SciTech Connect

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu; Bai Jinming

    2012-08-01

    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  9. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian

    2015-10-01

    The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.

  10. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  11. VizieR Online Data Catalog: ASCA AGN optical identifications (Akiyama+, 2003)

    NASA Astrophysics Data System (ADS)

    Akiyama, M.; Ueda, Y.; Ohta, K.; Takahashi, T.; Yamada, T.

    2003-10-01

    We present the results of optical spectroscopic identifications of a bright subsample of 2-10keV hard X-ray-selected sources from the ASCA Medium Sensitivity Survey in the northern sky (AMSSn). The flux limit of the subsample is 3x10-13erg/s/cm2 in the 2-10keV band. All but one of the 87 hard X-ray-selected sources are optically identified, with AGNs (including broad-line AGNs, narrow-line AGNs, and three BL Lac objects), seven clusters of galaxies, and one galactic star. It is the largest complete sample of hard X-ray-selected AGNs at the bright flux limit. Amounts of absorption to their nuclei are estimated to be hydrogen column densities (NH) of up to 3x1023cm-2 from their X-ray spectra. Optical properties of X-ray absorbed AGNs with NH>1x1022cm-2 indicate the effects of dust absorption: at redshifts z<0.6, AGNs without broad H{beta} emission lines have significantly larger NH-values than AGNs with broad H{beta} emission lines. At z>0.6, the X-ray absorbed AGNs have a large hard X-ray to optical flux ratio (logf2-10keV/fR>+1). However, three X-ray absorbed z>0.6 AGNs show strong broad lines. In combination with hard X-ray-selected AGN samples from the ASCA Large Sky Survey, the ASCA Deep Survey in the Lockman Hole, and Chandra Deep Field North, the luminosity distributions of absorbed (NH>1x1022cm-2) and less-absorbed (NH<1x1022cm-2) AGNs are compared. (4 data files).

  12. Theoretical quasar emission-line ratios. V - Balmer continuum emission

    NASA Technical Reports Server (NTRS)

    Puetter, R. C.; Levan, P. D.

    1982-01-01

    Isothermal, isobaric models of quasar emission line regions are presented which include an improved treatment of radiative transfer in the bound-free continua, based on a generalization of frequency-integrated line transfer techniques and on the use of a probabilistic radiative transfer equation which explicitly distinguishes between the flux divergence coefficient and the photon escape probability. It is found that Balmer continuum emission can be obtained without compromising observed line ratios. It is also established that optically thin or thick Balmer continuum emission models with blended Fe II line are consistent with 4000-2000 A 'blue bump' observations, and that the improved radiative transfer treatment makes order-of-magnitude corrections to level populations and local cooling rates calculated with past techniques.

  13. Emission Lines and the High Energy Continuum

    NASA Technical Reports Server (NTRS)

    Green, Paul

    1998-01-01

    Quasars show many striking relationships between line and continuum radiation whose origins remain a mystery. FeII, [OIII], Hbeta, and HeII emission line properties correlate with high energy continuum properties such as the relative strength of X-ray emission, and X-ray continuum slope. At the same time, the shape of the high energy continuum may vary with luminosity. An important tool for studying global properties of Quasi Stellar Objects (QSOs) is the co-addition of data for samples of QSOS. We use this to show that X-ray bright (XB) QSOs show stronger emission lines in general, but particularly from the narrow line region. The difference in the [OIII]/Hbeta ratio is particularly striking, and even more so when blended FeII emission is properly subtracted. Weaker narrow forbidden lines ([OII] and NeV) are enhanced by factors of 2 to 3 in both UV and optical XB composite spectra. The physical origin of these diverse and interrelated correlations has yet to be determined. Unfortunately, many physically informative trends intrinsic to QSOs may be masked by dispersion in the data due to either low signal-to-noise or variability. An important tool for studying global properties of QSOs is the co-addition of data for samples of QSOS. We use this to show that X-ray bright (XB) QSOs show stronger emission lines in general, but particularly from the narrow line region. The difference in the [OIII]/Hbeta ratio is particularly striking, and even more so when blended Fell emission is properly subtracted. Weaker narrow forbidden lines ([OII] and NeV) are enhanced by factors of 2 to 3 in both UV and optical XB composite spectra. We describe a large-scale effort now underway to probe these effects in large samples, using both data and analysis as homogeneous as possible. Using an HST FOS Atlas of QSO spectra, with primary comparison to ROSAT PSPC spectral constraints, we will model the Big Blue Bump, its relationship to luminosity and QSO type, and we will analyze and

  14. Investigating Starburst Galaxy Emission Line Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Meskhidze, Helen; Richardson, Chris T.

    2016-01-01

    Modeling star forming galaxies with spectral synthesis codes allows us to study the gas conditions and excitation mechanisms that are necessary to reproduce high ionization emission lines in both local and high-z galaxies. Our study uses the locally optimally-emitting clouds model to develop an atlas of starburst galaxy emission line equivalent widths. Specifically, we address the following question: What physical conditions are necessary to produce strong high ionization emission lines assuming photoionization via starlight? Here we present the results of our photoionization simulations: an atlas spanning 15 orders of magnitude in ionizing flux and 10 orders of magnitude in hydrogen density that tracks over 150 emission lines ranging from the UV to the near IR. Each simulation grid contains ~1.5x104 photoionization models calculated by supplying a spectral energy distribution, grain content, and chemical abundances. Specifically, we will be discussing the effects on the emission line equivalent widths of varying the metallicity of the cloud, Z = 0.2 Z⊙ to Z = 5.0 Z⊙, and varying the star-formation history, using the instantaneous and continuous evolution tracks and the newly released Starburst99 Geneva rotation tracks.

  15. Optically Elusive AGN in the 3XMM Catalog and the Chandra-COSMOS field

    NASA Astrophysics Data System (ADS)

    Pons, Estelle; Watson, Mike; Elvis, Martin; Civano, Francesca M.

    2015-01-01

    'Optically elusive AGN' are powerful X-ray sources (LHX > 1042 erg/s), but are not detected as AGN in the optical. Pons and Watson (2014) showed that in XMM these AGNs are a mix of Narrow Line Seyfert 1s, True Seyfert 2's and weak Seyfert 2s. The nature of these objects, coming from the cross-match of 3XMM with the SDSS-DR9 spectroscopic catalog, has been investigated through a detailed analysis of their IR/optical and X-ray properties. The fainter Chandra-COSMOS field should be rich in optically elusive AGNs as ¾ of the AGNs there are narrow-lined. There are ~850 Chandra-COSMOS galaxy spectra, mainly from five different telescopes (SDSS, Magellan, MMT, VLT and Keck). To find optically elusive objects, we investigate the optical classification using emission line diagnostic diagrams. For low redshift galaxies (z~<0.7) the standard BPT diagram ([OIII

  16. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  17. Scattering of emission lines in galaxy cluster cores: measuring electron temperature

    NASA Astrophysics Data System (ADS)

    Khedekar, S.; Churazov, E.; Sazonov, S.; Sunyaev, R.; Emsellem, E.

    2014-06-01

    The central galaxies of some clusters can be strong emitters in the Lyα and Hα lines. This emission may arise either from the cool/warm gas located in the cool core of the cluster or from the bright AGN within the central galaxy. The luminosities of such lines can be as high as 1042-1044 erg s-1. This emission originating from the core of the cluster will get Thomson scattered by hot electrons of the intra-cluster medium with an optical depth ˜0.01 giving rise to very broad (Δλ/λ ˜ 15 per cent) features in the scattered spectrum. We discuss the possibility of measuring the electron density and temperature using information on the flux and width of the highly broadened line features.

  18. Bright emission lines in new Seyfert galaxies

    SciTech Connect

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references.

  19. Emission lines from hot astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Raymond, John C.

    The spectral lines which dominate the X-ray emission of hot, optically thin astrophysical plasmas reflect the elemental abundances, temperature distribution, and other physical parameters of the emitting gas. The accuracy and level of detail with which these parameters can be inferred are limited by the measurement uncertainties and uncertainties in atomic rates used to compute the model spectrum. This paper discusses the relative importance and the likely uncertainties in the various atomic rates and the likely uncertainties in the overall ionization balance and spectral line emissivities predicted by the computer codes currently used to fit X-ray spectral data.

  20. EFFECTS OF AN ACCRETION DISK WIND ON THE PROFILE OF THE BALMER EMISSION LINES FROM ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Flohic, Helene M. L. G.; Eracleous, Michael; Bogdanovic, Tamara E-mail: mce@astro.psu.edu

    2012-07-10

    We explore the connection between active galactic nuclei (AGNs) with single- and double-peaked broad Balmer emission lines by using models dealing with radiative transfer effects through a disk wind. Our primary goal is to assess the applicability of the Murray and Chiang model by making an extensive and systematic comparison of the model predictions with data. In the process, we also verify the original derivation and evaluate the importance of general relativistic effects. As the optical depth through the emission layer increases, the peaks of a double-peaked profile move closer and eventually merge, producing a single peak. The properties of the emission line profile depend as sensitively on the geometric parameters of the line-emitting portion of the disk as they do on the disk-wind parameters. Using a parameter range that encompasses the expected characteristics of the broad-line regions in AGNs, we construct a database of model profiles and measure a set of diagnostic properties. Comparisons of the model profiles with emission lines from a subset of Sloan digital Sky Survey quasars show that observed lines are consistent with moderately large optical depth in the disk wind and a range of disk inclinations i {approx}< 45 Degree-Sign . Including relativistic effects is necessary to produce the asymmetries of observed line profiles.

  1. ULTRAVIOLET EMISSION-LINE CORRELATIONS IN HST/COS SPECTRA OF ACTIVE GALACTIC NUCLEI: SINGLE-EPOCH BLACK HOLE MASSES

    SciTech Connect

    Tilton, Evan M.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2013-09-01

    Effective methods of measuring supermassive black hole masses in active galactic nuclei (AGNs) are of critical importance to studies of galaxy evolution. While there has been much success in obtaining masses through reverberation mapping, the extensive observing time required by this method has limited the practicality of applying it to large samples at a variety of redshifts. This limitation highlights the need to estimate these masses using single-epoch spectroscopy of ultraviolet (UV) emission lines. We use UV spectra of 44 AGNs from HST/COS, the International Ultraviolet Explorer, and the Far Ultraviolet Spectroscopic Explorer of the C IV {lambda}1549, O VI {lambda}1035, O III] {lambda}1664, He II {lambda}1640, C II {lambda}1335, and Mg II {lambda}2800 emission lines and explore their potential as tracers of the broad-line region and supermassive black hole mass. The higher signal-to-noise ratio and better spectral resolution of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) resolve AGN intrinsic absorption and produce more accurate line widths. From these, we test the viability of mass-scaling relationships based on line widths and luminosities and carry out a principal component analysis based on line luminosities, widths, skewness, and kurtosis. At L{sub 1450} {<=} 10{sup 45} erg s{sup -1}, the UV line luminosities correlate well with H{beta}, as does the 1450 A continuum luminosity. We find that C IV, O VI, and Mg II can be used as reasonably accurate estimators of AGN black hole masses, while He II and C II are uncorrelated.

  2. Are Boltzmann plots of hydrogen Balmer lines a tool for identifying a subclass of S1 AGN?

    NASA Astrophysics Data System (ADS)

    Rafanelli, P.; Ciroi, S.; Cracco, V.; Di Mille, F.; Ilić, D.; La Mura, G.; Popović, L. Č.

    2014-10-01

    It is becoming clear that we can define two different types of nearby AGN belonging to the Seyfert 1 class (S1), on the basis of the match of the intensities of their Broad Balmer Lines (BBL) with the Boltzmann Plots (BP). These two types of S1 galaxies, that we call BP-S1 and NoBP-S1, are characterized, in first approximation, by Broad Line Regions (BLR) with different structural and physical properties. In this communication, we show that these features can be well pointed out by a multi-wavelength analysis of the continuum and of the broad recombination Hydrogen lines, that we carry out on a sample of objects detected at optical and X-ray frequencies. The investigation is addressed to verify whether BP-S1 are the ideal candidates for the study of the kinematical and structural properties of the BLR, in order to derive reliable estimates of the mass of their central engine and to constrain the properties of their nuclear continuum spectrum.

  3. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  4. Disc outflows and high-luminosity true type 2 AGN

    NASA Astrophysics Data System (ADS)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  5. Time Variable Broad Line Emission in NGC 4203: Evidence for Stellar Contrails

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas A.

    2012-01-01

    Dual epoch spectroscopy of the lenticular galaxy, NGC 4203, obtained with the Hubble Space Telescope has revealed that the double-peaked component of the broad Hα emission line is time variable, increasing by a factor of 2.2 in brightness between 1999 and 2010. Modeling the gas distribution responsible for the double-peaked profiles indicates that a ring is a more appropriate description than a disk and most likely represents the contrail of a red supergiant star that is being tidally disrupted at a distance of 1500 AU from the central black hole. There is also a bright core of broad Hα line emission that is not time variable and identified with a large scale inflow from an outer radius 1 pc. If the gas number density is ≥ 106 cm-3, as suggested by the absence of similarly broad [O I] and [O III] emission lines, then the steady state inflow rate is 2 × 10-2 M⊙/yr which exceeds the inflow requirement to explain the X-ray luminosity in terms of radiatively inefficient accretion by a factor of 6. The central AGN is unable to sustain ionization of the broad line region, the discrepancy is particularly acute in 2010 when the broad Hα emission line is dominated by the contrail of the in-falling supergiant star. However, ram pressure shock ionization produced by the interaction of the in-falling supergiant with the ambient interstellar medium may help alleviate the ionizing deficit by generating a mechanical source of ionization supplementing the photoionization provided by the AGN. Support for Program number HST AR-11752.01-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, incorporated, under NASA contract NAS5-26555.

  6. TIME VARIABLE BROAD-LINE EMISSION IN NGC 4203: EVIDENCE FOR STELLAR CONTRAILS

    SciTech Connect

    Devereux, Nick

    2011-12-10

    Dual epoch spectroscopy of the lenticular galaxy, NGC 4203, obtained with the Hubble Space Telescope has revealed that the double-peaked component of the broad H{alpha} emission line is time variable, increasing by a factor of 2.2 in brightness between 1999 and 2010. Modeling the gas distribution responsible for the double-peaked profiles indicates that a ring is a more appropriate description than a disk and most likely represents the contrail of a red supergiant star that is being tidally disrupted at a distance of {approx}1500 AU from the central black hole. There is also a bright core of broad H{alpha} line emission that is not time variable and identified with a large-scale inflow from an outer radius of {approx}1 pc. If the gas number density is {>=}10{sup 6} cm{sup -3}, as suggested by the absence of similarly broad [O I] and [O III] emission lines, then the steady state inflow rate is {approx} 2 Multiplication-Sign 10{sup -2} M{sub Sun} yr{sup -1}, which exceeds the inflow requirement to explain the X-ray luminosity in terms of radiatively inefficient accretion by a factor of {approx}6. The central active galactic nucleus (AGN) is unable to sustain ionization of the broad-line region; the discrepancy is particularly acute in 2010 when the broad H{alpha} emission line is dominated by the contrail of the infalling supergiant star. However, ram pressure shock ionization produced by the interaction of the infalling supergiant with the ambient interstellar medium may help alleviate the ionizing deficit by generating a mechanical source of ionization supplementing the photoionization provided by the AGN.

  7. Mini-Survey Of SDSS of [OIII] AGN With Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.; George, I. M.; Hill, J.; Padgett, C. A.; Mushotzky, R. F.

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work (e.g. Ferrarese and Merritt 2000) strongly suggests every massive galaxy has a central black hole. However, most of these objects either are not radiating or have been very difficult to detect. We are now in the era of large surveys, and the luminosity function (LF) of AGN has been estimated in various ways. In the X-ray band, Chandra and XMM surveys (e.g., Barger et al. 2005; Hasinger, et al. 2005) have revealed that the LF of Hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(x) (at al z). This is seen for all types of AGN, but is stronger for the broad-line objects (e.g., Steffen et al. 2004). In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects (Hao et al. 2005). If, as been suggested, hard X-ray and optical emission line can both be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  8. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  9. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  10. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  11. Extreme optical Fe II emission in luminous IRAS active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lipari, Sebastian; Terlevich, Roberto; Macchetto, F.

    1993-01-01

    Results of a program of studies and observations of strong optical Fe II emission in luminous and ultraluminous IRAS AGN are presented. New spectroscopic observations and studies of three known ultraluminous IRAS AGN with extreme optical Fe II emission, the discovery that PHL 1092 is a new ultraluminous IRAS AGN, and the detection of two new AGN with strongly variable flux in the optical Fe II emission lines are reported. These results are used to test the correlations between the Fe II emission and properties at other wavelengths such as the L(IR) and the radio emission. IR AGN with extreme Fe II emission are found to belong to a very important group of AGN, whose properties provide insight into the origin of the extreme Fe II emission and into the relation between the starburst and AGN phenomena.

  12. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  13. X ray emission from relativistic jets in AGNs and statistical implications

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Koenigl, Arieh

    1989-11-01

    Calculations of the Compton scattering interaction between an ultrarelativistic jet and a thermal radiation field, in an Active Galactic Nuclei (AGN), are presented. This process can be effective in decelerating ultrarelativistic jets that are accelerated by electromagnetic or hydromagnetic forces closer in to the central black hole. A narrow distribution of terminal Lorentz factors gammainfinity, consistent with the values inferred in superluminal radio sources, arises naturally in this model. The hard X-ray component detected in the spectra of 3C273 and several BL Lac objects may be due to the inverse Compton radiation produced in the course of the initial deceleration of their relativistic jets. The requirement that the luminosity of the hard X-ray component must exceed the total power in the associated jet is considered.

  14. Cold-gas outflows in typical low-redshift galaxies are driven by star formation, not AGN

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc; Kaviraj, Sugata; Nedelchev, Borislav; Tiffany, Joshua; Shabala, Stanislav S.; Deller, Adam T.; Middelberg, Enno

    2016-02-01

    Energetic feedback from active galactic nuclei (AGN) is an important ingredient for regulating the star formation history of galaxies in models of galaxy formation, which makes it important to study how AGN feedback actually occurs in practice. In order to catch AGNs in the act of quenching star formation, we have used the interstellar Na I λλ5890, 5895(NaD) absorption lines to look for cold-gas outflows in a sample of 456 nearby galaxies for which we could unambiguously ascertain the presence of radio-AGN activity, thanks to radio imaging at milli-arcsecond scales. While compact radio emission indicating a radio AGN was found in 103 galaxies (23 per cent of the sample), and 23 objects (5 per cent) exhibited NaD absorption-line kinematics suggestive of cold-gas outflows, not one object showed evidence of a radio AGN and of a cold-gas outflow simultaneously. Radio-AGN activity was found predominantly in early-type galaxies, while cold-gas outflows were mainly seen in spiral galaxies with central star formation or composite star formation/AGN activity. Optical AGNs also do not seem capable of driving galactic winds in our sample. Our work adds to a picture of the low-redshift Universe, where cold-gas outflows in massive galaxies are generally driven by star formation and where radio-AGN activity occurs most often in systems in which the gas reservoir has already been significantly depleted.

  15. Nebular Line Emission in z 1 Spitzer Infrared-Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Krause, John; Papovich, C.; Finkelstein, S.; Willmer, C.; Egami, E.; Conselice, C.; Huang, J.; Koo, D.; Laird, E.; Le Floc'h, E.; Lotz, J.; Maia, M.; Marcillac, D.; Nandra, K.; Webb, T.; Weiner, B.

    2010-01-01

    We present near-infrared (IR) spectroscopic observations from the Multi-Object IR Camera and Spectrograph (MOIRCS) on the Subaru telescope of a sample of 21 IR-luminous galaxies in the approximate range 1 < z < 1.5. These galaxies were selected based on their Spitzer 24-micron flux densities (S(24 micron) > 0.1 mJy) and known spectroscopic redshifts from the All-Wavelength Extended Groth Strip International Survey (AEGIS). We measure rest-frame optical emission line fluxes for H-alpha and [NII], and also [OIII] and H-beta, where available. We use emission-line diagnostics to constrain the origin of the ionization in these objects: processes associated with star formation or AGN (including Seyferts and LINERs). The high-redshift galaxies in our sample have similar [NII] / H-alpha flux ratios compared to low-redshift (z 0.1) IR-luminous galaxies (Kim et al., 1995; Veilleux et al., 1995) for galaxies with implied IR luminosities of 11 < Log L(8-1000 micron) / L sol < 12. However, we find evidence that the IR-luminous galaxies in our sample with implied Log L(8-1000 micron) / L sol > 12 have lower [NII] / H-alpha ratios than low-redshift galaxies with comparable IR luminosity, implying the higher redshift IR-luminous galaxies may have a higher fraction of systems dominated by star formation. We also study the relation of our rest-frame optical emission-line diagnostics to other indicators of AGN activity, including the mid-IR colors and X-ray luminosities. In addition, we compare star-formation-rate indicators from our dust-corrected H-alpha emission line luminosities to those from the mid-to-far IR and compare these as a function of IR luminosity against the low-redshift sample.

  16. Millimeter emission lines in Orion A

    NASA Technical Reports Server (NTRS)

    Lovas, F. J.; Johnson, D. R.; Buhl, D.; Snyder, L. E.

    1976-01-01

    During the course of a search of Orion A for signals from three large organic molecules, several millimeter-wave lines from known interstellar molecules were observed. Results are reported for observations of methanol (CH3OH), methyl cyanide (CH3CN), methyl acetylene (CH3CCH), acetaldehyde (CH3CHO) and (Si-29)O. Emission signals from two hydrogen recombination lines (H41-alpha and H42-alpha) detected from the H II region of Orion A are also reported. Negative results were obtained for several millimeter-wave transitions of ethylene oxide, acetone, and cyclopropenone.

  17. Molecular Emission Line Formation in Prestellar Cores

    NASA Astrophysics Data System (ADS)

    Pavlyuchenkov, Ya.; Wiebe, D.; Shustov, B.; Henning, Th.; Launhardt, R.; Semenov, D.

    2008-12-01

    We investigate general aspects of molecular line formation under conditions typical of prestellar cores. Focusing on simple linear molecules, we study the formation of their rotational lines with radiative transfer simulations. We present a thermalization diagram to show the effects of collisions and radiation on the level excitation. We construct a detailed scheme (contribution chart) to illustrate the formation of emission-line profiles. This chart can be used as an efficient tool to identify which parts of the cloud contribute to a specific line profile. We show how molecular line characteristics for uniform model clouds depend on hydrogen density, molecular column density, and kinetic temperature. The results are presented in a two-dimensional plane to illustrate mutual effects of the physical factors. We also use a core model with a nonuniform density distribution and chemical stratification to study the effects of cloud contraction and rotation on spectral line maps. We discuss the main issues that should be taken into account when dealing with interpretation and simulation of observed molecular lines.

  18. ALMA Imaging of the CO (6-5) Line Emission in NGC 7130*

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin; Gao, Yu; Barcos-Munõz, Loreto; Díaz-Santos, Tanio; Appleton, Philip; Charmandaris, Vassilis; Armus, Lee; van der Werf, Paul; Evans, Aaron; Cao, Chen; Inami, Hanae; Murphy, Eric

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s‑1 and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggesting that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  19. Linear Polarization Measurements of Chromospheric Emission Lines

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  20. Newly Identified Rydberg Emission Lines in Novae

    NASA Astrophysics Data System (ADS)

    Lynch, David K.; Rudy, R. J.; Bernstein, L. S.

    2008-09-01

    Newly Identified Rydberg Emission Lines in Novae David K. Lynch, Richard. J. Rudy (The Aerospace Corporation) & Lawrence S. Bernstein (Spectral Sciences, Inc.) Novae spectra in the near infrared frequently show a set of six emission lines that have not been positively identified (Williams, Longmore, & Geballe 1996, MNRAS, 279, 804; Lynch et al. 2001, AJ, 122, 2013; Rudy et al. 2002 ApJ, 573, 794; Lynch et al. 2004 Astron. J. 127, 1089-1097). These lines are at 0.8926, 1.1114, 1.1901, 1.5545, 2.0996 and 2.425 µm ± 0.005 µm. Krautter et al. (1984 A&A 137, 304) suggested that three of the lines were due to rydberg (hydrogenic) transitions in an unspecified atomic species that was in the 4th or 5th ionization stage (core charge = 4 & 5). We believe that Krautter et al.'s explanation is correct based on 4 additional lines that we have identified in the visible and near infrared spectrum of V723 Cassiopeiae. The observed Rydberg lines appear to originate from high angular momentum states with negligible quantum defects. The species cannot be determined with any certainty because in rydberg states, the outer electron sees a nucleus shielded by the inner electrons and together the inner atom appears to have a charge of +1, like hydrogen. As a result, the atom looks hydrogenic and species such as CV, NV, OV, MgV, SiV, etc. have their rydberg transitions at very similar wavelengths. All the lines represent permitted transitions, most likely formed by recombination. Atoms with core charges 4, 5 & 6 are rarely seen in the astrophysical environment because an extremely hot radiation field is necessary to ionize them. Thermonuclear runaways on the surface of a white dwarf can reach millions of degrees K, and thus there are enough X-ray photons available to achieve the necessary high ionization levels.

  1. On the dynamics of clouds in the broad-line region of AGNs with an ADAF atmosphere

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh

    2015-01-01

    We investigate orbital motion of spherical, pressure-confined clouds in the broad-line region (BLR) of active galactic nuclei (AGNs). The combined influence of gravity of the central object and the non-isotropic radiation of the central source are taking into account. While most of the previous studies assume that the pressure of the intercloud gaseous component is proportional to a power-law function of the radial coordinate, we generalize it to a case where the external pressure depends on both the radial distance and the latitudinal angle. Our prescribed pressure profile determines the radius and the column density of BLR clouds as a function of their location. We also discuss about stability of the orbits and a condition for the existence of bound orbits is obtained. We found that BLR clouds tend to populate the equatorial regions more than other parts simply because of the stability considerations. Although this finding is obtained for a particular pressure profile, we think, this result is valid as long as the pressure distribution of the intercloud medium decreases from the equator to the pole.

  2. Warm Comptonization in AGN: Effect on the iron Kα line and the Lyman edge

    NASA Astrophysics Data System (ADS)

    Abrassart, A.; Dumont, A. M.

    2001-12-01

    It has been suggested that the broad fluorescent X-ray Iron line profile observed in Seyfert 1 galaxies could be explained by Compton scattering in a hot Thomson thick medium, either by reflection (Abrassart 99) or by transmission (Misra and Kembhavi 1998). Here, using our transfer codes TITAN and NOAR (Dumont et al. 1999), we show that for the latter, the iron line and edge can be made consistent with the observed ones, provided the ionization parameter ξ exceeds 106 erg.cm.s-1, and the incident spectra has a low enough Compton temperature. This model implies a small black hole mass and an accretion rate close to the Eddington value. A very important effect of such a medium on the line of sight of the central UV/X-ray source is to smooth any intrinsic Lyman edge, thus solving a long standing puzzle. .

  3. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    SciTech Connect

    Nobuta, K.; Akiyama, M.; Ueda, Y.; Hiroi, K.; Ohta, K.; Iwamuro, F.; Yabe, K.; Moritani, Y.; Sumiyoshi, M.; Maihara, T.; Watson, M. G.; Silverman, J.; Tamura, N.; Kimura, M.; Takato, N.; Dalton, G.; Lewis, I.; Bonfield, D.; Lee, H.; Curtis-Lake, E.; and others

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIR spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.

  4. The line continuum luminosity ratio in AGN: Or on the Baldwin Effect

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.; Ferland, F. J.

    1983-01-01

    The luminosity dependence of the equivalent width of CIV in active galaxies, the "Baldwin" effect, is shown to be a consequence of a luminosity dependent ionization parameter. This law also agrees with the lack of a "Baldwin" effect in Ly alpha or other hydrogen lines. A fit to the available data gives a weak indication that the mean covering factor decreases with increasing luminosity, consistent with the inference from X-ray observations. The effects of continuum shape and density on various line ratios of interest are discussed.

  5. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

  6. Emission Line Assimetry in Active Galaxies: Mrk 533 and Mrk 110

    NASA Astrophysics Data System (ADS)

    Gavrilovic, N.

    2009-09-01

    In this work emission line asymmetries detected in two different types of Active Galactic Nuclei (AGN) - Seyfert 1 galaxy Mrk 110 and Seyfert 2 galaxy Mrk 533 were analyzed. Since emission lines in two galaxies arise in different emitting regions, detailed spectrum analysis gave the insight into kinematical properties of the Narrow Line and the Broad Line region (NLR and BLR) of this galaxies. We used several methods in the analysis procedure: (a) in order to analyse line profiles we performed profile decomposition into Gaussian components, (b) to study kinematical properties of the gas in the stellar disk, we used the model of "tilted-rings" (Begeman 1989), (c) to determine the sources of ionization of emitting region, we used the Veilleux and Osterbrock diagnostic diagram (Veilleux and Osterbrock 1987), (d) thermodynamical properties of the BLR were determined using the Boltzman plot method (Popović 2003). We showed that the red-shift and asymmetry of emission lines in Mrk 110 are probable caused by the strong gravitational field of the super massive black hole in the center of this galaxy. On the other hand, detailed analysis of 3D spectrophotometric observation of Mrk 533 made possible to map the outflow velocities from the very center of this galaxy, as well as shock waves in the circum-nuclear region, and to analyse the increase of the blue asymmetry with the increase of the outflow velocity (in more details see Smirnova et al. 2007).

  7. CORA: Emission Line Fitting with Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Ness, Jan-Uwe; Wichmann, Rainer

    2011-12-01

    The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.

  8. CORA - emission line fitting with Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.; Wichmann, R.

    2002-07-01

    The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.

  9. Obscured AGN

    NASA Astrophysics Data System (ADS)

    Barger, Amy

    2014-07-01

    Obscured AGN may correspond to a substantial fraction of the supermassive black hole growth rate. I will present new surveys with the SCUBA-2 instrument on the James Clerk Maxwell Telescope of the Chandra Deep Fields and discuss whether we can distinguish obscured AGN in hard X-ray and radio selected samples using submillimeter observations.

  10. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-11-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z < 0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z = 0.25 to z = 0.7 by a factor of ∼6 (from 2/70 to 16/91, or 2.9{sup +3.6}{sub -1.9}% to 18{sup +5}{sub -5}%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ∼3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9{sup +3}{sub -2}% to 29{sub -19}{sup +26}%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.

  11. The MOSDEF Survey: Outflows from AGN at z~2.3

    NASA Astrophysics Data System (ADS)

    Leung, Gene; Coil, Alison L.; MOSDEF Team

    2016-06-01

    The MOSFIRE Deep Evolution Field (MOSDEF) survey, which is being undertaken with the new MOSFIRE spectrograph on the Keck I telescope, will obtain rest-frame optical spectra of ~1500 galaxies and AGN at 1.4 < z < 3.8. We analyze the spectra of 67 X-ray, IR, and/or optical AGN at z~2.3 in data from the first two years of the MOSDEF survey. We measure the H_β, [O III], H_α and [N II] emission line profiles to identify and characterize potential outflows from the AGN. We present measurements of the kinematics, physical extent, and emission line ratios of the outflows and quantify the high incidence of outflows in these AGN at z~2.3.

  12. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  13. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Leon-Tavares, Jonathan; Chavushyan, Vahram H.

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  14. Active galactic nuclei at z ˜ 1.5 - II. Black hole mass estimation by means of broad emission lines

    NASA Astrophysics Data System (ADS)

    Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.; Capellupo, D. M.

