Science.gov

Sample records for agn selection techniques

  1. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    SciTech Connect

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M.; Moustakas, John; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu Guangtun

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  2. Optically-selected AGN

    NASA Astrophysics Data System (ADS)

    Richard, Gordon

    2016-08-01

    will discuss the selection and properties of optically-selected AGN as contrasted with other multi-wavelength investigations. While optical surveys are able to identify *more* AGNs than other wavelengths, this size comes with a bias towards brighter, unobscured sources. Although optical surveys are not ideal for probing obscured AGNs, I will discuss how they can guide our search for them. The bias towards unobscured sources in the optical is partially mitigated, however, by an increase in information content for the sources that *are* identified---in the form of physics probed by the combination of optical continuum, absorption, and emission. An example is the ability to estimate the mass of AGNs based on the optical/UV emission lines. I will discuss the range of mass (and accretion rate) probed by the optical in addition to serious biases in the black hole mass scaling relations that corrupt these estimates at high redshift.

  3. What are the galaxies that host MIR-selected AGN?

    NASA Astrophysics Data System (ADS)

    Rosario, David

    2016-08-01

    Infra-red selection techniques, sensitive to dust strongly heated by an AGN, offer a way to identify some of the most obscured accretion events in the Universe. I will describe the results of a comprehensive multi-wavelength study of AGN to z>2 selected using Spitzer/IRAC based methods in the COSMOS field. Armed with AGN-optimised redshifts and stellar masses, we explore the dust emission from the active nucleus and the host galaxy. We demonstrate that IR-selected AGN tend to be found in low mass host galaxies, when compared to other AGN identification methods. The star-formation rates of obscured and unobscured IR-selected AGN are very similar, implying that large-scale obscuration with co-eval star-bursts are not found in a major proportion of heavily obscured AGN.

  4. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  5. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  6. A UV to mid-IR study of AGN selection

    SciTech Connect

    Chung, Sun Mi; Kochanek, Christopher S.; Assef, Roberto; Brown, Michael J. I.; Stern, Daniel; Jannuzi, Buell T.; Gonzalez, Anthony H.; Hickox, Ryan C.; Moustakas, John

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  7. The Angular Clustering of WISE-Selected AGN: Different Haloes for Obscured and Unobscured AGN

    NASA Astrophysics Data System (ADS)

    Yan, Lin

    2015-08-01

    We calculate the angular correlation function for a sample of 170,000 AGN extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 - W2 > 0.8) and 4.6 micron flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGN, and to have a mean redshift of z=1.1. In total, the angular clustering of WISE-AGN is roughly similar to that of optical AGN. We cross-match these objects with the photometric SDSS catalog and distinguish obscured sources with (r - W2) > 6 from bluer, unobscured AGN. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGN are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find obscured sources at mean redshift z=0.9 have a bias of b = 2.9 \\pm 0.6 and are hosted in dark matter halos with a typical mass of log(M/M_odot)~13.5. In contrast, unobscured AGN at z~1.1 have a bias of b = 1.6 \\pm 0.6 and inhabit halos of log(M/M_odot)~12.4. These findings suggest that obscured AGN inhabit denser environments than unobscured AGN, and are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  8. Broad Band Properties of the BAT Selected AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard; Winter, Lisa; Tueller, jack

    2008-01-01

    We will present the x-ray spectral properties of approximately 150 Burst Alert Telescope (BAT) selected active galactic nuclei (AGN) focusing on the issues of spectral complexity, x-ray absorption and its distribution and that contribution of sources to the x-ray background. If time permits we will also present the nature of the host galaxies of the AGN and their relationship to merger candidates.

  9. Star Formation and AGN activity of X-ray selected AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon

    2017-01-01

    One of the ongoing issues for understanding the galaxy formation and evolution is how active galactic nuclei (AGNs) affect the growth of their host galaxies. We investigate the correlations between AGN activity and star formation properties of a large sample of ~3700 X-ray selected AGNs over a wide range of luminosities (42 < log Lx < 45) up to z~5 in the Chandra-COSMOS Legacy Survey. We perform a multi-component modeling from the far-infrared, when available, to the near-UV using AGN emission from the big-blue-bump (for Type 1 AGNs), a nuclear dust torus model, a galaxy model and a starburst component for the spectral energy distributions (SEDs). Through detailed analysis of SEDs, we derive AGN host galaxy properties, such as stellar masses, star formation rates (SFRs), and AGN luminosities. We find that AGN host galaxies have, on average, similar SFRs compared to the normal star-forming main sequence galaxies, suggesting no significant enhancement or quenching of star formation. The average SFR of AGN host galaxies shows a flat distribution in bins of AGN luminosity, consistent with recent ideas that the shorter variability timescale of AGN compared to star formation can lead to a flat relationship between the SFR and black hole accretion rates. Our results suggest that both star formation and nuclear activity in the majority of AGN host galaxies might be driven more by internal secular processes at z<3, implying that they have substantially grown at much earlier epoch.

  10. The Emission Line AGN Census: Biases of Line Ratio Selection, and Uniform Black Hole Accretion Regardless of Galaxy Mass

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Zeimann, Gregory; Juneau, Stephanie; Sun, Mouyuan; Luck, Cuyler

    2015-01-01

    Optical emission line ratios offer a powerful tool to reveal accretion onto supermassive black holes, with the ability to find both unobscured and obscured active galactic nuclei (AGNs) in extraordinarily large galaxy samples (like the SDSS). I will demonstrate, however, that classic line ratio selection techniques significantly underestimate the AGN fraction by a factor of >10 in low-mass and star-forming galaxies. Previous conclusions that AGNs require massive green-valley hosts are purely a result of this "star formation dilution" bias. Careful treatment of the biases reveals that AGN accretion is uniform across star-forming galaxies of any stellar mass, similar to the results of bias-corrected X-ray AGN studies. This has dramatic implications for AGN feedback in dwarf galaxies and constraints on the black hole seed population.

  11. The host galaxies of ultra hard X-ray selected AGN

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.

    One of the great mysteries surrounding active galactic nuclei (AGN) is their triggering mechanism. Since the discovery that almost all massive galaxies host nuclear supermassive black holes, it has become clear that a trigger mechanism is required to 'turn on' and continue to fuel the central black hole. While it is established that accretion processes are responsible for the energy emitted, the source of the accreting material is still controversial. Furthermore, the energy input from phases of black hole growth is thought to be a key regulator in the formation of galaxies and the establishment of various scaling relations. Theorists often invoke galaxy mergers as the violent mechanism to drive gas into the central regions and ignite luminous quasars, but among more common moderate luminosity AGN, there has been great controversy whether secular processes or mergers dominate AGN fueling. A survey in the ultra hard X-ray band (14--195 keV) is an important new way to answer the fundamental question of AGN fueling. This method is independent of selection effects such as dust extinction and obscuration that plague surveys at other wavelengths because of the ability of the primary continuum to easily pass through large columns of obscuring gas and dust (<10 24 cm-2). In this PhD, we have assembled the largest sample of ultra hard X-ray selected AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift BAT sample. We find that these AGN show much higher rates of both mergers and massive spirals suggesting both mergers and accretion of cold gas in late type systems are important in AGN fueling. We also find that the most common AGN survey technique, optical line diagnostics, is heavily biased against finding AGN in mergers or spirals. Finally, in agreement with the merger driven AGN link, we find that dual AGN systems may be more common than current observation suggest since some of them are only detected using high

  12. X-Ray Selected AGN in A Merging Cluster

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; Norman, D.; Soechting, I.; Coldwell, G.

    2012-01-01

    We investigate the X-ray AGN population and evolution in the merging galaxy cluster DLSCL J0522.2-4820 discovered via weak gravitational lensing shear from the Deep Lens Survey (DLS). Since weak lensing shear is dependent only on mass, it does not introduce the biases that typical cluster selection methods do. This cluster is of particular interest due to both its extended multiple X-ray emission peaks and the large number of X-ray point sources identified in the field. We measured the redshifts of X-ray AGN as well as cluster galaxies in order to investigate the 3-dimensional distribution and possible clustering of AGN in galaxy clusters. Of the 125 objects in our sample, 54 are galaxies in the cluster; the cluster redshift is determined to be z=0.2997±0.0096. This agrees well with a previous value of z=0.296±0.001. We identified several broad line AGN at high redshift including a quasar pair at redshift z=1.8. Currently, we have found no X-ray point sources to be within the cluster. This project was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  13. The MOSDEF Survey: AGN Multi-wavelength Identification, Selection Biases, and Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; Aird, James; Reddy, Naveen; Shapley, Alice; Freeman, William R.; Kriek, Mariska; Leung, Gene C. K.; Mobasher, Bahram; Price, Sedona H.; Sanders, Ryan L.; Shivaei, Irene; Siana, Brian

    2017-01-01

    We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on the identification, selection biases, and host galaxy properties of 55 X-ray, IR, and optically selected active galactic nuclei (AGNs) at 1.4< z< 3.8. We obtain rest-frame optical spectra of galaxies and AGNs and use the BPT diagram to identify optical AGNs. We examine the uniqueness and overlap of the AGNs identified at different wavelengths. There is a strong bias against identifying AGNs at any wavelength in low-mass galaxies, and an additional bias against identifying IR AGNs in the most massive galaxies. AGN hosts span a wide range of star formation rates (SFRs), similar to inactive galaxies once stellar mass selection effects are accounted for. However, we find (at ∼2–3σ significance) that IR AGNs are in less dusty galaxies with relatively higher SFR and optical AGNs in dusty galaxies with relatively lower SFR. X-ray AGN selection does not display a bias with host galaxy SFR. These results are consistent with those from larger studies at lower redshifts. Within star-forming galaxies, once selection biases are accounted for, we find AGNs in galaxies with similar physical properties as inactive galaxies, with no evidence for AGN activity in particular types of galaxies. This is consistent with AGNs being fueled stochastically in any star-forming host galaxy. We do not detect a significant correlation between SFR and AGN luminosity for individual AGN hosts, which may indicate the timescale difference between the growth of galaxies and their supermassive black holes.

  14. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  15. Incidence of WISE-Selected Obscured AGNs in Major Mergers and Interactions from the SDSS

    NASA Astrophysics Data System (ADS)

    Weston, Madalyn; McIntosh, Daniel H.; Brodwin, Mark; Mann, Justin; Cooper, Andrew; McConnell, Adam; Nielson, Jennifer L.

    2017-01-01

    We use the Wide-field Infrared Survey Explorer (WISE) and the Sloan Digital Sky Survey (SDSS) to confirm a connection between dust-obscured active galactic nuclei (AGNs) and galaxy merging. Using a new, volume-limited (z≤0.08) catalog of visually-selected major mergers and galaxy-galaxy interactions from the SDSS, with stellar masses above 2×10^10 M⊙, we find that major mergers (interactions) are 5--17 (3--5) times more likely to have red [3.4]-[4.6] colors associated with dust-obscured or `dusty' AGNs, compared to non-merging galaxies with similar masses. Using published fiber spectral diagnostics, we map the [3.4]-[4.6] versus [4.6]-[12] colors of different emission-line galaxies and find one-quarter of Seyferts have colors indicative of a dusty AGN. We find that AGNs are five times more likely to be obscured when hosted by a merging galaxy, half of AGNs hosted by a merger are dusty, and we find no enhanced frequency of optical AGNs in merging over non-merging galaxies. We conclude that undetected AGNs missed at shorter wavelengths are at the heart of the ongoing AGN-merger connection debate. The vast majority of mergers hosting dusty AGNs are star-forming and located at the centers of Mhalo<10^13 M⊙ groups. Assuming plausibly short duration dusty-AGN phases, we speculate that a large fraction of gas-rich mergers experience a brief obscured AGN phase, in agreement with the strong connection between central star formation and black hole growth seen in merger simulations. We will use the WISE-selected AGNs (and AGNs selected by other methods) to perform SED analysis of mergers and interactions and dissect the SEDs to disentangle AGN and SF activity.

  16. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  17. Fraction of the X-ray selected AGNs with optical emission lines in galaxy groups

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Qirong; Bian, Weihao; Chen, Xi; Yan, Pengfei

    2017-04-01

    Compared with numerous X-ray dominant active galactic nuclei (AGNs) without emission-line signatures in their optical spectra, the X-ray selected AGNs with optical emission lines are probably still in the high-accretion phase of black hole growth. This paper presents an investigation on the fraction of these X-ray detected AGNs with optical emission-line spectra in 198 galaxy groups at z<1 in a rest frame 0.1-2.4 keV luminosity range 41.3 < log(LX/erg s^{-1}) < 44.1 within the Cosmological Evolution Survey (COSMOS) field, as well as its variations with redshift and group richness. For various selection criteria of member galaxies, the numbers of galaxies and the AGNs with optical emission lines in each galaxy group are obtained. It is found that, in total 198 X-ray groups, there are 27 AGNs detected in 26 groups. AGN fraction is on average less than 4.6 (±1.2)% for individual groups hosting at least one AGN. The corrected overall AGN fraction for whole group sample is less than 0.98 (±0.11) %. The normalized locations of group AGNs show that 15 AGNs are found to be located in group centers, including all 6 low-luminosity group AGNs (L_{ 0.5-2 keV} < 10^{42.5} erg s^{-1}). A week rising tendency with z are found: overall AGN fraction is 0.30-0.43% for the groups at z<0.5, and 0.55-0.64% at 0.5 < z < 1.0. For the X-ray groups at z>0.5, most member AGNs are X-ray bright, optically dull, which results in a lower AGN fractions at higher redshifts. The AGN fraction in isolated fields also exhibits a rising trend with redshift, and the slope is consistent with that in groups. The environment of galaxy groups seems to make no difference in detection probability of the AGNs with emission lines. Additionally, a larger AGN fractions are found in poorer groups, which implies that the AGNs in poor groups might still be in the high-accretion phase, whereas the AGN population in rich clusters is mostly in the low-accretion, X-ray dominant phase.

  18. Submillimetre observations of WISE-selected high-redshift, luminous AGN and their surrounding overdense environments

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.

    2016-08-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 10 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and 30 that have also been detected by the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs). Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 3-5, but no sign of radial clustering centred at our primary objects. The WISE-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets have total IR luminosities ≥1013 L⊙, with known redshifts of 20 targets between z ˜ 0.44-4.6.

  19. X-ray-selected AGNs near bright galaxies

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Schneider, Peter; Morris, Simon L.; Gioia, Isabella M.; Maccacaro, Tommaso

    1987-01-01

    Among the numerous low-redshift low-luminosity X-ray sources discovered with the Einstein Observatory, ten AGNs were identified that are projected within three optical diameters of bright (V less than 18) foreground galaxies. These AGNs near galaxies have significantly higher redshifts than the sample as a whole. This discovery is interpreted in terms of gravitational 'microlensing' in which stars in the foreground galaxy have significantly brightened the X-ray emission from these higher redshift AGNs, allowing their detection. It is suggested that microlensing may be responsible for a significant alteration of the inherent QSO luminosity function.

  20. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS

    NASA Astrophysics Data System (ADS)

    Weston, Madalyn E.; McIntosh, Daniel H.; Brodwin, Mark; Mann, Justin; Cooper, Andrew; McConnell, Adam; Nielsen, Jennifer L.

    2017-02-01

    We use the Wide-field Infrared Survey Explorer (WISE) and the Sloan Digital Sky Survey (SDSS) to confirm a connection between dust-obscured active galactic nuclei (AGNs) and galaxy merging. Using a new, volume-limited (z ≤ 0.08) catalogue of visually selected major mergers and galaxy-galaxy interactions from the SDSS, with stellar masses above 2 × 1010 M⊙, we find that major mergers (interactions) are 5-17 (3-5) times more likely to have red [3.4] - [4.6] colours associated with dust-obscured or `dusty' AGNs, compared to non-merging galaxies with similar masses. Using published fibre spectral diagnostics, we map the [3.4] - [4.6] versus [4.6] - [12] colours of different emission-line galaxies and find that one-quarter of Seyferts have colours indicative of a dusty AGN. We find that AGNs are five times more likely to be obscured when hosted by a merging galaxy, half of AGNs hosted by a merger are dusty, and we find no enhanced frequency of optical AGNs in merging over non-merging galaxies. We conclude that undetected AGNs missed at shorter wavelengths are at the heart of the ongoing AGN-merger connection debate. The vast majority of mergers hosting dusty AGNs are star forming and located at the centres of Mhalo < 1013 M⊙ groups. Assuming plausibly short-duration dusty-AGN phases, we speculate that a large fraction of gas-rich mergers experience a brief obscured AGN phase, in agreement with the strong connection between central star formation and black hole growth seen in merger simulations.

  1. AGN-selected clusters as revealed by weak lensing

    NASA Technical Reports Server (NTRS)

    Wold, M.; Lacy, M.; Dahle, H.; Lilje, P. B.; Ridgway, S. E.

    2002-01-01

    We discuss the results in light of the cooling flow and the merger/interaction scenarios for triggering and fuelling AGN in clusters, but find that the data do not point unambiguously to neither of the two.

  2. A complete hard X-ray selected sample of local, luminous AGNs

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard; Davies, Ric; Lin, Ming-yi; Orban de Xivry, Gilles; Rosario, David

    2016-08-01

    Choosing a very well defined sample is essential for studying the AGN phenomenon. Only the most luminous AGNs can be expected to require a coherent feeding mechanism to sustain their activity and since host galaxy properties and AGN activity are essentially uncorrelated, nuclear scales must be resolved in order to shed light on the feeding mechanisms of AGNs. For these reasons we are compiling a sample of the most powerful, local AGNs. In this talk we present our on-going programme to observe a complete volume limited sample of nearby active galaxies selected by their 14-195 keV luminosity, and outline its rationale for studying the mechanisms regulating gas inflow and outflow.

  3. A Herschel Study of 24 μμm-Selected AGNs and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Pereira, M. J.; Haines, C. P.; Smith, G. P.

    2015-08-01

    We present a sample of 290 24 μm-selected active galactic nuclei (AGNs) mostly at z ˜ 0.3-2.5, within 5.2 {{deg}}2 distributed as 25\\prime × 25\\prime fields around each of 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is nearly complete to 1 mJy at 24 μm, and has a rich multiwavelength set of ancillary data; 162 are detected by Herschel. We use spectral templates for AGNs, stellar populations, and infrared (IR) emission by star-forming galaxies to decompose the spectral energy distributions (SEDs) of these AGNs and their host galaxies, and estimate their star formation rates, AGN luminosities, and host galaxy stellar masses. The set of templates is relatively simple: a standard Type-1 quasar template; another for the photospheric output of the stellar population; and a far-infrared star-forming template. For the Type-2 AGN SEDs, we substitute templates including internal obscuration, and some Type-1 objects require a warm component (T≳ 50 K). The individually Herschel-detected Type-1 AGNs and a subset of 17 Type-2 AGNs typically have luminosities \\gt {10}45 {ergs} {{{s}}}-1, and supermassive black holes of ˜ 3× {10}8 {M}⊙ emitting at ˜10% of the Eddington rate. We find them in about twice the numbers of AGNs identified in SDSS data in the same fields, i.e., they represent typical high-luminosity AGNs, not an IR-selected minority. These AGNs and their host galaxies are studied further in an accompanying paper.

  4. Submillimetre observations of WISE/radio-selected AGN and their environments

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.; Blain, Andrew W.; Lonsdale, Carol; Condon, James; Farrah, Duncan; Stern, Daniel; Tsai, Chao-Wei; Assef, Roberto J.; Bridge, Carrie; Kimball, Amy; Lacy, Mark; Eisenhardt, Peter; Wu, Jingwen; Jarrett, Tom

    2015-04-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 30 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected jointly by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs) and compact radio counterparts. Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. These galaxies appear to be consistent with a later AGN-dominated phase of merging galaxies, while hot, dust-obscured galaxies are an earlier starburst-dominated phase. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 5, but no sign of radial clustering centred at our primary objects. The WISE/radio-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE/radio-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets are not detected, only four targets are detected at SCUBA-2 850 μm, and have total IR luminosities ≥1013 L⊙, if their redshifts are consistent with the subset of the 10 SCUBA-2 undetected targets with known redshifts, z ˜ 0.44-2.86.

  5. Characterizing the redshifts and luminosities of WISE selected obscured AGN using SALT optical spectra.

    NASA Astrophysics Data System (ADS)

    Hviding, Raphael E.; Hickox, Ryan C.; Hainline, Kevin N.; Carroll, Christopher M.; DiPompeo, Mike A.; Jones, Mackenzie L.

    2016-08-01

    We present the results of several optical spectroscopic surveys covering over 100 candidate luminous obscured active galactic nuclei (AGN) identified by their mid-infrared emission detected with the Wide-Field Infrared Survey Explorer (WISE). These galaxies were selected based on red WISE colors and galaxy-like optical emission, and were studied using long-slit optical spectroscopy with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT). Our spectra were analyzed to obtain redshifts and emission line flux ratios for each galaxy. These results verify that WISE is an effective section method for luminous obscured AGN, allow for the characterization of redshifts and luminosities of the WISE color selected obscured AGN population, and could potentially contribute to large statistical studies of obscured AGN distributions in the future.

  6. X-ray selected AGN in groups at redshifts z ~ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Gerke, Brian F.; Nandra, K.; Laird, E. S.; Coil, A. L.; Cooper, M. C.; Newman, J. A.

    2008-11-01

    We explore the role of the group environment in the evolution of active galactic nuclei (AGN) at the redshift interval 0.7 < z < 1.4, by combining deep Chandra observations with extensive optical spectroscopy from the All-wavelength Extended Groth strip International Survey (AEGIS). The sample consists of 3902 optical sources and 71 X-ray AGN. Compared to the overall optically selected galaxy population, X-ray AGN are more frequently found in groups at the 99 per cent confidence level. This is partly because AGN are hosted by red luminous galaxies, which are known to reside, on average, in dense environments. Relative to these sources, the excess of X-ray AGN in groups is significant at the 91 per cent level only. Restricting the sample to 0.7 < z < 0.9 and MB < -20mag in order to control systematics, we find that X-ray AGN represent (4.7 +/- 1.6) and (4.5 +/- 1.0) per cent of the optical galaxy population in groups and in the field, respectively. These numbers are consistent with the AGN fraction in low-redshift clusters, groups and the field. The above results, although affected by small number statistics, suggest that X-ray AGN are spread over a range of environments, from groups to the field, once the properties of their hosts (e.g. colour, luminosity) are accounted for. There is also tentative evidence, significant at the 98 per cent level, that the field produces more X-ray luminous AGN compared to groups, extending similar results at low redshift to z ~ 1. This trend may be because of either cold gas availability or the nature of the interactions occurring in the denser group environment (i.e. prolonged tidal encounters).

  7. Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique).

    PubMed

    Chito, Diana; Weng, Liping; Galceran, Josep; Companys, Encarnació; Puy, Jaume; van Riemsdijk, Willem H; van Leeuwen, Herman P

    2012-04-01

    The determination of free Zn(2+) ion concentration is a key in the study of environmental systems like river water and soils, due to its impact on bioavailability and toxicity. AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique) are emerging techniques suited for the determination of free heavy metal concentrations, especially in the case of Zn(2+), given that there is no commercial Ion Selective Electrode. In this work, both techniques have been applied to synthetic samples (containing Zn and NTA) and natural samples (Rhine river water and soils), showing good agreement. pH fluctuations in DMT and N(2)/CO(2) purging system used in AGNES did not affect considerably the measurements done in Rhine river water and soil samples. Results of DMT in situ of Rhine river water are comparable to those of AGNES in the lab. The comparison of this work provides a cross-validation for both techniques.

  8. Is the dependence of spectral index on luminosity real in optically selected AGN samples?

    NASA Astrophysics Data System (ADS)

    Tang, Su Min; Zhang, Shuang Nan; Hopkins, Philip F.

    2007-05-01

    We critically examine the dependence of spectral index on luminosity in optically selected AGN samples. An analysis of optically selected high-z quasars showed an anticorrelation of αOX, the spectral index between the rest-frame 2500 Å and 2 keV, with optical luminosity. We examine this relationship by means of Monte Carlo simulations and conclude that a constant αOX independent of optical luminosity is still consistent with this high-z sample. We further find that contributions of large dispersions and narrow range of optical luminosity are most important for the apparent, yet artificial, αOX-lo correlation reported. We also examine another, but more complete, low-z optical selected AGN sub-sample from Steffen et al., and our analysis shows that a constant αOX independent of optical luminosity is also consistent with the data. By comparing X-ray and optical luminosity functions, we find that a luminosity-independent αOX is in fact more preferred than the luminosity-dependent αOX model. We also discuss the selection effects caused by flux limits, which might systematically bias the lX-lo relation and cause discrepancy in optically selected and X-ray selected AGN samples. To correctly establish a dependence of αOX of AGNs on their luminosity, a larger and more complete sample is needed and consequences of luminosity dispersions and selection effects in flux-limited samples must be taken into account properly.

  9. Clustering Of Radio-Selected AGN (And Star-Forming Galaxies) Up To Redshifts z = 3

    NASA Astrophysics Data System (ADS)

    Magliocchetti, Manuela; Popesso, P.; Brusa, M.; Salvato, M.

    2016-10-01

    We present the clustering properties of a complete sample of 957 radio sources detected by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. Based on their radio-luminosity, these objects have been furtherly divided into two populations of 642 AGN and 246 star-forming galaxies. Investigations of their clustering properties return values for the minimum masses of dark matter haloes capable to host at least one of such sources of Mmin=10^13.6 Msun for radio-selected AGN and Mmin=10^13.1 Msun for radio-emitting star-forming galaxies. Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. Our results indicate a larger relative stellar content in the star-forming population with respect to AGN and also clearly show the cosmic process of star-formation build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.

  10. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    SciTech Connect

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.

  11. A 2.5-5 μm spectroscopic study of hard X-ray selected AGNs with AKARI

    NASA Astrophysics Data System (ADS)

    Castro, A.; Miyaji, T.; Shirahata, M.; Oyabu, S.; Clark, D.; Ichikawa, K.; Imanishi, M.; Nakagawa, T.; Ueda, Y.

    2014-07-01

    We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E <~ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (N H) towards the AGNs. We use the 3.3 μm PAH luminosity (L 3.3μm) as a proxy for star formation activity and hard X-ray luminosity (L 14-195keV) as an indicator of the AGN activity. We searched for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. Our regression analysis of log L 14-195keV versus log L 3.3μm shows a positive correlation and the slope seems steeper for type 1/unobscured AGNs than that of type 2/obscured AGNs. The same trend has been found for the log (L 14-195keV/M BH) versus log (L 3.3μm/MBH) correlation. Our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs.

  12. Higher prevalence of X-ray selected AGN in intermediate-age galaxies up to z ˜ 1

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Pérez-González, Pablo G.; Barro, Guillermo; Aird, James; Ferreras, Ignacio; Cava, Antonio; Cardiel, Nicolás; Esquej, Pilar; Gallego, Jesús; Nandra, Kirpal; Rodríguez-Zaurín, Javier

    2014-10-01

    We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34 < z < 1.07 with ultradeep (mAB = 26.5, 3σ) optical medium-band (R ˜ 50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Å break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (LX < 1044 erg s-1) are hosted by massive galaxies (typically M* >1010.5 M⊙) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependences of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U - V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 Å breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U - V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000) ˜ 1.4 and light-weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognizing these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.

  13. Broad Band Properties of the BAT Selected AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard; Winter, Lisa; Tueller, Jack

    2008-01-01

    I will present the x-ray spectral properties of approx.150 BAT selected ACN focusing on the issues of spectral complexity, x-ray absorption and its distribution and that contribution of sources to the x-ray background. If time permits we will also present the nature of the host galaxies of the ACN and their relationship to merger candidates.

  14. Sizes and Kinematics of Extended Narrow-line Regions in Luminous Obscured AGN Selected by Broadband Images

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.

    2017-02-01

    To study the impact of active galactic nuclei (AGN) feedback on their galactic ISM, we present Magellan long-slit spectroscopy of 12 luminous nearby obscured AGN ({L}{bol}∼ {10}45.0-46.5 {erg} {{{s}}}-1, z ∼ 0.1). These objects are selected from a parent sample of spectroscopically identified AGN to have high [O iii]λ5007 and Wide-field Infrared Survey Explorer mid-IR luminosities and extended emission in the Sloan Digital Sky Survey r-band images, suggesting the presence of extended [O iii]λ5007 emission. We find spatially resolved [O iii] emission (2–35 kpc) in 8 out of 12 of these objects. Combined with samples of higher luminosity obscured AGN, we confirm that the size of the narrow-line region (RNLR) scales with the mid-IR luminosity until the relation flattens at RNLR ∼ 10 kpc. Nine out of 12 objects in our sample have regions with broad [O iii] line widths (w80 > 600 km s‑1), indicating outflows. We define these regions as the kinematically disturbed region (KDR). The size of the KDR ({R}{KDR}) is typically smaller than RNLR by few kiloparsecs but also correlates strongly with the AGN mid-IR luminosity. Given the uncertain outflow mass, we derive a loose constraint on the outflow energy efficiency {η }{med}=\\dot{E}/{L}{bol}∼ 0.007 % {--}7 % . We find no evidence for an AGN luminosity threshold below which outflows are not launched. To explain the sizes, velocity profiles, and high occurrence rates of the outflows in the most luminous AGN, we propose a scenario in which energy-conserving outflows are driven by AGN episodes with ∼108 year durations. Within each episode, the AGN is unlikely to be constantly luminous but could flicker on shorter timescales (≲107 yr) with a moderate duty cycle (∼10%).

  15. Spitzer's contribution to the AGN population

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer Lynn

    2009-06-01

    Using large multiwavelength datasets, we study obscured AGN in the distant universe that have been missed via traditional selection techniques (e.g. UV/ optical/X-ray). To do so, we take particular advantage of the mid-IR, which is minimally affected by obscuration. We first select as AGN candidates those objects whose radio emission is significantly brighter, relative to the mid-IR, than would be predicted by the well known radio/infrared correlation, indicating that the radio emission originates in the central engine. We find that of the 27 such sources identified in the CDF-N, 60% lack solid X-ray detections and 25% lack even 2s X-ray emission. The absorbing columns of the faint X-ray-detected objects indicate that they are obscured but unlikely to be Compton thick, whereas the radio-excess AGN which are X-ray non-detected are Compton-thick candidates. We similarly use the infrared emission to select IRAC (3.6-8.0 mm) power-law AGN. In these luminous AGN, the hot dust emission from the AGN fills in the gap in a galaxy's SED between the 1.6 mm stellar bump and the long-wavelength dust emission feature. While sources selected in this way are more luminous than the radio-excess AGN, we find a similar X-ray detection fraction. Of the 62 power- law galaxies in the CDF-N, only 55% are detected in the X-ray, and 15% lack evidence for even weak 2s X-ray emission. A study of their X-ray properties indicates that ~ 75% are obscured. Finally, we test IRAC color-color and infrared-excess selection criteria. We find that while these selection techniques identify a number of obscured AGN, they may also select a significant number of star-forming galaxies. By combining only the secure AGN candidates selected via all methods discussed above, we estimate that the addition of Spitzer-selected AGN candidates to the deepest X-ray selected AGN samples directly increases the number of known AGN by 54-77%, and implies a total increase to the number of AGN of 71-94%.

  16. Star formation and obscuration in AGN: A sub-mm study of high-redshift mid-IR selected type-2 QSOs

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Stevens, Jason; Coppin, Kristen; Geach, James

    2016-08-01

    The AGN unification model describes unobscured and obscured AGN (AGN1 and AGN2) as identical sources, with their different observed properties explained solely by orientation effects; as a result, it predicts no difference in the host galaxies. As an alternative, a second scenario has been proposed in which type-2 AGN represent an earlier stage in the life of AGN characterized by dust-enshrouded host galaxies which contribute to the obscuration and higher star formation activity, at least at earlier epochs. To test this scenario we employ Herschel data at three different wavelengths (250, 350, 500 um) to study the far-IR-to-submm properties of a sample of mid-IR selected type 2 QSOs at high redshift (1.5selected in the same field. Through SED fitting we are able to disentangle AGN and star-formation activity and consequently derive FIR luminosities of the two components, as well as SFRs and dust masses. We propose a picture in which intermediate-level radio activity in the core (pc scale) of AGN is linked to the obscuration of the nucleus (perhaps via a merger) since our AGN1 have systematically lower radio luminosities than our AGN2.

  17. Multi-faceted AGN

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys R.; Chen, Yanping; Dai, Yuxiao; Zaw, Ingyin

    2016-08-01

    An interesting question is how frequently an object is an AGN by multiple different criteria — e.g., is simultaneously a narrow-line optical AGN and an X-ray or radio AGN, possibly as a function of luminosities in the various wavebands and perhaps host galaxy type. Answering such questions quantitatively has been difficult up to now because of the lack of a complete, uniformly selected optical AGN catalog. Here we report first results of such an analysis, using the new, all-sky catalog of uniformly selected optical AGNs from Zaw, Chen and Farrar (2016), the Swift-BAT 70-month catalog of X-ray AGN (Baumgartner et al., 2013), and the van Velzen et al. (2012) catalog of radio AGN.

  18. X-ray observations of highly obscured τ9.7 μm > 1 sources: an efficient method for selecting Compton-thick AGN?

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Dasyra, K. M.; Rovilos, E.; Pope, A.; Wu, Y.; Dickinson, M.; Comastri, A.; Gilli, R.; Elbaz, D.; Armus, L.; Akylas, A.

    2011-07-01

    Observations with the IRS spectrograph onboard Spitzer have found many sources with very deep Si features at 9.7 μm, that have optical depths of τ > 1. Since it is believed that a few of these systems in the local Universe are associated with Compton-thick active galactic nuclei (hereafter AGN), we set out to investigate whether the presence of a strong Si absorption feature is a good indicator of a heavily obscured AGN. We compile X-ray spectroscopic observations available in the literature on the optically-thick (τ9.7 μm > 1) sources from the 12 μm IRAS Seyfert sample. We find that the majority of the high-τ optically confirmed Seyferts (six out of nine) in the 12 μm sample are probably Compton-thick. Thus, we provide direct evidence of a connection between mid-IR optically-thick galaxies and Compton-thick AGN, with the success rate being close to 70% in the local Universe. This is at least comparable to, if not better than, other rates obtained with photometric information in the mid to far-IR, or even mid-IR to X-rays. However, this technique cannot provide complete Compton-thick AGN samples, i.e., there are many Compton-thick AGN that do not display significant Si absorption, with the most notable example being NGC 1068. After assessing the validity of the high 9.7 μm optical-depth technique in the local Universe, we attempt to construct a sample of candidate Compton-thick AGN at higher redshifts. We compile a sample of seven high-τSpitzer sources in the Great Observatories Origins Deep Survey (GOODS) and five in the Spitzer First-Look Survey. All these have been selected to have no PAH features (EW6.2 μm < 0.3 μm) to maximise the probability that they are bona-fide AGN. Six out of the seven GOODS sources have been detected in X-rays, while for the five FLS sources only X-ray flux upper limits are available. The high X-ray luminosities (LX > 1042 erg s-1) of the detected GOODS sources corroborates that these are AGN. For FLS, ancillary optical

  19. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-07-01

    We study the spatial distribution of X-ray selected active galactic nuclei (AGN) in the framework of hierarchical coevolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the theoretical model developed by Croton et al., De Lucia & Blaizot and Marulli et al. to the output of the Millennium Run and obtained hundreds of realizations of past light cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations both in the soft and in the hard X-ray bands, except at fluxes <~10-15ergcm-2s-1, where the model systematically overestimates the observations. However, a large fraction of these faint objects are typically excluded from the spectroscopic AGN samples of the Chandra fields. We find that the spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20h-1Mpc, in close agreement with observations. Our model matches the correlation length r0 of AGN in the Chandra Deep Field-North but underestimates it in the Chandra Deep Field-South. When fixing the slope to γ = 1.4, as in Gilli et al., the statistical significance of the mismatch is 2σ-2.5σ, suggesting that the predicted cosmic variance, which dominates the error budget, may not account for the different correlation length of the AGN in the two fields. However, the overall mismatch between the model and the observed correlation function decreases when both r0 and γ are allowed to vary, suggesting that more realistic AGN models and a full account of all observational errors may significantly reduce the tension between AGN clustering in the two fields. While our results are robust to changes in the model prescriptions for the AGN light curves, the luminosity dependence of the clustering is sensitive to the different light-curve models adopted. However, irrespective of the model

  20. Selective video blanking technique

    NASA Technical Reports Server (NTRS)

    Saboe, M. M.; Treude, R. C.

    1968-01-01

    Adverse viewing effects caused by faulty photosensitive elements are eliminated. A linear maximal /or nonmaximal/ sequence generator gives a pseudorandom pulse train to selectively blank the display monitor during specified mosaic interrogation times. The outputs minimize the length of the required shift register generator.

  1. Hard X-Ray-selected AGNs in Low-mass Galaxies from the NuSTAR Serendipitous Survey

    NASA Astrophysics Data System (ADS)

    Chen, C.-T. J.; Brandt, W. N.; Reines, A. E.; Lansbury, G.; Stern, D.; Alexander, D. M.; Bauer, F.; Del Moro, A.; Gandhi, P.; Harrison, F. A.; Hickox, R. C.; Koss, M. J.; Lanz, L.; Luo, B.; Mullaney, J. R.; Ricci, C.; Trump, J. R.

    2017-03-01

    We present a sample of 10 low-mass active galactic nuclei (AGNs) selected from the 40-month Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The sample is selected to have robust NuSTAR detections at 3{--}24 {keV}, to be at z< 0.3, and to have optical r-band magnitudes at least 0.5 mag fainter than an {L}\\star galaxy at its redshift. The median values of absolute magnitude, stellar mass, and 2–10 X-ray luminosity of our sample are < {M}r> =-20.03, < {M}\\star > =4.6× {10}9 {M}ȯ , and < {L}2-10{keV}> =3.1× {10}42 erg s‑1, respectively. Five objects have detectable broad Hα emission in their optical spectra, indicating black hole masses of (1.1{--}10.4)× {10}6 {M}ȯ . We find that {30}-10+17 % of the galaxies in our sample do not show AGN-like optical narrow emission lines, and one of the 10 galaxies in our sample, J115851+4243.2, shows evidence for heavy X-ray absorption. This result implies that a non-negligible fraction of low-mass galaxies might harbor accreting massive black holes that are missed by optical spectroscopic surveys and < 10 {keV} X-ray surveys. The mid-IR colors of our sample also indicate that these optically normal low-mass AGNs cannot be efficiently identified with typical AGN selection criteria based on Wide Field Infrared Survey Explorer colors. While the hard (> 10 keV) X-ray-selected low-mass AGN sample size is still limited, our results show that sensitive NuSTAR observations are capable of probing faint hard X-ray emission originating from the nuclei of low-mass galaxies out to moderate redshift (z< 0.3), thus providing a critical step in understanding AGN demographics in low-mass galaxies.

  2. The XXL Survey. XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.

    2016-06-01

    Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the

  3. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  4. Obscured AGN Accretion Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    We propose to combine data from XMM-Newton, the Chandra X-ray Observatory, and the Spitzer Space Telescope with ground-based optical spectroscopy from Keck and Magellan to measure the relationship between AGN obscuration and accretion activity over the bulk of cosmic history. This work will establish the prominence of both obscured and unobscured growth phases of black holes and shed light on the processes that trigger and fuel AGN as a function of time. We will complete three complementary projects that focus on a) understanding the completeness and biases of AGN selection at mid-IR versus X-ray wavelengths, b) tracing optical obscuration as a function of luminosity and redshift, and c) measuring the distribution and evolution of X-ray absorption of AGN. We will undertake a study of AGN demographics comparing selection techniques at three different wavelengths: mid-IR selection using data from the Spitzer Space Telescope, X- ray selection using data from the XMM-Newton and Chandra satellites, and broad-line optical selection using PRIMUS spectroscopy. We will determine the overlap and uniqueness of samples created using each method, to quantify the completeness and biases inherent in AGN selection at each wavelength. This will lead to a constraint on the fraction of heavily obscured, Compton-thick AGN to z~1. To study the optical obscuration of AGN, we will use three recently-completed spectroscopic surveys -- PRIMUS, DEEP2, and our own Keck program -- to robustly determine the ratio of unobscured (broad-line) to obscured (non--broad-line) X-ray selected AGN as a function of luminosity from z~0.2 to z~3. We will utilize the well- understood selection functions and characterize the AGN completeness of each survey as a function of redshift, magnitude, and obscuration properties. This will allow us to correct for a variety of observational effects to measure the underlying joint redshift- and luminosity-dependence of optical obscuration, which has direct implications

  5. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1AGN-ionized gas, the stellar masses of the host galaxies and their star formation rates. We then investigate the relationships between AGN luminosities, specific star formation rates (sSFR) and outflow strengths W_{90} - the 90% velocity width of the [OIII]λ5007Å line power and a proxy for the AGN-driven outflow speed. Outflow strength W_{90} is independent of sSFR for AGN selected based on their mid-IR luminosity. This is in agreement with previous work that demonstrates that star formation is not sufficient to produce the observed ionized gas outflows which have to be powered by AGN activity. More importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  6. The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z ˜ 3

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Popesso, P.; Brusa, M.; Salvato, M.; Laigle, C.; McCracken, H. J.; Ilbert, O.

    2017-01-01

    We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the Very Large Array (VLA)-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92 per cent have redshift determinations from the Laigle et al. catalogue. Based on their radio luminosity, these objects have been divided into 644 AGN and 247 star-forming galaxies. By fixing the slope of the autocorrelation function to γ = 2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc for z ≤ 0.9) are, respectively, obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^{13.6^{+0.3}_{-0.6}} M⊙ for radio-selected AGN and M_min=10^{13.1^{+0.4}_{-1.6}} M⊙ for radio-emitting star-forming galaxies (M_min=10^{12.7^{+0.7}_{-2.2}} M⊙ for z ≤ 0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain /Mhalo ≲ 10- 2.7 for AGN, and /Mhalo ≲ 10- 2.4 in the case of star-forming galaxies. Furthermore, if we restrict to z ≲ 0.9 star-forming galaxies, we derive /Mhalo ≲ 10- 2.1, result that clearly shows the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes show that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.

  7. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  8. Mid- and Near-infrared spectral properties of a sample of Swift-BAT X-ray selected AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Malkan, Matthew A.; Ichikawa, Kohei; Ueda, Yoshihiro; Shirahata, M.; Nakagawa, Takao; Imanishi, Masatoshi; Oyabu, Shinki

    2015-08-01

    We present a comparative study of the mid- (MIR) to near-infrared (NIR) properties of a sample of X-ray selected AGNs from the Swift/Burst Alert Telescope (BAT) 70-month all-sky hard X-ray (14-195 keV) survey. For a sample of 78 AGNs, including both Seyfert 1 and Seyfert 2 sources with black hole masses derived from 2MASS K-band magnitudes and literature, we obtain spectroscopic data from the IRC (2.5 - 5 μm) and IRS (in the 5-14 μm band) instruments onboard the Akari and Spitzer satellites, respectively. We test possible correlations between the 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm polycyclic aromatic hydrocarbon (PAH) emission features, the continuum slope and CO optical depth, as well as CO2, H2O, and amorphous silicates. Using the 3.3, 6.2 and 11.3 μm PAH emission features as a proxy for the star-formation rate (SFR) we report the AGN type and Eddington-ratio dependences of circum-nuclear star formation.

  9. Selected photographic techniques, a compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A selection has been made of methods, devices, and techniques developed in the field of photography during implementation of space and nuclear research projects. These items include many adaptations, variations, and modifications to standard hardware and practice, and should prove interesting to both amateur and professional photographers and photographic technicians. This compilation is divided into two sections. The first section presents techniques and devices that have been found useful in making photolab work simpler, more productive, and higher in quality. Section two deals with modifications to and special applications for existing photographic equipment.

  10. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    SciTech Connect

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.; and others

    2013-01-20

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z {approx} 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z {approx} 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z {approx} 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z {approx}> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  11. Identifying Distant AGNs

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Barger, Amy; Tremonti, Christy

    2014-07-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([OIII]/Hβ versus [NII]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by AGN activity (BPT-AGN). Yet the BPT diagram is limited to z<0.5, the redshift at which [NII]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g-z color, [NeIII]λ3869, and [OII]λλ3726+3729 and can be used for galaxies out to z<1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray selected AGNs as BPT-SF.

  12. [Ultra] luminous infrared galaxies selected at 90 μm in the AKARI deep field: a study of AGN types contributing to their infrared emission

    NASA Astrophysics Data System (ADS)

    Małek, K.; Bankowicz, M.; Pollo, A.; Buat, V.; Takeuchi, T. T.; Burgarella, D.; Goto, T.; Malkan, M.; Matsuhara, H.

    2017-01-01

    Aims: The aim of this work is to characterize physical properties of ultra luminous infrared galaxies (ULIRGs) and luminous infrared galaxies (LIRGs) detected in the far-infrared (FIR) 90 μm band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the active galactic nucleus (AGN) contribution to the LIRGs and ULIRGs' infrared emission and which types of AGNs are related to their activity. Methods: We examined 69 galaxies at redshift ≥0.05 detected at 90 μm by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) (we use the results from CIGALE as a reference) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of ULIRGs and LIRGs, and to estimate their properties. Results: Based on the CIGALE SED fitting, we have found that LIRGs and ULIRGs selected at the 90 μm AKARI band compose 56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06 selected at infrared wavelengths. We have detected a significant AGN contribution to the mid-infrared luminosity for 63% of LIRGs and ULIRGs. Our LIRGs contain Type 1, Type 2, and intermediate types of AGN, whereas for ULIRGs, a majority (more than 50%) of AGN emission originates from Type 2 AGNs. The temperature-luminosity and temperature-mass relations for the dust component of ADF-S LIRGs and ULIRGs indicate that these relations are shaped by the dust mass and not by the increased dust heating. Conclusions: We conclude that LIRGs contain Type 1, Type 2, and intermediate types of AGNs, with an AGN contribution to the mid infrared emission at the median level of 13 ± 3

  13. Heavily Obscured AGN with SIMBOL-X

    SciTech Connect

    Ceca, R. Della; Caccianiga, A.; Severgnini, P.

