Science.gov

Sample records for agn unification model

  1. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    NASA Astrophysics Data System (ADS)

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  2. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  3. TORUS2015: The AGN unification scheme after 30 years

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Hoenig, S. F.

    2015-09-01

    The torus paradigm has proved to be remarkably successful at unifying the observed zoo of active galaxy (AGN) classes, despite having many manifest holes. The field is still data-driven with novel observational results at multiple wavelengths emerging rapidly. We are only now beginning to map out the structure of dusty gas feeding and obscuring AGN, and to model its evolution in galaxy growth. But these have also brought out several apparently contradictory results which must hold the key to future progress. As we celebrate 30 years of the paradigm, this is the perfect time to draw together our current knowledge and reassess the state of the field. This will be an international workshop at the University of Southampton, UK, with the objective of laying out the major challenges to the field and paving future research directions. Our hope is to facilitate plenty of informal discussions between multiwavelength observers and theorists, addressing some key issues: * What is the main driver in the unification scheme? What are the roles of orientation, mass accretion rate and feedback? * What is the nature and structure of gas and dust in the torus? Do we have a self-consistent picture across multiple wavelengths? * How critical is the role of the torus as an interface between small nuclear scales and large galactic scales? Does galaxy evolution necessarily require tori? * How close are we to self-consistently simulating nuclear activity including AGN feeding and nuclear star-formation? Workshop Rationale The three themes of accretion, orientation, and evolution will be covered through invited and solicited contributions. Different to other conferences, we are building each session around some key papers that have shaped the field or those with great future potential to do so. We specifically pit competing ideas against each other to help painting a realistic picture of the state-of-the-art. Each session will end with discussion rounds delving into important future

  4. Radio AGN in the local universe: unification, triggering and evolution

    NASA Astrophysics Data System (ADS)

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  5. Gravitational effects in models of grand unification

    NASA Astrophysics Data System (ADS)

    Reeb, David

    Grand unified theories constitute an attractive idea bringing further coherence into our understanding of the fundamental forces of Nature beyond the well-accepted Standard Model. This dissertation contains a systematic study of the unification of gauge couplings associated with these forces in the presence of one or several effective dimension-5 operators cHG munuGmunu/4MPl, which are induced into the grand unified theory through gravitational interactions at the Planck scale. These operators alter the usually assumed condition for gauge coupling unification and can, depending on the Higgs content H of the theory and on its vacuum expectation value, lead to grand unification in models other than commonly believed and at scales Mx significantly different than naively expected. After presenting a general framework to treat such effects, we compute, for the case of SU(5) and SO(10) unification groups, the associated group theory constants necessary for the study of concrete models. We investigate the size of these effects in non-supersymmetric unification models and find that there exist regions of natural Wilson coefficients c in parameter space that achieve successful unification of the gauge couplings, while easily satisfying the bounds on the unification scale coming from the non-observation of proton decay. Both of these requirements are widely assumed to be violated in non-supersymmetric models of grand unification, but, as we show, can be fulfilled due to the effects coming from gravitational dimension-5 operators. A comparison to supersymmetric unification models shows that their parameter space for successful grand unification is no more natural than the one for the non-supersymmetric models. The main conclusion of this dissertation is that fairly minimal unification models are possible, i.e., with small unification groups and without supersymmetric particles. Whereas the observation of proton decay seems to be the only possible evidence for grand

  6. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  7. The unification of powerful radio-loud AGN: the multi-wavelength balance

    NASA Astrophysics Data System (ADS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda; Rocca-Volmerange, Brigitte; Drouart, Guillaume

    2016-08-01

    Powerful radio-loud AGN, by virtue of their optically-thin low-frequency radio emission, represent unique targets in orientation-based unification studies, and in searches for orientation indicators and orientation invariants. Central in these efforts is the landmark Third Cambridge Catalog of Radio Sources (3CR), a sample which has been observed with most ground- and space-based telescopes over much of the electromagnetic spectrum. Using mainly Herschel and Spitzer photometric data, we recently studied the full infrared spectral energy distributions of the complete sample of 3CR radio sources at redshifts z>1. We found that the radio-loud quasars (QSRs, Type 1) and the radio galaxies (RGs, Type 2) have completely different mid-infrared, but remarkably similar far-infrared colors. These findings are in line with the view that powerful QSRs and RGs belong to the same parent population and support previously reported findings in other wavelength domains.

  8. Unification of Low Luminosity AGN and Hard State X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Connolly, S.

    2015-09-01

    We present X-ray spectral variability of four low accretion rate and low luminosity AGN (LLAGN)- M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the 'softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely cause of spectral variability is found to be hardening of the photon index of the power law component with increasing luminosity. Such a correlation has been seen previously within samples of low accretion rate AGN but in only one case has it been seen within observations of a single AGN. Here we show that such behaviour may be very common in LLAGN. A similar anticorrelation is found in X-ray binary systems in the 'hard state', at low accretion rates similar to those of the LLAGN discussed here. Our observations thus imply that LLAGN are the active galaxy equivalent of hard state X-ray binaries.

  9. Minimal model for dark matter and unification

    SciTech Connect

    Mahbubani, Rakhi; Senatore, Leonardo

    2006-02-15

    Gauge coupling unification and the success of TeV-scale weakly-interacting dark matter are usually taken as evidence of low-energy supersymmetry (SUSY). However, if we assume that the tuning of the Higgs can be explained in some unnatural way, from environmental considerations for example, SUSY is no longer a necessary component of any beyond the standard model theory. In this paper we study the minimal model with a dark matter candidate and gauge coupling unification. This consists of the standard model plus fermions with the quantum numbers of SUSY Higgsinos, and a singlet. It predicts thermal dark matter with a mass that can range from 100 GeV to around 2 TeV and generically gives rise to an electric dipole moment (EDM) that is just beyond current experimental limits, with a large portion of its allowed parameter space accessible to next-generation EDM and direct detection experiments. We study precision unification in this model by embedding it in a 5D orbifold GUT where certain large threshold corrections are calculable, achieving gauge coupling and b-{tau} unification, and predicting a rate of proton decay just beyond current limits.

  10. 2.5-11 micron spectroscopy and imaging of AGNs. Implication for unification schemes

    NASA Astrophysics Data System (ADS)

    Clavel, J.; Schulz, B.; Altieri, B.; Barr, P.; Claes, P.; Heras, A.; Leech, K.; Metcalfe, L.; Salama, A.

    2000-05-01

    We present low resolution spectrophotometric and imaging ISO observations of a sample of 57 AGNs and one non-active SB galaxy over the 2.5-11 mu m range. The sample is about equally divided into type I (<= 1.5; 28 sources) and type II (> 1.5; 29 sources) objects. The mid-IR (MIR) spectra of type I (Sf1) and type II (Sf2) objects are statistically different: Sf1 spectra are characterized by a strong continuum well approximated by a power-law of average index < alpha > = -0.84+/-0.24 with only weak emission features from Polycyclic Aromatic Hydrocarbon (PAH) bands at 3.3, 6.2, 7.7 and 8.6 mu m. In sharp contrast to Sf1s, most Sf2s display a weak continuum but very strong PAH emission bands, with equivalent widths (EW) up to 7.2 mu m. On the other hand, Sf1s and Sf2s do not have statistically different PAH luminosities while the 7 mu m continuum is on the average a factor ~ 8 less luminous in Sf2s than in Sf1s. Because the PAH emission is unrelated to the nuclear activity and arises in the interstellar medium of the underlying galactic bulge, its EW is a sensitive nuclear redenning indicator. These results are consistent with unification schemes and imply that the MIR nuclear continuum source of Sf2s is, on the average, extinguished by 92+/-37 visual magnitudes whereas it is directly visible in Sf1s. The dispersion in Sf2's PAH EW is consistent with the expected spread in viewing angles. Those Sf2s with EW(PAH) > 5 μm suffer from an extinction Av > 125 magnitudes and are invariably extremely weak X-ray sources. Such Sf2s presumably represent the highly inclined objects where our line of sight intercepts the full extent of the molecular torus. Conversely, about a third of the Sf2s have PAH EW <= 2 mu m, in the range of Sf1s. Among them, those which have been observed in spectropolarimetry and/or in IR spectroscopy invariably display ``hidden'' broad lines. As proposed by Heisler et al. (\\cite{heisler}), such Sf2s are most likely seen at grazing incidence such that

  11. Multiwavelength AGN Surveys and Studies (IAU S304)

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Sanders, David B.

    2014-08-01

    1. Historical surveys: spectral and colorimetric surveys for AGN, surveys for UV-excess galaxies; 2. AGN from IR/submm surveys: 2MASS, IRAS, ISO, AKARI, SCUBA, SST, WISE, Herschel; 3. AGN from radio/mm surveys: NVSS, FIRST, ALMA, Planck, and others; 4. AGN from X-ray/gamma-ray surveys: ROSAT, ASCA, BeppoSAX, Chandra, XMM, INTEGRAL, Fermi, HESS, MAGIC, VERITAS, NuSTAR; 5. Multiwavelength AGN surveys, AGN statistics and cross-correlation of multiwavelength surveys; 6. Unification and other models of AGN, accretion modes, understanding of the structure of nearby AGN from IFUs on VLT and other telescopes; 7. AGN feedback in galaxies and clusters, AGN host galaxies and the AGN environments; 8. Binary AGN and Merging Super-Massive Black Holes; 9. Study of unique AGN, AGN variability and the Phenomena of Activity; 10. Future large projects; Author index.