    2016-07-01

    This is the second in a series of papers aiming to test how the mass (MBH), accretion rate (Ṁ) and spin (a*) of supermassive black holes (SMBHs) determine the observed properties of type I active galactic nuclei (AGN). Our project utilizes a sample of 39 unobscured AGN at z ≃ 1.55 observed by Very Large Telescope/X-Shooter, selected to map a large range in MBH and L/LEdd and covers the most prominent UV-optical (broad) emission lines, including Hα, Hβ, Mg II λ2798 and C IV λ1549. This paper focuses on single-epoch, `virial' MBH determinations from broad emission lines and examines the implications of different continuum modelling approaches in line width measurements. We find that using a local power-law continuum instead of a physically motivated thin disc continuum leads to only slight underestimation of the full width at half-maximum (FWHM) of the lines and the associated MBH(FWHM). However, the line dispersion σline and associated MBH(σline) are strongly affected by the continuum placement and provides less reliable mass estimates than FWHM-based methods. Our analysis shows that Hα, Hβ and Mg II can be safely used for virial MBH estimation. The C IV line, on the other hand, is not reliable in the majority of the cases; this may indicate that the gas emitting this line is not virialized. While Hα and Hβ show very similar line widths, the mean FWHM(Mg II) is about 30 per cent narrower than FWHM(Hβ). We confirm several recent suggestions to improve the accuracy in C IV-based mass estimates, relying on other UV emission lines. Such improvements do not reduce the scatter between C IV-based and Balmer-line-based mass estimates.

  15. Active galactic nuclei at z ˜ 1.5: II. Black Hole Mass estimation by means of broad emission lines

    NASA Astrophysics Data System (ADS)

    Mejia-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.; Capellupo, D. M.

    2016-03-01

    This is the second in a series of papers aiming to test how the mass (MBH), accretion rate (dot{M}) and spin (a★) of super massive black holes (SMBHs) determine the observed properties of type-I active galactic nuclei (AGN). Our project utilizes a sample of 39 unobscured AGN at z ≃ 1.55 observed by VLT/X-shooter, selected to map a large range in MBH and L/LEddand covers the most prominent UV-optical (broad) emission lines, including Hα, Hβ, Mg II λ2798, and C IV λ1549. This paper focuses on single-epoch, "virial" MBH determinations from broad emission lines and examine the implications of different continuum modeling approaches in line width measurements. We find that using a local power-law continuum instead of a physically-motivated thin disk continuum leads to only slight underestimation of the FWHM of the lines and the associated MBH(FWHM). However, the line dispersion σline and associated MBH(σline) are strongly affected by the continuum placement and provides less reliable mass estimates than FWHM-based methods. Our analysis shows that Hα, Hβ and Mg II can be safely used for virial MBH estimation. The C IV line, on the other hand, is not reliable in the majority of the cases, this may indicate that the gas emitting this line is not virialized. While Hα and Hβ show very similar line widths, the mean FWHM(Mg II) is about 30% narrower than FWHM(Hβ). We confirm several recent suggestions to improve the accuracy in C IV-based mass estimates, relying on other UV emission lines. Such improvements do not reduce the scatter between C IV-based and Balmer-line-based mass estimates.

  16. SPATIALLY RESOLVED HST GRISM SPECTROSCOPY OF A LENSED EMISSION LINE GALAXY AT z {approx} 1

    SciTech Connect

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-20

    We take advantage of gravitational lensing amplification by A1689 (z 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i{sub 775} = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of Almost-Equal-To 4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M{sub *} Almost-Equal-To 2 Multiplication-Sign 10{sup 9} M{sub Sun }) with a high specific star formation rate ( Almost-Equal-To 20 Gyr{sup -1}). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 {+-} 0.2). We break the continuous line-emitting region of this giant arc into seven {approx}1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by {approx}1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (H{beta}) and f ([Ne III])/f (H{beta}) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  17. A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field

    NASA Astrophysics Data System (ADS)

    Menzel, M.-L.; Merloni, A.; Georgakakis, A.; Salvato, M.; Aubourg, E.; Brandt, W. N.; Brusa, M.; Buchner, J.; Dwelly, T.; Nandra, K.; Pâris, I.; Petitjean, P.; Schwope, A.

    2016-03-01

    This paper presents a survey of X-ray-selected active galactic nuclei (AGNs) with optical spectroscopic follow-up in a ˜ 18 deg2 area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of F_{0.5-10 keV} > 10^{-15} erg cm^{-2} s^{-1} was matched to optical (Sloan Digital Sky Survey, SDSS) and infrared (IR; WISE) counterparts. We followed up 3042 sources brighter than r = 22.5 mag with the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGNs in the redshift range z = 0.02-5.0, with 0.5-2 keV luminosities ranging from 1039-1046 erg s- 1. This is currently the largest published spectroscopic sample of X-ray-selected AGNs in a contiguous area. The BOSS spectra of AGN candidates show a distribution of optical line widths which is clearly bimodal, allowing an efficient separation between broad- and narrow-emission line AGNs. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow-emission line objects (22 per cent of the full sample) using standard optical emission line diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of the full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes `elusive' AGN, which would not be easy to identify correctly without their X-ray emission. We also compare X-ray (XMM-Newton), optical colour (SDSS) and and IR (WISE) AGN selections in this field. X-ray observations reveal, by far, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGNs would not be

  18. Emission line spectropolarimetry and circumstellar structures

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2015-10-01

    We discuss the role of linear emission-line polarimetry in a wide set of stellar environments, involving the accretion disks around young pre-main sequence stars, to the aspherical outflows from O stars, luminous blue variables and Wolf-Rayet stars, just prior to explosion as a supernova or a gamma-ray burst. We predict subtle QU line signatures, such as single/double QU loops for un/disrupted disks. Whilst there is plenty of evidence for single QU loops, suggesting the presence of disrupted disks around young stars, current sensitivity (with S/N of order 1000) is typically not sufficient to allow for quantitative 3D Monte Carlo modeling. However, the detection of our predicted signatures is expected to become feasible with the massive improvement in sensitivity of extremely large mirrors.

  19. THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50

    SciTech Connect

    Pancoast, Anna; Brewer, Brendon J.; Treu, Tommaso; Bennert, Vardha N.; Sand, David J.; Barth, Aaron J.; Cooper, Michael C.; Canalizo, Gabriela; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Clubb, Kelsey I.; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Assef, Roberto J.; Woo, Jong-Hak; Bae, Hyun-Jin; Buehler, Tabitha; and others

    2012-07-20

    We present dynamical modeling of the broad-line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6{sup +1.2}{sub -0.9} light days, a width of the BLR of 6.9{sup +1.2}{sub -1.1} light days, and a disk opening angle of 25 {+-} 10 deg above the plane. We also constrain the inclination angle to be 9{sup +7}{sub -5} deg, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log{sub 10}(M{sub BH}/M{sub Sun }) = 7.57{sup +0.44}{sub -0.27}. By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log{sub 10} f = 0.78{sup +0.44}{sub -0.27}, consistent with the commonly adopted mean value of 0.74 based on aligning the M{sub BH}-{sigma}* relation for active galactic nuclei and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.

  20. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats

    PubMed Central

    Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko

    2009-01-01

    The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than thirty brain regions. The measurements were performed using α-[14C]methyl-L-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental set up) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be

  1. A New Interpretation for the Variation in Starburst Galaxy Emission Line Spectra

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Allen, James T.; Baldwin, Jack A.; Hewett, Paul C.; Ferland, Gary J.; Meskhidze, Helen

    2015-01-01

    Starburst galaxies have been easily distinguished from AGN using diagnostic emission line ratio diagrams constraining their excitation mechanism. Previous modeling of the star forming (SF) galaxy sequence outlined on the BPT diagram has led to the interpretation that high metallicity SF galaxies and low ionization SF galaxies are synonymous. Here, we present a new interpretation. Using a large sample of low-z SDSS galaxies, we co-added similar spectra of pure star forming galaxies allowing many weaker emission lines to act as consistency checks on strong line diagnostics. For the first time, we applied a locally optimally-emitting cloud (LOC) model to understand the physical reason for the variation in starburst galaxy emission line spectra. We fit over twenty diagnostic diagrams constraining the excitation mechanism, SED, temperature, density, metallicity, and grain content, making this work far more constrained than previous studies. Our results indicate that low luminosity SF galaxies could simply have less concentrated regions of ionized gas compared to their high luminosity counterparts, but have similar metallicities, thus requiring reevaluation about underlying nature of star forming galaxies.

  2. AGN Science: The Past, The Present, The Future . AGN Science

    NASA Astrophysics Data System (ADS)

    Boller, Th.

    I review some basic results on AGN science by concentrating on the Fe K and Fe L line observations and on the Narrow-Line Seyfert 1 physics. This paper is based on a talk given at the Vulcano workshop, 'The multifrequency behavior of high energy cosmic sources` in 2009. Given the length of the talk and the number of pages the review on AGN science cannot be complete and is biased towards two science topics and my personal view.

  3. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  4. Line emission from H II blister models

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.

    1984-01-01

    Numerical techniques to calculate the thermal and geometric properties of line emission from H II 'blister' regions are presented. It is assumed that the density distributions of the H II regions are a function of two dimensions, with rotational symmetry specifying the shape in three-dimensions. The thermal and ionization equilibrium equations of the problem are solved by spherical modeling, and a spherical sector approximation is used to simplify the three-dimensional treatment of diffuse ionizing radiation. The global properties of H II 'blister' regions near the edges of a molecular cloud are simulated by means of the geometry/density distribution, and the results are compared with observational data. It is shown that there is a monotonic increase of peak surface brightness from the i = 0 deg (pole-on) observational position to the i = 90 deg (edge-on) position. The enhancement of the line peak intensity from the edge-on to the pole-on positions is found to depend on the density, stratification, ionization, and electron temperature weighting. It is found that as i increases, the position of peak line brightness of the lower excitation species is displaced to the high-density side of the high excitation species.

  5. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  6. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    SciTech Connect

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R. E-mail: pastoriza@ufrgs.b

    2010-12-10

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at {lambda} = 23 {mu}m and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T {approx} 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 {mu}m) and the forbidden emission lines of [Si II] 34.8 {mu}m, [Ar II] 6.9 {mu}m, [S III] 18.7 and 33.4 {mu}m were detected in all the starbursts and in {approx}80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 {mu}m, 11.3 {mu}m, and 12.7 {mu}m, we find that they are present in {approx}80% of the Seyfert 1, while only half of this type of activity show the 6.2 {mu}m and 8.6 {mu}m PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 {mu}m/7.7 {mu}m x 11.3 {mu}m/7.7 {mu}m) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules ({>=}180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 {mu}m) and the neutral PAH bands (8.6 {mu}m and 11.3 {mu}m) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 {mu}m and 11.3 {mu}m bands is nearly constant with the increase of [Ne III]15.5 {mu}m/[Ne II] 12.8 {mu}m, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 {mu}m) or neutral (11.3 {mu}m) bands, may be destroyed

  7. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  8. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  9. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  10. VizieR Online Data Catalog: Catalog of Type-1 AGNs from SDSS-DR7 (Oh+, 2015)

    NASA Astrophysics Data System (ADS)

    Oh, K.; Yi, S. K.; Schawinski, K.; Koss, M.; Trakhtenbrot, B.; Soto, K.

    2015-08-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z<0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII]λ5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles. (2 data files).

  11. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  12. Radio continuum detection in blue early-type weak-emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.

    2016-06-01

    The star formation rates (SFRs) in weak-emission-line (WEL) galaxies in a volume-limited (0.02 < z < 0.05) sample of blue early-type galaxies (ETGs) identified from the Sloan Digital Sky Survey, are constrained here using 1.4-GHz radio continuum emission. The direct detection of 1.4-GHz radio continuum emission is made in eight WEL galaxies and a median stacking is performed on 57 WEL galaxies using Very Large Array (VLA) Faint Images of Radio Sky at Twenty-cm (FIRST) images. The median stacked 1.4-GHz flux density and luminosity are estimated as 79 ± 19 μJy and 0.20 ± 0.05 × 1021 W Hz-1, respectively. The radio far-infrared correlation in four WEL galaxies suggests that the radio continuum emission from WEL galaxies is most likely a result of star formation activities. The median SFR for WEL galaxies is estimated as 0.23 ± 0.06 M⊙ yr-1, which is much less than SFRs (0.5-50 M⊙ yr-1) in purely star-forming blue ETGs. The SFRs in blue ETGs are found to be correlated with their stellar velocity dispersions (σ) and decreasing gradually beyond σ of ˜100 km s-1. This effect is most likely linked to the growth of a black hole and the suppression of star formation via active galactic nucleus (AGN) feedback. The colour differences between star-forming and WEL subtypes of blue ETGs appear to be driven to a large extent by the level of current star formation activities. In a likely scenario of an evolutionary sequence between subtypes, the observed colour distribution in blue ETGs can be explained best in terms of fast evolution through AGN feedback.

  13. Still Raining in Quasars: An Origin for the Broad Emission Line Region

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2016-01-01

    The strong broad emission lines (BELs) characteristic of quasars do not have an agreed-upon physical explanation. Why is there dense gas at hundreds to thousands of Schwarzchild radii around all* accreting super-massive black holes?I propose that dense cool clouds naturally form (Krolik et al. 1981) in the accretion disk winds of quasars and AGNs (Murray et al. 1995) before the wind reaches escape velocity. X-ray variability causes the gas to accumulate in the stable regions on the thermal equilibrium curve. These clouds have the density and temperature of BEL clouds. The narrow range of density at which the BEL clouds form in pressure equilibrium with the warm wind may explain the simple L1/2 scaling of BEL region radius. The clouds are self-shielding and can no longer accelerate; so they rain back on elliptical orbits. They are then destroyed by Kelvin-Helmholtz instabilities as they move at Mach ~ 30 through the warm disk wind. The timescales for all these processes fit with this picture.Observationally this "quasar rain" model agrees with the Pancoast et al. (2014) kinematics of the BEL region, with the cool phase of the warm absorber wind seen in X-rays (e.g. Krongold et al. 2005), and with the "cometary" tails seen in a few AGN X-ray eclipses (Maiolino et al. 2010).[* unobscured, non-jet-dominated.

  14. A POWERFUL AGN OUTBURST IN RBS 797

    SciTech Connect

    Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.; Nulsen, P. E. J.; Gitti, M.; Brueggen, M.; Rafferty, D. A.

    2011-05-10

    Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{sup 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.

  15. An objective prism survey of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Liu, J.-Y.; Huang, Y.-W.; Feng, X.-C.

    1986-09-01

    The first list of emission line objects detected as part of an object prism survey of emission line galaxies begun in China in 1981 is presented. The instrument and observations are described, and the identification of emission-line galaxies is discussed. The spectral structural classification of the presented objects is addressed. On a dozen plates covering some 220 square degrees of sky, 50 emission line objects were detected, 47 of which are galaxies and the other three of which are planetary nebulae. Finding charts of the objects are presented.

  16. Molecular Hydrogen Line Emission from Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Chrysostomou, Antonio

    1993-01-01

    The work presented in this thesis is dedicated to the study of the physical properties of photodissociation regions (PDRs), the surface layers of molecular clouds which are irradiated by ultraviolet radiation. The structure of PDRs is investigated with the development of an anlytical model which incorporates the essential heating and cooling mechanisms in a PDR. The main parameters in the model are the density and the incident ulttraviolet radiation field (G0) impinging on the surface which dissociates the molecules in the PDR. It is demonstrated that when the ratio (n / G0) is high (> 100 cm-3) the attenuation of ultraviolet photons is dominated by H2 self shielding, which brings the Hi/H2 transition zone close to the surface of the cloud (Av < 1). When the ratio is of order unity then the attenuation of ultraviolet photons is dominated by dust grains in the PDR. In this case, the Hi / H2 transition zone occurs at a depth of Av ~2-3. Images of the PDR in the northern bar of M17 show that there is a spatial coincidence, accurate to ~1 arcsec, of the H2 and 3.28 micron emission regions (the 3.28 micron emission being a tracer of the hot edge of the PDR delineated by the Hii / Hi transition) placing a lower limit to the density in the clumps of 105 cm-3. This coincidence is also observed in other PDR sources (eg. NGC 2023) and can be readily explained if the sources are clumpy. It is not clear in the northern bar of M17, where G0 ~104, whether shielding by dust or H2 molecules is dominated the attenuation of ultraviolet photons. A uniform, high density PDR model is sufficient to reproduce the observed H2 line intensity, however the images clearly reveal structures at the 2 arcsec level suggesting that a clumpy model is a realistic solution. Long slit K band spectroscopy measurements were taken in the northern bar of M17, where up to 16 H2 lines were identified. Analysis of the data suggests that the emission can only be explained if the H2 molecules are being excited

  17. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-Infrared Emission Lines

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.

  18. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  19. Spectro-temporal diagnostics to evaluate physical structure around the AGN

    NASA Astrophysics Data System (ADS)

    Mizumoto, M.; Ebisawa, K.

    2016-06-01

    X-ray energy spectra from the AGN exhibit a lot of emission/absorption lines, which have been studied in detail by grating devices such as RGS on XMM-Newton. Variability of these spectral lines is considered to reflect physical conditions of the line emitting/absorbing matter. Thus, we study root-mean-square (RMS) spectra of several AGN observed with RGS to diagnose physical structures around these AGN. As a result, we have found clear peaks/dips in the RMS spectrum of NGC 4051, which can be modeled with variable absorption lines and non-variable emission lines. Several absorbers with different ionization states are required, where a lower-ionized (logξ=1.5) absorber shows larger variability and a higher-ionized (logξ=2.5) absorber shows little variability. These results directly give hints on physical structure around the AGN. We also show simulated RMS spectra of several AGN with Hitomi SXS, which is a more powerful diagnostic tool than RGS.

  20. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    NASA Technical Reports Server (NTRS)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  1. The most obscured AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Cappelluti, N.; Comastri, A.; Gilli, R.; Gruppioni, C.; Mignoli, M.; Pozzi, F.; Vietri, G.; Vignali, C.; Zamorani, G.

    2015-06-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH ≳ 1024 cm-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 1024 cm-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH ≳ 1025 cm-2), intrinsically luminous (L2-10 > 1044 erg s-1) AGN at z = 0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6 μm luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a ≳1025 cm-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (LBol/LEdd = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z ~ 2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.

  2. Four Dual AGN Candidates Observed with the VLBA

    NASA Astrophysics Data System (ADS)

    Gabányi, K. É.; An, T.; Frey, S.; Komossa, S.; Paragi, Z.; Hong, X.-Y.; Shen, Z.-Q.

    2016-08-01

    According to hierarchical structure formation models, merging galaxies are expected to be seen in different stages of coalescence. However, there are currently no straightforward observational methods to either select or to confirm a large number of dual active galactic nucleus (AGN) candidates. Most attempts involve obtaining a better understanding of double-peaked narrow emission line sources, in order to distinguish the objects for which the emission lines originate from narrow-line kinematics or jet-driven outflows, from those which might harbor dual AGNs. We observed four such candidate sources with the Very Long Baseline Array (VLBA), at 1.5 GHz with a ∼10 mas angular resolution, for which the spectral profiles of AGN optical emission suggested the existence of dual AGNs. In SDSS J210449.13–000919.1 and SDSS J23044.82–093345.3 the radio structures are aligned with the optical emission features, thus the double-peaked emission lines might be the results of jet-driven outflows. In the third detected source SDSS J115523.74+150756.9, the radio structure is less extended and is oriented nearly perpendicular to the position angle derived from optical spectroscopy. The fourth source remained undetected with the VLBA, but it was imaged with the Very Large Array at arcsec resolution a few months before our observations, suggesting the existence of an extended radio structure. We did not detect two radio-emitting cores in any of the four sources, a convincing signature of duality.

  3. Physical conditions in the x-ray emission-line gas in the Seyfert 2 galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika

    Active Galactic Nuclei (AGN) reside in the centers of many (10%) galaxies. The nuclear spectra exhibit a broad (from radio to gamma-rays) non-stellar continuum which exceeds the luminosity of the host. AGN are thought to be powered by accretion of matter onto a supermassive black hole (BH~10 6--109 times the mass of the Sun). Since this activity takes place in a relatively small region (<< 3 light years), the central engine of even the closest AGN cannot be imaged directly with current technology. Nevertheless, spectroscopic observations can help us constrain the conditions of the gas very close to the BH. The scientific goal of my thesis is to examine the physical conditions in the circumnuclear regions of the Seyfert 2 galaxy NGC 1068. The soft X-ray spectrum comprises a multitude of emission lines including those of C, N, O, Ne, Mg, that arise in gas that is spatially extended over ~1000 light years. Radiative recombination continuum widths indicate the gas is photoionized and I model it finding a two-zone solution with unusual abundances attributed to the star formation history of the galaxy. Also of interest are the Fe K complex of em.

  4. Spatially-Resolved HST GRISM Spectroscopy of a Lensed Emission Line Galaxy at Z to approximately 1

    NASA Technical Reports Server (NTRS)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-01-01

    We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i(sub 775)=27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of approx = 4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M(sub star) approx = 2 x 10(exp 9)Solar Mass) with a high specific star formation rate (approx = 20/ Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O /H)=8.8 +/- O.2). We break the continuous line-emitting region of this giant arc into seven approx 1 kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by -lkpc have a placement on the blue HI! region excitation diagram with f([OIII]/ f(H-Beta) and f([NeIII/ f(H-Beta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  5. AGN POPULATION IN HICKSON COMPACT GROUPS. I. DATA AND NUCLEAR ACTIVITY CLASSIFICATION

    SciTech Connect

    MartInez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R. E-mail: chony@iaa.es E-mail: rcoziol@astro.ugto.mx

    2010-03-15

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN H{alpha} luminosity of 7.1 x 10{sup 39} erg s{sup -1}, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by MartInez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  6. AGN Population in Hickson Compact Groups. I. Data and Nuclear Activity Classification

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Coziol, R.; Perea, J.

    2010-03-01

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN Hα luminosity of 7.1 × 1039 erg s-1, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by Martínez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  7. Interpreting broad emission-line variations - II. Tensions between luminosity, characteristic size, and responsivity

    NASA Astrophysics Data System (ADS)

    Goad, M. R.; Korista, K. T.

    2015-11-01

    We investigate the variability behaviour of the broad H β emission-line to driving continuum variations in the best-studied AGN NGC 5548. For a particular choice of broad emission-line region (BLR) geometry, H β surface emissivity based on photoionization models, and using a scaled version of the 13-yr optical continuum light-curve as a proxy for the driving ionizing continuum, we explore several key factors that determine the broad emission-line luminosity L, characteristic size RRW, and variability amplitude (i.e. responsivity) η, as well as the interplay between them. For fixed boundary models which extend as far as the hot dust the predicted delays for H β are on average too long. However, the predicted variability amplitude of H β provides a remarkably good match to observations except during low-continuum states. We suggest that the continuum flux variations which drive the redistribution in H β surface emissivity F(r) do not on their own lead to large enough changes in RRW or ηeff. We thus investigate dust-bounded BLRs for which the location of the effective outer boundary is modulated by the continuum level and the dust-sublimation and dust-condensation time-scales. We find that in order to match the observed variability amplitude of broad H β in NGC 5548 a rather static outer boundary is preferred. Intriguingly, we show that the most effective way of reducing the H β delay, while preserving its responsivity and equivalent width, is to invoke a smaller value in the incident ionizing photon flux ΦH for a given ionizing source-cloud radial distance r, than is normally inferred from the observed UV continuum flux and typical models of the continuum spectral energy distribution.

  8. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    SciTech Connect

    Dicken, D.; Tadhunter, C.; Morganti, R.; Axon, D.; Robinson, A.; Magagnoli, M.; Kharb, P.; Ramos Almeida, C.; Hardcastle, M.; Nesvadba, N. P. H.; Singh, V.; Kouwenhoven, M. B. N.; Rose, M.; Spoon, H.; Inskip, K. J.; Holt, J.

    2014-06-20

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  9. Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey

    SciTech Connect

    de Vries, W H; Hodge, J A; Becker, R H; White, R L; Helfand, D J

    2007-04-18

    We investigate faint radio emission from low- to high-luminosity Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their radio properties are inferred by coadding large ensembles of radio image cut-outs from the FIRST survey, as almost all of the sources are individually undetected. We correlate the median radio flux densities against a range of other sample properties, including median values for redshift, [O III] luminosity, emission line ratios, and the strength of the 4000{angstrom} break. We detect a strong trend for sources that are actively undergoing star-formation to have excess radio emission beyond the {approx} 10{sup 28} ergs s{sup -1} Hz{sup -1} level found for sources without any discernible star-formation. Furthermore, this additional radio emission correlates well with the strength of the 4000{angstrom} break in the optical spectrum, and may be used to assess the age of the star-forming component. We examine two subsamples, one containing the systems with emission line ratios most like star-forming systems, and one with the sources that have characteristic AGN ratios. This division also separates the mechanism responsible for the radio emission (star-formation vs. AGN). For both cases we find a strong, almost identical, correlation between [O III] and radio luminosity, with the AGN sample extending toward lower, and the star-formation sample toward higher luminosities. A clearer separation between the two subsamples is seen as function of the central velocity dispersion {sigma} of the host galaxy. For systems at similar redshifts and values of {sigma}, the star-formation subsample is brighter than the AGN in the radio by an order of magnitude. This underlines the notion that the radio emission in star-forming systems can dominate the emission associated with the AGN.

  10. Enhanced line emission from laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Timmer, C.; Srivastava, S. K.; Hall, T. E.; Fucaloro, A. F.

    1991-01-01

    This communication reports the first systematic study on background gas-induced spectral-line-emission enhancement from laser-produced plasmas. Line emission from aluminum plasmas was enhanced by factors of up to 35 by the introduction of He, Ne, Xe, or N2. The enhancement has been attributed to three-body recombination.

  11. The origin of the near-IR line emission from molecular, low and high ionization gas in the inner kiloparsec of NGC 6240

    NASA Astrophysics Data System (ADS)

    Ilha, Gabriele da Silva; Bianchin, Marina; Riffel, Rogemar A.

    2016-06-01

    The understating of the origin of the H2 line emission from the central regions of galaxies represents an important key to improve our knowledge about the excitation and ionization conditions of the gas in these locations. Usually these lines can be produced by Starburst, shocks and/or radiation from an active galactic nucleus (AGN). Luminous Infrared Galaxies (LIRG) represent ideal and challenging objects to investigate the origin of the H2 emission, as all processes above can be observed in a single object. In this work, we use K-band integral field spectroscopy to map the emission line flux distributions and kinematics and investigate the origin of the molecular and ionized gas line emission from inner 1.4×2.4~kpc2 of the LIRG NGC 6240, known to be the galaxy with strongest H2 line emission. The emission lines show complex profiles at locations between both nuclei and surrounding the northern nucleus, while at locations near the southern nucleus and at 1^'' west of the northern nucleus, they can be reproduced by a single Gaussian component. We found that the H2 emission is originated mainly by thermal processes, possible being dominated by heating of the gas by X-rays from the AGN at locations near both nuclei. For the region between the northern and southern nuclei shocks due to the interacting process may be the main excitation mechanism, as indicated by the high values of the H2 λ2.12 μ m/Brγ line ratio. A contribution of fluorescent excitation may also be important at locations near 1^'' west of the northern nucleus, which show the lowest line ratios. The [Fe ii]λ2.072 μ m/Brγ ratio show a similar trend as observed for H2 λ2.12 μ m/Brγ, suggesting that [Fe ii] and H2 line emission have similar origins. Finally, the [Ca viii]λ2.32 μ m coronal line emission is observed mainly in regions next to the nuclei, suggesting it is originated gas ionized by the radiation from the AGN.

  12. Ionized Absorbers in AGN

    NASA Astrophysics Data System (ADS)

    Mathur, S.

    1999-08-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  13. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  14. VizieR Online Data Catalog: AGN activity in isolated SDSS galaxies (Coziol+, 2011)

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Plauchu-Frayn, I.; Islas-Islas, J. M.; Ortega-Minakata, R. A.; Neri-Larios, D. M.; Andernach, H.

    2011-09-01

    We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. All these galaxies are spiral like and show some kind of nuclear activity. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) is relatively high, amounting to 64% of the galaxies. There is a definite trend for the NLAGNs to appear in early-type spirals, while the star forming galaxies and TOs are found in later-type spirals. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torres-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. Consistent with this interpretation, we establish a strong connection between the astration rate -- the efficiency with which the gas is transformed into stars - the AGN phenomenon, and the gravitational binding energy of the galaxies: the higher the binding energy, the higher the astration rate and the higher the probability to find an AGN. The NLAGNs in our sample are consistent with scaled-down or powered-down versions of quasars and Broad Line AGNs. (2 data files).

  15. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Swinbank, A. M.

    2014-07-01

    We present integral field unit observations covering the [O III]λλ4959, 5007 and Hβ emission lines of 16 z < 0.2 type 2 active galactic nuclei (AGN). Our targets are selected from a well-constrained parent sample of ≈24 000 AGN so that we can place our observations into the context of the overall AGN population. Our targets are radio quiet with star formation rates (SFRs; ≲[10-100] M⊙ yr-1) that are consistent with normal star-forming galaxies. We decouple the kinematics of galaxy dynamics and mergers from outflows. We find high-velocity ionized gas (velocity widths ≈600-1500 km s-1; maximum velocities ≤1700 km s-1) with observed spatial extents of ≳(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z < 0.2, luminous (i.e. L[O III] > 1041.7 erg s-1) type 2 AGN and that ionized outflows are not only common but also in ≥70 per cent (3σ confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultraluminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ≈10 times the SFRs), kinetic energies (≈0.5-10 per cent of LAGN) and momentum rates (typically ≳10-20 × LAGN/c) consistent with theoretical models that predict AGN-driven outflows play a significant role in shaping the evolution of galaxies.

  16. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  17. Iron emission line from the spiral galaxy M 101

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo

    2016-06-01

    Archival Suzaku data of the face-on spiral galaxy M 101 were analyzed. An intense emission line at 6.72^{+0.10}_{-0.12}keV was detected in the central region. This line is identified with a K-line from He-like iron, which indicates the existence of a thin thermal plasma with a temperature of several keV. The iron line luminosity within the central 5'-radius region is estimated to be (2-12) × 1037 erg s-1. The origin of the iron emission line is discussed.

  18. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    SciTech Connect

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey; Armus, Lee; Desai, Vandana; Brodwin, Mark; Bussmann, Robert S.; Dey, Arjun; Jannuzi, Buell; Le Floc'h, Emeric; Melbourne, Jason; Stern, Daniel

    2012-06-20

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factor derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.

  19. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  20. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  1. Emission lines in the long period Cepheid l Carinae

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Love, Stanley G.

    1991-01-01

    For the Cepheid (l) Carinae with a pulsation period of 35.5 days we have studied the emission line fluxes as a function of pulsational phase in order to find out whether we see chromosphere and transition layer emission or whether we see emission due to an outward moving shock. All emission lines show a steep increase in flux shortly before maximum light suggestive of a shock moving through the surface layers. The large ratio of the C IV to C II line fluxes shows that these are not transition layer lines. During maximum light the large ratio of the C IV to C II line fluxes also suggests that we see emission from a shock with velocities greater than 100 km/sec such that C IV emission can be excited. With such velocities mass outflow appears possible. The variations seen in the Mg II line profiles show that there is an internal absorption over a broad velocity band independent of the pulsational phase. We attribute this absorption to a circumstellar 'shell'. This 'shell' appears to be seen also as spatially extended emission in the O I line at 1300 angstrom, which is probably excited by resonance with Ly beta.

  2. A Radial Velocity Test for Supermassive Black Hole Binaries as an Explanation for Broad, Double-peaked Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Eracleous, Michael; Halpern, Jules P.

    2016-01-01

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1-2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  3. Physical properties of simulated galaxy populations at z = 2 - I. Effect of metal-line cooling and feedback from star formation and AGN

    NASA Astrophysics Data System (ADS)

    Haas, Marcel R.; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio; Springel, Volker; Theuns, Tom; Wiersma, Robert P. C.

    2013-11-01

    We use hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that if the sub-grid feedback from star formation is implemented kinetically, the feedback is only efficient if the initial wind velocity exceeds a critical value. This critical velocity increases with galaxy mass and also if metal-line cooling is included. This suggests that radiative losses quench the winds if their initial velocity is too low. If the feedback is efficient, then the star formation rate is inversely proportional to the amount of energy injected per unit stellar mass formed (which is proportional to the initial mass loading for a fixed wind velocity). This can be understood if the star formation is self-regulating, i.e. if the star formation rate (and thus the gas fraction) increases until the outflow rate balances the inflow rate. Feedback from AGN is efficient at high masses, while increasing the initial wind velocity with gas pressure or halo mass allows one to generate galaxy-wide outflows at all masses. Matching the observed galaxy mass function requires efficient feedback. In particular, the predicted faint-end slope is too steep unless we resort to highly mass loaded winds for low-mass objects. Such efficient feedback from low-mass galaxies (M* ≪ 1010 M⊙) also reduces the discrepancy with the observed specific star formation rates, which are higher than predicted unless the feedback transitions from highly efficient to inefficient just below M* ˜ 5 × 109 M⊙.