    2009-05-11

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s)

  14. Heavily Obscured AGN with SIMBOL-X

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Caccianiga, A.; Severgnini, P.

    2009-05-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  15. A NEW INFRARED COLOR CRITERION FOR THE SELECTION OF 0 < z < 7 AGNs: APPLICATION TO DEEP FIELDS AND IMPLICATIONS FOR JWST SURVEYS

    SciTech Connect

    Messias, H.; Afonso, J.; Salvato, M.; Mobasher, B.; Hopkins, A. M.

    2012-08-01

    It is widely accepted that observations at mid-infrared (mid-IR) wavelengths enable the selection of galaxies with nuclear activity, which may not be revealed even in the deepest X-ray surveys. Many mid-IR color-color criteria have been explored to accomplish this goal and tested thoroughly in the literature. Besides missing many low-luminosity active galactic nuclei (AGNs), one of the main conclusions is that, with increasing redshift, the contamination by non-active galaxies becomes significant (especially at z {approx}> 2.5). This is problematic for the study of the AGN phenomenon in the early universe, the main goal of many of the current and future deep extragalactic surveys. In this work new near- and mid-IR color diagnostics are explored, aiming for improved efficiency-better completeness and less contamination-in selecting AGNs out to very high redshifts. We restrict our study to the James Webb Space Telescope wavelength range (0.6-27 {mu}m). The criteria are created based on the predictions by state-of-the-art galaxy and AGN templates covering a wide variety of galaxy properties, and tested against control samples with deep multi-wavelength coverage (ranging from the X-rays to radio frequencies). We show that the colors K{sub s} - [4.5], [4.5] - [8.0], and [8.0] - [24] are ideal as AGN/non-AGN diagnostics at, respectively, z {approx}< 1, 1 {approx}< z {approx}< 2.5, and z {approx}> 2.5-3. However, when the source redshift is unknown, these colors should be combined. We thus develop an improved IR criterion (using K{sub s} and IRAC bands, KI) as a new alternative at z {approx}< 2.5. KI does not show improved completeness (50%-60% overall) in comparison to commonly used Infrared Array Camera (IRAC) based AGN criteria, but is less affected by non-AGN contamination (revealing a >50%-90% level of successful AGN selection). We also propose KIM (using K{sub s} , IRAC, and MIPS 24 {mu}m bands, KIM), which aims to select AGN hosts from local distances to as far

  16. Probing large-scale structure with large samples of X-ray selected AGN. I. Baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid

    2014-12-01

    We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.

  17. Selected Logistics Models and Techniques.

    DTIC Science & Technology

    1984-09-01

    Programmable Calculator LCC...Program 27 TI-59 Programmable Calculator LCC Model 30 Unmanned Spacecraft Cost Model 31 iv I: TABLE OF CONTENTS (CONT’D) (Subject Index) LOGISTICS...34"" - % - "° > - " ° .° - " .’ > -% > ]*° - LOGISTICS ANALYSIS MODEL/TECHNIQUE DATA MODEL/TECHNIQUE NAME: TI-59 Programmable Calculator LCC Model TYPE MODEL: Cost Estimating DEVELOPED BY:

  18. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  19. Mapping the average AGN accretion rate in the SFR-M* plane for Herschel-selected galaxies at 0 < z ≤ 2.5

    NASA Astrophysics Data System (ADS)

    Delvecchio, I.; Lutz, D.; Berta, S.; Rosario, D. J.; Zamorani, G.; Pozzi, F.; Gruppioni, C.; Vignali, C.; Brusa, M.; Cimatti, A.; Clements, D. L.; Cooray, A.; Farrah, D.; Lanzuisi, G.; Oliver, S.; Rodighiero, G.; Santini, P.; Symeonidis, M.

    2015-05-01

    We study the relation of AGN accretion, star formation rate (SFR) and stellar mass (M*) using a sample of ≈8600 star-forming galaxies up to z = 2.5 selected with Herschel imaging in the GOODS and COSMOS fields. For each of them we derive SFR and M*, both corrected, when necessary, for emission from an active galactic nucleus (AGN), through the decomposition of their spectral energy distributions (SEDs). About 10 per cent of the sample are detected individually in Chandra observations of the fields. For the rest of the sample, we stack the X-ray maps to get average X-ray properties. After subtracting the X-ray luminosity expected from star formation and correcting for nuclear obscuration, we derive the average AGN accretion rate for both detected sources and stacks, as a function of M*, SFR and redshift. The average accretion rate correlates with SFR and with M*. The dependence on SFR becomes progressively more significant at z > 0.8. This may suggest that SFR is the original driver of these correlations. We find that average AGN accretion and star formation increase in a similar fashion with offset from the star-forming `main-sequence'. Our interpretation is that accretion on to the central black hole and star formation broadly trace each other, irrespective of whether the galaxy is evolving steadily on the main-sequence or bursting.

  20. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  1. Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack

    2008-01-01

    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.

  2. The Chandra Multi-wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-Ray-selected AGNs

    NASA Astrophysics Data System (ADS)

    Trichas, Markos; Green, Paul J.; Silverman, John D.; Aldcroft, Tom; Barkhouse, Wayne; Cameron, Robert A.; Constantin, Anca; Ellison, Sara L.; Foltz, Craig; Haggard, Daryl; Jannuzi, Buell T.; Kim, Dong-Woo; Marshall, Herman L.; Mossman, Amy; Pérez, Laura M.; Romero-Colmenero, Encarni; Ruiz, Angel; Smith, Malcolm G.; Smith, Paul S.; Torres, Guillermo; Wik, Daniel R.; Wilkes, Belinda J.; Wolfgang, Angie

    2012-06-01

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z ~ 5.5 and galaxies out to z ~ 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While ~58% of X-ray Seyferts (1042 erg s-1 < L 2 - 10 keV <1044 erg s-1) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L 2 - 10 keV >1044 erg s-1) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a

  3. AGN multi-wavelength identification and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF Team; PRIMUS Team

    2017-01-01

    I present results on AGN identification, selection biases, and host galaxy properties at z~2.3 and results on the relation between AGN accretion and star formation activity at z~0.8. In the MOSDEF survey, with a sample of X-ray, IR, and optically selected AGN at z~2.3, using rest-frame optical spectra obtained with the Keck/MOSFIRE instrument, I find clear selection biases in identifying AGN at these wavelengths. There is a strong bias against identifying AGN at any wavelength in low mass galaxies, and an additional bias against identifying IR AGN in the most massive galaxies. While AGN hosts span a wide range of SFR, IR AGN are mainly in less dusty galaxies with relatively higher SFR and optical AGN are in dusty galaxies with relatively lower SFR in our sample. X-ray AGN selection does not display a bias with host SFR. I also consider the relation between the growth of galaxies and their SMBHs using a large sample of X-ray AGN in the PRIMUS survey. I do not find a significant correlation between SFR and AGN instantaneous luminosity. However, I find a weak but significant correlation between the average luminosity of AGN and SFR, which likely reflects that AGN luminosities vary on shorter timescales than host galaxies SFR. My results indicate that AGN are also often hosted by quiescent galaxies, and within both the star-forming and quiescent galaxy populations the probability of hosting an AGN is a power-law distribution as a function of specific accretion rate. However, at a given stellar mass, I find that a star-forming galaxy is ~2-3 times more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation, while in quiescent galaxies increases with SFR.

  4. Testing different AGN tracers on a local sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pozzi, F.

    2016-08-01

    I will present our new study on a local sample of Seyfert galaxies selected at 12 micron. This sample, given its plenty of information, both photometric and spectroscopic, is a perfect sample to compare, from a statistical point of view, different AGN selection criteria, and AGN derived intrinsic properties. In detail, I will compare AGN activity derived from SED-fitting technique, X-ray luminosity and AGN activity traced by high excitation IR lines, like [NeV] and [OIV]. Moreover, for one particular obscured X-ray Compton-thick source, thanks also to the availability of ALMA data, I will derive a self-consistent overview of the physics behind the emission in different bands,by taking advantage of the photoionization code CLOUDY.

  5. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    SciTech Connect

    Nobuta, K.; Akiyama, M.; Ueda, Y.; Hiroi, K.; Ohta, K.; Iwamuro, F.; Yabe, K.; Moritani, Y.; Sumiyoshi, M.; Maihara, T.; Watson, M. G.; Silverman, J.; Tamura, N.; Kimura, M.; Takato, N.; Dalton, G.; Lewis, I.; Bonfield, D.; Lee, H.; Curtis-Lake, E.; and others

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIR spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.

  6. The Importance of Winds for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Fischer, T. C.; Gagne, J.

    2014-01-01

    Active galactic nuclei (AGN) are fed by accretion of matter onto supermassive black holes (SMBHs), generating huge amounts of radiation from very small volumes. AGN also provide feedback to their environments via mass outflows of ionized gas, which could play a critical role in the formation of large-scale structure in the early Universe, chemical enrichment of the intergalactic medium, and self-regulation of SMBH and galactic bulge growth. We provide an update on our research on the winds in nearby moderate-luminosity AGN, In particular, we concentrate on winds that occur on relatively large scales (hundreds of parsecs) that are revealed through spatially resolved HST spectra of emission-line gas in the narrow line regions (NLRs) of nearby AGN. We discuss the techniques for measuring the mass outflow rates and kinetic luminosities of these AGN winds and gauge their importance for providing significant AGN feedback.

  7. Active galactic nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Bär, Rudolf E.; Weigel, Anna K.; Sartori, Lia F.; Oh, Kyuseok; Koss, Michael; Schawinski, Kevin

    2017-04-01

    In order to perform a more complete census of active galactic nuclei (AGN) in the local Universe, we investigate the use of the He II λ4685 emission line diagnostic diagram by Shirazi & Brinchmann (2012) in addition to the standard methods based on other optical emission lines. The He II-based diagnostics is more sensitive to AGN ionization in the presence of strong star formation than conventional line diagnostics. We survey a magnitude-limited sample of 63 915 galaxies from the Sloan Digital Sky Survey Data Release 7 at 0.02 < z < 0.05 and use both the conventional BPT emission line diagnostic diagrams, as well as the He II diagram to identify AGN. In this sample, 1075 galaxies are selected as AGN using the BPT diagram, while additional 234 galaxies are identified as AGN using the He II diagnostic diagram, representing a 22 per cent increase of AGN in the parent galaxy sample. We explore the host galaxy properties of these new He II-selected AGN candidates and find that they are most common in star-forming galaxies on the blue cloud and on the main sequence where ionization from star formation is most likely to mask AGN emission in the BPT lines. We note in particular a high He II AGN fraction in galaxies above the high-mass end of the main sequence where quenching is expected to occur. We use archival Chandra observations to confirm the AGN nature of candidates selected through He II-based diagnostic. Finally, we discuss how this technique can help inform galaxy/black hole coevolution scenarios.

  8. Active Galactic Nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Weigel, Anna; Sartori, Lia F.; Oh, Kyuseok; Koss, Michael; Schawinski, Kevin

    2017-01-01

    In order to perform a more complete census of active galactic nuclei (AGN) in the local Universe, we investigate the use of the He II emission line diagnostic diagram by Shirazi & Brinchmann (2012) in addition to the standard methods based on other optical emission lines. The He II based diagnostics is more sensitive to AGN ionization in the presence of strong star formation than conventional line diagnostics. We survey a magnitude-limited sample of 81,192 galaxies from the Sloan Digital Sky Survey Data Release 7 at 0.02 < z < 0.05 and apply both the conventional BPT emission line diagnostic diagrams, as well as the He II diagram to identify AGN. In this sample, 1,075 galaxies are selected as AGN using the BPT diagram, while an additional 234 galaxies are identified as AGN using the He II diagnostic, representing a 22% increase of AGN in the parent galaxy sample. We use archival Chandra observations to confirm the AGN nature of candidates selected through He II based diagnostic. Finally, we explore the host galaxy properties of these new He II selected AGN candidates and find that they are most common in star-forming galaxies on the blue cloud and on the main sequence where ionization from star-formation is most likely to mask AGN emission in the BPT lines. We note in particular a high He II AGN fraction in galaxies above the high-mass end of the main sequence where quenching is expected to occur. We discuss how this technique can help inform galaxy/black hole co-evolution scenarios.

  9. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  10. Detecting Dual AGN at High Redshift

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.

    2012-01-01

    The existence of supermassive black holes (SMBHs) in most, if not all, galaxies, along with observations of galaxy mergers, suggests that pairs of SMBHs should exist for some time in the merger remnant. Observational evidence for these systems at kpc-scale separations (i.e. dual AGN) has dramatically increased recently through a combination of spectral and morphological selections. I discuss observations of CXOXBJ142607.6+353351 (CXOJ1426+35), a candidate dual AGN at z=1.175, and put its properties, including significant obscuration, within the context of other candidate/confirmed dual AGN at lower redshifts. Though dual AGN are expected to be more common at higher redshifts, they are more difficult to detect. Furthermore, adding to the difficulties of detection are a number of other physical mechanisms which can mimic the spectroscopic signature of two Type 2 AGN. In particular, I will discuss the possibility of strong outflows from an AGN. These outflow phenomena can be an important feedback mechanism in galaxies and are apparently common in AGN, making them a viable alternative to the dual AGN scenario. Based on our candidate's luminosity and emission line intensities, we find that an outflow is a possibility. If this is the case, such an outflow would be especially strong and has implications for AGN feedback in galaxies. However, the dual AGN scenario cannot be ruled out, and at z=1.175, the two putative AGN could potentially be resolved with Chandra. Other candidate dual AGN at similar redshifts and with significant obscuration could also be confirmed this way. This research was sponsored by the Strategic University Research Partnership Program, the National Aeronautics and Space Administration and the Arkansas NASA EPSCoR program.

  11. Probing AGN Accretion Physics through AGN Variability: Insights from Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal Pramod

    that the DRW is insufficient to characterize AGN variability. We provide a new approach to probing accretion physics with variability by decomposing observed light curves into a set of impulses that drive diffusive processes using C-ARMA models. Applying our approach to Kepler data, we demonstrate how the time-scales reported in the literature can be interpreted in the context of the growth and decay time-scales for flux perturbations and tentatively identify the flux perturbation driving process with accretion disk turbulence on length-scales much longer than the characteristic eddy size. Our analysis technique is applicable to (1) studying the connection between AGN sub-type and variability properties; (2) probing the origins of variability by studying the multi-wavelength behavior of AGN; (3) testing numerical simulations of accretion flows with the goal of creating a library of the variability properties of different accretion mechanisms; (4) hunting for changes in the behavior of the accretion flow by block-analyzing observed light curves; and (5) constraining the sampling requirements of future surveys of AGN variability.

  12. A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-09-01

    Despite their reputation as being `red and dead', the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of `active' BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG `activity' with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG `activity' and the intracluster medium.

  13. Product Mix Selection Using AN Evolutionary Technique

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Vasant, Pandian

    2009-08-01

    This paper proposes an evolutionary technique for the solution of a real—life industrial problem and particular for the product mix selection problem. The evolutionary technique is a combination of a genetic algorithm that preserves the feasibility of the trial solutions with penalties and some local optimization method. The goal of this paper has been achieved in finding the best near optimal solution for the profit fitness function respect to vagueness factor and level of satisfaction. The findings of the profit values will be very useful for the decision makers in the industrial engineering sector for the implementation purpose. It's possible to improve the solutions obtained in this study by employing other meta-heuristic methods such as simulated annealing, tabu Search, ant colony optimization, particle swarm optimization and artificial immune systems.

  14. Approximation techniques of a selective ARQ protocol

    NASA Astrophysics Data System (ADS)

    Kim, B. G.

    Approximations to the performance of selective automatic repeat request (ARQ) protocol with lengthy acknowledgement delays are presented. The discussion is limited to packet-switched communication systems in a single-hop environment such as found with satellite systems. It is noted that retransmission of errors after ARQ is a common situation. ARQ techniques, e.g., stop-and-wait and continuous, are outlined. A simplified queueing analysis of the selective ARQ protocol shows that exact solutions with long delays are not feasible. Two approximation models are formulated, based on known exact behavior of a system with short delays. The buffer size requirements at both ends of a communication channel are cited as significant factor for accurate analysis, and further examinations of buffer overflow and buffer lock-out probability and avoidance are recommended.

  15. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  16. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    SciTech Connect

    Ajello, M.; Alexander, D.M.; Greiner, J.; Madejski, G.M.; Gehrels, N.; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  17. Spectral Energy Distributions of Quasars and AGN

    NASA Astrophysics Data System (ADS)

    Wilkes, B.

    2004-06-01

    Active Galactic Nuclei (AGN) are multiwavelength emitters. To have any hope of understanding them, or even to determine their energy output, we must observe them in multiple wavebands using many telescopes. I will review what we have learned from broad-band observations of relatively bright, low-redshift AGN over the past ˜ 15 years. AGN can be found at all wavelengths but each provides a different view of the intrinsic population, often with little overlap between samples selected in different wavebands. I look forward to the full view of the intrinsic population which we will obtain over the next few years with surveys using today's new, sensitive observatories. These surveys are already finding enough new and different AGN candidates to pose the question ``What IS an AGN?".

  18. AGN contribution to the total IR luminosity in Herschel selected galaxies out to z~1.5

    NASA Astrophysics Data System (ADS)

    Baronchelli, Ivano; Scarlata, Claudia; Rodighiero, Giulia; Berta, Stefano; Sedgwick, Christopher; Vaccari, Mattia; Franceschini, Alberto; Urrutia, Tanya; Malkan, Matthew Arnold; Salvato, Mara; Bonato, Matteo; Serjeant, Stephen; Pearson, Chris; Marchetti, Lucia

    2016-01-01

    In the past decade, a growing amount of evidence suggests a tight link between the growth of Active Galactic Nuclei (AGN) and that of their host galaxies. X-ray studies on the Super Massive Black Holes (SMBHs) activity indicate the existence of a Black Hole Accretion Rate (BHAR) "main sequence", similar to the "main sequence" observed in star-forming galaxies, between the star-formation rate (SFR) and stellar mass (M*). We use the multi wavelength data from the SIMES survey to study the optical to sub-mm spectral energy distribution (SED) of galaxies identified at 250 μm by the Herschel Space Observatory. In particular, for galaxies in the 0.2-1.5 redshift range, we explore the relations among galaxy's stellar mass, SFR, and SMBH accretion rate. The deep Spitzer-IRAC/MIPS (3.6, 4.5 and 24 μm) together with the deep AKARI-IRC observations (7, 11 and 15 μm) allow us to constrain the critical spectral region where the dusty torus emission of AGNs is more prominent. Thanks to the Herschel-SPIRE observations, we can also precisely measure the SFR from the bolometric (i.e. 8-1000 μm) far-IR emission. Using this multi-wavelength approach we confirm the existence, at z<0.5, of the M*-BHAR "main sequence". The measured average ratio between BHAR and SFR is close to the value required to maintain the SMBH-to-M* ratio of ˜103 and decreases at higher specific SFRs (SSFR=SFR/M*). Finally, combining our observations with literature results, we show that the slope of the BHAR main sequence is evolving with redshift between z~0 and z~2.

  19. The BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Berney, Simon; Schawinski, Kevin; Balokovic, Mislav; Baronchelli, Linda; Gehrels, Neil; Stern, Daniel; Mushotzky, Richard; Veilleux, Sylvain; Ueda, Yoshihiro; Crenshaw, D. Michael; Harrison, Fiona; Fischer, Travis C.; Treister, Ezequiel; BASS Team; Swift BAT Team

    2017-01-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at z<0.2. Starting from an all-sky catalog of AGN detected based on their 14-195 keV flux from the 70-month Swift/BAT catalog, we analyze a total of 1279 optical spectra, taken from twelve dierent telescopes, for a total of 642 spectra of unique AGN. We present the absorption and emission line measurements as well as black hole masses and accretion rates for the majority of obscured and un-obscured AGN (473), representing more than a factor of 10 increase from past studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics. Additionally, we discuss follow-on efforts to study the variation of [OIII] to Xray measurements, a new method to measure accretion rates from using line ratios, a sample of 100 AGN observed with NIR spectroscopy, and an effort to measure the accretion rates and obscuration with merger stage in a subsample of mergers.

  20. Identification of apolipoprotein using feature selection technique

    PubMed Central

    Tang, Hua; Zou, Ping; Zhang, Chunmei; Chen, Rong; Chen, Wei; Lin, Hao

    2016-01-01

    Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict apolipoproteins. In the model, the apolipoproteins and non-apolipoproteins were collected to form benchmark dataset. On the basis of the dataset, we extracted the g-gap dipeptide composition information from residue sequences to formulate protein samples. To exclude redundant information or noise, the analysis of various (ANOVA)-based feature selection technique was proposed to find out the best feature subset. The support vector machine (SVM) was selected as discrimination algorithm. Results show that 96.2% of sensitivity and 99.3% of specificity were achieved in five-fold cross-validation. These findings open new perspectives to improve apolipoproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease. PMID:27443605

  1. AGN identification: what lies ahead

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Sotiria

    2016-08-01

    Classification has been one the first concerns of modern astronomy, starting from stars sorted in the famous Harvard classification system and promptly followed by the morphological classification of galaxies by none other than Edwin Hubble himself (Hubble 1926). Both classification schema are essentially connected to the physics of the objects reflecting the temperature for stars and e.g. the age of the star population for galaxies. Systematic observations of galaxies have revealed the intriguing class of Active Galactic Nuclei (AGN), objects of tremendous radiation that do not share the same properties of what we now call normal galaxies. Observations have led to the definition of distinct and somewhat arbitrary categories (Seyfert galaxies, quasars, QSO, radio AGN, etc), essentially rediscovering the many faces of the same phenomenon, up until the unification of AGN (Antonucci 1993, Urry and Padovani 1995). Even after the realization that all AGN have the same engine powering their amazing radiation, astronomers are still using and refining the selection criteria within their favorite electromagnetic range in the hope to better understand the impact of the AGN phenomenon in the greater context of galaxy evolution. In the dawn of Big Data astronomy we find ourselves equipped with new tools. I will present the prospects of machine learning methods in better understanding the AGN population. Namely, I will show results from supervised learning algorithms whereby a labeled training set is used to amalgamate decision tree(s) (Fotopoulou et al., 2016) or neural network(s), and unsupervised learning where the algorithm performs clustering analysis of the full dataset in a multidimensional space identifying clusters of objects sharing potentially the same physical properties (Fotopoulou in prep.).

  2. Searching for Fossil Evidence of AGN Feedback in WISE-selected Stripe-82 Galaxies by Measuring the Thermal Sunyaev–Zel’dovich Effect with the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Spacek, Alexander; Scannapieco, Evan; Cohen, Seth; Joshi, Bhavin; Mauskopf, Philip

    2017-01-01

    We directly measure the thermal energy of the gas surrounding galaxies through the thermal Sunyaev–Zel’dovich (tSZ) effect. We perform a stacking analysis of microwave background images from the Atacama Cosmology Telescope, around 1179 massive quiescent elliptical galaxies at 0.5 ≤ z ≤ 1.0 (“low-z”) and 3274 galaxies at 1.0 ≤ z ≤ 1.5 (“high-z”), selected using data from the Wide-field Infrared Survey Explorer All-Sky Survey and the Sloan Digital Sky Survey (SDSS) within the SDSS Stripe-82 field. The gas surrounding these galaxies is expected to contain energy from past episodes of active galactic nucleus (AGN) feedback, and after using modeling to subtract undetected contaminants, we detect a tSZ signal at a significance of 0.9σ for our low-z galaxies and 1.8σ for our high-z galaxies. We then include data from the high-frequency Planck bands for a subset of 227 low-z galaxies and 529 high-z galaxies and find low-z and high-z tSZ detections of 1.0σ and 1.5σ , respectively. These results indicate an average thermal heating around these galaxies of ({5.6}-5.6+5.9)× {10}60 erg for our low-z galaxies and ({7.0}-4.4+4.7)× {10}60 erg for our high-z galaxies. Based on simple heating models, these results are consistent with gravitational heating without additional heating due to AGN feedback.

  3. Innovative safety valve selection techniques and data.

    PubMed

    Miller, Curt; Bredemyer, Lindsey

    2007-04-11

    The new valve data resources and modeling tools that are available today are instrumental in verifying that that safety levels are being met in both current installations and project designs. If the new ISA 84 functional safety practices are followed closely, good industry validated data used, and a user's maintenance integrity program strictly enforced, plants should feel confident that their design has been quantitatively reinforced. After 2 years of exhaustive reliability studies, there are now techniques and data available to support this safety system component deficiency. Everyone who has gone through the process of safety integrity level (SIL) verification (i.e. reliability math) will appreciate the progress made in this area. The benefits of these advancements are improved safety with lower lifecycle costs such as lower capital investment and/or longer testing intervals. This discussion will start with a review of the different valve, actuator, and solenoid/positioner combinations that can be used and their associated application restraints. Failure rate reliability studies (i.e. FMEDA) and data associated with the final combinations will then discussed. Finally, the impact of the selections on each safety system's SIL verification will be reviewed.

  4. Techniques of laparoscopic cholecystectomy: Nomenclature and selection.

    PubMed

    Haribhakti, Sanjiv P; Mistry, Jitendra H

    2015-01-01

    There are more than 50 different techniques of laparoscopic cholecystectomy (LC) available in literature mainly due to modifications by surgeons in aim to improve postoperative outcome and cosmesis. These modifications include reduction in port size and/or number than what is used in standard LC. There is no uniform nomenclature to describe these different techniques so that it is not possible to compare the outcomes of different techniques. We brief the advantages and disadvantages of each of these techniques and suggest the situation where particular technique would be useful. We also propose a nomenclature which is easy to remember and apply, so that any future comparison will be possible between the techniques.

  5. Techniques of laparoscopic cholecystectomy: Nomenclature and selection

    PubMed Central

    Haribhakti, Sanjiv P.; Mistry, Jitendra H.

    2015-01-01

    There are more than 50 different techniques of laparoscopic cholecystectomy (LC) available in literature mainly due to modifications by surgeons in aim to improve postoperative outcome and cosmesis. These modifications include reduction in port size and/or number than what is used in standard LC. There is no uniform nomenclature to describe these different techniques so that it is not possible to compare the outcomes of different techniques. We brief the advantages and disadvantages of each of these techniques and suggest the situation where particular technique would be useful. We also propose a nomenclature which is easy to remember and apply, so that any future comparison will be possible between the techniques. PMID:25883450

  6. Properties and evolution of radio-AGN hosts since z~4

    NASA Astrophysics Data System (ADS)

    Delvecchio, Ivan

    2016-08-01

    We analyse the multi-wavelength properties of about 6200 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively-efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<2, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples.

  7. Properties And Evolution Of Radio-AGN Hosts Since z ~ 4

    NASA Astrophysics Data System (ADS)

    Delvecchio, Ivan; Smolčić, V.; Zamorani, G.; Del P. Lagos, C.; Berta, S.; Delhaize, J.; Baran, N.; Alexander, D.; Rosario, D.; et al.

    2016-10-01

    We analyse the multi-wavelength properties of about 7500 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively- efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<1.5, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples.

  8. Hiding in plain sight - recovering clusters of galaxies with the strongest AGN in their cores

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Ebeling, H.; Burgett, W. S.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2017-03-01

    A key challenge in understanding the feedback mechanism of active galactic nucleus (AGN) in Brightest Cluster Galaxies (BCGs) is the inherent rarity of catching an AGN during its strong outburst phase. This is exacerbated by the ambiguity of differentiating between AGN and clusters in X-ray observations. If there is evidence for an AGN then the X-ray emission is commonly assumed to be dominated by the AGN emission, introducing a selection effect against the detection of AGN in BCGs. In order to recover these 'missing' clusters, we systematically investigate the colour-magnitude relation around some ∼3500 ROSAT All-Sky Survey selected AGN, looking for signs of a cluster red sequence. Amongst our 22 candidate systems, we independently rediscover several confirmed systems, where a strong AGN resides in a central galaxy. We compare the X-ray luminosity to red sequence richness distribution of our AGN candidate systems with that of a similarly selected comparison sample of ∼1000 confirmed clusters and identify seven 'best' candidates (all of which are BL Lac objects), where the X-ray flux is likely to be a comparable mix between cluster and AGN emission. We confirm that the colours of the red sequence are consistent with the redshift of the AGN, that the colours of the AGN host galaxy are consistent with AGN, and, by comparing their luminosities with those from our comparison clusters, confirm that the AGN hosts are consistent with BCGs.

  9. Xray cavities in a sample of 83 SPT-selected clusters galaxies. Tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2

    SciTech Connect

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel’dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 10(8) to several ${{10}^{9}}\\,{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  10. AGN flickering on 10-100 kyr timescales

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Kill, Bill; Maksym, Peter; Koss, Michael; Argo, Megan; Urry, Meg; Wong, Ivy; Lintott, Chris

    2016-08-01

    The study of AGN variability on timescales of 10^4-10^5 years is important in order to understand the BH - host galaxy interaction and coevolution. The discovery of "Hanny's Voorwerp" (HV), an extended emission line region associated with the nearby galaxy IC 2497, provided us with a laboratory to study AGN variability over such timescales. HV was illuminated by a strong quasar in IC 2497, but this quasar significantly shut down in the last 200 kyrs. Thanks to its recent shutdown we can now explore the host galaxy unimpeded by the presence of a quasar dominating the observations, while the Voorwerp preserves the echoes of its past activity. Recent studies on the optical properties of hard X-ray selected AGN suggest that AGN may flicker on and off hundreds or thousands times with each burst lasting ~10^5 yrs. Systems similar to IC 2497 and HV, the so-called Voorwerpjes, allow us to constrain the last stages of the AGN lifecycle. On the other hand, we recently suggested that the switch on phase may be observed in the so-called optically elusive AGN. In this talk I will review both observational evidence and results from simulation work which support this picture, and explain how optically elusive AGN and Voorwerpjes galaxies can help us to understand different phases of the AGN lifecycle. Moreover, I will discuss possible implications for AGN feedback, BH - host galaxy coevolution, and the analogy between AGN and X-ray binaries accretion physics.

  11. The VIMOS VLT Deep Survey: the faint type-1 AGN sample

    NASA Astrophysics Data System (ADS)

    Gavignaud, I.; Bongiorno, A.; Paltani, S.; Mathez, G.; Zamorani, G.; Møller, P.; Picat, J. P.; Le Brun, V.; Marano, B.; Le Fèvre, O.; Bottini, D.; Garilli, B.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnaboldi, M.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Bondi, M.; Busarello, G.; Cucciati, O.; de la Torre, S.; Gregorini, L.; Lamareille, F.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.; Vergani, D.

    2006-10-01

    We present the type-1 active galactic nuclei (AGN) sample extracted from the VIMOS VLT Deep Survey's first observations of 21 000 spectra in 1.75 deg^2. This sample, which is purely magnitude-limited and free of morphological or color-selection biases, contains 130 broad-line AGN (BLAGN) spectra with redshift up to 5. Our data are divided into a wide (I_AB ≤ 22.5) and a deep (I_AB ≤ 24) subsample containing 56 and 74 objects, respectively. Because of its depth and selection criteria, this sample is uniquely suited for studying the population of faint type-1 AGN. Our measured surface density (~472 ± 48 BLAGN per square degree with I_AB ≤ 24) is significantly higher than that of any other optically selected sample of BLAGN with spectroscopic confirmation. By applying a morphological and color analysis to our AGN sample, we find that (1) ~23 % of the AGN brighter than I_AB=22.5 are classified as extended, and this percentage increases to ~42% for those with z < 1.6; (2) a non-negligible fraction of our BLAGN are lying close to the color-space area occupied by stars in the u^*-g' versus g'-r' color-color diagram. This leads us to the conclusion that the classical optical-ultraviolet preselection technique, if employed at such deep magnitudes (I_AB=22.5) in conjuction with a preselection of point-like sources, can miss up to ~35% of the AGN population. Finally, we present a composite spectrum of our sample of objects. While the continuum shape is very similar to that of the SDSS composite at short wavelengths, it is much redder than that of the SDSS composite at λ ≥ 3000 Å. We interpret this as due to significant contamination from emission of the host galaxies, as expected from the faint absolute magnitudes sampled by our survey.

  12. Study of the mid-infrared properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Severgnini, P.; Caccianiga, A.; della Ceca, R.

    2008-10-01

    The comprehension of the physical properties of obscured AGNs is one of the main goals of the high energy astronomy given their key role in tracing the accretion history of the Universe. Although X-ray and infrared data of AGN with a different level of absorption could provide a direct tool to test the predictions of the AGN models, only few sparse SED of obscured AGN are available so far. We present here the results obtained from Spitzer observations of a statistically complete sample of obscured AGN drawn from the XMM-Newton Hard Bright Sample. This is the largest hard X-ray sample with a complete spectroscopic identification. The Spitzer data, combined with good X-ray and optical spectroscopic data, has allowed us to define powerful diagnostic plots to select heavily obscured AGNs and to build up their spectral energy distributions.

  13. Discovering highly obscured AGN with the Swift-BAT 100-month survey

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Ajello, Marco; Comastri, Andrea; Cusumano, Giancarlo; La Parola, Valentina; Segreto, Alberto

    2017-01-01

    In this talk, I present a new technique to find highly obscured AGN using the 100-month Swift-BAT survey. I will show the results of the combined Chandra and BAT spectral analysis in the 0.3-150 keV band of seven Seyfert 2 galaxies selected from the 100-month BAT catalog. We selected nearby (z<0.03) sources lacking of a ROSAT counterpart and never previously observed in the 0.3-10 keV energy range. All the objects are significantly obscured, having NH>1E23 cm-2 at a >99% confidence level, and one to three sources are candidate Compton thick Active Galactic Nuclei (CT-AGN), i.e., have NH>1E24 cm-2.Since the selection criteria we adopted have been extremely effective in detecting highly obscured AGN, further observations of these and other Seyfert 2 galaxies selected from the BAT 100-month catalog will allow us to create a statistically significant sample of highly obscured AGN, therefore better understanding the physics of the obscuration processes.

  14. THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF z = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Sajina, Anna; Roebuck, Eric; Yan, Lin; Armus, Lee; Díaz-Santos, Tanio; Stierwalt, Sabrina

    2015-11-20

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3–2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S{sub 24}, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2–1000 μm). We fit the far-IR emission using a two-temperature modified blackbody to measure cold and warm dust temperatures (T{sub c} and T{sub w}). We find that T{sub c} does not depend on mid-IR classification, while T{sub w} shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to L{sub IR}. AGNs, composites, and SFGs separate in S{sub 8}/S{sub 3.6} and S{sub 250}/S{sub 24}, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S{sub 24} > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.

  15. AGN Absorption Linked to Host Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stéphanie

    2014-07-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection.

  16. The Evolution of Obscuration in AGN

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, M.; Virani, S.

    2006-09-01

    One fundamental ingredient in our understanding of the AGN population is the ratio of obscured to unobscured AGN and whether this ratio depends on other parameters like intrinsic luminosity or redshift. Observationally, deep X-ray surveys found that the obscured AGN fraction depends on luminosity. However, the dependence on redshift is less clear. In this work, we constructed the largest sample to date of AGN selected in hard X-rays, containing a total of 1229 sources, 631 of them obscured, with a high spectroscopic completeness in order to study the possible dependence of the fraction of obscured sources with redshift and/or luminosity. We confirm that this fraction decreases with increasing luminosity as previously reported and found that at the same time it increases with increasing redshift. This is the first time that this evolution is significantly detected using only optical spectroscopy to separate obscured and unobscured AGN. Additionally, we use the spectral shape and intensity of the X-ray background as a separate constraint on the evolution of the obscured AGN fraction finding consistent results. This result can be interpreted as an evolution in the location of the obscuration, from the central parsec-scale region (the torus) at low redshift to kiloparsec scales (the host galaxy) at high redshift, as it is known that most galaxies contained more dust in the past. Using these results, we calculate the integrated bolometric AGN emission finding it to be at most 5% of the total extragalactic light. Hence, while AGN contribute most of the light at X-ray wavelengths, they constitute only a small fraction of the integrated extragalactic light. We thank the support of the Centro de Astrof\\'{\\i}sica FONDAP and from NASA/{\\it INTEGRAL} grant NNG05GM79G.

  17. A Site Selection Technique for Martian Habitats

    NASA Astrophysics Data System (ADS)

    Kerr, Mark E.

    2004-02-01

    The human exploration of Mars will require the identification of a region that includes the largest number of beneficial sites and properties. Because of the numerous relevant parameters and the complexity of the Martian surface an automated technique was tested using Ian L. McHarg's (1969) sieve mapping method. Beginning with a global inventory of features areas of interest were determined by astrobiology, geology and other mission parameters, with the goal of finding a series of possible habitat sites to support a traverse mission through Utopia Planitia, Isidis, and Elysium Planitia. We identified important occurrences of hydrogen isotopes, centers of past volcanic activity, significant impact craters and possible evidence of past and present water and superimposed these locations to determine the best site for the habitat, which is situated between the Elysium volcanoes, Isidis, Gale Crater.

  18. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  19. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  20. The AGN Population and the Cosmic X-ray Background

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, C. Meg; Schawinski, Kevin

    2015-08-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (Lx~1044 erg/s) sources (Seyfert-type AGN), at z~0.5-1 and in heavily obscured but Compton-thin, NH~1023 cm-2, systems.However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. Using a combination of X-ray stacking and multi wavelength selection techniques we constrain the amount of black hole accretion as a function of cosmic history, from z~0 to z~6. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations.We finally investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~0 to z~3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth.

  1. The Role of Star Formation and AGN in Dust Heating of z=0.3-2.8 Galaxies - II. Informing IR AGN Fraction Estimates through Simulations

    NASA Astrophysics Data System (ADS)

    Roebuck, Eric; Sajina, Anna; Hayward, Christopher C.; Pope, Alexandra; Kirkpatrick, Allison; Hernquist, Lars; Yan, Lin

    2016-12-01

    A key question in extragalactic studies is the determination of the relative roles of stars and active galactic nuclei (AGNs) in powering dusty galaxies at z ˜ 1-3 where the bulk of star formation and AGN activity took place. In Paper I, we present a sample of 336 24 μm selected (Ultra)Luminous Infrared Galaxies, (U)LIRGs, at z˜ 0.3-2.8, where we focus on determining the AGN contribution to the IR luminosity. Here, we use hydrodynamic simulations with dust radiative transfer of isolated and merging galaxies to investigate how well the simulations reproduce our empirical IR AGN fraction estimates and determine how IR AGN fractions relate to the UV-mm AGN fraction. We find that: (1) IR AGN fraction estimates based on simulations are in qualitative agreement with the empirical values when host reprocessing of the AGN light is considered; (2) for star-forming galaxy (SFG)-AGN composites our empirical methods may be underestimating the role of AGN, as our simulations imply \\gt 50 % AGN fractions, ˜ 3× higher than previous estimates; (3) 6% of our empirically classified SFGs have AGN fractions ≳50%. While this is a small percentage of SFGs, if confirmed it would imply that the true number density of AGNs may be underestimated; (4) this comparison depends on the adopted AGN template—those that neglect the contribution of warm dust lower the empirical fractions by up to two times; and (5) the IR AGN fraction is only a good proxy for the intrinsic UV-mm AGN fraction when the extinction is high ({A}V≳ 1 or up to and including coalescence in a merger).

  2. The AT20G view of Swift/BAT selected AGN: high-frequency radio waves meet hard X-rays

    NASA Astrophysics Data System (ADS)

    Burlon, D.; Ghirlanda, G.; Murphy, T.; Chhetri, R.; Sadler, E.; Ajello, M.

    2013-05-01

    We cross-matched the 6-year Swift/Burst Alert Telescope (BAT) survey of active galactic nuclei (AGN) with the AT20G radio survey of the southern sky, which is one of the largest high-frequency radio surveys available. With these data we investigated the possible correlation between the radio and the X-ray emission at the highest radio and X-ray frequencies. We found 37 AGN with a high probability of association (>80 per cent), among which 19 are local Seyfert galaxies (with median redshift z = 0.03) and 18 blazars. We found that ≈20 per cent of the AGN detected in hard X-rays are also bright radio sources at 20 GHz, but the apparent correlation between the radio and hard X-ray luminosity is completely driven by the different median redshifts of the two subgroups of AGN. When we consider only the local Seyfert sample we find no evidence of a correlation between their 20 GHz and 15-55 keV power. Therefore it appears that at high frequencies the radio-X connection, which had been previously observed at lower frequencies, disappears. The disappearance of the radio-X correlation at high radio and X-ray frequencies could be tested through Very Long Baseline Interferometry and the use of the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite.

  3. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  4. Mini-Survey on SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. There is a common wisdom that every massive galaxy has a massive black hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low $L_X$ (at all $z$). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of {it optically-selected samples} shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [O{\\sc iii}] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a min-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([O{\\sc iii}]) to check the relation with the $L_X$ observed with Swift.

  5. Herschel FIR counterparts of selected Lyα emitters at z ~ 2.2. Fast evolution since z ~ 3 or missed obscured AGNs?

    NASA Astrophysics Data System (ADS)

    Bongiovanni, A.; Oteo, I.; Cepa, J.; Pérez García, A. M.; Sánchez-Portal, M.; Ederoclite, A.; Aguerri, J. A. L.; Alfaro, E. J.; Altieri, B.; Andreani, P.; Aparicio-Villegas, M. T.; Aussel, H.; Benítez, N.; Berta, S.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cava, A.; Cerviño, M.; Chulani, H.; Cimatti, A.; Cristóbal-Hornillos, D.; Daddi, E.; Dominguez, H.; Elbaz, D.; Fernández-Soto, A.; Förster Schreiber, N.; Genzel, R.; Gómez, M. F.; González Delgado, R. M.; Grazian, A.; Gruppioni, C.; Herreros, J. M.; Iglesias Groth, S.; Infante, L.; Lutz, D.; Magnelli, B.; Magdis, G.; Maiolino, R.; Márquez, I.; Martínez, V. J.; Masegosa, J.; Moles, M.; Molino, A.; Nordon, R.; Del Olmo, A.; Perea, J.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Prada, F.; Quintana, J. M.; Riguccini, L.; Rodighiero, G.; Saintonge, A.; Sánchez, S. F.; Santini, P.; Shao, L.; Sturm, E.; Tacconi, L.; Valtchanov, I.

    2010-09-01

    Lyα emitters (LAEs) are seen everywhere in the redshift domain from local to z ~ 7. Far-infrared (FIR) counterparts of LAEs at different epochs could provide direct clues on dust content, extinction, and spectral energy distribution (SED) for these galaxies. We search for FIR counterparts of LAEs that are optically detected in the GOODS-North field at redshift z ~ 2.2 using data from the Herschel Space Telescope with the Photodetector Array Camera and Spectrometer (PACS). The LAE candidates were isolated via color-magnitude diagram using the medium-band photometry from the ALHAMBRA Survey, ancillary data on GOODS-North, and stellar population models. According to the fitting of these spectral synthesis models and FIR/optical diagnostics, most of them seem to be obscured galaxies whose spectra are AGN-dominated. From the analysis of the optical data, we have observed a fraction of AGN or composite over source total number of ~0.75 in the LAE population at z ~ 2.2, which is marginally consistent with the fraction previously observed at z = 2.25 and even at low redshift (0.2 < z < 0.45), but significantly different from the one observed at redshift ~3, which could be compatible either with a scenario of rapid change in the AGN fraction between the epochs involved or with a non detection of obscured AGN in other z = 2-3 LAE samples due to lack of deep FIR observations. We found three robust FIR (PACS) counterparts at z ~ 2.2 in GOODS-North. This demonstrates the possibility of finding dust emission in LAEs even at higher redshifts. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (pages 6 to 9) are only available in electronic form at http://www.aanda.org

  6. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  7. Novel technique for mode selection in a multimode fiber laser.

    PubMed

    Daniel, J M O; Chan, J S P; Kim, J W; Sahu, J K; Ibsen, M; Clarkson, W A

    2011-06-20

    A simple technique for transverse mode selection in a large-mode-area (multimode) fiber laser is described. The technique exploits the different spectral responses of feedback elements based on a fiber Bragg grating and a volume Bragg grating to achieve wavelength-dependent mode filtering. This approach has been applied to a cladding-pumped thulium-doped fiber laser with a multimode core to achieve a single-spatial-mode output beam with a beam propagation factor (M2) of 1.05 at 1923 nm. Without mode selection the free-running fiber laser has a multimode output beam with an M2 parameter of 3.3. Selective excitation of higher order modes is also possible via the technique and preliminary results for laser oscillation on the LP11 mode are also discussed along with the prospects for scaling to higher power levels.

  8. A Multi-Frequency Study of an X-ray Selected Sample of AGN II: Line Emission Studies and the X-ray Luminosity Function

    NASA Astrophysics Data System (ADS)

    Grossan, B.; Remillard, R.; Bradt, H.

    1992-12-01

    We carried out a multi-frequency study of a flux-limited (0.95 mu Jy @ 5 keV) sample of 96 emission-line AGN taken from the HEAO-1 LASS/MC survey. Preliminary results of this study were presented at the Jan. 1992 meeting. Here we present new results from line emission and continuum studies and more details regarding the AGN X-ray luminosity functions (XLFs). We find that narrow [OIII] flux correlates well with X-ray flux. This result is consistent with a simple picture where the photoionizing continuum is distributed over a large solid angle in the narrow line region, and is closely related to the X-ray continuum. Broad Balmer lines do not demonstrate a strong correlation with X-ray flux. The UV continuum ( ~ 1400 Angstroms) does not correlate with any optical line emission we measured, but UV variability could have affected this result. In contrast, we find very strong correlations of high-ionization UV broad line fluxes and the simultaneously measured UV continuum. The geometry and/or obscuration effects in the broad line region may therefore be different than those in the narrow line region. A very large spread in the value of broad line Balmer decrements (Hβ /Hα = 0.13 - 0.40) was observed among objects determined to be un-reddened by the lack of an absorption feature at 2175 Angstroms. If there were an intrinsic Balmer decrement for the broad line regions in AGN, the smallest Hβ /Hα values would correspond to extreme values of reddening (E(B-V) > 1 mag). Therefore, we conclude that the broad line Balmer decrement cannot be used in determining continuum reddening in most AGN. We find that the AGN 2-10 keV XLF is roughly a power law, but steepens with increasing luminosity, and turns over below 10(42) erg s(-1) . The XLF of Seyfert 2's resembles a power law from 10(42) - 10(43.5) erg s(-1) , but at higher luminosity, the XLF steepens. In this sample, the cumulative fraction of Seyfert 2's falls rapidly with luminosity, and the overall fraction of Seyfert 2's

  9. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  10. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  11. Derivative information recovery by a selective integration technique

    NASA Technical Reports Server (NTRS)

    Johnson, M. A.