  12. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    NASA Technical Reports Server (NTRS)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  13. SUL(4) × U(1) model for electroweak unification

    NASA Astrophysics Data System (ADS)

    Fayyazuddin; Riazuddin

    2004-12-01

    After some general remarks about SUL(4) electroweak unification, the model is extended to SUL(4) × UX(1) to accomodate fractionally charged quarks. The unification scale is expected to be in TeV region. A right-handed Majorana neutrino along with known lepton are put in the fundamental representation of SUL(4) with YX = 0. The see-saw mechanism for neutrino masses and flavor mixing in neutrino sector is a natural feature of the model. The lepton number violating processes can occure through dilepton gauge bosons contained in the model.

  14. The effect of Compton drag on the dynamics of dissipative Poynting-dominated flows: implications for the unification of radio loud AGN

    NASA Astrophysics Data System (ADS)

    Levinson, A.; Globus, N.

    2016-05-01

    The dynamics of a dissipative Poynting-dominated flow subject to a radiation drag due to Compton scattering of ambient photons by relativistic electrons accelerated in reconnecting current sheets is studied. It is found that the efficiency at which magnetic energy is converted to radiation is limited to a maximum value of ɛc = 3ldis σ0/4(σ0 + 1), where σ0 is the initial magnetization of the flow and ldis ≤ 1 the fraction of initial Poynting flux that can dissipate. The asymptotic Lorentz factor satisfies Γ∞ ≥ Γ0(1 + ldis σ0/4), where Γ0 is the initial Lorentz factor. This limit is approached in cases where the cooling time is shorter than the local dissipation time. A somewhat smaller radiative efficiency is expected if radiative losses are dominated by synchrotron and Synchrotron Self-Compton emissions. It is suggested that under certain conditions magnetic field dissipation may occur in two distinct phases: On small scales, asymmetric magnetic fields that are advected into the polar region and dragged out by the outflow dissipate to a more stable configuration. The dissipated energy is released predominantly as gamma rays. On much larger scales, the outflow encounters a flat density profile medium and re-collimates. This leads to further dissipation and wobbling of the jet head by the kink instability, as found recently in 3D magnetohydrodynamic simulations. Within the framework of a model proposed recently to explain the dichotomy of radio loud active galactic nuclei (AGN), this scenario can account for the unification of gamma-ray blazars with Fanaroff-Riley type I and Fanaroff-Riley type II radio sources.

  15. Perturbative unification of gauge couplings in supersymmetric E6 models

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho

    2016-07-01

    We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.

  16. A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Yi, Sukyoung K.; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Soto, Kurt

    2015-07-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z\\lt 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [O iii] λ 5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles.

  17. Gauge-Higgs Unification in Orbifold Models

    NASA Astrophysics Data System (ADS)

    Scrucca, C. A.; Serone, M.; Silvestrini, L.; Wulzer, A.

    2004-02-01

    Six-dimensional orbifold models where the Higgs field is identified with some internal component of a gauge field are considered. We classify all possible T 2/Bbb Z N orbifold constructions based on a SU(3) electroweak gauge symmetry. Depending on the orbifold twist, models with two, one or zero Higgs doublets can be obtained. Models with one Higgs doublet are particularly interesting, as they lead to a prediction for the Higgs mass that is twice the W boson mass at leading order: m H = 2 m W . The electroweak scale is quadratically sensitive to the cut-off, but only through very specific localized operators. We study in detail the structure of these operators at one loop, and identify a class of models where they do not destabilize the electroweak scale at the leading order. This provides a very promising framework to construct realistic and predictive models of electroweak symmetry breaking.

  18. Realistic model for SU(5) grand unification

    SciTech Connect

    Oshimo, Noriyuki

    2009-10-01

    A grand unified model based on SU(5) and supersymmetry is presented. Pairs of superfields belonging to 15 and 15 representations are newly introduced, two pairs with even and one pair with odd matter parity. Improper mass relations in the minimal model between charged leptons and d-type quarks are corrected. Neutrinos have nonvanishing masses, with large angles for generation mixings of the leptons being compatible with the small angles of the quarks. A new source for lepton-number generation in the early universe is provided.

  19. Constraints on gauge-Higgs unification models at the LHC

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki; Sakai, Yuki

    2016-02-01

    We examine the possibility of observing the Kaluza-Klein (KK) gluons in gauge-Higgs unification models at the LHC with the energy s=14 TeV. We consider a benchmark model with the gauge symmetry SU(3)C×SU(3)W in five-dimensional spacetime, where SU(3)C is the gauge symmetry of the strong interaction and SU(3)W is that for the electroweak interaction and a Higgs doublet field. It is natural in general to introduce SU(3)C gauge symmetry in five-dimensional spacetime as well as SU(3)W gauge symmetry in gauge-Higgs unification (GHU) models. Since the fifth dimension is compactified to S1/Z 2 orbifold, there are KK modes of gluons in low-energy effective theory in four-dimensional spacetime. We investigate the resonance contribution of the first KK gluon to dijet invariant mass distribution at the LHC, and provide signal-to-noise ratios in various cases of KK gluon masses and kinematical cuts. Although the results are given in a specific benchmark model, we discuss their application to general GHU models with KK gluons. GHU models can be verified or constrained through the physics of the strong interaction, though they are proposed to solve the naturalness problem in electroweak symmetry breaking.

  20. Preon Model and Family Replicated E_6 Unification

    NASA Astrophysics Data System (ADS)

    Das, Chitta Ranjan; Laperashvili, Larisa V.

    2008-02-01

    Previously we suggested a new preon model of composite quark-leptons and bosons with the 'flipped' E6 × ˜E6 gauge symmetry group. We assumed that preons are dyons having both hyper-electric g and hyper-magnetic ˜g charges, and these preons-dyons are confined by hyper-magnetic strings which are an N = 1 supersymmetric non-Abelian flux tubes created by the condensation of spreons near the Planck scale. In the present paper we show that the existence of the three types of strings with tensions Tk = kT0 (k = 1,2,3) producing three (and only three) generations of composite quark-leptons, also provides three generations of composite gauge bosons ('hyper-gluons') and, as a consequence, predicts the family replicated [E6]3 unification at the scale ~1017 GeV. This group of unification ha! s the possibility of breaking to the group of symmetry: [SU(3)C]3 × [SU(2)L]3 × [U(1)Y]3 × [U(1)(B-L)]3 which undergoes the breakdown to the Standard Model at lower energies. Some predictive advantages of the family replicated gauge groups of symmetry are briefly discussed.

  1. Gauge coupling unification in a classically scale invariant model

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya

    2016-02-01

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.

  2. Symmetry Breaking, Unification, and Theories Beyond the Standard Model

    SciTech Connect

    Nomura, Yasunori

    2009-07-31

    A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressing the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.

  3. Neutrino mass, proton decay, and neutron oscillations as crucial tests of unification models (A Review)

    PubMed Central

    Marshak, R. E.

    1982-01-01

    Several crucial tests of three popular unification models (of strong, electromagnetic, and weak interactions) are described. The models are SU(5) and SO(10) at the grand unification theory (GUT) level and SU(4)C × SU(2)L × SU(2)R at the partial unification theory (PUT) level. The tests selected for discussion are the finiteness of the neutrino mass in the electron volt region, the decay of protons into antileptons in the range of 1031± yr, and the detectability of neutron oscillations at all. The PUT group can also be tested by establishing the existence of four generations of quarks and leptons.

  4. An explicit SU(12) family and flavor unification model with natural fermion masses and mixings

    SciTech Connect

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2012-07-01

    We present an SU(12) unification model with three light chiral families, avoiding any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed in detail and found to be in very good agreement with the observed quark and lepton masses and mixings.

  5. Stellar population model dependence in optical AGN identification

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zaw, Ingyin; Farrar, Glennys

    2016-08-01

    The choice of stellar templates plays an important role in optical spectroscopic AGN classification, because the host galaxy contribution must be accurately subtracted in order to isolate the true contribution of the AGN. Up to now, simple stellar population models such as BC03, have been used as templates in doing the stellar component analysis. As more stellar population models become available, systematic study of the impact of the stellar population modeling becomes possible. This is important not only for finding the best template but also for understanding the merits and limitations of the templates. We analyzed the SDSS DR8 spectra, using different empirical, theoretical, and mixed stellar population models. We found that some templates lead to systematic biases in the identification of AGN candidates. We investigated the effects of the range of age,metallicity, and the total wavelength used in full-spectrum fitting. We found that the completeness of parameter space in the template model plays a vital role in classifying AGN candidates; the wavelength range used to analyze the spectra also affects the result but in a relative minor way. Empirical stellar models can be expected to yield the most reliable estimate of the absorption features in the host galaxies, since there will be less model dependence (e.g., on opacity assumption, line profile representation).