  4. γ-Ray Generation in Microquasars: the link with AGN

    NASA Astrophysics Data System (ADS)

    Latham, I. J.; Aye, K.-M.; Brown, A. M.; Chadwick, P. M.; Hadjichristidis, C. N.; Le Gallou, R.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Noutsos, A.; Rayner, S. M.

    2005-02-01

    The link between the physical processes responsible for high energy emission from relativistic jets in AGN and microquasars is investigated. A Fortran code based on an existing inhomogeneous, synchrotron self-Compton (SSC) model, for AGN is presented. The code is then applied to the AGN 3C 279 and the microquasar LS5039. Spectral energy distributions (SED's) are presented.

  5. Emission lines in the long-period Cepheid l Carinae

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Love, Stanley G.

    1994-01-01

    For the Cepheid l Carinae, with a pulsation period of 35.5 days, we have studied the emission-line fluxes as a function of pulsational phase in order to find out whether we see chromospheric and transition-layer emission due to an outward-moving shock. All emission lines show a steep increase in flux shortly before maximum light, suggestive of a shock moving through the surface layers. The large ratio of C IV to C II line fluxes shows that these are not transition-layer lines. During maximum light the large ratio of the large ratio of the C IV to C II line fluxes also suggests that we see emission from a shock with velocities greater than 100 km/s such that C IV emission can be excited. With such velocities mass outflow appears possible. The variations seen in the MG II line profiles show that there is an external absorption over a broad velocity band independent of the pulsation phase. We attribute this absorption to a circumstellar 'shell.' This 'shell' appears to be seen also as spatially extended emission in the O I line at 1300 A, which is probably excited by resonance with Ly beta.

  6. Fine structure line emission from supergiants

    NASA Astrophysics Data System (ADS)

    Haas, Michael R.; Glassgold, Alfred E.; Tielens, Alexander G. G. M.

    We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.

  7. Fine structure line emission from supergiants

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Glassgold, Alfred E.; Tielens, Alexander G. G. M.

    1995-01-01

    We have detected (O I) 63 micron and (Si II) 35 micron emission from the oxygen-rich, M supergiants alpha Orionis (Betelgeuse), alpha Scorpii (Antares), and alpha Herculis (Rasalgethi). The measured fluxes indicate that the emission originates in dense, warm gas in the inner envelope or transition region where molecules and dust are expected to form and the acceleration of the wind occurs. Mass-loss rates are derived, evidence for time variability is presented, and results for other evolved stars are included.

  8. Dynamic Processes in Be Star Atmospheres. V. Helium Line Emissions from the Outer Atmosphere of λ Eridani

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.; Cohen, D. H.; Hubeny, I.; Plett, K.; Basri, G.; Johns-Krull, C. M.; MacFarlane, J. J.; Hirata, R.

    1997-05-01

    The He I lines of the mild B2e star λ Eri often exhibit rapid, small-amplitude emissions that can occur at random places in their photospheric lines, even when the star is in a ``nonemission state.'' New simultaneous observations of the triplet λ5876 and singlet λ6678 lines show that the emission ratio for these lines is near unity, contrary to the predictions of either non-LTE model atmospheres or nebular recombination theory. Several He I emission events point to the formation of short-lived structures near the star's surface. On 1995 September 12 the line λ6678 exhibited a strong (0.13Icont) emission lasting some 20 minutes. The rapid decay of this feature implies a density of >=1011.5 cm-3 for an emitting plasma structure near the star. This value is consistent with density estimates for slabs which may be responsible for ephemeral ``dimples'' in this star's He I lines on other occasions. We argue that photospheric helium emissions during Hα-quiescent phases are caused by foreground material and ask what mechanism might produce these features against the stellar background. To answer this question we have simulated He I line emission from model slabs having various properties and suspended over the star. We find that illumination by a source of extreme-ultraviolet (EUV) or X-ray flux depletes the He I column density so that it is difficult to form observable He I lines. A more interesting set of conditions occur for slabs with high densities (~1012 cm-3) and moderately large optical thicknesses in optical He I lines. Under these modified assumptions modest amounts of emission can be reproduced in singlet and triplet lines, and in the observed ratio. The key to producing this emission is for the slab to feel its own Lyman continuum radiation. This condition causes λ584 and other resonance lines to partially depopulate the ground state and to overpopulate the first few excited levels, ensuring that the departure coefficients of relevant atomic levels

  9. Accretion disc/corona emission from a radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Dewangan, G. C.; Raychaudhuri, B.

    2016-02-01

    Approximately 10-20 per cent of active galactic nuclei (AGN) are known to eject powerful jets from the innermost regions. There is very little observational evidence if the jets are powered by spinning black holes and if the accretion discs extend to the innermost regions in radio-loud AGN. Here, we study the soft X-ray excess, the hard X-ray spectrum and the optical/UV emission from the radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504 using Suzaku and Swift observations. The broad-band X-ray continuum of PKS 0558-504 consists of a soft X-ray excess emission below 2 keV that is well described by a blackbody (kT ˜ 0.13 keV) and high-energy emission that is well described by a thermal Comptonization (compps) model with kTe ˜ 250 keV, optical depth τ ˜ 0.05 (spherical corona) or kTe ˜ 90 keV, τ ˜ 0.5 (slab corona). The Comptonizing corona in PKS 0558-504 is likely hotter than in radio-quiet Seyferts such as IC 4329A and Swift J2127.4+5654. The observed soft X-ray excess can be modelled as blurred reflection from an ionized accretion disc or optically thick thermal Comptonization in a low-temperature plasma. Both the soft X-ray excess emission when interpreted as the blurred reflection and the optical/UV to soft X-ray emission interpreted as intrinsic disc Comptonized emission implies spinning (a > 0.6) black hole. These results suggest that disc truncation at large radii and retrograde black hole spin both are unlikely to be the necessary conditions for launching the jets.

  10. Spectral classification of emission-line galaxies

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Osterbrock, Donald E.

    1987-01-01

    A revised method of classification of narrow line active galaxies and H II region-like galaxies is proposed. It involves the line ratios (O III) lambda 5007/H beta, (N II) lambda 6583/H alpha, (S II) (lambda lambda 6716 = 6731)/H alpha, and (O I) lambda 6300/H alpha. These line ratios take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used including new previously unpublished measurements. Prediction of recent photoionization models by power law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models.

  11. THE SOFT X-RAY AND NARROW-LINE EMISSION OF Mrk 573 ON KILOPARSEC SCALES

    SciTech Connect

    Gonzalez-Martin, O.; Acosta-Pulido, J. A.; Garcia, A. M. Perez

    2010-11-10

    We present a study of the circumnuclear region of the nearby Seyfert galaxy Mrk 573 using Chandra, XMM-Newton, and Hubble Space Telescope (HST) data. We have studied the morphology of the soft (<2 keV) X-rays comparing it with the [O III] and H{alpha} HST images. The soft X-ray emission is resolved into a complex extended region. The X-ray morphology shows a biconical region extending up to 12 arcsec (4 kpc) in projection from the nucleus. A strong correlation between the X-rays and the highly ionized gas seen in the [O III]{lambda}5007 A image is reported. Moreover, we have studied the line intensities detected with the XMM-Newton Reflection Grating Spectrometer (RGS) and used them to fit the low-resolution EPIC/XMM-Newton and ACIS/Chandra spectra. The RGS/XMM-Newton spectrum is dominated by emission lines of C VI, O VII, O VIII, Fe XVII, and Ne IX, among other highly ionized species. A good fit is obtained using these emission lines found in the RGS/XMM-Newton spectrum as a template for Chandra spectra of the nucleus and extended emission, coincident with the cone-like structures seen in the [O III]/H{alpha} map. The photoionization model Cloudy provides a reasonable fit for both the nuclear region and the cone-like structures showing that the dominant excitation mechanism is photoionization. For the nucleus the emission is modeled using two phases: a high ionization [log (U) = 1.23] and a low ionization [log (U) = 0.13]. For the high-ionization phase the transmitted and reflected components are in a 1:2 ratio, whereas for the low ionization the reflected component dominates. For the extended emission, we successfully reproduced the emission with two phases. The first phase shows a higher ionization parameter for the northwest (log (U) = 0.9) than for the southeast cone (log (U) = 0.3). Moreover, this phase is transmission dominated for the southeast cone and reflection dominated for the northwest cone. The second phase shows a low-ionization parameter (log (U

  12. The Soft X-ray and Narrow-line Emission of Mrk 573 on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, O.; Acosta-Pulido, J. A.; Perez Garcia, A. M.; Ramos Almeida, C.

    2010-11-01

    We present a study of the circumnuclear region of the nearby Seyfert galaxy Mrk 573 using Chandra, XMM-Newton, and Hubble Space Telescope (HST) data. We have studied the morphology of the soft (<2 keV) X-rays comparing it with the [O III] and Hα HST images. The soft X-ray emission is resolved into a complex extended region. The X-ray morphology shows a biconical region extending up to 12 arcsec (4 kpc) in projection from the nucleus. A strong correlation between the X-rays and the highly ionized gas seen in the [O III]λ5007 Å image is reported. Moreover, we have studied the line intensities detected with the XMM-Newton Reflection Grating Spectrometer (RGS) and used them to fit the low-resolution EPIC/XMM-Newton and ACIS/Chandra spectra. The RGS/XMM-Newton spectrum is dominated by emission lines of C VI, O VII, O VIII, Fe XVII, and Ne IX, among other highly ionized species. A good fit is obtained using these emission lines found in the RGS/XMM-Newton spectrum as a template for Chandra spectra of the nucleus and extended emission, coincident with the cone-like structures seen in the [O III]/Hα map. The photoionization model Cloudy provides a reasonable fit for both the nuclear region and the cone-like structures showing that the dominant excitation mechanism is photoionization. For the nucleus the emission is modeled using two phases: a high ionization [log (U) = 1.23] and a low ionization [log (U) = 0.13]. For the high-ionization phase the transmitted and reflected components are in a 1:2 ratio, whereas for the low ionization the reflected component dominates. For the extended emission, we successfully reproduced the emission with two phases. The first phase shows a higher ionization parameter for the northwest (log (U) = 0.9) than for the southeast cone (log (U) = 0.3). Moreover, this phase is transmission dominated for the southeast cone and reflection dominated for the northwest cone. The second phase shows a low-ionization parameter (log (U) = -3) and is

  13. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  14. Anomalous H-beta Variability in the 2014 NGC 5548 AGN-STORM Monitoring Campaign

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi; AGN STORM Collaboration

    2016-06-01

    Reverberation mapping programs generally find that the continuum and H-beta flux variations in AGNs are well correlated. In the 2014 AGN STORM monitoring program for NGC 5548, we observed a distinct decorrelation of the emission-line light curves from the AGN continuum light curve during the second half of the six-month campaign. This effect was first detected for the C IV, Ly a, HeII 1640 and SiIV/OIV] 1400 lines in Hubble Space Telescope data, then observed for the H-beta line in ground-based data taken during the same monitoring period. We present measurements of the H-beta lags, equivalent width variations, and line responsivity changes during our campaign. We show that the AGN demonstrated unusual behavior in that the broad H-beta responsivity to flux variations decreased significantly during the second half of the campaign. The discovery of this decorrelation phenomenon was made possible by the high cadence and long duration of our monitoring campaign. More multi-wavelength observing campaigns with high sampling cadence, high signal-to-noise ratio, and long temporal baseline are needed for other AGNs in order to determine the prevalence of this phenomenon and to understand its physical origin.

  15. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  16. Spectral classification of emission-line galaxies

    SciTech Connect

    Veilleux, S.; Osterbrock, D.E.

    1987-02-01

    A revised method of classification of narrow-line active galaxies and H II region-like galaxies is proposed. It involves the line ratios which take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used, including new, previously unpublished measurements. Predictions of recent photoionization models by power-law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models. 63 references.

  17. A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements

    NASA Astrophysics Data System (ADS)

    Marin, F.

    2014-06-01

    The anisotropic nature of active galactic nuclei (AGN) is thought to be responsible for the observational differences between type-1 (pole-on) and type-2 (edge-on) nearby Seyfert-like galaxies. In this picture, the detection of emission and/or absorption features is directly correlated to the inclination of the system. The AGN structure can be further probed by using the geometry-sensitive technique of polarimetry, yet the pairing between observed polarization and Seyfert type remains poorly examined. Based on archival data, I report here the first compilation of 53 estimated AGN inclinations matched with ultraviolet/optical continuum polarization measurements. Corrections, based on the polarization of broad emission lines, are applied to the sample of Seyfert-2 AGN to remove dilution by starburst light and derive information about the scattered continuum alone. The resulting compendium agrees with past empirical results, i.e. type-1 AGN show low polarization degrees (P ≤ 1 per cent) predominantly associated with a polarization position angle parallel to the projected radio axis of the system, while type-2 objects show stronger polarization percentages (P > 7 per cent) with perpendicular polarization angles. The transition between type-1 and type-2 inclination occurs between 45° and 60° without noticeable impact on P. The compendium is further used as a test to investigate the relevance of four AGN models. While an AGN model with fragmented regions matches observations better than uniform models, a structure with a failed dusty wind along the equator and disc-born, ionized, polar outflows is by far closer to observations. However, although the models correctly reproduce the observed dichotomy between parallel and perpendicular polarization, as well as correct polarization percentages at type-2 inclinations, further work is needed to account for some highly polarized type-1 AGN.

  18. Line Emission from Optically Thick RelativisticAccretion Tori

    SciTech Connect

    Fuerst, Steven V.; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-09-14

    We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderate viewing inclination angles they both have asymmetric double-peaked profiles with a tall, sharp blue peak and a shorter red peak which has an extensive red wing. At high viewing inclination angles they both have very broad, asymmetric lines which can be roughly considered as single-peaked. Torus and disk lines may show very different red and blue line wings, but the differences are due to the models for relativistic tori and disks having differing inner boundary radii. Self-eclipse and lensing play some role in shaping the torus lines, but they are effective only at high inclination angles. If inner and outer radii of an accretion torus are the same as those of an accretion disk, their line profiles show substantial differences only when inclination angles are close to 90{sup o}, and those differences are manifested mostly at the central regions of the lines instead of the wings.

  19. Significant contribution of the Cerenkov line-like radiation to the broad emission lines of quasars

    SciTech Connect

    Liu, D. B.; You, J. H.; Chen, W. P.; Chen, L. E-mail: dliu@cfa.Harvard.edu

    2014-01-01

    The Cerenkov line-like radiation in a dense gas (N {sub H} > 10{sup 13} cm{sup –3}) is potentially important in the exploration of the optical broad emission lines of quasars and Seyfert 1 galaxies. With this quasi-line emission mechanism, some long standing puzzles in the study of quasars could be resolved. In this paper, we calculate the power of the Cerenkov line-like radiation in dense gas and compare with the powers of other radiation mechanisms by a fast electron to confirm its importance. From the observed gamma-ray luminosity of 3C 279, we show that the total number of fast electrons is sufficiently high to allow effective operation of the quasi-line emission. We present a model calculation for the luminosity of the Cerenkov Lyα line of 3C 279, which is high enough to compare with observations. We therefore conclude that the broad line of quasars may be a blend of the Cerenkov emission line with the real line produced by the bound-bound transition. A new approach to the absorption of the Cerenkov line is presented with the method of escape probability, which markedly simplifies the computation in the optically thick case. The revised set of formulae for the Cerenkov line-like radiation is more convenient in applications.

  20. An infrared and optical analysis of a sample of XBONGs and optically elusive AGNs

    SciTech Connect

    Smith, K. L.; Mushotzky, R. F.; Koss, M. E-mail: richard@astro.umd.edu

    2014-10-20

    We present near-infrared (NIR) spectra of four optically elusive active galactic nuclei (AGNs) and four X-ray bright, optically normal galaxies (XBONGs) from the Swift-BAT survey. With archival observations from the Sloan Digital Sky Survey, the Two Micron All Sky Survey, Spitzer, and the Wide-field Infrared Survey Explorer (WISE), we test a number of AGN indicators in the NIR and mid-infrared; namely, NIR emission line diagnostic ratios, the presence of coronal high-ionization lines, and infrared photometry. Of our eight hard X-ray selected AGNs, we find that optical normalcy has a variety of causes from object to object, and no one explanation applies. Our objects have normal Eddington ratios and so are unlikely to host radiatively inefficient accretion flows. It is unlikely that star formation in the host or starlight dilution is contributing to their failure of optical diagnostics, except perhaps in two cases. The NIR continua are well fit by two blackbodies: one at the stellar temperature, and a hot dust component near the dust sublimation temperature. The XBONGs are more likely to have significant hot dust components, while these components are small relative to starlight in the optically elusive AGN. Some of our sample have NIR line ratios typical of AGNs, but NIR diagnostics are unsuccessful in distinguishing H II regions from AGNs in general. In one object, we discover a hidden broad-line region in the NIR. These results have strong relevance to the origin of optically normal AGNs in deep X-ray surveys.

  1. ACCRETION DISK TEMPERATURES OF QSOs: CONSTRAINTS FROM THE EMISSION LINES

    SciTech Connect

    Bonning, E. W.; Shields, G. A.; Stevens, A. C.; Salviander, S. E-mail: shields@astro.as.utexas.edu E-mail: triples@astro.as.utexas.edu

    2013-06-10

    We compare QSO emission-line spectra to predictions based on theoretical ionizing continua of accretion disks. The observed line intensities do not show the expected trend of higher ionization with theoretical accretion disk temperature as predicted from the black hole mass and accretion rate. Consistent with earlier studies, this suggests that the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. The emission lines of radio-detected and radio-undetected sources show different trends as a function of the theoretically predicted disk temperature.

  2. The optical emission line spectrum of Mark 110

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.; Joly, M.; Kollatschny, W.

    2007-11-01

    Aims:We analyse in detail the rich emission line spectrum of Mark 110 to determine the physical conditions in the nucleus of this object, a peculiar NLS1 without any detectable Fe II emission associated with the broad line region and with a λ5007/Hβ line ratio unusually large for a NLS1. Methods: We use 24 spectra obtained with the Marcario Low Resolution Spectrograph attached at the prime focus of the 9.2 m Hobby-Eberly telescope at the McDonald observatory. We fitted the spectrum by identifying all the emission lines (about 220) detected in the wavelength range 4200-6900 Å (at rest). Results: The narrow emission lines are probably produced in a region with a density gradient in the range 103-106 cm-3 with a rather high column density (5×1021 cm-2). In addition to a narrow line system, three major broad line systems with different line velocity and width are required. We confirm the absence of broad Fe II emission lines. We speculate that Mark 110 is in fact a BLS1 with relatively “narrow” broad lines but with a BH mass large enough compared to its luminosity to have a lower than Eddington luminosity. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Table A.1 is only available in electronic form at http://www.aanda.org

  3. Helium shells and faint emission lines from slitless flash spectra

    NASA Astrophysics Data System (ADS)

    Bazin, Cyril; Koutchmy, Serge

    2013-05-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence.

  4. Helium shells and faint emission lines from slitless flash spectra

    PubMed Central

    Bazin, Cyril; Koutchmy, Serge

    2013-01-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence. PMID:25685435

  5. Helium shells and faint emission lines from slitless flash spectra.

    PubMed

    Bazin, Cyril; Koutchmy, Serge

    2013-05-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence. PMID:25685435

  6. The influence of local environment on the emergence of AGN activity in galaxies

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R.; Focardi, P.

    2011-11-01

    We have carried out a spectroscopic study to determine the frequency and nature of the nuclear activity found in compact groups. With this aim we chose two samples, one selected from the Hickson Compact Groups Catalogue and another one from the Updated Zwicky Catalogue of Compact Groups. With the analysis of 1056 galaxies we found that more than 71% present some kind of emission, most of them, being low luminosity AGN (L_{Hα}=10^{39} erg s^{-1}). From these we only detect broad components in 16 which means a remarkable deficiency of broad line AGNs as compared to narrow lineAGNs, despite the high frequency of active galaxies encountered ingeneral in these groups.

  7. The high angular resolution view of local X-ray selected AGN in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Asmus, D.; Hönig, S. F.; Smette, A.; Duschl, W. J.; Matsuta, K.; Ichikawa, K.; Ueda, Y.; Terashima, Y.; Gilli, R.; Comastri, A.; Vignali, C.

    2012-09-01

    Hard X-ray and mid-infrared observations probe the peaks in broadband spectra of active galactic nucle (AGN), sampling the bulk of their accretion energy. But bolometric emission measurements of Seyfert galaxies can be strongly biased by unresolved nuclear stellar emission. Disentangling these components using emission line proxies for the intrinsic AGN power suffers from various uncertainties. Here, we show that fundamental new insights into AGN are enabled by using high angular resolution observations of Seyferts with the largest telescopes currently available. We have imaged the 9 month Swift/BAT selected AGN sample using the VLT, Gemini and Subaru at their diffraction-limit at 12°. Collecting all high angular resolution data yields a large database of 150 AGN of all types with a point-like detected nucleus. This sample serves as a benchmark for studies on unification issues and accurate (unbiased) AGN bolometric corrections. We discuss some key results, including new inferences on the structures of Seyfert nuclei from the enlarged infrared/Xray correlation and show that the MIR to X-ray flux ratio is independent of the Eddington fraction (lEdd) over about 4 orders of magnitude down to lEdd 10^{-4} at least, which appears to be the threshold below which accretion properties change.

  8. Adding Emission Line Diagnostics To The Infrared Database of Extragalactic Observables from Spitzer (IDEOS)

    NASA Astrophysics Data System (ADS)

    Spoon, Henrik

    During the cryogenic phase of the successful Spitzer mission the Infrared Spectrograph (IRS) made observations of about 15,000 objects. Among these are low-resolution (highresolution) spectra of more than 4200 (1800) galaxies beyond the Local Group. Results have been published in a great number of papers, led not only by hardcore infrared observers but increasingly also by non-native infrared astronomers. As the PI team of the IRS instrument, we are especially proud of the achievements of the IRS spectrograph, and we feel a special obligation to enhance the legacy value of its many observations. In 2011 we completed the Cornell Atlas of Spitzer-IRS Sources (CASSIS), containing homogeneously, expert-reduced low-resolution IRS spectra for over 13,000 observations. Earlier this year we added more than 7,000 spectra obtained with the high-resolution modules. All of these spectra benefit from the availability of our empirically derived super-sampled point-spread functions, which reduce the effects of bad and low-level rogue pixels in all IRS modules. All spectra are available for download from our CASSIS web portal. Building on this legacy, in 2013 we also started working on the soon to be completed Infrared Database of Extragalactic Observables from Spitzer (IDEOS), which contains mid-IR observables extracted from the low-resolution spectra in CASSIS. IDEOS provides astronomers with widely varying scientific interests access to diagnostics that were previously available only for limited samples, or available on the-fly only to expert users. Here we propose to continue these efforts by measuring the emission line fluxes for 3,000-4,500 galaxies in the CASSIS atlas to add powerful emission line diagnostics to our existing suite of mid-IR observables in IDEOS. IDEOS will be a great asset for future users of NASA's James Webb Space Telescope to select their samples and estimate required integration times. The completion of IDEOS will further coincide with the completion of

  9. Profiles of emission lines in Be stars.

    NASA Technical Reports Server (NTRS)

    Huang, S. S.

    1972-01-01

    Study of the broadening functions resulting from a gaseous ring in circular motion around a star according to Kepler's law. When the distribution in the gaseous ring has a circular symmetry in the equatorial plane, the broadening profile is related to the surface density distribution along the radius by an integral equation which can be transformed into the Abel integral equation and solved analytically. Profiles corresponding to gaseous rings with a uniform density distribution but different widths are used to illustrate the general properties of the profile broadened by the gaseous ring in circular motion. The emission profile has also been studied for cases in which the circular motion does not follow Kepler's law.

  10. The INTEGRAL/IBIS AGN catalogue - I. X-ray absorption properties versus optical classification

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Masetti, N.; Panessa, F.; Stephen, J. B.; Ubertini, P.

    2012-11-01

    In this work we present the most comprehensive INTEGRAL active galactic nucleus (AGN) sample. It lists 272 AGN for which we have secure optical identifications, precise optical spectroscopy and measured redshift values plus X-ray spectral information, i.e. 2-10 and 20-100 keV fluxes plus column density. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48 per cent) of the sample is absorbed, while the fraction of Compton-thick AGN is small (˜7 per cent). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80 and 17 per cent. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. A few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 X-ray bright optically normal galaxies, 5 type 2 QSOs and 11 low-ionization nuclear emission regions. In terms of optical classification, our sample contains 57 per cent of type 1 and 43 per cent of type 2 AGN; this subdivision is similar to that found in X-rays if unabsorbed versus absorbed objects are considered, suggesting that the match between optical and X-ray classifications is overall good. Only a small percentage of sources (12 per cent) does not fulfil the expectation of the unified theory as we find 22 type 1 AGN which are absorbed and 10 type 2 AGN which are unabsorbed. Studying in depth these outliers we found that most of the absorbed type 1 AGN have X-ray spectra characterized by either complex or warm/ionized absorption more likely due to ionized gas located in an accretion disc wind or in the biconical structure associated with the central nucleus, therefore

  11. Intranight polarization variability in radio-loud and radio-quiet AGN

    NASA Astrophysics Data System (ADS)

    Villforth, Carolin; Nilsson, Kari; Østensen, Roy; Heidt, Jochen; Niemi, Sami-Matias; Pforr, Janine

    2009-08-01

    Intranight polarization variability in active galactic nuclei (AGN) has not been studied extensively so far. Studying the variability in polarization makes it possible to distinguish between different emission mechanisms. Thus, it can help answering the question if intranight variability in radio-loud and radio-quiet AGN is of the same or of fundamentally different origin. In this paper, we investigate intranight polarization variability in AGN. Our sample consists of 28 AGN at low to moderate redshifts (0.048 <= z <= 1.036), 12 of which are radio-quiet quasars (RQQs) and 16 are radio-loud blazars. The subsample of blazars consists of eight flat-spectrum radio-quasars (FSRQs) and eight BL Lac objects. Each AGN was observed for a time-span of ~4h in the R band to measure polarization and variability. Using statistical methods, we determine duty cycles for polarized emission and polarization intranight variability. We find clear differences between the two samples. A majority of the radio-loud AGN show moderate to high degrees of polarization, more than half of them also show variability in polarization. There seems to be a dividing line for polarization intranight variability at P ~ 5 per cent over which all objects vary in polarization. We did not find clear correlations between the strength of the variability and the redshift or degree of polarization. Only two out of 12 RQQs show polarized emission, both at levels of P < 1 per cent. The lack of polarization intranight variability in radio-quiet AGN points towards accretion instabilities being the cause for intranight flux variability whereas the high duty cycle of polarization variability in radio-loud objects is more likely caused by instabilities in the jet or changes of physical conditions in the jet plasma. We were able to constrain the time-scale of the detected variations to >4 h. Further studies of intranight polarization variability will be necessary to reveal exact physical conditions behind this

  12. Time Series Analysis of the UV Flickering in AGN

    NASA Technical Reports Server (NTRS)

    Robinson, Edward L.; Welsh, William F.

    2001-01-01

    Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability. We hoped to answer these specific questions: 1) What does the intrinsic flickering continuum spectrum look like? 2) What do the intrinsic flickering emission-line profiles look like? 3) What is the power spectrum of the flickering? 4) What is the wavelength dependence of the power spectrum? 5) Is the flickering spectrum timescale dependent? and 6) What do the high-order cross correlation functions look like? A short summary of the papers produced by this research is presented.

  13. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  14. Package for Interactive Analysis of Line Emission

    NASA Technical Reports Server (NTRS)

    Kashyap, Vinay; Hunter, Paul (Technical Monitor)

    2005-01-01

    PINTofALE is an IDL based package to analyze high-resolution grating spectra. The first version was made available to the public on 3 February 2001. Since then we have carried out numerous changes and subsidiary releases. The current release is version 2.0 (released 6 Apr 2004), and we are preparing to release v2.1 within the next month. The changes include bug fixes, upgrades to handle higher versions of IDL and the CHIANTI database, enhancements in user-friendliness, handling of instrument response matrices, and the release of a Markov Chain Monte Carlo based DEM fitting routines. A detailed description of the package, together with fairly detailed documentation, example walk-throughs, and downloadable tar files, are available on-line from http://hea.harvard.edu/PINTofALE/ The website also lists papers that have used PINTofALE in their analysis.

  15. Emission lines in the optical spectrum of 3 Cen A

    NASA Astrophysics Data System (ADS)

    Wahlgren, G. M.; Hubrig, S.

    2004-05-01

    Previously, weak emission lines had been detected at red wavelengths in the spectra of a limited sample of mid to late B type main sequence stars. A fuller description of the occurrence and origins of these lines has yet to be forwarded, in part due to the lack of observations detailing the spectral transitions involved. To address this deficiency, we present a line list of weak emission features found in the optical and near infrared spectral region of the chemically peculiar He-weak star 3 Cen A (HD 120709). Nearly 350 features, mostly associated with allowed transitions from high-excitation states of first ions, are catalogued along with identifications. Prominent among the emission lines are the spectra P II, Mn II, Fe II, Ni II and Cu II. Emission lines from Ca II, Si II and Hg II are also evident. Abundances are determined for several elements from synthetic spectrum fitting, with anomalies detected for the ions O I/II, P II/III and Si II/III. The LTE synthetic spectrum fitting also revealed that the low excitation 4s-4p transitions of Fe II predict an abundance that is greater than that determined from higher excitation 4d-4f transitions. Several of these latter transitions have upper energy levels that are found to be associated with emission lines. We also present empirical considerations for the excitation processes leading to the weak emission lines. Based on observations obtained at the European Southern Observatory, La Silla, Chile, No. 65.L-0316 and Paranal, Chile No. 266.D-5655. Tables 2 and 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/1073

  16. The Contribution of Compton-Thick AGN/ULIRGs to the X-Ray Background

    NASA Astrophysics Data System (ADS)

    Nardini, Emanuele

    Accretion onto the supermassive black holes located at the centre of Active Galactic Nuclei(AGN) is one of the most efficient power sources in the Universe, and provides a significant contribution to the energy radiated over cosmic times. The spectral shape of the X-ray background and its progressive resolution strongly suggests that most AGN are heavily obscured by large amounts of dust and gas. Their primary radiation field is reprocessed and re-emitted at longer wavelengths, driving a huge IR luminosity. Ultraluminous Infrared Galaxies (ULIRGs) are the local counterparts of the high-redshift (z < 1 3) IR systems that harbour the bulk of obscured nuclear activity in the early Universe. We have been recently awarded Suzaku observations of two ULIRGs, IRAS 00182 7112 and IRAS 12127 1412, for a total exposure time of 150 ks. Both the sources are known to host an elusive AGN whose intrinsic luminosity is estimated to fall in the quasar range. Although classified as Low-Ionization Nuclear Emission-line Regions in the optical, these ULIRGs sport the typical features of buried AGN in the mid-IR. IRAS 12127 1412 was observed for the first time in the X-rays by our group. Its Chandra spectrum clearly shows the signatures of AGN reflection at 2 10 keV. Similar properties were previously found in IRAS 00182 7112. Our Suzaku observations will allow to pinpont the AGN emission above 10 keV, and will provide fundamental information on the physical and geometrical structure of Compton-thick AGN embedded in a nuclear starburst. These sources are believed to experience the very initial phase of the AGN feedback on the surrounding environment, eventually leading to the formation of powerful optically- bright quasars. Besides this, we stress another remarkable opportunity related to the study of these two ULIRGs. Due to their really unique mid-IR and hard X-ray spectral properties, IRAS 00182 7112 and IRAS 12127 1412 can be considered as representative templates for a significant

  17. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    SciTech Connect

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc'h, Émeric; Pannella, Maurilio; Schreiber, Corentin; Trump, Jonathan R.; Dickinson, Mark

    2014-06-10

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  18. Near-Infrared Emission Lines of Nova Cassiopeiae 1995

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.