    1974-01-01

    A nonlinear stationary homogeneous digital filter DIRSIT (derivative information recovery by a selective integration technique) is investigated. The spectrum of a quasi-linear discrete describing function (DDF) to DIRSIT is obtained by a digital measuring scheme. A finite impulse response (FIR) approximation to the quasi-linearization is then obtained. Finally, DIRSIT is compared with its quasi-linear approximation and with a standard digital differentiating technique. Results indicate the effects of DIRSIT on a wide variety of practical signals.

  12. The evolution of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brightman, Murray

    2012-09-01

    We present results on the evolution of Compton thick AGN with redshift, and the nature of this obscuration, important for understanding the accretion history of the universe and for AGN unification schemes. We use lessons learned from spectral complexity of local AGN (Brightman & Nandra 2012) and up to date spectral models of heavily absorbed AGN, which take into account Compton scattering, self consistent Fe Ka modeling and the geometry of the circumnuclear material (Brightman & Nandra 2011), to optimise our identification of Compton thick AGN and understanding of the obscuring material. Results from the Chandra Deep Field South are presented (Brightman & Ueda, 2012), which show an increasing fraction of CTAGN with redshift and that most heavily obscured AGN are geometrically deeply buried in material, as well as new results from and extension of this study to AEGIS-XD and Chandra-COSMOS survey, which aim to fully characterise the dependence of heavy AGN obscuration on redshift and luminosity.

  13. The Lick AGN Monitoring Project 2016: Extending Reverberation Mapping to Higher Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    U, Vivian; LAMP2016 Collaboration

    2017-01-01

    The technique of reverberation mapping has been used to estimate virial black hole masses and, more fundamentally, to probe the broad line region structure in Seyfert I galaxies. Efforts from the previous Lick AGN Monitoring Project (LAMP) campaigns and other studies to date have culminated in a large sample of reverberation mapped AGNs and measurements of their black hole masses, which in turn enabled major improvement to various AGN scaling relations. However, the high-luminosity end of such relations remains poorly constrained; this is because of observational challenges presented by the weaker continuum flux variations and longer time dilation in these sources. To this end, we have initiated a new LAMP2016 campaign to target AGNs with luminosities of 10^44 erg/s, with predicted H-beta lags of ~20 - 60 days or black hole masses of 10^7 - 10^8.5 Msun. Designed to monitor ~20 AGNs biweekly from Spring 2016 through Winter 2017 with the Kast spectrograph on the 3-m Shane Telescope at Lick Observatory, we aim to probe luminosity-dependent trends in broad line region structure and dynamics, improve calibrations for single-epoch estimates of high-redshift quasar black hole masses, and test photoionization models for the radially-stratified structure of the broad line region. In this talk, I will present the overview and scope of LAMP2016 and show preliminary results from our ongoing campaign.

  14. Spatially Offset Active Galactic Nuclei. I. Selection and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2016-09-01

    We present a sample of 18 optically selected and X-ray-detected spatially offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS). In nine systems, the X-ray active galactic nucleus (AGN) is spatially offset from the galactic stellar core that is located within the 3″ diameter SDSS spectroscopic fiber. In 11 systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of two. To build the sample, we cross-matched Type II AGNs selected from the SDSS galaxy catalog with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0.″6 (0.8 kpc) to 17.″4 (19.4 kpc), with a median value of 2.″7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGNs in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess the kinematics of AGN photoionized gas in galaxy mergers. We find that spectroscopic offset AGN selection may be up to {89}-16+7% incomplete due to small projected velocity offsets. We also find that the magnitude of the velocity offsets are generally larger than expected if our spatial selection introduces a bias toward face-on orbits, suggesting the presence of complex kinematics in the emission line gas of AGNs in galaxy mergers.

  15. Fitting multidimensional splines using statistical variable selection techniques

    NASA Technical Reports Server (NTRS)

    Smith, P. L.

    1982-01-01

    This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs using the B-spline basis were developed, and the one for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.

  16. On the selection of dimension reduction techniques for scientific applications

    SciTech Connect

    Fan, Y J; Kamath, C

    2012-02-17

    Many dimension reduction methods have been proposed to discover the intrinsic, lower dimensional structure of a high-dimensional dataset. However, determining critical features in datasets that consist of a large number of features is still a challenge. In this paper, through a series of carefully designed experiments on real-world datasets, we investigate the performance of different dimension reduction techniques, ranging from feature subset selection to methods that transform the features into a lower dimensional space. We also discuss methods that calculate the intrinsic dimensionality of a dataset in order to understand the reduced dimension. Using several evaluation strategies, we show how these different methods can provide useful insights into the data. These comparisons enable us to provide guidance to a user on the selection of a technique for their dataset.

  17. Techniques for analyzing frequency selective surfaces - A review

    NASA Technical Reports Server (NTRS)

    Mittra, Raj; Chan, Chi H.; Cwik, Tom

    1988-01-01

    A number of representative techniques for analyzing frequency-selective surfaces (FSSs), which comprise periodic arrays of patches or apertures in a conducting screen and find important applications as filters in microwaves and optics, are discussed. The basic properties of the FSSs are reviewed and several different approaches to predicting their frequency-response characteristics are described. Some recent developments in the treatment of truncated, curved, and doubly periodic screens are mentioned and representative experimental results are included.

  18. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  19. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  20. Modified Nucleoside Triphosphates for In-vitro Selection Techniques

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  1. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    NASA Astrophysics Data System (ADS)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  2. A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Eckart, Megan E.; Harrison, Fiona A.; McGreer, Ian D.; Helfand, David J.; Stern, Daniel

    2010-01-01

    We compare the relative merits of active galactic nuclei (AGNs) selection at X-ray and mid-infrared wavelengths using data from moderately deep fields observed by both Chandra and Spitzer. The X-ray-selected AGN sample and associated photometric and spectroscopic optical follow-up are drawn from a subset of fields studied as part of the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program. Mid-infrared data in these fields are derived from targeted and archival Spitzer imaging, and mid-infrared AGN selection is accomplished primarily through application of the Infrared Array Camera (IRAC) color-color AGN 'wedge' selection technique. Nearly all X-ray sources in these fields which exhibit clear spectroscopic signatures of AGN activity have mid-infrared colors consistent with IRAC AGN selection. These are predominantly the most luminous X-ray sources. X-ray sources that lack high-ionization and/or broad lines in their optical spectra are far less likely to be selected as AGNs by mid-infrared color selection techniques. The fraction of X-ray sources identified as AGNs in the mid-infrared increases monotonically as the X-ray luminosity increases. Conversely, only 22% of mid-infrared-selected AGNs are detected at X-ray energies in the moderately deep ((t{sub exp}) approx 100 ks) SEXSI Chandra data. We hypothesize that IRAC sources with AGN colors that lack X-ray detections are predominantly high-luminosity AGNs that are obscured and/or lie at high redshift. A stacking analysis of X-ray-undetected sources shows that objects in the mid-infrared AGN selection wedge have average X-ray fluxes in the 2-8 keV band 3 times higher than sources that fall outside the wedge. Their X-ray spectra are also harder. The hardness ratio of the wedge-selected stack is consistent with moderate intrinsic obscuration, but is not suggestive of a highly obscured, Compton-thick source population. It is evident from this comparative study that in order to create a complete

  3. AGN-host galaxy connection: multiwavelength study

    NASA Astrophysics Data System (ADS)

    Pović, M.; Sánchez-Portal, M.; García, A. M. Pérez; Bongiovanni, A.; Cepa, J.; Cepa

    2013-02-01

    The connection between active galactic nuclei (AGN) and their hosts showed to be important for understanding the formation and evolution of active galaxies. Using X-ray and deep optical data, we study how morphology and colours are related to X-ray properties at redshifts z<=2.0 for a sample of > 300 X-ray detected AGN in the Subaru/XMM-Newton Deep Survey (SXDS; Furusawa et al. 2008) and Groth-Westphal Strip (GWS; Pović et al. 2009) fields. We performed our morphological classification using the galSVM code (Huertas-Company et al. 2008), which is a new method that is particularly suited when dealing with high-redshift sources. To separate objects between X-ray unobscured and obscured, we used X-ray hardness ratio HR(0.5-2 keV/2-4.5 keV). Colour-magnitude diagrams were studied in relationship to redshift, morphology, X-ray obscuration, and X-ray-to-optical flux ratio. Around 50% of X-ray detected AGN at z<=2.0 analysed in this work reside in spheroidal and bulge-dominated galaxies, while at least 18% have disk-dominated hosts. This suggests that different mechanisms may be responsible for triggering the nuclear activity. When analysing populations of X-ray detected AGN in both colour-magnitude (CMD) and colour-stellar mass diagrams (Figure 1), the highest number of sources is found to reside in the green valley at redshifts ~ 0.5-1.5. For the first time we studied CMD of these AGN in relation to morphology and X-ray obscuration, finding that they can reside in both early- and late-type hosts, where both morphological types cover similar ranges of X-ray obscuration (Figure 1). Our findings appear to confirm some previous suggestions that X-ray selected AGN residing in the green valley represent a transitional population (e.g. Nandra et al. 2007, Silverman et al. 2008, Treister et al. 2009), quenching star formation by means of different AGN feedback mechanisms and evolving to red-sequence galaxies. More details on analysis and results presented here can be found in

  4. AGN STORM: A Leap Forward In Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Dalla Bontà, Elena; AGN STORM Team

    2016-10-01

    Reverberation mapping is a tomographic technique that can be used to determine the structure and kinematics of the broad- line emitting region at the center of active galactic nuclei. By-products of these investigations are the masses of the central black holes and information about the structure of the accretion disk. I will show some of the most recent results from the AGN Space Telescope and Optical Reverberation Mapping (AGN STORM) project, which was built around 180 daily observations of the bright Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope. AGN STORM included observations made with Swift, XMM, and several ground-based telescopes, including the 1.22-m telescope at Asiago Observatory. Elena Dalla Bonta` on behalf of the AGN STORM Team.

  5. VizieR Online Data Catalog: AGN from the RASS (Bade+, 1995)

    NASA Astrophysics Data System (ADS)

    Bade, N.; Fink, H. H.; Engels, D.; Voges, W.; Hagen, H.-J.; Wisotzki, L.; Reimers, D.

    1995-02-01

    This paper presents long slit CCD spectroscopy and X-ray data of 283 AGN detected in the ROSAT-All Sky Survey (RASS). Basis of the sample is the pre-identification of 4651 RASS sources on 134 sky fields (covering in total ~3500sq.deg.). The 283 presented AGN were selected from 1253 AGN candidates resulting from the pre-identification work. (3 data files).

  6. Mini-Survey Of SDSS of [OIII] AGN With Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.; George, I. M.; Hill, J.; Padgett, C. A.; Mushotzky, R. F.

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work (e.g. Ferrarese and Merritt 2000) strongly suggests every massive galaxy has a central black hole. However, most of these objects either are not radiating or have been very difficult to detect. We are now in the era of large surveys, and the luminosity function (LF) of AGN has been estimated in various ways. In the X-ray band, Chandra and XMM surveys (e.g., Barger et al. 2005; Hasinger, et al. 2005) have revealed that the LF of Hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(x) (at al z). This is seen for all types of AGN, but is stronger for the broad-line objects (e.g., Steffen et al. 2004). In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects (Hao et al. 2005). If, as been suggested, hard X-ray and optical emission line can both be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  7. Selective plane illumination microscopy techniques in developmental biology

    PubMed Central

    Huisken, Jan; Stainier, Didier Y. R.

    2009-01-01

    Summary Selective plane illumination microscopy (SPIM) and other fluorescence microscopy techniques in which a focused sheet of light serves to illuminate the sample have become increasingly popular in developmental studies. Fluorescence light-sheet microscopy bridges the gap in image quality between fluorescence stereomicroscopy and high-resolution imaging of fixed tissue sections. In addition, high depth penetration, low bleaching and high acquisition speeds make light-sheet microscopy ideally suited for extended time-lapse experiments in live embryos. This review compares the benefits and challenges of light-sheet microscopy with established fluorescence microscopy techniques such as confocal microscopy and discusses the different implementations and applications of this easily adaptable technology. PMID:19465594

  8. Some fuzzy techniques for staff selection process: A survey

    NASA Astrophysics Data System (ADS)

    Md Saad, R.; Ahmad, M. Z.; Abu, M. S.; Jusoh, M. S.

    2013-04-01

    With high level of business competition, it is vital to have flexible staff that are able to adapt themselves with work circumstances. However, staff selection process is not an easy task to be solved, even when it is tackled in a simplified version containing only a single criterion and a homogeneous skill. When multiple criteria and various skills are involved, the problem becomes much more complicated. In adddition, there are some information that could not be measured precisely. This is patently obvious when dealing with opinions, thoughts, feelings, believes, etc. One possible tool to handle this issue is by using fuzzy set theory. Therefore, the objective of this paper is to review the existing fuzzy techniques for solving staff selection process. It classifies several existing research methods and identifies areas where there is a gap and need further research. Finally, this paper concludes by suggesting new ideas for future research based on the gaps identified.

  9. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  10. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  11. The Changing Looks of AGN

    NASA Astrophysics Data System (ADS)

    LaMassa, S.

    2015-09-01

    According to the AGN unification model, the difference between Type 1 and Type 2 AGN is explained by the orientation of a circumnuclear obscuring torus to the observer's line of sight. Observations of seemingly anomalous sources challenge this theory. A handful of AGN have been discovered which have transitioned from Type 1, with strong, prominent broad-emission lines, to Type 1.8 or 1.9, with weak broad components to only H-alpha and/or H-beta, or vice versa. The rate of discovery of these objects has increased this past year thanks to the Sloan Digital Sky Survey BOSS and TDSS surveys which have repeated spectroscopic observations of AGN. While in some cases this transition can be explained by circumnuclear clouds eclipsing the broad line region, it seems clear that stochastic accretion is responsible for other changing-look AGN. In this talk, I will discuss the changing-look AGN discovered thus far and the implications these objects have for AGN unification and the intermittency of AGN activity.

  12. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGES

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; ...

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  13. Merger-driven Fueling of Active Galactic Nuclei: Six Dual and Offset AGNs Discovered with Chandra and Hubble Space Telescope Observations

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-01

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at z\\lt 0.34, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation Δ x=2.2 kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations Δ x\\lt 10 kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O iii] λ5007 luminosity, on average. This could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  14. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    SciTech Connect

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at $z\\lt 0.34$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation ${\\rm \\Delta }x=2.2$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations ${\\rm \\Delta }x\\lt 10$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  15. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.; Jones, C.; Murray, S. S.; Forman, W. R.; Green, P.; Cool, R. J.; Assef, R. J.; Eisenhardt, P.; Stern, D.; Jannuzi, B. T.; Dey, A.; Brown, M. J. I.; Gonzalez, A. H.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.

  16. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  17. Mini-Survey of SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelina, Lorella; George, Ian

    2007-01-01

    There is a common wisdom that every massive galaxy has a massive block hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low Lx (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of (optically-selected samples) shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [OIII] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a mini-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([OIII]) to check the relation with the Lx observed with Swift.

  18. Unwrapping the X-ray Spectra of AGN

    NASA Astrophysics Data System (ADS)

    Reynolds, C.

    2015-07-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around the spinning supermassive black hole with a compact, probably pair-regulated, X-ray corona. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds (and sometimes jets) are seen and can dominate the source energetics. As I shall review in this talk, each of these components imprints its own characteristic signature into the (time-variable) X-ray spectrum of the AGN. I shall then touch upon a few contemporary topics : (i) the use of new spectral timing techniques for aiding in the decomposition of the spectrum and for probing the geometry of the AGN central engine, (ii) the determination of supermassive black hole spin, (iii) direct confirmation of quasar-mode feedback in some luminous systems. The prospect of AGN observations with Astro-H will be discussed.

  19. Multiwavelength Number Counts of AGN in the GOODS Fields

    NASA Astrophysics Data System (ADS)

    Urry, C. M.; Treister, E.; Chatzichristou, E. T.; Van Duyne, J.; Bauer, F. E.; Alexander, D. M.; Koekemoer, A. M.; Moustakas, L. A.; Brandt, W. N.; Grogin, N. A.; Bergeron, J.; Stern, D.; Chary, R.-R.; Conselice, C. J.; Cristiani, S.

    2004-05-01

    We model the X-ray, optical, and far-infrared flux distributions of AGN in the GOODS fields, starting from hard X-ray luminosity functions and spectral energy distributions appropriate to the unified scheme for AGN. The deep optical counts measured from HST ACS images can be well explained by a unified scheme that postulates roughly 3 times as many obscured as unobscured AGN. This scenario is consistent with the observed spectroscopic and photometric redshift distributions of the GOODS AGN once selection effects are considered. The previously reported discrepancy between observed spectroscopic redshift distributions and the predictions of population synthesis models for the X-ray background (which include a similarly large number of obscured AGN) is explained by bias against the most heavily obscured AGN in both X-ray surveys and optical spectroscopic samples. We present the model predictions for the number counts of AGN in the Spitzer MIPS 24 micron and IRAC 3.6-8 micron bands. The GOODS Spitzer observations will verify whether large numbers of obscured AGN are indeed present in the early Universe; these will be very bright far-infrared sources, including some, missed by X-ray observations, that look like ultraluminous infrared galaxies. Based on observations obtained with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc, under NASA contract NAS5-26555. This work was supported by NASA grants HST-GO-09425(.01-A,.13-A,.26-A); NSF CAREER award AST 99-83783; NASA contract number 1224666 issued by JPL/Caltech under NASA contract 1407; ASI grant I/R/088/02; and a Royal Society University Research Fellowship.

  20. A Method of Identifying AGNs Based on Emission-Line Excess and the Nature of Low-Luminosity AGNs in the Sloan Digital Sky Survey. II. The Nature of Low-Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki

    2012-04-01

    We have developed a new method of identifying active galactic nuclei (AGNs) and studied the nature of low-luminosity AGNs in the Sloan Digital Sky Survey. This is the latter part of a series of papers in which we consider correlations between the AGN activities and the host-galaxy properties. Based on a sample of AGNs identified by a new method developed in the former part (2012, PASJ, 64, 36), we found that AGNs typically show extinction of τV = 1.2, and exhibit a wide range of ionization levels. The finding of ionization levels motivated us to use [O II] + [O III] as an indicator of AGN power. We found that AGNs are preferentially located in massive, red, early-type galaxies. Taking into account a selection bias of the Oxygen-excess method, we showed that strong AGNs are located in active star-forming galaxies, and that rapidly growing super-massive black holes are located in rapidly growing galaxies, which clearly shows the coevolution of super-massive black holes and their host galaxies. This is a surprising phenomenon, given that the growths of black holes and host galaxies occur on their respective physical scales which are very different. Interestingly, the AGN power does not strongly correlate with the host-galaxy mass. It seems that the mass works as a ``switch'' for activating AGNs. The absence of AGNs in low-mass galaxies might be due to the absence of super-massive black holes there, but a dedicated observation of the nuclear region of nearby low-mass galaxies would be necessary to obtain a deeper insight into it.

  1. Type-II AGN population from the zCOSMOS survey

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Mignoli, M.; Zamorani, G.; Zcosmos Team

    2008-10-01

    I'll present the first results on the type-II AGN population isolated from the zCOSMOS bright sample which consists of 10k sources, purely magnitude selected at I=22.5. The selected type-II AGN sample consists of about 200 AGN, selected using the diagnostic diagrams up to redshift ~1.0. I'll present the properties of this sample (i.e. SED and morphology) and some preliminary results on the evolution of type-II AGN, as well as on the evolution of their fraction with respect to the total AGN population (Type-I + Type-II), as a function of both luminosity and redshift.

  2. The Black Hole Mass - Pitch Angle Relation of Type I AGN In Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Schilling, Amanda; Jones, Logan; Hughes, John A.; Barrows, R. Scott; Kennefick, Julia D.

    2017-01-01

    A relationship between the mass of supermassive black holes, M, at the center of galaxies and the pitch angle, P, a measure of tightness of spiral arms, was recently reported by Berrier, et al. (2013 ApJ 769, 132) for late type galaxies. The relationship, established for a local sample, shows that spiral galaxies with tighter pitch angles host higher mass black holes. In this work, we explore the M-P relation for a sample of 50 low to moderate redshift (0.04AGN. These objects were selected from the SDSS quasar catalog and various studies involving HST imaging. Broad Hβ, Hα, and MgII and narrow [OIII]λ5007 emission lines were used with established mass scaling relations to estimate black-hole mass. Pitch angles were measured using a 2DFFT technique (Davis, et al., 2012 ApJS 199, 33). We find that the M-P relation for the higher redshift, AGN sample differs from that of the local sample and discuss the possibility of AGN feedback by looking at a proposed Fundamental Plane for late-type galaxies - a correlation between bulge mass, disk mass, and spiral-arm pitch angle (Davis, et al. 2015, ApJ 802, L13).

  3. Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES.

    PubMed

    Parat, C; Authier, L; Aguilar, D; Companys, E; Puy, J; Galceran, J; Potin-Gautier, M

    2011-10-21

    The electroanalytical technique Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) has been extended by applying stripping chronopotentiometry (SCP) as the re-oxidation stage in the determination of the free concentration of Zn(2+), Cd(2+) and Pb(2+). This new approach, called AGNES-SCP, has been implemented with screen-printed electrodes (SPE) and the standard Hanging Mercury Drop Electrode (HMDE). Clear advantages of this variant have been shown: (i) the easy resolution of the peaks of different metals present in mixtures and (ii) the sparing of blanks. A rigorous computation of the faradaic charge along the SCP stage takes into account the contribution of other oxidants, which can be efficiently measured at the end of the deposition stage of AGNES. The free Cd concentration determined in an oxalate solution at pH 6 with an HMDE as the working electrode agreed well with values obtained with a Cd Ion Selective Electrode. The free metal concentration measured using an SPE for the system Cd and nitrilotriacetic acid (NTA) at pH = 4.8 also conformed well with Visual MINTEQ results.

  4. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Cassata, P.; Cucciati, O.; Garilli, B.; Ilbert, O.; Le Brun, V.; Maccagni, D.; Moreau, C.; Scodeggio, M.; Tresse, L.; Zamorani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Bondi, M.; Bongiorno, A.; Bottini, D.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; de la Torre, S.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Iovino, A.; Lemaux, B.; López-Sanjuan, C.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Mellier, Y.; Merighi, R.; Merluzzi, P.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Scaramella, R.; Tasca, L.; Vergani, D.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2013-11-01

    Context. Deep representative surveys of galaxies at different epochs are needed to make progress in understanding galaxy evolution. Aims: We describe the completed VIMOS VLT Deep Survey and the final data release of 35 016 galaxies and type-I AGN with measured spectroscopic redshifts covering all epochs up to redshift z ~ 6.7, in areas from 0.142 to 8.7 square degrees, and volumes from 0.5 × 106 to 2 × 107 h-3 Mpc3. Methods: We selected samples of galaxies based solely on their i-band magnitude reaching iAB = 24.75. Spectra were obtained with VIMOS on the ESO-VLT integrating 0.75 h, 4.5 h, and 18 h for the Wide, Deep, and Ultra-Deep nested surveys, respectively. We demonstrate that any "redshift desert" can be crossed successfully using spectra covering 3650 ≤ λ ≤ 9350 Å. A total of 1263 galaxies were again observed independently within the VVDS and from the VIPERS and MASSIV surveys. They were used to establish the redshift measurements reliability, to assess completeness in the VVDS sample, and to provide a weighting scheme taking the survey selection function into account. We describe the main properties of the VVDS samples, and the VVDS is compared to other spectroscopic surveys in the literature. Results: In total we have obtained spectroscopic redshifts for 34 594 galaxies, 422 type-I AGN, and 12 430 Galactic stars. The survey enabled identifying galaxies up to very high redshifts with 4669 redshifts in 1 ≤ zspec ≤ 2, 561 in 2 ≤ zspec ≤ 3, and 468 with zspec > 3, and specific populations like Lyman-α emitters were identified out to z = 6.62. We show that the VVDS occupies a unique place in the parameter space defined by area, depth, redshift coverage, and number of spectra. Conclusions: The VIMOS VLT Deep Survey provides a comprehensive survey of the distant universe, covering all epochs since z ~ 6, or more than 12 Gyr of cosmic time, with a uniform selection, which is the largest such sample to date. A wealth of science results derived from

  5. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  6. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    SciTech Connect

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Ramos, A. Asensio; Almeida, C. Ramos; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  7. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2

    DOE PAGES

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; ...

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Here, we report on a survey for X-ray cavities in 83 massive, high-redshift (more » $$0.4\\lt z\\lt 1.2$$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). Furthermore, the majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($$z\\gtrsim 0.5$$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($$\\gt 7$$ Gyr at $$z\\sim 0.8$$). On average, the detected X-ray cavities have powers of $$(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$$, enthalpies of $$(3-6)\\times {{10}^{59}}\\ {\\rm erg}$$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several $${{10}^{9}}\\;{{M}_{\\odot }}$$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Though our result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.« less

  8. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2

    SciTech Connect

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Here, we report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). Furthermore, the majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several ${{10}^{9}}\\;{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Though our result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  9. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies. Tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2

    SciTech Connect

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several ${{10}^{9}}\\;{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  10. Host galaxies of luminous z ∼ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities

    NASA Astrophysics Data System (ADS)

    Villforth, C.; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.

    2017-04-01

    Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ∼ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.

  11. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  12. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  13. AGN Observations with STACEE

    NASA Astrophysics Data System (ADS)

    Bramel, D. A.; Boone, L. M.; Carson, J.; Chae, E.; Covault, C. E.; Fortin, P.; Gingrich, D. M.; Hanna, D. S.; Hinton, J. A.; Mukherjee, R.; Mueller, C.; Ong, R. A.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Theoret, C. G.; Williams, D. A.; Wong, J.; Zweerink, J.

    2003-03-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a gamma-ray detector designed to study astrophysical sources at energies between 50 and 500 GeV. It uses 64 large, steerable mirrors at the National Solar Tower Test Facility near Albuquerque, NM, USA to collect Cherenkov light from extended air showers and concentrate it onto an array of photomultiplier tubes. The large light-collection area gives it a lower energy threshold than imaging-type Cherenkov detectors. STACEE is now fully operational, and we report here on the performance of the complete STACEE instrument, as well as preliminary results of recent observations of several AGN targets. This work was supported in part by the National Science Foundation (under Grant Numbers PHY-9983836, PHY-0070927, and PHY-0070953), the Natural Sciences and Engineering Research Council, Le Fond Quebecois de la Recherche sur la Nature et les Technologies (FQRNT), the Research Corporation, and the California Space Institute. CEC is a Cottrell Scholar of the Research Corporation.

  14. Intermittent Activity in AGN

    NASA Astrophysics Data System (ADS)

    Janiuk, A.; Czerny, B.; Siemiginowska, A.

    2004-10-01

    There is a growing evidence that the AGN activity could be intermittent. It remains an open question if this behavior is caused by changes in the fuel sup- ply to the supermassive black hole from the large distances, or rather by a processes intrinsic to the active nucleus. We consider the possibility that ac- cretion onto a supermassive black hole is controlled by an accretion disk which is subject to the hydro- gen ionization instability. This drives the observed on-off activity cycle, since periodically the accretion flow becomes inefficient and the disk goes to quies- cence. We consider effects of the MHD turbulence on the viscosity during the evolution of a standard α - disk. We perform a self-consistency check of the α de- scription of the angular momentum transfer. Hav- ing shown that the viscosity parameter is constant throughout the whole instability cycle, as implied by the strength of the MHD turbulence, we calcu- late the time evolution of the disk under the influ- ence of the ionization instability. We demonstrate that if the accretion onto a supermassive black hole proceeds through an outer standard accretion disk and inner, radiatively inefficient and advection dom- inated flow, the modelled amplitudes of disk lumi- nosity variations are sufficiently high to account for the observations. Key words: accretion disks; galaxies: active.

  15. Mid-infrared Flux Variability in an Awakening AGN

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry

    We propose FORCAST spectroscopic observations between 8 um to 40 um near the nucleus of NGC 660. NGC 660 underwent an AGN outburst 6 years ago, which is an ideal case for studying AGN astrophysics in a rather quiecent system. However, this rare event has not yet been monitored. Our immidiate goal is to verify the MIR spectroscipic variabilitiy in NGC 660, and to study the AGN effects on dust destruction and ISM. We will compare the FORCAST spectra with the Spitzer IRS spectra (taken before the AGN outburst), including dust continuum, PAH emission, and high- and low-ionization emission lines. FORCAST's slit width is a close match to the IRS slit width, allowing a direct comparison of the spectra between FORCAST and IRS. Our single-slit Subaru COMICS spectrum taken after the outburst shows significantly weakened PAH emission and dust continuum, suggesting dust destruction. However, it is difficult to draw robust intepretations due to systematic uncertainties in the Subaru data. If dust destruction is confirmed in the post-outburst FORCAST observaitons, we will evaluate the energy budget using the MIR line ratio diagnostics, with archival X-ray and radio data. We will then propose cadence observations of MGC 660's nucleus to monitor the MIR flux variability, and employ the reverberation mapping technique to study NGC 660's AGN.

  16. AGN jets as pion factories

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl

    There has been a dramatic revolution in gamma-ray astronomy throughout the last few years. Beginning with the discovery made by the spark chamber EGRET on board the Compton Gamma Ray Observatory that AGN with jets are the most powerful quasi-steady gamma-ray sources in the Universe, air-Cerenkov telescopes have soon after succeeded in detecting gamma-rays up to TeV energies. In the last year, it has become clear that these AGN emit photons even up to 10 TeV and more. This is a strong indication for proton acceleration going on in them, since protons owing to their large mass suffer weaker energy losses than electrons and can thus reach higher energies. Nucleons escaping from the AGN jets contribute to the local flux of cosmic rays at highest energies. If AGN produce the diffuse gamma-ray background, they would also be able to produce all the cosmic rays above the ankle in the local spectrum. The majority of AGN resides at large distances, indicated by their cosmological redshifts, and can therefore not be seen through the fog of electron-positron pairs which they produce interacting with diffuse infrared radiation from the era of galaxy formation. To observe the cosmic accelerators at large redshifts, neutrino observations are required. It is important to understand the astrophysical neutrino sources in order to be able to recognize signatures of new physics, e.g. due to decaying or annihilating particles from the early phases of the Universe.

  17. BAT AGN Spectroscopic Survey - III. An observed link between AGN Eddington ratio and narrow-emission-line ratios

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T.; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2017-01-01

    We investigate the observed relationship between black hole mass (MBH), bolometric luminosity (Lbol) and Eddington ratio (λEdd) with optical emission-line ratios ([N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, [O I] λ6300/Hα, [O III] λ5007/Hβ, [Ne III] λ3869/Hβ and He II λ4686/Hβ) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] λ6583/Hα ratio exhibits a significant correlation with λEdd (RPear = -0.44, p-value = 3 × 10-13, σ = 0.28 dex), and the correlation is not solely driven by MBH or Lbol. The observed correlation between [N II] λ6583/Hα ratio and MBH is stronger than the correlation with Lbol, but both are weaker than the λEdd correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] λ6583/Hα is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd and thus MBH from the measured Lbol, even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  18. Redshift-space distortions of galaxies, clusters, and AGN. Testing how the accuracy of growth rate measurements depends on scales and sample selections

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Veropalumbo, Alfonso; Moscardini, Lauro; Cimatti, Andrea; Dolag, Klaus

    2017-03-01

    Aims: Redshift-space clustering anisotropies caused by cosmic peculiar velocities provide a powerful probe to test the gravity theory on large scales. However, to extract unbiased physical constraints, the clustering pattern has to be modelled accurately, taking into account the effects of non-linear dynamics at small scales, and properly describing the link between the selected cosmic tracers and the underlying dark matter field. Methods: We used a large hydrodynamic simulation to investigate how the systematic error on the linear growth rate, f, caused by model uncertainties, depends on sample selections and co-moving scales. Specifically, we measured the redshift-space two-point correlation function of mock samples of galaxies, galaxy clusters and active galactic nuclei, extracted from the Magneticum simulation, in the redshift range 0.2 ≤ z ≤ 2, and adopting different sample selections. We estimated fσ8 by modelling both the monopole and the full two-dimensional anisotropic clustering, using the dispersion model. Results: We find that the systematic error on fσ8 depends significantly on the range of scales considered for the fit. If the latter is kept fixed, the error depends on both redshift and sample selection due to the scale-dependent impact of non-linearities if not properly modelled. Concurrently, we show that it is possible to achieve almost unbiased constraints on fσ8 provided that the analysis is restricted to a proper range of scales that depends non-trivially on the properties of the sample. This can have a strong impact on multiple tracer analyses, and when combining catalogues selected at different redshifts.

  19. Searching for Short Term Variable Active Galactic Nuclei: A Vital Step Towards Using AGN as Standard Candles

    NASA Astrophysics Data System (ADS)

    Kilts, Kelly; Gorjian, Varoujan; Rutherford, Thomas; Kohrs, Russell; Urbanowski, Vincent; Bellusci, Nina; Horton, Savannah; Jones, Dana; Jones, Kaytlyn; Pawelski, Peter; Tranum, Haley; Zhang, Emily

    2017-01-01

    Current models for accretion disk sizes of active galactic nuclei (AGN) do not match the limited observational data available, so there is an active need from the modeling community for many more accretion disk/dusty torus reverberation mapping campaigns with which to better calibrate models. Since short term variable AGN can be more easily monitored for reverberation mapping than long term variable AGN, they can begin to provide data more quickly. This project looked for short term variable AGN in the Young Stellar Object Variability (YSOVAR) survey conducted using the Spitzer Space Telescope. The YSOVAR survey targeted 12 nearby star forming regions for repeated observations. Potential AGN from the YSOVAR data were first selected by color ([3.6] - [4.5] > 0.4) and then by magnitude (m < 14) based on previous Spitzer surveys of known AGN. Since AGN share some similar color characteristics with young stars, images of each YSOVAR region were viewed to remove potential objects near concentrations of known young stellar objects since these were likely also YSOs. The spectral energy distribution (SED) for each remaining potential AGN was then examined for AGN like characteristics. Several potential short term variable AGN were found.

  20. Hard X-ray Spectroscopy of Obscured AGN with NuSTAR

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR Extragalactic Surveys Team

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the hard X-ray band, up to 79 keV, with unprecedented spatial resolution and sensitivity. As a part of its extragalactic program, NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT), selecting even the most obscured local AGN. I will highlight some of the results based on broadband X-ray spectroscopy of individual targets and present my work on the large representative sample of more than a hundred nearby obscured AGN, which constitutes the largest available atlas of hard X-ray spectra of obscured AGN to date. The high quality of the data allows us to probe the details of AGN structures such as the X-ray-emitting corona and the toroidal obscurer in the under-explored spectral window above 10 keV. I will present both phenomenological results important for synthesis models of the cosmic X-ray background, and a novel approach for constraining the geometry of the gas surrounding the supermassive black hole (including the accretion disk, the broad-line region, and the torus) from the hard X-ray band. Finally, I will discuss how what we learned from this survey of local AGN relates to deeper high-redshift X-ray surveys and AGN structure probes at other wavelengths.

  1. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  2. A New Extensive Catalog of Optically Variable Active Galactic Nuclei in the GOODS Fields and a New Statistical Approach to Variability Selection

    NASA Astrophysics Data System (ADS)

    Villforth, Carolin; Koekemoer, Anton M.; Grogin, Norman A.

    2010-11-01

    Variability is a property shared by practically all active galactic nuclei (AGNs). This makes variability selection a possible technique for identifying AGNs. Given that variability selection makes no prior assumption about spectral properties, it is a powerful technique for detecting both low-luminosity AGNs in which the host galaxy emission is dominating and AGNs with unusual spectral properties. In this paper, we will discuss and test different statistical methods for the detection of variability in sparsely sampled data that allow full control over the false positive rates. We will apply these methods to the GOODS North and South fields and present a catalog of variable sources in the z band in both GOODS fields. Out of the 11,931 objects checked, we find 155 variable sources at a significance level of 99.9%, corresponding to about 1.3% of all objects. After rejection of stars and supernovae, 139 variability-selected AGNs remain. Their magnitudes reach down as faint as 25.5 mag in z. Spectroscopic redshifts are available for 22 of the variability-selected AGNs, ranging from 0.046 to 3.7. The absolute magnitudes in the rest-frame z band range from ~-18 to -24, reaching substantially fainter than the typical luminosities probed by traditional X-ray and spectroscopic AGN selection in these fields. Therefore, this is a powerful technique for future exploration of the evolution of the faint end of the AGN luminosity function up to high redshifts. Based on observations obtained with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  3. Fading AGN Candidates: AGN Histories and Outflow Signatures

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Lintott, Chris J.; Maksym, W. Peter; Bennert, Vardha N.; Chojnowski, S. Drew; Moiseev, Alexei; Smirnova, Aleksandrina; Schawinski, Kevin; Sartori, Lia F.; Urry, C. Megan; Pancoast, Anna; Schirmer, Mischa; Scott, Bryan; Showley, Charles; Flatland, Kelsi

    2017-02-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Qion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Qion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2 × 104 yr before the direct view of the nucleus. The e-folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission

  4. Automatic particle selection from electron micrographs using machine learning techniques

    PubMed Central

    Sorzano, C.O.S.; Recarte, E.; Alcorlo, M.; Bilbao-Castro, J.R.; San-Martín, C.; Marabini, R.; Carazo, J.M.

    2009-01-01

    The 3D reconstruction of biological specimens using Electron Microscopy is currently capable of achieving subnanometer resolution. Unfortunately, this goal requires gathering tens of thousands of projection images that are frequently selected manually from micrographs. In this paper we introduce a new automatic particle selection that learns from the user which particles are of interest. The training phase is semi-supervised so that the user can correct the algorithm during picking and specifically identify incorrectly picked particles. By treating such errors specially, the algorithm attempts to minimize the number of false positives. We show that our algorithm is able to produce datasets with fewer wrongly selected particles than previously reported methods. Another advantage is that we avoid the need for an initial reference volume from which to generate picking projections by instead learning which particles to pick from the user. This package has been made publicly available in the open-source package Xmipp. PMID:19555764

  5. The Close AGN Reference Survey (CARS)

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Husemann, Bernd; Busch, Gerold; Dierkes, Jens; Eckart, Andreas; Krajnovic, Davor; Scharwaechter, Julia; Tremblay, Grant R.; Urrutia, Tanya

    2015-08-01

    We present the first science results from the Close AGN Reference Survey (CARS). This program is a snapshot survey of 39 local type 1 AGN (0.01 < z <0.06) designed to address the issue of AGN-driven star formation quenching by characterizing the condition for star formation in AGN host galaxies. The primary sample was observed with Multi Unit Spectrscopic Explorer (MUSE), an optical wavelength integral field unit (IFU) with a 1'x1' field of view on the VLT. The optical 3D spectroscopy complements existing sub-mm CO(1-0) data and near-IR imaging to establish a unique dataset combining molecular and stellar masses with star formation rates, gas, stellar kinematics and AGN properties. The primary goals of CARS are to:1) investigate if the star formation efficiency and gas depletion time scales are suppressed as a consequence of AGN feedback; 2) identify AGN-driven outflows and their relation to the molecular gas reservoir of the host galaxy; 3) investigate the the balance of AGN feeding and feedback through the ratio of the gas reservoir to the AGN luminosity; and 4) provide the community with a reference survey of local AGN with a high legacy value. Future work will incorporate near-infrared IFU observations to present a complete spatially resolved picture of the interplay among AGN, star-formation, stellar populations, and the ISM.

  6. PRIMUS: The Dependence of AGN Accretion on Host Stellar Mass and Color

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison L.; Moustakas, John; Blanton, Michael R.; Burles, Scott M.; Cool, Richard J.; Eisenstein, Daniel J.; Smith, M. Stephen M.; Wong, Kenneth C.; Zhu, Guangtun

    2012-02-01

    We present evidence that the incidence of active galactic nuclei (AGNs) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS, and ELAIS-S1) with redshifts from the Prism Multi-object Survey to identify 242 AGNs with L 2-10 keV = 1042-44 erg s-1 within a parent sample of ~25,000 galaxies at 0.2 < z < 1.0 over ~3.4 deg2 and to i ~ 23. We find that although the fraction of galaxies hosting an AGN at fixed X-ray luminosity rises strongly with stellar mass, the distribution of X-ray luminosities is independent of mass. Furthermore, we show that the probability that a galaxy will host an AGN can be defined by a universal Eddington ratio distribution that is independent of the host galaxy stellar mass and has a power-law shape with slope -0.65. These results demonstrate that AGNs are prevalent at all stellar masses in the range 9.5 and that the same physical processes regulate AGN activity in all galaxies in this stellar mass range. While a higher AGN fraction may be observed in massive galaxies, this is a selection effect related to the underlying Eddington ratio distribution. We also find that the AGN fraction drops rapidly between z ~ 1 and the present day and is moderately enhanced (factor ~2) in galaxies with blue or green optical colors. Consequently, while AGN activity and star formation appear to be globally correlated, we do not find evidence that the presence of an AGN is related to the quenching of star formation or the color transformation of galaxies.

  7. IBM Applications and Techniques of Operations Research. A Selected Bibliography.

    ERIC Educational Resources Information Center

    International Business Machines Corp., White Plains, NY. Data Processing Div.

    This bibliography on the tools and applications of operations research, management science, industrial engineering, and systems engineering lists many entries which appeared between 1961 and 1966 in 186 periodicals and trade journals. Twenty-six texts in operations research are also listed along with an indication as to which of 37 techniques or…

  8. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  9. Tests of Bayesian model selection techniques for gravitational wave astronomy

    SciTech Connect

    Cornish, Neil J.; Littenberg, Tyson B.

    2007-10-15

    The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Peterson criteria are used for model selection. Future space based detectors, such as the Laser Interferometer Space Antenna (LISA), are expected to produce rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a reverse jump Markov chain Monte Carlo algorithm, Savage-Dickie density ratios, the Schwarz-Bayes information criterion, and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.

  10. Galaxy Interactions and AGN-triggering to z~1: an unprecedented new view from the Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Bezanson, Rachel; Greco, Johnny; Johnson, Sean; Medezinski, Elinor; Strauss, Michael A.; HSC Collaboration

    2017-01-01

    Collisions and interactions between galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and may also serve as a mechanism for fueling supermassive black holes (BH). Harnessing the exquisite spatial resolution (0.3—0.7 arcsec) afforded by the new 1400 deg2 Hyper Suprime-Cam (HSC) Survey, we present our new constraints on the importance of major and minor mergers in growing BHs throughout the last ~7 Gyrs. Utilizing the first ~170 deg2 of the HSC Survey, and mid-infrared observations in the WISE All-Sky survey, we have robustly selected active galactic nuclei (AGN), starburst, and mass-matched control galaxy samples, totaling ~120,000 spectroscopically confirmed systems at i<22 mag. We identify galaxy interactions using a novel machine-learning technique, and use these data to map the growth of BHs as a function of interaction-stage, redshift and AGN luminosity, ultimately providing the necessary large-number statistics required to investigate merger—AGN triggering in the context of galaxy evolution out to z~1.

  11. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  12. Carotid endovascular interventions: patient selection, devices, techniques and tips.

    PubMed

    Bosiers, M; Deloose, K; Peeters, P

    2010-02-01

    The optimal treatment of patients with asymptomatic or symptomatic carotid artery disease (CAD) has been a long-lasting debate. The choice between carotid endarterectomy (CEA), carotid artery stenting (CAS) and/or optimal medical therapy to treat patients with CAD, depends on their risk profile. Recent data from EVA-3S, SPACE randomized trials failed to demonstrate non-inferiority for CAS over CEA. However, other publications suggest that with growing experience and the development of dedicated CAS technology, CAS can be performed safely and efficiently. The success of carotid stenting does not solely depend on the operator's skills and experience, but also on the adequate selection of carotid stents and cerebral protection devices. Currently, CAS practitioners are confronted with a large number of dedicated CAS devices (stents and embolic protection devices). This wide array of products makes individual treatment strategies difficult to generalise as no single device possesses all of the optimal features to treat all types of carotid plaques and patients. This article reviews the principles of patient selection and device selection in contemporary CAS practice.

  13. An Experimental Evaluation of the Effectiveness of Selected Techniques and Resources on Instruction in Vocational Agriculture.

    ERIC Educational Resources Information Center

    Kahler, Alan A.

    The study was designed to test new instructional techniques in vocational agriculture, determine their effectiveness on student achievement, and compare individual and group instructional techniques. Forty-eight randomly selected Iowa high school vocational agriculture programs with enrollments of 35 students or more, were selected for testing the…

  14. Mode Selection Techniques in Variable Mass Flexible Body Modeling

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Ghosh, Tushar K.; Frenkel, David; Huynh, An

    2010-01-01

    In developing a flexible body spacecraft simulation for the Launch Abort System of the Orion vehicle, when a rapid mass depletion takes place, the dynamics problem with time varying eigenmodes had to be addressed. Three different techniques were implemented, with different trade-offs made between performance and fidelity. A number of technical issues had to be solved in the process. This paper covers the background of the variable mass flexibility problem, the three approaches to simulating it, and the technical issues that were solved in formulating and implementing them.