  6. Effect of relaxing grand-unification assumptions on neutralinos in the minimal supersymmetric model

    SciTech Connect

    Griest, K. ); Roszkowski, L. )

    1992-10-15

    We consider the phenomenological and cosmological properties of light neutralinos in the minimal supersymmetric model when grand-unification assumptions are relaxed. We show that substantial changes result in the mass and mixing properties of the neutralinos, in the interpretation of recent experimental restrictions on neutralino parameter space, and in the relic abundance of light-neutralino dark matter. Relaxation of the grand-unification assumptions is easily accomplished, even within the minimal supergravity model, and results in a larger neutralino parameter space and the viability of light-neutralino ({approx lt}10--20 GeV) dark matter.

  7. A degeneracy in DRW modelling of AGN light curves

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-07-01

    Individual light curves of active galactic nuclei (AGNs) are nowadays successfully modelled with the damped random walk (DRW) stochastic process, characterized by the power exponential covariance matrix of the signal, with the power β = 1. By Monte Carlo simulation means, we generate mock AGN light curves described by non-DRW stochastic processes (0.5 ≤ β ≤ 1.5 and β ≠ 1) and show they can be successfully and well modelled as a single DRW process, obtaining comparable goodness of fits. A good DRW fit, in fact, may not mean that DRW is the true underlying process leading to variability and it cannot be used as a proof for it. When comparing the input (non-DRW) and measured (DRW) process parameters, the recovered time-scale (amplitude) increases (decreases) with the increasing input β. In practice, this means that the recovered DRW parameters may lead to biased (or even non-existing) correlations of the variability and physical parameters of AGNs if the true AGN variability is caused by non-DRW stochastic processes. The proper way of identifying the processes leading to variability are model-independent structure functions and/or power spectral densities and then using such information on the covariance matrix of the signal in light-curve modelling.

  8. Relativistic Effects on the Observed AGN Luminosity Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Shuang Nan; Zhang, Xiao Ling

    2007-02-01

    Recently, Zhang (2005 ApJ, 618, L79) has proposed a model to account for the well-established effect that the fraction of type-II AGNs is anti-correlated with the observed X-ray luminosity; the model consists of an X-ray emitting accretion disk coaligned to the dusty torus within the standard AGN unification model. In this paper the model is refined by including relativistic effects of the observed X-ray radiation from the vicinity of the supermassive black hole in an AGN. The relativistic corrections improve the combined fitting results of the observed luminosity distribution and the type-II AGN fraction, though the improvement is not significant. The type-II AGN fraction prefers non- or mildly spinning black hole cases, and rules out the extremely spinning case.

  9. Corpus-Based Optimization of Language Models Derived from Unification Grammars

    NASA Technical Reports Server (NTRS)

    Rayner, Manny; Hockey, Beth Ann; James, Frankie; Bratt, Harry; Bratt, Elizabeth O.; Gawron, Mark; Goldwater, Sharon; Dowding, John; Bhagat, Amrita

    2000-01-01

    We describe a technique which makes it feasible to improve the performance of a language model derived from a manually constructed unification grammar, using low-quality untranscribed speech data and a minimum of human annotation. The method is on a medium-vocabulary spoken language command and control task.

  10. Unification and mechanistic detail as drivers of model construction: models of networks in economics and sociology.

    PubMed

    Kuorikoski, Jaakko; Marchionni, Caterina

    2014-12-01

    We examine the diversity of strategies of modelling networks in (micro) economics and (analytical) sociology. Field-specific conceptions of what explaining (with) networks amounts to or systematic preference for certain kinds of explanatory factors are not sufficient to account for differences in modelling methodologies. We argue that network models in both sociology and economics are abstract models of network mechanisms and that differences in their modelling strategies derive to a large extent from field-specific conceptions of the way in which a good model should be a general one. Whereas the economics models aim at unification, the sociological models aim at a set of mechanism schemas that are extrapolatable to the extent that the underlying psychological mechanisms are general. These conceptions of generality induce specific biases in mechanistic explanation and are related to different views of when knowledge from different fields should be seen as relevant.

  11. Upholding the unified model for AGN: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, Cristina; Martínez González, M.; Asensio Ramos, A.; Acosta Pulido, J.; Hönig, S.; Alonso-Herrero, A.; Tadhunter, C.; González-Martín, O.

    2016-08-01

    The origin of the unification model for AGN was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ~30-40% of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, and four Sy2s classified as NHBLR based on previous data. We report >4sigma detections of a HBLR in 11 of these galaxies (73% of the sample). Our results confirm that at least some NHBLRs were misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad Ha and Hb components in polarized light for 9 targets, and just broad Ha for the other two. We do not find any correlation between the properties of the polarized spectra and the column densities measured from the X-rays or torus inclination, but a larger sample is required to confirm this.

  12. The star formation and AGN luminosity relation: predictions from a semi-analytical model

    NASA Astrophysics Data System (ADS)

    Gutcke, Thales A.; Fanidakis, Nikos; Macciò, Andrea V.; Lacey, Cedric

    2015-08-01

    In a universe where active galactic nucleus (AGN) feedback regulates star formation in massive galaxies, a strong correlation between these two quantities is expected. If the gas causing star formation is also responsible for feeding the central black hole, then a positive correlation is expected. If powerful AGNs are responsible for the star formation quenching, then a negative correlation is expected. Observations so far have mainly found a mild correlation or no correlation at all [i.e. a flat relation between star formation rate (SFR) and AGN luminosity], raising questions about the whole paradigm of `AGN feedback'. In this paper, we report the predictions of the GALFORM semi-analytical model, which has a very strong coupling between AGN activity and quenching of star formation. The predicted SFR-AGN luminosity correlation appears negative in the low AGN luminosity regime, where AGN feedback acts, but becomes strongly positive in the regime of the brightest AGN. Our predictions reproduce reasonably well recent observations by Rosario et al., yet there is some discrepancy in the normalization of the correlation at low luminosities and high redshifts. Though this regime could be strongly influenced by observational biases, we argue that the disagreement could be ascribed to the fact that GALFORM neglects AGN variability effects. Interestingly, the galaxies that dominate the regime where the observations imply a weak correlation are massive early-type galaxies that are subject to AGN feedback. Nevertheless, these galaxies retain high enough molecular hydrogen contents to maintain relatively high SFRs and strong infrared emission.

  13. A model for dark matter, naturalness and a complete gauge unification

    SciTech Connect

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi

    2015-07-21

    We consider dark matter in a minimal extension of the Standard Model (SM) which breaks electroweak symmetry dynamically and leads to a complete unification of the SM and technicolor coupling constants. The unification scale is determined to be M{sub U}≈2.2×10{sup 15} GeV and the unified coupling α{sub U}≈0.0304. Moreover, unification strongly suggest that the technicolor sector of the model must become strong at the scale of O(TeV). The model also contains a tightly constrained sector of mixing neutral fields stabilized by a discrete symmetry. We find the lightest of these states can be DM with a mass in the range m{sub DM}≈30–800 GeV. We find a large set of parameters that satisfy all available constraints from colliders and from dark matter search experiments. However, most of the available parameter space is within the reach of the next generation of DM search experiments. The model is also sensitive to a modest improvement in the measurement of the precision electroweak parameters.

  14. AGN Absorption Linked to Host Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stéphanie

    2014-07-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection.

  15. Classification and unification of the microscopic deterministic traffic models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Monterola, Christopher

    2015-10-01

    We identify a universal mathematical structure in microscopic deterministic traffic models (with identical drivers), and thus we show that all such existing models in the literature, including both the two-phase and three-phase models, can be understood as special cases of a master model by expansion around a set of well-defined ground states. This allows any two traffic models to be properly compared and identified. The three-phase models are characterized by the vanishing of leading orders of expansion within a certain density range, and as an example the popular intelligent driver model is shown to be equivalent to a generalized optimal velocity (OV) model. We also explore the diverse solutions of the generalized OV model that can be important both for understanding human driving behaviors and algorithms for autonomous driverless vehicles.

  16. Unification and Dark Matter in a Minimal Scalar Extension of the Standard Model

    SciTech Connect

    Lisanti, Mariangela; Wacker, Jay G.

    2007-04-25

    The six Higgs doublet model is a minimal extension of the Standard Model (SM) that addresses dark matter and gauge coupling unification. Another Higgs doublet in the 5 representation of a discrete symmetry group, such as S{sub 6}, is added to the SM. The lightest components of the 5-Higgs are neutral, stable and serve as dark matter so long as the discrete symmetry is not broken. Direct and indirect detection signals, as well as collider signatures are discussed. The five-fold multiplicity of the dark matter decreases its mass and typically helps make the dark matter more visible in upcoming experiments.