    2000-12-01

    The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.

  19. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    SciTech Connect

    Guerras, E.; Mediavilla, E.; Kochanek, C. S.; Munoz, J. A.; Falco, E.; Motta, V.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  20. Measurement of coronal X-ray emission lines from Capella

    NASA Technical Reports Server (NTRS)

    Vedder, P. W.; Canizares, C. R.

    1983-01-01

    The Einstein Observatory's Focal Plane Crystal Spectrometer has detected X-ray emission lines due to O VIII, Fe XVII, and Fe XX, from the binary star system Capella. Line luminosities are well fitted by an emitting plasma at a single temperature of 6.29 + or - 0.01 - 0.03 million K, and a volume emission measure of about 8.6 x 10 to the 52nd/cu cm, corresponding to the low temperature component previously observed. A high temperature component is undetectable, since the observed lines are not produced in plasma at temperatures above about 20 million K. Nearly isothermal plasma would be expected if many of the magnetically confined coronal loops have similar sizes and pressures, and a second population of longer loops would be required to account for the hotter component. An alternative interpretation of the observed X-ray line emission and upper limit is that the plasma contains a continuous distribution of emission measure versus temperature that rises sharply to 3 million K and then falls by nearly a decade to 16 million. An extrapolation of the loop sizes suggested by this alternative to hotter, longer loops may also account for the higher temperature emission.

  1. Impurity Line Emissions in VUV Region of TCABR Tokamak

    SciTech Connect

    Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.

    2008-04-07

    Spectral emissions in the vacuum ultraviolet region from 50 nm to 320 nm have been measured on TCABR tokamak using an one meter VUV spectrometer and a MCP coupled to a CCD detector. Among the 98 emissions classified, 37 are from first order diffraction, 29 are from second order, 24 are from third order, 7 from fourth order, and one from fifth order diffraction. Main impurity lines are OII to OVII, CII to CIV, NIII to N V, FVII, besides working gas plasma hydrogen Lyman lines.

  2. The formation of emission lines in quasars and Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Kwan, J.; Krolik, J. H.

    1981-01-01

    The photoionization and heating throughout a quasar emission-line cloud optically thick at the Lyman edge are calculated. Photoionization and collisional ionization from excited states of hydrogen are included, which maintain a substantial electron fraction after the exhaustion of Lyman continuum photons halts ground-state photoionization. Observed values are explained for Ly-alpha/H-beta, H-alpha/H-beta, P-alpha/H-alpha, He I 5876/H-beta, O I 8446/H-alpha, and Mg II 2798/H-beta. The dependence of line strengths on physical conditions is discussed, and plotting Fe II/4570/H-beta versus Balmer continuum/H-beta is suggested. Other observations are also suggested, and the degree of asymmetry is given between the forward and backward emission of lines from a finite slab to make possible the use of comparative line profile studies to elucidate cloud kinematics.

  3. UV resonance line dayglow emissions on earth and Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    1988-01-01

    The similarities and differnces between atomic resonance line emissions on earth and Jupiter are studied. For earth, the scattering of the conservative atomic oxygen triplet transition at 1304 A and the nonconservative atomic oxygen sextuplet at 989 A is considered. For Jupiter, the scattering of the conservative atomic hydrogen doublet at 1216 A and the nonconservative atomic hydrogen doublet at 1026 A are addressed. Models are presented for the intensities of the emission features as seen from a distance of several planetary radii, using the same observational geometry for both earth and Jupiter. Variations of the line-integrated emissions across the disk and near the limb of each planet are examined in detail. Line profiles for the emission near the limb and at disk-center are also studied. The models reveal the importance of including inhomogeneities and temperature variations of the atmosphere in scattering models, and indicate that outer planet emissions previously interpreted as 'electroglow' may be solely due to resonant scattering of solar emissions.

  4. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  5. Infrared [Fe II] Emission Lines from Radiative Atomic Shocks

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Raymond, John C.; Kim, Hyun-Jeong

    2016-06-01

    [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by te{raymond1979} with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., fethreefive/fetwofive, fefive/fetwofive, and fefive/feoneseven, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

  6. THE OPTX PROJECT. IV. HOW RELIABLE IS [O III] AS A MEASURE OF AGN ACTIVITY?

    SciTech Connect

    Trouille, L.; Barger, A. J.

    2010-10-10

    We compare optical and hard X-ray identifications of active galactic nuclei (AGNs) using a uniformly selected (above a flux limit of f{sub 2-8{sub keV}} = 3.5 x 10{sup -15} erg cm{sup -2} s{sup -1}) and highly optically spectroscopically complete (>80% for f{sub 2-8{sub keV}} > 10{sup -14} erg cm{sup -2} s{sup -1} and >60% below) 2-8 keV sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N). We find that empirical emission-line ratio diagnostic diagrams misidentify 50% of the X-ray-selected AGNs that can be put on these diagrams as star formers. We confirm that there is a large (two orders of magnitude) dispersion in the ratio of the [O III]{lambda}5007 (hereafter [O III]) to hard X-ray luminosities for the non-broad-line AGNs, even after applying reddening corrections to the [O III] luminosities. We find that the dispersion is similar for the broad-line AGNs, where there is not expected to be much X-ray absorption from an obscuring torus around the AGN nor much obscuration from the galaxy along the line of sight if the AGN is aligned with the galaxy. We postulate that the X-ray-selected AGNs that are misidentified by the diagnostic diagrams have low [O III] luminosities due to the complexity of the structure of the narrow-line region, which causes many ionizing photons from the AGN not to be absorbed. This would mean that the [O III] luminosity can only be used to predict the X-ray luminosity to within a factor of {approx}3 (1{sigma}). Despite selection effects, we show that the shapes and normalizations of the [O III] and transformed hard X-ray luminosity functions show reasonable agreement, suggesting that the [O III] samples are not finding substantially more AGNs at low redshifts than hard X-ray samples.

  7. OT2_aevans01_2: High-J CO Emission Lines in Molecular Gas-Rich Radio Galaxies with Low and High Star Formation Efficiencies

    NASA Astrophysics Data System (ADS)

    Evans, A.

    2011-09-01

    We propose Herschel observations of the CO Spectral Line Energy Distribution (SLED) in a sample of seven local (z < 0.1) radio galaxies with the highest CO(1-0) luminosities. These radio galaxies fall into two classes in terms of their infrared (IR)-to-CO luminosity ratio, or ``star formation efficiency'' - those with high IR/CO similar to IR luminous starburst galaxies, and those with low IR/CO ratios comparable to low luminosity spiral galaxies. The observed dichotomy in IR/CO likely represents (1) intrinsic differences in the star formation efficiencies within the sample, (2) an enhancement in the infrared luminosity of the galaxies with high IR/CO by AGN dust heating, (3) or inaccuracies in the star formation efficiency determinations introduced through the use of a constant CO luminosity-to-molecular gas mass conversion factor, or through the use of CO(1-0) to trace the molecular gas actively involved in star formation. With the Herschel Spire FTS, we will detect high-J (>5) rotation CO transitions, enabling (1) an accurate determination of the star-forming molecular gas mass, temperature and density, and thus a more accurate estimate of the star formation efficiency, (2) an assessment of the effect AGN and starbursts have on the excitation of the high-J CO transitions, and possibly of H2O and OH lines. In addition, we will make use of our data in concert with the HERCULES dataset to (3) determine whether the high-J CO transitions scale with far-IR luminosity, and are therefore useful tracers of the star formation rates of radio galaxies. These observations will provide, for the first time, a truly robust insight into star formation and AGN heating of gas in radioselected, AGNdominated environments. In addition, the analysis will be applicable to the interpretation of highJ CO emission from high redshift AGN hosts done with Herschel and ALMA.

  8. Physical Properties of Emission-Line Galaxies at 2 from Near-Infrared Spectroscopy with Magellan FIRE

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; McCarthy, P. J.; Malkan, M. A.; Siana, B. D.; Scarlata, C.; Hathi, N. P.; Atek, H.; Henry, A. L.; WISP Team

    2014-01-01

    We present results from near-infrared spectroscopy with Magellan FIRE of 26 strong emission-line galaxies at 2.2 and 1.5. The sample was selected from the WFC3 Infrared Spectroscopic Parallels (WISP) survey, which uses the near-infrared grism capability of the Hubble Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.5 < z < 2.3. High-resolution ( 5000) follow-up spectroscopy with Magellan FIRE over 1.0--2.5 microns resolves important rest-frame optical emission lines, allowing us to measure physical properties such as dust obscuration, metal abundance, star formation rate, ionization parameter, and emission line kinematics. We also analyze the properties of composite spectra derived from the FIRE-observed sample. With this relatively large sample of rest-frame optical spectra we can make statistical inferences about the population of emission-line galaxies at 2. We find that the galaxies are low metallicity ( 1/5-1/2 Z_solar) as determined from the R23 calibration. The galaxies are low dust extinction on average (E(B-V 0.2) but with significant scatter. The dust-corrected H-alpha star formation rates range from ~10--150 M_sun yr^-1 with a mean of 50 M_su yr^-1. The average ionization parameter for the sample, log U ~ -2.5, is higher than typically found for star-forming galaxies in the local universe but consistent with those found in more intense starbursting regions in galaxies such as M82. Emission line velocity dispersions are measured to be 71 +- 38 km s^-1, in good agreement with other studies that have probed the H-alpha kinematics of star-forming galaxies at similar redshift. The galaxies are compact, with half-light radii of < 2 kpc, and ~50% show evidence for multiple structures or asymmetries in the WFC3 imaging. Based on the line velocity dispersions and the location of the galaxies on BPT diagnostic plots, there is little evidence for significant AGN contribution to most emission-line galaxies at 2.

  9. A New Sample of Obscured AGNs Selected from the XMM-Newton and AKARI Surveys

    NASA Astrophysics Data System (ADS)

    Terashima, Yuichi; Hirata, Yoshitaka; Awaki, Hisamitsu; Oyabu, Shinki; Gandhi, Poshak; Toba, Yoshiki; Matsuhara, Hideo

    2015-11-01

    We report a new sample of obscured active galactic nuclei (AGNs) selected from the XMM-Newton serendipitous source and AKARI point-source catalogs. We match X-ray sources with infrared (18 and 90 μm) sources located at | b| \\gt 10^\\circ to create a sample consisting of 173 objects. Their optical classifications and absorption column densities measured by X-ray spectra are compiled and study efficient selection criteria to find obscured AGNs. We apply the criteria (1) X-ray hardness ratio defined by using the 2-4.5 keV and 4.5-12 keV bands > -0.1 and (2) EPIC-PN count rate (CR) in the 0.2-12 keV to infrared flux ratio CR/{F}90\\lt 0.1 or CR/{F}18\\lt 1, where F18 and F90 are infrared fluxes at 18 and 90 μm in Jy, respectively, to search for obscured AGNs. X-ray spectra of 48 candidates, for which no X-ray results have been published, are analyzed and X-ray evidence for the presence of obscured AGNs such as a convex shape X-ray spectrum indicative of absorption of {N}{{H}} ˜ 1022-24 cm-2, a very flat continuum, or a strong Fe-K emission line with an equivalent width of \\gt 700 {{eV}} is found in 26 objects. Six of them are classified as Compton-thick AGNs, and four are represented by either Compton-thin or Compton-thick spectral models. The success rate of finding obscured AGNs combining our analysis and the literature is 92% if the 18 μm condition is used. Of the 26 objects, 4 are optically classified as an H ii nucleus and are new “elusive AGNs” in which star formation activity likely overwhelms AGN emission in the optical and infrared bands.

  10. Spectropolarimetry of the molecular hydrogen line emission from OMC-1

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Hough, J. H.; Axon, David J.; Hasegawa, T.; Tamura, M.

    1988-01-01

    Observations of the H2 v = 1-0 S(1) line at 35 km/s velocity resolution were obtained at several locations within OMC-1, including the molecular hydrogen reflection nebula. All line profiles are smooth and show no evidence for being composed of discrete components. The data are discussed with respect to a model for the H2 line formation in which the emission originates in discrete clumps moving at different velocities. It is suggested that the extended blue wing may come from fast-moving clumps embedded in a wind.

  11. The Subaru FMOS galaxy redshift survey (FastSound). II. The emission line catalog and properties of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Totani, Tomonori; Tonegawa, Motonari; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Ohta, Kouji; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J.; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Okumura, Teppei; Shimizu, Ikkoh

    2016-06-01

    We present basic properties of ˜3300 emission line galaxies detected by the FastSound survey, which are mostly Hα emitters at z ˜ 1.2-1.5 in the total area of about 20 deg2, with the Hα flux sensitivity limit of ˜1.6 × 10-16 erg cm-2 s-1 at 4.5 σ. This paper presents the catalog of the FastSound emission lines and galaxies, which is open to the public. We also present basic properties of typical FastSound Hα emitters, which have Hα luminosities of 1041.8-1043.3 erg s-1, star formation rates (SFRs) of 20-500 M⊙ yr-1, and stellar masses of 1010.0-1011.3 M⊙. The 3D distribution maps for the four fields of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W1-4 are presented, clearly showing large scale clustering of galaxies at the scale of ˜100-600 comoving Mpc. Based on 1105 galaxies with detections of multiple emission lines, we estimate that the contamination of non-Hα lines is about 4% in the single-line emission galaxies, which is mostly [O III]λ5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which Hα, [N II]λλ6548,6583, [S II]λλ6717,6731, and [O I]λλ6300,6364 are seen.

  12. EQUIB: Atomic level populations and line emissivities calculator

    NASA Astrophysics Data System (ADS)

    Howarth, I. D.; Adams, S.; Clegg, R. E. S.; Ruffle, D. P.; Liu, X.-W.; Pritchet, C. J.; Ercolano, B.

    2016-03-01

    The Fortran program EQUIB solves the statistical equilibrium equation for each ion and yields atomic level populations and line emissivities for given physical conditions, namely electron temperature and electron density, appropriate to the zones in an ionized nebula where the ions are expected to exist.

  13. Infrared emission-line spectrum of Gamma Cassiopeiae

    SciTech Connect

    Hamann, F.; Simon, M.

    1987-07-01

    The near-IR spectrum of Gamma Cas contains emission lines of H I, He I, and Mg II. No lines of low-excitation species, such as are found in cool and dense environments, are detected. At the time of the observations,the observed Br-alpha and Br-gamma profiles were double-peaked, with V/R roughly 0.5 and FWHM roughly 260 km/s. The Br-gamma line profile varied significantly over the 4.5 month interval between the observations and those published by Chabaev and Maillard in 1985. The IR hydrogen line fluxes indicate that these lines are formed in a small, dense, optically thick region where the density of ionized gas declines sharply with distance from the star. Both the line profiles and fluxes are shown to be inconsistent with the predictions of standard stellar wind theory, but are in qualitative agreement with a rotating disk model such as was proposed in 1978 by Poeckert and Marlborough. The observations are discussed briefly in terms of their similarities and differences with the IR emission-line spectra of luminous young stellar objects. 40 references.

  14. The infrared emission-line spectrum of Gamma Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, M.

    1987-07-01

    The near-IR spectrum of Gamma Cas contains emission lines of H I, He I, and Mg II. No lines of low-excitation species, such as are found in cool and dense environments, are detected. At the time of the observations,the observed Br-alpha and Br-gamma profiles were double-peaked, with V/R roughly 0.5 and FWHM roughly 260 km/s. The Br-gamma line profile varied significantly over the 4.5 month interval between the observations and those published by Chabaev and Maillard in 1985. The IR hydrogen line fluxes indicate that these lines are formed in a small, dense, optically thick region where the density of ionized gas declines sharply with distance from the star. Both the line profiles and fluxes are shown to be inconsistent with the predictions of standard stellar wind theory, but are in qualitative agreement with a rotating disk model such as was proposed in 1978 by Poeckert and Marlborough. The observations are discussed briefly in terms of their similarities and differences with the IR emission-line spectra of luminous young stellar objects.

  15. Fe L-Shell Emission Lines at 7 - 9 Angstroms

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Beiersdorfer, Peter; Brown, Greg; Behar, Edhud

    Fe L-shell emission lines at wavelengths less than 10 angstroms come from n to 2 (n = 4 5 6..) transitions. These lines embed information such as electron density and/or temperature that is of fundamental importance to understanding the physics of astrophysical objects. Unresolved by previous x-ray observatories these low wavelength Fe lines are clearly observable by Chandra and XMM x-ray satellites. To meet the needs of using these lines as diagnostics we have studied the n to 2 transitions (n = 4 5 6..) Fe L-shell lines using the LLNL electron beam ion trap following our Fe L-shell emission line measurements for the 3-2 transitions (Brown et al APJ supp. 2002). Our measurement and its comparison with code simulations will be reported together with a discussion of the possible use of these lines as diagnostics for astrophysics. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA SARA grants to LLNL GSFC and Columbia University.

  16. Ethylene line emission from the North Pole of Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, F.; Romani, P.; Goldstein, J.

    1991-01-01

    A significant enhancement in infrared emission from hydrocarbon constituents of Jupiter's stratosphere was observed at a north polar hot spot (60 degrees latitude, 180 degrees longitude). A unique probe of this phenomena is ethylene (C2H4), which has not been observed previously from the ground. The profile of the emission line from ethylene at 951.742 cm-1, measured near the north pole of Jupiter, was analyzed to determine the morphology of the enhancement, the increase in C2H4 abundance and local temperature, as well as possible information on the altitude (pressure regions) where the increased emission is formed. Measurements were made using infrared heterodyne spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii in December 1989. At 181 degrees longitude a very strong emission line was seen, which corresponds to a 13-fold increase in C2H4 abundance or a 115K increase in temperature in the upper stratosphere, compared to values outside the hot spot. The hot spot was found to be localized to approx. 10 degrees in longitude; the line shape (width) implied that the enhanced emission originated very high in the stratosphere.

  17. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  18. Model for the intense molecular line emission from OMC-1

    SciTech Connect

    Draine, B.T.; Roberge, W.G.

    1982-08-15

    We present a model which attributes the observed H/sub 2/ and CO line emission OMC-1 to a magnetohydrodynamic shock propagating into magnetized molecular gas. By requiring the shock to reporoduce the observed line intensities, we determine the shock speed to be v/sub s/roughly-equal38 km s/sup -1/ and the preshock density and (transverse) magnetic field to be n/sub H/roughly-equal7 x 10/sup 5/ cm/sup -3/, B/sub O/roughly-equal1.5 milligauss. The model is compared to observations of H/sub 2/, CO, OH, O I, and C I in emission and of CO in absorption. The shock gas may be detectible in H I 21 cm emission.

  19. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  20. The X-ray spectral properties of the AGN population in the XMM-Newton bright serendipitous survey

    NASA Astrophysics Data System (ADS)

    Corral, A.; Della Ceca, R.; Caccianiga, A.; Severgnini, P.; Brunner, H.; Carrera, F. J.; Page, M. J.; Schwope, A. D.

    2011-06-01

    Context. X-ray surveys are a key instrument in the study of active galactic nuclei (AGN). Thanks to their penetrating ability, X-rays are able to map the innermost regions close to the central super massive black hole (SMBH) as well as to detect and characterize its emission up to high redshift. Aims: We present here a detailed X-ray spectral analysis of the AGN belonging to the XMM-Newton bright survey (XBS). The XBS is composed of two flux-limited samples selected in the complementary 0.5-4.5 and 4.5-7.5 keV energy bands and comprising more than 300 AGN up to redshift ~2.4. Methods: We performed an X-ray analysis following two different approaches: by analyzing individually each AGN X-ray spectrum and by constructing average spectra for different AGN types. Results: From the individual analysis, we find that there seems to be an anti correlation between the spectral index and the sources' hard X-ray luminosity, such that the average photon index for the higher luminosity sources (>1044 erg s-1) is significantly (>2σ) flatter than the average for the lower luminosity sources. We also find that the intrinsic column density distribution agrees with AGN unified schemes, although a number of exceptions are found (3% of the whole sample), which are much more common among optically classified type 2 AGN. We also find that the so-called "soft-excess", apart from the intrinsic absorption, constitutes the principal deviation from a power-law shape in AGN X-ray spectra and it clearly displays different characteristics, and likely a different origin, for unabsorbed and absorbed AGN. Regarding the shape of the average spectra, we find that it is best reproduced by a combination of an unabsorbed (absorbed) power law, a narrow Fe Kα emission line and a small (large) amount of reflection for unabsorbed (absorbed) sources. We do not significantly detect any relativistic contribution to the line emission and we compute an upper limit for its equivalent width (EW) of 230 eV at

  1. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  2. Spectrophotometry of emission-line stars in the magellanic clouds

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  3. Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets

    NASA Astrophysics Data System (ADS)

    Patiño Álvarez, Víctor; Torrealba, Janet; Chavushyan, Vahram; Cruz González, Irene; Arshakian, Tigran; León Tavares, Jonathan; Popovic, Luka

    2016-06-01

    We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95%) in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.

  4. K alpha line emission during solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    Calculations of K alpha line emission from S, Ar, Ca and Fe are presented. It is reported that on the basis of data for hard X-ray bursts, the flux during most impulsive, non-thermal events is likely to be weak, though for a few strong bursts, a flux of approximately 100 photons/cm/s may be expected. The amount of S K alpha emission particularly is sensitively dependent on the value of the lower energy bound of the non-thermal electron distribution, offering a possible means of determining this. Thermal K alpha emission is only significant for Fe ions. The calculated thermal K alpha radiation is much less than that observed during an intense soft X-ray burst. It is concluded that a detailed temperature structure for the emission source is required in order to explain the discrepancy.

  5. HST-COS observations of AGNs. II. Extended survey of ultraviolet composite spectra from 159 active galactic nuclei

    SciTech Connect

    Stevans, Matthew L.; Shull, J. Michael; Danforth, Charles W.; Tilton, Evan M. E-mail: michael.shull@colorado.edu E-mail: evan.tilton@colorado.edu

    2014-10-10

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting their emission-line spectra and for photoionizing and heating the intergalactic medium. Using far-ultraviolet (FUV) spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we directly measure the rest-frame ionizing continua and emission lines for 159 AGNs at redshifts 0.001 < z {sub AGN} < 1.476 and construct a composite spectrum from 475 to 1875 Å. We identify the underlying AGN continuum and strong extreme ultraviolet (EUV) emission lines from ions of oxygen, neon, and nitrogen after masking out absorption lines from the H I Lyα forest, 7 Lyman-limit systems (N{sub H} {sub I}≥10{sup 17.2} cm{sup –2}) and 214 partial Lyman-limit systems (14.5AGNs exhibit a wide range of FUV/EUV spectral shapes, F{sub ν}∝ν{sup α{sub ν}}, typically with –2 ≤ α{sub ν} ≤ 0 and no discernible continuum edges at 912 Å (H I) or 504 Å (He I). The composite rest-frame continuum shows a gradual break at λ{sub br} ≈ 1000 Å, with mean spectral index α{sub ν} = –0.83 ± 0.09 in the FUV (1200-2000 Å) steepening to α{sub ν} = –1.41 ± 0.15 in the EUV (500-1000 Å). We discuss the implications of the UV flux turnovers and lack of continuum edges for the structure of accretion disks, AGN mass inflow rates, and luminosities relative to Eddington values.

  6. Simulations of the OzDES AGN reverberation mapping project

    NASA Astrophysics Data System (ADS)

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; Banerji, Manda; McMahon, Richard; Sharp, Rob; Lidman, C.

    2015-10-01

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ≥500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrain the radius-luminosity (R-L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ˜35-45 per cent of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ˜1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R-L relationship parameters for H β, Mg II λ2798, and C IV λ1549. Extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R-L parameter constraints for all broad emission lines.

  7. Simulations of the OzDES AGN reverberation mapping project

    SciTech Connect

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; Banerji, Manda; McMahon, Richard; Sharp, Rob; Lidman, C.

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrain the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.

  8. Rotation and emission lines in stars and accretion disks

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Saar, Steven H.

    1991-01-01

    In the accretion disks of quiescent dwarf novae, Doppler mapping studies reveal that Balmer emission lines increase sharply toward the center of the disk, with surface brightnesses scaling roughly as R exp -3/2 varies as Omega(Kep). Similarly, among chromospherically active stars the H-alpha and Ca II H and K emission cores are stronger in the more rapidly rotating stars, with surface brightnesses scaling again roughly as Omega(rot). Since in both cases the emission lines scale linearly with the rotation frequency, it is proposed that the mechanism powering the emission lines in quiescent accretion disks is the same as that in chromospherically active stars, namely, the emergence of magnetic flux generated by the action of a dynamo, and its interaction with the atmosphere. If this empirical connection between disks and stars is in fact due to magnetic dynamos, the range of rotation rates available for testing dynamo theories expands from a factor of 1000 to 10 to the 7th.

  9. Revisiting the relationship between 6 μm and 2-10 keV continuum luminosities of AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Rovilos, E.; Hernán-Caballero, A.; Barcons, X.; Blain, A.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.

    2015-05-01

    We have determined the relation between the AGN luminosities at rest-frame 6 μm associated with the dusty torus emission and at 2-10 keV energies using a complete, X-ray-flux-limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 1042 and 1046 erg s-1 and redshifts from 0.05 to 2.8. The rest-frame 6 μm luminosities were computed using data from the Wide-field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fitting relationship for the full sample is consistent with being linear, L6 μm ∝ L_{2-10 keV}^{0.99± 0.03}, with intrinsic scatter, Δ log L6 μm ˜ 0.35 dex. The L_{6 μ m}/L_{2-10 keV} luminosity ratio is largely independent of the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 μm and are overall ˜1.3-2 times fainter at 6 μm than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 μm is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame ˜6 μm are subject to modest dust obscuration biases.

  10. Emission Line Profiles of Warped Disks in a Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Yang, X. L.; Wang, J. C.

    2013-11-01

    The computations of emission line profiles of a warped disk around a Kerr black hole are discussed in this paper, which can be divided into two parts. In the first part, the geodesic motion in a Kerr spacetime and its equations with integral forms are presented. The equations are solved with the Weierstrass' elliptic functions and integrals. Making use of the elliptic functions, the Boyer-Lindquist (B-L) coordinates and the affine parameter σ are expressed semi-analytically as the functions of the parameter p. Then a code named ynogk (Yunnan Observatory Geodesic Kerr) is introduced based on the above discussions to calculate the null geodesics fast in a Kerr spacetime. In the second part of the paper, as an application of ynogk, the emission line profiles of a warped disk are investigated in detail. Here the structure model of the disk is specified according to the results of Bardeen and Petterson in 1975, and the line profiles are computed with the ray-tracing method. Finally, the discussions and conclusions of the computing results are presented, which indicate that the line profiles are dependent mainly on the inclination and azimuthal angles of the observer and the index of emissivity, and have the three-horn even multiple-horn structures comparing to those of a standard thin accretion disk.

  11. Do the Line Widths of Coronal Emission Lines Increase with Height above the Limb?

    NASA Astrophysics Data System (ADS)

    Singh, Jagdev; Sakurai, Takashi; Ichimoto, Kiyoshi

    2006-03-01

    In our earlier studies we obtained off-the-limb spectroscopic observations in a number of forbidden emission lines ([Fe X-XIV]) to study the physical properties and their temporal variations in steady coronal structures. Short exposure times adopted in those observations permitted us to study the variation in line widths up to about 150" above the limb. With a view to investigating the variations in the parameters of coronal emission lines up to about 500", we made raster scans with exposure times that are longer than the earlier exposure times by a factor of about 10. We find that the FWHM of the [Fe XIV] 5303 Å line decreases up to 300''+/-50'' and then remains more or less the same up to 500", while that of the [Fe X] 6374 Å line increases up to about 250" and subsequently remains unchanged. The FWHMs of the [Fe XI] 7892 Å and [Fe XIII] 10747 Å lines show an intermediate behavior. Furthermore, the ratio of the FWHM of 6374 to 5303 Å increases from 0.93 at the limb to 1.18 at 200" above the limb. The nonvariability in the FWHM of emission lines after about 300" above the limb in steady coronal structures does not support the prevailing view that the nonthermal velocity increases with height due to either the coronal waves or the high-velocity solar wind. The present results indicate the inadequacy of the earlier coronal loop models. The observed variations in FWHM of the coronal emission lines with height above the limb can be explained by assuming the recent model of coronal loops proposed by Akiyama et al.

  12. Emission lines and shock waves in RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Gillet, D.; Fokin, A. B.

    2014-05-01

    Context. Emission lines observed in radially pulsating stars are thought to be produced by atoms de-exciting after being excited by a shock wave that is traveling into and then compressing, heating, and accelerating the atmospheric gas. Aims: With the help of recent observations, we examine the origin of all the different types of emission lines of hydrogen and helium that appear during a pulsation cycle. Methods: To analyze the physical origin of emission lines, we used the different models of atmospheric dynamics of RR Lyrae stars that have been calculated so far. Results: In contrast to a recent explanation, we propose that the redshifted emission component of Hα, which occurs near the pulsation phase 0.3, is produced by the main shock. In this case, the emission is the natural consequence of the large extension of the expanding atmosphere. Therefore, this (weak) emission should only be observed in RR Lyrae stars for which the main shock will propagate far enough from the photosphere. It appears as a P-Cygni type profile. We estimate the shock front velocity during the shock propagation in the atmosphere and show that it decreases by 40% when the Hα emitting-shock passes from the photospheric level to the upper atmosphere. The Hα P-Cygni profile observed in long-period Cepheids also seems to be caused by the main shock wave. Although to date He II has only been detected in some Blazhko stars, a comprehensive survey of RR Lyrae stars is necessary to confirm this trend, so we can say that the most intense shocks will only be observed in Blazhko stars. Conclusions: The development of a model of atmospheric pulsation that takes the effects of 2D and 3D convection into account, seems to be a necessary step to fully quantify the effects of shock waves on the atmospheric dynamics of radially pulsating stars.

  13. Discovery of Polarized Line Emission in SN 1006

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Pringle, J. E.; Carswell, R. F.; Long, K. S.; Cracraft, M.

    2015-12-01

    Laming predicted that the narrow Balmer line core of the ∼3000 km s‑1 shock in the SN 1006 remnant would be significantly polarized due to electron and proton impact polarization. Here, based on deep spectrally resolved polarimetry obtained with the European Southern Observatory (ESO)’s Very Large Telescope (VLT), we report the discovery of polarized line emission with a polarization degree of 1.3% and position angle orthogonal to the SNR filament. Correcting for an unpolarized broad line component, the implied narrow line polarization is ≈2.0%, close to the predictions of Laming. The predicted polarization is primarily sensitive to shock velocity and post-shock temperature equilibration. By measuring polarization for the SN 1006 remnant, we validate and enable a new diagnostic that has important applications in a wide variety of astrophysical situations, such as shocks, intense radiation fields, high energy particle streams, and conductive interfaces.

  14. Anisotropic alpha emission from on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Vanneste, L.

    1986-05-05

    A systematic on-line nuclear-orientation study of heavy isotopes using anisotropic ..cap alpha.. emission is reported for the first time. The anisotrophies recorded for /sup 199/At, /sup 201/At, and /sup 203/At are remarkably pronounced and strongly varying. At lower neutron number the ..cap alpha.. particles are more preferentially emitted perpendicularly to the nuclear-spin direction. This may be interpreted in terms of the high sensitivity of the ..cap alpha..-emission probability to changes in the nuclear shape.

  15. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1978-01-01

    The most important types of auroral radio emissions are reviewed. Particular attention is given to the following four types of electromagnetic emissions: auroral hiss, saucers, ELF noise bands, and auroral kilometric radiation. It is shown that the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances in the range of 2.5-5 earth radii, probably in direct association with auroral-particle acceleration by parallel electric fields. The auroral hiss appears to be generated by amplified Cerenkov radiation. Several mechanisms are proposed for the auroral kilometric radiation, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  16. RADIO PROPERTIES OF LOW-REDSHIFT BROAD-LINE ACTIVE GALACTIC NUCLEI INCLUDING EXTENDED RADIO SOURCES

    SciTech Connect

    Rafter, Stephen E.; Crenshaw, D. Michael; Wiita, Paul J.