  15. Prospective comparison of noninvasive techniques for amputation level selection

    SciTech Connect

    Malone, J.M.; Anderson, G.G.; Lalka, S.G.; Hagaman, R.M.; Henry, R.; McIntyre, K.E.; Bernhard, V.M.

    1987-08-01

    This study prospectively compared the following tests for their accuracy in amputation level selection: transcutaneous oxygen, transcutaneous carbon dioxide, transcutaneous oxygen-to-transcutaneous carbon dioxide, foot-to-chest transcutaneous oxygen, intradermal xenon-133, ankle-brachial index, and absolute popliteal artery Doppler systolic pressure. All metabolic parameters had a high degree of statistical accuracy in predicting amputation healing whereas none of the other tests had statistical reliability. Amputation site healing was not affected by the presence of diabetes mellitus nor were the test results for any of the metabolic parameters.

  16. Selection criteria for water disinfection techniques in agricultural practices.

    PubMed

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain.

  17. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  18. Interferometric Monitoring of Gamma-Ray Bright AGNs. I. The Results of Single-epoch Multifrequency Observations

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Miyazaki, Atsushi; Byun, Do-Young; Kang, Sincheol; Kim, Jeong-Sook; Kim, Soon-Wook; Kino, Motoki; Trippe, Sascha

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10-10 ph cm-2 s-1. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43-28 Jy, 0.32-21 Jy, 0.18-11 Jy, and 0.35-8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of -0.40, -0.62, and -1.00 in the 22-43 GHz, 43-86 GHz and 86-129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86-129 GHz).

  19. Technique for the selective heating of corneal stroma

    SciTech Connect

    Doss, J.D.; Albillar, J.I.

    1980-01-01

    Conventional thermokeratoplasty, which relies upon thermal conduction from the epithelium into the stroma, does not generate a desirable temperature profile through the cornea. Previous reports show that temperature levels in the epithelium and in Bowman's membrane are excessive, often resulting in damage to these structures. In addition, this study shows that when corneal thickness exceeds approximately 300 microns, the central portion of the stroma probably will not reach critical shrinkage temperature. Shrinkage only in the superficial stroma may result in minimal and transitory alterations of corneal shape. Variation in treatment results may also occur due to the difficulty in precise control of treatment duration. An alternative corneal heating technique is discussed which appears to solve these three basic problems.

  20. Radio-AGN feedback: when the little ones were monsters

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Röttgering, H. J. A.

    2015-06-01

    We present a study of the evolution of the fraction of radio-loud active galactic nuclei (AGN) as a function of their host stellar mass. We make use of two samples of radio galaxies: one in the local Universe, 0.01 < z ≤ 0.3, using a combined SDSS-NVSS (Sloan Digital Sky Survey NRAO Very Large Array Sky Survey) sample and the other at higher redshifts, 0.5 < z ≤ 2, constructed from the VLA-COSMOS_DEEP Radio Survey at 1.4 GHz and a Ks-selected catalogue of the COSMOS/UltraVISTA field. We observe an increase of more than an order of magnitude in the fraction of lower mass galaxies (M* < 1010.75 M⊙) which host radio-loud AGN with radio powers P1.4 GHz > 1024 W Hz-1 at z ˜ 1-2 while the radio-loud fraction for higher mass galaxies (M* > 1011.25 M⊙) remains the same. We argue that this increase is driven largely by the increase in cold or radiative mode accretion with increasing cold gas supply at earlier epochs. The increasing population of low-mass radio-loud AGN can thus explain the upturn in the radio luminosity function at high redshift which is important for understanding the impact of AGN feedback in galaxy evolution.

  1. Feedback from AGN: The Kinetic/Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Melini, Gabriele; La Franca, Fabio; Fiore, Fabrizio

    2010-05-01

    We have measured the probability distribution function of the ratio RX = log L1.4/LX, where L1.4/LX = ν Lν(1.4 GHz)/LX(2-10 keV), between the 1.4 GHz and the unabsorbed 2-10 keV luminosities and its dependence on LX and z. We have used a complete sample of ~1800 hard X-ray selected AGN, observed in the 1.4 GHz band, cross-correlated in order to exclude FR II-type objects, and thus obtain a contemporaneous measure of the radio and X-ray emission. The distribution P(RX|LX,z) is shown in Figure 1. Convolution of the distribution P(RX|LX,z) with the 2-10 keV X-ray AGN luminosity function from La Franca et al. (2005) and the relations between radio power and kinetic energy from Best et al. (2006) and Willott et al. (1999) allows us to derive the AGN kinetic power and its evolution. As shown in Figure 1, our results are in good agreement with the predictions of the most recent models of galaxy formation and evolution (e.g., Croton et al. 2006), where AGN radio feedback is required to quench the star formation.

  2. Unveiling the physics of AGN through X-ray variability

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; González-Martín, O.; Masegosa, J.; Márquez, I.

    2017-03-01

    Although variability is a general property characterizing active galactic nuclei (AGN), it is not well established whether the changes occur in the same way in every nuclei. The main purpose of this work is to study the X-ray variability pattern(s) in AGN selected at optical wavelengths in a large sample, including low ionization nuclear emission line regions (LINERs) and type 1.8, 1.9, and 2 Seyferts, using the public archives in Chandra and/or XMM–Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations; the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Variations at X-rays in timescales of months/years are very common in all AGN families but short term variations are only found in type 1.8 and 1.9 Seyferts. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power. Other variability patterns cannot be discarded in a few cases. We discuss the geometry and physics of AGN through the X-ray variability analysis.

  3. SUDARE-VOICE variability-selection of active galaxies in the Chandra Deep Field South and the SERVS/SWIRE region

    NASA Astrophysics Data System (ADS)

    Falocco, S.; Paolillo, M.; Covone, G.; De Cicco, D.; Longo, G.; Grado, A.; Limatola, L.; Vaccari, M.; Botticella, M. T.; Pignata, G.; Cappellaro, E.; Trevese, D.; Vagnetti, F.; Salvato, M.; Radovich, M.; Hsu, L.; Capaccioli, M.; Napolitano, N.; Brandt, W. N.; Baruffolo, A.; Cascone, E.; Schipani, P.

    2015-07-01

    Context. One of the most peculiar characteristics of active galactic nuclei (AGNs) is their variability over all wavelengths. This property has been used in the past to select AGN samples and is foreseen to be one of the detection techniques applied in future multi-epoch surveys, complementing photometric and spectroscopic methods. Aims: In this paper, we aim to construct and characterise an AGN sample using a multi-epoch dataset in the r band from the SUDARE-VOICE survey. Methods: Our work makes use of the VST monitoring programme of an area surrounding the Chandra Deep Field South to select variable sources. We use data spanning a six-month period over an area of 2 square degrees, to identify AGN based on their photometric variability. Results: The selected sample includes 175 AGN candidates with magnitude r< 23 mag. We distinguish different classes of variable sources through their lightcurves, as well as X-ray, spectroscopic, SED, optical, and IR information overlapping with our survey. Conclusions: We find that 12% of the sample (21/175) is represented by supernovae (SN). Of the remaining sources, 4% (6/154) are stars, while 66% (102/154) are likely AGNs based on the available diagnostics. We estimate an upper limit to the contamination of the variability selected AGN sample ≃34%, but we point out that restricting the analysis to the sources with available multi-wavelength ancillary information, the purity of our sample is close to 80% (102 AGN out of 128 non-SN sources with multi-wavelength diagnostics). Our work thus confirms the efficiency of the variability selection method, in agreement with our previous work on the COSMOS field. In addition we show that the variability approach is roughly consistent with the infrared selection.

  4. Non-thermal AGN models

    SciTech Connect

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  5. Selecting a restoration technique to minimize OCR error.

    PubMed

    Cannon, M; Fugate, M; Hush, D R; Scovel, C

    2003-01-01

    This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.

  6. AKARI infrared camera observations of the 3.3 μm PAH feature in Swift/BAT AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Shirahata, Mai; Ichikawa, Kohei; Oyabu, Shinki; Clark, David M.; Imanishi, Masatoshi; Nakagawa, Takao; Ueda, Yoshihiro

    2014-12-01

    We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the nine-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E ≲ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (NH) towards the AGNs. We use the 3.3 μm PAH luminosity (L3.3μm) as a proxy for star-formation activity and hard X-ray luminosity (L14-195 keV) as an indicator of the AGN activity. We search for possible differences in star-formation activity between type 1 (unabsorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper limits of the PAH lines into account utilizing survival analysis methods. The results of our log (L14-195 keV) versus log (L3.3 μm) regression show a positive correlation and the slope for the type 1/unobscured AGNs is steeper than that of type 2/obscured AGNs at a 3 σ level. Our analysis also shows that the circumnuclear star formation is more enhanced in type 2/absorbed AGNs than type 1/unabsorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs, while there is no significant dependence of star-formation activities on the AGN type in the high X-ray luminosities/Eddington ratios.

  7. Comparing Simulations of AGN Feedback

    NASA Astrophysics Data System (ADS)

    Richardson, Mark L. A.; Scannapieco, Evan; Devriendt, Julien; Slyz, Adrianne; Thacker, Robert J.; Dubois, Yohan; Wurster, James; Silk, Joseph

    2016-07-01

    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock to well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGNs) to the simulations results in much better agreement between the methods. For our AGN model, both simulations display halo gas entropies of 100 keV cm2, similar decrements in the star formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with the AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.

  8. New insights into AGN coronae

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne; Fabian, Andrew C.; Malzac, Julien; Belmont, Renaud; Buisson, Douglas

    2016-04-01

    Active galactic nuclei (AGN) are some of the most energetic sources of radiation in the Universe. The conversion of gravitational energy into radiation is thought to take place in an accretion disk/corona system just outside the black hole. In this system thermal, UV/optical photons from the accretion disk are upscattered in a corona of hot electrons situated above the accretion disk producing X-rays. The nature of this Comptonizing corona remains a key open question in AGN physics. The NuSTAR satellite provides the opportunity to study the Comptonization spectrum produced by the corona in great detail. In our talk we will show some key results from these new studies of the Comptonization spectrum. We explore how, together with our growing knowledge of coronal sizes, we are able to draw first conclusions about the physics taking place in the corona. We find evidence for coronae to be hot and radiatively compact, putting them close to the boundary of the region in the compactness-temperature diagram which is forbidden due to runaway pair production. This suggests that pair production and annihilation are essential ingredients in the coronae of AGN and that they control the coronal temperature and shape of the observed spectra.

  9. AGN Clustering in the Local Universe: An Unbiased Picture from Swift-BAT

    SciTech Connect

    Cappelluti, N.; Ajello, M.; Burlon, D.; Krumpe, M.; Miyaji, T.; Bonoli, S.; Greiner, J.; /Garching, Max Planck Inst., MPE

    2011-08-11

    We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-correlation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r{sub 0} = 5.56{sup +0.49}{sub -0.43} Mpc/h and a slope {gamma} = 1.64{sup -0.08}{sub -0.07}. We also measured the auto-correlation function of Tyep I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are {approx} log(M{sub DMH) {approx} 12-14 h{sup -1}M/M{sub {circle_dot}} which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime {tau}{sub AGN} {approx}0.7 Gyr, it is powered by SMBH with mass M{sub BH} {approx}1-10x10{sup 8} M{sub {circle_dot}} and accreting with very low efficiency, log({epsilon}){approx}-2.0>. We also conclude that local AGN galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10{sup 10} h{sup -1}M{sub {circle_dot}}. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement.

  10. AGN feedback in action? - outflows and star formation in type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z < 0.3. First, we find a dramatic difference of the outflow signatures between AGNs and star-forming galaxies based on the [OIII] emission line kinematics. While the [OIII] velocity and velocity dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  11. The Universal Unification Model of AGN

    NASA Astrophysics Data System (ADS)

    Vilkoviskij, E. Y.

    1998-12-01

    It is shown, that the model calculations of the absorption line profiles are possible in the framework of a common model both for BAL QSOs and the Seyfert galaxies with BAL. We suppose that in both cases the BAL-clouds move in the space between two conic surface, starting in the internal surface of the absorbing torus. We argue that the common nature of the intrinsic line absorption in these objects can be explained in an universal unified AGN model, where BAL AGNs are objects intermediate between AGN1 and AGN2

  12. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  13. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    NASA Astrophysics Data System (ADS)

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  14. The VIMOS Public Extragalactic Redshift Survey (VIPERS). A support vector machine classification of galaxies, stars, and AGNs

    NASA Astrophysics Data System (ADS)

    Małek, K.; Solarz, A.; Pollo, A.; Fritz, A.; Garilli, B.; Scodeggio, M.; Iovino, A.; Granett, B. R.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Guzzo, L.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fevre, O.; Maccagni, D.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: The aim of this work is to develop a comprehensive method for classifying sources in large sky surveys and to apply the techniques to the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using the optical (u∗,g',r',i') and near-infrared (NIR) data (z', Ks), we develop a classifier, based on broad-band photometry, for identifying stars, active galactic nuclei (AGNs), and galaxies, thereby improving the purity of the VIPERS sample. Methods: Support vector machine (SVM) supervised learning algorithms allow the automatic classification of objects into two or more classes based on a multidimensional parameter space. In this work, we tailored the SVM to classifying stars, AGNs, and galaxies and applied this classification to the VIPERS data. We trained the SVM using spectroscopically confirmed sources from the VIPERS and VVDS surveys. Results: We tested two SVM classifiers and concluded that including NIR data can significantly improve the efficiency of the classifier. The self-check of the best optical + NIR classifier has shown 97% accuracy in the classification of galaxies, 97% for stars, and 95% for AGNs in the 5-dimensional colour space. In the test of VIPERS sources with 99% redshift confidence, the classifier gives an accuracy equal to 94% for galaxies, 93% for stars, and 82% for AGNs. The method was applied to sources with low-quality spectra to verify their classification, hence increasing the security of measurements for almost 4900 objects. Conclusions: We conclude that the SVM algorithm trained on a carefully selected sample of galaxies, AGNs, and stars outperforms simple colour-colour selection methods and can be regarded as a very efficient classification method particularly suitable for modern large surveys. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programme 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint

  15. Autonomous selection of PDE inpainting techniques vs. exemplar inpainting techniques for void fill of high resolution digital surface models

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick

    2007-04-01

    High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.

  16. Starburst and AGN Indicators in Optically Faint X-ray Sources in the Cosmic Evolution Survey

    NASA Astrophysics Data System (ADS)

    Robins, Derek; Elvis, M.; Civano, F.

    2011-01-01

    A sample of 55 faint, X-ray selected objects were chosen for analysis from the COSMOS survey with high quality Keck DEIMOS data. The average redshift of the sample was 1.36, consistent with the average redshift of type 1 AGN in COSMOS of 1.4. Emission lines, NeV - an indicator of AGN luminosity - and OII - an indicator of star formation rate, were measured for a subset of 34 objects. Line properties for these objects were measured. The combination of the two lines is evidence for significant star formation in these obscured AGN. Differences between OII and NeV redshifts were measured carefully. Significant differences between OII and NeV redshifts were found in 10-14 objects, implying OII outflows. The results are consistent with current models of galaxy evolution that invoke an interplay between AGN activity and star formation.

  17. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  18. Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys

    NASA Astrophysics Data System (ADS)

    Ricci, Federica; Marchesi, Stefano; Shankar, Francesco; La Franca, Fabio; Civano, Francesca

    2017-02-01

    The cosmological process of hydrogen (H I) reionization in the intergalactic medium is thought to be driven by UV photons emitted by star-forming galaxies and ionizing active galactic nuclei (AGN). The contribution of quasars (QSOs) to H I reionization at z > 4 has been traditionally believed to be quite modest. However, this view has been recently challenged by new estimates of a higher faint-end UV luminosity function (LF). To set firmer constraints on the emissivity of AGN at z < 6, we here make use of complete X-ray-selected samples including deep Chandra and new Cosmic Evolution Survey data, capable to efficiently measure the 1 Ryd comoving AGN emissivity up to z ∼ 5-6 and down to 5 mag fainter than probed by current optical surveys, without any luminosity extrapolation. We find good agreement between the logNH ≲ 21-22 cm-2 X-ray LF and the optically selected QSO LF at all redshifts for M1450 ≤ -23. The full range of the logNH ≲ 21-22 cm-2 LF (M1450 ≤ -17) was then used to quantify the contribution of AGN to the critical value of photon budget needed to keep the Universe ionized. We find that the contribution of ionizing AGN at z = 6 is as small as 1-7 per cent, and very unlikely to be greater than 30 per cent, thus excluding an AGN-dominated reionization scenario.

  19. Dusting off the star formation history of AGN hosts with SHARDS

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio

    2015-03-01

    Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.

  20. Low rectal cancer: Sphincter preserving techniques-selection of patients, techniques and outcomes.

    PubMed

    Dimitriou, Nikoletta; Michail, Othon; Moris, Dimitrios; Griniatsos, John

    2015-07-15

    Low rectal cancer is traditionally treated by abdominoperineal resection. In recent years, several new techniques for the treatment of very low rectal cancer patients aiming to preserve the gastrointestinal continuity and to improve both the oncological as well as the functional outcomes, have been emerged. Literature suggest that when the intersphincteric resection is applied in T1-3 tumors located within 30-35 mm from the anal verge, is technically feasible, safe, with equal oncological outcomes compared to conventional surgery and acceptable quality of life. The Anterior Perineal PlanE for Ultra-low Anterior Resection technique, is not disrupting the sphincters, but carries a high complication rate, while the reports on the oncological and functional outcomes are limited. Transanal Endoscopic MicroSurgery (TEM) and TransAnal Minimally Invasive Surgery (TAMIS) should represent the treatment of choice for T1 rectal tumors, with specific criteria according to the NCCN guidelines and favorable pathologic features. Alternatively to the standard conventional surgery, neoadjuvant chemo-radiotherapy followed by TEM or TAMIS seems promising for tumors of a local stage T1sm2-3 or T2. Transanal Total Mesorectal Excision should be performed only when a board approved protocol is available by colorectal surgeons with extensive experience in minimally invasive and transanal endoscopic surgery.

  1. Low rectal cancer: Sphincter preserving techniques-selection of patients, techniques and outcomes

    PubMed Central

    Dimitriou, Nikoletta; Michail, Othon; Moris, Dimitrios; Griniatsos, John

    2015-01-01

    Low rectal cancer is traditionally treated by abdominoperineal resection. In recent years, several new techniques for the treatment of very low rectal cancer patients aiming to preserve the gastrointestinal continuity and to improve both the oncological as well as the functional outcomes, have been emerged. Literature suggest that when the intersphincteric resection is applied in T1-3 tumors located within 30-35 mm from the anal verge, is technically feasible, safe, with equal oncological outcomes compared to conventional surgery and acceptable quality of life. The Anterior Perineal PlanE for Ultra-low Anterior Resection technique, is not disrupting the sphincters, but carries a high complication rate, while the reports on the oncological and functional outcomes are limited. Transanal Endoscopic MicroSurgery (TEM) and TransAnal Minimally Invasive Surgery (TAMIS) should represent the treatment of choice for T1 rectal tumors, with specific criteria according to the NCCN guidelines and favorable pathologic features. Alternatively to the standard conventional surgery, neoadjuvant chemo-radiotherapy followed by TEM or TAMIS seems promising for tumors of a local stage T1sm2-3 or T2. Transanal Total Mesorectal Excision should be performed only when a board approved protocol is available by colorectal surgeons with extensive experience in minimally invasive and transanal endoscopic surgery. PMID:26191350

  2. Selection of Instructional Methods and Techniques: The Basic Consideration of Teachers at Secondary School Level

    ERIC Educational Resources Information Center

    Ahmad, Saira Ijaz; Malik, Samina; Irum, Jamila; Zahid, Rabia

    2011-01-01

    The main objective of the study was to identify the instructional methods and techniques used by the secondary school teachers to transfer the instructions to the students and to explore the basic considerations of the teachers about the selection of these instructional methods and techniques. Participants of the study included were 442 teachers…

  3. SWIFT BAT Survey of AGN

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  4. Measuring Feedback in Nearby AGN

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2012-08-01

    We investigate the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) AGN. From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in total mass outflow rate (Ṁout) and kinetic luminosity (LK) for each AGN, summed over all of the absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, or other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine Ṁout and LK. The 6 Seyfert 1s with moderate bolometric luminosities (Lbol = 1043 - 1045 ergs s-1) all have mass outflow rates that are 10 - 1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have LK in the range 0.5 - 5% Lbol, which is the range typically required by feedback models for efficient self-regulation of black-hole and galactic bulge growth. The other three (NGC 5548, NGC 4151, and NGC 7469) have LK > 0.1%Lbol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGN have the potential to deliver significant feedback to their environments.

  5. VizieR Online Data Catalog: AGN in nearby low-mass galaxies (Sartori+, 2015)

    NASA Astrophysics Data System (ADS)

    Sartori, L. F.; Schawinski, K.; Treister, E.; Trakhtenbrot, B.; Koss, M.; Shirazi, M.; Oh, K.

    2016-07-01

    We assembled a sample of nearby dwarf galaxies in the SDSS DR7 (Abazajian et al., 2009ApJS..182..543A) starting from the OSSY catalogue (Oh-Sarzi-Schawinski-Yi; Oh et al., 2011ApJS..195...13O). The OSSY catalogue provides line measurements for the entire spectral atlas from SDSS DR7 with redshift z<0.2, as well as fitting quality assessment parameters.2 We selected the objects in the catalogue with SDSS SpecClass=2 (galaxy) and redshift lower than z=0.1. We then matched the sample to the MPA-JHU catalogue (Kauffmann et al., 2003MNRAS.341...33K; Brinchmann et al., 2004MNRAS.351.1151B) to obtain the stellar mass, and selected the galaxies with mass lower than M*=109.5M⊙. These masses were derived using fits to photometry and assuming h=0.7. We further excluded 0.17 per cent of the objects because of unreliable mass estimation. The final sample of nearby dwarf galaxies consists of 48416 objects. We searched for AGN in the nearby dwarf galaxy sample by applying three AGN selection techniques: 1. classical BPT selection (optical emission line diagnostic) based on the separation lines defined by Kewley et al. (2001ApJ...556..121K), Kauffmann et al. (2003MNRAS.346.1055K) and Schawinski et al. (2007MNRAS.382.1415S); 2. the emission line diagnostic based on HeII λ4686 described by Shirazi & Brinchmann (2012MNRAS.421.1043S) (in the following Shirazi HeII diagram); and 3. the mid-IR colour criteria described by Stern et al. (2012ApJ...753...30S) and Jarrett et al. (2011ApJ...735..112J). (7 data files).

  6. Selected applications of photothermal and photoluminescence heterodyne techniques for process control in silicon wafer manufacturing

    NASA Astrophysics Data System (ADS)

    Ehlert, Andreas; Kerstan, Michael; Lundt, Holger; Huber, Anton; Helmreich, Dieter; Geiler, Hans-Dieter; Karge, Harald; Wagner, Matthias

    1997-02-01

    Two noncontact laser-based heterodyne techniques, photothermal heterodyne (PTH) and photoluminescence heterodyne (PLH), are introduced and applied to processing and quality control in silicon wafer manufacturing. The crystallographic characteristics of process-induced defects in silicon wafers are suitable for the application of PTH and PLH techniques, which are demonstrated on selected examples from different steps of silicon wafer production. Both PLH and PTH techniques meet the demand for nondestructive and on-line-suitable measurement in the semiconductor industry.

  7. SPITZER MID-IR SPECTROSCOPY OF POWERFUL 2 JY AND 3CRR RADIO GALAXIES. I. EVIDENCE AGAINST A STRONG STARBURST-AGN CONNECTION IN RADIO-LOUD AGN

    SciTech Connect

    Dicken, D.; Axon, D.; Robinson, A.; Kharb, P.; Tadhunter, C.; Ramos Almeida, C.; Morganti, R.; Kouwenhoven, M. B. N.; Spoon, H.; Inskip, K. J.; Holt, J.; Nesvadba, N. P. H.

    2012-02-01

    We present deep Spitzer/Infrared Spectrograph (IRS) spectra for complete samples of 46 2 Jy radio galaxies (0.05 < z < 0.7) and 19 3CRR FRII radio galaxies (z < 0.1), and use the detection of polycyclic aromatic hydrocarbon (PAH) features to examine the incidence of contemporaneous star formation and radio-loud active galactic nucleus (AGN) activity. Our analysis reveals PAH features in only a minority (30%) of the objects with good IRS spectra. Using the wealth of complementary data available for the 2 Jy and 3CRR samples we make detailed comparisons between a range of star formation diagnostics: optical continuum spectroscopy, mid- to far-IR (MFIR) color, far-IR excess and PAH detection. There is good agreement between the various diagnostic techniques: most candidates identified to have star formation activity on the basis of PAH detection are also identified using at least two of the other techniques. We find that only 35% of the combined 2 Jy and 3CRR sample show evidence for recent star formation activity (RSFA) at optical and/or MFIR wavelengths. This result argues strongly against the idea of a close link between starburst and powerful radio-loud AGN activity, reinforcing the view that, although a large fraction of powerful radio galaxies may be triggered in galaxy interactions, only a minority are triggered at the peaks of star formation activity in major, gas-rich mergers. However, we find that compact radio sources (D < 15 kpc) show a significantly higher incidence of RSFA (>75%) than their more extended counterparts ( Almost-Equal-To 15%-25%). We discuss this result in the context of a possible bias toward the selection of compact radio sources triggered in gas-rich environments.

  8. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.; Armus, L.

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  9. AGN Diagnostic Plot In The WISE And 3XMM Era: The Role Of Variability

    NASA Astrophysics Data System (ADS)

    Zaino, Alessandra; Severgnini, P.; Vignali, C.; Della Ceca, R.; Ballo, L.

    2016-10-01

    An efficient diagnostic method to find local (z<0.1) Compton-thick AGN consists in selecting sources characterized by hard X- ray colors and low hard X-ray over mid-IR flux ratio. This has been done efficiently in the past using 2XMM and IRAS data (Severgnini et al. 2012). In this talk I will present my thesis work in which I tested this technique using the latest 3XMM and WISE data for the sample presented by Severgnini et al. I will also briefly discuss the X-ray spectral properties of all of those sources showing flux and/or spectral variability in the XMM-Newton observations.

  10. Reducing wrong patient selection errors: exploring the design space of user interface techniques.

    PubMed

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients' identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed.

  11. Variability-selected active galactic nuclei in the VST-SUDARE/VOICE survey of the COSMOS field

    NASA Astrophysics Data System (ADS)

    De Cicco, D.; Paolillo, M.; Covone, G.; Falocco, S.; Longo, G.; Grado, A.; Limatola, L.; Botticella, M. T.; Pignata, G.; Cappellaro, E.; Vaccari, M.; Trevese, D.; Vagnetti, F.; Salvato, M.; Radovich, M.; Brandt, W. N.; Capaccioli, M.; Napolitano, N. R.; Schipani, P.

    2015-02-01

    Context. Active galaxies are characterized by variability at every wavelength, with timescales from hours to years depending on the observing window. Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. Aims: In the present work we test the use of optical variability as a tool to identify active galactic nuclei in the VST multiepoch survey of the COSMOS field, originally tailored to detect supernova events. Methods: We make use of the multiwavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. Results: The selection on the basis of optical variability returns a sample of 83 AGN candidates; based on a number of diagnostics, we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude (completeness ranging from 26% to 5%). In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger rms variability than the bulk of non-variable sources, indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. The low completeness is in part due to the short observing span: we show that increasing the temporal baseline results in larger samples as expected for sources with a red-noise power spectrum. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide-field surveys. Observations were provided by the ESO

  12. The dependence of the soft X ray spectral slope with radio property, luminosity, and redshift, for a large sample of AGN from the Einstein IPC data base

    NASA Technical Reports Server (NTRS)

    Brunner, H.; Worrall, D. M.; Wilkes, Belinda J.; Elvis, Martin

    1989-01-01

    The dependence of the soft X-ray spectral slope on radio, optical and X-ray properties, and on redshift are reported for a large sample of Active Galactic Nuclei (AGN). The sample includes 317 optically and radio-selected AGN from a preliminary version of the Einstein Imaging Proportional Counter (IPC) quasar and AGN data base. The main results are: the difference in X-ray slope between radio-loud and radio-quiet AGN were confirmed for an independent and much larger sample of sources; a difference in X-ray slope between flat and steep radio spectrum AGN is observed only in high luminosity sub-sample; in flat radio spectrum AGNs there is an indication for a dependence of the X-ray spectral index on X-ray luminosity redshift and alpha sub 0x.

  13. ISO Key Project: Exploring the Full Range of Quasar/AGN Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, B.

    2001-01-01

    The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultra-violet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution, remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.

  14. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  15. AGNfitter: A Bayesian MCMC Approach to Fitting Spectral Energy Distributions of AGNs

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph F.; Hogg, David W.

    2016-12-01

    We present AGNfitter, a publicly available open-source algorithm implementing a fully Bayesian Markov Chain Monte Carlo method to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) from the sub-millimeter to the UV, allowing one to robustly disentangle the physical processes responsible for their emission. AGNfitter makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the nuclear and host galaxy emission simultaneously. The model consists of four physical emission components: an accretion disk, a torus of AGN heated dust, stellar populations, and cold dust in star-forming regions. AGNfitter determines the posterior distributions of numerous parameters that govern the physics of AGNs with a fully Bayesian treatment of errors and parameter degeneracies, allowing one to infer integrated luminosities, dust attenuation parameters, stellar masses, and star-formation rates. We tested AGNfitter’s performance on real data by fitting the SEDs of a sample of 714 X-ray selected AGNs from the XMM-COSMOS survey, spectroscopically classified as Type1 (unobscured) and Type2 (obscured) AGNs by their optical-UV emission lines. We find that two independent model parameters, namely the reddening of the accretion disk and the column density of the dusty torus, are good proxies for AGN obscuration, allowing us to develop a strategy for classifying AGNs as Type1 or Type2, based solely on an SED-fitting analysis. Our classification scheme is in excellent agreement with the spectroscopic classification, giving a completeness fraction of ˜ 86 % and ˜ 70 % , and an efficiency of ˜ 80 % and ˜ 77 % , for Type1 and Type2 AGNs, respectively.

  16. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  17. Differences in Halo-scale Environments between Type 1 and Type 2 AGNs at Low Redshift

    NASA Astrophysics Data System (ADS)

    Jiang, Ning; Wang, Huiyuan; Mo, Houjun; Dong, Xiao-Bo; Wang, Tinggui; Zhou, Hongyan

    2016-12-01

    Using low-redshift (z\\lt 0.09) samples of active galactic nuclei (AGNs), normal galaxies and groups of galaxies selected from the Sloan Digital Sky Survey, we study the environments of Type 1 and Type 2 AGNs, both on small and large scales. Comparisons are made for galaxy samples matched in redshift, r-band luminosity, [O iii] luminosity, and also the position in groups (central or satellite). We find that Type 2 AGNs and normal galaxies reside in similar environments. Type 1 and Type 2 AGNs have similar clustering properties on large scales (≳ 1 {h}-1 {Mpc}), but at scales smaller than 100 {h}-1 {kpc}, Type 2s have significantly more neighbors than Type 1s (3.09 ± 0.69 times more for central AGNs at ≲ 30 {h}-1 {kpc}). These results suggest that Type 1 and Type 2 AGNs are hosted by halos of similar masses, as can also be seen directly from the mass distributions of their host groups (˜ {10}12 {h}-1 {M}⊙ for centrals and ˜ {10}13 {h}-1 {M}⊙ for satellites). Type 2s have significantly more satellites around them, and the distribution of their satellites is also more centrally concentrated. The host galaxies of both types of AGNs have similar optical properties, but their infrared colors are significantly different. Our results suggest that the simple unified model based solely on torus orientation is not sufficient, but that galaxy interactions in dark matter halos must have played an important role in the formation of the dust structure, which obscures AGNs.

  18. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity

  19. AGN Accretion Physics: Insights from K2

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    We propose to use Kepler K2 mission observations of 1800 supermassive black holes at the centers of galaxies (Active Galactic Nuclei; AGN) to test models for accretion physics, to study the relationship between variability and other AGN properties such as accretion rate, and to guide methods for detecting and classifying AGN in future time-domain surveys. AGN exhibit optical brightness fluctuations on timescales from below an hour up to many years. These fluctuations are determined by the physics of accretion of matter onto black holes from their galactic environment. By observing variability on timescales down to below an hour, Kepler probes the accretion region on length scales that are too small to be directly imaged using conventional telescopes. These data allow us to test competing models for accretion physics that make different predictions for the statistics of variability. Our previous work provides strong evidence that models of AGN variability that work on long timescale data are not adequate to describe the full range of fluctuation timescales probed by Kepler. We will analyze the light curves of 1800 AGN that have been monitored by Kepler during recent and ongoing K2 campaigns. These objects span a large range of luminosity and AGN type, thus allowing study of the relationship between variability and other physical properties. We will characterize the statistics of AGN variability using state-of-the-art methods of time series analysis that are appropriate for quantifying the stochastic behavior of AGN. This analysis builds on our previous work in which we developed and tested new analysis software that extracts the full information content of these light curves and will enable several key outcomes: (1) Measurement of the relationship between types of AGN and their variability. (2) Tests for dependence of variability on accretion rate. (3) Investigation of changes in variability behavior that point to changes in the mode of accretion. (4) Correlations

  20. Resolving AGN with PanSTARRS transients

    NASA Astrophysics Data System (ADS)

    Lawrence, Andy

    2012-10-01

    With PanSTARRS we have discovered a new class of slow, blue nuclear transients which we believe to be rare examples of background AGN microlensed by stars in foreground galaxies, amplified by a factor of 10--100. The background AGN should be somewhat resolved by the foreground lens, providing a unique new diagnostic of AGN size and structure - the UV, optical, IR, BLR, and X-ray regions should have differing evolutions during the event. This proposal is a first step towards understanding the structure of the X-ray source : testing the microlensing hypothesis, characterising the SED, and establishing the first two epochs in an expected gradual decline.

  1. Mid-Infrared Spectroscopy of the Brightest Type 2 AGN in the SDSS

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy; Armus, Lee; Martins, Lucimara; Tremonti, Christy

    2006-05-01

    We propose to use the IRS on Spitzer to observe a complete and well-defined sample of the 20 brightest Type 2 (obscured) Active Galactic Nuclei (AGN) in the Sloan Digital Sky Survey (SDSS). They are selected from a sample of over 100,000 SDSS AGN on the basis of the flux in the [OIII]5007 emission-line. The full SDSS sample has been used to study the properties of local AGN and their host galaxies with unmatched statistical precision. The results imply that there is on-going co-evolution of black holes and galaxy bulges in the present universe (albeit at lower mass scales than in the past). Given the sensitivity of optical observations to even modest amounts of dust extinction, it is imperative to determine whether mid-IR and optical observations of these objects are consistent. The general goal of the proposal is to produce a set of high-quality mid-IR spectra for a complete sample of the brightest SDSS Type 2 AGN. The specific goals are: 1) To compare measurements of the AGN luminosity derived from the high-ionization mid-IR emission-lines to those derived from similar optical emission-lines. 2) To compare estimates of the relative energetic significance of black hole accretion and star formation in AGN host galaxies derived from optical data to those derived from mid-IR spectroscopy. These two goals address the following two questions: 1) How well can the luminosity of Type 2 SDSS AGN be estimated from optical spectra alone? 2) Can the coupled growth of black holes and galaxy bulges in the low-z universe be adequately quantified from optical data alone? Using the IRS to observe a complete sub-set of the 100,000 Type 2 SDSS AGN is essential to understand the degree to which the SDSS data provide a fair picture of the low-redshift AGN phenomenon. These data will beautifully complement existing IRS surveys of IR-selected AGN.

  2. Probing Agn Accretion Physics With Kepler

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    We propose to use Kepler observations of a sample of ~100 supermassive black holes at the centers of galaxies (Active Galactic Nuclei; AGN) to test models for accretion physics, to study the relationship between variability and other AGN properties, and to guide methods for detecting and classifying AGN in future time-domain surveys. AGN exhibit optical brightness fluctuations on timescales from below an hour up to many years. These fluctuations are determined by the physics of accretion of matter onto black holes from their galactic environment. By observing variability on timescales down to below an hour, Kepler probes the accretion region on length scales that are too small to be directly imaged using conventional telescopes. Data from this unique time- domain telescope now allow us to test competing models for accretion physics that make different predictions for the statistics of variability. Preliminary work provides strong evidence that models of AGN variability that work on long timescale data are not adequate to describe the full range of fluctuation timescales probed by Kepler. We will analyze the light curves of Kepler AGN that span a large range of luminosity and AGN type, thus allowing study of the relationship between variability and other physical properties. Using methods developed and tested by the Kepler team, we will perform custom post-processing of these light curves to remove known systematics. Statistical analyses of the AGN light curves will include estimation of the Structure Function, which quantifies the correlations of brightness fluctuations, and maximum likelihood light curve reconstruction. Competing models for the stochastic behavior of AGN will be tested to evaluate which models best describe variability of AGN over the full range of timescales probed by Kepler. Correlations between the stochastic model parameters and physical parameters will provide new methods for classification of AGN from their variability and aid in

  3. Effects of implant angulation, material selection, and impression technique on impression accuracy: a preliminary laboratory study.

    PubMed

    Rutkunas, Vygandas; Sveikata, Kestutis; Savickas, Raimondas

    2012-01-01

    The aim of this preliminary laboratory study was to evaluate the effects of 5- and 25-degree implant angulations in simulated clinical casts on an impression's accuracy when using different impression materials and tray selections. A convenience sample of each implant angulation group was selected for both open and closed trays in combination with one polyether and two polyvinyl siloxane impression materials. The influence of material and technique appeared to be significant for both 5- and 25-degree angulations (P < .05), and increased angulation tended to decrease impression accuracy. The open-tray technique was more accurate with highly nonaxially oriented implants for the small sample size investigated.

  4. Toward a Unified AGN Structure

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  5. The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS

    NASA Astrophysics Data System (ADS)

    Mingo, B.; Watson, M. G.; Rosen, S. R.; Hardcastle, M. J.; Ruiz, A.; Blain, A.; Carrera, F. J.; Mateos, S.; Pineau, F.-X.; Stewart, G. C.

    2016-11-01

    We cross-correlate the largest available mid-infrared (Wide-field Infrared Survey Explorer - WISE), X-ray (3XMM) and radio (Faint Images of the Radio Sky at Twenty centimetres+NRAO VLA Sky Survey) catalogues to define the MIXR sample of AGN and star-forming galaxies. We pre-classify the sources based on their positions on the WISE colour/colour plot, showing that the MIXR triple selection is extremely effective to diagnose the star formation and AGN activity of individual populations, even on a flux/magnitude basis, extending the diagnostics to objects with luminosities and redshifts from SDSS DR12. We recover the radio/mid-IR star formation correlation with great accuracy, and use it to classify our sources, based on their activity, as radio-loud and radio-quiet active galactic nuclei (AGN), low excitation radio galaxies/low ionization nuclear emission line regions, and non-AGN galaxies. These diagnostics can prove extremely useful for large AGN and galaxy samples, and help develop ways to efficiently triage sources when data from the next generation of instruments becomes available. We study bias in detail, and show that while the widely used WISE colour selections for AGN are very successful at cleanly selecting samples of luminous AGN, they miss or misclassify a substantial fraction of AGN at lower luminosities and/or higher redshifts. MIXR also allows us to test the relation between radiative and kinetic (jet) power in radio-loud AGN, for which a tight correlation is expected due to a mutual dependence on accretion. Our results highlight that long-term AGN variability, jet regulation, and other factors affecting the Q/Lbol relation, are introducing a vast amount of scatter in this relation, with dramatic potential consequences on our current understanding of AGN feedback and its effect on star formation.

  6. The OPTX Project. IV. How Reliable is [O III] as a Measure of AGN Activity?

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.

    2010-10-01

    We compare optical and hard X-ray identifications of active galactic nuclei (AGNs) using a uniformly selected (above a flux limit of f 2-8 keV = 3.5 × 10-15 erg cm-2 s-1) and highly optically spectroscopically complete (>80% for f 2-8 keV > 10-14 erg cm-2 s-1 and >60% below) 2-8 keV sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N). We find that empirical emission-line ratio diagnostic diagrams misidentify 50% of the X-ray-selected AGNs that can be put on these diagrams as star formers. We confirm that there is a large (two orders of magnitude) dispersion in the ratio of the [O III]λ5007 (hereafter [O III]) to hard X-ray luminosities for the non-broad-line AGNs, even after applying reddening corrections to the [O III] luminosities. We find that the dispersion is similar for the broad-line AGNs, where there is not expected to be much X-ray absorption from an obscuring torus around the AGN nor much obscuration from the galaxy along the line of sight if the AGN is aligned with the galaxy. We postulate that the X-ray-selected AGNs that are misidentified by the diagnostic diagrams have low [O III] luminosities due to the complexity of the structure of the narrow-line region, which causes many ionizing photons from the AGN not to be absorbed. This would mean that the [O III] luminosity can only be used to predict the X-ray luminosity to within a factor of ~3 (1σ). Despite selection effects, we show that the shapes and normalizations of the [O III] and transformed hard X-ray luminosity functions show reasonable agreement, suggesting that the [O III] samples are not finding substantially more AGNs at low redshifts than hard X-ray samples. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial

  7. Looking for the broad emission lines in AGN2 with deep NIR spectroscopy and the measure of the mass of Intermediate Mass BH

    NASA Astrophysics Data System (ADS)

    Onori, Francesca; La Franca, Fabio; Ricci, Federica

    According to the current models of galaxy evolution, in a hierarchical cosmology low mass Black Holes (10 (4) - 10 (7) M_⊙) at low redshift contain clues about the formation of the first Black Holes and Galaxies. Moreover, as they extend the dynamic range of the BH-mass/galaxy scaling relations to extreme values, they could be very useful in constraining the AGN/Galaxy co-evolutionary models. In the past years, in the framework of the verification of the AGN unified model, there have been several attempts to detect faint broad emission lines in type 2 AGN with both NIR and polarised spectroscopy. We here present the new results from a systematic study, performed using deep NIR (VLT and LBT) spectroscopy, of about 50 AGN2, drawn from the complete SWIFT/BAT 22-month had X-ray selected sample. A new virial relation able to measure the BH mass using the broad component of the Paschenbeta line will be also presented. Thanks to the above relation we have been able to directly measure, when the BLR has been detected, the BH mass of type 2 AGNs, finding that AGN2 show on average lower masses than the AGN1 population. The implications to the AGN unified model and AGN/galaxy co-evolution scenarios will be discussed.

  8. Overview of Selected Measurement Techniques for Aerodynamics Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is. therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a around-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  9. A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Yi, Sukyoung K.; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Soto, Kurt

    2015-07-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z\\lt 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [O iii] λ 5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles.

  10. First Detections of Compact AGN-triggered Radio Cores in RQ AGNs in the ECDFS

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Maini, A.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-08-01

    The mechanism triggering the radio emission in Radio-Quiet (RQ) Active Galactic Nuclei (AGN), found to be a relevant component of the faint radio population in deep fields, is hotly debated. Most RQ AGNs are unresolved or barely resolved at a few arcsec scale, comparable to the host galaxy size. RQ AGNs have also been found to share many properties with Star Forming Galaxies (SFG). They have similar radio luminosities and similar optical- /infrared-to-radio flux ratios. Their radio luminosity functions show similar evolutionary trends, and their host galaxies have similar colours, optical morphologies and stellar masses. For all these reasons it was concluded that the radio emission in such RQ AGNs is mainly triggered by star formation (SF). However in the local Universe (z<0.5) it is well known that both AGN and SF processes can contribute to the total radio emission in RQ AGNs (see e.g., Seyfert 2 galaxies), and there is growing evidence that composite SF/AGN systems are common at mid to high redshift (z>1-2). We used the Australian Long Baseline Array to observe a number of RQ AGNs in the Extended Chandra Deep Field South (ECDFS), and we detected compact, high-surface-brightness radio cores in some of them. Our pilot study shows that at least some of the sources classified as radio quiet contain an AGN that can contribute significantly (~50% or more) to the total radio emission. This is a first direct evidence of the presence of such AGN-triggered radio emission in RQ AGNs at cosmological redshifts.

  11. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1992-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  12. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1993-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  13. Spectropolarimetry of AGN, and `Women &\\ Science'

    NASA Astrophysics Data System (ADS)

    Kay, L.

    1999-12-01

    I have been using optical spectropolarimetry to investigate the nature of AGN. For the CAREER project, I have worked with A. M. Magalhães of the IAG in Brazil to use a visiting polarimetry module with the RC Spectrograph at CTIO, as well as conduct observations at Lick. Projects include observations of broad--line radio galaxies with double--peaked emission line profiles suggestive of accretion disks, and observations of a sample of X-ray selected narrow--line Seyfert 1 galaxies. Another project involves optical and X-ray observations of a complete sample of nearby Seyfert 2 galaxies in order to investigate the frequency of obscured broad--line regions and to determine their contribution to the X-ray background. In addition to involving undergraduate students in research, my educational efforts have focused on getting science into our Women's Studies program. I teach a course on the history and sociology of women in science, co-teach a course on feminist science studies, helped to create a course on women's health, organized a faculty seminar on gender and science issues, and lead a project at Barnard on gender and scientific literacy. I gratefully acknowledge support from NSF CAREER grant AST-9501835, as well as support from NSF International Research Fellowship INT-9423970, and from NSF grant EHR-9555808 to the AAC&U for the Gender and Scientific Literacy project.

  14. Mergers as triggers for nuclear activity: a near-IR study of the close environment of AGN in the VISTA-VIDEO survey

    NASA Astrophysics Data System (ADS)

    Karouzos, M.; Jarvis, M. J.; Bonfield, D.