  17. Unification of models for choice between delayed reinforcers.

    PubMed

    Killeen, P R; Fantino, E

    1990-01-01

    Two models for choice between delayed reinforcers, Fantino's delay-reduction theory and Killeen's incentive theory, are reviewed. Incentive theory is amended to incorporate the effects of arousal on alternate types of behavior that might block the reinforcement of the target behavior. This amended version is shown to differ from the delay-reduction theory in a term that is an exponential in incentive theory and a difference in delay-reduction theory. A power series approximation to the exponential generates a model that is formally identical with delay-reduction theory. Correlations between delay-reduction theory and the amended incentive theory show excellent congruence over a range of experimental conditions. Although the assumptions that gave rise to delay-reduction theory and incentive theory remain different and testable, the models deriving from the theories are unlikely to be discriminable by parametric experimental tests. This congruence of the models is recognized by naming the common model the delayed reinforcement model, which is then compared with other models of choice such as Killeen and Fetterman's (1988) behavioral theory of timing, Mazur's (1984) equivalence rule, and Vaughan's (1985) melioration theory.

  18. Unification of models for choice between delayed reinforcers.

    PubMed Central

    Killeen, P R; Fantino, E

    1990-01-01

    Two models for choice between delayed reinforcers, Fantino's delay-reduction theory and Killeen's incentive theory, are reviewed. Incentive theory is amended to incorporate the effects of arousal on alternate types of behavior that might block the reinforcement of the target behavior. This amended version is shown to differ from the delay-reduction theory in a term that is an exponential in incentive theory and a difference in delay-reduction theory. A power series approximation to the exponential generates a model that is formally identical with delay-reduction theory. Correlations between delay-reduction theory and the amended incentive theory show excellent congruence over a range of experimental conditions. Although the assumptions that gave rise to delay-reduction theory and incentive theory remain different and testable, the models deriving from the theories are unlikely to be discriminable by parametric experimental tests. This congruence of the models is recognized by naming the common model the delayed reinforcement model, which is then compared with other models of choice such as Killeen and Fetterman's (1988) behavioral theory of timing, Mazur's (1984) equivalence rule, and Vaughan's (1985) melioration theory. PMID:2299288

  19. LHC phenomenology of SO(10) models with Yukawa unification. II.

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Bryant, B. Charles; Raby, Stuart

    2014-07-01

    In this paper we study Yukawa-unified SO(10) supersymmetric (SUSY) grand unified theories (GUTs) with two types of SO(10) boundary conditions: (i) universal gaugino masses and (ii) nonuniversal gaugino masses with effective "mirage" mediation. With these boundary conditions, we perform a global χ2 analysis to obtain the parameters consistent with 11 low energy observables, including the top, bottom, and tau masses. Both boundary conditions have universal scalar masses and "just so" splitting for the up- and down-type Higgs masses. In these models, the third family scalars are lighter than the first two families and the gauginos are lighter than all the scalars. We therefore focus on the gluino phenomenology in these models. In particular, we estimate the lowest allowed gluino mass in our models coming from the most recent LHC data and compare this to limits obtained using simplified models. We find that the lower bound on Mg ˜ in Yukawa-unified SO(10) SUSY GUTs is generically ˜1.2 TEV at the 1σ level unless there is considerable degeneracy between the gluino and the lightest supersymmetric particle, in which case the bounds are much weaker. Hence many of our benchmark points are not ruled out by the present LHC data and are still viable models which can be tested at LHC 14.

  20. Three-family unification in higher dimensional models

    SciTech Connect

    Mimura, Yukihiro; Nandi, S.

    2009-05-01

    In orbifold models, gauge, Higgs, and the matter fields can be unified in one multiplet from the compactification of higher dimensional supersymmetric gauge theory. We study how three families of chiral fermions can be unified in the gauge multiplet. The bulk gauge interaction includes the Yukawa interactions to generate masses for quarks and leptons after the electroweak symmetry is broken. The bulk Yukawa interaction has global or gauged flavor symmetry originating from the R symmetry or bulk gauge symmetry, and the Yukawa structure is restricted. When the global and gauged flavor symmetries are broken by orbifold compactification, the remaining gauge symmetry which contains the standard model gauge symmetry is restricted. The restrictions from the bulk flavor symmetries can provide explanations of fermion mass hierarchy.

  1. Bottom-tau unification in a supersymmetric model with anomaly-mediation

    NASA Astrophysics Data System (ADS)

    Chigusa, So; Moroi, Takeo

    2016-08-01

    We study the Yukawa unification, in particular, the unification of the Yukawa coupling constants of b and τ , in the framework of the supersymmetric (SUSY) model. We concentrate on the model in which the SUSY breaking scalar masses are of the order of the gravitino mass while the gaugino masses originate from the effect of anomaly mediation and hence are one-loop suppressed relative to the gravitino mass. We perform an accurate calculation of the Yukawa coupling constants of b and τ at the grand unified theory (GUT) scale, including relevant renormalization group effects and threshold corrections. In particular, we study the renormalization group effects, taking into account the mass splittings among sfermions, gauginos, and the standard model particles. We found that the Yukawa coupling constant of b at the GUT scale is about 70% of that of τ if there is no hierarchy between the sfermion masses and the gravitino mass. Our results suggest sizable threshold corrections to the Yukawa coupling constants at the GUT scale or significant suppressions of the sfermion masses relative to the gravitino mass.

  2. A Model for Type 2 Coronal Line Forest (CLiF) AGNs

    NASA Astrophysics Data System (ADS)

    Glidden, Ana; Rose, Marvin; Elvis, Martin; McDowell, Jonathan

    2016-06-01

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii]λ6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h/r.

  3. Restrictions on two Higgs doublet models and CP violation at the unification scale

    SciTech Connect

    Athanasiu, G.G.

    1987-04-01

    Bounds on charged Higgs masses and couplings in models with two Higgs doublets are examined that came from CP violation in the neutral K system. Bounds on charged Higgs masses and couplings in two Higgs doublet models are also obtained from their effects on neutral-B-meson mixing. The bounds are found to be comparable to those obtained with additional assumptions from the neutral K system. The three generation phase invariant measure of CP violation is shown to satisfy a simple and solvable renormalization group equation. Its value is seen to fall by four to eight orders of magnitude between the weak and grand unification scales in the standard model, as well as in its two Higgs and supersymmetric extensions. (LEW)

  4. AGN coronal emission models - I. The predicted radio emission

    NASA Astrophysics Data System (ADS)

    Raginski, I.; Laor, Ari

    2016-06-01

    Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.

  5. The contribution of AGNs to the X-ray background.

    NASA Astrophysics Data System (ADS)

    Comastri, A.; Setti, G.; Zamorani, G.; Hasinger, G.

    1995-04-01

    We report the results of a detailed analysis of the contribution of various classes of AGNs (Seyfert galaxies and quasars) to the extragalactic X-ray background (XRB). The model is based on the unification schemes of AGNs, on their related X-ray spectral properties in the light of recent observational results and on the X-ray luminosity function derived by Boyle et al. (1993). The integrated emission from AGNs, when folded with an appropriate cosmological evolution law, can provide a good fit to the XRB over a wide energy range, from several to ~100keV, while it contributes only about 74% of the ROSAT soft XRB. The baseline model predictions have been checked against all available observational constraints from both hard and soft X-ray surveys (counts, redshift distributions and average X-ray source spectral properties).

  6. Theoretical uncertainties due to AGN subgrid models in predictions of galaxy cluster observable properties

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. Karen; Sutter, P. M.; Ricker, Paul M.

    2012-12-01

    Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modelling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter-sensitivity study in a single cluster using several commonly adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (˜20 per cent for Mgas and a factor of ˜2 for LX at R500), whereas TX, YSZ and YX are more robust (˜10-20 per cent at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and TX, which is another reason why YSZ and YX are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-TX and LX-TX relations.

  7. Modeling optical and UV polarization of AGNs. III. From uniform-density to clumpy regions

    NASA Astrophysics Data System (ADS)

    Marin, F.; Goosmann, R. W.; Gaskell, C. M.

    2015-05-01

    Context. A growing body of evidence suggests that some, if not all, scattering regions of active galactic nuclei (AGNs) are clumpy. The inner AGN components cannot be spatially resolved with current instruments and must be studied by numerical simulations of observed spectroscopy and polarization data. Aims: We run radiative transfer models in the optical/UV for a variety of AGN reprocessing regions with different distributions of clumpy scattering media. We obtain geometry-sensitive polarization spectra and images to improve our previous AGN models and their comparison with the observations. Methods: We use the latest public version 1.2 of the Monte Carlo code stokes presented in the first two papers of this series to model AGN reprocessing regions of increasing morphological complexity. We replace previously uniform-density media with up to thousands of constant-density clumps. We couple a continuum source to fragmented equatorial scattering regions, polar outflows, and toroidal obscuring dust regions and investigate a wide range of geometries. We also consider different levels of fragmentation in each scattering region to evaluate the importance of fragmentation for the net polarization of the AGN. Results: In comparison with uniform-density models, equatorial distributions of gas and dust clouds result in grayer spectra and show a decrease in the net polarization percentage at all lines of sight. The resulting polarization position angle depends on the morphology of the clumpy structure, with extended tori favoring parallel polarization while compact tori produce orthogonal polarization position angles. In the case of polar scattering regions, fragmentation increases the net polarization unless the cloud filling factor is small. A complete AGN model constructed from the individual, fragmented regions can produce low polarization percentages (<2%), with a parallel polarization angle for observer inclinations up to 70° for a torus half opening angle of 60°. For

  8. Photoionization modeling of GRO 1655-40: A scaled down AGN Warm Absrobers!

    NASA Astrophysics Data System (ADS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris R.; Behar, Ehud; Tombesi, Francesco

    2016-04-01

    We present photoinization models of the absorption features Galactic X-ray Binary (XRB) by implementing the MHD accretion disk wind models employed to account for the ionization properties of the AGN Warm Absorbers (WA)(Fukumura et a. 2010). The implementation of the same models rests on the fact that the radial density profiles of these winds, n(r)~1/r, guarantees the correct values of the hydrogen equivalent column NH of the most important ionic species at the correct values of their ionization parameter ξ and velocity v. The similarity of the winds' ionization properties is broken only by the peak frequency of the ionizing SED, which is in the UV in AGN and in X-rays in XRBs. This difference implies that the inner regions of the XRB winds are far more ionized than those of AGN, resulting in much smaller velocities for the same ionic species (e.g. Fe XXV) in XRB (v~1,000 km/s) than in AGN (v~10,000 km/s), in agreement with observation. Estimates of the wind mass flux deduced from our photonization modeling, imply that the latter is much larger than that needed to power the observed X-ray emission, a property that appears to be generic from the Galactic to the AGN black hole mass range suggesting a common underlying structure.