    2011-03-15

    We present a study of the extended radio emission in a sample of 8434 low-redshift (z < 0.35) broad-line active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. To calculate the jet and lobe contributions to the total radio luminosity, we have taken the 846 radio core sources detected in our previous study of this sample and performed a systematic search in the FIRST database for extended radio emission that is likely associated with the optical counterparts. We found that 51 out of 846 radio core sources have extended emission (>4'' from the optical AGN) that is positively associated with the AGN, and we have identified an additional 12 AGNs with extended radio emission but no detectable radio core emission. Among these 63 AGNs, we found 6 giant radio galaxies, with projected emission exceeding 750 kpc in length, and several other AGNs with unusual radio morphologies also seen in higher redshift surveys. The optical spectra of many of the extended sources are similar to those of typical broad-line radio galaxy spectra, having broad H{alpha} emission lines with boxy profiles and large M{sub BH}. With extended emission taken into account, we find strong evidence for a bimodal distribution in the radio-loudness parameter R ({identical_to}{nu}{sub radio} L{sub radio}/{nu}{sub opt} L{sub opt}), where the lower radio luminosity core-only sources appear as a population separate from the extended sources, with a dividing line at log(R) {approx}1.75. This dividing line ensures that these are indeed the most radio-loud AGNs, which may have different or extreme physical conditions in their central engines when compared to the more numerous radio-quiet AGNs.

  17. A SEARCH FOR BINARY ACTIVE GALACTIC NUCLEI: DOUBLE-PEAKED [O III] AGNs IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Smith, K. L.; Shields, G. A.; McMullen, C. C.; Salviander, S.; Bonning, E. W.; Rosario, D. J. E-mail: shields@astro.as.utexas.ed E-mail: erin.bonning@yale.ed

    2010-06-10

    We present active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [O III]{lambda}{lambda}5007, 4959 and other narrow emission lines, motivated by the prospect of finding candidate binary AGNs. These objects were identified by means of a visual examination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [O III] profile. Of these, 86 are Type 1 AGNs and 62 are Type 2 AGNs. Only two give the appearance of possibly being optically resolved double AGNs in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [O III] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad-line (Type 1) AGNs that are undetected in the FIRST survey, 0.9% show double-peaked [O III] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGNs rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of {approx}10-100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (<10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.

  18. The Herschel Comprehensive (U)LIRG Emission Survey (HERCULES): CO Ladders, Fine Structure Lines, and Neutral Gas Cooling

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J. F.; van der Werf, P. P.; Aalto, S.; Armus, L.; Charmandaris, V.; Díaz-Santos, T.; Evans, A. S.; Fischer, J.; Gao, Y.; González-Alfonso, E.; Greve, T. R.; Harris, A. I.; Henkel, C.; Israel, F. P.; Isaak, K. G.; Kramer, C.; Meijerink, R.; Naylor, D. A.; Sanders, D. B.; Smith, H. A.; Spaans, M.; Spinoglio, L.; Stacey, G. J.; Veenendaal, I.; Veilleux, S.; Walter, F.; Weiß, A.; Wiedner, M. C.; van der Wiel, M. H. D.; Xilouris, E. M.

    2015-03-01

    (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 μm) luminosities (L LIRG > 1011 L ⊙ and L ULIRG > 1012 L ⊙). The Herschel Comprehensive ULIRG Emission Survey (PI: van der Werf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (1011 L ⊙ <= L IR <= 1013 L ⊙). With the Herschel Space Observatory, we observe [C II] 157 μm, [O I] 63 μm, and [O I] 145 μm line emission with Photodetector Array Camera and Spectrometer, CO J = 4-3 through J = 13-12, [C I] 370 μm, and [C I] 609 μm with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [O I] 63 μm emission line is self absorbed. Comparing the CO excitation to the InfraRed Astronomical Satellite 60/100 μm ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [C II], [Si II], [O I], and [C I] lines in the objects with the highest far IR fluxes, but do not observe this for CO 4 <= J upp <= 13. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J = 1-0 linewidth, and the active galactic nucleus (AGN) contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Black Hole Masses of Active Galaxies with Double-peaked Balmer Emission Lines

    NASA Astrophysics Data System (ADS)

    Lewis, Karen T.; Eracleous, Michael

    2006-05-01

    We have obtained near-IR spectra of five AGNs that exhibit double-peaked Balmer emission lines (NGC 1097, Pictor A, PKS 0921-213, 1E 0450.30-1817, and IRAS 0236.6-3101). The stellar velocity dispersions of the host galaxies were measured from the Ca II λλ8494, 8542, 8662 absorption lines and were found to range from 140 to 200 km s-1. Using the well-known correlation between the black hole mass and the stellar velocity dispersion, the black hole masses in these galaxies were estimated to range from 4×107 to 1.2×108 Msolar. We supplement the observations presented here with estimates of the black holes masses for five additional double-peaked emitters (Arp 102B, 3C 390.3, NGC 4579, NGC 4203, and M81) obtained by other authors using similar methods. Using these black hole masses, we infer the ratio of the bolometric luminosity to the Eddington luminosity, (Lbol/LEdd). We find that two objects (Pictor A and PKS 0921-213) have Lbol/LEdd~0.2, whereas the other objects have Lbol/LEdd<~10-2 (nearby, low-luminosity double-peaked emitters are the most extreme, with Lbol/LEdd<~10-4). The physical timescales in the outer regions of the accretion disks (at r~103GM/c2) in these objects were also estimated and range from a few months for the dynamical timescale to several decades for the sound crossing timescale. The profile variability in these objects is typically an order of magnitude longer than the dynamical time, but we note that variability occurring on the dynamical timescale has not been ruled out by the observations. Based on observations carried out at Cerro Tololo Inter-American Observatory, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation.

  20. TYPING SUPERNOVA REMNANTS USING X-RAY LINE EMISSION MORPHOLOGIES

    SciTech Connect

    Lopez, L. A.; Ramirez-Ruiz, E.; Badenes, C.; Huppenkothen, D.; Jeltema, T. E.

    2009-11-20

    We present a new observational method to type the explosions of young supernova remnants (SNRs). By measuring the morphology of the Chandra X-ray line emission in 17 Galactic and Large Magellanic Cloud SNRs with a multipole expansion analysis (using power ratios), we find that the core-collapse SNRs are statistically more asymmetric than the Type Ia SNRs. We show that the two classes of supernovae can be separated naturally using this technique because X-ray line morphologies reflect the distinct explosion mechanisms and structure of the circumstellar material. These findings are consistent with recent spectropolarimetry results showing that core-collapse supernovae explosions are intrinsically more asymmetric.

  1. Emission line eclipse phenomena in nova DQ Herculis /1934/

    NASA Astrophysics Data System (ADS)

    Young, P.; Schneider, D. P.

    1980-06-01

    H-gamma, He II 4686 A, and H-beta emission lines were observed in DQ Her through an eclipse (phases 0.80-0.15). A total of 14 spectra with exposure times of 300 seconds were used to investigate phenomena in the eclispe of the emitting region by the red companion. The classical rotational disturbance of the He II 4686 A line is observed; it changes its velocity by over 600 km/s in 25 minutes during the eclipse. The eclipse duration is very long (0.11 of a cycle) and indicates a mass ratio near unity.

  2. What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.

  3. K alpha line emission during solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    The expected flux of K alpha line emission from sulfur, argon, calcium, and iron is calculated during both thermal and nonthermal solar X-ray events. Such emission is shown to be weak during the course of most of the nonthermal hard X-ray bursts that Kane and Anderson (1970) have observed. If Compton backscattering is significant at high energies, the flux is reduced still further for disk flares, but it is noted that the strong, near-limb burst of June 26 would have produced about 100 photons /sq cm/sec of sulfur and iron K alpha emission. The impulsive hard X-ray bursts may in general be too short-lived for much K alpha emission. It may be noted that sulfur K alpha emission in particular depends sensitively on the lower-energy limit of the nonthermal electron spectrum, assuming such a sharply defined boundary exists. During soft X-ray bursts, when temperatures of a few 10 to the 7th power K are obtained, K alpha emission from certain iron ions, specifically Fe XVIII-XXIII, may be important.

  4. Low Luminosity Cataclysmic Variables and Fe Emission Lines of Galactic Ridge X-ray Emission

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojie; Wang, Q. Daniel

    2015-08-01

    Cataclysmic variables (CVs) has been proposed to be one of the main contributors of the Galactic Ridge X-ray Emission (GRXE). However, previous studies on the spectra of local CVs suggested that the I6.7keV/I7.0keV line intensity ratios of CVs are not consistent with that of GRXE. Utilizing the archival Suzaku observations on local CVs, we confirm that luminous local CVs like intermediate polars, symbiotic stars and polars have lower I6.7keV/I7.0keV values, thus are unable to explain the Fe emission line ratios of GRXE. On the other hand, dimmer CVs like dwarf novae (DNe) have I6.7keV/I7.0keV values consitent with that of GRXE. Given the potential huge population, DNe could be one of the main resources of GRXE Fe line emission.

  5. X-Ray and Multiwavelength Insights into the Nature of Weak Emission-line Quasars at Low Redshift

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Brandt, W. N.; Anderson, Scott F.; Diamond-Stanic, Aleksandar M.; Hall, Patrick B.; Plotkin, Richard M.; Schneider, Donald P.; Shemmer, Ohad

    2012-03-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of >~ 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization "shielding gas" covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our X

  6. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  7. Polarization diagnostics for cool core cluster emission lines

    SciTech Connect

    Sparks, W. B.; Pringle, J. E.; Cracraft, M.; Meyer, E. T.; Carswell, R. F.; Voit, G. M.; Donahue, M.; Hough, J. H.; Manset, N.

    2014-01-01

    The nature of the interaction between low-excitation gas filaments at ∼10{sup 4} K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ∼10{sup 7} K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits (≲ 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfaces.

  8. The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus

    NASA Astrophysics Data System (ADS)

    Goad, M. R.; Korista, K. T.; Ruff, A. J.

    2012-11-01

    We have investigated the observational characteristics of a class of broad emission line region (BLR) geometries that connect the outer accretion disc with the inner edge of the dusty toroidal obscuring region (TOR). We suggest that the BLR consists of photoionized gas of densities which allow for efficient cooling by ultraviolet (UV)/optical emission lines and of incident continuum fluxes which discourage the formation of grains, and that such gas occupies the range of distance and scale height between the continuum-emitting accretion disc and the dusty TOR. As a first approximation, we assume a population of clouds illuminated by ionizing photons from the central source, with the scale height of the illuminated clouds growing with increasing radial distance, forming an effective surface of a 'bowl'. Observer lines of sight which peer into the bowl lead to a Type 1 active galactic nuclei (AGN) spectrum. We assume that the gas dynamics are dominated by gravity, and we include in this model the effects of transverse Doppler shift (TDS), gravitational redshift (GR) and scale-height-dependent macroturbulence. Our simple model reproduces many of the commonly observed phenomena associated with the central regions of AGN, including (i) the shorter than expected continuum-dust delays (geometry), (ii) the absence of response in the core of the optical recombination lines on short time-scales (geometry/photoionization), (iii) an enhanced redwing response on short time-scales (GR and TDS), (iv) the observed differences between the delays for high- and low-ionization lines (photoionization), (v) identifying one of the possible primary contributors to the observed line widths for near face-on systems even for purely transverse motion (GR and TDS), (vi) a mechanism responsible for producing Lorentzian profiles (especially in the Balmer and Mg II emission lines) in low-inclination systems (turbulence), (vii) the absence of significant continuum-emission-line delays between the

  9. Accretion disk corona line emission from X0614+091

    NASA Technical Reports Server (NTRS)

    Christian, D. J.; White, N. E.; Swank, J. H.

    1994-01-01

    The low-mass X-ray binary X0614+091 was observed on 3 days in 1979 with the Einstein Observatory solid state spectrometer and the monitor proportional counter. During the observation with the highest measured flux, corresponding to an X-ray luminosity of 8 x 10(exp 36) erg/s (in the 0.5-20 keV band for an assumed distance of 5 kpc), significant low-energy emission was detected, centered at 0.77 keV, possibly due to line emission for O VII-O VIII and Fe XVII-Fe XIX. The other observations, which were at fluxes lower by a factor of 2, are consistent with the presence of the emission feature. The equivalent width of the feature, 37 +/- 6 eV, is of the same order as equivalent widths previously reported for more luminous low-mass X-ray binaries using grating spectrometer data. The soft X-ray lines could be emitted by gas expected to arise in an accretion disk corona excited by the central source. But to explain the observed feature, most of the corona needs to contribute, or other sources of emission are required.

  10. Strong optical and UV intermediate-width emission lines in the quasar SDSS J232444.80–094600.3: dust-free and intermediate-density gas at the skin of dusty torus?

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Zhou, Hong-Yan; Hao, Lei; Wang, Shu-Fen; Ji, Tuo; Liu, Bo

    2016-09-01

    Emission lines from the broad emission line region (BELR) and the narrow emission line region (NELR) of active galactic nuclei (AGNs) have been extensively studied. However, emission lines are rarely detected between these two regions. We present a detailed analysis of quasar SDSS J232444.80–094600.3 (SDSS J2324–0946), which is remarkable for its strong intermediate-width emission lines (IELs) with FWHM ≈ 1800 km s‑1. The IEL component is present in different emission lines, including the permitted lines Lyα λ1216, CIV λ1549, semiforbidden line [CIII] λ1909, and forbidden lines [OIII] λλ4959, 5007. With the aid of photo-ionization models, we found that the IELs are produced by gas with a hydrogen density of nH ∼ 106.2 ∼ 106.3 cm‑3, a distance from the central ionizing source of R ∼ 35 – 50 pc, a covering factor of ∼ 6%, and a dust-to-gas ratio of ≤ 4% that of the SMC. We suggest that the strong IELs of this quasar are produced by nearly dust-free and intermediate-density gas located at the skin of the dusty torus. Such strong IELs, which serve as a useful diagnostic, can provide an avenue to study the properties of gas between the BELR and the NELR.

  11. Shock-induced polarized hydrogen emission lines in omicron Ceti

    NASA Astrophysics Data System (ADS)

    Fabas, N.; Lèbre, A.; Gillet, D.

    2012-05-01

    Hydrogen emission lines in Mira variable stars are a well-known phenomenon whose origin has been established as related to the propagation of radiative hypersonic shock waves throughout the stellar atmosphere. A polarimetric observation by McLean and Coyne [1] made on omicron Ceti (the prototype of Mira variable stars) has revealed the existence of linear polarization signatures associated with Balmer emission lines. However, the polarizing mechanism has never been properly explained so far. The study presented here is the first of its kind since it displays the results of a spectropolarimetric survey of omicron Ceti in the Balmer lines. The survey was made with the NARVAL spectropolarimeter (Telescope Bernard Lyot, France) in full Stokes mode. We did not just confirm the appearance of this polarization but we also and above all showed the temporal variation of the linear polarization in the lines. We conclude that the polarizing mechanism is definitely intrinsic to the shock wave propagation throughout the stellar atmosphere of Mira and give some leads about the nature of this mechanism.

  12. Search for an emission line of a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Seto, Naoki

    2015-06-01

    In light of the history of research on an electromagnetic wave spectrum, a sharp emission line of gravitational wave background (GWB) would be an interesting observational target. Here we study an efficient method to detect a line GWB by correlating data of multiple ground-based detectors. We find that the width of frequency bin for coarse graining is a critical parameter, and, with the commonly used value 0.25 Hz, the signal-to-noise ratio could be decreased by up to a factor of 6.6, compared with a finer width of 0.02 Hz. By reanalyzing the existing data with a smaller bin width, we might detect a precious line signal from the early Universe.

  13. Continuum and line emission of flares on red dwarf stars

    NASA Astrophysics Data System (ADS)

    Morchenko, E.; Bychkov, K.; Livshits, M.

    2015-06-01

    The emission spectrum has been calculated of a homogeneous pure hydrogen layer, which parameters are typical for a flare on a red dwarf. The ionization and excitation states were determined by the solution of steady-state equations taking into account the continuum and all discrete hydrogen levels. We consider the following elementary processes: electron-impact transitions, spontaneous and induced radiative transitions, and ionization by the bremsstrahlung and recombination radiation of the layer itself. The Biberman-Holstein approximation was used to calculate the scattering of line radiation. Asymptotic formulae for the escape probability are obtained for a symmetric line profile taking into account the Stark and Doppler effects. The approximation for the core of the H- α line by a Gaussian curve has been substantiated.

  14. ESTIMATION OF RELATIVISTIC ACCRETION DISK PARAMETERS FROM IRON LINE EMISSION

    SciTech Connect

    V. PARIEV; B. BROMLEY; W. MILLER

    2001-03-01

    The observed iron K{alpha} fluorescence lines in Seyfert I galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30{degree} for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3{sigma} level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the line edges with the full line profile fits based on simple, geometrically thin disk models. The bounds on the innermost radius of disk emission indicate that the black hole in MCG-6-30-15 is rotating faster than 30% of theoretical maximum. When applied to data from NGC 4151, our method gives bounds on the inclination angle of the X-ray emitting inner disk of 50 {+-} 10{degree}, consistent with the presence of an ionization cone grazing the disk as proposed by Pedlar et al. (1993). The frequency extrema analysis also provides limits to the innermost disk radius in another Seyfert 1 galaxy, NGC 3516, and is suggestive of a thick disk model.

  15. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U ‑ Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  16. ACTIVE GALACTIC NUCLEI AS MAIN CONTRIBUTORS TO THE ULTRAVIOLET IONIZING EMISSIVITY AT HIGH REDSHIFTS: PREDICTIONS FROM A {Lambda}-CDM MODEL WITH LINKED AGN/GALAXY EVOLUTION

    SciTech Connect

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.

    2012-08-20

    We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z {approx} 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.

  17. Search for extended γ-ray emission around AGN with H.E.S.S. and Fermi-LAT

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemie`re, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Malyshev, D.

    2014-02-01

    Context. Very-high-energy (VHE; E > 100 GeV) γ-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these γ-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 were searched for using VHE γ-ray data taken with the High Energy Stereoscopic System (H.E.S.S.) and high-energy (HE; 100 MeV < E < 100 GeV) γ-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed γ-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGMF) values, >10-12 G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs, EGMF strengths in the range (0.3-3)× 10-15 G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.

  18. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  19. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  20. Active galactic nuclei at z˜ 1.5 - II. Black hole mass estimation by means of broad emission lines

    NASA Astrophysics Data System (ADS)

    Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.; Capellupo, D. M.

    2016-07-01

    This is the second in a series of papers aiming to test how the mass ($M_{\\rm BH}$), accretion rate ($\\dot{M}$) and spin ($a_{*}$) of super massive black holes (SMBHs) determine the observed properties of type-I active galactic nuclei (AGN). Our project utilizes a sample of 39 unobscured AGN at $z\\simeq1.55$ observed by VLT/X-shooter, selected to map a large range in $M_{\\rm BH}$ and $L/L_{\\rm edd}$ and covers the most prominent UV-optical (broad) emission lines, including H$\\alpha$, H$\\beta$, MgII, and CIV. This paper focuses on single-epoch, "virial" $M_{\\rm BH}$ determinations from broad emission lines and examines the implications of different continuum modeling approaches in line width measurements. We find that using a "local" power-law continuum instead of a physically-motivated thin disk continuum leads to only slight underestimation of the FWHM of the lines and the associated $M_{\\rm BH}\\left({\\rm FWHM}\\right)$. However, the line dispersion $\\sigma_{\\rm line}$ and associated $M_{\\rm BH}\\left(\\sigma_{\\rm line}\\right)$ are strongly affected by the continuum placement and provides less reliable mass estimates than FWHM-based methods. Our analysis shows that H$\\alpha$, H$\\beta$ and MgII can be safely used for virial $M_{\\rm BH}$ estimation. The CIV line, on the other hand, is not reliable in the majority of the cases, this may indicate that the gas emitting this line is not virialized. While H$\\alpha$ and H$\\beta$ show very similar line widths, the mean ${\\rm FWHM\\left(MgII\\right)}$ is about 30% narrower than ${\\rm FWHM\\left(H\\beta\\right)}$. We confirm several recent suggestions to improve the accuracy in CIV-based mass estimates, relying on other UV emission lines. Such improvements do not reduce the scatter between CIV-based and Balmer-line-based mass estimates.

  1. Line Emission from Radiation-pressurized H II Regions. I. Internal Structure and Line Ratios

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Verdolini, Silvia; Krumholz, Mark R.; Matzner, Christopher D.; Tielens, Alexander G. G. M.

    2013-05-01

    The emission line ratios [O III] λ5007/Hβ and [N II] λ6584/Hα have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting H II regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper, we construct a grid of quasi-static H II region models to explore how choices about these parameters alter H II regions' emission line ratios. We find that when radiation pressure is included in our models, H II regions reach a saturation point beyond which further increase in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an H II region's line ratio. We also show that if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that H II regions are wind-blown bubbles and that they have high ionization parameters; some popular H II region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of H II regions.

  2. VizieR Online Data Catalog: BLR-less AGNs in Stripe82 (Zhang, 2014)

    NASA Astrophysics Data System (ADS)

    Zhang, X.-G.

    2014-11-01

    In order to select the reliable candidates for the BLR-less AGNs through both the photometry variabilities and the observed spectral features, we apply the following procedures to the objects in the SDSS Stripe82 Database. The emission line parameters should be first determined, in order to confirm that our spectroscopic sample includes the pure narrow line objects only (type 2 objects, the objects having both strong and weak broad lines cannot be considered). Then, the SDSS photometric light curves of the objects in the spectroscopic sample should be carefully analysed to find the reliable candidates for the BLR-less AGNs. We use data from http://www.sdss3.org/dr8/spectro/spectro_access.php (1 data file).

  3. Sodium D-line emission from Io - Comparison of observed and theoretical line profiles

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.

    1978-01-01

    High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.

  4. Studying Cosmic Dawn and Emission Line Galaxies with WFIRST-AFTA

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    WFIRST-AFTA will provide a wealth of near-infrared spectra and imaging for 100s of millions of galaxies at redshifts z=1-3. While the primary aim of the WFIRST spectroscopic survey is to determine the geometry of the universe, these data will revolutionize our understanding of galaxy evolution at the peak epoch of star formationactivity. Understanding the galaxy spectra will not only help us address major issues in galaxy formation and evolution, but will also reduce random and systematic errors in the redshift determination for BAO and weak lensing experiments. We offer extensive experience of studying line emitters from z=0.3-7, using both slitless spectroscopy on HST and narrow-band imaging from the ground, together with higher resolution ground-based spectroscopic followup. The HST slitless spectrographs are the best analogs to the WFIRST-AFTA spectrograph in spectral and spatial resolution, and in operations mode. There are unique challenges in slitless spectroscopy, and our extensive experience will help to meet them. The three top-level science goals given by the "New Worlds, New Horizons" decadal survey report are Cosmic Dawn, New Worlds, and the Physics of the Universe. WFIRST's core mission objectives explicitly include the Physics of the Universe (through dark energy surveys) and New Worlds (through microlensing and perhaps coronographic observations). WFIRST-AFTA can make equally powerful contributions to the study of Cosmic Dawn. Its sensitivity, spatial resolution, and wide field of view make it uniquely powerful for studying the first faint, highly redshifted galaxies. We propose to: 1) Apply this accumulated expertise, software and existing HST data to help with the predictions, simulations, and detailed planning and possible optimization of spectroscopic observations. 2) Detail how studies of Emission Line Galaxies (ELGs) between z=1-3 will address outstanding questions in galaxy evolution and assembly at the peak of star-formation and AGN activity

  5. Spectropolarimetry of AGN, and `Women &\\ Science'

    NASA Astrophysics Data System (ADS)

    Kay, L.

    1999-12-01

    I have been using optical spectropolarimetry to investigate the nature of AGN. For the CAREER project, I have worked with A. M. Magalhães of the IAG in Brazil to use a visiting polarimetry module with the RC Spectrograph at CTIO, as well as conduct observations at Lick. Projects include observations of broad--line radio galaxies with double--peaked emission line profiles suggestive of accretion disks, and observations of a sample of X-ray selected narrow--line Seyfert 1 galaxies. Another project involves optical and X-ray observations of a complete sample of nearby Seyfert 2 galaxies in order to investigate the frequency of obscured broad--line regions and to determine their contribution to the X-ray background. In addition to involving undergraduate students in research, my educational efforts have focused on getting science into our Women's Studies program. I teach a course on the history and sociology of women in science, co-teach a course on feminist science studies, helped to create a course on women's health, organized a faculty seminar on gender and science issues, and lead a project at Barnard on gender and scientific literacy. I gratefully acknowledge support from NSF CAREER grant AST-9501835, as well as support from NSF International Research Fellowship INT-9423970, and from NSF grant EHR-9555808 to the AAC&U for the Gender and Scientific Literacy project.

  6. Host galaxies of luminous type II AGN: Winds, shocks, and comparisons to The SAMI Galaxy Survey

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Pracy, Michael; SAMI Galaxy Survey Team

    2016-01-01

    We present IFS observations of luminous (log(L[O III]/L⊙) > 8.7) local (z < 0.11) type II AGN, and demonstrate that winds are ubiquitous within this sample and have a direct influence on the ISM of the host galaxies. We use both non-parametric (e.g. line width and asymmetry) and multi-Gaussian fitting to decompose the complex emission profiles close to the AGN. We find line widths containing 80% flux in the range 400 - 1600 km/s with a mean of 790 ± 90 km/s, such high velocities are strongly suggestive that these AGN are driving ionized outflows. Additionally, multi-Gaussian fitting reveals that 14/17 of our targets require 3 separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530 - 2520 km/s, with a mean value of 920 ± 50 km/s. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (> 95 %) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. In addition, we use stellar absorption features to measure kinematics for these AGN host galaxies and those of a control sample selected from the SAMI Galaxy Survey to search for evidence of these luminous AGN being preferentially hosted by disturbed or merging systems.

  7. CO line emission from shock waves in molecular clouds

    SciTech Connect

    Draine, B.T.; Roberge, W.G.

    1984-07-15

    Calculations are presented of the emission spectrum of rotationally and vibrationally excited carbon monoxide in shocked interstellar molecular clouds. The calculations are based upon hydrodynamical shock models that include the effects of magnetically driven ion-neutral streaming. They incorporate a variety of collision processes that produce excited CO molecules, including H/sub 2/--CO collisions. The effects of photon trapping on the emission and excitation are included by means of a Sobolev-like approximation. Intensities are given for lines emitted from levels with J< or =60, for C-type shocks with speeds v/sub s/ from 5 to 50 km s/sup -1/, in clouds with densities n/sub H/ between 10/sup 2/ and 10/sup 6/ H nuclei per cm/sup 3/. Population inversions are found amongst the lowest levels of CO for a range of shock speeds and preshock conditions. Maser emission may be observable in favorable cases. Emission from vibrationally excited levels of CO may be detectable from v/sub s/> or approx. =35 km s/sup -1/ shocks in n/sub d/H = 10/sup 6/ cm/sup -3/ clouds.

  8. Emission-line objects projected upon the galactic bulge.

    PubMed

    Herbig, G H

    1969-08-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Halpha line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean M(v) approximately -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae. PMID:16578699

  9. Measuring Redshifts of Emission-line Galaxies Using Ramp Filters

    NASA Astrophysics Data System (ADS)

    Lesser, Ryan William; Bohman, John; McNeff, Mathew; Holden, Marcus; Moody, Joseph; Joner, Michael D.; Barnes, Jonathan

    2016-01-01

    Photometric redshifts are routinely obtained for galaxies without emission using broadband photometry. It is possible in theory to derive reasonably accurate (< 200 km/sec) photometric redshift values for emission-line objects using "ramp" filters with a linearly increasing/decreasing transmission through the bandpass. To test this idea we have obtained a set of filters tuned for isolating H-alpha at a redshift range of 0-10,000 km/sec. These filters consist of two that vary close to linearly in transmission, have opposite slope, and cover the wavelength range from 655nm - 685nm, plus a Stromgren y and 697nm filter to measure the continuum. Redshifts are derived from the ratio of the ramp filters indices after the continuum has been subtracted out. We are finishing the process of obtaining photometric data on a set of about 100 galaxies with known redshift to calibrate the technique and will report on our results.

  10. The nature of faint emission-line galaxies

    NASA Technical Reports Server (NTRS)

    Smetanka, John J.

    1993-01-01

    One of the results of faint galaxy redshift surveys is the increased fraction of galaxies which have strong emission-line spectra. These faint surveys find that roughly 50 percent of the galaxies have an equivalent width of (OII), W sub 3727, greater than 20 A while this fraction is less than 20 percent in the DARS survey. This has been interpreted as evidence for strong evolution in the galaxy population at redshifts less than 0.5. In order to further investigate the properties of the galaxies in faint redshift surveys, two important factors must be addressed. The first is the observed correlation between color, luminosity, and W sub 3727. There is a correlation between color and the strength of emission lines, bluer galaxies having stronger emission features, as evident for Markarian galaxies and for galaxies in Kennicutt's spectrophotometric atlas. This correlation also applies galaxies in faint redshift surveys. In addition, low luminosity galaxies have a larger average W sub 3727 (and bluer colors) than higher luminosity galaxies. This is illustrated for Kennicutt's low z late-type galaxies, for the Durham Faint Surveys, and for galaxies in SA68. The second factor which must be incorporated into any interpretation of the faint emission galaxies is the different luminosity functions for galaxies depending on color. This is usually modeled by varying M* for different color classes (or morphological types); however, the shape of the luminosity function is different for galaxies with different colors. Low luminosity, blue galaxies have a much larger number density than low luminosity, red galaxies. Furthermore, the low luminosity end of the blue galaxy luminosity function is not well fit by a Schechter function. These two factors have been included in a very simple, no-evolution, model for the galaxy population. This model uses the luminosity functions from Shanks (1990) and spectral energy distributions (SED's) from Bruzual (1988). W sub 3727 is predicted using

  11. Narrowband emission line imaging spectrometry using Savart plates

    NASA Astrophysics Data System (ADS)

    Maione, Bryan; Brickson, Leandra; Kudenov, Michael; Escuti, Michael

    2016-05-01

    Polarization spatial heterodyne interferometry (PSHI) allows for the development of compact, vibration insensitive, high spectral resolution sensors. Introducing the imaging qualities of a lenslet array extends the advantages of PSHI to imaging interferometers. The use of Savart plates enables a birefringent interferometer that obtains higher spectral resolution with fewer optical aberrations when compared to alternative designs. In this paper, we describe the design, construction, calibration and validation of a narrowband emission line imaging spectrometer (NELIS), based on Savart plates and liquid crystal polarization gratings, along with its associated theoretical model. This sensor is advantageous for spectral imaging in the areas of remote sensing, biomedical imaging and machine vision.