    2014-03-01

    There is an ongoing debate concerning the driver of nuclear activity in galaxies, with active galactic nuclei (AGN) either being triggered by major or minor galactic mergers or, alternatively, through secular processes like cold gas accretion and/or formation of bars. We investigate the close environment of active galaxies selected in the X-ray, the radio and the mid-IR. We utilize the first data release of the new near-IR VISTA Deep Extragalactic Observations (VIDEO) survey of the XMM-Large Scale Structure field. We use two measures of environment density, namely counts within a given aperture and a finite redshift slice (pseudo-3D density) and closest neighbour density measures Σ2 and Σ5. We select both AGN and control samples, matching them in redshift and apparent Ks-band magnitude. We find that AGN are found in a range of environments, with a subset of the AGN samples residing in overdense environments. Seyfert-like X-ray AGN and flat-spectrum radio-AGN are found to inhabit significantly overdense environments compared to their control sample. The relation between overdensities and AGN luminosity does not however reveal any positive correlation. Given the absence of an environment density-AGN luminosity relation, we find no support for a scheme where high-luminosity AGN are preferentially triggered by mergers. On the contrary, we find that AGN likely trace over dense environments at high redshift due to the fact that they inhabit the most massive galaxies, rather than being an AGN.

  15. An infrared and optical analysis of a sample of XBONGs and optically elusive AGNs

    SciTech Connect

    Smith, K. L.; Mushotzky, R. F.; Koss, M. E-mail: richard@astro.umd.edu

    2014-10-20

    We present near-infrared (NIR) spectra of four optically elusive active galactic nuclei (AGNs) and four X-ray bright, optically normal galaxies (XBONGs) from the Swift-BAT survey. With archival observations from the Sloan Digital Sky Survey, the Two Micron All Sky Survey, Spitzer, and the Wide-field Infrared Survey Explorer (WISE), we test a number of AGN indicators in the NIR and mid-infrared; namely, NIR emission line diagnostic ratios, the presence of coronal high-ionization lines, and infrared photometry. Of our eight hard X-ray selected AGNs, we find that optical normalcy has a variety of causes from object to object, and no one explanation applies. Our objects have normal Eddington ratios and so are unlikely to host radiatively inefficient accretion flows. It is unlikely that star formation in the host or starlight dilution is contributing to their failure of optical diagnostics, except perhaps in two cases. The NIR continua are well fit by two blackbodies: one at the stellar temperature, and a hot dust component near the dust sublimation temperature. The XBONGs are more likely to have significant hot dust components, while these components are small relative to starlight in the optically elusive AGN. Some of our sample have NIR line ratios typical of AGNs, but NIR diagnostics are unsuccessful in distinguishing H II regions from AGNs in general. In one object, we discover a hidden broad-line region in the NIR. These results have strong relevance to the origin of optically normal AGNs in deep X-ray surveys.

  16. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  17. Semi-empirical AGN detection threshold in spectral synthesis studies of Lyman-continuum-leaking early-type galaxies

    NASA Astrophysics Data System (ADS)

    Cardoso, Leandro S. M.; Gomes, Jean-Michel; Papaderos, Polychronis

    2016-10-01

    Various lines of evidence suggest that the cores of a large portion of early-type galaxies (ETGs) are virtually evacuated of warm ionised gas. This implies that the Lyman-continuum (LyC) radiation produced by an assumed active galactic nucleus (AGN) can escape from the nuclei of these systems without being locally reprocessed into nebular emission, which would prevent their reliable spectroscopic classification as Seyfert galaxies with standard diagnostic emission-line ratios. The spectral energy distribution (SED) of these ETGs would then lack nebular emission and be essentially composed of an old stellar component and the featureless power-law (PL) continuum from the AGN. A question that arises in this context is whether the AGN component can be detected with current spectral population synthesis in the optical, specifically, whether these techniques effectively place an AGN detection threshold in LyC-leaking galaxies. To quantitatively address this question, we took a combined approach that involves spectral fitting with Starlight of synthetic SEDs composed of stellar emission that characterises a 10 Gyr old ETG and an AGN power-law component that contributes a fraction 0 ≤ xAGN < 1 of the monochromatic luminosity at λ0 = 4020 Å. In addition to a set of fits for PL distributions Fν ∝ ν- α with the canonical α = 1.5, we used a base of multiple PLs with 0.5 ≤ α ≤ 2 for a grid of synthetic SEDs with a signal-to-noise ratio of 5-103. Our analysis indicates an effective AGN detection threshold at xAGN ≃ 0.26, which suggests that a considerable fraction of ETGs hosting significant accretion-powered nuclear activity may be missing in the AGN demographics.

  18. Metallicity In Narrow Line Regions Go High-Z Type-2 AGN

    NASA Astrophysics Data System (ADS)

    Mignoli, Marco; Feltre, A.; Bongiorno, A.; Gilli, R.; Calura, F.; Vanzella, E.; Bolzonella, M.; Comastri, A.; Vignali, C.; Brusa, M.; Cappelluti, N.

    2016-10-01

    The physics and demographics of high redshift obscured active galactic nuclei is still scarcely studied, and new samples of such objects, selected with different techniques, can provide useful insights into their physical nature. A sample of 90 narrow-line with 1.5< z < 3.0 was selected from the zCOSMOS-deep galaxy sample by detection of the high-ionization CIV 1549A emission line. The presence of this feature in a galaxy spectrum is indicative of nuclear activity, and the selection effectiveness has been also confirmed by ultraviolet emission line diagnostic diagrams. Taking advantage of the large amount of data available in the COSMOS field, the properties of the CIV-selected Type 2 AGN were analyzed, focusing on their host galaxies, X-ray emission, and UV emission line characteristics. Finally, the physical properties of the ionized gas in the Narrow Line Region have been investigated, combining the analysis of strong UV emission lines with the prediction from photoionization models.

  19. The relevance of Newton's laws and selected principles of physics to dance techniques: Theory and application

    NASA Astrophysics Data System (ADS)

    Lei, Li

    1999-07-01

    In this study the researcher develops and presents a new model, founded on the laws of physics, for analyzing dance technique. Based on a pilot study of four advanced dance techniques, she creates a new model for diagnosing, analyzing and describing basic, intermediate and advanced dance techniques. The name for this model is ``PED,'' which stands for Physics of Expressive Dance. The research design consists of five phases: (1) Conduct a pilot study to analyze several advanced dance techniques chosen from Chinese dance, modem dance, and ballet; (2) Based on learning obtained from the pilot study, create the PED Model for analyzing dance technique; (3) Apply this model to eight categories of dance technique; (4) Select two advanced dance techniques from each category and analyze these sample techniques to demonstrate how the model works; (5) Develop an evaluation framework and use it to evaluate the effectiveness of the model, taking into account both scientific and artistic aspects of dance training. In this study the researcher presents new solutions to three problems highly relevant to dance education: (1) Dancers attempting to learn difficult movements often fail because they are unaware of physics laws; (2) Even those who do master difficult movements can suffer injury due to incorrect training methods; (3) Even the best dancers can waste time learning by trial and error, without scientific instruction. In addition, the researcher discusses how the application of the PED model can benefit dancers, allowing them to avoid inefficient and ineffective movements and freeing them to focus on the artistic expression of dance performance. This study is unique, presenting the first comprehensive system for analyzing dance techniques in terms of physics laws. The results of this study are useful, allowing a new level of awareness about dance techniques that dance professionals can utilize for more effective and efficient teaching and learning. The approach utilized in

  20. The ROSAT/NVSS AGN sample

    NASA Astrophysics Data System (ADS)

    Paronyan, Gurgen M.; Abrahamyan, Hayk V.; Harutyunyan, Gohar S.; Mickaelian, Areg M.

    2014-07-01

    We attempt to create an X-ray/radio AGN catalog and make its multiwavelength studies. ROSAT Bright Source Catalogue (BSC) contains 18,806 and ROSAT Faint Source Catalogue (FSC), 105,922 X-ray sources giving the total number of ROSAT X-ray sources 124,727 (one source is listed twice). On the other hand, NVSS radio catalogue contains 1,773,484 sources. Taking into account that X-ray sources contain AGN, bright stars and galaxies, clusters, white dwarfs (WD), cataclysmic variables (CV), etc., the cross-identification with radio catalogue may distinguish the extragalactic sources. We have cross-correlated ROSAT catalogs with NVSS one with a search radius 30 arcsec. 9,193 associations have been found. To distinguish AGN from the normal bright galaxies and clusters, Veron-Cetty & Veron AGN catalog (v.13, 2010; VCV-13) containing 168,940 objects have been used. A cross-correlation of the 9,193 ROSAT/NVSS sources with the VCV-13 with a search radius 30 arcsec resulted in 3,094 associations. Thus we are left with more 6,099 X-ray/radio sources without an optical identification. Brighter objects are normal bright galaxies, while we believe that all faint ones are candidate AGN with some contamination of distant clusters. SDSS spectroscopic survey allows us classify objects by activity types, and a number of our candidate AGN is found to be present in SDSS. We attempt to find connections between the fluxes in different wavelength ranges, which will allow us to confirm AGN and blazars candidates and in some cases find new ones.

  1. Frequency-sweeping: A new technique for energy-selective transport

    SciTech Connect

    Mynick, H.E.; Pomphrey, N.

    1994-02-01

    A new method is described for inducing energy-selective transport by `sweeping` the frequency of applied low-n magnetic perturbations. The mechanism, formally analogous to the `rising buckets` concept in accelerator physics, can move particles with a selected velocity in a nondiffusive fashion from one specified radius to another. The technique is considered principally as a means for removal of Helium ash. Other likely applications are as a method for burn control, profile control, as a diagnostic, and perhaps as a nonstochastic means of effecting the direct coupling of alpha power recently discussed by Fisch and Rax.

  2. Probing the Black Hole-Galaxy Connection with AGN Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Urry, C. M.; COSMOS Team

    2006-12-01

    There is increasing evidence that galaxies and supermassive black holes form and evolve together, exerting mutual feedback that governs the galaxy dynamics and the black hole mass. During their growth phase, supermassive black holes are readily visible as Active Galactic Nuclei (AGN). The morphologies of AGN host galaxies offer a powerful, direct probe of the AGN-galaxy connection. We are carrying out morphological analysis of large AGN samples from deep multi-wavelength surveys, comparing the results to well-selected samples of inactive galaxies. To interpret the results properly requires understanding the observational bias introduced by the central point source, which can hide compact features and thus influence the extracted AGN host morphological parameters. Therefore, we performed extensive simulations, involving a variety of galaxy types over a range of redshifts. Here we present results of these simulations and describe preliminary work on deep HST ACS images from the COSMOS field. We gratefully acknowledge support from HST grants AR-10689.01-A and GO-09822.09-A, and Yale University.

  3. Probing the Black Hole-Galaxy Connection with AGN Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Urry, C. M.; COSMOS Team

    2007-05-01

    There is increasing evidence that galaxies and supermassive black holes form and evolve together, exerting mutual feedback that governs the galaxy dynamics and the black hole mass. During their growth phase, supermassive black holes are readily visible as Active Galactic Nuclei (AGN). The morphologies of AGN host galaxies offer a powerful, direct probe of the AGN-galaxy connection. We are carrying out morphological analysis of large AGN samples from deep multi-wavelength surveys, comparing the results to well-selected samples of inactive galaxies. To interpret the results properly requires understanding the observational bias introduced by the central point source, which can hide compact features and thus influence the extracted AGN host morphological parameters. Therefore, we performed extensive simulations, involving a variety of galaxy types over a range of redshifts. Here we present results of these simulations and describe preliminary work on deep HST ACS images from the COSMOS field. We gratefully acknowledge support from HST grants AR-10689.01-A and GO-09822.09-A, and Yale University.

  4. A CENSUS OF MID-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI IN MASSIVE GALAXY CLUSTERS AT 0 {approx}< z {approx}< 1.3

    SciTech Connect

    Tomczak, Adam R.; Tran, Kim-Vy H.; Saintonge, Amelie

    2011-09-01

    We conduct a deep mid-infrared (mid-IR) census of nine massive galaxy clusters at (0 < z < 1.3) with a total of {approx}1500 spectroscopically confirmed member galaxies using Spitzer/IRAC photometry and established mid-IR color selection techniques. Of the 949 cluster galaxies that are detected in at least three of the four IRAC channels at the {>=}3{sigma} level, we identify 12 that host mid-IR-selected active galactic nuclei (IR-AGNs). To compare the IR-AGNs across our redshift range, we define two complete samples of cluster galaxies: (1) optically selected members with rest-frame V{sub AB} magnitude < - 21.5 and (2) mid-IR-selected members brighter than (M*{sub 3.6} + 0.5), i.e., essentially a stellar mass cut. In both samples, we measure f{sub IR-AGN} {approx} 1% with a strong upper limit of {approx}3% at z < 1. This uniformly low IR-AGN fraction at z < 1 is surprising given that the fraction of 24 {mu}m sources in the same galaxy clusters is observed to increase by about a factor of four from z {approx} 0 to z {approx} 1; this indicates that most of the detected 24 {mu}m flux is due to star formation. Only in our single galaxy cluster at z = 1.24 is the IR-AGN fraction measurably higher at {approx}15% (all members; {approx}70% for late-types only). In agreement with recent studies, we find that the cluster IR-AGNs are predominantly hosted by late-type galaxies with blue optical colors, i.e., members with recent/ongoing star formation. The four brightest IR-AGNs are also X-ray sources; these IR+X-ray AGNs all lie outside the cluster core (R{sub proj} {approx}> 0.5 Mpc) and are hosted by highly morphologically disturbed members. Although our sample is limited, our results suggest that f{sub IR-AGN} in massive galaxy clusters is not strongly correlated with star formation at z < 1 and that IR-AGNs have a more prominent role at z {approx}> 1.

  5. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  6. The influence of local environment on the emergence of AGN activity in galaxies

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R.; Focardi, P.

    2011-11-01

    We have carried out a spectroscopic study to determine the frequency and nature of the nuclear activity found in compact groups. With this aim we chose two samples, one selected from the Hickson Compact Groups Catalogue and another one from the Updated Zwicky Catalogue of Compact Groups. With the analysis of 1056 galaxies we found that more than 71% present some kind of emission, most of them, being low luminosity AGN (L_{Hα}=10^{39} erg s^{-1}). From these we only detect broad components in 16 which means a remarkable deficiency of broad line AGNs as compared to narrow lineAGNs, despite the high frequency of active galaxies encountered ingeneral in these groups.

  7. The WISSH Quasars Project: Probing the AGN-Galaxy Coevolution In the Most Luminous Quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, Manuela; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Duras, F.; Martocchia, S.; Zappacosta, L.; Brusa, M.; Vignali, C.; Marconi, A.; Cresci, G.; WISSH Collaboration

    2016-10-01

    The WISE/SDSS selected hyper-luminous (WISSH) quasars survey is an extensive multiband observing program (from millimeter wavelengths to hard X rays) to investigate the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows. Our ongoing project is designed to accurately constrain both AGN and host galaxy ISM properties in a large sample of 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun) and at the peak of their number density (z 2 - 4)I will review the most relevant results obtained to date with emphasis on the discovery of extremely powerful (up to 4% of L_bol) ionized outflows, the relation between AGN properties (obscuration, luminosity and Eddington ratio) and large-scale winds, and the SED of these hyper-luminous quasars.

  8. APPLICATION OF COST EFFECTIVENESS TECHNIQUES TO SELECTION OF PREFERRED WARSHIP CHARACTERISTICS

    DTIC Science & Technology

    This paper discusses the applicability of cost effectiveness methods to the problem of determining preferred design characteristics of surface, anti...the methodology applicable to adapting cost effectiveness techniques to selection of preferred warship design characteristics. The surface anti...submarine vessel is used as a vehicle for adapting the cost effectiveness methodology ; explanations as to how the cost effectiveness model may be expanded to include other types of surface ships is included.

  9. Comparison of Selective Culturing and Biochemical Techniques for Measuring Biological Activity in Geothermal Process Fluids

    SciTech Connect

    Pryfogle, Peter Albert

    2000-09-01

    For the past three years, scientists at the Idaho National Engineering and Environmental Laboratory have been conducting studies aimed at determining the presence and influence of bacteria found in geothermal plant cooling water systems. In particular, the efforts have been directed at understanding the conditions that lead to the growth and accumulation of biomass within these systems, reducing the operational and thermal efficiency. Initially, the methods selected were based upon the current practices used by the industry and included the collection of water quality parameters, the measurement of soluble carbon, and the use of selective medial for the determination of the number density of various types of organisms. This data has been collected on a seasonal basis at six different facilities located at the Geysers’ in Northern California. While this data is valuable in establishing biological growth trends in the facilities and providing an initial determination of upset or off-normal conditions, more detailed information about the biological activity is needed to determine what is triggering or sustaining the growth in these facilities in order to develop improved monitoring and treatment techniques. In recent years, new biochemical approaches, based upon the analyses of phospholipid fatty acids and DNA recovered from environmental samples, have been developed and commercialized. These techniques, in addition to allowing the determination of the quantity of biomass, also provide information on the community composition and the nutritional status of the organisms. During the past year, samples collected from the condenser effluents of four of the plants from The Geysers’ were analyzed using these methods and compared with the results obtained from selective culturing techniques. The purpose of this effort was to evaluate the cost-benefit of implementing these techniques for tracking microbial activity in the plant study, in place of the selective culturing

  10. Detection of faint broad emission lines in type 2 AGN - I. Near-infrared observations and spectral fitting

    NASA Astrophysics Data System (ADS)

    Onori, F.; La Franca, F.; Ricci, F.; Brusa, M.; Sani, E.; Maiolino, R.; Bianchi, S.; Bongiorno, A.; Fiore, F.; Marconi, A.; Vignali, C.

    2017-01-01

    We present medium resolution near-infrared spectroscopic observations of 41 obscured and intermediate class active galactic nuclei (AGN; type 2, 1.9 and 1.8; AGN2) with redshift z ≲ 0.1, selected from the Swift/Burst Alert Telescope 70-month catalogue. The observations have been carried out in the framework of a systematic study of the AGN2 near-infrared spectral properties and have been executed using Infrared Spectrometer And Array Camera/VLT, X-shooter/VLT and LUCI/LBT, reaching an average S/N ratio of ˜30 per resolution element. For those objects observed with X-shooter, we also obtained simultaneous optical and UV spectroscopy. We have identified a component from the broad line region in 13 out of 41 AGN2, with full width at half-maximum (FWHM) > 800 km s-1. We have verified that the detection of the broad line region components does not significantly depend on selection effects due to the quality of the spectra, the X-ray or near-infrared fluxes, the orientation angle of the host galaxy or the hydrogen column density measured in the X-ray band. The average broad line region components found in AGN2 has a significantly (a factor 2) smaller FWHM if compared with a control sample of type 1 AGN.

  11. THE GLOBAL IMPLICATIONS OF THE HARD EXCESS. II. ANALYSIS OF THE LOCAL POPULATION OF RADIO-QUIET AGNs

    SciTech Connect

    Tatum, M. M.; Turner, T. J.; Reeves, J. N.; DiLiello, J.; Gofford, J.; Miller, L.; Clayton, M.; Patrick, A.

    2016-02-10

    Active galactic nuclei (AGNs) show evidence for reprocessing gas, outflowing from the accreting black hole. The combined effects of absorption and scattering from the circumnuclear material likely explain the “hard excess” of X-ray emission above 20 keV, compared with the extrapolation of spectra from lower X-ray energies. In a recent Suzaku study, we established that the ubiquitous hard excess in hard, X-ray-selected, radio-quiet type 1 AGNs is consistent with a reprocessing of the X-ray continuum in an ensemble of clouds, located tens to hundreds of gravitational radii from the nuclear black hole. Here we add hard X-ray-selected, type 2 AGNs to extend our original study and show that the gross X-ray spectral properties of the entire local population of radio-quiet AGNs may be described by a simple unified scheme. We find a broad, continuous distribution of spectral hardness ratio and Fe Kα equivalent width across all AGN types, which can be reproduced by varying the observer's sightline through a single, simple model cloud ensemble, provided that the radiative transfer through the model cloud distribution includes not only photoelectric absorption but also three-dimensional (3D) Compton scattering. Variation in other parameters of the cloud distribution, such as column density or ionization, should be expected between AGNs, but such variation is not required to explain the gross X-ray spectral properties.

  12. Tracing the Far-Infrared Roles of AGN in Dusty Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Nayyeri, Hooshang; Cooray, Asantha R.; Mitchell-Wynne, Ketron

    2017-01-01

    Active galactic nuclei (AGNs) are suggested to play an important role in quenching their host galaxy’s star formation rate (SFR) by heating up and/or consuming the cool gas necessary to create stars. This mechanism is theorized as a critical step in AGN evolutionary models. The efforts to study this effect suffer in part from low-number statistics at high x-ray luminosities (LXR > 1044 ergs/s) for AGNs at z≈1-3, and a lack of separately estimated SFRs for AGN in dusty, star-forming galaxies (DSFGs). In this work, we extend our analysis to build a more complete picture using the variety of available multi-wavelength data in the XBoötes region. The Chandra XBoötes Survey is a 5-ks X-ray survey of the 9.3 square degree Boötes Field of the NOAO Deep Wide-Field Survey, a survey imaged from the optical to the near-IR. We estimate AGN spectral energy distributions and SFRs for ~400 x-ray sources using available data in all four Spitzer IRAC bands, the Spitzer MIPS 24µm band, all five Herschel SPIRE and PACS bands, along with NEWFIRM optical bands. Preliminary results show an exponential correlation between x-ray luminosity and star formation. As a comparison, we will use a stacking technique for the ~500 x-ray sources that were not detected at submillimeter wavelengths, where sources are binned by x-ray luminosity. We will compare these two samples and expect to see a difference in slope. Using these techniques, we hope to place tighter constraints on the mean SFRs of high-luminosity AGNs inside DSFGs, and determine if x-ray luminosities are independent of average SFRs for our sample in the Boötes field.

  13. Research on precision-calibration techniques for selected area electron diffraction patterns of pyrocarbon.

    PubMed

    Qi, Lehua; Li, Miaoling; Li, Hejun; Xu, Guozhong; Wang, Chuang

    2009-04-01

    The key techniques for determining orientation angle (OA) and interlayer space (d002) of pyrocarbon were investigated by analyzing selected area electron diffraction (SAED) patterns. A series of algorithms, which mainly include the five-point center-determined technique, the integral factor for the ellipse detection, the background subtraction operation and the Gaussian multipeak fitting algorithm, were designed for intensity sampling, data correction, and data fitting. The contribution ratio of the reflection intensity to the average d002 was considered. The algorithms were programmed and applied to evaluate SAED patterns of pyrocarbon in C/C composites by chemical vapor infiltration. Results showed that the proposed techniques can be effectively used to measure various SAED patterns, with a beam stop image or not, of pyrocarbon. The azimuthal intensities along the (002) arcs essentially obey the Gaussian distribution, although this is not obvious for the lower textural pyrocarbon. It is necessary for accurate OA to use the Gaussian multipeak fitting algorithm.

  14. Minimally invasive selective osteotomy of the knee: A new surgical technique.

    PubMed

    Leon, H O; Blanco, C E; Guthrie, T B

    2001-05-01

    We present a simple surgical technique created by the authors to address degenerative chondral lesions of the knee and its application in a limited prospective case series. The technique assumes the concept of beneficial epiphyseal changes caused by disruption of the subchondral bone in improving symptoms, as with drilling, microfracture, periarticular osteotomy, and other invasive procedures. Minimally invasive selective osteotomy (MISO) is an expansion of the arthroscopic treatment of the knee, specifically targeting symptomatic lesions with minimal additional trauma and cost, while avoiding disruption of the articular surface of the subchondral bone. The technique involves a mimimal access approach with selective saw cuts placed with a 1-cm oscillating blade parallel to the joint surface 1 to 1.5 cm deep to identified lesions. The technique does not address malalignment but can address lesions not addressed by classic osteotomies and, as such, may be combined with other corrective alignment procedures as necessary. We present the results of MISO of the knee in a case series of 62 outpatients carried out at the Orthopaedic Division of the Clinical and Surgical Hermanos Ameijeiras Hospital in Havana, Cuba. At 2-year follow-up, there was improvement of symptoms without significant complications.

  15. Selection of an averaging technique by simulation study of a DIAL system for toxic agents monitoring

    NASA Astrophysics Data System (ADS)

    Dudeja, Jai Paul; Jindal, Mukesh Kumar; Veerabuthiran, S.

    2007-10-01

    Differential Absorption Lidar (DIAL) is a very effective technique for standoff detection of various toxic agents in the atmosphere. The Lidar backscattered signal received usually has poor signal to noise (SNR) ratio. In order to improve the SNR, statistical averaging over a number of laser pulses is employed. The aim of the present work is to select a particular statistical averaging technique, which is most suitable in removing the noise in Lidar return signals. The DIAL system considered here uses laser transmitters based on OPO based (2-5 μm) and TEA CO2 (9-11μm) lasers. Eight commonly used chemical warfare agents including five nerve agents and three blister agents have been considered here as examples of toxic agents. A Graphical User Interface (GUI) software has been developed in LabVIEW to simulate return signals mixed with the expected noise levels. A toxic agent cloud with a given thickness and concentration has been assumed to be detected in the ambient atmospheric conditions at various ranges up to 5 Km. Data for 200 pulses per agent was stored in the computer memory. Various known statistical averaging techniques were used and number concentrations of particular agent have been computed and compared with ideal Lidar return signal values. This exercise was repeated for all the eight agents and based on the results obtained; the most suitable averaging technique has been selected.

  16. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    SciTech Connect

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C.; Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn; Rangel, Cyprian; Laird, Elise S.; Bell, Eric F.; Alexander, David M.; Bournaud, Frederic; Conselice, Christopher J.; Dekel, Avishai; and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  17. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  18. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  19. Satellites of Radio AGN in SDSS: Insights into AGN Triggering and Feedback

    NASA Astrophysics Data System (ADS)

    Pace, Cameron; Salim, Samir

    2014-04-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best & Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ~1% of radio AGN.

  20. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    NASA Astrophysics Data System (ADS)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  1. Reverberation Mapping of AGN Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  2. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  3. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not

  4. Probing AGN Accretion History Through X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Paolillo, Maurizio; Papadakis, I.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F.; Koekemoer, A.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X.

    2016-10-01

    I will present recent results on AGN variability in the CDFS survey. Using over 10 years of X-ray monitoring and comparison with local AGNs we are able to constrain the variability dependence on BH mass and accreton rate, and use it to trace the accretion hisory of the AGN population up to z=3.

  5. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    SciTech Connect

    Martini, Paul; Miller, E. D.; Bautz, M.; Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Hickox, R. C.; Stern, D.; Eisenhardt, P. R.; Galametz, A.; Norman, D.; Dey, A.; Jannuzi, B. T.; Murray, S.; Jones, C.; Brown, M. J. I.

    2013-05-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M {>=} 10{sup 14} M{sub Sun }) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z {approx} 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f{sub A} = 3.0{sup +2.4}{sub -1.4}% for AGNs with a rest-frame, hard X-ray luminosity greater than L{sub X,{sub H}} {>=} 10{sup 44} erg s{sup -1}. This fraction is measured relative to all cluster galaxies more luminous than M{sup *}{sub 3.6}(z) + 1, where M{sup *}{sub 3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 {mu}m bandpass. The cluster AGN fraction is 30 times greater than the 3{sigma} upper limit on the value for AGNs of similar luminosity at z {approx} 0.25, as well as more than an order of magnitude greater than the AGN fraction at z {approx} 0.75. AGNs with L{sub X,{sub H}} {>=} 10{sup 43} erg s{sup -1} exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z {approx} 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  6. Agnes Pockels: Life, Letters and Papers

    NASA Astrophysics Data System (ADS)

    Helm, Christiane A.

    2004-03-01

    Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).

  7. A framework for landfill site selection using geographic information systems and multi criteria decision making technique

    NASA Astrophysics Data System (ADS)

    Mat, Nur Azriati; Benjamin, Aida Mauziah; Abdul-Rahman, Syariza; Wibowo, Antoni

    2016-10-01

    The solid waste disposal is one of the facilities which can cause harm to human health and also contribute to severe environmental pollution if it is not properly managed. Therefore, an effective decision on a landfill site selection in order to identify the most suitable area as a new landfill is very important. Since 25 years ago, the integration of geographic information systems (GIS) and multi criteria decision analysis (MCDA) has drawn significant interest among researchers. This integrated technique is commonly used for land use planning and selecting a new landfill site is one of the plan. This paper proposes a framework of landfill site selection with a consideration of resource requirement. This framework is developed by using the integration of GIS and MCDA to identify an appropriate location for landfill siting. A list of selection criteria obtained from the literature considered in selecting the best landfill site is also presented. The results of this study could later be used to help the waste management team in developing an efficient solid waste management system.

  8. AGN Host Galaxy Properties And Mass Function

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angela

    2016-10-01

    Supermassive black hole growth, nuclear activity, and galaxy evolution have been found to be closely related. In the context of AGN-galaxy coevolution, I will discuss about the relation found between the host galaxy properties and the central BH and I will present the latest determination of the host galaxy stellar mass function (HGMF), and the specific accretion rate distribution function (SARDF), derived from the XMM-COSMOS sample up to z˜2.5, with particular focus on AGN feedback as possible responsible mechanism for galaxy quenching.

  9. PS1-1000305 an AGN outburst?

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Mahabal, A. A.; Djorgovski, S. G.; Graham, M. J.; Williams, R.; Prieto, J.; Catelan, M.; Christensen, E.; Beshore, E. C.; Larson, S. M.

    2010-07-01

    Kankare et al. (2010, ATel#2716) recently reported the discovery of an AGN outburst (PS1-1000305) detected in PS1 taken data on May 19.3 UT. The redshift of the AGN is given by Kankare et al. as z=0.77 with the host galaxy SDSS J152844.16+425722.5. We have extracted the five year archival CSS/CRTS lightcurve at the location of PS1-1000305.

  10. Multi-Frequency View Of Jetted AGN

    NASA Astrophysics Data System (ADS)

    Giroletti, Marcello; Orienti, M.; D'Ammando, F.; Lico, R.; Giovannini, G.:

    2016-10-01

    I will present a review on the context and the most recent results about radio loud AGNs as seen in different parts of the electromagnetic spectrum, with an eye also to multi-messenger astrophysics and neutrinos in particular. I will focus on various topics of interest about RL AGNs, such as: the study of the physics of relativistic jets and particle acceleration, in particular through VLBI and gamma ray observations; the feedback to the host galaxy and on galaxy cluster scales; the possibility to probe distant and obscured environments.

  11. Relativistic HD and MHD modelling for AGN jets

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  12. The view of AGN-host alignment via reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Parker, Michael L.; Reynolds, Christopher S.; Fabian, Andrew C.; Lohfink, Anne M.

    2016-04-01

    The fuelling of active galactic nuclei (AGN) - via material propagated through the galactic disc or via minor mergers - is expected to leave an imprint on the alignment of the sub-pc disc relative to the host galaxy's stellar disc. Determining the inclination of the inner disc usually relies on the launching angle of the jet; here instead we use the inclination derived from reflection fits to a sample of AGN. We determine the distorting effect of unmodelled Fe XXV/XXVI features and, via extensive simulations, determine the difference in disc inclination resulting from the use of RELXILL compared to REFLIONX. We compare inner disc inclinations to those for the host galaxy stellar disc derived from the Hubble formula and, via Monte Carlo simulations, find a strong lack of a correlation (at ≫5σ) implying either widespread feeding via mergers if we assume the sample to be homogeneous, or that radiative disc warps are distorting our view of the emission. However, we find that by removing a small (˜1/5) subset of AGN, the remaining sample is consistent with random sampling of an underlying 1:1 correlation (at the 3σ level). A heterogenous sample would likely imply that our view is not dominated by radiative disc warps but instead by different feeding mechanisms with the majority consistent with coplanar accretion (although this may be the result of selection bias), whilst a smaller but not insignificant fraction may have been fuelled by minor mergers in the recent history of the host galaxy.

  13. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    PubMed Central

    Wilson, Alexander D. M.; Brownscombe, Jacob W.; Sullivan, Brittany; Jain-Schlaepfer, Sofia; Cooke, Steven J.

    2015-01-01

    Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management. PMID:26284779

  14. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    PubMed

    Wilson, Alexander D M; Brownscombe, Jacob W; Sullivan, Brittany; Jain-Schlaepfer, Sofia; Cooke, Steven J

    2015-01-01

    Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.

  15. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis.

    PubMed

    Friedel, Matthias; Patz, Claus-Dieter; Dietrich, Helmut

    2013-12-15

    For more than a decade, Fourier-transform infrared (FTIR) spectroscopy combined with partial least squares (PLS) regression has been used as a fast and reliable method for simultaneous estimation of multiple parameters in wine. In this study, different FTIR instruments (single bounce attenuated total reflection, transmission with variable and defined pathlength) and different variable selection techniques (full spectrum PLS, genetic algorithm PLS, interval PLS, principal variable PLS) were compared on an identical sample set of international wines and ten wine parameters. Results suggest that the single bounce attenuated total reflection technique is well suited for the analysis of ethanol, relative density and sugars, but less accurate in the analysis of organic acid content. The transmission instrument with variable pathlength shows good validation results for the analysis of organic acids, but less accurate results for the analysis of ethanol and relative density as compared to the other instruments. The transmission instrument with defined pathlength was well suited for the analysis for all parameters investigated in this study. Variable selection improved model robustness and calibration results, with genetic algorithm PLS being the most effective technique.

  16. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. I. Emission-Line Diagnostics

    NASA Astrophysics Data System (ADS)

    Melendez, Marcio; Weaver, K.; Kraemer, S.; Mushotzky, R. F.; Tueller, J.; Markwardt, C. B.; Malumuth, E. M.; Engle, K.; Armus, L.; Berghea, C. T.; Dudik, R. P.; Winter, L. M.

    2010-01-01

    We compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra,of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 μm, [Ne II] 12.81μm , [Ne III] 15.56 μm and [Ne V] μm, and hard X-ray show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGN are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The correlations between all the mid-infrared emission lines and BAT luminosities are statistically significant. The mid-infrared emission line fluxes are highly correlated, with the worst correlations for [Ne V]-[Ne II] and [O IV]-[Ne II], as a result of enhanced [Ne II] in some sources due to nuclear stellar activity, however the tightness of these mid-infrared correlations suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that [Ne III] an [O IV] lines do not unambiguously identify AGNs as stand-along diagnostics, however the BAT AGNs fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. While it is likely that detection of [Ne V] indicates the presence of an AGN, the [Ne V] line is weak compared to [O IV] and may not be detected in weak AGN. We suggest that a composite method using [Ne II], [Ne III], and [O IV] provides a more robust diagnostic.

  17. The SRG/eROSITA All-Sky Survey: A new era of large-scale structure studies with AGN

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2015-08-01

    The four-year X-ray All-Sky Survey (eRASS) of the eROSITA telescope aboard the Spektrum-Roentgen-Gamma (SRG) satellite will detect about 3 million active galactic nuclei (AGN) with a median redshift of z~1 and typical luminosity of L0.5-2.0keV ~ 1044 erg/s. We demonstrate that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure (LSS) studies.We show that with this sample of X-ray selected AGN, it will become possible for the first time to perform detailed redshift- and luminosity-resolved studies of the AGN clustering. This enable us to put strong constraints on different AGN triggering/fueling models as a function of AGN environment, which will dramatically improve our understanding of super-massive black hole growth and its correlation with the co-evolving LSS.Further, the eRASS AGN sample will become a powerful cosmological probe. We demonstrate for the first time that, given the breadth and depth of eRASS, it will become possible to convincingly detect baryonic acoustic oscillations (BAOs) with ~8σ confidence in the 0.8 < z < 2.0 range, currently uncovered by any existing BAO survey.Finally, we discuss the requirements for follow-up missions and demonstrate that in order to fully exploit the potential of the eRASS AGN sample, photometric and spectroscopic surveys of large areas and a sufficient depth will be needed.

  18. Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey

    SciTech Connect

    de Vries, W H; Hodge, J A; Becker, R H; White, R L; Helfand, D J

    2007-04-18

    We investigate faint radio emission from low- to high-luminosity Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their radio properties are inferred by coadding large ensembles of radio image cut-outs from the FIRST survey, as almost all of the sources are individually undetected. We correlate the median radio flux densities against a range of other sample properties, including median values for redshift, [O III] luminosity, emission line ratios, and the strength of the 4000{angstrom} break. We detect a strong trend for sources that are actively undergoing star-formation to have excess radio emission beyond the {approx} 10{sup 28} ergs s{sup -1} Hz{sup -1} level found for sources without any discernible star-formation. Furthermore, this additional radio emission correlates well with the strength of the 4000{angstrom} break in the optical spectrum, and may be used to assess the age of the star-forming component. We examine two subsamples, one containing the systems with emission line ratios most like star-forming systems, and one with the sources that have characteristic AGN ratios. This division also separates the mechanism responsible for the radio emission (star-formation vs. AGN). For both cases we find a strong, almost identical, correlation between [O III] and radio luminosity, with the AGN sample extending toward lower, and the star-formation sample toward higher luminosities. A clearer separation between the two subsamples is seen as function of the central velocity dispersion {sigma} of the host galaxy. For systems at similar redshifts and values of {sigma}, the star-formation subsample is brighter than the AGN in the radio by an order of magnitude. This underlines the notion that the radio emission in star-forming systems can dominate the emission associated with the AGN.

  19. AGNfitter: An MCMC Approach to Fitting SEDs of AGN and galaxies

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph; Hogg, David W.

    2016-08-01

    I will present AGNfitter: a tool to robustly disentangle the physical processes responsible for the emission of active galactic nuclei (AGN). AGNfitter is the first open-source algorithm based on a Markov Chain Monte Carlo method to fit the spectral energy distributions of AGN from the sub-mm to the UV. The code makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the host galaxy and the nuclear emission simultaneously. The model consists in four physical components comprising stellar populations, cold dust distributions in star forming regions, accretion disk, and hot dust torus emissions. AGNfitter is well suited to infer numerous parameters that rule the physics of AGN with a proper handling of their confidence levels through the sampling and assumptions-free calculation of their posterior probability distributions. The resulting parameters are, among many others, accretion disk luminosities, dust attenuation for both galaxy and accretion disk, stellar masses and star formation rates. We describe the relevance of this fitting machinery, the technicalities of the code, and show its capabilities in the context of unobscured and obscured AGN. The analyzed data comprehend a sample of 714 X-ray selected AGN of the XMM-COSMOS survey, spectroscopically classified as Type1 and Type2 sources by their optical emission lines. The inference of variate independent obscuration parameters allows AGNfitter to find a classification strategy with great agreement with the spectroscopical classification for ˜ 86% and ˜ 70% for the Type1 and Type2 AGNs respectively. The variety and large number of physical properties inferred by AGNfitter has the potential of contributing to a wide scope of science-cases related to both active and quiescent galaxies studies.

  20. A spectral energy distribution analysis of AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Civano, Francesca M.; Hasinger, Guenther; Elvis, Martin; Marchesi, Stefano

    2015-01-01

    We present the host galaxy properties of a large sample of ~ 4000 X-ray selected Active Galactic Nuclei (AGN) in the Chandra COSMOS Legacy Survey to investigate the connection between BH accretion and host galaxy. The COSMOS Legacy survey reaching X-ray fluxes of 2x10-16 (cgs) in the 0.5-2 keV band, bridges the gap between large area shallow surveys and pencil beamed one. Making use of the existing multi-wavelength photometric data available for 96.6% of the sources, COSMOS Legacy survey provides a uniquely large sample to derive host galaxy properties for both obscured and unobscured sources. We perform a multi-component modeling from far-infrared (500 μm) when available to UV (1500 Å) using a 3-component fitting (nuclear hot dust, galaxy and starburst components) for obscured AGN and a 4-component fitting (nuclear hot dust, AGN big blue bump, galaxy, and starburst components) for unobscured AGN. Galaxy templates are from the stellar population synthesis models of Bruzual & Charlot (2003), nuclear hot dust templates are taken from Silva et al. (2004), and AGN big blue bump templates are from Richards et al. (2006). We use the column density information measured in the X-ray to constrain the AGN in the infrared band when available. Through detailed analysis of the broad-band spectral energy distribution, we derive the stellar masses and the star formation rates of the host galaxy as well as the nuclear and galaxy contribution at each frequency. We study the dependence of host galaxy properties on redshifts, luminosities, and black hole masses to infer the growth history of galaxies and black holes and we compare with a sample of inactive galaxies.

  1. Experimental Evaluation of the IP Address Space Randomisation (IASR) Technique and Its Disruption to Selected Network Services

    DTIC Science & Technology

    2014-11-01

    Experimental evaluation of the IP address space randomisation (IASR) technique and its disruption to selected network services Maxwell Dondo DRDC...secu- rity approach. MTD is a set of network defence techniques such as randomisation, deception, etc., that significantly increases the attacker’s work...effort. One randomi- sation technique , called internet protocol (IP) address space randomisation (IASR), periodically or aperiodically makes random

  2. Femoral cement within cement technique in carefully selected aseptic revision arthroplasties.

    PubMed

    Marcos, Lucas; Buttaro, Martin; Comba, Fernando; Piccaluga, Francisco

    2009-06-01

    The aim of this study was to evaluate the clinical and radiological results in a group of patients who underwent aseptic revision hip arthroplasty using the cement within cement (CWC) technique. Between 1999 and 2005, 37 aseptic revision hip operations were performed. There were 30 women and five men, with an average age of 68 years. The reasons for revision were femoral stem fracture, cup failure, acetabular protrusion after hemi-arthroplasty and recurrent dislocation. At an average follow-up of 46 months, none of the patients required further femoral revision. The average post-operative Merle D'Aubigne score was 16.6 points (p<0.05). No evidence of radiological stem failure was observed and no femoral component was considered to be at risk for loosening. In this series of patients, the CWC technique provided consistent with high functional outcomes. This valid and effective alternative should be considered in carefully selected aseptic cases.

  3. Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects.

    PubMed

    Rotaru, Horatiu; Schumacher, Ralf; Kim, Seong-Gon; Dinu, Cristian

    2015-12-01

    The restoration of extensive zygomatic complex defects is a surgical challenge owing to the difficulty of accurately restoring the normal anatomy, symmetry, proper facial projection and facial width. In the present study, an extensive post-traumatic zygomatic bone defect was reconstructed using a custom-made implant that was made with a selective laser melting (SLM) technique. The computer-designed implant had the proper geometry and fit perfectly into the defect without requiring any intraoperative adjustments. A one-year follow-up revealed a stable outcome with no complications.

  4. The use of selected theatre rehearsal technique activities with African-American adolescents labeled "behavior disordered".

    PubMed

    Anderson, M G

    1992-01-01

    The extensive literature on the overrepresentation of adolescent African-American male learners in classes for students identified as behavior disordered has essentially not addressed the problems caused by teacher reactions to adolescent conversational language use, the qualitative differences in language choices, or the impact of the conversational choices of adolescents on their educational treatment. This article explores how the dramaturgical perspective of selected Theatre Rehearsal Technique (TRT) activities can be used as learning experiences in communication with this student population. If these students gain quantifiable success in their social communication interactions, reassessment of their special education placement might facilitate their entrance into less restrictive educational environments.

  5. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    SciTech Connect

    Fisher, Karl A.; Candy, Jim V.; Guss, Gabe; Mathews, M. J.

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  6. Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles.

    PubMed

    Kaegi, R; Gasser, Ph

    2006-11-01

    The focused ion beam technique was used to fabricate transmission electron microscope lamellas of selected, micrometre-sized airborne particles. Particles were sampled from ambient air on Nuclepore polycarbonate filters and analysed with an environmental scanning electron microscope. A large number of particles between 0.6 and 10 microm in diameter (projected optical equivalent diameter) were detected and analysed using computer-controlled scanning electron microscopy. From the resulting dataset, where the chemistry, morphology and position of each individual particle are stored, two particles were selected for a more detailed investigation. For that purpose, the particle-loaded filter was transferred from the environmental scanning electron microscope to the focused ion beam, where lamellas of the selected particles were fabricated. The definition of a custom coordinate system enabled the relocation of the particles after the transfer. The lamellas were finally analysed with an analytical transmission electron microscope. Internal structure and elemental distribution maps of the interior of the particles provided additional information about the particles, which helped to assign the particles to their sources. The combination of computer-controlled scanning electron microscopy, focused ion beam and transmission electron microscopy offers new possibilities for characterizing airborne particles in great detail, eventually enabling a detailed source apportionment of specific particles. The particle of interest can be selected from a large dataset (e.g. based on chemistry and/or morphology) and then investigated in more detail in the transmission electron microscope.

  7. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-12-01

    The interplay between cosmic gas accretion on to galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations HORIZON-AGN and HORIZON-NOAGN, we unambiguously identify the critical role of active galactic nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the centre of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown to be driven not only by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  8. A Global Picture of AGN Winds

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Fukumura, K.

    2011-01-01

    We present a unified structure for accretion powered sources across their entire luminosity range from accreting galactic black holes to the most luminous quasars, with emphasis on AGN and their phenomenology. Central to this end is the notion of MHD winds launched from the accretion disks that power these objects. This work similar in spirit to that of Elvis of more that a decade ago, provides, on one hand, only the broadest characteristics of these objects, but on the other, also scaling laws that allow one to make contact with objects of different luminosity. The conclusion of this work is that AGN phenomenology can be accounted for in terms of dot(m), the wind mass flux in units of the Eddington value, the observer's inclination angle theta and alpha_OX the logarithmic slope between UV and X-ray flares. However given the well known correlation between alpha(sub ox) and UV Luminosity, we conclude that the AGN structure depends on only two parameters. The small number of model parameters hence suggests that an understanding of the global AGN properties maybe within reach.