  9. Minimal nonsupersymmetric S O (10 ) model: Gauge coupling unification, proton decay, and fermion masses

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Khan, S.

    2015-10-01

    We present a minimal renormalizable nonsupersymmetric S O (10 ) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 5 4H+12 6H+1 0H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings, and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yr for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp≳1.29 ×1034 yr . With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong C P problem. The intermediate scale, MI≈(1013- 1014) GeV which is also the B -L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p →e+π0 and p →ν ¯π+. Even though the model predicts no new physics within the reach of the LHC, the next-generation proton decay detectors and axion search experiments have the capability to reach a verdict on this minimal scenario.

  10. Assessing AGN feedback models with c iii* measurement and photoionization modeling

    NASA Astrophysics Data System (ADS)

    McGinnis, Daniel J.

    2013-12-01

    Mass outflows in active galactic nuclei (AGN) have been hypothesized to represent a feedback mechanism through which black hole growth and galaxy formation are linked. In order to assess this claim, typical outflow kinetic luminosities must be compared to calculated minimum values that are needed to produce feedback relevance. We have developed a method for placing lower limits on the kinetic luminosity by combining photoionization modeling with column density measurements of a select few ionic species, including C III* 1175 as a measure of gas density. This method is applied to sample AGNs representative of those observed with the Sloan Digital Sky Survey (SDSS) and the Cosmic Origins Spectrograph (HST/COS). We find that although measured kinetic luminosity lower limits for the quasar SDSS J170322.41+23124.3 and Seyfert galaxy Akn 564 are several orders of magnitude less than that required for feedback relevance, our method can be drastically improved with increased signal to noise ratios.

  11. Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity

    PubMed Central

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258

  12. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  13. Star formation and obscuration in AGN: A sub-mm study of high-redshift mid-IR selected type-2 QSOs

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Stevens, Jason; Coppin, Kristen; Geach, James

    2016-08-01

    The AGN unification model describes unobscured and obscured AGN (AGN1 and AGN2) as identical sources, with their different observed properties explained solely by orientation effects; as a result, it predicts no difference in the host galaxies. As an alternative, a second scenario has been proposed in which type-2 AGN represent an earlier stage in the life of AGN characterized by dust-enshrouded host galaxies which contribute to the obscuration and higher star formation activity, at least at earlier epochs. To test this scenario we employ Herschel data at three different wavelengths (250, 350, 500 um) to study the far-IR-to-submm properties of a sample of mid-IR selected type 2 QSOs at high redshift (1.5AGN and star-formation activity and consequently derive FIR luminosities of the two components, as well as SFRs and dust masses. We propose a picture in which intermediate-level radio activity in the core (pc scale) of AGN is linked to the obscuration of the nucleus (perhaps via a merger) since our AGN1 have systematically lower radio luminosities than our AGN2.

  14. A practical GMSB model for explaining the muon (g-2) with gauge coupling unification

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Gautam; Bhattacherjee, Biplob; Yanagida, Tsutomu T.; Yokozaki, Norimi

    2014-03-01

    We present a gauge mediated supersymmetry breaking model having weak SU(2) triplet, color SU(3) octet and SU(5) 5-plet messengers, that can simultaneously explain the muon (g-2) data within 1σ and the observed Higgs boson mass of 125 GeV. Gauge coupling unification is nontrivially maintained. Most of the parameter space satisfying both is accessible to the 14 TeV LHC. The lighter of the two staus weighs around (100-200) GeV, which can be a potential target of the ILC. When the left-right stau mixing term proportional to (mτμtan β) is large, the charge breaking global minimum can appear. The life-time of the electroweak vacuum restricts the size of the μtan β, which depends of course on the stau soft mass parameters [24,25]. However, this constraint is not very decisive in our case. In fact, the LEP bound on the stau mass is stronger in the relevant region of the parameter space [26]. LHC constraints on electroweak gauginos/sleptons also restrict the relevant parameter space. Searches for three leptons plus missing energy put a constraint on the wino mass [27]. In the region consistent with the muon g-2 at 1σ level, the left handed sleptons are some what heavier than the wino. In this case, the final state leptons are the taus rather electrons/muons, giving the constraint m≃m≳(300-350) GeV[27,28]. Note that in some regions of the parameter space, the wino and the left-handed sleptons are nearly degenerate in mass. These regions are difficult to be constrained. Besides, separate (but, not so tight) constraints exist on the left-handed sleptons, namely, m≳300 GeV[29]. The restrictions on the right-handed sleptons are, however, much less stringent.

  15. The Prevalence of Gas Outflows in Type 2 AGNs. II. 3D Biconical Outflow Models

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2016-09-01

    We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity-velocity dispersion distribution of ˜39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ˜500 to ˜1000 km s-1 for the majority of AGNs, and up to ˜1500-2000 km s-1 for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.

  16. The Prevalence of Gas Outflows in Type 2 AGNs. II. 3D Biconical Outflow Models

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak

    2016-09-01

    We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity–velocity dispersion distribution of ∼39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ∼500 to ∼1000 km s‑1 for the majority of AGNs, and up to ∼1500–2000 km s‑1 for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.

  17. Toward unification of multiscale modeling of the atmosphere (Vilhelm Bjerknes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Arakawa, Akio

    2010-05-01

    Vilhelm Bjerknes pointed out that a necessary condition for the rational solution of forecasting problems is a sufficiently accurate knowledge of the laws according to which one state of the atmosphere develops from another. Numerical modeling of the atmosphere has been and still is a struggle for establishing such laws. This is especially true for modeling multiscale atmospheric processes. As far as representation of deep clouds is concerned, we have two types of model physics: one highly parameterizes cloud systems as in GCMs and the other explicitly simulates individual clouds as in cloud-resolving models (CRMs). Because a variety of processes mutually interact within a cloud system, parameterization of the net effect of a cloud-system is more than taking a statistical average of the local cloud effects. Ideally, these two types of model physics should be unified so that continuous transition of model physics from on type to the other takes place as the resolution changes. Unfortunately, such a unified formulation of model physics does not exist at present. Unification of model physics in the above sense is an extremely challenging task. It requires a cloud-system model, which must be reasonably general but simple enough to be used as a framework for a parameterization. In addition, the closure assumption must be generalized far beyond those typically used in the current cumulus parameterization schemes. We will discuss some of these problems at the meeting. For practical purposes of NWP and climate simulations, however, we should also consider another route: development of a numerical model that has cloud-resolving resolution, but not necessarily everywhere. Atmospheric modeling is not alone in facing this kind of problem. Heterogeneous Multiscale Modeling (HMM, E. et al. 2007), for example, which is a new approach in applied mathematics to solve multi-physics problems, has an objective similar to ours. In HMM, the ojective is achieved by applying the

  18. Low-luminosity Blazars in Wise: A Mid-infrared View of Unification

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard M.; Anderson, S. F.; Brandt, W. N.; Markoff, S.; Shemmer, O.; Wu, J.

    2012-01-01

    We use the preliminary data release from the Wide-Field Infrared Survey Explorer (WISE) to perform the first statistical study on the mid-infrared (IR) properties of a large number ( 102) of BL Lac objects -- low-luminosity Active Galactic Nuclei (AGN) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions (SEDs), and the shape of their SEDs in the IR correlates well with SED peak frequency. In other BL Lac objects, the jet is not strong enough to completely dilute the rest of the AGN, and we do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. While at odds with simple unification, the missing torus is consistent with recent suggestions that BL Lac objects are fed by radiatively inefficient accretion flows. We discuss implications on the ``nature vs. nurture" debate for FR I and FR II galaxies, and also on the standard orientation-based AGN unification model.

  19. NuSTAR Survey of Swift/BAT AGN as a Probe of the Unified Model

    NASA Astrophysics Data System (ADS)

    Balokovic, M.