  12. Accretion disc-corona and jet emission from the radio-loud Narrow Line Seyfert 1 galaxy RXJ1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-05-01

    We perform X-ray/UV spectral and X-ray variability studies of the radio-loud Narrow Line Seyfert 1 (NLS1) galaxy RXJ1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultra-soft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power-law due to the thermal Comptonization (Γ =1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of two lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power-law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RXJ1633.3+4719 is variable with fractional variability amplitude Fvar=13.5±1.0%. In contrast to radio-quiet AGN, X-ray emission from the source becomes harder with increasing flux. The fractional RMS variability increases with energy and the RMS spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anti-correlated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RXJ1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  13. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  14. Shocked POststarbust Galaxy Survey. I. Candidate Post-starbust Galaxies with Emission Line Ratios Consistent with Shocks

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Cales, Sabrina L.; Rich, Jeffrey A.; Appleton, Philip N.; Kewley, Lisa J.; Lacy, Mark; Lanz, Lauranne; Medling, Anne M.; Nyland, Kristina

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  15. Spectral Energy Distributions of Type 1 AGNs

    NASA Astrophysics Data System (ADS)

    Hao, Heng

    The spectral energy distributions (SEDs) of active galactic nuclei (AGNs) are essential to understand the physics of supermassive black holes (SMBHs) and their host galaxies. This thesis present a detailed study of AGN SED shapes in the optical-near infrared bands (0.3--3microm) for 413 X-ray selected Type 1 AGNs from the XMM-COSMOS Survey. We define a useful near-IR/optical index-index ('color-color') diagram to investigate the mixture of AGN continuum, host galaxy and reddening contributions. We found that ˜90% of the AGNs lie on mixing curves between the Elvis et al. (1994) mean AGN SED (E94) and a host galaxy, with only the modest reddening [E(B-V)=0.1--0.2] expected in type 1 AGNs. Lower luminosity and Eddington ratio objects have more host galaxy, as expected. The E94 template is remarkably good in describing the SED shape in the 0.3--3microrn decade of the spectrum over a range of 3.2 dex in LOPT, 2.7 dex in L/LEdd, and for redshifts up to 3. The AGN phenomenon is thus insensitive to absolute or relative accretion rate and to cosmic time. However, 10% of the AGNs are inconsistent with any AGN+host+reddening mix. These AGNs have weak or non-existent near-IR bumps, suggesting a lack of the hot dust characteristic of AGNs. The fraction of these hot-dust-poor AGNs evolves with redshift from 6% at low redshift (z < 2) to 20% at moderately high redshift (2 < z < 3.5). A similar fraction of HDP quasars are found in the Elvis et al. 1994 (BQS) and Richards et al. 2006 (SDSS) samples. The 1--3microm emission of the HDP quasars is a factor 2--4 smaller than the typical E94 AGN SED. The implied torus covering factor is 2%--29%, well below the 75% required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of AGNs. For these, we estimate the outer edge of their accretion disks to lie at ˜104 Schwarzschild radii, more than ten times the gravitational stability radii. Either the host-dust is destroyed

  16. Testing the AGN unification model in the infrared. First results with GTC/CanariCam

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, C.

    2015-05-01

    The unified model for Active Galactic Nuclei (AGN) accounts for a variety of observational differences in terms of viewing geometry alone. However, from the fitting of high spatial resolution infrared (IR) data with clumpy torus models, it has been hinted that the immediate dusty surroundings of Type-1 and 2 Seyfert nuclei might be intrinsically different in terms of covering factor (torus width and number of clouds). Moreover, these torus covering factors also showed variations among objects belonging to the same type, in contradiction with simple unification. Interestingly, these intrinsic differences in Seyfert tori could explain, for example, the lack of broad optical lines in the polarized spectra of about half of the brightest Seyfert 2 galaxies. On the other hand, recent IR interferometry studies have revealed that, in at least four Seyfert galaxies, the mid-IR emission is elongated in the polar direction. These results are difficult to reconcile with unified models, which claim that the bulk of the mid-IR emission comes from the torus. In this invited contribution I summarize the latest results on high angular resolution IR studies of AGN, which constitute a crucial test for AGN unification. These results include those from the mid-infrared instrument CanariCam on the 10.4 m Gran Telescopio CANARIAS (GTC), which are starting to be published by the CanariCam AGN team, Los Piratas (https://sites.google.com/site/piratasrelatedpublications).

  17. Non-thermal emission from standing relativistic shocks: an application to red giant winds interacting with AGN jets

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.

    2015-03-01

    Context. Galactic and extragalactic relativistic jets are surrounded by rich environments that are full of moving objects, such as stars and dense medium inhomogeneities. These objects can enter into the jets and generate shocks and non-thermal emission. Aims: We characterize the emitting properties of the downstream region of a standing shock formed due to the interaction of a relativistic jet with an obstacle. We focus on the case of red giants interacting with an extragalactic jet. Methods: We perform relativistic axisymmetric hydrodynamical simulations of a relativistic jet meeting an obstacle of very large inertia. The results are interpreted in the framework of a red giant whose dense and slow wind interacts with the jet of an active galactic nucleus. Assuming that particles are accelerated in the standing shock generated in the jet as it impacts the red giant wind, we compute the non-thermal particle distribution, the Doppler boosting enhancement, and the non-thermal luminosity in gamma rays. Results: The available non-thermal energy from jet-obstacle interactions is potentially enhanced by a factor of ~100 when accounting for the whole surface of the shock induced by the obstacle, instead of just the obstacle section. The observer gamma-ray luminosity, including the effective obstacle size, the flow velocity and Doppler boosting effects, can be ~300 (γj/10)2 times higher than when the emitting flow is assumed at rest and only the obstacle section is considered, where γj is the jet Lorentz factor. For a whole population of red giants inside the jet of an active galactic nucleus, the predicted persistent gamma-ray luminosities may be potentially detectable for a jet pointing approximately to the observer. Conclusions: Obstacles interacting with relativistic outflows, for instance clouds and populations of stars for extragalactic jets, or stellar wind inhomogeneities in microquasar jets and in winds of pulsars in binaries, should be taken into account when

  18. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  19. The Hubble Space Telescope Quasar Absorption Line Key Project. 10: Galactic H I 21 centimeter emission toward 143 quasars and active Galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lockman, Felix J.; Savage, Blair D.

    1995-01-01

    Sensitive H I 21 cm emission line spectra have been measured for the directions to 143 quasars and active galactic nuclei (AGNs) chosen from the observing lists for the Hubble Space Telescope (HST) Quasar Absorption Line Key Project. Narrow-band and wide-band data were obtained with the National Radio Astronomy Observatory (NRAO) 43 m radio telescope for each object. The narrow-band data have a velocity resolution of 1 km/s, extend from -220 to +170 km/s, and are corrected for stray 21 cm radiation. The wide-band data have a resolution of 4 km/s and extend from -1000 to +1000 km/s. The data are important for the interpretation of ultraviolet absorption lines near zero redshift in Key Project spectra. Twenty-two percent of the quasars lie behind Galactic high-velocity H I clouds with absolute value of V(sub LSR) greater than 100 km/s whose presence can increase the equivalent width of interstellar absorption lines significantly. This paper contains the emission spectra and measures of the H I velocities and column densities along the sight line to each quasar. We discuss how the measurements can be used to estimate the visual and ultraviolet extinction toward each quasar and to predict the approximate strength of the strong ultraviolet resonance lines of neutral gas species in the HST Key Project spectra.

  20. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  1. Far-Infrared Water Line Emissions from Circumstellar Outflows

    NASA Technical Reports Server (NTRS)

    Chen, Wesley; Neufeld, David A.

    1995-01-01

    We have modeled the far-infrared water line emission expected from circumstellar outflows from oxygen-rich late-type stars, as a function of the mass-loss rate and the terminal outflow velocity. For each mass-loss rate and terminal outflow velocity considered, we computed self-consistently the gas density, temperature, outflow velocity, and water abundance as a function of distance from the star. We then used an escape probability method to solve for the equilibrium level populations of 80 rotational states of water and thereby obtained predictions for the luminosity of a large number of far-infrared rotational transitions of water. In common with previous models, our model predicts that water will be copiously produced in the warm circumstellar gas and that water rotational emission will dominate the radiative cooling. However, our use of a realistic radiative cooling function for water leads to a lower gas temperature than that predicted in previous models. Our predictions for the far-infrared water line luminosities are consequently significantly smaller than those obtained in previous studies. Observations to be carried out by the Infrared Space Observatory will provide a crucial test of the models presented here.

  2. Relativistic Effects on Reflection X-ray Spectra of AGN

    SciTech Connect

    Lee, Khee-Gan; Fuerst, Steven V.; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  3. Obscured AGN Accretion Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    We propose to combine data from XMM-Newton, the Chandra X-ray Observatory, and the Spitzer Space Telescope with ground-based optical spectroscopy from Keck and Magellan to measure the relationship between AGN obscuration and accretion activity over the bulk of cosmic history. This work will establish the prominence of both obscured and unobscured growth phases of black holes and shed light on the processes that trigger and fuel AGN as a function of time. We will complete three complementary projects that focus on a) understanding the completeness and biases of AGN selection at mid-IR versus X-ray wavelengths, b) tracing optical obscuration as a function of luminosity and redshift, and c) measuring the distribution and evolution of X-ray absorption of AGN. We will undertake a study of AGN demographics comparing selection techniques at three different wavelengths: mid-IR selection using data from the Spitzer Space Telescope, X- ray selection using data from the XMM-Newton and Chandra satellites, and broad-line optical selection using PRIMUS spectroscopy. We will determine the overlap and uniqueness of samples created using each method, to quantify the completeness and biases inherent in AGN selection at each wavelength. This will lead to a constraint on the fraction of heavily obscured, Compton-thick AGN to z~1. To study the optical obscuration of AGN, we will use three recently-completed spectroscopic surveys -- PRIMUS, DEEP2, and our own Keck program -- to robustly determine the ratio of unobscured (broad-line) to obscured (non--broad-line) X-ray selected AGN as a function of luminosity from z~0.2 to z~3. We will utilize the well- understood selection functions and characterize the AGN completeness of each survey as a function of redshift, magnitude, and obscuration properties. This will allow us to correct for a variety of observational effects to measure the underlying joint redshift- and luminosity-dependence of optical obscuration, which has direct implications

  4. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  5. The PEP survey: infrared properties of radio-selected AGN

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Lutz, D.; Rosario, D.; Berta, S.; Le Floc'h, E.; Magnelli, B.; Pozzi, F.; Riguccini, L.; Santini, P.

    2014-07-01

    By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the far-infrared (FIR) properties of radio-selected AGN. To this purpose, from VLA-COSMOS we considered the 1537, F1.4 GHz ≥ 0.06 mJy sources with a reliable redshift estimate, and sub-divided them into star-forming galaxies and AGN solely on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z ≲ 3.5. 832 radio sources have a counterpart in the PACS Evolutionary Probe catalogue. 175 are AGN. Their redshift distribution closely resembles that of the total radio-selected AGN population, and exhibits two marked peaks at z ˜ 0.9 and 2.5. We find that the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio power and redshift, whereby powerful sources are more likely to be FIR emitters at earlier epochs. This is due to two distinct effects: (1) at all radio luminosities, FIR activity monotonically increases with look-back time and (2) radio activity of AGN origin is increasingly less effective at inhibiting FIR emission. Radio-selected AGN with FIR emission are preferentially located in galaxies which are smaller than those hosting FIR-inactive sources. Furthermore, at all z ≲ 2, there seems to be a preferential (stellar) mass scale M* ˜ [1010-1011] M⊙ which maximizes the chances for FIR emission. We find such FIR (and mid-infrared) emission to be due to processes indistinguishable from those which power star-forming galaxies. It follows that radio emission in at least 35 per cent of the entire AGN population is the sum of two contributions: AGN accretion and star-forming processes within the host galaxy.

  6. Asymmetries in coronal spectral lines and emission measure distribution

    SciTech Connect

    Tripathi, Durgesh; Klimchuk, James A.

    2013-12-10

    It has previously been argued that (1) spicules do not provide enough pre-heated plasma to fill the corona, and (2) even if they did, additional heating would be required to keep the plasma hot as it expands upward. Here we address whether spicules play an important role by injecting plasma at cooler temperatures (<2 MK), which then gets heated to coronal values at higher altitudes. We measure red-blue asymmetries in line profiles formed over a wide range of temperatures in the bright moss areas of two active regions. We derive emission measure distributions from the excess wing emission. We find that the asymmetries and emission measures are small and conclude that spicules do not inject an important (dominant) mass flux into the cores of active regions at temperatures >0.6 MK (log T > 5.8). These conclusions apply not only to spicules but also to any process that suddenly heats and accelerates chromospheric plasma (e.g., a chromospheric nanoflare). The traditional picture of coronal heating and chromospheric evaporation appears to remain the most likely explanation of the active region corona.

  7. Investigation of Nuclear Gamma Ray Line Emission Associated with Lightning

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Millan, R. M.; Eack, K.; Aulich, G. D.

    2005-12-01

    The first conclusive observations of X-rays associated with thunderstorm activity were made in the 1980's and the prompt emission has been interpreted as bremsstrahlung produced by lightning-accelerated electrons. In 2004, Greenfield et al. reported the first detection of delayed gamma ray emission, with flux peaking 70 minutes after a lightning stroke and decaying exponentially over 50 minutes. They suggested the delayed gamma rays are a result of nuclear reactions in the atmosphere, creating excited Chlorine-39 and decaying with a 56-minute half-life. These results are compelling, but inconclusive; instrumentation capable of measuring the energy spectrum with high precision is necessary to confirm the existence of nuclear line emission associated with lightning. During June-September 2005, we used a spare RHESSI 7 cm-diameter segmented coaxial germanium spectrometer to continuously monitor gamma radiation on South Baldy Peak (10,800 ft) in New Mexico. The detector monitors gamma rays between ~18 keV-10 MeV with an energy resolution of ~2 keV@835 keV. South Baldy is the site of Langmuir Lab and was chosen to take advantage of other lightning research instrumentation located there, including New Mexico Tech's 3D Lightning Mapping Array (LMA) which can determine the location of a lightning stroke to within about 50m. We describe the experiment and present the initial results.

  8. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  9. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  10. Iron and helium emission lines in classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Beristain, Georgina

    Results are presented for the He emission in 31 CTTS from the Taurus-Auriga molecular cloud spanning two orders of magnitude in the mass accretion rate, and for the Fe emission in DR Tau, based on a series of high resolution echelle spectra. The He lines admit a description in terms of a narrow component ( NC) and a broad component (BC). The NC has FWHM between 32-55 km/s and centroid velocities near zero km/s or moderately redshifted, consistent with an origin in the postshock region of the magnetospheric accretion model. The BC, with FWHM between 128 and 287 km/s and centroid velocities between -93 and +35 km/s, includes a wind and an accretion component; we argue the BC is predominantly formed in the wind. Estimates of the wind and accretion component equivalent widths are oppositely related to the NC, so the NC equivalent width increases with the accretion component but decreases as the wind component increases. The NC is undetectable where profiles appear dominated by the wind, requiring a source of veiling other than the accretion shock to account for the observed continuum excess. Intensity ratios indicate that physical conditions are nearly uniform in the NC but span a range in the BC. For DR Tau, the range of morphologies in 62 unblended Fe I and Fe II lines can be resolved in terms of a narrow component (NC) that dominates the weakest lines, and a broad component (BC) that dominates the strongest lines. The (NC) has FWHM ~20 km/s and centroid velocity near zero km/s. The (BC) has FWHM ~100 km/s, and a tendency to be blueshifted by <=10 km/s. Estimates of iron line opacities τ and column densities N yield τNC ~ 3 × τBC, NFeI >~ 1017 - 1018 cm-2 , and NFeII >~ 1018 - 1019 cm-2 for the BC. Estimates of kinetic temperature for iron suggest that the NC gas is hotter than the BC by several thousand degrees. For iron, the NC is consistent with an origin in the postshock gas while the BC may originate in the inner accretion disk close to the corotation radius.

  11. Atomic Data and Emission Line Intensities for CA VII

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2003-01-01

    In the present work we calculate energy levels, transition probabilities and electron-ion collisional excitation rates for the 3s(sup 2)3p(sup 2), 3s3p(sup 3) and 3s(sup 2)3p3d configurations of the silicon-like ion Ca VII. The total number of intermediate coupling levels considered is 27. Collision strengths are calculated at seven incident electron energies: 8, 10, 15, 20, 30,40 and 60 Ry, using the Distorted Wave approximation and a 5-configuration model. Excitation rate coefficients are calculated by assuming a Maxwellian distribution of velocities and are used to calculate level populations and line emissivities under the assumption of statistical equilibrium. Line intensity ratios are calculated and compared with observed values measured from SERTS and SOHO/CDS spectra. The diagnostic potential of Ca VII is demonstrated, with particular emphasis on the possibility to measure the Ne/Ca relative abundance through simultaneous observations of Ca VII and N VI lines. Ca VII proves to be an excellent tool for the study of the FIP effect in the solar transition region.

  12. Fe X Emission Lines in Solar and Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Foster, V. J.; Mathioudakis, M.; Keenan, F. P.; Drake, J. J.; Widing, K. G.

    1996-12-01

    Theoretical electron density sensitive emission line ratios involving Fe X 3s23p5-3s23p43d transitions in the 170-190 Å wavelength range are compared with observational data for a solar active region and flares, obtained during the Skylab mission, and Cen and Procyon observations from the Extreme Ultraviolet Explorer (EUVE) satellite. Electron densities derived from the majority of the ratios are consistent for the events but are in poor agreement with the values of Ne estimated from diagnostic lines in other species observed in the spectra, casting doubt on the accuracy of the theoretical line ratio calculations and, hence, the atomic data of Mohan et al. used in their derivation. At low Ne, the present ratios are significantly different from those of Young et al., while the latter imply densities that are in somewhat better agreement with densities derived from other diagnostics. This would appear to indicate that the electron impact excitation rates of Bhatia & Doschek adopted by Young et al. are to be preferred over the Mohan et al. results.

  13. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  14. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  15. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  16. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  17. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use...

  18. Hα Monitoring of Early-Type Emission Line Stars

    NASA Astrophysics Data System (ADS)

    Souza, Steven P.; Boettcher, E.; Wilson, S.; Hosek, M.

    2011-05-01

    We have begun a narrowband imaging program to monitor Hα emission in early-type stars in young open clusters and associations. A minority of early-type stars, particularly Be stars, show Hα in emission due to extended atmospheres and non-equilibrium conditions. Emission features commonly vary irregularly over a range of timescales (Porter, J.M. & Rivinus, T., P.A.S.P. 115:1153-1170, 2003). Some of the brightest such stars, e.g. γ Cas, have been spectroscopically monitored for Hα variability to help constrain models of the unstable disk, but there is relatively little ongoing monitoring in samples including fainter stars (Peters, G., Be Star Newsletter 39:3, 2009). Our program uses matched 5nm-wide on-band (656nm) and off-band (645nm) filters, in conjunction with the Hopkins Observatory 0.6-m telescope and CCD camera. Aperture photometry is done on all early-type stars in each frame, and results expressed as on-band to off-band ratios. Though wavelength-dependent information is lost compared with spectroscopy, imaging allows us to observe much fainter (and therefore many more) objects. Observing young clusters, rather than individual target stars, allows us to record multiple known and candidate emission line stars per frame, and provides multiple "normal" reference stars of similar spectral type. Observations began in the summer of 2010. This project has the potential to produce significant amounts of raw data, so a semi-automated data reduction process has been developed, including astrometric and photometric tasks. Early results, including some preliminary light curves and recovery of known Be stars at least as faint as R=13.9, are presented. We gratefully acknowledge support for student research through an REU grant to the Keck Northeast Astronomy Consortium from the National Science Foundation, and from the Division III Research Funding Committee of Williams College.

  19. CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For X-Ray Detected AGNs

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Salvato, M.; Nandra, K.; Brusa, M.

    2014-07-01

    We present photometric redshifts for X-ray sources, as well as new multi-wavelength identifications in the 4Ms-CDFS/ECDFS. To find counterparts of the X-ray sources efficiently, we use a new method based on Bayesian statistics with priors on magnitudes and position errors, making associations with optical and near/mid-infrared data simultaneously. Specifically taking advantage of high-resolution HST/WFC3 data in the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and homogeneous data from the Taiwan ECDFS Near-IR Survey (TENIS), 97% of X-ray sources have multi-wavelength counterparts. To compute photo-z, in addition to the CANDELS data, the de-blended intermediate-band photometry (by TFIT method) is used for the first time in this field. Furthermore, we adopt a new set of AGN-galaxy hybrid templates which are more representative of population. These hybrids are composed of semi-empirical galaxy templates that include emission lines, in addition to type1/2 AGNs. In the entire field, we achieve a photo-z accuracy of 0.014 with 5.3% outliers. The WFC3/NIR data allow us to reach more accurate redshifts up to 7. The results are particularly accurate when incorporating the intermediate bands and emission lines that pinpoint strong line features from AGNs. The photo-z accuracy is three times better when including them in the fitting.

  20. The broad emission line and continuum variations of Seyfert galaxies. I - Time scales and amplitudes

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Edward I.; Malkan, Matthew A.; Sargent, Wallace L. W.; Readhead, Anthony C. S.

    1992-01-01

    Spectroscopic observations of 13 Seyfert 1 galaxies made from 1979 to 1984 at Palomar and Steward Observatories were analyzed for Balmer-line and optical continuum variability. The majority of the galaxies showed significant variations, particularly in the continuum. Typical peak-to-peak changes for H-beta and H-gamma integrated line fluxes were 100-200 percent, while the continua varied by 200-350 percent. In several cases, Balmer-line and continuum variations were found to be strongly correlated, as expected for photoionization by a central continuum source. However, these correlations were found to be highly nonlinear. Significant correlations were found between variability amplitude and global AGN properties such as luminosity. Moreover, a significant number of variations occurring on short time scales constrains the size of the broad-line region in Seyfert galaxies to about 90 lt-days across or less.

  1. UNCOVERING THE SPECTRAL ENERGY DISTRIBUTION IN ACTIVE GALAXIES USING HIGH-IONIZATION MID-INFRARED EMISSION LINES

    SciTech Connect

    Melendez, M.; Weaver, K. A.; Kraemer, S. B.; Mushotzky, R. F.

    2011-09-01

    The shape of the spectral energy distribution (SED) of active galaxies in the extreme-ultraviolet (EUV)-soft X-ray band (13.6 eV-1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the SED in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray-selected active galactic nuclei (AGNs). Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]{sub 14.32{mu}m}/[Ne III], [Ne V]{sub 24.32{mu}m}/[O IV]{sub 25.89{mu}m}, and [O IV]{sub 25.89{mu}m}/[Ne III] ratios and does not require the addition of a 'big bump' EUV model component. We constrain the EUV-soft X-ray slope, {alpha}{sub i}, to be between 1.5 and 2.0 and derive a best fit of {alpha}{sub i} {approx} 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate-redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T{sub BB} = 10{sup 5.18} K and 10{sup 5.7} K, suggesting that the peak of this component spans a large range of energies extending from {approx}600 A to 1900 A. In this case, the best-fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between {approx}700 and 1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies >4 Ry to generate the observed amount of mid-infrared emission in our sample of Burst Alert Telescope AGNs.

  2. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lines for permeation emissions? 1060.510 Section 1060.510 Protection of Environment ENVIRONMENTAL... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for... incorporated by reference in § 1060.810....

  3. A versatile apparatus for on-line emission channeling experiments

    SciTech Connect

    Silva, M. R.; Wahl, U.; Correia, J. G.; Unidade de Física e Aceleradores, IST Amorim, L. M.; Pereira, L. M. C.

    2013-07-15

    The concept and functionality of an apparatus dedicated to emission channeling experiments using short-lived isotopes on-line at ISOLDE/CERN is described. The setup is assembled in two functional blocks – (a) base stand including beam collimation, implantation and measurement chamber, cryogenic extension, and vacuum control system and (b) Panmure goniometer extension including maneuvering cradle and sample heating furnace. This setup allows for in situ implantation and sample analysis in the as-implanted state and upon cooling down to 50 K and during annealing up to 1200 K. The functionality of the setup will be illustrated with the example of establishing the lattice location of {sup 56}Mn probes implanted into GaAs.

  4. A Chandra-Swift View of Point Sources in Hickson Compact Groups: High AGN Fraction but a Dearth of Strong AGNs

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Gallagher, S. C.; Hornschemeier, A. E.; Fedotov, K.; Eracleous, M.; Brandt, W. N.; Desjardins, T. D.; Charlton, J. C.; Gronwall, C.

    2014-01-01

    We present Chandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances of 34-89 Mpc. We perform detailed X-ray point source detection and photometry and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (L(sub x)) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (gamma), hardness ratios, and L(sub X), in the full (0.5-8.0 keV), soft (0.5-2.0 keV), and hard (2.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions. Two-thirds of our galaxies have nuclear X-ray sources with Swift/UVOT counterparts. Two nuclei have L(sub X),0.5-8.0 keV > 10(exp 42) erg s-1, are strong multi-wavelength active galactic nuclei (AGNs), and follow the known alpha OX-?L? (nearUV) correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the 'non-AGN locus' in alpha OX-?L? (nearUV) space, which also hosts other normal galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR (is) less than -20 and L(sub X),0.5-8.0 keV (is) greater than 10(exp 41) erg s-1 is 0.08+0.35 -0.01, somewhat higher than the 5% fraction in galaxy clusters.

  5. A Chandra-Swift View of Point Sources in Hickson Compact Groups: High AGN Fraction but a Dearth of Strong AGNs

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Gallagher, S. C.; Hornschemeier, A. E.; Fedotov, K.; Eracleous, M.; Brandt, W. N.; Desjardins, T. D.; Charlton, J. C.; Gronwall, C.

    2014-05-01

    We present Chandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances of 34-89 Mpc. We perform detailed X-ray point source detection and photometry and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (LX ) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (Γ), hardness ratios, and LX , in the full (0.5-8.0 keV), soft (0.5-2.0 keV), and hard (2.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions. Two-thirds of our galaxies have nuclear X-ray sources with Swift/UVOT counterparts. Two nuclei have L X, 0.5-8.0 keV >1042 erg s-1, are strong multi-wavelength active galactic nuclei (AGNs), and follow the known αOX-νL ν (nearUV) correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the "non-AGN locus" in αOX-νL ν (nearUV) space, which also hosts other normal galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR <= -20 and L X, 0.5-8.0 keV >=1041 erg s-1 is 0.08^{+0.35}_{-0.01}, somewhat higher than the ~5% fraction in galaxy clusters.

  6. Searching for emission-line galaxies: The UCM survey

    NASA Technical Reports Server (NTRS)

    Gallego, J.; Zamorano, J.; Rego, M.; Vitores, A.

    1993-01-01

    We are carrying out a long-term project with the main purposes of finding and analyzing low metallicity galaxies. A very small number of very low metallicity galaxies is known up to now. However these ojbects are particularly interesting since they are excellent candidates to 'young galaxies' in evolutionary sense as POX186 (Kunth, Maurogordato & Vigroux, 1988). Since the interstellar matter in these objects is only weakly contaminated by stellar evolution, their study could provide valuable information about the primordial helium abundance and therefore it could place constraints on the different Big-Bang models. The instrumental set up of our survey is an objective-prism used with the Schmidt telescope at Calar Alto Observatory. By using hypersensitized IIIaF emulsion and RG630 filter low resolution spectra in the H alpha region of objects in a wide field is obtained (Rego et al. 1989, Zamorano et al. 1990). Surveys carried out in the past two decades at optical blue wavelengths have also produced large samples of emission-line galaxies (ELGs), for example MacAlpine & Willians 1981 and reference therein, Wasilewski 1983, Salzer and MacAlpine 1988, or Smith et al. 1976. Relying primarily on objective-prism plates taken in the blue, these surveys have found over 3000 blue/emission-line galaxies so far. A significant number of star-forming galaxies are missed by optical surveys in the blue because of their low-excitation spectra (MacAlpine and Willians 1981, Markarian et al. 1981 and references therein) or their low metallicity (Kunth and Sargent, 1986).

  7. Massive Emission-Line Stars in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Lim, P. L.; Holtzman, J. A.; Walterbos, R. A. M.

    2003-12-01

    The evolution of massive stars is still poorly understood because of critical effects of mass loss during the post-main sequence phase. Of particular relevance is the Luminous Blue Variable phase, during which high mass loss may occur over a brief period. It would be useful to know the mass range of stars that enter this phase, and the life time of the phase. For that, better estimates of the numbers of LBVs in different environments is crucial. In a study of M31, we detected candidate LBVs as luminous stars with strong Hα emission-lines and no nebular [SII] emission. (King, N.L., Walterbos, R.A.M., & Braun, R., 1998, ApJ, 507:210-220). HST's sensitivity offers the capability to identify these candidate LBVs in galaxies beyond the Local Group. We identify massive Hα emmision-line stars in nearby spiral galaxies within 10 Mpc, using data from the HST WFPC2 archive. We obtained stellar photometry in Hα (F656N) and various broadband filters, with methods developed for the HST Local Group Stellar Photometry archive (Holtzman, J., Afonso, C., & Dolphin, A., 2003, ApJS, submitted). We identify candidates based on the amount of Hα excess in two-color plots. We also require an absolute magnitude MV ≤ -5, and photometry fit parameters consistent with point source characteristics. Candidates are inspected visually on the images for verification purpose. We find promising candidates in several nearby galaxies. We will present a catalog of the objects, and discuss their properties and the environments in which they are found. Support for this work was provided by NASA through grant numbers AR-08372.01-97A and HST-AR-08749.01-A from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555.

  8. Quasar emission lines, radio structures and radio unification

    NASA Astrophysics Data System (ADS)

    Jackson, Neal; Browne, I. W. A.

    2013-02-01

    Unified schemes of radio sources, which account for different types of radio active galactic nucleus in terms of anisotropic radio and optical emission, together with different orientations of the ejection axis to the line of sight, have been invoked for many years. Recently, large samples of optical quasars, mainly from the Sloan Digital Sky Survey (SDSS), together with large radio samples, such as Faint Images of the Radio Sky at Twenty cm (FIRST), have become available. These hold the promise of providing more stringent tests of unified schemes but, compared to previous samples, lack high-resolution radio maps. Nevertheless, they have been used to investigate unified schemes, in some cases yielding results which appear inconsistent with such theories. Here we investigate using simulations how the selection effects to which such investigations are subject can influence the conclusions drawn. In particular, we find that the effects of limited resolution do not allow core-dominated radio sources to be fully represented in the samples, that the effects of limited sensitivity systematically exclude some classes of sources and the lack of deep radio data make it difficult to decide to what extent closely separated radio sources are associated. Nevertheless, we conclude that relativistic unified schemes are entirely compatible with the current observational data. For a sample selected from SDSS and FIRST which includes weak-cored triples we find that the equivalent width of the [O III] emission line decreases as core dominance increases, as expected, and also that core-dominated quasars are optically brighter than weak-cored quasars.

  9. Constraining the Dynamical Importance of Hot Gas and Radiation Pressure in Quasar Outflows Using Emission Line Ratios

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Faucher-Giguère, Claude-André; Zakamska, Nadia L.; Hennawi, Joseph F.

    2016-03-01

    Quasar feedback models often predict an expanding hot gas bubble that drives a galaxy-scale outflow. In many circumstances this hot gas radiates inefficiently and is therefore difficult to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization calculations of the cold (∼ {10}4 {{K}}) line-emitting gas. We compare our calculations with observations of the broad line region, the inner face of the torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure at distances 0.1 {{pc}}{--}10 {{kpc}} from the center. We find that emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales \\lt 40 {{pc}} a dynamically significant hot gas pressure is ruled out, while on larger scales the hot gas pressure cannot exceed six times the local radiation pressure. In individual quasars, ≈25% of quasars exhibit NLR ratios that are inconsistent with radiation-pressure-dominated models, although in these objects the hot gas pressure is also unlikely to exceed the radiation pressure by an order of magnitude or more. The derived upper limits on the hot gas pressure imply that the instantaneous gas pressure force acting on galaxy-scale outflows falls short of the time-averaged force needed to explain the large momentum fluxes \\dot{p}\\gg {L}{{AGN}}/c inferred for galaxy-scale outflows. This apparent discrepancy can be reconciled if optical quasars previously experienced a buried, fully obscured phase during which the hot gas bubble was more effectively confined and during which galactic wind acceleration occurred.

  10. Cataloguing Emission Line Spectra from Fe VII-Fe XXIV in the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Brown, G. V.; Kahn, D. A.; Liedahl, D. A.; Mauche, C. W.; Utter, S. B.

    2000-01-01

    Detailed laboratory astrophysics measurements are, in progress to produce spectral tables for the Fe VII Fe XXIV line emission in the EUV wavelength band. Results for Fe XIII are presented that update line lists used in the Chandra Emission Line Project.

  11. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test EPA Low-Emission Fuel Lines for permeation emissions? 1060.510 Section 1060.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND...

  12. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test EPA Low-Emission Fuel Lines for permeation emissions? 1060.510 Section 1060.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND...

  13. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test EPA Low-Emission Fuel Lines for permeation emissions? 1060.510 Section 1060.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND...

  14. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test EPA Low-Emission Fuel Lines for permeation emissions? 1060.510 Section 1060.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND...