  9. The AGN Luminosity Fraction in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  10. NuSTAR Observations of Bright AGNs

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ballantyne, D. R.; Blandford, R. D.; Boggs, S.; Boydstun, K.; Brenneman, L.; Cappi, M.; Christensen, F.; Craig, W.; Fabian, A.; Fuerst, F.; Guainazzi, M.; Hailey, C. J.; Harrison, F.; Madejski, G. M.; Marinucci, A.; Matt, G.; Nandra, K.; Reynolds, C. S.; Stern, D.; Walton, D.; Zhang, W.; NuSTAR Team

    2013-01-01

    The dramatically improved signal-to-noise provided by NuSTAR up to ~80 keV allows a qualitative change in our understanding of the X-ray emission of Active Galactic Nuclei (AGNs). Despite intensive investigation for over 30 years, during which the 0.1-10 keV spectra and variability of AGNs have been mapped out in detail, we do not know the origin of the X-ray source in AGNs. The "standard model" of supermassive black hole, accretion disk and relativistic jet does not predict an X-ray source in a straightforward way. It is usually assumed that the X-rays were UV photons from the accretion disk that have been Compton up-scattered in a "hot corona", but the temperature, optical depth and geometry of this corona are unknown - if it exists. NuSTAR enables the measurement of the high energy cut-off of the X-ray spectrum, and so the corona temperature, to be measured precisely for the first time, and tests the relativistic Fe-K line and Compton reflection models. If this model is correct then, with Suzaku and XMM-Newton, NuSTAR can measure black hole spins to high accuracy. We outline the NuSTAR GTO program on bright, unobscured, AGNs including simultaneous observations with Suzaku and XMM-Newton, and show early data.

  11. Mabel Agnes Elliott, We Hardly Knew You

    ERIC Educational Resources Information Center

    McGonigal, Kathryn; Galliher, John F.

    2008-01-01

    Sociologist Mabel Agnes Elliott was elected the fourth president of the Society for the Study of Social Problems in 1956-1957 and was the first woman to hold this position. She was an anti-war activist, a feminist and a creative and diligent writer. Yet she experienced many challenges. The Federal Bureau of Investigation kept an active file on…

  12. THE BULK OF THE BLACK HOLE GROWTH SINCE z {approx} 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER-AGN CONNECTION

    SciTech Connect

    Cisternas, Mauricio; Jahnke, Knud; Inskip, Katherine J.; Robaina, Aday R.; Andrae, Rene; Kartaltepe, Jeyhan; Koekemoer, Anton M.; Lisker, Thorsten; Scodeggio, Marco; Sheth, Kartik; Capak, Peter; Trump, Jonathan R.; Impey, Chris D.; Miyaji, Takamitsu; Lusso, Elisabeta; Brusa, Marcella; Cappelluti, Nico; Civano, Francesca; Ilbert, Olivier; Leauthaud, Alexie

    2011-01-10

    What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGNs) activity? To answer this long-standing question, we analyze 140 XMM-Newton-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z {approx} 0.3-1.0 and M{sub *} < 10{sup 11.7} M{sub sun} with high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field. The visual analysis of their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies in the AGN and control samples, i.e., quantifying the signature of recent mergers which might potentially be responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies do not show strong distortions and (2) there is no significant difference in the distortion fractions between active and inactive galaxies. Our findings provide the best direct evidence that, since z {approx} 1, the bulk of black hole (BH) accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e., internal secular processes and minor interactions, are the leading triggers for the episodes of major BH growth. We also exclude an alternative interpretation of our results: a substantial time lag between merging and the observability of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to (1) recent major mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGNs, (2) the lack of a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low levels of soft X-ray obscuration for AGNs hosted by interacting galaxies, in contrast to model predictions.

  13. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    SciTech Connect

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L.; Ellison, S. L.; Fischer, J.

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  14. The faint radio AGN population in the spotlight

    NASA Astrophysics Data System (ADS)

    Herrera Ruiz, Noelia; Middelberg, Enno

    2016-08-01

    To determine the AGN component in the faint radio population is fundamental in galaxy evolution studies. A relatively easy and direct way to determine which galaxies do have a radio-active AGN is a detection using the Very Long Baseline Interferometry (VLBI) technique. The goal of this project is to study with statistically relevant numbers the faint radio source population using VLBI observations. To achieve this goal, the project is divided into two parts. In the first part, we have observed ~3000 radio sources in the COSMOS extragalactic field with the Very Long Baseline Array (VLBA) at 1.4GHz. We have detected 468 sources. In the second part, we have observed ~200 radio sources in the COSMOS field with extremely high sensitivity using the VLBA together with the Green Bank Telescope (GBT) at 1.4GHz, to explore an even fainter population in the flux density regime of tens of uJy. We are currently calibrating this data. In this overview I will present the survey design, observations, and calibration, along with some first results.

  15. 'Harder when Brighter' Spectral Variability in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Connolly, S.; McHardy, I.; Skipper, C.; Dwelly, T.

    2015-07-01

    We present X-ray spectral variability of four low accretion rate AGN - M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the `softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely main source of spectral variability is found to be luminosity-dependent changes in the photon index of the power law component. An anticorrelation between the photon index and the count rate is found in all of the sources. The anticorrelation is likely to be caused by accretion via a radiatively-inefficient accretion flow, expected in low-Eddington ratio systems such as these, and/or due to the presence of a jet. This behaviour is similar to that seen in the `hard state' of X-ray binaries, implying that these LLAGN are in a similar state.

  16. A POWERFUL AGN OUTBURST IN RBS 797

    SciTech Connect

    Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.; Nulsen, P. E. J.; Gitti, M.; Brueggen, M.; Rafferty, D. A.

    2011-05-10

    Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{sup 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.

  17. AGN Variability: Probing Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  18. Long-Term Variability of AGN at Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2013-01-01

    Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at

  19. The VVDS type-1 AGN sample: the faint end of the luminosity function

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Zamorani, G.; Gavignaud, I.; Marano, B.; Paltani, S.; Mathez, G.; Møller, P.; Picat, J. P.; Cirasuolo, M.; Lamareille, F.; Bottini, D.; Garilli, B.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Hatziminaoglou, E.; Polletta, M.; Bondi, M.; Brinchmann, J.; Cucciati, O.; de la Torre, S.; Gregorini, L.; Mellier, Y.; Merluzzi, P.; Temporin, S.; Vergani, D.; Walcher, C. J.

    2007-09-01

    In a previous paper (Gavignaud et al. 2006, A&A, 457, 79), we presented the type-1 Active Galactic Nuclei (AGN) sample obtained from the first epoch data of the VIMOS-VLT Deep Survey (VVDS). The sample consists of 130 faint, broad-line AGN with redshift up to z=5 and 17.5selected on the basis of their spectra. The sample is thus free of the morphological and color selection biases, that lead to significant incompleteness in the optical surveys of faint AGN. In this paper we present the measurement of the Optical Luminosity Function up to z=3.6 derived from this sample, we compare our results with previous results from brighter samples both at low and at high redshift and finally, through the estimate of the bolometric luminosity function, we compare them also with the results from X-ray and mid-IR selected samples. Our data, more than one magnitude fainter than previous optical surveys, allow us to constrain the faint part of the luminosity function up to high redshift. A comparison of our data with the 2dF sample at low redshift (1 < z < 2.1) shows that the VVDS data can not be well fitted with the PLE models derived by previous samples. Qualitatively, this appears to be due to the fact that our data suggest the presence of an excess of faint objects at low redshift (1.0AGN extracted from the SDSS DR3 (Richards et al. 2006b, AJ, 131, 2766) and testing a number of different evolutionary models, we find that the model which better represents the combined luminosity functions, over a wide range of redshift and luminosity, is a luminosity dependent density evolution (LDDE) model, similar to those derived from the major X-surveys. Such a parameterization allows the redshift of the AGN space density peak to change as a function of luminosity and explains the excess of faint AGN that we find at 1.0 < z < 1.5. On the basis of this model we find, for the

  20. Excess AGN activity in the z = 2.30 Protocluster in HS 1700+64

    NASA Astrophysics Data System (ADS)

    Digby-North, J. A.; Nandra, K.; Laird, E. S.; Steidel, C. C.; Georgakakis, A.; Bogosavljević, M.; Erb, D. K.; Shapley, A. E.; Reddy, N. A.; Aird, J.

    2010-09-01

    We present the results of spectroscopic, narrow-band and X-ray observations of a z = 2.30 protocluster in the field of the QSO HS 1700+643. Using a sample of BX/MD galaxies, which are selected to be at z ~ 2.2-2.7 by their rest-frame ultraviolet colours, we find that there are five protocluster AGN which have been identified by characteristic emission-lines in their optical/near-IR spectra; this represents an enhancement over the field significant at >98.5 per cent confidence. Using a ~200-ks Chandra/ACIS-I observation of this field we detect a total of 161 X-ray point sources to a Poissonian false-probability limit of 4 × 10-6 and identify eight of these with BX/MD galaxies. Two of these are spectroscopically confirmed protocluster members and are also classified as emission-line AGN. When compared to a similarly selected field sample, the analysis indicates this is also evidence for an enhancement of X-ray selected BX/MD AGN over the field, significant at >99 per cent confidence. Deep Lyα narrow-band imaging reveals that a total of 4/123 Lyα emitters (LAEs) are found to be associated with X-ray sources, with two of these confirmed protocluster members and one highly likely member. We do not find a significant enhancement of AGN activity in this LAE sample over that of the field (result is significant at only 87 per cent confidence). The X-ray emitting AGN fractions for the BX/MD and LAE samples are found to be 6.9+9.2-4.4 and 2.9+2.9-1.6 per cent, respectively, for protocluster AGN with L2-10keV >= 4.6 × 1043 erg s-1 at z = 2.30. These findings are similar to results from the z = 3.09 protocluster in the SSA 22 field found by Lehmer et al. (2009), in that both suggest AGN activity is favoured in dense environments at z > 2.

  1. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  2. Millimeter-wave Velocity Modulation Spectroscopy as a Technique to Selectively Detect Molecular Ions

    NASA Astrophysics Data System (ADS)

    Halfen, Dewayne; Ziurys, Lucy

    2009-05-01

    Molecular ions are usually very unstable and reactive species. As a result, their spectroscopic features can be difficult to identify and distinguish from those of neutral species, which tend to be more stable and thus have stronger signals. The technique of velocity modulation allows this disadvantage to be removed. This method uses the alternating plus and minus polarity of an electric field created by an AC discharge, which also produces the molecular ions, to selectively detect the molecular ions, while eliminating the neutral features. This technique has been applied at infrared and optical wavelengths for many years with much success. Recently, we designed and built a millimeter-wave velocity modulation spectrometer, the first ever constructed. This instrument has been used to create and study multiple molecular ions, including metal-bearing molecular ions. The rotational spectrum of these species, such as TiCl^+, VCl^+, TiF^+, FeO^+, FeCO^+, and SiCl^+, has been investigated with this new machine in our laboratory. Results of these studies along with a description of the velocity modulation technique and instrument will be presented.

  3. Selecting statistical or machine learning techniques for regional landslide susceptibility modelling by evaluating spatial prediction

    NASA Astrophysics Data System (ADS)

    Goetz, Jason; Brenning, Alexander; Petschko, Helene; Leopold, Philip

    2015-04-01

    With so many techniques now available for landslide susceptibility modelling, it can be challenging to decide on which technique to apply. Generally speaking, the criteria for model selection should be tied closely to end users' purpose, which could be spatial prediction, spatial analysis or both. In our research, we focus on comparing the spatial predictive abilities of landslide susceptibility models. We illustrate how spatial cross-validation, a statistical approach for assessing spatial prediction performance, can be applied with the area under the receiver operating characteristic curve (AUROC) as a prediction measure for model comparison. Several machine learning and statistical techniques are evaluated for prediction in Lower Austria: support vector machine, random forest, bundling with penalized linear discriminant analysis, logistic regression, weights of evidence, and the generalized additive model. In addition to predictive performance, the importance of predictor variables in each model was estimated using spatial cross-validation by calculating the change in AUROC performance when variables are randomly permuted. The susceptibility modelling techniques were tested in three areas of interest in Lower Austria, which have unique geologic conditions associated with landslide occurrence. Overall, we found for the majority of comparisons that there were little practical or even statistically significant differences in AUROCs. That is the models' prediction performances were very similar. Therefore, in addition to prediction, the ability to interpret models for spatial analysis and the qualitative qualities of the prediction surface (map) are considered and discussed. The measure of variable importance provided some insight into the model behaviour for prediction, in particular for "black-box" models. However, there were no clear patterns in all areas of interest to why certain variables were given more importance over others.

  4. Delving into X-Ray Obscuration of Type 2 AGN, Near and Far

    NASA Technical Reports Server (NTRS)

    Lamassa, Stephanie M.; Yaqoob, Tahir; Ptak, Andrew F.; Jia, Jianjun; Heckman, Timothy M.; Gandhi, Poshak; Urry, C. Meg

    2014-01-01

    Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [O iii] 5007Å selected active galactic nuclei (AGNs), 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; four AGNs have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate "naked" Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L2-10 keV,in) to L[O iii] is 1.54 +/- 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe K(alpha) luminosity is significantly correlated with L[O iii] but with substantial scatter. Finally, we do not find a trend between L2-10 keV,in and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction, or between scattering fraction and redshift. Key words: galaxies: active - galaxies: Seyfert - X-rays: general

  5. Unification of Low Luminosity AGN and Hard State X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Connolly, S.

    2015-09-01

    We present X-ray spectral variability of four low accretion rate and low luminosity AGN (LLAGN)- M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the 'softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely cause of spectral variability is found to be hardening of the photon index of the power law component with increasing luminosity. Such a correlation has been seen previously within samples of low accretion rate AGN but in only one case has it been seen within observations of a single AGN. Here we show that such behaviour may be very common in LLAGN. A similar anticorrelation is found in X-ray binary systems in the 'hard state', at low accretion rates similar to those of the LLAGN discussed here. Our observations thus imply that LLAGN are the active galaxy equivalent of hard state X-ray binaries.

  6. Quenching the X-ray spectrum of hot halos with AGN outflows and turbulence

    NASA Astrophysics Data System (ADS)

    Gaspari, M.

    2016-06-01

    I highlight recent advancements in the astrophysics of AGN outflow feedback and diffuse hot gas. Thanks to XMM RGS resolution, we know that the X-ray cores of clusters, groups, and massive galaxies have a strong deficit of soft X-ray emission compared with the classic cooling flow prediction: dL_{x}/dT ∝ (T/T_{hot})^{2±1}. Using 3D hydrodynamic simulations, I show that such deficit arises from the tight self-regulation between thermal instability condensation and AGN outflow feedback. Multiphase filaments condense out of the hot plasma, they rain onto the central SMBH, and boost the AGN outflows via chaotic cold accretion. The sub-relativistic outflows thermalize in the core via shocks and turbulence, releasing more heat in the inner cooler phase, thus inducing the observed soft X-ray decline. I discuss how we can leverage XMM capabilities in the next decade by probing turbulence, conduction, AGN accretion and outflows via the information contained in X-ray spectra and surface brightness. I focus on the importance of selecting a few objects with Ms exposure and how we can unveil multiphase halos through the synergy between simulations and multiwavelength observations.

  7. Delving into X-ray obscuration of type 2 AGN, near and far

    SciTech Connect

    LaMassa, Stephanie M.; Meg Urry, C.; Yaqoob, Tahir; Ptak, Andrew F.; Gandhi, Poshak

    2014-05-20

    Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [O III] 5007 Å selected active galactic nuclei (AGNs), 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; four AGNs have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate 'naked' Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L{sub 2-10} {sub keV,} {sub in}) to L{sub [O} {sub III]} is 1.54 ± 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe Kα luminosity is significantly correlated with L{sub [O} {sub III]} but with substantial scatter. Finally, we do not find a trend between L {sub 2-10keV,} {sub in} and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction, or between scattering fraction and redshift.

  8. THE LICK AGN MONITORING PROJECT: PHOTOMETRIC LIGHT CURVES AND OPTICAL VARIABILITY CHARACTERISTICS

    SciTech Connect

    Walsh, Jonelle L.; Bentz, Misty C.; Barth, Aaron J.; Minezaki, Takeo; Sakata, Yu; Yoshii, Yuzuru; Baliber, Nairn; Bennert, Vardha Nicola; Street, Rachel A.; Treu, Tommaso; Li Weidong; Filippenko, Alexei V.; Stern, Daniel; Brown, Timothy M.; Canalizo, Gabriela; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Woo, Jong-Hak

    2009-11-01

    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10{sup 6}-10{sup 7} M {sub sun}, as well as the well-studied active galactic nucleus (AGN) NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broadband B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76 m Katzman Automatic Imaging Telescope, the 2 m Multicolor Active Galactic Nuclei Monitoring telescope, the Palomar 60 inch (1.5 m) telescope, and the 0.80 m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the photometric measurements, and present the AGN continuum light curves. We measure various variability characteristics of each of the light curves. We do not detect any evidence for a time lag between the B- and V-band variations, and we do not find significant color variations for the AGNs in our sample.

  9. Treatment of Prolapsing Hemorrhoids in HIV-Infected Patients with Tissue-Selecting Technique

    PubMed Central

    2017-01-01

    The aim of this retrospective study was to evaluate the outcome of a tissue-selecting therapy stapler (TST) for prolapsing hemorrhoids in HIV-infected patients. Sixty-two patients with stage III-IV hemorrhoidal prolapse were treated with TST by a single surgeon between June and November 2014. The TST group comprised 32 patients (4 females), and the TST + HIV group comprised 30 HIV-infected patients (3 females). Age, gender, and preoperative examination as well as intraoperative and postoperative features were assessed. There was no marked difference in hemorrhoidal prolapse between the TST and HIV + TST groups, except for patient satisfaction at 12 months. TST is an effective and safe technique for treatment of prolapsing hemorrhoids in HIV-infected patients. PMID:28356909

  10. Electrospinning as a powerful technique for biomedical applications: a critically selected survey.

    PubMed

    Villarreal-Gómez, Luis Jesús; Cornejo-Bravo, José Manuel; Vera-Graziano, Ricardo; Grande, Daniel

    2016-01-01

    Nowadays, electrospinning has become one of the most versatile, easy, and cost-effective techniques to engineer advanced materials used for many applications, especially in the biomedical and environmental areas. Like the numerous patents around the world, the increasing number of papers witnesses the huge potential of this simple process, and many companies have been emerged during the last years to exploit its innumerable applications. This article presents a critically selected overview of polymers that can be used to produce nanofibers, along with the biomedical applications of the resulting electrospun scaffolds. We have focused on about seven natural and synthetic polymers, but many more can be found in the literature, either as their pristine state or as composites with ceramics, metals, and other polymers. The description of some strategies for nanofiber production, and the characterization used to evaluate their optimization, has been discussed. Finally, several polymers have been recognized as highlights for future work.

  11. A post-fabrication selective magnetic annealing technique in standard MEMS processes

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Karmakar, N. C.; Yuce, M. R.

    2016-11-01

    A selective electrothermal magnetic annealing technique is introduced that provides programming capabilities for mechanical micro-resonators. In the proposed approach, the magnetic properties of resonators can be locally tuned in a post-fabrication batch-compatible process step. A prototype is implemented in a standard microfabrication process, where resonating ferromagnetic elements are suspended on top of a polysilicon resistive heater. The ferromagnetic elements consist of electroplated Nickel (Ni) with minor Iron (Fe) impurities. The electro-thermo-mechanical heating phenomenon is simulated for design purposes. The magnetization of micro-resonators with and without magnetic annealing is measured. The resulting magnetic property enhancement is illustrated by hysteresis (M-H) loop variations.

  12. Remote sensing and GIS techniques for selecting a sustainable scenario for Lake Koronia, Greece.

    PubMed

    Alexandridis, Thomas K; Takavakoglou, Vasileios; Crisman, Thomas L; Zalidis, George C

    2007-02-01

    During recent decades, Lake Koronia has undergone severe degradation as a result of human activities around the lake and throughout the basin. Surface and groundwater abstraction and pollution from agricultural, industrial, and municipal sources are the major sources of degradation. Planning a restoration project was hampered by lack of sufficient data, with gaps evident in both spatial and temporal dimensions. This study emphasized various remote sensing and geographic information system techniques, such as digital image processing and geographic overlay, to fill gaps using satellite imagery and other spatial environmental, hydrological, and hydrogeological data in the process of planning the restoration of Lake Koronia, following Ramsar guidelines. Current and historical remote sensing data were used to assess the current status and level of degradation, set constraints and define the ideotype for the restoration, and, finally, define and select the best restoration scenario.

  13. Radio Properties of the BAT AGNs: the FIR-radio Relation, the Fundamental Plane, and the Main Sequence of Star Formation

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T.; Miller, Neal

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L R/L X relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  14. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    NASA Astrophysics Data System (ADS)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2016-08-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  15. Delamination identification of laminated composite plates using a continuum damage mechanics model and subset selection technique

    NASA Astrophysics Data System (ADS)

    Shang, Shen; Yun, Gun Jin; Qiao, Pizhong

    2010-05-01

    In this paper, a new model-based delamination detection methodology is presented for laminated composite plates and its performance is studied both numerically and experimentally. This methodology consists of two main parts: (1) modal analysis of an undamaged baseline finite element (FE) model and experimental modal testing of panels with delamination damage at single or multiple locations and (2) a sensitivity based subset selection technique for single or multiple delamination damage localizations. As an identification model, a higher-order finite element model is combined with a rational micromechanics-based CDM model which defines the delamination damage parameter as a ratio of delaminated area to entire area. The subset selection technique based on sensitivity of the dynamic residual force has been known to be capable of detecting multiple damage locations. However, there has been no experimental study specifically for the applications in laminated composite structures. To implement the methodology, a sensitivity matrix for the laminated composite plate model has been derived. Applications of the proposed methodology to an E-glass/epoxy symmetric composite panel composed of 16 plies [CSM/UM1208/3 layers of C1800]s = [CSM/0/(90/0)3]s with delamination damage are demonstrated both numerically and experimentally. A non-contact scanning laser vibrometer (SLV), a lead zirconate titanate (PZT) actuator and a polyvinylidene fluoride (PVDF) sensor are used to conduct experimental modal testing. From the experimental example, capabilities of the proposed methodology for damage identification are successfully demonstrated for a 2D laminated composite panel. Furthermore, various damage scenarios are considered to show its performance and detailed results are discussed for future improvements.

  16. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    PubMed

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  17. Selection of simple repeats (STR`s): A rapid technique using superparamagnetic beads

    SciTech Connect

    Udar, N.S.; Yang, H.; Dandekar, S.S.

    1994-09-01

    Great interest has been generated in the past few years for acquiring repeat sequences like di-, tri- and tetra-nucleotide repeats for their wide use as polymorphic markers. In this protocol we describe using an oligonucleotide (CA){sub 21} as a primer to extend and biotinylate the DNA of interest using Taq DNA polymerase. Streptavidin-coated superparamagnetic beads were then used to select the biotin-labeled DNA. The selected DNA can then be cloned quickly. The usefulness of the technique is its improved specificity achieved by controlling conditions for varying lengths and nucleotide composition of repeats. The other advantage is that, for this method, many different oligonucleotides can be combined in the same reaction and because Taq DNA polymerase is used, a very wide spectrum of annealing temperatures can be applied. These experiments were performed with a 9600 Perkin Elmer PCR machine. Reliable and reproducible results were obtained. The protocol circumvents the radioactive hybridization steps and can be completed in a short period of time.

  18. An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine.

    PubMed

    Duan, Nuo; Gong, Wenhui; Wu, Shijia; Wang, Zhouping

    2017-04-08

    An improved SELEX technique was developed for selecting aptamers against ractopamine (RAC) by immobilizing ssDNA library on the magnetic beads. After sixteen selection rounds, a highly enriched ssDNA pool was sequenced and nine families were grouped according to their homology and secondary structures analysis. One representative aptamer candidate from each family was picked out for binding affinity identification by graphene oxide (GO) adsorption platform. The aptamer RAC-6 was demonstrated as the optimal aptamer with high specificity and dissociation constant (Kd) value of 54.22 ± 8.02 nM. To prove the potential application of aptamer RAC-6 in the quantitative determination of RAC, a fluorescent bioassay with aptamer RAC-6 was developed. The linear range for RAC was from 0.10 ng/mL to 100 ng/mL and the limit of detection was as low as 0.04 ng/mL. Furthermore, the method was validated for the analysis of RAC spiked real samples, and the recoveries were between 82.57% and 104.65%.

  19. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.

    PubMed

    Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-01-01

    The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.

  20. AGN Coronae through a Jet Perspective

    NASA Astrophysics Data System (ADS)

    King, Ashley L.; Lohfink, Anne; Kara, Erin

    2017-02-01

    This paper presents an in-depth look at the jet and coronal properties of 41 active galactic nuclei (AGNs). Utilizing the highest quality NuSTAR, XMM-Newton, and NRAO VLA Sky Survey 1.4 GHz data, we find that the radio Eddington luminosity inversely scales with X-ray reflection fraction, and positively scales with the distance between the corona and the reflected regions in the disk. We next investigate a model fit to the data that predicts the corona is outflowing and propagates into the large-scale jet. We find this model describes the data well and predicts that the corona has mildly relativistic velocities, 0.04< β < 0.40. We discuss our results in the context of disk–jet connections in AGNs.

  1. AGN feedback in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; Clarke, Tracy E.; Intema, Huib; Fabian, Andrew C.; Taylor, Gregory B.; Blundell, Katherine

    2016-04-01

    Deep Chandra images of the Perseus cluster of galaxies have revealed a succession of cavities created by the jets of the central supermassive black hole, pushing away the X-ray emitting gas and leaving bubbles filled with radio emission. Perseus is one of the rare examples showing buoyantly rising lobes from past radio outbursts, characterized by a steep spectral index and known as ghost cavities. All of these structures trace the complete history of mechanical AGN feedback over the past 500 Myrs. I will present results on new, ultra deep 230-470 MHz JVLA data. This low-frequency view of the Perseus cluster will probe the old radio-emitting electron population and will allow us to build the most detailed map of AGN feedback in a cluster thus far.

  2. Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations

    PubMed Central

    Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W.

    2016-01-01

    Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures. PMID:26904094

  3. Elucidating the Complex Lineshapes Resulting from the Highly Sensitive, Ion Selective, Technique Nice-Ohvms

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Siller, Brian; McCall, Benjamin J.

    2015-06-01

    The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS, has been used to great effect to precisely and accurately measure a variety of molecular ion transitions from species such as H_3^+, CH_5^+, HeH^+, and HCO^+, achieving MHz or in some cases sub-MHz uncertainty. It is a powerful technique, but a complete theoretical understanding of the complex NICE-OHVMS lineshape is needed to fully unlock its potential. NICE-OHVMS is the direct result of the combination of the highly sensitive spectroscopic technique Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy(NICE-OHMS) with Velocity Modulation Spectroscopy(VMS), applying the most sensitive optical detection method with ion species selectivity. The theoretical underpinnings of NICE-OHMS lineshapes are well established, as are those of VMS. This presentation is the logical extension of those two preceding bodies of work. Simulations of NICE-OHVMS lineshapes under a variety of conditions and fits of experimental data to the model are presented. The significance and accuracy of the various inferred parameters, along with the prospect of using them to extract additional information from observed transitions, are discussed. J.~N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201. A.~J. Perry, et al. J. Chem. Phys. (2014), 141, 101101. K.~N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6. F.~M. Schmidt, et al. J. Opt. Soc. Amer. A (2008), 24, 1392--1405. J.~W. Farley, J. Chem. Phys. (1991), 95, 5590--5602.

  4. Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations.

    PubMed

    Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W

    2016-01-01

    Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures.

  5. Selective cerebro-myocardial perfusion in complex congenital aortic arch pathology: a novel technique.

    PubMed

    De Rita, Fabrizio; Lucchese, Gianluca; Barozzi, Luca; Menon, Tiziano; Faggian, Giuseppe; Mazzucco, Alessandro; Luciani, Giovanni Battista

    2011-11-01

    Simultaneous cerebro-myocardial perfusion has been described in neonatal and infant arch surgery, suggesting a reduction in cardiac morbidity. Here reported is a novel technique for selective cerebral perfusion combined with controlled and independent myocardial perfusion during surgery for complex or recurrent aortic arch lesions. From April 2008 to April 2011, 10 patients with arch pathology underwent surgery (two hypoplastic left heart syndrome [HLHS], four recurrent arch obstruction, two aortic arch hypoplasia + ventricular septal defect [VSD], one single ventricle + transposition of the great arteries + arch hypoplasia, one interrupted aortic arch type B + VSD). Median age was 63 days (6 days-36 years) and median weight 4.0 kg (1.6-52). Via midline sternotomy, an arterial cannula (6 or 8 Fr for infants) was directly inserted into the innominate artery or through a polytetrafluoroethylene (PTFE) graft (for neonates <2.0 kg). A cardioplegia delivery system was inserted into the aortic root. Under moderate hypothermia, ascending and descending aorta were cross-clamped, and "beating heart and brain" aortic arch repair was performed. Arch repair was composed of patch augmentation in five, end-to-side anastomosis in three, and replacement in two patients. Average cardiopulmonary bypass time was 163 ± 68 min (71-310). In two patients only (one HLHS, one complex single ventricle), a period of cardiac arrest was required to complete intracardiac repair. In such cases, antegrade blood cardioplegia was delivered directly via the same catheter used for selective myocardial perfusion. Average time of splanchnic ischemia during cerebro-myocardial perfusion was 39 ± 18 min (17-69). Weaning from cardiopulmonary bypass was achieved without inotropic support in three and with low dose in seven patients. One patient required veno-arterial extracorporeal membrane oxygenation. Four patients, body weight <3.0 kg, needed delayed sternal closure. No neurologic dysfunction was noted

  6. Intermediate inclinations of type 2 Coronal-Line Forest AGN

    NASA Astrophysics Data System (ADS)

    Rose, Marvin; Elvis, Martin; Crenshaw, Michael; Glidden, Ana

    2015-07-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe VII], [Fe X] and [Ne V]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6-22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5-30 μm colours become bluer. We show that the [W2-W4] colours for the CLiF AGN (<[W2-W4]> = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (<[W2-W4]> = 5.22 ± 0.01) and type 2 AGN (<[W2-W4]> = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.

  7. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  8. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  9. The X-ray variability of AGN and the anomalous behavior of NGC 6814

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Mushotzky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    The power spectra of the X-ray variable AGN are typically scale invariant with no characteristic timescale. The one strong exception to this is NGC 6814, where the EXOSAT data showed evidence for a periodic component at 12200 +/- 100 seconds. The power spectra of a GINGA lightcurve from this source, found using simulation techniques to account for the uneven sampling, also cannot be well fit by a single power law. A folded light curve analysis of GINGA data shows strong evidence for this periodic component. A second GINGA observation of this source taken one year later is consistent with the phenomena being completely periodic and phase coherent for 7 periods in the range of 12,110-12,145 seconds. Including the (optimistic) limits from the folding selects a period of 12130.39 +/- 0.05 seconds. Phase coherence is not maintained between this and the EXOSAT observations, as the structure of the folded light curves is very different. Thus the periodicity is long lived and stable, but phase coherence is only maintained on timescales of about 1 year.

  10. The x ray variability of AGN and the anomalous behavior of NGC6814

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Mushotzky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    The power spectra of the X-ray variable AGN are typically scale invariant with no characteristic timescale. The one strong exception to this is NGC6814, where the EXOSAT data showed evidence for a periodic component at 12200 plus or minus 100 seconds. The power spectra of a GINGA lightcurve from this source, found using simulation techniques to account for the uneven sampling, also cannot be well fit by a single power law. A folded light curve analysis of the GINGA data shows a strong peak in the variance, indicative of a periodic component, at 12130.9 plus or minus 0.6 seconds. A second GINGA observation of this source taken one year later is consistent with the periodicity maintaining phase coherence for 7 periods in the range of 12110-12145 seconds. Including the limits from the folding selects a period of 12130.39 plus or minus 0.05 seconds. Phase coherence is not maintained between this and the EXOSAT observations, as the structure of the folded light curves is very different. Thus the periodicity is long lived and stable, but phase coherence is only maintained on timescales of approximately 1 year.

  11. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  12. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    SciTech Connect

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  13. AGN Triggering in Kpc-scale Separation Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.

    2017-01-01

    As supermassive black holes in galaxy mergers evolve from Mpc to mpc separations, the kpc-scale separations are pivotal for igniting AGN activity. At these separations the galaxy mergers drive central inflows of gas, which can trigger AGN activity in one or both supermassive black holes, in systems known as offset AGN and dual AGN, respectively. Offset and dual AGN are direct tracers of the connection between galaxy mass growth (via galaxy mergers) and supermassive black hole mass growth (via gas accretion). These systems are also the smallest separation supermassive black hole pairs that have been observationally confirmed, offering the last glimpse of supermassive black hole pair dynamics before gravitational wave emission dominates and drives the coalescence of the supermassive black holes. I will present multiwavelength approaches to building catalogs of offset AGN and dual AGN, and show the results of our observing campaigns with HST, Chandra, VLA, and Keck. Finally, I will discuss what our results show about whether galaxy mergers preferentially fuel the most luminous AGN, which supermassive black hole in a merger is more efficient at accreting gas, and where in a merger the AGN fueling occurs.

  14. X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-02-01

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5–7keV ≈ 5 × 1039 to 1 × 1042 ergs‑1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 104 to 1 × 106 M ⊙), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.

  15. AGN physics - A Chandra-Swift Census of AGN activity in Compact Groups

    NASA Astrophysics Data System (ADS)

    Tzanavaris, Panayiotis

    2012-09-01

    We present a missing link in the study of AGN activity in compact groups of galaxies. The level of this activity in compact groups remains controversial, but has only been studied with optical and infrared diagnostics. We present the first systematic study of 40 compact group galaxies in 9 groups, combining Chandra and Swift data, and providing the first X-ray/UV view of galactic nuclei in compact groups. Our results provide independent evidence that the level of AGN activity in compact groups is representative of their unique environment, which is distinct to that of rich clusters and the field.

  16. AGN Luminosity and Stellar Age: Two Missing Ingredients for AGN Unification as Seen with iPTF Supernovae

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Nyholm, Anders; Karlsson, Torgny; Comerón, Sébastien; Korn, Andreas J.; Sollerman, Jesper; Zackrisson, Erik

    2017-03-01

    Active galactic nuclei (AGNs) are extremely powerful cosmic objects, driven by accretion of hot gas upon super-massive black holes. The zoo of AGN classes is divided into two major groups, with Type-1 AGNs displaying broad Balmer emission lines and Type-2 narrow ones. For a long time it was believed that a Type-2 AGN is a Type-1 AGN viewed through a dusty kiloparsec-sized torus, but an emerging body of observations suggests more than just the viewing angle matters. Here we report significant differences in supernova (SN) counts and classes in the first study to date of SNe near Type-1 and Type-2 AGN host galaxies, using data from the intermediate Palomar Transient Factory, the Sloan Digital Sky Survey Data Release 7, and Galaxy Zoo. We detect many more SNe in Type-2 AGN hosts (size of effect ∼5.1σ) compared to Type-1 hosts, which shows that the two classes of AGN are located inside host galaxies with different properties. In addition, Type-1 and Type-2 AGNs that are dominated by star formation according to Wide-field Infrared Survey Explorer colors {m}W1-{m}W2< 0.5 and are matched in 22 μm absolute magnitude differ by a factor of ten in L[O iii] λ5007 luminosity, suggesting that when residing in similar types of host galaxies Type-1 AGNs are much more luminous. Our results demonstrate two more factors that play an important role in completing the current picture: the age of stellar populations and the AGN luminosity. This has immediate consequences for understanding the many AGN classes and galaxy evolution.

  17. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique.

    PubMed

    Leong, K F; Phua, K K; Chua, C K; Du, Z H; Teo, K O

    2001-01-01

    New techniques in solid freeform fabrication (SFF) have prompted research into methods of manufacturing and controlling porosity. The strategy of this research is to integrate computer aided design (CAD) and the SFF technique of selective laser sintering (SLS) to fabricate porous polymeric matrix drug delivery devices (DDDs). This study focuses on the control of the porosity of a matrix by manipulating the SLS process parameters of laser beam power and scan speed. Methylene blue dye is used as a drug model to infiltrate the matrices via a degassing method; visual inspection of dye penetration into the matrices is carried out. Most notably, the laser power matrices show a two-stage penetration process. The matrices are sectioned along the XZ planes and viewed under scanning electron microscope (SEM). The morphologies of the samples reveal a general increase in channel widths as laser power decreases and scan speed increases. The fractional release profiles of the matrices are determined by allowing the dye to diffuse out in vitro within a controlled environment. The results show that laser power and scan speed matrices deliver the dye for 8-9 days and have an evenly distributed profile. Mercury porosimetry is used to analyse the porosity of the matrices. Laser power matrices show a linear relationship between porosity and variation in parameter values. However, the same relationship for scan speed matrices turns out to be rather inconsistent. Relationships between the SLS parameters and the experimental results are developed using the fractional release rate equation for the infinite slab porous matrix DDD as a basis for correlation.

  18. The Close AGN Reference Survey (CARS). Mrk 1018 returns to the shadows after 30 years as a Seyfert 1

    NASA Astrophysics Data System (ADS)

    McElroy, R. E.; Husemann, B.; Croom, S. M.; Davis, T. A.; Bennert, V. N.; Busch, G.; Combes, F.; Eckart, A.; Perez-Torres, M.; Powell, M.; Scharwächter, J.; Tremblay, G. R.; Urrutia, T.

    2016-09-01

    We report the discovery that the known "changing look" AGN Mrk 1018 has changed spectral type for a second time. New VLT-MUSE data taken in 2015 as part of the Close AGN Reference Survey (CARS) shows that the AGN has returned to its original Seyfert 1.9 classification. The CARS sample is selected to contain only bright type 1 AGN, but Mrk 1018's broad emission lines and continuum, typical of type 1 AGN, have almost entirely disappeared. We use spectral fitting of the MUSE spectrum and previously available spectra to determine the drop in broad line flux and the Balmer decrement. We find that the broad line flux has decreased by a factor of 4.75 ± 0.5 in Hα since an SDSS spectrum was taken in 2000. The Balmer decrement has not changed significantly implying no enhanced reddening with time, but the remaining broad lines are more asymmetric than those present in the type 1 phase. We posit that the change is due to an intrinsic drop in flux from the accretion disk rather than variable extinction or a tidal disruption event.

  19. Radio-Quiet Quasars in the VIDEO Survey: Evidence for AGN-powered radio emission below 1 mJy

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Haeussler, Boris; Maddox, Natasha

    2015-01-01

    Several lines of evidence suggest that the interaction between active galactic nucleus (AGN) activity and star formation is responsible for the co-evolution of black hole mass with galaxy bulge mass. Therefore studying this interplay is crucial to our understanding of galaxy formation and evolution. The new generation of radio surveys are able to play a key role in this area, as both processes produce radio emission.We use a combination of optical and near-infrared photometry to select a sample of 72 quasars from the VISTA Deep Extragalactic Observations (VIDEO) Survey, over 1 deg2. The depth of VIDEO allows us to study very low accretion rates and/or lower-mass black holes. 26% of the candidate quasar sample has been spectroscopically confirmed using the Southern African Large Telescope and the VIMOS VLT Deep Survey. We then use a radio-stacking technique to sample below the nominal flux-density threshold of existing Very Large Array data at 1.4 GHz. In agreement with other work, we show that a power-law fit to the radio number counts is inadequate, with an upturn in the counts being observed at these faint luminosities. Previous authors attribute this to an emergent star-forming population. However, by comparing radio emission from our quasars with that from a control sample of galaxies, we suggest that this emission is predominantly caused by accretion activity. Further support for an AGN origin is provided by a comparison of two independent estimates of star formation rate. These findings have important implications for modelling radio populations below 1 mJy, which is necessary for the development of the Square Kilometre Array.

  20. Novel Culturing Techniques Select for Heterotrophs and Hydrocarbon Degraders in a Subantarctic Soil

    PubMed Central

    van Dorst, J. M.; Hince, G.; Snape, I.; Ferrari, B. C.

    2016-01-01

    The soil substrate membrane system (SSMS) is a novel micro-culturing technique targeted at terrestrial soil systems. We applied the SSMS to pristine and diesel fuel spiked polar soils, along with traditional solid media culturing and culture independent 454 tag pyrosequencing to elucidate the effects of diesel fuel on the soil community. The SSMS enriched for up to 76% of the total soil diversity within high diesel fuel concentration soils, in contrast to only 26% of the total diversity for the control soils. The majority of organisms originally recovered with the SSMS were lost in the transfer to solid media, with all 300 isolates belonging to Proteobacteria, Firmicutes, Actinobacteria or Bacteroidetes, the four phyla most frequently associated with soil culturing efforts. The soils spiked with high diesel fuel concentrations exhibited reduced species richness, diversity and a selection towards heterotrophs and hydrocarbon degraders in comparison to the control soils. Based on these observations and the unusually high level of overlap in microbial taxa observed between methods, we suggest the SSMS holds potential to exploit hydrocarbon degraders and other targets within simplified bacterial systems, yet is inadequate for soil ecology and ecotoxicology studies where identifying rare oligotrophic species is paramount. PMID:27827405

  1. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    NASA Astrophysics Data System (ADS)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  2. Techniques for estimating selected streamflow characteristics of rural unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Whitehead, Matthew T.

    2002-01-01

    This report provides equations for estimating mean annual streamflow, mean monthly streamflows, harmonic mean streamflow, and streamflow quartiles (the 25th-, 50th-, and 75th-percentile streamflows) as a function of selected basin characteristics for rural, unregulated streams in Ohio. The equations were developed from streamflow statistics and basin-characteristics data for as many as 219 active or discontinued streamflow-gaging stations on rural, unregulated streams in Ohio with 10 or more years of homogenous daily streamflow record. Streamflow statistics and basin-characteristics data for the 219 stations are presented in this report. Simple equations (based on drainage area only) and best-fit equations (based on drainage area and at least two other basin characteristics) were developed by means of ordinary least-squares regression techniques. Application of the best-fit equations generally involves quantification of basin characteristics that require or are facilitated by use of a geographic information system. In contrast, the simple equations can be used with information that can be obtained without use of a geographic information system; however, the simple equations have larger prediction errors than the best-fit equations and exhibit geographic biases for most streamflow statistics. The best-fit equations should be used instead of the simple equations whenever possible.

  3. Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique.

    PubMed

    Lindner, Markus; Hoeges, Simon; Meiners, Wilhelm; Wissenbach, Konrad; Smeets, Ralf; Telle, Rainer; Poprawe, Reinhart; Fischer, Horst

    2011-06-15

    The additive manufacturing technique selective laser melting (SLM) has been successfully proved to be suitable for applications in implant manufacturing. SLM is well known for metal parts and offers direct manufacturing of three-dimensional (3D) parts with high bulk density on the base of individual 3D data, including computer tomography models of anatomical structures. Furthermore, an interconnecting porous structure with defined and reproducible pore size can be integrated during the design of the 3D virtual model of the implant. The objective of this study was to develop the SLM processes for a biodegradable composite material made of β-tricalcium phosphate (β-TCP) and poly(D, L)-lactide (PDLLA). The development of a powder composite material (β-TCP/PDLLA) suitable for the SLM process was successfully performed. The microstructure of the manufactured samples exhibit a homogeneous arrangement of ceramic and polymer. The four-point bending strength was up to 23 MPa. The X-ray diffraction (XRD) analysis of the samples confirmed β-TCP as the only present crystalline phase and the gel permeations chromatography (GPC) analysis documented a degradation of the polymer caused by the laser process less than conventional manufacturing processes. We conclude that SLM presents a new possibility to manufacture individual biodegradable implants made of β-TCP/PDLLA.

  4. Selective growth of ZnO nanorods by the hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Nozaki, Shinji; Sarangi, Sachin N.; Sahu, Surendra N.; Uchida, Kazuo

    2013-03-01

    Zinc oxide nanorods were selectively grown on engineered substrates, Ag-patterned and photoresist-patterned substrates, by the hydrothermal technique using zinc nitrate (Zn(NO3)2) and hexamethylenetetramine ((CH2)6N4). The nanorod growth was affected by the substrate to be used. The nanorods were vertically grown on a GaN substrate but not on a Si substrate because of lattice mismatch. However, since the nanorods were grown on a thick Ag film no matter what substrate was used, a thick Ag film was deposited on a Si substrate to prepare the Ag-patterned substrate. Accordingly, the nanorods were grown only on the Ag pads. When the sizes of Ag pads were small such as 100 nm × 100 nm, one single nanorod was grown on an Ag pad. As another engineered substrate, the photoresist was patterned to prepare an array of holes on a GaN-on-sapphire substrate by e-beam lithography. When the hole size was 10 nm × 10 nm and higher, concentrations of Zn(NO3)2 and ((CH2)6N4) were employed, all holes were successfully filled with a single nanorod. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October 2 November 2012, Ha Long, Vietnam.

  5. Mid-IR Selected z ∼ 2 Type-2 QSOs: Obscured Star-Forming Young Quasars?

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Stevens, J.; Coppin, K.

    2016-10-01

    Star formation and obscuration in AGN: A sub-mm study of high-redshift mid-IR selected type-2 QSOs. The AGN unification model describes unobscured and obscured AGN (AGN1 and AGN2) as identical sources, with their different observed properties explained solely by orientation effects; as a result, it predicts no difference in the host galaxies. As an alternative, a second scenario has been proposed in which type-2 AGN represent an earlier stage in the life of AGN characterized by dust- enshrouded host galaxies which contribute to the obscuration and higher star formation activity, at least at earlier epochs. To test this scenario we employ Herschel data at three different wavelengths (250, 350, 500 um) to study the far-IR-to-submm properties of a sample of mid-IR selected type 2 QSOs at high redshift (1.5selected in the same field. Through SED fitting we are able to disentangle AGN and star-formation activity and consequently derive FIR luminosities of the two components, as well as SFRs and dust masses. We propose a picture in which intermediate-level radio activity in the core (pc scale) of AGN is linked to the obscuration of the nucleus (perhaps via a merger) since our AGN1 have systematically lower radio luminosities than our AGN2.