    2015-09-01

    NuSTAR has enabled studies of the local AGN to extend into the spectral window above 10 keV with unprecedented spatial resolution and two orders of magnitude better sensitivity than any other instrument operating in that energy range. As a part of its long-term extragalactic program NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift/BAT instrument. We present results based on observations of ~100 Swift/BAT-selected Type-2 Seyferts surveyed in the first three years of NuSTAR operation. This large sample forms an atlas of the highest quality hard X-ray spectra available to date. Assuming a range of hard X-ray spectral models, phenomenological as well as physically motivated, we constrain the main spectral parameters for each source individually and test the applicability of the models on a large sample for the first time. This analysis allows us to determine distributions of the main spectral parameters related to the torus, such as the absorption column, reflection strength, and iron line equivalent width, in a well-defined population of nearby obscured AGN. More advanced models for the AGN torus allow us to investigate differences between various subsamples and interpret them within the unified model paradigm. We will discuss the implications for the structure of the torus in the local population of Type-2 Seyferts and present a comprehensive comparison of constraints derived from X-ray data and constraints from observations at other wavelengths for a relatively large sample.

  20. Stability of proton and maximally symmetric minimal unification model for basic forces and building blocks of matter

    NASA Astrophysics Data System (ADS)

    Wu, Yueliang

    2007-06-01

    With the hypothesis that all independent degrees of freedom of basic building blocks should be treated equally on the same footing and correlated by a possible maximal symmetry, we arrive at a 4-dimensional space-time unification model. In this model the basic building blocks are Majorana fermions in the spinor representation of 14-dimensional quantum space-time with a gauge symmetry G M 4D = SO(1,3) × SU(32) × U(1)A × SU(3)F. The model leads to new physics including mirror particles of the standard model. It enables us to issue some fundamental questions that include: why our living space-time is 4-dimensional, why parity is not conserved in our world, how the stability of proton is, what the origin of CP violation is and what the dark matter can be.

  1. Low-scale gaugino mass unification

    SciTech Connect

    Endo, Motoi; Yoshioka, Koichi

    2008-07-15

    We study a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where the low-energy mass spectrum is governed by a mirage of unified gauge coupling which is seen by low-energy observers. The gaugino masses have natural and stable low-scale unification. The mass parameters of scalar quarks and leptons are given by gauge couplings but exhibit no large mass hierarchy. They are nonuniversal even when mediated at the gauge coupling unification scale. In addition, the gravitino is rather heavy and not the lightest superparticle. These facts are in contrast to existing gauge and mirage mediation models. We also present several explicit models for dynamically realizing the TeV-scale unification.

  2. An introduction to the pair-reflection model of X-ray spectra in AGN's

    NASA Astrophysics Data System (ADS)

    Svensson, Roland

    1992-03-01

    The pair reflection model of Zdziarski, Ghisellini, George, Svensson, Fabian, and Done (1990), in which most features of the extreme ultraviolet gamma ray spectra of Active Galactic Nuclei (AGN) are accounted for is considered. Details of the conception of the model are given and the model itself is explained. In the pair reflection model a pair cloud located above a cold slab generates a self consistently computed nonthermal spectrum that irradiates and is reflected by the slab. Some of these features are discussed using simplest possible arguments. The robustness of the pair reflection model as well as possible variability patterns are also discussed.

  3. First X-ray Statistical Tests for Clumpy-Torus Models: Constraints from RXTEmonitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex; Krumpe, Mirko; Nikutta, R.

    2016-06-01

    In two papers (Markowitz, Krumpe, & Nikutta 2014, and Nikutta et al., in prep.), we derive the first X-ray statistical constraints for clumpy-torus models in Seyfert AGN by quantifying multi-timescale variability in line of-sight X-ray absorbing gas as a function of optical classification.We systematically search for discrete absorption events in the vast archive of RXTE monitoring of 55 nearby type Is and Compton-thin type IIs. We are sensitive to discrete absorption events due to clouds of full-covering, neutral/mildly ionized gas transiting the line of sight. Our results apply to both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for eclipses observed with XMM-Newton, Suzaku, and Chandra.We detect twelve eclipse events in eight Seyferts, roughly tripling the number previously published from this archive. Event durations span hours to years. Most of our detected clouds are Compton-thin, and most clouds' distances from the black hole are inferred to be commensurate with the outer portions of the BLR or the inner regions of infrared-emitting dusty tori.We present the density profiles of the highest-quality eclipse events; the column density profile for an eclipsing cloud in NGC 3783 is doubly spiked, possibly indicating a cloud that is being tidallysheared. We discuss implications for cloud distributions in the context of clumpy-torus models. We calculate eclipse probabilities for orientation-dependent Type I/II unification schemes.We present constraints on cloud sizes, stability, and radial distribution. We infer that clouds' small angular sizes as seen from the SMBH imply 107 clouds required across the BLR + torus. Cloud size is roughly proportional to distance from the black hole, hinting at the formation processes (e.g., disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces, such as magnetic fields or ambient pressure, are

  4. Gauge coupling unification in gauge-Higgs grand unification

    NASA Astrophysics Data System (ADS)

    Yamatsu, Naoki

    2016-04-01

    We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

  5. Obscured AGN

    NASA Technical Reports Server (NTRS)

    Ptak, Andrew

    2011-01-01

    Many obscured AGN show evidence of significant starburst emission dominating below 2 keV. Therefore wide-field X-ray surveys sensitive enough to luminosities below approximately 10^42 ergs per second will result in detections of galaxies with contributions of both obscured AGN and starburst emission. We will discuss Bayesian approaches to assessing the relative contribution of each component, minimizing survey biases and using the resultant posterior probabilities for the AGN and starburst components to determine their evolution.

  6. AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Vernaleo, John C.; Reynolds, Christopher S.

    2006-07-01

    In recent years it has become increasingly clear that active galactic nuclei, and radio galaxies in particular, have an impact on large-scale structure and galaxy formation. In principle, radio galaxies are energetic enough to halt the cooling of the virialized intracluster medium (ICM) in the inner regions of galaxy clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high-resolution, three-dimensional hydrodynamic simulations of jetted active galaxies that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long-term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low-density channel through which the jet can freely flow, carrying its energy out of the cooling core. It is possible that this failure is due to an oversimplified treatment of the fast jet (which may underestimate the ``dentist drill'' effect). However, it seems likely that additional complexity (large-angle jet precession or ICM turbulence) or additional physics (magnetohydrodynamic effects and plasma transport processes) is required to produce a spatial distribution of jet heating that can prevent catastrophic cooling. This work also underscores the importance of including jet dynamics in any feedback model, as opposed to the isotropically inflated bubble approach taken in some previous works.

  7. Support for an Evolutionary Model of AGN Nuclei

    NASA Astrophysics Data System (ADS)

    Dultzin, D.

    2015-09-01

    I will present our recent results (2013-2015) on the role of the environment in the nuclear activity of interacting Galaxies, all of which support an evolutionary sequence in the nuclear activity. We studied close galactic pairs of similar mass in the local Universe. We analyzed 385 spectra of S S, E E, and E S pairs, and try to disentangle the role of morphology on induced activity . We compare with our own sample of bona fide isolated galaxies containing a statistically significant number of all morphological types. Our main results are in conflict with the simplest version of the so called Unified Model (UM), and suggest that high accretion rates are essential to form the Broad Line Region in active galaxies. We also investigated the structure of the dusty torus surrounding Syfert 1 and 2 nuclei, both in pairs and isolated. The results also lead to a disagreement with the UM. Finally, we present our results on the Nuclear Activity in the context of the evolution of Compact Groups of galaxies over the past 3 Gyrs. Our analysis is based on the largest multiwavelength compact group sample to-date, and the results are also in conflict with an orientation obscuration effect alone.

  8. The missing piece of the puzzle: low-luminosity AGN in the Unified Model

    NASA Astrophysics Data System (ADS)

    Mezcua, Mar; Prieto, Almudena; Fernandez Ontiveros, Juan Antonio

    One of the puzzling questions in AGN studies is whether the Unified Model for AGN also holds for the most numerous class among them: low-luminosity AGN (LLAGN; Lbol<=10(42) erg/s). LLAGN outstand from the Unified Model as lacking the big blue bump in the optical-UV, footprint of the accretion disk, and being radiatively inefficient. A possible explanation is that the overall energy output in these faint nuclei is dominated by a jet. This scenario is supported by the finding that: (1) the high-spatial-resolution spectral energy distribution (SED) of some LLAGN is well described by non-thermal synchrotron jet emission from radio to the UV; and (2) 67% LLAGN in the Palomar Sample observed at sub-arcsec resolution present extended or marginally resolved radio cores, most of them with a flat or slightly inverted radio spectrum and non-thermal brightness temperatures above 10(5) K footprint of a relativistic jet. In this work we also present the detection of extended jet-like radio structures in NGC 1097 and NGC 2911 and the first resolved parsec-scale jet in the nucleus of the Sombrero galaxy, based on the analysis of sub-arcsec resolution radio data of a sample of nearby LLAGN for which high-spatial-resolution SED of their core emission is available. This allows us to investigate their energetic balance without drawing on (most) of the ad-hoc assumptions usually considered in large statistical surveys. We find that most of the LLAGN in the sample show a kinematic jet luminosity larger than the radiated bolometric luminosity, in agreement with previous statistical studies, which indicates that the jet kinematic output dominates the nuclear energetics of LLAGN. However, our individualized study reveals that the total bolometric luminosity is larger than the jet power in those sources without detected large-scale (> 100 parsec) jet radio emission. Finally, we find that the Eddington ratios are highly sub-Eddington (<10(-4) ) even when adding the jet power to the total

  9. Obscured AGN

    NASA Astrophysics Data System (ADS)

    Barger, Amy

    2014-07-01

    Obscured AGN may correspond to a substantial fraction of the supermassive black hole growth rate. I will present new surveys with the SCUBA-2 instrument on the James Clerk Maxwell Telescope of the Chandra Deep Fields and discuss whether we can distinguish obscured AGN in hard X-ray and radio selected samples using submillimeter observations.