  15. A multi-wavelength survey of AGN in massive clusters: AGN distribution and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Klesman, Alison J.; Sarajedini, Vicki L.

    2014-07-01

    We investigate the effect of environment on the presence and fuelling of active galactic nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi-wavelength surveys covering regions centred on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. X-ray-selected AGN candidates appear to be more centrally concentrated than normal galaxies in the inner 20 per cent of the virial radius, while becoming less centrally concentrated in the outer regions. Mid-IR-selected AGN are less centrally concentrated overall. Optical variables have a similar distribution to normal galaxies in the inner regions, then become somewhat less centrally concentrated farther from the cluster centre. The host galaxies of AGN reveal a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the `green valley' between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star formation in the hosts. Among normal galaxies, we find that galaxy colours become generally bluer with increasing cluster radius, as is expected. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts, which may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy

  16. Faint COSMOS AGNs at z∼3.3. I. Black Hole Properties and Constraints on Early Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, B.; Civano, F.; Urry, C. Megan; Schawinski, K.; Marchesi, S.; Elvis, M.; Rosario, D. J.; Suh, H.; Mejia-Restrepo, J. E.; Simmons, B. D.; Faisst, A. L.; Onodera, M.

    2016-07-01

    We present new Keck/MOSFIRE K-band spectroscopy for a sample of 14 faint, X-ray-selected active galactic nuclei (AGNs) in the COSMOS field. The data cover the spectral region surrounding the broad Balmer emission lines, which enables the estimation of black hole masses ({M}{BH}) and accretion rates (in terms of L/{L}{Edd}). We focus on 10 AGNs at z ≃ 3.3, where we observe the Hβ spectral region, while for the other four z ≃ 2.4 sources we use the {{H}}α broad emission line. Compared with previous detailed studies of unobscured AGNs at these high redshifts, our sources are fainter by an order of magnitude, corresponding to number densities of order ∼10‑6–10‑5 {{Mpc}}-3. The lower AGN luminosities also allow for a robust identification of the host galaxy emission, necessary to obtain reliable intrinsic AGN luminosities, BH masses and accretion rates. We find the AGNs in our sample to be powered by supermassive black holes (SMBHs) with a typical mass of {M}{BH}≃ 5× {10}8 {M}ȯ —significantly lower than the higher-luminosity, rarer quasars reported in earlier studies. The accretion rates are in the range L/{L}{Edd} ∼ 0.1–0.4, with an evident lack of sources with lower L/{L}{Edd} (and higher {M}{BH}), as found in several studies of faint AGNs at intermediate redshifts. Based on the early growth expected for the SMBHs in our sample, we argue that a significant population of faint z ∼ 5‑6 AGNs, with {M}{BH}∼ {10}6 {M}ȯ , should be detectable in the deepest X-ray surveys available, but this is not observed. We discuss several possible explanations for the apparent absence of such a population, concluding that the most probable scenario involves an evolution in source obscuration and/or radiative efficiencies.

  17. Unraveling the Complex Structure of AGN-driven Outflows. I. Kinematics and Sizes

    NASA Astrophysics Data System (ADS)

    Karouzos, Marios; Woo, Jong-Hak; Bae, Hyun-Jin

    2016-03-01

    Outflows driven by active galactic nuclei (AGNs) are often invoked as agents of the long-sought AGN feedback. Yet, characterizing and quantifying the impact on their host galaxies has been challenging. We present Gemini Multi-Object Spectrograph integral field unit data of six local (z \\lt 0.1) and luminous (L{}[{{O}{{III}}]}\\gt {10}42 erg s-1) type 2 AGNs. In the first of a series of papers, we investigate the kinematics and constrain the size of the outflows. The ionized gas kinematics can be described as a superposition of a gravitational component that follows the stellar motion and an outflow-driven component that shows large velocity (up to 600 km s-1) and large velocity dispersion (up to 800 km s-1). Using the spatially resolved measurements of the gas, we kinematically measure the size of the outflow, which is found to be between 1.3 and 2.1 kpc. Owing to the lack of a detailed kinematic analysis, previous outflow studies likely overestimate their size by up to more than a factor of two, depending on how the size is estimated and whether the [O iii] or Hα emission line is used. The relatively small size of the outflows for all six of our objects casts doubts on their potency as a mechanism for negative AGN feedback.

  18. Simulations of the OzDES AGN reverberation mapping project

    DOE PAGESBeta

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; et al

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrainmore » the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.« less

  19. A catalog of early-type emission-line stars and Hα line profiles from LAMOST DR2

    NASA Astrophysics Data System (ADS)

    Hou, Wen; Luo, A.-Li; Hu, Jing-Yao; Yang, Hai-Feng; Du, Chang-De; Liu, Chao; Lee, Chien-De; Lin, Chien-Cheng; Wang, Yue-Fei; Zhang, Yong; Cao, Zi-Huang; Hou, Yong-Hui

    2016-09-01

    We present a catalog including 11 204 spectra of 10 436 early-type emission-line stars from LAMOST DR2, among which 9752 early-type emission-line spectra are newly discovered. For these early-type emission-line stars, we discuss the morphological and physical properties of their low-resolution spectra. In this spectral sample, the Hα emission profiles display a wide variety of shapes. Based on the Hα line profiles, these spectra are categorized into five distinct classes: single-peak emission, single-peak emission in absorption, double-peak emission, double-peak emission in absorption, and P-Cygni profiles. To better understand what causes the Hα line profiles, we divide these objects into four types from the perspective of physical classification, which include classical Be stars, Herbig Ae/Be stars, close binaries and spectra contaminated by HΠ regions. The majority of Herbig Ae/Be stars and classical Be stars are identified and separated using a (H-K, K-W1) color-color diagram. We also discuss 31 binary systems that are listed in the SIMBAD on-line catalog and identify 3600 spectra contaminated by HΠ regions after cross-matching with positions in the Dubout-Crillon catalog. A statistical analysis of line profiles versus classifications is then conducted in order to understand the distribution of Hα profiles for each type in our sample. Finally, we also provide a table of 172 spectra with Fe Π emission lines and roughly calculate stellar wind velocities for seven spectra with P-Cygni profiles.

  20. The space density of Compton-thick AGN at z ≈ 0.8 in the zCOSMOS-Bright Survey

    NASA Astrophysics Data System (ADS)

    Vignali, C.; Mignoli, M.; Gilli, R.; Comastri, A.; Iwasawa, K.; Zamorani, G.; Mainieri, V.; Bongiorno, A.

    2014-11-01

    Context. The obscured accretion phase in black hole growth is a crucial ingredient in many models linking the active galactic nuclei (AGN) activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing, although several attempts in this direction have been carried out recently, mostly in the hard X-rays and at mid-infrared wavelengths. Aims: The purpose of this work is to assess whether the [Ne v] emission line at 3426 Å can reliably pick up obscured AGN up to z ≈ 1 by assuming that it is a reliable proxy of the intrinsic AGN luminosity and using moderately deep X-ray data to characterize the amount of obscuration. Methods: A sample of 69 narrow-line (Type 2) AGN at z ≈ 0.65-1.20 were selected from the 20k-zCOSMOS Bright galaxy sample on the basis of the presence of the [Ne v]3426 Å emission. The X-ray properties of these galaxies were then derived using the Chandra-COSMOS coverage of the field; the X-ray-to-[Ne v] flux ratio, coupled with X-ray spectral and stacking analyses, was then used to infer whether Compton-thin or Compton-thick absorption is present in these sources. Then the [Ne v] luminosity function was computed to estimate the space density of Compton-thick AGN at z ≈ 0.8. Results: Twenty-three sources were detected by Chandra, and their properties are consistent with moderate obscuration (on average, ≈a few × 1022 cm-2). The X-ray properties of the remaining 46 X-ray undetected Type 2 AGN (among which we expect to find the most heavily obscured objects) were derived using X-ray stacking analysis. Current data, supported by Monte Carlo simulations, indicate that a fraction as high as ≈40% of the present sample is likely to be Compton thick. The space density of Compton-thick AGN with logL2-10 keV> 43.5 at z = 0.83 is ΦThick = (9.1 ± 2.1) × 10-6 Mpc-3, in good agreement with both X-ray background model expectations and the previously measured space density for objects in a similar

  1. The Prevalence of Gas Outflows in Type 2 AGNs. II. 3D Biconical Outflow Models

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2016-09-01

    We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity–velocity dispersion distribution of ∼39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ∼500 to ∼1000 km s‑1 for the majority of AGNs, and up to ∼1500–2000 km s‑1 for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.

  2. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  3. Long-Term Variability of AGN at Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2013-01-01

    Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at

  4. Long-term variability of AGN at hard X-rays

    NASA Astrophysics Data System (ADS)

    Soldi, S.; Beckmann, V.; Baumgartner, W. H.; Ponti, G.; Shrader, C. R.; Lubiński, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2014-03-01

    Aims: Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods: Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work using the first 9 months of BAT data, we study the amplitude of the variations and their dependence on subclass and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. Results: About 80% of the AGN in the sample are found to exhibit significant variability on month-to-year time scales. In particular, radio loud sources are the most variable, and Seyfert 1.5-2 galaxies are slightly more variable than Seyfert 1, while absorbed and unabsorbed objects show similar timing properties. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes in the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are correlated well, suggesting a common origin to the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV, and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on a time scale of a month. In addition, sources with harder spectra are found to be more variable than softer ones, unlike what it is observed below 10 keV. These properties are generally

  5. Anchoring the AGN X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2003-09-01

    Knowledge of the AGN LF over a range of luminosities and redshifts is crucial to understanding the accretion history of supermassive blackholes. Much of the CXRB has been resolved and spectroscopic follow-up has revealed a mixed bag of object types at moderate to high redshifts. For the deep Chandra survey results to be useful in studying the evolution of the XLF, a representative sample of local AGNs of various types with known X-ray luminosities is needed. The new KPNO International Spectroscopic Survey (KISS) provides the best available sample of H-alpha selected Type 1 and 2 AGNs to serve as the baseline for XLF evolution studies. We propose to observe a volume-limited sample of 28 KISS AGNs to assess their X-ray emission characteristics and establish the local AGN XLF.

  6. The X-ray flux dipole of AGNs as an indicator of the local gravitational field

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Jahoda, Keith; Boldt, Elihu

    1991-01-01

    We have investigated the dipole anisotropy of the sky X-ray flux from nearby AGNs to compare with the peculiar motion of the Local Group (LG) using a more extensive sample than that of Miyaji and Boldt (1990). We have sampled 56 low redshift emission-line AGNs (z less than 0.06) from the HEAO 1 A-2 experiment with a flux limit lower than that of Piccinotti et al. (1982) and with a lower galactic latitude cutoff. Our sample shows a significant dipole anisotropy whose apex is only about 30 deg away from the direction of the Local Group's peculiar motion for the objects with z less than 0.015. The dipole growth vs. redshift shows a sharp rise between z = 0.006 and z = 0.015; the amplitude of the dipole is 40 +/- 10 percent of the corresponding monopole at z = 0.015. The outer redshift cutoff is consistent with the results obtained from analyses using optical and IRAS galaxies. The present sample strengthens our previous conclusion that X-ray emission from AGNs traces the underlying mass distribution as strongly as optical and IR emission from galaxies.

  7. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-04-01

    Context. The morphological, spectroscopic, and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. Aims: This article centers on a 2D investigation of the wim component in 32 nearby (≲150 Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample. Methods: The analysis presented here includes Hα intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, and ionized-gas and stellar kinematics. It is supplemented by τ-ratio maps, which are a more efficient means to quantify the role of photoionization by the post-AGB stellar component than alternative mechanisms (e.g., AGN, low-level star formation). Results: Confirming and strengthening our previous conclusions, we find that ETGs span a broad continuous sequence in the properties of their wim, exemplified by two characteristic classes. The first (type i) comprises systems with a nearly constant EW(Hα) in their extranuclear component, which quantitatively agrees with (but is no proof of) the hypothesis that photoionization by the post-AGB stellar component is the main driver of extended wim emission. The second class (type ii) stands for virtually wim-evacuated ETGs with a very low (≤0.5 Å), outwardly increasing EW(Hα). These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios in their extranuclear component. Here we extend the tentative classification we proposed previously by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-forming activity in their periphery. This finding along with faint

  8. Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.

    2016-06-01

    We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).

  9. On the sodium D line emission in the terrestrial nightglow

    NASA Astrophysics Data System (ADS)

    Plane, John; Oetjen, Hilke; de Miranda, Marcelo; Saiz-Lopez, Alfonso; Gausa, Michael; Williams, Bifford

    2012-01-01

    Emission from atomic Na, consisting of a doublet of lines at 589.0 and 589.6 nm, is a prominent feature of the earth’s nightglow. A large data-base of measurements of the relative intensities of the D lines (RD) was gathered at three locations: the ALOMAR observatory, Andenes (Norway, 69°N), Kuujjuarapik (Canada, 55°N) and the Danum Valley (Borneo, 8°N). RD varies between 1.5 and 2.0, with an average value of 1.67. These results were interpreted using a theoretical model of the Na nightglow which involves initial production of electronically excited NaO(A2Σ) from the reaction between Na and O3, followed either by reaction with O to generate Na(2PJ) with a branching ratio of 1/6 and a J=3/2 to 1/2 propensity of 2.0, or quenching of NaO(A) to NaO(X2Π) by O2. The resulting NaO(X) then reacts with O to generate Na(2PJ) with a branching ratio of 1/6 and a J=3/2 to 1/2 propensity of 1.5. These branching ratios and spin-orbit propensities are derived from statistical correlation of the electronic potential energy surfaces connecting the reactants NaO(A)+O and NaO(X)+O with the products Na+O2, through the Na+O2- ion-pair intermediate. A fit of this statistical model to the results of an earlier laboratory study (Slanger et al., 2005), where RD was measured as a function of the ratio [O]/[O2], indicates that the rate coefficient for the quenching of NaO(A) by O2 is around 1×10-11 cm3 molecule-1 s-1. The statistical model is also in good accord with recent high resolution observations of the Na D line widths (Harrell et al., 2010). An atmospheric model is then used to show that gravity wave-driven perturbations to the Na layer can account for the observed variability of RD.

  10. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  11. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  12. Coronal Physics and the Chandra Emission Line Project

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy

    1999-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for plasma spectral modeling codes. These codes are to interpret data from stellar coronae, galaxies and clusters of galaxies. supernova remnants and other astrophysical sources, but they have been called into question in recent years as problems with understanding moderate resolution ASCA and EUVE data have arisen. The Emission Line Project is a collaborative effort to improve the models, with Phase 1 being the comparison of models with observed spectra of Capella, Procyon, and HR, 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent to which common simplifying assumptions (coronal equilibrium, time-independence, negligible optical depth) apply. We will discuss recent advances in our understanding of stellar coronae in this context.

  13. Time Variability of Molecular Line Emission in IRC +10216

    NASA Astrophysics Data System (ADS)

    Teyssier, D.; Cernicharo, J.; Quintana-Lacaci, G.; Agúndez, M.; Barlow, M. J.; Daniel, F.; De Beck, E.; Decin, L.; Garcia Lario, P.; Groenewegen, M. A. T.; Neufeld, D. A.; Pearson, J. C.

    2015-08-01

    We present the results of monitoring the molecular emission of the C-rich AGB star IRC+10216 over 3 years with the Herschel Space Observatory. Observations of rotational transitions of various vibrational levels of CO, 13CO, CS, CCH, H2O, SiO, SiS, SiC2, HCN and HNC have been collected with the HIFI, PACS and SPIRE instruments over multiple epochs. The intensity monitoring shows strong and periodic variations of most of the observed molecules, often with differential behavior depending on the transition level (larger variation at higher J), and generally enhanced modulations in the vibrational modes of some of these molecules (e.g. HCN). These results show that the effect of IR pumping through the different vibrational levels on the emergent line profiles of a given transition can be really significant. This implies that the IR radiation field of the circumstellar envelope and its time variation has to be taken into account in any radiative transfer model in order to derive accurately the physico-chemical structure of the envelope.

  14. Simulation of Soft X-Ray Emission Lines from the Missing Baryons

    NASA Astrophysics Data System (ADS)

    Fang, Taotao; Croft, Rupert A. C.; Sanders, Wilton T.; Houck, John; Davé, Romeel; Katz, Neal; Weinberg, David H.; Hernquist, Lars

    2005-04-01

    We study the soft X-ray emission (0.1-1 keV) from the warm-hot intergalactic medium (WHIM) in a hydrodynamic simulation of a cold dark matter universe. Our main goal is to investigate how such emission can be explored with a combination of imaging and spectroscopy and to motivate future X-ray missions. We first present high-resolution images of the X-ray emission in several energy bands in which emission from different ion species dominates. We pick three different areas to study the high-resolution spectra of X-rays from the WHIM: (1) a galaxy group, (2) a filament, and (3) an underluminous region. By taking into account the background X-ray emission from AGNs and foreground emission from the Galaxy, we compute composite X-ray spectra of the selected regions. We briefly investigate angular clustering of the soft X-ray emission, finding a strong signal. Most interestingly, the combination of high spectral resolution and angular information allows us to map the emission from the WHIM in three dimensions. We cross-correlate the positions of galaxies in the simulation with this redshift map of emission and detect the presence of six different ion species (Ne IX, Fe XVII, O VII, O VIII, N VII, and C VI) in the large-scale structure traced by the galaxies. Finally, we show how such emission can be detected and studied with future X-ray satellites, with particular attention to a proposed mission, the Missing Baryon Explorer (MBE). We present simulated observations of the WHIM gas with MBE.

  15. Line broadening of Mg X 609 and 625 A coronal emission lines observed above the solar limb

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Rottman, Gary J.; Shoub, Edward C.; Holzer, Thomas E.

    1990-01-01

    A University of Colorado sounding rocket experiment on March 17, 1988, provided high-resolution EUV spectra along a solar diameter and out to 1.2 solar radius with spatial resolution of 20 x 60 arcsec. Each spectrum contains transition region and coronal emission lines in the wavelength range 605-635 A and 1210-1270 A, including the emission lines Mg X 609 and 625 A, Fe XII 1242 A, O V 629 A, N V 1238 and 1242 A, corresponding to a wide range of temperatures of formation. Increased line broadening is observed above the limb for all lines, and this effect is illustrated by presenting observed line widths as a function of height above the limb for the higher temperature lines Mg X 609 and 625 A. On the basis of calculations, the most likely cause of the increased broadening above the limb appears to be the presence of hydromagnetic waves in the corona.

  16. Mid-infrared diagnostics to distinguish AGNs from starbursts

    NASA Astrophysics Data System (ADS)

    Laurent, O.; Mirabel, I. F.; Charmandaris, V.; Gallais, P.; Madden, S. C.; Sauvage, M.; Vigroux, L.; Cesarsky, C.

    2000-07-01

    We present new mid-infrared (MIR) diagnostics to distinguish emission of active galactic nuclei (AGN) from that originating in starburst regions. Our method uses empirical spectroscopic criteria based on the fact that MIR emission from star forming or active galaxies arises mostly from HII regions, photo-dissociation regions (PDRs) and AGNs. The analysis of the strength of the 6.2 mu m Unidentified Infrared Band (UIB) and the MIR continuum shows that UIBs are very faint or absent in regions harboring the intense and hard radiation fields of AGNs and pure HII regions, where the UIB carriers could be destroyed. The MIR signature of AGNs is the presence of an important continuum in the 3-10 mu m band which originates from very hot dust heated by the intense AGN radiation field. Using these two distinct spectral properties found in our MIR templates, we build diagnostic diagrams which provide quantitative estimates of the AGN, PDR and HII region contribution in a given MIR spectrum. This new MIR classification can be used to reveal the presence of AGNs highly obscured by large columns of dust. Based on observations made with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  17. KPC-Scale Properties of Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Candels

    2015-01-01

    We perform a detailed -combined spectroscopic and photometric- study of resolved properties of galaxies at kpc scale and investigate how small-scale and global properties of galaxies are related. The sample consists of 119 galaxies to z~1.3 with the unique feature of having very high-resolution spectroscopic data from long exposure observations with the KECK/DEIMOS. Using HST/ACS and WFC3 data taken as part of the CANDELS project, we produce resolved rest-frame (U-V) color, stellar mass and star formation surface densities, stellar age and extinction maps and profiles along the galaxies rotation axes. We model the optical nebular emission lines using the high-resolution DEIMOS spectra and construct the optical line ratio profiles diagnostic of metallicity (R23) and nebular extinction (Ha/Hb). We find that the nebular dust extinction profile, inferred from Balmer decrement, is in agreement with the average extinction derived from the resolved SED modeling. Using the R23 metallicity profiles we examine, for the first time, the mass metallicity relation across galaxies and explore how this relation changes as a function of spatial position. We identify red and blue 'regions' of statistical significance within individual galaxies, using their rest-frame color maps. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the 'main sequence' of star forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1±0.1 and a scatter of ˜ 0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter

  18. On the physical association of the peculiar emission: Line stars HD 122669 and HD 122691

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Hiltner, W. A.; Sanduleak, N.

    1975-01-01

    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past twenty years. There is some indication that both stars vary with shorter time scales.

  19. On the physical association of the peculiar emission-line stars HD 122669 and HD 122691

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Hiltner, W. A.; Sanduleak, N.

    1975-01-01

    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past 20 years. There is some indication that both stars vary with shorter time scales.

  20. Discovery of iron line emission in the Hercules X-1 low state spectrum with HEAO-1

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.

    1978-01-01

    The line energy, equivalent width, binary phase dependence, and intrinsic width of the iron line emission feature observed in the low state sepctrum of Hercules X-1 are examined. Deductions are made concerning secondary X-ray emission from this binary system.

  1. Spectropolarimetric test of the relativistic disk model for the broad emission lines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Chen, Kaiyou; Halpern, Jules P.

    1990-01-01

    Previously, it was claimed that the broad emission lines of the radio galaxy Arp 102B can be fitted by the line profile from a simple relativistic Keplerian thin disk. It was argued that the lines originating from the relativistic accretion disk could be polarized due to electron scattering, which is likely to be the dominant opacity in the line-emitting region of Arp 102B. In the present work, the expected polarization properties of these broad emission lines are calculated. The percentage of polarization depends strongly on the inclination angle. For some angles, the red peak of the polarized, double-peaked line profile can be higher than the blue peak. This is in contrast to the total line profile, in which the blue peak is always higher than the red one. Spectropolarimetric observations could, therefore, provide an independent test of the relativistic disk model for the broad emission lines of Arp 102B and other active galactic nuclei.

  2. Radio-Loud AGN: The Suzaku View

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2009-01-01

    We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.

  3. Why are AGN found in high-mass galaxies?

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Kauffmann, Guinevere

    2008-12-01

    There is a strong observed mass dependence of the fraction of nearby galaxies that contain either low-luminosity [low-ionization nuclear emission-line region (LINER) type] or higher luminosity (Seyfert or composite type) active galactic nuclei (AGN). This implies that either only a small fraction of low-mass galaxies contain black holes, or that the black holes in these systems only accrete rarely or at very low rates, and hence are generally not detectable as AGN. In this paper, we use semi-analytic models implemented in the Millennium Simulation to analyse the mass dependence of the merging histories of dark matter haloes and of the galaxies that reside in them. Only a few per cent of galaxies with stellar masses less than M* < 1010Msolar are predicted to have experienced a major merger. The fraction of galaxies that have experienced major mergers increases steeply at larger stellar masses. We argue that if a major merger is required to form the initial seed black hole, the mass dependence of AGN activity in local galaxies can be understood quite naturally. We then investigate when the major mergers that first create these black holes are predicted to occur. High-mass galaxies are predicted to have formed their first black holes at very early epochs. The majority of low-mass galaxies never experience a major merger and hence may not contain a black hole, but a significant fraction of the supermassive black holes that do exist in low-mass galaxies are predicted to have formed recently.

  4. AGNs with composite spectra.

    NASA Astrophysics Data System (ADS)

    Veron, P.; Goncalves, A. C.; Veron-Cetty, M.-P.

    1997-03-01

    The use of the Baldwin et al. (1981PASP...93....5B) or Veilleux & Osterbrock (1987ApJS...63..295V) diagnostic diagrams allows the unambiguous classification of the nuclear emission line regions of most galaxies into one of three categories: nuclear HII regions or starbursts, Seyfert 2 galaxies and Liners. However, a small fraction of them have a "transition" spectrum. We present spectral observations of 15 "transition" objects at high-dispersion (66Å/mm) around the Hα, [NII]λλ6548,6584 and/or Hβ, [OIII]λλ4959,5007 emission lines. We show that most of these spectra are composite, due to the simultaneous presence on the slit of a Seyfert nucleus and a HII region. Seyfert 2s and Liners seem to occupy relatively small and distinct volumes in the three-dimensional space λ5007/Hβ, λ6584/Hα, λ6300/Hα.

  5. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  6. Long-term X-ray spectral variability in AGN from the Palomar sample observed by Swift

    NASA Astrophysics Data System (ADS)

    Connolly, S. D.; McHardy, I. M.; Skipper, C. J.; Emmanoulopoulos, D.

    2016-07-01

    We present X-ray spectral variability of 24 local active galactic nuclei (AGN) from the Palomar sample of nearby galaxies, as observed mainly by Swift. From hardness ratio measurements, we find that 18 AGN with low accretion rates show hardening with increasing count rate, converse to the softer-when-brighter behaviour normally observed in AGN with higher accretion rates. Two AGN show softening with increasing count rate, two show more complex behaviour, and two do not show any simple relationship. Sufficient data were available for the spectra of 13 AGN to be summed in flux-bins. In nine of these sources, correlated luminosity-dependent changes in the photon index (Γ) of a power-law component are found to be the main cause of hardness variability. For six objects, with a low accretion rate as a fraction of the Eddington rate (dot{m}_{Edd}), Γ is anticorrelated with dot{m}_{Edd}, i.e. `harder-when-brighter' behaviour is observed. The three higher dot{m}_{Edd}-rate objects show a positive correlation between Γ and dot{m}_{Edd}. This transition from harder-when-brighter at low dot{m}_{Edd}to softer-when-brighter at high dot{m}_{Edd} can be explained by a change in the dominant source of seed-photons for X-ray emission from cyclo-synchrotron emission from the Comptonizing corona itself to thermal seed-photons from the accretion disc. This transition is also seen in the `hard state' of black hole X-ray binaries (BHXRBs). The results support the idea that low-ionization nuclear emission-line regions are analogues of BHXRBs in the hard state and that Seyferts are analogues of BHXRBs in either the high-accretion rate end of the hard state or in the hard-intermediate state.

  7. Broad-line region structure and kinematics in the radio galaxy 3C 120

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Ulbrich, K.; Zetzl, M.; Kaspi, S.; Haas, M.

    2014-06-01

    Context. Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). These broad-line emitting regions are spatially unresolved even for the nearest AGN. The origin and geometry of broad-line region (BLR) gas and their connection with geometrically thin or thick accretion disks is of fundamental importance for the understanding of AGN activity. Aims: One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. Methods: We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2 m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. Results: We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of Hα and Hβ respond much faster than their central region. This is explained by accretion disk models. In addition, these lines show a stronger response in the red wings. However, the velocity-delay maps of the helium lines show a stronger response in the blue wing. Furthermore, the He ii λ4686 line responds faster in the blue wing in contradiction to observations made one and a half years later when the galaxy was in a lower state. The faster response in the blue wing is an indication for central outflow motions when this galaxy was in a bright state during our observations. The vertical BLR structure in 3C 120 coincides with that of other AGN. We confirm the

  8. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  9. The detection and X-ray view of the changing look AGN HE 1136-2304

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Komossa, S.; Kollatschny, W.; Walton, D. J.; Schartel, N.; Santos-Lleó, M.; Harrison, F. A.; Fabian, A. C.; Zetzl, M.; Grupe, D.; Rodríguez-Pascual, P. M.; Vasudevan, R. V.

    2016-09-01

    We report the detection of high-amplitude X-ray flaring of the AGN HE 1136-2304, which is accompanied by a strong increase in the flux of the broad Balmer lines, changing its Seyfert type from almost type 2 in 1993 down to 1.5 in 2014. HE 1136-2304 was detected by the XMM-Newton slew survey at >10 times the flux it had in the ROSAT all-sky survey, and confirmed with Swift follow-up after increasing in X-ray flux by a factor of ˜30. Optical spectroscopy with SALT shows that the AGN has changed from a Seyfert 1.95 to a Seyfert 1.5 galaxy, with greatly increased broad line emission and an increase in blue continuum AGN flux by a factor of >4. The X-ray spectra from XMM-Newton and NuSTAR reveal moderate intrinsic absorption and a high energy cutoff at ˜100 keV. We consider several different physical scenarios for a flare, such as changes in obscuring material, tidal disruption events, and an increase in the accretion rate. We find that the most likely cause of the increased flux is an increase in the accretion rate, although it could also be due to a change in obscuration.

  10. Spectroscopic survey of emission-line stars - I. B[e] stars

    NASA Astrophysics Data System (ADS)

    Aret, A.; Kraus, M.; Šlechta, M.

    2016-02-01

    Emission-line stars are typically surrounded by dense circumstellar material, often in form of rings or disc-like structures. Line emission from forbidden transitions trace a diversity of density and temperature regimes. Of particular interest are the forbidden lines of [O I] λλ6300, 6364 and [Ca II] λλ7291, 7324. They arise in complementary, high-density environments, such as the inner-disc regions around B[e] supergiants. To study physical conditions traced by these lines and to investigate how common they are, we initiated a survey of emission-line stars. Here, we focus on a sample of nine B[e] stars in different evolutionary phases. Emission of the [O I] lines is one of the characteristics of B[e] stars. We find that four of the objects display [Ca II] line emission: for the B[e] supergiants V1478 Cyg and 3 Pup, the kinematics obtained from the [O I] and [Ca II] line profiles agrees with a Keplerian rotating disc scenario; the forbidden lines of the compact planetary nebula OY Gem display no kinematical broadening beyond spectral resolution; the luminous blue variable candidate V1429 Aql shows no [O I] lines, but the profile of its [Ca II] lines suggests that the emission originates in its hot, ionized circumbinary disc. As none of the B[e] stars of lower mass displays [Ca II] line emission, we conclude that these lines are more likely observable in massive stars with dense discs, supporting and strengthening the suggestion that their appearance requires high-density environments.

  11. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  12. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  13. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    SciTech Connect

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton M.; Guo, Yicheng; Koo, David C.

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given resolution element.

  14. Kiloparsec-scale Properties of Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Guo, Yicheng; Koekemoer, Anton M.; Koo, David C.; Papovich, Casey

    2014-12-01

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U - V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify "regions" of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called "clumps" in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the "main sequence" of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ~0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ~0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ~ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given resolution element.

  15. Evidence for a corona of beta Geminorum. [UV emission line

    NASA Technical Reports Server (NTRS)

    Gerola, H.; Shine, R.; Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1974-01-01

    A spectrometer was used on the satellite Copernicus to observe a chromospheric L alpha emission from the K0 giant beta Gem at 1218.4 A. This emission appears to be in the corona at temperatures near 260,000 deg K, since the ion it is identified with requires 77.4 eV to be produced.

  16. SWIFT Observations AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift Burst Alert Telescope (BAT) Active Galactic Nuclei (AGN) survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type.

  17. An atlas of Doppler emission-line tomography of cataclysmic variable stars

    NASA Technical Reports Server (NTRS)

    Kaitchuck, Ronald H.; Schlegel, Eric M.; Honeycutt, R. Kent; Horne, Keith; Marsh, T. R.; White, J. C., II; Mansperger, Cathy S.

    1994-01-01

    Doppler emission-line tomography is a technique similar to medical tomography. In this atlas the emission-line profiles of cataclysmic variable stars, seen at different orbital phases, are transformed into velocity space images. This transformation makes many of the complex line profile changes easier to interpret. The emission contributions of the disk and the s-wave are clearly separated in these images, and any emission from the stream and the secondary star can often be identified. In this atlas, Doppler tomograms of Hbeta, He I lambda 4471, and He II lambda 4686 emission lines of 18 cataclysmic variable stars are presented. The Doppler images provide insights into the individual systems and a better technique for measuring and radial velocity amplitude of the white dwarf.