  6. Herschel Observed Stripe 82 Quasars and Their Host Galaxies: Connections between AGN Activity and host Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing

    2016-06-01

    In this work, we present a study of 207 quasars selected from the Sloan Digital Sky Survey quasar catalogs and the Herschel Stripe 82 survey. Quasars within this sample are high-luminosity quasars with a mean bolometric luminosity of 1046.4 erg s-1. The redshift range of this sample is within z < 4, with a mean value of 1.5 ± 0.78. Because we only selected quasars that have been detected in all three Herschel-SPIRE bands, the quasar sample is complete yet highly biased. Based on the multi-wavelength photometric observation data, we conducted a spectral energy distribution (SED) fitting through UV to FIR. Parameters such as active galactic nucleus (AGN) luminosity, far-IR (FIR) luminosity, stellar mass, as well as many other AGN and galaxy properties are deduced from the SED fitting results. The mean star formation rate (SFR) of the sample is 419 M ⊙ yr-1 and the mean gas mass is ˜1011.3 M ⊙. All of these results point to an IR luminous quasar system. Compared with star formation main sequence (MS) galaxies, at least 80 out of 207 quasars are hosted by starburst galaxies. This supports the statement that luminous AGNs are more likely to be associated with major mergers. The SFR increases with the redshift up to z = 2. It is correlated with the AGN bolometric luminosity, where {L}{{FIR}}\\propto {L}{{Bol}}0.46+/- 0.03. The AGN bolometric luminosity is also correlated with the host galaxy mass and gas mass. Yet the correlation between L FIR and L Bol has higher significant level, implies that the link between AGN accretion and the SFR is more primal. The M BH/M * ratio of our sample is 0.02, higher than the value 0.005 in the local universe. It might indicate an evolutionary trend of the M BH-M * scaling relation.

  7. The host galaxies of AGN with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3AGN) with powerful relativistic jets (L1.4GHz >10^27 WHz^-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4GHz = 10^23.7 - 10^28.3WHz^-1, allowing us to divide our sample into high-excitation (quasar-mode; HERGs) and low-excitation (radio-mode; LERGs) radio galaxies. The host galaxies of our sample are bright and seem to follow the Kormendy relation. Nuclear emission (dominated by non-thermal mechanisms) and host-galaxy magnitudes show a slightly negative weak trend for LERGs. On the other hand, the m_bulge -m_nuc relation is statistically significant for HERGs. Although it may be affected by selection effects, this correlation suggests a close coupling between the relativistic jets and their host galaxy. Our findings are consistent with the excitation state (LERG/HERG) scenario. In this view, LERGs emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and HERGs are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  8. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  9. AGN Feedback in Clusters of Galaxies

    DTIC Science & Technology

    2010-01-01

    bubbles created by the radio lobes evacuating regions of the ICM vary widely from a few kpc (e.g. Abell 262 [21, 22]) to hundreds of kpc (e.g. MS0735.6...diameters of approximately 200 kpc . The total energy injection required to inflate the cavities and produce the ob- served shocks is 6 × 1061 erg...cluster center, and these are modeled as shocks in [32] based on the earlier 163 ksec dataset. These features are at 31 and 46 kpc from the AGN and the

  10. Obscured AGN With NuSTAR

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea; Bianchi, S.; Matt, G.; Balokovic, M.; Bauer, F. E.; Brandt W. N.; Gandhi, P.; Guainazzi, M.; Harrison, F.; Iwasawa, K.; Nicastro, F.; Puccetti, S.; Ricci, C.; Walton, D. J.; Stern, D.

    2016-10-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first orbiting telescope to focus high energy X-ray light above 10 keV. Compared to the previous generation of coded mask observatories, this change in technology provides NuSTAR with 10x sharper images and 100x improved sensitivityThe unprecedented spectral quality in the 3-80 keV band has provided unique information about the circumnuclear reflecting environment of AGNI will present and discuss results from the NuSTAR observations of nearby Obscured AGN in its first four years of science.

  11. Clues to the Structure of AGN Through Massive Variability Surveys

    NASA Astrophysics Data System (ADS)

    Lawrence, A.

    2016-06-01

    Variability studies hold information on otherwise unresolvable regions in Active Galactic Nuclei (AGN). Population studies of large samples likewise have been very productive for our understanding of AGN. These two themes are coming together in the idea of systematic variability studies of large samples - with SDSS, PanSTARRS, and soon, LSST. I summarise what we have learned about the optical and UV variability of AGN, and what it tells us about accretion discs and the BLR. The most exciting recent results have focused on rare large-scale outbursts and collapses - Tidal Disruption Events, changing-look AGN, and large amplitude microlensing. All of these promise to give us new insight into AGN physics.

  12. Searching for Compton-thick AGN with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Virani, S. N.; Treister, E.; Urry, C. M.; Maccarone, T.; Bird, T.; Beckmann, V.; Lira, P.; Coppi, P.; Uchiyama, Y.

    2005-12-01

    The 30 keV peak in the X-ray background strongly suggests there should be a large number of highly obscured AGN in the local universe. However, the exact number of these objects remains unknown, even though they could nearly double the space density of supermassive black holes. These Compton-thick AGN can be detected in the hard X-rays with INTEGRAL. As part of the current observing cycle, we were awarded 2 Msec to perform INTEGRAL imaging of the XMM-LSS field in order to find highly obscured AGN in the local Universe. In this paper, we present preliminary results for the ˜1 Ms of IBIS data obtained so far, including new hard X-ray detections of AGN. We also present the 20---200 keV spectra of the brightest AGN including the z<0.1 Seyfert galaxies NGC 788, NGC 1068, and NGC 1142.

  13. Data Selection for Fast Projection Techniques Applied to Adaptive Nulling: A Comparative Study of Performance

    DTIC Science & Technology

    1991-12-01

    point de vue d’annulation des brouilleurs, le dernier 6tant moins rapide mais donnant une meilleure annulation. En effet , ces algorithmes donnent un...techniques avec celui de la technique "sample matrix inversion ou SMI" pour trois scenarios diffdrents; ces trois derniers ddmontrent les effets du nombre de...eigenvector analysis, such as the MUSIC technique [2], are effective for both interference suppression and spectral estimation. These techniques yield

  14. Selective extraction of lamivudine in human serum and urine using molecularly imprinted polymer technique.

    PubMed

    Shekarchi, Maryam; Pourfarzib, Mojgan; Akbari-Adergani, Behrouz; Mehramizi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul

    2013-07-15

    In this work, a novel technique is described for determination of lamivudine in biological fluids by molecularly imprinted polymers (MIPs) as the sample clean-up method joint with high performance liquid chromatography (HPLC). MIPs were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, acetonitrile and tetrahydrofuran as porogen and lamivudine as the template molecule. The new imprinted polymer was used as a molecular sorbent for the separation of lamivudine from human serum and urine. Molecular recognition properties, binding capacity and selectivity of the MIPs were evaluated and the results showed that the obtained MIPs have a high affinity for lamivudine in aqueous medium. HPLC analyses showed that the extraction of lamivudine from serum and urine by MIPs had a linear calibration curve in the range of 60-700μg/L with excellent precisions of 2.73% for serum and 2.60% for urine. The limit of detection and quantization of lamivudine was 19.34 and 58.6μg/L in serum and 7.95 and 24.05μg/L in urine respectively. MIP extraction provided about 10 fold LOQ improvement in serum and 5 fold LOQ improvement in urine samples. The recoveries of lamivudine in serum and urine samples were found to be 84.2-93.5% and 82.5-90.8% respectively. Due to the high precision and accuracy, this method may be the UV-HPLC choice with MIP extraction for bioequivalence analysis of lamivudine in serum and urine.

  15. Advances in flowing afterglow and selected-ion flow tube techniques

    NASA Astrophysics Data System (ADS)

    Squires, Robert R.

    1992-09-01

    New developments in flowing afterglow and selected-ion flow tube (SIFT) techniques are briefly reviewed. Particular emphasis is given to the new chemical and physical information that can be obtained with use of the tandem flowing afterglow-triple quadrupole apparatus developed in the author's laboratory. Several outstanding recent achievements in the design and utilization of flowing afterglow and SIFT instruments in other laboratories are briefly highlighted that illustrate the power and flexibility of flow-tube-based methods. These include isotope tracer experiments with the tandem flowing afterglow-SIFT instrument in Boulder, studies of large molecular cluster ions with the variable temperature facility at Penn State, and gas-phase metal ion reactions with the laser ablation/fast flow reactor in Madison. Recent applications of the flowing afterglow-triple quadrupole instrument in our laboratory have made use of collision-induced dissociation (CID) as a tool for synthesizing novel ions and for obtaining new thermo-chemical information from threshold energy measurements. Collision-induced decar☐ylation of organic car☐ylate ions provides access to a variety of unusual and highly basic carbanions that cannot be generated with conventional ion sources. The formation and properties of saturated alkyl ions and studies of gas-phase reactions of the methyl anion are briefly described. We have developed a new method for carrying out "preparative CID" in a flowing afterglow with use of a mini-drift tube; some recent applications of this new ion source are presented. Measurement of CID thresholds for simple cleavage reactions of thermalized ions can provide accurate measures of bond strengths, gas-phase acidities and basicities, and heats of formation for ions and reactive neutral species. Applications of this approach in the thermochemical characterization of carbenes, benzynes and biradicals are described. Future prospects for the continued development of flow

  16. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR < tHubble) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed MBH/Mast ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  17. On the nature of type 1 AGN: emission properties and correlations

    NASA Astrophysics Data System (ADS)

    Taufik Andika, Irham; Ikbal Arifyanto, Mochamad; Kollatschny, Wolfram

    2016-11-01

    We present a study of emission properties and correlations of 3191 type 1 AGN at z < 0.35, selected from Sloan Digital Sky Survey Data Release 12. We supplement the data with ultraviolet spectra from Hubble Space Telescope and International Ultraviolet Explorer along with X-ray properties from Chandra Source Catalog and XMM-Newton Serendipitous Source Catalog and radio measurements from FIRST. We find that the observed spectral diversity of type 1 AGN can be unified by Eddington ratio (L/L Edd). Objects with higher L/L Edd tend to have narrower broad Hβ component, strong Ee II emission, systematic blueshift of C IV λ1549, soft X-ray excess, and lower ionization parameter compared to those of the lower L/L Edd.

  18. The Prevalence of Gas Outflows in Type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak; Bae, Hyun-Jin; Son, Donghoon; Karouzos, Marios

    2016-02-01

    To constrain the nature and fraction of the ionized gas outflows in active galactic nuclei (AGNs), we perform a detailed analysis on gas kinematics as manifested by the velocity dispersion and shift of the [{{O}}\\{{III}}] λ5007 emission line, using a large sample of ˜39,000 type 2 AGNs at z < 0.3. First, we confirm a broad correlation between [{{O}} {{III}}] and stellar velocity dispersions, indicating that the bulge gravitational potential plays a main role in determining the [{{O}} {{III}}] kinematics. However, [{{O}} {{III}}] velocity dispersion is on average larger than stellar velocity dispersion by a factor of 1.3-1.4 for AGNs with double Gaussian [{{O}} {{III}}], suggesting that the non-gravitational component, i.e., outflows, is almost comparable to the gravitational component. Second, the increase of the [{{O}} {{III}}] velocity dispersion (after normalized by stellar velocity dispersion) with both AGN luminosity and Eddington ratio suggests that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [{{O}} {{III}}] velocity-velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the majority of luminous AGNs present the non-gravitational kinematics in the [{{O}} {{III}}] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [{{O}} {{III}}] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs.

  19. SPECTROSCOPICALLY SELECTED SPITZER 24 {mu}m ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Choi, P. I.; Yan Lin; Helou, G.; Storrie-Lombardi, L. J.; Shim, H.; Fadda, D.; Im, M.

    2011-05-01

    We investigate the active galactic nucleus (AGN) sub-population of a 24 {mu}m flux-limited galaxy sample in the Spitzer Extragalactic First Look Survey. Using deep Keck optical spectroscopy and a series of emission-line diagnostics, we identify AGN-dominated systems over broad redshift 0 < z < 3.5 and luminosity 9 < log (L{sub TIR}) < 14 ranges, with sample means of (z) = 0.85 and (log (L{sub TIR})) = 11.5. We find that down to the flux limits of our Spitzer MIPS sample (f{sub 24} > 200 {mu}Jy), 15%-20% of sources exhibit strong AGN signatures in their optical spectra. At this flux limit, the AGN population accounts for as much as 25%-30% of the integrated 24 {mu}m flux. This corresponds to an MIR AGN contribution {approx}2-3 x greater than that found in ISOCAM 15 {mu}m studies that used X-ray AGN identifications. Based on our spectroscopically selected AGN sample, we also investigate the merits of Infrared Array Camera (IRAC) color selection for AGN identification. Our comparison reveals that although there is considerable overlap, a significant fraction of spectroscopic AGNs are not identifiable based on their MIR colors alone. Both the measured completeness and reliability of the IRAC color selections are found to be strongly dependent on the MIR flux limit. Finally, our spectroscopic AGN sample implies as much as a 3 x higher AGN surface density at high redshift (z > 1.2) than that of recent optical surveys at comparable optical flux limits, suggestive of a population of heavily obscured, optical/UV reddened AGNs.

  20. The jet-disc connection in AGN

    NASA Astrophysics Data System (ADS)

    Sbarrato, T.; Padovani, P.; Ghisellini, G.

    2014-11-01

    We present our latest results on the connection between accretion rate and relativistic jet power in active galactic nuclei (AGN), by using a large sample which includes mostly blazars, but contains also some radio galaxies. The jet power can be traced by γ-ray luminosity in the case of blazars, and radio luminosity for both classes. The accretion-disc luminosity is instead traced by the broad emission lines. Among blazars, we find a correlation between broad line emission and the γ-ray or radio luminosities, suggesting a direct tight connection between jet power and accretion rate. We confirm that the observational differences between blazar subclasses reflect differences in the accretion regime, but with blazars only we cannot properly access the low-accretion regime. By introducing radio galaxies, we succeed in observing the fingerprint of the transition between radiatively efficient and inefficient accretion discs in the jetted AGN family. The transition occurs at the standard critical value Ld/LEdd ˜ 10-2 and it appears smooth. Below this value, the ionizing luminosity emitted by the accretion structure drops significantly.

  1. Extremely efficient Zevatron in rotating AGN magnetospheres

    NASA Astrophysics Data System (ADS)

    Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N.

    2014-12-01

    A novel model of particle acceleration in the magnetospheres of rotating active galactic nuclei (AGN) is constructed. The particle energies may be boosted up to 1021 eV in a two-step mechanism: in the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. In the second stage, the electrostatic energy is transferred to particle kinetic energy via Landau damping made possible by rapid `Langmuir collapse'. The time-scale for parametric pumping of Langmuir waves turns out to be small compared to the kinematic time-scale, indicating high efficiency of the first process. The second process of `Langmuir collapse' - the creation of caverns or low-density regions - also happens rapidly for the characteristic parameters of the AGN magnetosphere. The Langmuir collapse creates appropriate conditions for transferring electric energy to boost up already high particle energies to much higher values. It is further shown that various energy loss mechanism are relatively weak, and do not impose any significant constraints on maximum achievable energies.

  2. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    Aim: We address the relation between star formation and AGN activity in a large sample of nearby early type (E and S0) galaxies. The redshift range of the galaxies is 0.0002AGN is believed to play an important role in regulating star formation and thus the process of galaxy evolution and formation. Evidence of AGN feedback is found in massive galaxies in galaxy clusters. However, how common AGN feedback is in the local universe and in small scale systems is still not evident.Methods: To answer this question, we carried out a multiple wavelength study of a sample of 231 early type galaxies which were selected to have an apparent K-band magnitude brighter than 13.5 and whose positions correlate with Chandra ACIS-I and ACIS-S sources. The galaxies in the sample are unbiased regarding their star formation and radio source properties. Using the archival observations at radio, IR and UV from VLA, WISE and GALEX respectively, we obtained the radio power, estimate FUV star formation rate (SFR) and other galaxy properties to study AGN activity and ongoing star formation.Results: The relationship between radio power and stellar mass shows that there is an upper envelope of radio power that is a steep function of stellar luminosity. This suggests that less massive galaxies have low radio power while massive galaxies are capable of hosting powerful radio sources. The Radio-MIR relation shows that galaxies with P>=1022 WHz-1 are potential candidates for being AGN. About ~ 7% of the sample show evidence of ongoing star formation with SFR ranging from 10-3 to 1 M⊙yr-1. These are also less massive and radio faint suggesting the absence of active accretion. There is nearly equal fraction of star forming galaxies in radio faint (P<1022 WHz-1) and radio bright galaxies (P>=1022 WHz-1) . Only ~ 5% of the galaxies in our sample have P>=1022 WHz-1 and most of them do not show evidence of bright accretion disks. We see a weak correlation and a dispersion of

  3. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  4. HEAVILY OBSCURED AGN IN STAR-FORMING GALAXIES AT z approx = 2

    SciTech Connect

    Treister, E.; Kartaltepe, Jeyhan; Le Floc'h, Emeric; Cardamone, Carolin N.; Schawinski, Kevin; Urry, C. Megan; Virani, Shanil; Gawiser, Eric; Lira, Paulina; Damen, Maaike; Taylor, Edward N.; Justham, Stephen; Koekemoer, Anton M.

    2009-11-20

    We study the properties of a sample of 211 heavily obscured active galactic nucleus (AGN) candidates in the extended Chandra Deep Field-South selecting objects with f {sub 24m}u{sub m}/f{sub R} > 1000 and R - K>4.5. Of these, 18 were detected in X-rays and found to be obscured AGNs with neutral hydrogen column densities of approx10{sup 23} cm{sup -2}. In the X-ray-undetected sample, the following evidence suggests a large fraction of heavily obscured (Compton-thick) AGN: (1) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of approx90% heavily obscured AGNs combined with 10% star-forming galaxies. (2) The X-ray-to-mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and approx2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N {sub H} approx> 5 x 10{sup 24} cm{sup -2}. (3) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected samples if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of approx10{sup 11} M{sub sun} and (E(B - V)) = 0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star formation. This sample of heavily obscured AGN candidates implies a space density at z approx 2 of approx10{sup -5} Mpc{sup -3}, finding a strong evolution in the number of L{sub X} >10{sup 44} erg s{sup -1} sources from z = 1.5 to 2.5, possibly consistent with a short-lived heavily obscured phase before an unobscured quasar is visible.

  5. [The value of selected imaging techniques in evaluation of bone regeneration during limb lengthening].

    PubMed

    Synder, M; Hussein, A A; Niedzielski, K; Grzegorzewski, A

    2000-01-01

    The paper presents the value of different imaging techniques, including X-rays, ultrasonography, computed tomography and densitometry in the evaluation of bone regenerates during limb lengthening. Material consisted of 60 children, age ranging from 4 to 18 years who underwent surgery using the Ilizarov technique because of limb inequality. During of limb lengthening different imaging techniques were employed for monitoring regenerate growth and remodeling. The study showed that all the employed imaging techniques play an important role in monitoring bone regenerate remodeling at different stages of limb lengthening.

  6. Accelerated partial breast irradiation with brachytherapy: patient selection and technique considerations

    PubMed Central

    Trifiletti, Daniel M; Romano, Kara D; Showalter, Shayna L; Reardon, Kelli A; Libby, Bruce; Showalter, Timothy N

    2015-01-01

    Accelerated partial breast irradiation (APBI) through breast brachytherapy is a relatively recent development in breast radiotherapy that has gained international favor because of its reduction in treatment duration and normal tissue irradiation while maintaining favorable cancer-specific and cosmetic outcomes. Despite the fact that several large national trials have not reported final results yet, many providers are currently offering APBI to select patients and APBI is listed as a treatment option for selecting patients in the National Comprehensive Cancer Network guidelines. Multiple consensus guidelines exist in selecting patients for APBI, some with conflicting recommendations. In this review, the existing patient selection guidelines are reported, compared, and critiqued, grouping them in helpful subcategories. Unique patient and technical selection factors for APBI with brachytherapy are explored. PMID:26251627

  7. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  8. GOODS-Herschel: ultra-deep XMM-Newton observations reveal AGN/star-formation connection

    NASA Astrophysics Data System (ADS)

    Rovilos, E.; Comastri, A.; Gilli, R.; Georgantopoulos, I.; Ranalli, P.; Vignali, C.; Lusso, E.; Cappelluti, N.; Zamorani, G.; Elbaz, D.; Dickinson, M.; Hwang, H. S.; Charmandaris, V.; Ivison, R. J.; Merloni, A.; Daddi, E.; Carrera, F. J.; Brandt, W. N.; Mullaney, J. R.; Scott, D.; Alexander, D. M.; Del Moro, A.; Morrison, G.; Murphy, E. J.; Altieri, B.; Aussel, H.; Dannerbauer, H.; Kartaltepe, J.; Leiton, R.; Magdis, G.; Magnelli, B.; Popesso, P.; Valtchanov, I.

    2012-10-01

    Models of galaxy evolution assume some connection between the AGN and star formation activity in galaxies. We use the multi-wavelength information of the CDFS to assess this issue. We select the AGNs from the 3 Ms XMM-Newton survey and measure the star-formation rates of their hosts using data that probe rest-frame wavelengths longward of 20 μm, predominantly from deep 100 μm and 160 μm Herschel observations, but also from Spitzer-MIPS-70 μm. Star-formation rates are obtained from spectral energy distribution fits, identifying and subtracting an AGN component. Our sample consists of sources in the z ≈ 0.5-4 redshift range, with star-formation rates SFR ≈ 101-103 M⊙ yr-1 and stellar masses M⋆ ≈ 1010-1011.5 M⊙. We divide the star-formation rates by the stellar masses of the hosts to derive specific star-formation rates (sSFR) and find evidence for a positive correlation between the AGN activity (proxied by the X-ray luminosity) and the sSFR for themost active systems with X-ray luminosities exceeding Lx ≃ 1043 erg s-1 and redshifts z ≳ 1. We do not find evidence for such a correlation for lower luminosity systems or those at lower redshifts, consistent with previous studies. We do not find any correlation between the SFR (or the sSFR) and the X-ray absorption derived from high-quality XMM-Newton spectra either, showing that the absorption is likely to be linked to the nuclear region rather than the host, while the star-formation is not nuclear. Comparing the sSFR of the hosts to the characteristic sSFR of star-forming galaxies at the same redshift (the so-called "main sequence") we find that the AGNs reside mostly in main-sequence and starburst hosts, reflecting the AGN-sSFR connection; however the infrared selection might bias this result. Limiting our analysis to the highest X-ray luminosity AGNs (X-ray QSOs with Lx > 1044 erg s-1), we find that the highest-redshift QSOs (with z ≳ 2) reside predominantly in starburst hosts, with an average s

  9. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  10. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2016-11-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  11. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  12. Recent progress for the selective pharmaceutical analyses using molecularly imprinted adsorbents and their related techniques: A review.

    PubMed

    Kubo, Takuya; Otsuka, Koji

    2016-10-25

    A well-organized molecularly imprinted polymer (MIP) provides the amazing selective molecular recognition ability, which have been close to natural enzymes and antibodies. One of the most efficient applications of MIPs is a selective separation and detection of pharmaceutical compounds in biological and/or environmental samples. MIP-based solid phase extraction now capacitates the selective concentration of the targeting compound from real samples. Also, many of the attractive methodological approaches and applications regarding the analysis of pharmaceutical samples using molecular imprinting technologies (MITs) have been reported in recent years. In this review, we summarize a part of the recent these works related to a new preparation concept of the adsorption adsorbents, sensitive sensor techniques, cell/bacteria separation, and drug delivery system. We believe that our concise summary will be of assistance to additional methodological MITs and highly selective separations/detections.

  13. Stellar population properties for a sample of hard X-ray AGNs

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Calvi, V.; Masetti, N.; Parisi, P.; Landi, R.; Maiorano, E.; Minniti, D.; Galaz, G.

    2013-08-01

    Aims: The aim of this paper is to study the stellar population of galaxies hosting an active galactic nucleus (AGN). We studied a subsample of hard X-ray emitting AGNs from the INTEGRAL and Swift catalogs, which were previously identified and characterized through optical spectroscopy. Our analysis provides complementary information, namely age and metallicity, which is necessary to complete the panoramic view of these interesting objects. Methods: We selected hard X-ray emitting objects, identified as AGNs, by checking their optical spectra in search of absorption lines suitable for the stellar population analysis. We obtained a final sample consisting of 20 objects with a redshift lower than 0.3. We used the full-spectrum fitting method; particularly, we use penalized pixel method and apply the PPXF code. After masking all the regions affected by emission lines, we fitted the spectra with the MILES single stellar population templates, and we derived mass-weighted ages and metallicities. Results: Most of the objects in our sample show an old stellar population; however, three of them are characterized by a bimodal distribution with a non-negligible contribution from young stars. The values of the mass-weighted metallicity span a wide range with most of them slightly above the solar value. No relations between the stellar population properties and the morphological ones have been found. Table 1 and Figs. 3-5 are available in electronic form at http://www.aanda.org

  14. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  15. The Global Implications of the Hard X-ray Excess in Type 1 AGN

    NASA Astrophysics Data System (ADS)

    Tatum, Malachi; Turner, T.; Miller, L.; Reeves, J.

    2013-04-01

    Suzaku observations of 1H 0419-577 and PDS 456, both type 1 AGN, revealed a marked 'hard excess' of flux above 10 keV, likely due to the presence of a Compton-thick absorber covering a large fraction of the continuum source. The discovery is intriguing, given the clear view to the optical BLR in type 1 objects. These results motivated an exploratory study of the hard excess phenomenon in the local type 1 AGN population, using the Swift Burst Alert Telescope (BAT). We selected radio quiet type 1 - 1.9 AGN from the 58-month BAT catalog and cross-correlated them with the holdings in the Suzaku public archive. The hardness of the X-ray spectrum, combined with measurements of the equivalent width of Fe Ka emission suggest that type 1 X-ray spectra are shaped by an ensemble of Compton-thick clouds, partially covering the continuum. I discuss our methodology, the observational findings and the possible location of the Compton-thick gas.

  16. NuSTAR Survey of Swift/BAT AGN as a Probe of the Unified Model

    NASA Astrophysics Data System (ADS)

    Balokovic, M.

    2015-09-01

    NuSTAR has enabled studies of the local AGN to extend into the spectral window above 10 keV with unprecedented spatial resolution and two orders of magnitude better sensitivity than any other instrument operating in that energy range. As a part of its long-term extragalactic program NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift/BAT instrument. We present results based on observations of ~100 Swift/BAT-selected Type-2 Seyferts surveyed in the first three years of NuSTAR operation. This large sample forms an atlas of the highest quality hard X-ray spectra available to date. Assuming a range of hard X-ray spectral models, phenomenological as well as physically motivated, we constrain the main spectral parameters for each source individually and test the applicability of the models on a large sample for the first time. This analysis allows us to determine distributions of the main spectral parameters related to the torus, such as the absorption column, reflection strength, and iron line equivalent width, in a well-defined population of nearby obscured AGN. More advanced models for the AGN torus allow us to investigate differences between various subsamples and interpret them within the unified model paradigm. We will discuss the implications for the structure of the torus in the local population of Type-2 Seyferts and present a comprehensive comparison of constraints derived from X-ray data and constraints from observations at other wavelengths for a relatively large sample.

  17. Bicoid Signal Extraction with a Selection of Parametric and Nonparametric Signal Processing Techniques

    PubMed Central

    Ghodsi, Zara; Silva, Emmanuel Sirimal; Hassani, Hossein

    2015-01-01

    The maternal segmentation coordinate gene bicoid plays a significant role during Drosophila embryogenesis. The gradient of Bicoid, the protein encoded by this gene, determines most aspects of head and thorax development. This paper seeks to explore the applicability of a variety of signal processing techniques at extracting bicoid expression signal, and whether these methods can outperform the current model. We evaluate the use of six different powerful and widely-used models representing both parametric and nonparametric signal processing techniques to determine the most efficient method for signal extraction in bicoid. The results are evaluated using both real and simulated data. Our findings show that the Singular Spectrum Analysis technique proposed in this paper outperforms the synthesis diffusion degradation model for filtering the noisy protein profile of bicoid whilst the exponential smoothing technique was found to be the next best alternative followed by the autoregressive integrated moving average. PMID:26197438

  18. Bicoid signal extraction with a selection of parametric and nonparametric signal processing techniques.

    PubMed

    Ghodsi, Zara; Silva, Emmanuel Sirimal; Hassani, Hossein

    2015-06-01

    The maternal segmentation coordinate gene bicoid plays a significant role during Drosophila embryogenesis. The gradient of Bicoid, the protein encoded by this gene, determines most aspects of head and thorax development. This paper seeks to explore the applicability of a variety of signal processing techniques at extracting bicoid expression signal, and whether these methods can outperform the current model. We evaluate the use of six different powerful and widely-used models representing both parametric and nonparametric signal processing techniques to determine the most efficient method for signal extraction in bicoid. The results are evaluated using both real and simulated data. Our findings show that the Singular Spectrum Analysis technique proposed in this paper outperforms the synthesis diffusion degradation model for filtering the noisy protein profile of bicoid whilst the exponential smoothing technique was found to be the next best alternative followed by the autoregressive integrated moving average.

  19. Selection of Tendon Grafts for Distal Radioulnar Ligament Reconstruction and Report of a Modified Technique

    PubMed Central

    Jang, Eugene; Dy, Christopher J.

    2014-01-01

    Purpose To investigate the graft length necessary to complete a distal radioulnar ligament reconstruction and assess the suitability of several tendon graft sources. Methods We measured the graft length needed to complete the distal radioulnar ligament reconstruction in 7 fresh-frozen cadaver specimens. The pure tendon lengths of 7 tendon graft sources were measured: palmaris longus, extensor indicis proprius, slips of extensor digiti minimi and abductor pollicis longus, and portions of flexor carpi ulnaris, flexor carpi radialis, and extensor carpi ulnaris. A modified technique which allows for a shorter length of graft is also described, and the suitability of each graft source for this technique was assessed. Results The mean graft length needed to complete the original and modified reconstructions were 138 mm and 89 mm, respectively. The average length of the tendon graft when measured as pure tendon were: palmaris longus (127 mm), slip of extensor digiti minimi (112 mm), extensor indicis proprius (100 mm), partial flexor carpi radialis (87 mm), slip of abductor pollicis longus (69 mm), partial flexor carpi ulnaris (67 mm), and partial extensor carpi ulnaris (67 mm). The palmaris longus was too short for the original technique in the majority of specimens but was sufficient to complete the modified technique in every specimen that had a palmaris longus. Six specimens also had an extensor indicis proprius of suitable length for the modified technique. Discussion The length of donor graft required for the modified reconstruction was significantly less than that needed for the original reconstruction. Three specimens had no donor tendons sufficiently long to complete the original technique if a pure tendon graft were used, whereas the modified technique could be completed in all specimens. Clinical Relevance Many tendon graft sources in the upper extremity are of insufficient length to complete the distal radioulnar ligament reconstruction as described. A modified

  20. Accretion-ejection models for AGN jets

    NASA Astrophysics Data System (ADS)

    Zanni, C.

    2008-10-01

    It is likely that jets from Active Galactic Nuclei derive their energy from accretion onto the central black hole. It is actually possible to fuel the jets by extracting energy and angular momentum from the accretion disk and/or the rotating black hole via the action of large-scale magnetic fields. In this talk I will first present results of analytical and numerical models of the launching process of jets from magnetized accretion disks: I will show that, although a sizeable fraction of the accretion power goes into the jets, these outflows are presumably only mildly relativistic. In the second place, I will therefore suggest that the strongly relativistic components observed at the VLBI scales are accelerated in the innermost parts of the AGNs by Blandford-Znajek and/or Compton-rocket processes. Nonetheless, the non-relativistic disk-wind is needed to collimate the relativistic component and to reproduce the total power of extragalactic jets.

  1. AGN warm absorption with the ATHENA

    NASA Astrophysics Data System (ADS)

    Różańska, Agata; Gronkiewicz, Dominik; Hryniewicz, Krzysztof; Adhikari, Tek Prasad; Rataj, Mirosław; Skup, Konrad

    2016-06-01

    X-ray astronomy requires satellites to make progress in searching the distribution of hot matter in the Universe. Approximately 15 years period of time is needed for full construction of the flight instrument from the mission concept up to the launch. A new generation X-ray telescope ATHENA (the Advanced Telescope for High Energy Astrophysics) was approved by European Space Agency as a large mission with a launch foreseen in 2028. In this paper we show how microcalorimeter on the board of ATHENA will help us to study warm absorption observed in active galactic nuclei (AGN). We show that future observations will allow us to identify hundreds of lines from highly ionized elements and to measure Galactic warm absorption with very high precision.

  2. Evaluation of Fat Suppression of Diffusion-weighted Imaging Using Section Select Gradient Reversal Technique on 3 T Breast MRI.

    PubMed

    Takemori, Daichi; Kimura, Daisuke; Yamada, Eiji; Higashida, Mitsuji

    2016-07-01

    This study evaluates fat suppression of diffusion-weighted imaging (DWI) using section select gradient reversal (SSGR) technique in clinical images on 3 T breast MRI. A total of 20 patients with breast cancer were examined at a Philips Ingenia 3 T MRI. We acquired DWI with SPAIR, SSGR-SPAIR, STIR, and SSGR-STIR. We evaluated contrast between the fat region and lesion, the coefficient of variance (CV) of the fat region and the apparent diffusion coefficient (ADC) of normal breast tissue and lesion. The contrast between the fat region and lesion was improved with SSGR technique. The CV of the fattest region did not have any significant difference in SPAIR technique (p>0.05), but it was significantly decreased in the STIR technique using SSGR technique (p<0.05). Positive correlation was observed in ADC value between SPAIR and other fat suppression techniques (SSGR-SPAIR, STIR, SSGR-STIR). DWI using SSGR technique was suggested to be effective on 3 T breast MRI.

  3. Neutrino radiation of the AGN black holes

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.; Shidhani, S.; Sargsyan, L.

    2007-07-01

    In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1ṡ106 ÷4.2ṡ109) M ⊙ give the values of PRTs varying in the range of about T BH ≃(4.3ṡ105 ÷5.6ṡ1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (˜13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.

  4. Adhesive dentistry: the development of immediate dentin sealing/selective etching bonding technique.

    PubMed

    Helvey, Gregg A

    2011-01-01

    A major objective of dental research over the past 60 years has been a search for the "dream-team" of dental adhesives. In fact, a recent Medline search produced more than 6,500 papers on dentin bonding and its techniques. Adhesive systems are designed to retain direct and indirect restorations, minimize leakage at the margin, and be simple to place while producing consistent results. The development of materials and techniques has an interesting history; some have recirculated from the past and are being used in some form today. Buonocore used the etchant phosphoric acid at the beginning of the adhesive revolution. Though not accepted for many years it eventually became the "gold standard" for etching enamel. Technique sensitivity moved it out of favor and, through the development of self-etching acidic primers, was eliminated from some adhesive systems. Although these primers may have successfully addressed postoperative sensitivity, adhesion was compromised. The bond strength of these systems has now been improved with the incorporation of phosphoric acid-etch to condition enamel prior to using the adhesive system. This article will trace the history of adhesive techniques and materials and how it has led to the creation of a new technique that combines two bonding methods.

  5. Product-selective blot: a technique for measuring enzyme activities in large numbers of samples and in native electrophoresis gels

    SciTech Connect

    Thompson, G.A.; Davies, H.M.; McDonald, N.

    1985-08-01

    A method termed product-selective blotting has been developed for screening large numbers of samples for enzyme activity. The technique is particularly well suited to detection of enzymes in native electrophoresis gels. The principle of the method was demonstrated by blotting samples from glutaminase or glutamate synthase reactions into an agarose gel embedded with ion-exchange resin under conditions favoring binding of product (glutamate) over substrates and other substances in the reaction mixture. After washes to remove these unbound substances, the product was measured using either fluorometric staining or radiometric techniques. Glutaminase activity in native electrophoresis gels was visualized by a related procedure in which substrates and products from reactions run in the electrophoresis gel were blotted directly into a resin-containing image gel. Considering the selective-binding materials available for use in the image gel, along with the possible detection systems, this method has potentially broad application.

  6. The application of remote sensing techniques to selected inter and intra urban data acquisition problems

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1970-01-01

    The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.

  7. Translating multiple assessment techniques into an intervention selection model for classrooms.

    PubMed

    Mueller, Michael M; Edwards, Ron P; Trahant, Dana

    2003-01-01

    Translating current research to school-based clinical practice highlights issues not often encountered in laboratory settings. With the assistance of a consultant, teachers conducted functional analyses, brief multielement treatment comparisons, and controlled treatment evaluations under naturalistic conditions in the classroom. Teachers also provided input on treatment selection. Treatment integrity data collected throughout the study suggested that teachers implemented analyses and treatments with high integrity. The functional analysis outcomes combined with effectiveness and acceptability data led to the selection of interventions that reduced problem behavior in the classrooms for each of 3 children.

  8. Comparison of two techniques for selection of master gutta-percha cone using micro-computed tomography.

    PubMed

    Silva-Filho, João Manoel; Souza-Gabriel, Aline Evangelista; Leoni, Graziela Bianchi; De-Bem, Samuel Henrique Câmara; Alfredo, Edson; Silva, Ricardo Gariba

    2013-01-01

    This study used micro-computed tomography (micro-CT) to evaluate the fit of the master gutta-percha cone at time of cone fit, gutta-percha volume in the filling material, and the filling material volume in relation to the canal at the apical limit of the working length. Root canals of 20 maxillary central incisors were prepared with rotary instruments and distributed into two groups (n=10). The gutta-percha cone tip was either plasticized (apical thermal impression technique - ATI) or not (conventional technique - CT), and its apical fit was checked. The apical 1 mm of working length was examined with a micro-CT, canals were filled with gutta-percha and sealer, and new micro-CT scans were obtained. In CT, gutta-percha filled 35.83 ± 15.05% of the canal at cone selection and 38.72 ± 11.64% after filling. In ATI, these values were 23.14 ± 7.74% and 26.98 ± 20.40%, respectively. Gutta-percha volume in the filling material, and filling material volume in relation to the canal were, respectively, 61.28 ± 11.64% and 87.76 ± 9.98% for CT, and 73.00 ± 20.41% and 89.96 ± 9.08% for ATI. No significant difference was found between cone selection and after canal filling, for either CT (p=0.593) or ATI (p=0.4975). The techniques did not differ significantly with respect to gutta-percha volume in the filling material (p=0.132) and filling material volume in relation to the canal (p=0.612). An ideal fit of the master gutta-percha cone at working length was not achieved regardless of the cone selection technique, and the material-filled area was similar for both techniques.

  9. Flux upper limits for 47 AGN observed with H.E.S.S. in 2004-2011

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-03-01

    Context. About 40% of the observation time of the High Energy Stereoscopic System (H.E.S.S.) is dedicated to studying active galactic nuclei (AGN), with the aim of increasing the sample of known extragalactic very-high-energy (VHE, E > 100 GeV) sources and constraining the physical processes at play in potential emitters. Aims: H.E.S.S. observations of AGN, spanning a period from April 2004 to December 2011, are investigated to constrain their γ-ray fluxes. Only the 47 sources without significant excess detected at the position of the targets are presented. Methods: Upper limits on VHE fluxes of the targets were computed and a search for variability was performed on the nightly time scale. Results: For 41 objects, the flux upper limits we derived are the most constraining reported to date. These constraints at VHE are compared with the flux level expected from extrapolations of Fermi-LAT measurements in the two-year catalog of AGN. The H.E.S.S. upper limits are at least a factor of two lower than the extrapolated Fermi-LAT fluxes for 11 objects. Taking into account the attenuation by the extragalactic background light reduces the tension for all but two of them, suggesting intrinsic curvature in the high-energy spectra of these two AGN. Conclusions: Compilation efforts led by current VHE instruments are of critical importance for target-selection strategies before the advent of the Cherenkov Telescope Array (CTA).

  10. Combining Chandra Observations and Near-Infrared Imaging to Search for Dual AGNs Among Double-Peaked [O III] SDSS AGN

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Holden, Bradford; Shields, Gregory A.; Medling, Anne

    2016-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. We studied a sample of double-peaked SDSS [O III] AGNs using Keck 2 Laser Guide Star Adaptive Optics assisted imaging to find that 30% of double-peaked SDSS AGNs have two spatial components within a 3" radius. However, the identity of the companion object is not revealed with imaging; X-ray observations can confirm these galaxy pairs as systems containing two AGNs. We performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs with a possible near-infrared companion 1-3" away. Using our observations and 8 archival observations of additional candidate dual AGNs, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. Additionally, we can compare our near-IR spatially double candidates with 7 double-peaked [O III] SDSS AGNs that are spatially single in our near-IR imaging and have archival Chandra ACIS-S observations. By assessing what fraction of double- peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs

  11. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  12. Pelvic Fixation in Adult and Pediatric Spine Surgery: Historical Perspective, Indications, and Techniques: AAOS Exhibit Selection.

    PubMed

    Jain, Amit; Hassanzadeh, Hamid; Strike, Sophia A; Menga, Emmanuel N; Sponseller, Paul D; Kebaish, Khaled M

    2015-09-16

    Achieving solid osseous fusion across the lumbosacral junction has historically been, and continues to be, a challenge in spine surgery. Robust pelvic fixation plays an integral role in achieving this goal. The goals of this review are to describe the history of and indications for spinopelvic fixation, examine conventional spinopelvic fixation techniques, and review the newer S2-alar-iliac technique and its outcomes in adult and pediatric patients with spinal deformity. Since the introduction of Harrington rods in the 1960s, spinal instrumentation has evolved substantially. Indications for spinopelvic fixation as a means to achieve lumbosacral arthrodesis include a long arthrodesis (five or more vertebral levels) or use of three-column osteotomies in the lower thoracic or lumbar spine, surgical treatment of high-grade spondylolisthesis, and correction of lumbar deformity and pelvic obliquity. A variety of techniques have been described over the years, including Galveston iliac rods, Jackson intrasacral rods, the Kostuik transiliac bar, iliac screws, and S2-alar-iliac screws. Modern iliac screws and S2-alar-iliac screws are associated with relatively low rates of pseudarthrosis. S2-alar-iliac screws have the advantages of less implant prominence and inline placement with proximal spinal anchors. Collectively, these techniques provide powerful methods for obtaining control of the pelvis in facilitating lumbosacral arthrodesis.

  13. COMPARISON OF MEASUREMENT TECHNIQUES FOR QUANTIFYING SELECTED ORGANIC EMISSIONS FROM KEROSENE SPACE HEATERS

    EPA Science Inventory

    The report goes results of (1) a comparison the hood and chamber techniques for quantifying pollutant emission rates from unvented combustion appliances, and (2) an assessment of the semivolatile and nonvolatile organic-compound emissions from unvented kerosene space heaters. In ...

  14. Surgical Treatment of Corneal Ectasia with Motowa's Trephine and Selective Suturing Technique

    PubMed Central

    Al-Motowa, Saeed; Al-Harby, Mosa

    2016-01-01

    A 40-year-old male presented with bilateral ectasia, contact lens intolerance, and astigmatism >10 D in both eyes. The patient had end-stage pellucid marginal degeneration that warranted surgical treatment. We present a unique surgical technique to stabilize the cornea, minimize astigmatism, improve vision and corneal status, and avoid penetrating keratoplasty. PMID:27994396

  15. Interviewing and Selection Techniques. The Supervisor's "Do-It-Yourself" Series 5.

    ERIC Educational Resources Information Center

    Fraser, John Munro

    This guide, which is intended for new supervisors and managers to use in an independent study setting, deals with interviewing and selecting new employees. The following topics are discussed in the individual sections: differences between people, five ways of looking at someone, first impressions and qualifications, brains versus ability,…

  16. The swath segment selection problem: extending AI search techniques to a novel real-world problem

    NASA Technical Reports Server (NTRS)

    Knight, R.; Smith, B.

    2003-01-01

    We introduce the Swath Segment Selection problem (SSSP). The SSSP consists of a constrained geometric covering problem and a capacitated resource problem. It comes from the real-life problem of scheduling on- and off-times for air or space-borne instruments that image a target by flying over and collecting a swath of information.

  17. MASS MEASUREMENTS BY AN ACCURATE AND SENSITIVE SELECTED ION RECORDING TECHNIQUE

    EPA Science Inventory

    Trace-level components of mixtures were successfully identified or confirmed by mass spectrometric accurate mass measurements, made at high resolution with selected ion recording, using GC and LC sample introduction. Measurements were made at 20 000 or 10 000 resolution, respecti...

  18. Sol immobilization technique: a delicate balance between activity, selectivity and stability for gold catalyst

    SciTech Connect

    Villa, Alberto; Wang, Di; Veith, Gabriel M; Prati, Laura

    2013-01-01

    Sol immobilization is a widely used method to prepare gold catalysts. The presence of the protective layer can have a significant influence on catalyst properties by mediating metal-support and reactantmetal interactions. This paper details the effect of a polyvinyl alcohol (PVA) protecting groups on the activity of a supported gold catalysts as well as its selectivity towards glycerol oxidation.

  19. Effectiveness of Selected Instructional Techniques and Resources in Teaching Vocational Agriculture

    ERIC Educational Resources Information Center

    Kahler, Alan A.

    1976-01-01

    The effects of selected instructional approaches and classification factors and their interaction on student achievement in vocational agriculture programs were investigated. The instructional approaches tested included audio-tutorial, single-concept films, prepared lesson plans, field trips, demonstrations, video tapes, and overhead projected…

  20. Improved characterization of intranight optical variability of prominent AGN classes

    NASA Astrophysics Data System (ADS)

    Goyal, Arti; Gopal-Krishna, Wiita, Paul J.; Stalin, C. S.; Sagar, Ram

    2013-10-01

    The incidence of intranight optical variability (INOV) is known to differ significantly among different classes of powerful active galactic nuclei (AGN). A number of statistical methods have been employed in the literature for testing the presence of INOV in the light curves, sometimes leading to discordant results. In this paper, we compare the INOV characteristics of six prominent classes of AGN, as evaluated using three commonly used statistical tests, namely the χ2-test, the modified C-test and the F-test, which has recently begun to gain popularity. The AGN classes considered are: radio-quiet quasars, radio-intermediate quasars, lobe-dominated quasars, low optical polarization core-dominated quasars, high optical polarization core-dominated quasars and TeV blazars. Our analysis is based on a large body of AGN monitoring data, involving 262 sessions of intranight monitoring of a total 77 AGN, using 1-2 m class optical telescopes located in India. In order to compare the usefulness of the statistical tests, we have also subjected them to a `sanity check' by comparing the number of false positives yielded by each test with the corresponding statistical prediction. The present analysis is intended to serve as a benchmark for future INOV studies of AGN of different classes.