  10. The case for unification.

    PubMed Central

    Gopal-Krishna

    1995-01-01

    I investigate the issue of whether the various subclasses of radio-loud galaxies are intrinsically the same but have been classified differently mainly due to their being viewed from different directions. Evidence for the two key elements of this popular version of the "unified scheme (US)," relativistic jets and nuclear tori, is updated. The case for the torus opening angle increasing with the radio luminosity of the active galactic nucleus (AGN) is freshly argued. Radio-loud AGN are particularly suited for testing the US, since their structures and polarization properties on different scales, as well as their overall radio sizes, provide useful statistical indicators of the relative orientations of their various subclasses. I summarize recent attempts to bring under a single conceptual framework the USs developed for radio-moderate [Fanaroff-Riley type I (FRI)] and radio-powerful (FRII) AGN. By focusing on FRII radio sources, I critically examine the recent claims of conflict with the US, based on the statistics of radio-size measurements for large, presumably orientation-independent, samples with essentially complete optical identifications. Possible ways of reconciling these results, and also the ones based on very-long-baseline radio interferometry polarimetric observations, with the US are pointed out. By incorporating a highly plausible temporal evolution of radio source properties into the US, I outline a scenario that allows the median linear size of quasars to approach, or even exceed, that of radio galaxies, as samples with decreasing radio luminosity are observed. Thus, even though a number of issues remain to be fully resolved, the scope of unified models continues to expand. PMID:11607607

  11. The case for unification.

    PubMed

    Gopal-Krishna

    1995-12-01

    I investigate the issue of whether the various subclasses of radio-loud galaxies are intrinsically the same but have been classified differently mainly due to their being viewed from different directions. Evidence for the two key elements of this popular version of the "unified scheme (US)," relativistic jets and nuclear tori, is updated. The case for the torus opening angle increasing with the radio luminosity of the active galactic nucleus (AGN) is freshly argued. Radio-loud AGN are particularly suited for testing the US, since their structures and polarization properties on different scales, as well as their overall radio sizes, provide useful statistical indicators of the relative orientations of their various subclasses. I summarize recent attempts to bring under a single conceptual framework the USs developed for radio-moderate [Fanaroff-Riley type I (FRI)] and radio-powerful (FRII) AGN. By focusing on FRII radio sources, I critically examine the recent claims of conflict with the US, based on the statistics of radio-size measurements for large, presumably orientation-independent, samples with essentially complete optical identifications. Possible ways of reconciling these results, and also the ones based on very-long-baseline radio interferometry polarimetric observations, with the US are pointed out. By incorporating a highly plausible temporal evolution of radio source properties into the US, I outline a scenario that allows the median linear size of quasars to approach, or even exceed, that of radio galaxies, as samples with decreasing radio luminosity are observed. Thus, even though a number of issues remain to be fully resolved, the scope of unified models continues to expand. PMID:11607607

  12. The case for unification.

    PubMed

    Gopal-Krishna

    1995-12-01

    I investigate the issue of whether the various subclasses of radio-loud galaxies are intrinsically the same but have been classified differently mainly due to their being viewed from different directions. Evidence for the two key elements of this popular version of the "unified scheme (US)," relativistic jets and nuclear tori, is updated. The case for the torus opening angle increasing with the radio luminosity of the active galactic nucleus (AGN) is freshly argued. Radio-loud AGN are particularly suited for testing the US, since their structures and polarization properties on different scales, as well as their overall radio sizes, provide useful statistical indicators of the relative orientations of their various subclasses. I summarize recent attempts to bring under a single conceptual framework the USs developed for radio-moderate [Fanaroff-Riley type I (FRI)] and radio-powerful (FRII) AGN. By focusing on FRII radio sources, I critically examine the recent claims of conflict with the US, based on the statistics of radio-size measurements for large, presumably orientation-independent, samples with essentially complete optical identifications. Possible ways of reconciling these results, and also the ones based on very-long-baseline radio interferometry polarimetric observations, with the US are pointed out. By incorporating a highly plausible temporal evolution of radio source properties into the US, I outline a scenario that allows the median linear size of quasars to approach, or even exceed, that of radio galaxies, as samples with decreasing radio luminosity are observed. Thus, even though a number of issues remain to be fully resolved, the scope of unified models continues to expand.

  13. Planck scale unification and dynamical symmetry breaking

    SciTech Connect

    Lykken, Joseph D.; Willenbrock, Scott

    1993-09-01

    We explore the possibility of unification of gauge couplings near the Planck scale in models of extended technicolor. We observe that models of the form G X SU(3)_c X SU(2)_L X U(1)_Y cannot be realized, due to the presence of massless neutral Goldstone bosons (axions) and light charged pseudo-Goldstone bosons; thus, unification of the known forces near the Planck scale cannot be achieved. The next simplest possibility, G X SU(4)_{PS} X SU(2)_L X U(1)_{T_{3R}}, cannot lead to unification of the Pati-Salam and weak gauge groups near the Planck scale. However, superstring theory provides relations between couplings at the Planck scale without the need for an underlying grand-unified gauge group, which allows unification of the SU(4)PS and SU(2)L couplings.

  14. Naturality, unification, and dark matter

    SciTech Connect

    Kainulainen, Kimmo; Virkajaervi, Jussi; Tuominen, Kimmo

    2010-08-15

    We consider a model where electroweak symmetry breaking is driven by technicolor dynamics with minimal particle content required for walking coupling and saturation of global anomalies. Furthermore, the model features three additional Weyl fermions singlet under technicolor interactions, two of which provide for a one-loop unification of the standard model gauge couplings. Among these extra matter fields exists a possible candidate for weakly interacting dark matter. We evaluate the relic densities and find that they are sufficient to explain the cosmological observations and avoid the experimental limits from earth-based searches. Hence, we establish a nonsupersymmetric framework where hierarchy and naturality problems are solved, coupling constant unification is achieved, and a plausible dark matter candidate exists.

  15. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  16. Macroscopic constraints on string unification

    SciTech Connect

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.

  17. A minimal non-supersymmetric S O(10) model: Gauge coupling unification, proton decay and fermion masses

    NASA Astrophysics Data System (ADS)

    Khan, Saki

    2016-06-01

    We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.

  18. Nucleation and mobility model of Agn clusters adsorbed on perfect and oxygen vacancy MgO surfaces.

    PubMed

    Liu, Yongfei; Wang, Yan; Chen, Guangju

    2011-05-01

    The structures and energy properties for Ag(n) (n = 1-8) metal clusters adsorbed on the perfect and oxygen vacancy MgO surfaces have been studied by using the DFT/UB3LYP method with an embedded cluster model. The nucleation and mobility model for the Ag(n) (n = 1-8) clusters on the perfect and oxygen vacancy MgO(100) surfaces was investigated. The results show that the Ag atoms locate initially at the surface oxygen vacancy sites; then, with the growth of Ag cluster sizes, the large Ag clusters move possibly out of the vacancy sites by a rolling model, and diffuse on the MgO surface under a certain temperature condition. The relative energies needed for moving out of the oxygen vacancy region for the adsorbed Ag(n) clusters with the rolling model have been predicted. The even-odd oscillation behaviors for the cohesive energies, nucleation energies, first ionization potentials and HOMO-LUMO gaps of the adsorbed Ag(n) clusters with the variation of cluster sizes have also been discussed.