  18. Radio AGN in the local universe: unification, triggering and evolution

    NASA Astrophysics Data System (ADS)

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  19. Cosmic rays and the emission line regions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Mushotzky, R. F.

    1984-01-01

    The effects that the synchrotron emitting relativistic electrons could have on the emission line regions which characterize active nuclei are discussed. Detailed models of both the inner, dense, broad line region and the outer, lower density, narrow line region are presented, together with the first models of the optically emitting gas often found within extended radio lobes. If the relativistic gas which produces the synchrotron radio emission is mixed with the emission line region gas then significant changes in the emission line spectrum will result. The effects of the synchrotron emitting electrons on filaments in the Crab Nebula are discussed in an appendix, along with a comparison between the experimental calculations, which employ the mean escape probability formalism, and recent Hubbard and Puetter models.

  20. Emission line eclipse mapping of velocity fields in dwarf nova accretion discs

    NASA Astrophysics Data System (ADS)

    Makita, M.; Mineshige, S.

    2002-01-01

    We propose a new method, emission-line eclipse mapping, to map the velocity fields in an accretion disc. We apply the usual eclipse mapping technique to the light curves at each of 12-24 wavelengths across the line center to map the region with same line-of-sight velocity, from which we are able to plot the rotational velocity as a function of radius on the assumption of axisymmetric disc. We calculate time changes of the emission line profiles, assuming Keplerian rotation fields (vvarphi propto r-1/2) and the emissivity distribution of j propto r-3/2, and reconstruct emissivity profiles. The results show typically a `two-eye' pattern for high line-of-sight velocities and we can recover the relation, vvarphi propto d-1/2, where d is the separation of two lq eyes.'

  1. IFU spectroscopy of 10 early-type galactic nuclei - II. Nuclear emission line properties

    NASA Astrophysics Data System (ADS)

    Ricci, T. V.; Steiner, J. E.; Menezes, R. B.

    2014-05-01

    Although it is well known that massive galaxies have central black holes, most of them accreting at low Eddington ratios, many important questions still remain open. Among them are the nature of the ionizing source, the characteristics and frequencies of the broad-line region and of the dusty torus. We report observations of 10 early-type galactic nuclei, observed with the Gemini Multi Object Spectrograph in integral field unit mode, installed on the Gemini South telescope, analysed with standard techniques for spectral treatment and compared with results obtained with principal component analysis Tomography (Paper I). We performed spectral synthesis of each spaxel of the data cubes and subtracted the stellar component from the original cube, leaving a data cube with emission lines only. The emission lines were decomposed in multi-Gaussian components. We show here that, for eight galaxies previously known to have emission lines, the narrow-line region can be decomposed in two components with distinct line widths. In addition to this, broad Hα emission was detected in six galaxies. The two galaxies not previously known to have emission lines show weak Hα+[N II] lines. All 10 galaxies may be classified as low-ionization nuclear emission regions in diagnostic diagrams and seven of them have bona fide active galactic nuclei with luminosities between 1040 and 1043 erg s-1. Eddington ratios are always <10-3.

  2. Stability of narrow emission line clouds in active galactic nuclei

    SciTech Connect

    Mathews, W.G.; Veilleux, S.

    1989-01-01

    The effects of the lateral flow and Rayleigh-Taylor instabilities on clouds in the narrow-line region of active galaxies are considered using cloud densities and velocities based on observations. A simplified model for the lateral flow instability governed only by overpressures is discussed. The associated radiative acceleration is considered, and parameters describing the narrow-line region and the central nonstellar continuum are presented. It is shown that many otherwise acceptable narrow-line clouds are unstable to lateral flows, particularly if their column depths are small. It is argued that the most likely narrow-line clouds have column densities of about 10 to the 23rd/sq cm and that these clouds are accelerated by winds in the intercloud medium. Arguments are made against models in which narrow-line clouds move inward. 22 references.

  3. Skylab ultraviolet stellar spectra - Emission lines from the Beta Lyrae system

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Parsons, S. B.; Wray, J. D.; Benedict, G. F.; Henize, K. G.; Mccluskey, G. E.

    1976-01-01

    Observations of Beta Lyr with the Skylab S-019 ultraviolet objective-prism spectrograph show numerous emission lines in the region from 1400 to 2300 A. Some variations in line strength between phases 0.25 and 0.50 are seen, which probably explain the shallowness of the OAO-2 light curve at 1910 A. Many of the emission lines are probably due to intercombination transitions, thus confirming the concept that the emission is produced by collisional excitation in low-density clouds of hot gas.

  4. Laboratory Measurements of the X-ray Line Emission from Neon-like Fe XVII

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Beiersdorfer, P.; Chen, H.; Scofield, J. H.; Boyce, K. R.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Gu, M. F.; Kahn, S. M.

    2006-01-01

    We have conducted a systematic study of the dominant x-ray line emission from Fe XVII. These studies include relative line intensities in the optically thin limit, intensities in the presence of radiation from satellite lines from lower charge states of iron, and the absolute excitation cross sections of some of the strongest lines. These measurements were conducted at the Lawrence Livermore National Laboratory electron beam ion trap facility using crystal spectrometers and a NASA-Goddard Space Flight Center microcalorimeter array.

  5. WFPC2 LRF Imaging of Emission-Line Nebulae in 3CR Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Privon, G. C.; O'Dea, C. P.; Baum, S. A.; Axon, D. J.; Kharb, P.; Buchanan, C. L.; Sparks, W.; Chiaberge, M.

    2008-04-01

    We present Hubble Space Telescope WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [O II], [O III], or H α + [N II]) in 80 3CR radio sources. We overlay the emission-line images on high-resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission-line structures are consistent with weak alignment at low redshift (z < 0.6) except in the compact steep-spectrum (CSS) radio galaxies where both the radio source and the emission-line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission-line nebulae to be more luminous and for the emission-line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission-line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission-line gas. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555. These observations are associated with program 5957.

  6. Al-26: A galactic source of gamma ray line emission

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1976-01-01

    It is shown that Al26 is a very good candidate for producing a detectable gamma-ray line, and that this line is not only intense but also very narrow. By examining the chart of nuclides for other radioactive isotopes which could produce hiterto unnoticed gamma-ray lines following nucleosynthesis, it is found that for mass numbers less than 60, the isotopes Na22, Al26, K40, Ar42, Ti44, Sc46, Mn54, Co56, Co57, Co58, Co60 and Fe60 are the only ones with sufficiently long half lives (70) days to produce gamma rays in optically thin regions.

  7. Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Wandel, Amri

    2000-01-01

    Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. la the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r(sup -l/2) correlation between distance and line width and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert I galaxy NGC 4051 and find that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission line region clouds.

  8. X-ray Emission and Absorption Lines During the SSS Phase of RS Ophiuchi

    NASA Astrophysics Data System (ADS)

    Schönrich, R. A.; Ness, J.-U.

    2008-12-01

    The high-resolution X-ray spectra of the sixth outburst of RS Ophiuchi revealed P Cygni-like line profiles. We use the column densities of selected isolated absorption lines to derive the nitrogen-to-oxygen abundance ratio. We next discuss the origin of the emission lines, which may originate from the shock, and the absorption and emission lines may thus have a different formation history. Finally, we discuss the correlation of high-amplitude variability detected during the early SSS phase with variability in the hardness ratio that follows the same pattern but is shifted by 1000~sec.

  9. On the variable nature of low luminosity AGN

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, Lorena

    2015-09-01

    X-ray variability is very common in active galactic nuclei (AGN), but it is still unknown if these variations occur similarly in different families of AGN. The main purpose of this work is to disentangle the true structure of low ionization nuclear emission line regions (LINERs) compared to Seyfert 2s by the study of their X-ray variations. We assembled the X-ray spectral properties, as well as the X-ray variability pattern(s), which were obtained from simultaneous spectral fittings and letting different parameters to vary in the model, derived from our previous analyses (Hernández-García et al. 2013, 2014, 2015). We find that Seyfert 2s need more complex models to fit their spectra than LINERs. Among the spectral parameters, major differences are observed in the soft (0.5-2 keV) and hard (2-10 keV) X-ray luminosities, and the Eddington ratios, which are higher in Seyfert 2s. Differences are observed also in the hard column densities, temperatures, and black hole masses, although less significant. Short-term X-ray variations cannot be claimed, while long-term variability is very common in both families. An exception is found for Compton-thick sources, which do not vary, most probably because the AGN is not accesible in the 0.5--10 keV energy band. The changes are mostly related with variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers (more common in Seyfert 2s) and at soft energies can be present in a few cases. Variations at UV frequencies are observed only in LINER nuclei. The X-ray variations occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms, being more efficient in Seyfert 2s. Absorption variations and changing-look sources are not usually observed in LINERs. However, UV nuclear variations are common among LINERs, indicating an unobstructed view of the inner disc where the UV emission might take place. We

  10. SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS

    SciTech Connect

    Prochaska, J. Xavier; Rubin, Kate

    2011-06-10

    We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement Monte Carlo radiative transfer techniques that track the propagation of scattered and fluorescent photons to generate one-dimensional spectra and two-dimensional spectral images. We focus on the Mg II {lambda}{lambda}2796, 2803 doublet and Fe II UV1 multiplet at {lambda} {approx} 2600 A, but the results are applicable to other transitions that trace outflows (e.g., Na I, H I Ly{alpha}, Si II). By design, the resonance transitions show blueshifted absorption but one also predicts strong resonance and fine-structure line emission at roughly the systemic velocity. This line-emission 'fills in' the absorption, reducing the equivalent width by up to 50%, shifting the absorption-line centroid by tens of km s{sup -1}, and reducing the effective opacity near systemic. Analysis of cool gas outflows that ignores this line emission may incorrectly infer that the gas is partially covered, measure a significantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent (e.g., an interstellar or slowly infalling component). Because the Fe II lines are connected by optically thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z < 1. We also study a scenario promoted to describe the outflows of z {approx} 3 Lyman break galaxies and find profiles inconsistent with the observations due to scattered photon emission. Although line emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line ratios offer powerful diagnostics of outflows, motivating deep

  11. Simple Models of Metal-line Absorption and Emission from Cool Gas Outflows

    NASA Astrophysics Data System (ADS)

    Prochaska, J. Xavier; Kasen, Daniel; Rubin, Kate

    2011-06-01

    We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement Monte Carlo radiative transfer techniques that track the propagation of scattered and fluorescent photons to generate one-dimensional spectra and two-dimensional spectral images. We focus on the Mg II λλ2796, 2803 doublet and Fe II UV1 multiplet at λ ≈ 2600 Å, but the results are applicable to other transitions that trace outflows (e.g., Na I, H I Lyα, Si II). By design, the resonance transitions show blueshifted absorption but one also predicts strong resonance and fine-structure line emission at roughly the systemic velocity. This line-emission "fills in" the absorption, reducing the equivalent width by up to 50%, shifting the absorption-line centroid by tens of km s-1, and reducing the effective opacity near systemic. Analysis of cool gas outflows that ignores this line emission may incorrectly infer that the gas is partially covered, measure a significantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent (e.g., an interstellar or slowly infalling component). Because the Fe II lines are connected by optically thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z < 1. We also study a scenario promoted to describe the outflows of z ~ 3 Lyman break galaxies and find profiles inconsistent with the observations due to scattered photon emission. Although line emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line ratios offer powerful diagnostics of outflows, motivating deep, spatially extended spectroscopic

  12. Molecular line emission in asymmetric envelopes of evolved stars

    NASA Astrophysics Data System (ADS)

    Sanchez, Andres Felipe Perez

    2014-06-01

    Stars with initial masses of 0.8 < M⊙ < 9M⊙ eject most of their mass when evolving along the asymptotic giant branch (AGB) phase. The ejected material eventually cools down, which leads it to condensate and to form dust grains and molecular gas around the star, creating an extended circumstellar envelope (CSE). The mechanism responsible for the expansion of the dusty and dense CSEs is not completely understood. It is suggested that stellar radiation pressure on the dust particles can accelerate them outwards. Then, by collisional exchange of momentum, the dust particles drag along the molecular gas. However, this scenario cannot explain the onset of asymmetries in the CSEs observed towards more evolved sources such as post-AGB sources and Planetary nebulae. Part of the research in this thesis is focused on the study of the role that the stellar magnetic field plays on the formation of the collimated high-velocity outflows observed towards post-AGB sources. Polarized maser emission towards (post-)AGB stars has become an useful tool to determine the properties of the stellar magnetic fields permeating their CSEs. However, the polarization fraction detected can be affected by non-Zeeman effects. Here I present the results of our analysis of the polarization properties of SiO, H2O and HCN maser emission in the (sub-)millimetre wavelength range. The goal of this analysis is to determine whether polarized maser emission of these molecular species can be used as reliable tracer of the magnetic field from observations at (sub-)millimetre wavelengths. I also present the results of radio interferometric observations of both continuum and polarized maser emission towards post-AGB stars. The sources observed are characterized by H2O maser emission arising from their collimated, high-velocity outflows. The observations have been carried out with the Australian Telescope Compact Array aiming to detect both polarized maser emission and non-thermal radio continuum emission

  13. A Suzaku Observation of the Neutral Fe-line Emission from RCW 86

    NASA Technical Reports Server (NTRS)

    Ueno, Masaru; Sato, Rie; Kataoka, Jun; Bamba, Aya; Harrus, Ilana; Hiraga, Junko; Hughes, John P.; Kilbourne, Caroline A.; Koyama, Katsuji; Kokubun, Motohide; Nakajima, Hiroshi; Ozaki, Masanobu; Petre, Robert; Takahashi, Tadayuki; Tanaka, Takaaki; Tomida, Hiroshi; Yamaguchi, Hiroya

    2007-01-01

    The newly operational X-ray satellite Suzaku observed the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirms the existence of the line, localizing it for the first time inside a low temperature emission region and not at the locus of the continuum hard X-ray emission. We also report the first detection of a 7.1 keV line that we interpret as the K(beta) emission from neutral or low-ionized iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n(sub e) less than or approx. equal to 10(exp 9)/cu cm s and kT(sub e) > 1 keV. We found a sign that Fe K(alpha) line is intrinsically broadened 47 (35-57) eV (99% error region). Cr-K line is also marginally detected, which is supporting the ejecta origin for the Fe-K line. By showing that the hard continuum above 3 keV has different spatial distribution from the Fe-K line, we confirmed it to be synchrotron X-ray emission.

  14. Integral Field Spectroscopy of AGN Absorption Outflows: Mrk 509 and IRAS F04250-5718

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Arav, Nahum; Rupke, David S. N.

    2015-11-01

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ˜290 km s-1, while IRAS F04250-5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ˜580 km s-1 and an opening angle of ˜70°. The derived mass flow rate ˜5 and >1 M⊙ yr-1, respectively, and the kinetic luminosity ≳1 × 1041 erg s-1 for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ˜2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  15. Observations of the 145.5 micron (OI) emission line in the Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Smyers, S. D.; Kurtz, N. T.; Harwit, M.

    1982-01-01

    A first set of observations of the (OI) 3P to 3P1 (145.5 micron) transition was obtained. The line was observed both in a beam centered on the Trapezium, and in a 7 times wider beam encompassing most of the Orion Nebula. A wide beam map of the region was constructed which shows that most of the emission is confined to the central regions of the nebula. These observations may be compared with reported measurement of the 3P1 to 3P2 (63.2 micron) transition in Orion and are consistent with optically thin emission in the 145.5 micron line and self-adsorbed 63.2 micron emission lines. Mechanisms are discussed for the excitation of neutral oxygen. It is included that much of the observed emission originates in the thin, radio-recombination-line-emitting CII/HI envelope bordering on the HII region.

  16. Quantum degeneracy corrections to plasma line emission and to Saha equation

    NASA Astrophysics Data System (ADS)

    Molinari, V. G.; Mostacci, D.; Rocchi, F.; Sumini, M.

    2003-09-01

    The effect of quantum degeneracy on the electron collisional excitation is investigated, and its effects on line emission evaluated for applications to spectroscopy of dense, cold plasmas. A correction to Saha equation for weakly-degenerate plasmas is also presented.

  17. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    NASA Technical Reports Server (NTRS)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  18. First detection of line emission from the hot interstellar medium with solid state detectors

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1981-01-01

    Previously reported enhanced soft X-ray emission from the North-Galactic Polar region supports the theory of a hot interstellar component. This paper reports the first detection of line emission from the hot interstellar component in the North-Galactic-Polar region. Measurements were made with solid state Si(Li) detectors aboard a spin-stabilized rocket launched from the White Sands Missile Range on March 22, 1980. Two features are clearly present in the low energy portion of the spectrum derived from the data. They correspond to emission lines from C V (300 eV) and C VI (360 eV), and from O VII (560 eV) and O VIII (650 eV). The detection of emission lines coming from these highly stripped ions is direct evidence for the thermal origin of the emission and confirms the presence of a hot (1-million K) component in the interstellar medium.

  19. Virilization of the Broad Line Region in Active Galactic Nuclei—connection between shifts and widths of broad emission lines

    NASA Astrophysics Data System (ADS)

    Jonić, S.; Kovačević-Dojčinović, J.; Ilić, D.; Popović, L. Č.

    2016-03-01

    We investigate the virilization of the emission lines {Hβ } and Mg II in the sample of 287 Type 1 Active Galactic Nuclei taken from the Sloan Digital Sky Survey database. We explore the connections between the intrinsic line shifts and full widths at different levels of maximal intensity. We found that: (i) {Hβ} seems to be a good virial estimator of black hole masses, and an intrinsic redshift of {Hβ} is dominantly caused by the gravitational effect, (ii) there is an anti-correlation between the redshift and width of the wings of the Mg II line, (iii) the broad Mg II line can be used as virial estimator only at 50 % of the maximal intensity, while the widths and intrinsic shifts of the line wings cannot be used for this purpose.

  20. NuSTAR Resolves the First Dual AGN above 10 keV in SWIFT J2028.5+2543

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Glidden, Ana; Baloković, Mislav; Stern, Daniel; Lamperti, Isabella; Assef, Roberto; Bauer, Franz; Ballantyne, David; Boggs, Steven E.; Craig, William W.; Farrah, Duncan; Fürst, Felix; Gandhi, Poshak; Gehrels, Neil; Hailey, Charles J.; Harrison, Fiona A.; Markwardt, Craig; Masini, Alberto; Ricci, Claudio; Treister, Ezequiel; Walton, Dominic J.; Zhang, William W.

    2016-06-01

    We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91″). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N H ≈ (1–2) × 1024 cm‑2) and contribute equally to the BAT detection ({L}10-50 {keV}{{int}} ≈ 6 × 1042 erg s‑1). The observed luminosity of both sources is severely diminished in the 2–10 keV band ({L} 2-10 {keV}{{obs}}\\lt 0.1× {L} 2-10 {keV}{{int}}), illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.

  1. Probing Spectroscopic Variability of Galaxies and Narrow-Line Active Galactic Nuclei in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Yip, C. W.; Connolly, A. J.; Vanden Berk, D. E.; Scranton, R.; Krughoff, S.; Szalay, A. S.; Dobos, L.; Tremonti, C.; Taghizadeh-Popp, M.; Budavári, T.; Csabai, I.; Wyse, R. F. G.; Ivezić, Ž.

    2009-06-01

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ~700 days) covering a wavelength range of 3900-8900 Å. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average—the spectroscopic variability of the continuum is 0.07 ± 0.26 mag in the g band and, for the emission-line ratios log10([N II]/Hα) and log10([O III]/Hβ), the variability is 0.02 ± 0.03 dex and 0.06 ± 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be ~30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  2. Iron Emission Lines in the Spectra of Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Beristain, G.; Edwards, S.; Hartigan, P.

    1993-05-01

    The optical and infrared continuum emission excesses in classical T Tauri stars are frequently attributed to accretion disks with characteristic mass accretion rates of 10(-7) Msun yr(-1) . The spectra of classical T Tauri stars are also rich in emission lines, arising from both permitted and forbidden atomic species, which have been attributed to formation in regions as diverse as chromospheres, boundary layers, winds and collimated jets. We have conducted a high resolution spectroscopic survey of 48 T Tauri stars in the Tau-Aur star formation complex covering the wavelength range 3900{\\kern.2em Angstroms} to 7000{\\kern.2em Angstroms} with the aim of determining the origin of the various emission lines and report here on the most prominent metallic species present in the T Tauri spectra, Fe I and Fe II. From our spectra we have both 1) determined the level of optical continuum emission, expressed as the ratio of `veiling' to photospheric flux, and 2) extracted residual Fe emission line profiles, free of contamination from underlying photospheric features. We find that Fe I, II emission is seen only in T Tauri stars which have infrared and optical continuum emission excesses attributed to accretion disks; none of the `weak-line' T Tauri stars, with photospheric IR colors and no optical veiling, have detectable Fe emission. Correlations of Fe emission equivalent widths with both K-L and the ratio of veiling to photospheric flux, r, suggest that the Fe lines arise as a result of accretion related activity. DR Tau's rich emission line spectra permit study of the largest number of unblended Fe I,II profiles, for which we have spectra covering 5 different nights. Multiplet line ratios indicate the Fe lines are optically thick, and line luminosities imply emitting areas covering a few percent of the stellar surface. The lines are typically broad and symmetric, although inverse P Cygni structure in Fe II is seen on one night. For 4 nights, the Fe I and Fe II lines

  3. LZIFU: IDL emission line fitting pipeline for integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting

    2016-07-01

    LZIFU (LaZy-IFU) is an emission line fitting pipeline for integral field spectroscopy (IFS) data. Written in IDL, the pipeline turns IFS data to 2D emission line flux and kinematic maps for further analysis. LZIFU has been applied and tested extensively to various IFS data, including the SAMI Galaxy Survey, the Wide-Field Spectrograph (WiFeS), the CALIFA survey, the S7 survey and the MUSE instrument on the VLT.

  4. Search with Copernicus for ultraviolet emission lines in the planetary nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.; Snow, T. P., Jr.; Upson, W. L., II

    1978-01-01

    The high-excitation planetary nebula NGC 3242 has been observed with the ultraviolet telescope-spectrometer aboard Copernicus. Wavelength intervals corresponding to the emission lines of O VI at 1032 A, He II at 1085 A, Si III at 1206 A, and N V at 1239 A have been scanned. Upper limits to the observed fluxes are reported and compared with predicted emission-line fluxes from this object.

  5. Emission Line Spectra in the Soft X-ray Region 20 - 75 Angstroms

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Chen, H.; Behar, E.; Kahn, S. M.

    2002-01-01

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EDIT-II, emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region were studied. Observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 Angstrom are presented to illustrate our work.

  6. Emission Line Spectra in the Soft X-Ray Region 20-75 (Angstrom)

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Chen, H; Behar, E; Kahn, S M

    2002-06-18

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, we studied emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region. Here we present observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 {angstrom} to illustrate our work.

  7. X-ray secondary heating and ionization in quasar emission-line clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Van Steenberg, M. E.

    1985-01-01

    Accurate Monte Carlo computations of the X-ray secondary electron heating, ionization, and excitation of H and He gas in interstellar space and in quasar emission-line clouds, are presented. The fraction of energy deposited in each form is sensitive to the background ionization fraction, x = n(H+)/n(Htot), and can affect the temperature, ionization state, and line emissivities at large depths in X-ray photoionized clouds. Analytic fits are provided for these energy fractions over the range 0.0001-1 for primary electron energies up to many keV. In both broad-line and narrow-line clouds, emission lines sensitive to the energy budget and electron density may be strongly affected.

  8. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    NASA Technical Reports Server (NTRS)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  9. Package for Interactive Analysis of Line Emission (Analysis of UV-X-Ray High-Resolution Emission Spectra)

    NASA Technical Reports Server (NTRS)

    Hunter, Paul (Technical Monitor); Kashyap, Vinay

    2004-01-01

    The Package for Interactive Analysis of Line Emission (PINTofALE) is a suite of IDL routines designed to carry out spectroscopic analysis of high-resolution X-ray spectra. The current version is 1.5, and will shortly be upgraded to v2. A detailed description of the package, together with detailed documentation, example walk-throughs, science threads, and downloadable tar files, are available on-line.

  10. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  11. Forbidden line emission from highly ionized atoms in tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Bhatia, A. K.

    1982-01-01

    Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature

  12. Excitation of emission lines by fluorescence and recombination in IC 418

    NASA Astrophysics Data System (ADS)

    Escalante, Vladimir; Morisset, Cristophe; Georgiev, Leonid

    2012-08-01

    We predict intensities of lines of CII, NI, NII, OI and OII and compare them with a deep spectroscopic survey of IC 418 to test the effect of excitation of nebular emission lines by continuum fluorescence of starlight. Our calculations use a nebular model and a synthetic spectrum of its central star to take into account excitation of the lines by continuum fluorescence and recombination. The NII spectrum is mostly produced by fluorescence due to the low excitation conditions of the nebula, but many CII and OII lines have more excitation by fluorescence than recombination. In the neutral envelope, the NI permitted lines are excited by fluorescence, and almost all the OI lines are excited by recombination. Electron excitation produces the forbidden optical lines of OI, but continuum fluorescence excites most of the NI forbidden line intensities. Lines excited by fluorescence of light below the Lyman limit thus suggest a new diagnostic to explore the photodissociation region of a nebula.

  13. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  14. Characterizing quasar ionization echoes - towards long-term AGN light curves

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa; Davies, Rebecca; Keel, William; Turner, James; Nagao, Tohru; Fu, Hai; Levenson, Nancy; Diaz, Ruben

    2014-08-01

    Green Bean galaxies (GBs) are rare type-2 quasars featuring ultra-luminous emission line regions extending over 20-40 kpc. Due to different light travel times from the AGN into the ionized gas, the latter retains a memory of the AGN's X-ray luminosity over the past several 10,000 years. Evidence from X-ray, optical and mid-IR data shows that the nuclear energy output in GBs must have dropped recently by several orders of magnitude. We are witnessing the final stages in the lives of the most luminous type-2 quasars. The ionization echoes allow us to study SMBH growth, massive outflows, and the co-evolution of the host galaxies from a new perspective. Using GMOS-N/S, we want to complete our imaging survey of all 17 known GBs, obtain a shallow IFU survey, and study one particularly exciting galaxy in greater depth. For the latter, we want to demonstrate that individual AGN light curves, extending over several 10,000 years, can be reconstructed from GBs. Hence this study is complementary to classical monitoring and reverberation mapping.

  15. Unveiling the radio counterparts of two binary AGN candidates: J1108+0659 and J1131-0204

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Pérez-Torres, M. A.; Piconcelli, E.; Fu, H.

    2016-04-01

    The sources SDSS J113126.08-020459.2 and SDSS J110851.04+065901.4 are two double-peaked [O III] emitting active galactic nuclei (AGNs), identified as candidate binary AGNs by optical and near infrared (NIR) observations. We observed the two sources with high resolution Very Long Baseline Interferometry (VLBI) using the European VLBI Network at 5 GHz, reduced VLA observations at three frequencies available for one of the sources, and used archival HST observations. For the source SDSS J113126.08-020459.2, the VLBI observations detected only one single compact component associated with the eastern NIR nucleus. In SDSS J110851.04+065901.4, the VLBI observations did not detect any compact components, but the VLA observations allowed us to identify a possible compact core in the region of the north-western optical/NIR nucleus. In this source we find kpc-scale extended radio emission that is spatially coincident to the ultraviolet continuum and to the extended emission narrow line region. The UV continuum is significantly obscured since the amount of extended radio emission yields a star formation rate of about 110 M⊙ yr-1, which is an order of magnitude larger than implied by the observed ultraviolet emission. Our analysis confirms the presence of only one AGN in the two candidate binary AGNs. FITS files of the reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A102

  16. To test dual supermassive black hole model for broad line active galactic nucleus with double-peaked narrow [O III] lines

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2016-04-01

    In this paper, we proposed an interesting method to test the dual supermassive black hole model for active galactic nucleus (AGN) with double-peaked narrow [O III] lines (double-peaked narrow emitters) through their broad optical Balmer line properties. Under the dual supermassive black hole model for double-peaked narrow emitters, we could expect statistically smaller virial black hole masses estimated by observed broad Balmer line properties than true black hole masses (total masses of central two black holes). Then, we compare the virial black hole masses between a sample of 37 double-peaked narrow emitters with broad Balmer lines and samples of Sloan Digital Sky Survey selected normal broad line AGN with single-peaked [O III] lines. However, we can find clearly statistically larger calculated virial black hole masses for the 37 broad line AGN with double-peaked [O III] lines than for samples of normal broad line AGN. Therefore, we give our conclusion that the dual supermassive black hole model is probably not statistically preferred to the double-peaked narrow emitters, and more efforts should be necessary to carefully find candidates for dual supermassive black holes by observed double-peaked narrow emission lines.

  17. AGN feedback in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; Clarke, Tracy E.; Intema, Huib; Fabian, Andrew C.; Taylor, Gregory B.; Blundell, Katherine

    2016-04-01

    Deep Chandra images of the Perseus cluster of galaxies have revealed a succession of cavities created by the jets of the central supermassive black hole, pushing away the X-ray emitting gas and leaving bubbles filled with radio emission. Perseus is one of the rare examples showing buoyantly rising lobes from past radio outbursts, characterized by a steep spectral index and known as ghost cavities. All of these structures trace the complete history of mechanical AGN feedback over the past 500 Myrs. I will present results on new, ultra deep 230-470 MHz JVLA data. This low-frequency view of the Perseus cluster will probe the old radio-emitting electron population and will allow us to build the most detailed map of AGN feedback in a cluster thus far.

  18. Measurement of Plasma Ion Temperature and Flow Velocity from Chord-Averaged Emission Line Profile

    NASA Astrophysics Data System (ADS)

    Wei, Xu

    2011-06-01

    The distinction between Doppler broadening and Doppler shift has been analysed, the differences between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. Local ion temperature and flow velocity have been derived from the chord-averaged emission line profile by a chosen-point Gaussian fitting technique.

  19. SOFT X-RAY EMISSION LINES OF S VII-S XIV IN PROCYON

    SciTech Connect

    Li, F.; Liang, G. Y.; Zhao, G. E-mail: gzhao@bao.ac.cn

    2013-01-01

    Observational data for cool star Procyon available from the Chandra Data Public Archive are co-added and analyzed with as high a signal-to-noise ratio as possible. The soft X-ray emission lines of highly charged sulfur ions (S VII-S XV) are investigated in the 30-80 A range. A collisional-radiative model is constructed to predict line emissivities of sulfur ions using updated excitation data from the R-matrix method. Theoretical line fluxes and line intensity ratios are calculated, and theoretical spectra are constructed with a Gaussian profile with a line width of 0.06 A. By comparing predicted emission lines with observed ones, several strong emission lines are identified for the first time. Some misassignments of lines in previous works are also corrected. By comparing our results with those from the Chianti (v6) model, this work provides insight into the completeness and accuracy of the atomic data of sulfur ions in the Chianti (v6) database.

  20. Emission-Line Eclipse Mapping of Velocity Fields in a Dwarf-Nova Accretion Disk

    NASA Astrophysics Data System (ADS)

    Makita, Makoto; Mineshige, Shin

    2002-06-01

    We propose a new method, emission-line eclipse mapping, to map the velocity fields of an accretion disk in position space. Quiescent dwarf novae usually exhibit double-peaked emission-line profiles because of disk rotation. Since a part of a disk having a different line-of-sight velocity is successively obscured by a companion in eclipsing systems, they show time-varying line profiles. We calculated the time changes of the emission-line profiles, assuming Keplerian rotation fields (vφ ~ r-1/2 with r being the distance from the disk center) and an emissivity distribution of j ~ r-3/2. We, then, applied the usual eclipse mapping technique to the light curves at each of 12-24 wavelengths across the line center to map the region with the same line-of-sight velocity. The reconstructed images typically exhibit a `two-eye' pattern for high line-of-sight velocities, and we can recover the relation, vφ ~ d-1/2, on the assumption of an axisymmetric disk, where d is the separation between the two `eyes'. We will be able to probe the Keplerian rotation law, the most fundamental assumption adopted in many disk models, by high-speed spectroscopic observations with 8-m class telescopes.