  1. Lyman continuum leaking AGN in the SSA22 field

    NASA Astrophysics Data System (ADS)

    Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.

    2017-02-01

    Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.

  2. YOUNG AGN OUTBURST RUNNING OVER OLDER X-RAY CAVITIES

    SciTech Connect

    Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.; Forman, William R.; Randall, Scott; Jones, Christine; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher P.; Baum, Stefi A.; Noell-Storr, Jacob

    2014-02-20

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  3. Young AGN Outburst Running over Older X-Ray Cavities

    NASA Astrophysics Data System (ADS)

    Bogdan, Akos; van Weeren, Reinout Johannes; Kraft, Ralph; Forman, William; Scott, Randall; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher; Baum, Stefi; Noell-Storr, Jacob; Jones, Christine

    2015-08-01

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193 -- a nearby lenticular galaxy in a group -- based on X-ray and radio observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced about 78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  4. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  5. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    PubMed Central

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-01-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g−1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study. PMID:24976158

  6. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiang; Deng, Qiliang; Tao, Dingyin; Yang, Kaiguang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-06-01

    Hierarchical imprinting was developed to prepare the protein imprinted materials, as the artificial antibody, for the selective depletion of HSA from the human serum proteome. Porcine serum albumin (PSA) was employed as the dummy template for the fabrication of the recognition sites. To demonstrate the advantages of the hierarchical imprinting, molecularly imprinted polymers prepared by hierarchical imprinting technique (h-MIPs) were compared with those obtained by bulk imprinting (b-MIPs), in terms of the binding capacity, adsorption kinetics, selectivity and synthesis reproducibility. The binding capacity of h-MIPs could reach 12 mg g-1. And saturation binding could be reached in less than 20 min for the h-MIPs. In the protein mixture, h-MIPs exhibit excellent selectivity for PSA, with imprinting factors as about 3.6, much higher than those for non-template proteins. For the proteomic application, the identified protein group number in serum treated by h-MIPs was increased to 422, which is 21% higher than that obtained from the original serum, meanwhile the identified protein group number for the Albumin Removal kit was only 376. The results demonstrate that protein imprinted polymers prepared by hierarchical imprinting technique, might become the artificial antibodies for the selective depletion of high abundance proteins in proteome study.

  7. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    SciTech Connect

    Camarero, J A; Cheung, C L; Lin, T; Johnson, J E; Weeks, B L; Noy, A; De Yoreo, J J

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.

  8. Structure-selection techniques applied to continuous-time nonlinear models

    NASA Astrophysics Data System (ADS)

    Aguirre, Luis A.; Freitas, Ubiratan S.; Letellier, Christophe; Maquet, Jean

    2001-10-01

    This paper addresses the problem of choosing the multinomials that should compose a polynomial mathematical model starting from data. The mathematical representation used is a nonlinear differential equation of the polynomial type. Some approaches that have been used in the context of discrete-time models are adapted and applied to continuous-time models. Two examples are included to illustrate the main ideas. Models obtained with and without structure selection are compared using topological analysis. The main differences between structure-selected models and complete structure models are: (i) the former are more parsimonious than the latter, (ii) a predefined fixed-point configuration can be guaranteed for the former, and (iii) the former set of models produce attractors that are topologically closer to the original attractor than those produced by the complete structure models.

  9. Data Selection for Fast Projection Techniques: A Comparative Study of Direction Finding Performance

    DTIC Science & Technology

    1992-12-01

    de brouilleurs . Ces algorithmes utilisent un crit~re pour ]a selection de bons vecteurs de donndes A la sortie d’une antenne rdseau. Les vecteurs...sdlectionnds sont utilisds dans des algorithmes de projection rapides afin d’estimer le sous-espace des brouilleurs et ainsi calculer 1’estimateur spectral...diffdrents qui dvaluent le pouvoir de r6solution et l’effet de la puissance des brouilleurs . * III EXECUTIVE SULMMARY Accurate angular location and

  10. Star-forming galaxies versus low- and high-excitation radio AGN in the VLA-COSMOS 3GHz Large Project

    NASA Astrophysics Data System (ADS)

    Baran, Nikola; Smolcic, Vernesa; Delvecchio, Ivan; Novak, Mladen; Delhaize, Jacinta; Laigle, Clotilde; Ilbert, Olivier; (Vla-)Cosmos Collaboration

    2016-08-01

    We study the composition of the faint radio population selected from the VLA-COSMOS 3GHz Large Project, a radio continuum survey performed at 10 cm wavelength. The survey covers the full 2 square degree COSMOS field with mean rms ˜ 2.3 μJy/beam, cataloging 10,899 source components above 5× rms. By combining these radio data with UltraVISTA, optical, nearinfrared, and Spitzer/IRAC mid-infrared data, as well as X-ray data from the Chandra Legacy, Chandra COSMOS surveys, we gain insight into the emission mechanisms within our radio sources out to redshifts of z ˜ 5. From these emission characteristics we classify our sources as star forming galaxies or AGN. Using their multi-wavelength properties we further separate the AGN into sub-samples dominated by radiatively efficient and inefficient AGN, often referred to as high- and low-excitation emission line AGN.We compare our method with other results based on fitting of the sources' spectral energy distributions using both galaxy and AGN spectral models, and those based on the infrared-radio correlation. We study the fractional contributions of these sub-populations down to radio flux levels of ˜10 μJy. We find that at 3 GHz flux densities above ˜400 μJy quiescent, red galaxies, consistent with the low-excitation radio AGN class constitute the dominant fraction. Below densities of ˜200 μJy star-forming galaxies begin to constitute the largest fraction, followed by the low-excitation, and X-ray- and IR-identified high-excitation radio AGN.

  11. Binary classification of chalcone derivatives with LDA or KNN based on their antileishmanial activity and molecular descriptors selected using the Successive Projections Algorithm feature-selection technique.

    PubMed

    Goodarzi, Mohammad; Saeys, Wouter; de Araujo, Mario Cesar Ugulino; Galvão, Roberto Kawakami Harrop; Vander Heyden, Yvan

    2014-01-23

    Chalcones are naturally occurring aromatic ketones, which consist of an α-, β-unsaturated carbonyl system joining two aryl rings. These compounds are reported to exhibit several pharmacological activities, including antiparasitic, antibacterial, antifungal, anticancer, immunomodulatory, nitric oxide inhibition and anti-inflammatory effects. In the present work, a Quantitative Structure-Activity Relationship (QSAR) study is carried out to classify chalcone derivatives with respect to their antileishmanial activity (active/inactive) on the basis of molecular descriptors. For this purpose, two techniques to select descriptors are employed, the Successive Projections Algorithm (SPA) and the Genetic Algorithm (GA). The selected descriptors are initially employed to build Linear Discriminant Analysis (LDA) models. An additional investigation is then carried out to determine whether the results can be improved by using a non-parametric classification technique (One Nearest Neighbour, 1NN). In a case study involving 100 chalcone derivatives, the 1NN models were found to provide better rates of correct classification than LDA, both in the training and test sets. The best result was achieved by a SPA-1NN model with six molecular descriptors, which provided correct classification rates of 97% and 84% for the training and test sets, respectively.

  12. SUPERNOVAE AND AGN DRIVEN GALACTIC OUTFLOWS

    SciTech Connect

    Sharma, Mahavir; Nath, Biman B. E-mail: biman@rri.res.in

    2013-01-20

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v{sub *}{approx}( E-dot / 2 M-dot ){sup 1/2} describes the effect of starburst activity, with E-dot and M-dot as energy and mass injection rate in a central region of radius R; (2) v {sub .} {approx} (GM {sub .}/2R){sup 1/2} for the effect of a central black hole of mass M {sub .} on gas at distance R; and (3) v{sub s}=(GM{sub h} / 2Cr{sub s}){sup 1/2}, which is closely related to the circular speed (v{sub c} ) for an NFW halo, where r{sub s} is the halo scale radius and C is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v {sup 2} {sub *} + 6({Gamma} - 1)v {sub .} {sup 2} - 4v {sup 2} {sub s}){sup 1/2}, where {Gamma} is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 10{sup 11.5} M {sub Sun} {<=} M{sub h} {<=} 10{sup 12.5} M {sub Sun} galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is {approx}400-1000 km s{sup -1}, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds {approx}> 1000 km s{sup -1}. We also find that the ratio [2v {sup 2} {sub *} - (1 - {Gamma})v {sub .} {sup 2}]/v {sup 2} {sub c} dictates the amount of gas lost through winds. Used in conjunction with

  13. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.

    PubMed

    Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris

    2016-03-15

    Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind

  14. Rotational state selection and orientation of diatomic and asymmetric top molecules via the electric hexapole technique

    NASA Astrophysics Data System (ADS)

    Hain, Toby Douglas

    2000-11-01

    The hexapole rotational state selection of 2∏ Ω diatomic and asymmetric top molecules is investigated. Classical molecular trajectory simulations are shown to reproduce experimental focusing spectra in these large classes of molecules. Deviations from linear Stark effects introduce significant effects in the focusing behavior of both the 2∏ and asymmetric rotor species. The laboratory frame distributions of orientations of the state-selected molecules are quantified by quantum mechanical orientational probability distribution functions (opdf's). Chapter 1 introduces preliminary data for the hexapole focusing of hydroxyl radicals and shows the deviation of the structured focusing curves from the first-order Stark effect. In Chapter 2, the focusing theory is developed for 2∏ diatomics, and the focusing spectra presented in Chapter 1 are analyzed using the theory. The Λ-doublet splitting is found to be the important parameter for simulating the measured focusing spectra. The high field limit opdf's are calculated, and highly anisotropic orientational distributions for the selected states are shown. Chapter 3 shows the laboratory orientation of 2∏ molecules is tunable via the electric field strength of an orienting field for post- hexapole selected rotational states. A laser induced fluorescence experiment is detailed allowing experimental validation of the theoretical opdf's. Chapter 4 explores the scattering of hexapole selected OD rotational states with various target gases. Elastic scattering cross sections are reported for OD + M (M = He, Ar, H2O, CO2, NH3, and CH3F). Hexapole focusing and the subsequent orientation of asymmetric rotors are the subjects of Chapter 5. Matrix treatments are used to calculate the field-free and Stark energies exactly. Perturbation and intermediate Stark effect approximations are compared to the exact matrix method, yielding several general rules useful in analyzing and predicting experimental focusing spectra. The theory

  15. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    NASA Technical Reports Server (NTRS)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  16. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  17. X-ray spectral properties of the AGN sample in the northern XMM-XXL field

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Merloni, Andrea; Georgakakis, Antonis; Menzel, Marie-Luise; Buchner, Johannes; Nandra, Kirpal; Salvato, Mara; Shen, Yue; Brusa, Marcella; Streblyanska, Alina

    2016-06-01

    In this paper we describe and publicly release a catalogue consisting of 8445 point-like X-ray sources detected in the XMM-XXL north survey. For the 2512 AGN which have reliable spectroscopy from SDSS-III/BOSS, we present the X-ray spectral fitting which has been computed with a Bayesian approach. We have also applied an X-ray spectral stacking method to different sub-samples, selected on the basis of the AGN physical properties (L2-10 keV, z, MBH, λEdd and NH). We confirm the well-known Iwasawa-Taniguchi effect in our luminosity-redshift sub-samples, and argue that such an effect is due to a decrease in the covering factor of a distant obscuring `torus' with increasing X-ray luminosity. By comparing the distribution of the reflection fraction, the ratio of the normalization of the reflected component to the direct radiation, we find that the low-luminosity, low-redshift sub-sample had systematically higher reflection fraction values than the high-redshift, high-luminosity one. On the other hand, no significant difference is found between samples having similar luminosity but different redshift, suggesting that the structure of the torus does not evolve strongly with redshift. Contrary to previous works, we do not find evidence for an increasing photon index at high Eddington ratio. This may be an indication that the structure of the accretion disc changes as the Eddington ratio approaches unity. Comparing our X-ray spectral analysis results with the optical spectral classification, we find that ˜20 per cent of optical type-1 AGN show an X-ray absorbing column density higher than 1021.5 cm- 2, and about 50 per cent of type-2 AGN have an X-ray absorbing column density less than 1021.5 cm- 2. We suggest that the excess X-ray absorption shown in the high-luminosity optical type-1 AGN can be due to small-scale dust-free gas within (or close to) the broad-line region, while in the low-luminosity ones it can be due to a clumpy torus with a large covering factor.

  18. The LBT/WISSH quasar survey: revealing powerful winds in the most luminous AGN

    NASA Astrophysics Data System (ADS)

    Vietri, Giustina

    2017-01-01

    The systematic, multi-frequency investigation of hyper-luminous quasars shining at the golden epoch of AGN activity offers the unique opportunity of studying the power and the effect of AGN feedback at its extreme.The WISE/SDSS selected hyper-luminous (WISSH) quasar survey is an extensive multi-band observing program (from millimeter wavelengths to hard X rays) designed to accurately probe the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows.Our on-going project aims at constraining both AGN and host galaxy ISM and star-formation properties in a large sample of ~ 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun), and at the peak of their number density (z ~ 2.5 - 3.5).I will review the most important results of the near-IR spectroscopic follow-up of WISSH quasars (available for ~40% of the total sample) performed with the LUCI at LBT. These observations were carried out to obtain a reliable Hbeta-based estimate of the SMBH masses and a census of the ionized outflows in these hyper-luminous quasars.We found that WISSH AGN are typically powered by highly accreting (0.3-3 Ledd), ten billion solar masses SMBHs, demonstrating that WISSH provides a simple and valuable tool to complete the census of the extreme SMBH population in the universe.We also succeeded in discovering [OIII] emission lines with a broad, skewed profile and exceptional luminosities (> 6e44 erg/s), tracing very powerful ionized outflows (up to ~4% of L_bol) in ~30% of the sample.Remarkably, the remaining 70% of quasars lacks [OIII] emission but shows strong winds traced by 3,000-8,000 km/s blueshifts of the high-ionization (CIV) with respect to low-ionization (Hbeta) broad emission lines, revealing strong radiatively driven winds that dominate the BLR kinematics.I will discuss the possible origins of this intriguing dichotomy which involves fundamental parameters such as bolometric luminosity, SMBH mass, Eddington ratio

  19. Use of the AIC with the EM algorithm: A demonstration of a probability model selection technique

    SciTech Connect

    Glosup, J.G.; Axelrod M.C.

    1994-11-15

    The problem of discriminating between two potential probability models, a Gaussian distribution and a mixture of Gaussian distributions, is considered. The focus of our interest is a case where the models are potentially non-nested and the parameters of the mixture model are estimated through the EM algorithm. The AIC, which is frequently used as a criterion for discriminating between non-nested models, is modified to work with the EM algorithm and is shown to provide a model selection tool for this situation. A particular problem involving an infinite mixture distribution known as Middleton`s Class A model is used to demonstrate the effectiveness and limitations of this method.

  20. VizieR Online Data Catalog: Offset AGN Candidates (Comerford+, 2014)

    NASA Astrophysics Data System (ADS)

    Comerford, J. M.; Greene, J. E.

    2017-03-01

    Our selection criteria for offset AGNs are as follows. In the OSSY catalog (Oh et al. 2011ApJS..195...13O), all forbidden lines are forced to have the same kinematics, while all the Balmer lines are fit with a separate kinematical model (e.g., Tremonti et al. 2004ApJ...613..898T). We use the velocities of the forbidden lines, Balmer lines, and stellar absorption features measured in OSSY to derive line-of-sight velocity offsets of the forbidden and Balmer lines relative to the stars. (1 data file).

  1. The suitability of selected multidisciplinary design and optimization techniques to conceptual aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1992-01-01

    Four methods for preliminary aerospace vehicle design are reviewed. The first three methods (classical optimization, system decomposition, and system sensitivity analysis (SSA)) employ numerical optimization techniques and numerical gradients to feed back changes in the design variables. The optimum solution is determined by stepping through a series of designs toward a final solution. Of these three, SSA is argued to be the most applicable to a large-scale highly coupled vehicle design where an accurate minimum of an objective function is required. With SSA, several tasks can be performed in parallel. The techniques of classical optimization and decomposition can be included in SSA, resulting in a very powerful design method. The Taguchi method is more of a 'smart' parametric design method that analyzes variable trends and interactions over designer specified ranges with a minimum of experimental analysis runs. Its advantages are its relative ease of use, ability to handle discrete variables, and ability to characterize the entire design space with a minimum of analysis runs.

  2. The packaging problem: bivalve prey selection and prey entry techniques of the octopus Enteroctopus dofleini.

    PubMed

    Anderson, Roland C; Mather, Jennifer A

    2007-08-01

    Many predators face a complex step of prey preparation before consumption. Octopuses faced with bivalve prey use several techniques to penetrate the shells to gain access to the meat inside. When given prey of mussels Mytilus trossulus, Manila clams Venerupis philippinarum, and littleneck clams Protothaca staminea, Enteroctopus dofleini solved the problem differently. They pulled apart V. philippinarum and M. trossulus, which had the thinnest shells and the least pulling resistance. P. staminea were eaten after the shells had been chipped or had been penetrated by drilling, presumably to inject a toxin. Likely because of these differences, octopuses consumed more V. philippinarum and M. trossulus than P. staminea when the mollusks were given to them either 1 species at a time or all together. However, when the shells were separated and the penetration problem removed, the octopuses predominantly chose P. staminea and nearly ignored M. trossulus. When V. philippinarum were wired shut, octopuses switched techniques. These results emphasize that octopuses can learn on the basis of nonvisual information and monitor their body position to carry out feeding actions.

  3. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    PubMed

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.

  4. [Maxillary Cancer with Metastasis to the Rouviere Nodes -- Complete Response to Chemoradiotherapy Using a Selective Intra-Arterial Infusion Technique].

    PubMed

    Yamashiro, Keita; Heianna, Joichi; Azama, Kimei; Iraha, Yuko; Yamashiro, Tsuneo; Kinoshita, Ryo; Toita, Takafumi; Toyama, Masatomo; Agena, Shinya; Maeda, Hiroyuki; Suzuki, Mikio; Murayama, Sadayuki

    2016-02-01

    We report a case of advanced maxillary cancer with multiple lymph node metastases, including metastasis to the Rouviere nodes, which were successfully treated with chemoradiotherapy using a selective intra-arterial infusion technique.A 71-yearold man presented to our hospital with complaints of a staggering gait and epistaxis.He was diagnosed with maxillary cancer (squamous cell carcinoma)classified as T4a disease.Because multiple lymph node metastases were detected, including metastasis to the Rouviere nodes, radical surgical treatment was considered inadequate.Thus, the patient was treated with concurrent chemoradiotherapy with selective intra-arterial infusion of nedaplatin and docetaxel.After chemoradiotherapy, the maxillary cancer and lymph metastasis nearly resolved and the patient achieved a complete response.No additional surgery was needed, and the patient was discharged.We suggest that chemoradiotherapy using a selective intra-arterial infusion technique is a highly effective treatment option for patients with maxillary cancer and metastasis to the Rouviere nodes.

  5. Optically faint radio sources: reborn AGN?

    NASA Astrophysics Data System (ADS)

    Filho, M. E.; Brinchmann, J.; Lobo, C.; Antón, S.

    2011-12-01

    We present our discovery of several relatively strong radio sources in the field-of-view of SDSS galaxy clusters that have no optical counterparts down to the magnitude limits of the SDSS. The optically faint radio sources appear as double-lobed or core-jet objects in the FIRST radio images and have projected angular sizes ranging from 0.5 to 1.0 arcmin. We followed-up these sources with near-infrared imaging using the wide-field imager HAWK-I on the VLT. We detected Ks-band emitting regions, about 1.5 arcsec in size and coincident with the centers of the radio structures, in all sources, with magnitudes in the range 17-20 mag. We used spectral modelling to characterize the sample sources. In general, the radio properties are similar to those observed in 3CRR sources but the optical-radio slopes are consistent with those of moderate to high redshift (z < 4) gigahertz-peaked spectrum sources. Our results suggest that these unusual objects are galaxies whose black hole has been recently re-ignited but that retain large-scale radio structures, which are signatures of previous AGN activity.

  6. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  7. VizieR Online Data Catalog: Type-2 AGN from XMM-COSMOS bolometric output (Lusso+, 2011)

    NASA Astrophysics Data System (ADS)

    Lusso, E.; Comastri, A.; Vignali, C.; Zamorani, G.; Treister, E.; Sanders, D.; Bolzonella, M.; Bongiorno, A.; Brusa, M.; Civano, F.; Gilli, R.; Mainieri, V.; Nair, P.; Aller, M.; Carollo, M.; Koekemoer, A. M.; Merloni, A.; Trump, J. R.

    2011-09-01

    Study of the multi-wavelength properties of a sample of 255 spectroscopically identified X-ray selected Type-2 AGN from the XMM-COSMOS survey. For each source, X-ray ID, spectroscopic redshift, logarithm of the 2-10keV luminosity, logarithm of the bolometric luminosity, bolometric correction, logarithm of the stellar mass, star formation rate, absolute magnitude MU, absolute magnitude MV, absolute magnitude MJ (Johnson-Kron-Cousin system), morphological class. (1 data file).

  8. Knowledge based systems: A preliminary survey of selected issues and techniques

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu

    1984-01-01

    It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.

  9. Quantitative Imaging of D-2-Hydroxyglutarate in Selected Histological Tissue Areas by a Novel Bioluminescence Technique.

    PubMed

    Voelxen, Nadine F; Walenta, Stefan; Proescholdt, Martin; Dettmer, Katja; Pusch, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    Patients with malignant gliomas have a poor prognosis with average survival of less than 1 year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG), a metabolite that was discovered first in this tumor entity. D2HG is generated in large amounts due to various "gain-of-function" mutations in the isocitrate dehydrogenases IDH1 and IDH2. Meanwhile, D2HG has been detected in several other tumor entities, including intrahepatic bile-duct cancer, chondrosarcoma, acute myeloid leukemia, and angioimmunoblastic T-cell lymphoma. D2HG is barely detectable in healthy tissue (<0.1 mM), but its concentration increases up to 35 mM in malignant tumor tissues. Consequently, the "oncometabolite" D2HG has gained increasing interest in the field of tumor metabolism. To facilitate its quantitative measurement without loss of spatial resolution at a microscopical level, we have developed a novel bioluminescence assay for determining D2HG in sections of snap-frozen tissue. The assay was verified independently by photometric tests and liquid chromatography/mass spectrometry. The novel technique allows the microscopically resolved determination of D2HG in a concentration range of 0-10 μmol/g tissue (wet weight). In combination with the already established bioluminescence imaging techniques for ATP, glucose, pyruvate, and lactate, the novel D2HG assay enables a comparative characterization of the metabolic profile of individual tumors in a further dimension.

  10. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  11. Techniques for selecting topology and implementing the distributed control system network

    NASA Astrophysics Data System (ADS)

    Chernyi, S.

    2016-04-01

    On grounds of reviews devoted to flows analysis methods in the data processing networks within the automated control systems for the technological process and assessment of these methods by the selected set of requirements, one may make conclusion about expediency of using the combination of graph flow algorithms and the queuing theory. The outputs of the research concerning the impact of network dynamics on the drilling platform distributed system control quality prove the fact that the quality of the transient depends upon the frequency of discretization and intensity of flows. With increasing the intensity of flows, the static error of the control enlarges. It was concluded that in order to control the automation objects in the real-time mode it is required to minimize the delays in transmitting packets in the network.

  12. Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques.

    PubMed

    Zhao, Lei; Gao, Ying; Mi, Dong; Sun, Yeqing

    To identify the potential biomarkers associated with space flight, a combined algorithm, which integrates the feature selection techniques, was used to deal with the microarray datasets of Caenorhabditis elegans obtained in the Shenzhou-8 mission. Compared with the ground control treatment, a total of 86 differentially expressed (DE) genes in responses to space synthetic environment or space radiation environment were identified by two filter methods. And then the top 30 ranking genes were selected by the random forest algorithm. Gene Ontology annotation and functional enrichment analyses showed that these genes were mainly associated with metabolism process. Furthermore, clustering analysis showed that 17 genes among these are positive, including 9 for space synthetic environment and 8 for space radiation environment only. These genes could be used as the biomarkers to reflect the space environment stresses. In addition, we also found that microgravity is the main stress factor to change the expression patterns of biomarkers for the short-duration spaceflight.

  13. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  14. Detection of Thermal Sublethal Injury in Escherichia coli via the Selective Medium Plating Technique: Mechanisms and Improvements

    PubMed Central

    Espina, Laura; García-Gonzalo, Diego; Pagán, Rafael

    2016-01-01

    In food preservation, the synergistic combination of different technologies aims to maximize the total lethality of the process and minimize the intensity of each hurdle. This is especially the case when at least one of the treatments can cause sublethal (reparable) injury in a great proportion of the population, so that sublethally injured cells can end up being entirely inactivated by the other hurdle(s). The selective medium plating technique (SMPT) is extensively used to enumerate bacterial sublethal injury after inimical treatments, being sodium chloride added to the recovery medium to detect damaged bacterial envelopes. However, little work has been done to explain the reasons for the inability of sublethally injured cells to outgrow in selective agar media, whereas they are able to grow in non-selective agar. In the present paper, the performance of SMPT on Escherichia coli cells after heat treatments is explored by applying different selective agents in the recovery media, using mutants lacking factors involved in osmoregulation, and also by examining the integrity of the cytoplasmic membrane. In view of the results, the possibility of a specific toxic effect of Na+ as the main mechanism under SMPT was discarded, since the same level of sublethal injury was detected using KCl instead of NaCl. The synthesis of the osmoprotectant trehalose determined the maximum osmotolerance of intact cells to the selective agents, but was not crucial in the quantification of sublethal injury. Moreover, for the first time, the extent of sublethal injury detected via SMPT was directly correlated with the physical loss of integrity of the cell membrane in 99.999% of the initial population. This was achieved through statistical analysis of flow cytometry data using propidium iodide-exclusion technique when that dye was added before thermal treatments. The present work confirms the adequacy of SMPT as a tool for detecting the occurrence and quantity of sublethally injured cells

  15. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Leon-Tavares, Jonathan; Chavushyan, Vahram H.

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  16. Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques.

    PubMed

    Charrier, Bénédicte; Rolland, Elodie; Gupta, Vishal; Reddy, C R K

    2015-01-01

    Plant feedstock with specific, modified developmental features has been a quest for centuries. Since the development and spread of agriculture, there has been a desire for plants producing disproportionate-or more abundant and more nutritional-biomass that meet human needs better than their native counterparts. Seaweed aquaculture, targeted for human consumption and the production of various raw materials, is a rapidly expanding field and its stakeholders have increasing vested interest for cost-effective and lucrative seaweed cultivation processes. Thus, scientific research on seaweed development is particularly timely: the potential for expansion of seaweed cultivation depends on the sector's capacity to produce seaweeds with modified morphological features (e.g., thicker blades), higher growth rates or delayed (or even no) fertility. Here, we review the various technical approaches used to modify development in macroalgae, which have attracted little attention from developmental biologists to date. Because seaweed (or marine macroalgae) anatomy is much less complex than that of land plants and because seaweeds belong to three different eukaryotic phyla, the mechanisms controlling their morphogenesis are key to understanding their development. Here, we present efficient sources of developmentally and genetically modified seaweeds-somatic variants, artificial hybrids and mutants-as well as the future potential of these techniques.

  17. Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques

    PubMed Central

    Charrier, Bénédicte; Rolland, Elodie; Gupta, Vishal; Reddy, C. R. K.

    2015-01-01

    Plant feedstock with specific, modified developmental features has been a quest for centuries. Since the development and spread of agriculture, there has been a desire for plants producing disproportionate—or more abundant and more nutritional—biomass that meet human needs better than their native counterparts. Seaweed aquaculture, targeted for human consumption and the production of various raw materials, is a rapidly expanding field and its stakeholders have increasing vested interest for cost-effective and lucrative seaweed cultivation processes. Thus, scientific research on seaweed development is particularly timely: the potential for expansion of seaweed cultivation depends on the sector's capacity to produce seaweeds with modified morphological features (e.g., thicker blades), higher growth rates or delayed (or even no) fertility. Here, we review the various technical approaches used to modify development in macroalgae, which have attracted little attention from developmental biologists to date. Because seaweed (or marine macroalgae) anatomy is much less complex than that of land plants and because seaweeds belong to three different eukaryotic phyla, the mechanisms controlling their morphogenesis are key to understanding their development. Here, we present efficient sources of developmentally and genetically modified seaweeds—somatic variants, artificial hybrids and mutants—as well as the future potential of these techniques. PMID:25852700

  18. Neuroproteomic profiling of human brain tissue using multidimensional separation techniques and selective enrichment of membrane proteins.

    PubMed

    Musunuri, Sravani; Shevchenko, Ganna; Bergquist, Jonas

    2012-12-01

    Hydrophobic membrane proteins (MPs) occupy a unique niche in the brain proteome research due to their important physiological roles. Therefore, the extraction, separation, and identification of MPs are of great interest in proteomic analysis. We applied various proteomic techniques to enrich, separate, and analyze the human brain proteome, including membrane proteome. Temperature-induced phase fractionation with the nonionic surfactant Triton X-114 was used to simultaneously extract, separate, and concentrate low abundant hydrophobic and high abundant hydrophilic proteins from human brain tissue. The extracted and delipidated proteins were analyzed by two-dimensional gel electrophoresis (2DE). Approximately 600 spots were detected in the gels. In-solution digestion was performed on 3 kDa spin filters. Tryptic peptides were separated using RP nano-LC and analyzed using two different high performance mass spectrometers, linear ion trap-Fourier transform and a linear ion trap-Orbitrap to reveal the low abundant MPs. In total, 837 and 780 unique proteins were identified by using linear ion trap-Fourier transform and linear ion trap-Orbitrap mass spectrometers, respectively. More than 29% of the identified proteins were classified as MPs with significant biological functions such as ion channels and transporters. Our study establishes a simple and rapid shotgun approach for the characterization of the brain proteome, and allows comprehensive analysis of brain membrane proteomes.

  19. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection.

    PubMed

    Delaney, Declan T; O'Hare, Gregory M P

    2016-12-01

    No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.

  20. Testing of pyrite flotation techniques on selected Ohio coals: Final report

    SciTech Connect

    Arnold, B.J.; Torak, E.R.

    1989-05-01

    The project was conceived to demonstrate the combining of conventional physical coal cleaning with emerging advanced physical coal cleaning technologies in a cost-effective manner. The objectives of the program were to demonstrate that conventional coal cleaning followed by advanced coal cleaning of a crushed mid-gravity portion of the run-of-mine coal would produce a clean coal, suitable for use as a thermal coal, having a lower ash content and a lower sulfur dioxide emission potential than a coal cleaned only be current conventional cleaning technologies. As part of this program a number of advanced flotation techniques were tested to determine the feasibility of including them in the design of their Advanced Coal Preparation Facility. The program consisted of testing the Pittsburgh seam, the Middle Kittanning seam, and the Meigs Creek seam coals in the pilot flotation circuit at EPRI's Coal Quality Development Center (CQDC) in Homer City, Pennsylvania. This report contains all the data from OCDO's pilot flotation test program at the CQDC and the test data from the Middle Kittanning and Meigs Creek reverse flotation tests. 13 figs., 40 tabs.

  1. A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection

    PubMed Central

    Delaney, Declan T.; O’Hare, Gregory M. P.

    2016-01-01

    No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks. PMID:27916929

  2. Analysis of atmospheric paniculate matter; application of optical and selected geochemical techniques

    USGS Publications Warehouse

    Mastalerz, Maria; Glikson, M.; Simpson, R.W.

    1999-01-01

    An increase in participate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2 ??m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungal spores is commonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. ?? 1998 Elsevier Science B.V. All rights reserved.

  3. Selection of classification techniques for land use/land cover change investigation

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; Bray, Michaela; Islam, Tanvir

    2012-11-01

    The concerns over land use/land cover (LULC) change have emerged on the global stage due to the realisation that changes occurring on the land surface also influence climate, ecosystem and its services. As a result, the importance of accurate mapping of LULC and its changes over time is on the increase. Landsat satellite is a major data source for regional to global LULC analysis. The main objective of this study focuses on the comparison of three classification tools for Landsat images, which are maximum likelihood classification (MLC), support vector machine and artificial neural network (ANN), in order to select the best method among them. The classifiers algorithms are well optimized for the gamma, penalty, degree of polynomial in case of SVM, while for ANN minimum output activation threshold and RMSE are taken into account. The overall analysis shows that the ANN is superior to the kernel based SVM (linear, radial based, sigmoid and polynomial) and MLC. The best tool (ANN) is then applied on detecting the LULC change over part of Walnut Creek, Iowa. The change analysis of the multi temporal images indicates an increase in urban areas and a major shift in the agricultural practices.

  4. Predicting bacteriophage proteins located in host cell with feature selection technique.

    PubMed

    Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao

    2016-04-01

    A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery.

  5. Criteria and techniques for field characterization and modelingrelated to selecting and evaluating performance of LILW disposalsites

    SciTech Connect

    Faybishenko, Boris; Witherspoon, Paul A.

    2007-01-12

    Argentina is faced with the challenging problem ofdeveloping technology for near-surface disposal and isolation of low- andintermediate-level radioactive waste (LILW). The preferred option fordisposal of LILW (including both relatively short-lived and long-livedradionuclides) is to use disposal facilities that arenear-surface--either above or below ground level [IAEA, 1985; 2001a;2004]. How individual components of a waste disposal system perform(including waste forms, waste containers, engineered barriers and hostenvironment) will determine system safety and the safety of thesurrounding environment [IAEA, 1999]. The lack of appropriate engineeringfor the backfill, and for the selection of sealing and covering materialsfor trenches, vaults, and ditches, could result in the escape ofradionuclides from the disposed wastes [IAEA, 1994a; 2001b]. Therefore,assessment and design of backfill, barriers, and cover materials are veryimportant, both for preventing invasion of water into the disposalsystem, and for retarding radionuclides that could potentially migratefrom the system into the atmosphere or groundwater [IAEA, 1982; 1994b;2001a].

  6. Interferometric IR observations: a diversity of dusty AGN tori

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard

    Interferometric observations in the infrared have resolved dusty structures on parsec and sub-parsec scales in more than two dozen AGNs by now -- a giant leap when considering that the first infrared interferometric observation of an extragalactic object is only about 10 years old. Since then, studies have confirmed the existence of dust in AGNs at its sublimation radius and have clearly dismissed models of very extended tori. Individual, well studied sources have been instrumental to reveal the complexity of these parsec-scale structures and statistical studies have shown a perplexing diversity in the population as a whole. Surprisingly, the diversity does not seem to follow the expected bimodality between optical type 1 and type 2 AGNs -- which are thought to be just face-on and edge-on tori. This central premise of viewing-angle dependent unified models is challenged if not dismissed by interferometric observations. The next step in understanding the AGN phenomenon -- beyond unification aspects -- is now to combine multi-scale observations with multi-scale simulations to constrain the physical processes driving the feeding and feedback of AGNs.

  7. Inverse Compton X-ray signature of AGN feedback

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei

    2013-12-01

    Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.

  8. Analyses of the Variability Asymmetry of Kepler AGNs

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Yang; Wang, Jun-Xian

    2015-05-01

    The high-quality light curves from the Kepler space telescope make it possible to analyze the optical variability of active galactic nuclei (AGNs) with unprecedented time resolution. Studying the asymmetry in variations could provide independent constraints on physical models for AGN variability. In this paper, we use Kepler observations of 19 sources to perform analyses of the variability asymmetry of AGNs. We apply smoothing correction to light curves to deduct their bias toward high-frequency variability asymmetry caused by long-term variations that have been poorly sampled due to the limited length of light curves. A parameter β based on structure functions is introduced to quantitively describe the asymmetry and its uncertainty is measured using extensive Monte Carlo simulations. Individual sources show no evidence of asymmetry at timescales of 1˜ 20 days and there is no general trend toward positive or negative asymmetry over the whole sample. Stacking the data from all 19 AGNs, we derive an averaged \\bar{β } of 0.00 ± 0.03 and -0.02 ± 0.04 over timescales of 1 ˜ 5 days and 5 ˜ 20 days, respectively, which are statistically consistent with zero. Quasars and Seyfert galaxies show similar asymmetry parameters. Our results indicate that short-term optical variations in AGNs are highly symmetric.

  9. Comparative performance of selected variability detection techniques in photometric time series data

    NASA Astrophysics Data System (ADS)

    Sokolovsky, K. V.; Gavras, P.; Karampelas, A.; Antipin, S. V.; Bellas-Velidis, I.; Benni, P.; Bonanos, A. Z.; Burdanov, A. Y.; Derlopa, S.; Hatzidimitriou, D.; Khokhryakova, A. D.; Kolesnikova, D. M.; Korotkiy, S. A.; Lapukhin, E. G.; Moretti, M. I.; Popov, A. A.; Pouliasis, E.; Samus, N. N.; Spetsieri, Z.; Veselkov, S. A.; Volkov, K. V.; Yang, M.; Zubareva, A. M.

    2017-01-01

    Photometric measurements are prone to systematic errors presenting a challenge to low-amplitude variability detection. In search for a general-purpose variability detection technique able to recover a broad range of variability types including currently unknown ones, we test 18 statistical characteristics quantifying scatter and/or correlation between brightness measurements. We compare their performance in identifying variable objects in seven time series data sets obtained with telescopes ranging in size from a telephoto lens to 1 m-class and probing variability on time-scales from minutes to decades. The test data sets together include light curves of 127 539 objects, among them 1251 variable stars of various types and represent a range of observing conditions often found in ground-based variability surveys. The real data are complemented by simulations. We propose a combination of two indices that together recover a broad range of variability types from photometric data characterized by a wide variety of sampling patterns, photometric accuracies and percentages of outlier measurements. The first index is the interquartile range (IQR) of magnitude measurements, sensitive to variability irrespective of a time-scale and resistant to outliers. It can be complemented by the ratio of the light-curve variance to the mean square successive difference, 1/η, which is efficient in detecting variability on time-scales longer than the typical time interval between observations. Variable objects have larger 1/η and/or IQR values than non-variable objects of similar brightness. Another approach to variability detection is to combine many variability indices using principal component analysis. We present 124 previously unknown variable stars found in the test data.

  10. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    SciTech Connect

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crosshole tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.

  11. Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds

    PubMed Central

    Potts, Jonathan R; Mokross, Karl; Stouffer, Philip C; Lewis, Mark A

    2014-01-01

    Understanding the behavioral decisions behind animal movement and space use patterns is a key challenge for behavioral ecology. Tools to quantify these patterns from movement and animal–habitat interactions are vital for transforming ecology into a predictive science. This is particularly important in environments undergoing rapid anthropogenic changes, such as the Amazon rainforest, where animals face novel landscapes. Insectivorous bird flocks are key elements of avian biodiversity in the Amazonian ecosystem. Therefore, disentangling and quantifying the drivers behind their movement and space use patterns is of great importance for Amazonian conservation. We use a step selection function (SSF) approach to uncover environmental drivers behind movement choices. This is used to construct a mechanistic model, from which we derive predicted utilization distributions (home ranges) of flocks. We show that movement decisions are significantly influenced by canopy height and topography, but depletion and renewal of resources do not appear to affect movement significantly. We quantify the magnitude of these effects and demonstrate that they are helpful for understanding various heterogeneous aspects of space use. We compare our results to recent analytic derivations of space use, demonstrating that the analytic approximation is only accurate when assuming that there is no persistence in the animals' movement. Our model can be translated into other environments or hypothetical scenarios, such as those given by proposed future anthropogenic actions, to make predictions of spatial patterns in bird flocks. Furthermore, our approach is quite general, so could potentially be used to understand the drivers of movement and spatial patterns for a wide variety of animal communities. PMID:25558353

  12. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-01

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crosshole tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it's never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes "line up" in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.

  13. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques

    DOE PAGES

    Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; ...

    2016-06-24

    A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of themore » model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.« less

  14. Medium-term outcome of recipients of marginal donor hearts selected with new stress-echocardiographic techniques over standard criteria

    PubMed Central

    2014-01-01

    Background Heart transplantation is limited by severe donor organ shortage. Regardless of the changes made in the acceptance of marginal donors, any such mechanism cannot be considered successful unless recipient graft survival rates remain acceptable. A stress echo-driven selection of donors has proven successful in older donors with normal left ventricular resting function and in standard donors with reversible resting left ventricular dysfunction acutely improving during stress, or slowly improving (over hours) during intensive hormonal treatment. Aim of this study is to assess the medium-term outcome of recipients of marginal donor hearts selected with new echocardiographic techniques over standard criteria. Methods and results We enrolled 43 recipients of marginal donor hearts: age > 55 years, or < 55 years but with concomitant risk factors, n = 32; acutely improving during stress, n = 3; or slowly improving during hormonal treatment, n = 8. At follow-up (median, 30 months; interquartile range, 21–52 months), 37 of the recipients were still alive. One-year survival was 93%. Conclusion The strict use of new stress-echocardiographic techniques over standard criteria of marginal donor management, together with comprehensive monitoring of the donor, has the potential to substantially increase the number of donor hearts without adverse effects on recipient medium-term outcome. PMID:24935114

  15. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques

    SciTech Connect

    Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; Bishop, Christopher B.; Wang, Yan; Johnston, Steve; Alvarez, Gonzalo; Moreo, Adriana; Dagotto, Elbio R.

    2016-06-24

    A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of the model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.

  16. Analysis of Drug Design for a Selection of G Protein-Coupled Neuro- Receptors Using Neural Network Techniques.

    PubMed

    Agerskov, Claus; Mortensen, Rasmus M; Bohr, Henrik G

    2015-01-01

    A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be corresponding to the G protein-coupled receptors µ-opioid, serotonin 2B (5-HT2B) and metabotropic glutamate D5. They are selected due to the availability of pharmacological drug-molecule binding data for these receptors. Feedback and deep belief artificial neural network architectures (NNs) were chosen to perform the task of aiding drugdesign. This is done by training on structural features, selected using a "minimum redundancy, maximum relevance"-test, and testing for successful prediction of categorized binding strength. An extensive comparison of the neural network performances was made in order to select the optimal architecture. Deep belief networks, trained with greedy learning algorithms, showed superior performance in prediction over the simple feedback NNs. The best networks obtained scores of more than 90 % accuracy in predicting the degree of binding drug molecules to the mentioned receptors and with a maximal Matthew`s coefficient of 0.925. The performance of 8 category networks (8 output classes for binding strength) obtained a prediction accuracy of above 60 %. After training the networks, tests were done on how well the systems could be used as an aid in designing candidate drug molecules. Specifically, it was shown how a selection of chemical characteristics could give the lowest observed IC50 values, meaning largest bio-effect pr. nM substance, around 0.03-0.06 nM. These ligand characteristics could be total number of atoms, their types etc. In conclusion, deep belief networks trained on drug-molecule structures were demonstrated as powerful computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques.

  17. Circular Polarization in AGNs: Polarity and Spectra

    NASA Astrophysics Data System (ADS)

    Aller, M. F.; Aller, H. D.; Plotkin, R. M.

    2005-12-01

    Circular polarization (Stokes V) observations potentially provide information on the nature and origin of the underlying magnetic fields in AGNs. We have been systematically monitoring a group of sources with detectable circular polarization (V>0.1 percent, a level set by the instrumental polarization of our system) in all 4 Stokes parameters at 8.0 and 4.8 GHz since 2000, and also at 14.5 GHz since November 2003, with the University of Michigan prime focus paraboloid antenna. These data are compared with historical observations obtained with the same instrument at 8.0 and 4.8 GHz extending back to 1978. Specific goals are to study the temporal spectral behavior of Stokes V and its relation to variability in total flux and linear polarization, and to investigate the question of polarity stability on decade-long time scales using data obtained with the same instrumentation and at the same frequencies. The data are consistent with linear-to-circular mode conversion in partially opaque regions of the source. We find examples of polarity changes with time at one or more frequencies associated with outbursts in total flux and linear polarization, and polarity differences within the 3 frequencies at a single epoch in one case, 3C 279. Such behavior argues against the notion that the sign of Stokes V is a simple tracer of the net flow of magnetic energy from the central engine to the jet or an indicator of the direction of rotation of the spinning central black hole/accretion disk via the winding up of the initial seed magnetic field. This work was supported in part by NSF grant AST-0307629 and by funds from the University of Michigan.

  18. AGN variability in the radio band

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2016-08-01

    Variability is an important and defining characteristic of AGN, that along with their broadband spectral energy distribution make their study interesting and challenging. A complete understanding of the physics of these objects requires monitoring observations over the whole electromagnetic spectrum, and includes studying their properties at a given band and also the relationship between multiple wavelengths. Here we present the main results obtained so far with the ongoing OVRO 40m blazar monitoring program at 15 GHz with twice a week cadence. This program started in mid-2007 and is currently monitoring about 1800 blazars, including most of the bright blazars north of declination -20 degrees. These results include: characterization of the variability in the radio band; its relationship with optical and gamma-ray properties; and its relationship to gamma-ray emission as observed with Fermi-LAT, which can provide constrains on the location of the gamma-ray emission region. We will also discuss our ongoing work on the characterization of radio variability using the power spectral density. For this, we are using 8 years of OVRO 40m data for ~1200 sources, and also F-GAMMA monitoring data taken with the Effelsberg 100m telescope for 60 sources with about monthly cadence monitoring data at 8 frequencies between 2.6 and 43.0 GHz. These studies will provide an improved understanding of blazar variability, a better basis to evaluate the statistics of correlated variability between different emission bands, and a long and consistent record of radio observations to be used in gamma-ray and multi-wavelength investigations.

  19. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the to