  19. The heating of diffuse dust at large scale in AGNs: a radiative transfer model study

    NASA Astrophysics Data System (ADS)

    Fritz, Jacopo; De Looze, Ilse; Baes, Maarten; Camps, Peter; Saftly, Waad; Pérez Villegas, Angeles; Rivaz-Sánchez, Mariana; Stalevski, Marko; Hatziminaoglou, Evanthia

    2016-08-01

    The panchromatic, broad-band, spectral energy distribution (SED) of galaxies is usually modelled by combining together the theoretical spectra of its emission components: stars in the optical/near-infrared, and thermal emission by dust -heated by the stellar radiation field- in the infrared. SED fitting codes such as MAGPHYS and CIGALE are capable to automatically fit observed multiwavelength data of galaxies, providing a set of galactic properties as a result. The situation gets somehow complicated when Active Galaxies (both local, low-luminosity Seyferts, and the bright QSOs) are considered. Very often, in fact, their observed near- and mid-infrared (NIR and MIR, respectively) SED is dominated by the emission of hot dust located close to the supermassive, active black hole which powers the bulk of their luminosity. Hence, a third component must be added to the set of theoretical SEDs: that of the molecular torus which surrounds the disk of gas accreting onto the supermassive black hole. The standard way to do it, is to simply add such models to the observed SED, until the MIR gap is filled. This implicitly assumes that the AGN has no influence whatsoever on the dust properties on scales larger than that of the torus (~few pc). I am investigating whether this assumption is valid, in which cases, and under which circumstances the AGN provides a non negligible contribution to the interstellar radiation field heating the diffuse dust in galaxies. This is accomplished by means of radiative transfer models which take into account the most relevant characteristics of the problem: the relative dust-stars distribution and the very wide range of spatial scales involved.

  20. AGN identification: what lies ahead

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Sotiria

    2016-08-01

    Classification has been one the first concerns of modern astronomy, starting from stars sorted in the famous Harvard classification system and promptly followed by the morphological classification of galaxies by none other than Edwin Hubble himself (Hubble 1926). Both classification schema are essentially connected to the physics of the objects reflecting the temperature for stars and e.g. the age of the star population for galaxies. Systematic observations of galaxies have revealed the intriguing class of Active Galactic Nuclei (AGN), objects of tremendous radiation that do not share the same properties of what we now call normal galaxies. Observations have led to the definition of distinct and somewhat arbitrary categories (Seyfert galaxies, quasars, QSO, radio AGN, etc), essentially rediscovering the many faces of the same phenomenon, up until the unification of AGN (Antonucci 1993, Urry and Padovani 1995). Even after the realization that all AGN have the same engine powering their amazing radiation, astronomers are still using and refining the selection criteria within their favorite electromagnetic range in the hope to better understand the impact of the AGN phenomenon in the greater context of galaxy evolution. In the dawn of Big Data astronomy we find ourselves equipped with new tools. I will present the prospects of machine learning methods in better understanding the AGN population. Namely, I will show results from supervised learning algorithms whereby a labeled training set is used to amalgamate decision tree(s) (Fotopoulou et al., 2016) or neural network(s), and unsupervised learning where the algorithm performs clustering analysis of the full dataset in a multidimensional space identifying clusters of objects sharing potentially the same physical properties (Fotopoulou in prep.).

  1. Statistical Properties of Local AGNs Inferred from the RXTE 3-20 keV All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Sazonov, S. Yu.

    We have recently ([1]) performed an all-sky survey in the 3-20 keV band from the data accumulated during satellite slews in 1996-2002 - the RXTE slew survey (XSS). For 90% of the sky at |b|>10° , a flux limit for source detection of 2.5×10-11 erg/s/sq.cm(3-20 keV) or lower was achieved, while a combined area of 7000 sq.deg was sampled to record flux levels (for such very large-area surveys) below 10-11 erg/s/sq.cm. A catalog contains 294 X-ray sources. 236 of these sources were identified with a single known astronomical object. Of particular interest are 100 identified active galactic nuclei (AGNs) and 35 unidentified sources. The hard spectra of the latter suggest that many of them will probably also prove AGNs when follow-up observations are performed. Most of the detected AGNs belong to the local population (z<0.1). In addition, the hard X-ray band of the XSS (3-20 keV) as compared to most previous X-ray surveys, performed at photon energies below 10 keV, has made possible the detection of a substantial number of X-ray absorbed AGNs (mostly Seyfert 2 galaxies). These properties make the XSS sample of AGNs a valuable one for the study of the local population of AGNs. We carried out a thorough statistical analysis of the above sample in order to investigate several key properties of the local population of AGNs, in particular their distribution in intrinsic absorption column density (NH) and X-ray luminosity function ([2]). Knowledge of these characteristics provides important constraints for AGN unification models and synthesis of the cosmic X-ray background, and is further needed to understand the details of the accretion-driven growth of supermassive black holes in the nuclei of galaxies.

  2. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Georgakakis, A.; Nandra, K.; Hsu, L.; Rangel, C.; Brightman, M.; Merloni, A.; Salvato, M.; Donley, J.; Kocevski, D.

    2014-04-01

    Context. Aims: Active galactic nuclei are known to have complex X-ray spectra that depend on both the properties of the accreting super-massive black hole (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity (i.e. the "torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN, which do not capture the complexity and diversity of the observations. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. Methods: We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with both the Poisson nature of X-ray data and the determination of source redshift using photometric methods. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. This methodology is applied to X-ray AGN in the 4 Ms Chandra Deep Field South. Results: For the ~350 AGN in that field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (1) an intrinsic power law; (2) a cold obscurer which reprocesses the radiation due to photo-electric absorption, Compton scattering and Fe-K fluorescence; (3) an unabsorbed power law associated with Thomson scattering off ionised clouds; and (4) Compton reflection, most noticeable from a stronger-than-expected Fe-K line. Simpler models, such as a photo-electrically absorbed power law with a Thomson scattering component, are ruled out with decisive evidence (B > 100). We also find that ignoring the Thomson scattering component results in underestimation of the inferred column density, NH, of the obscurer

  3. Obscured AGN at High Redshift

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  4. Testing quasar unification: radiative transfer in clumpy winds

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.; Sim, S. A.; Higginbottom, N.; Mangham, S. W.

    2016-05-01

    Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

  5. Super Unification of All Forces

    NASA Astrophysics Data System (ADS)

    Bacinich, Edward J.

    2003-06-01

    The annihilation of Planck and anti-Planck mass is paramount in explaining the Big-Bang. This total release of primordial energy in the form of electromagnetic-like radiation through `nothing' offers a model similar to the standard model of a Riemannian hypersphere. Our model however would expand radiantly outward from time zero in the form of a hyper-wave which would carry the total energy of the Big-Bang with it. By using this wave concept and the Planck force (FPL) inherent in the quantum vacuum, it is possible to explain the space-time geometry of our universe and complete unification.

  6. Yukawa unification in heterotic string theory

    NASA Astrophysics Data System (ADS)

    Buchbinder, Evgeny I.; Constantin, Andrei; Gray, James; Lukas, Andre

    2016-08-01

    We analyze Yukawa unification in the context of E8×E8 heterotic Calabi-Yau models which rely on breaking to a grand unified theory (GUT) via a nonflat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group S U (5 ) or S O (10 ). We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions, and we present an explicit heterotic line bundle model which realizes one of these scenarios.

  7. A Unification of Earthquake Cycle and Structural Evolution Models for Thrust Faults

    NASA Astrophysics Data System (ADS)

    Meade, B. J.

    2014-12-01

    Geodetic observations of interseismic deformation near dip-slip faults may be used to estimate slip rates on both isolated structures and across geometrically complex thrust systems. Interpreting these kinematic measurements requires integrating the effects of interseismic elastic strain accumulation from quasi-static earthquake cycle models. While a kinematically consistent theory for planar thick-skinned models has been widely applied the theory for thin-skinned models has remained less satisfactory due to an inadequate treatment of vertical velocities. Here we develop a kinematically consistent model of horizontal and vertical interseismic deformation in thin-skinned thrust systems including non-planar faults. The key aspect of this model is the integration of kinematic structural evolution models with elastic deformation models. Predictions include localized interseismic hanging wall uplift as well as smoothly varying horizontal and vertical velocities. Additionally, this model implies slightly modified patterns of elastic coseismic deformation in the hanging wall including coseismic folding. The interseismic deformation model described here provides a step toward more unified interpretation of both decadal-scale geodetic observations and long-term tectonic uplift.

  8. Height unification using GOCE

    NASA Astrophysics Data System (ADS)

    Rummel, R.

    2012-12-01

    With the gravity field and steady-state ocean circulation explorer (GOCE) (preferably combined with the gravity field and climate experiment (GRACE)) a new generation of geoid models will become available for use in height determination. These models will be globally consistent, accurate (<3 cm) and with a spatial resolution up to degree and order 200, when expressed in terms of a spherical harmonic expansion. GOCE is a mission of the European Space Agency (ESA). It is the first satellite equipped with a gravitational gradiometer, in the case of GOCE it measures the gradient components Vxx , Vyy, Vzzand Vxz. The GOCE gravitational sensor system comprises also a geodetic global positioning system (GPS)-receiver, three star sensors and ion-thrusters for drag compensation in flight direction. GOCE was launched in March 2009 and will fly till the end of 2013. Several gravity models have been derived from its data, their maximum degree is typically between 240 and 250. In summer 2012 a first re-processing of all level-1b data took place. One of the science objectives of GOCE is the unification of height systems. The existing height offsets among the datum zones can be determined by least-squares adjustment. This requires several precise geodetic reference points available in each height datum zone, physical heights from spirit levelling (plus gravimetry), the GOCE geoid and, in addition, short wavelength geoid refinement from terrestrial gravity anomalies. GOCE allows for important simplifications of the functional and stochastic part of the adjustment model. The future trend will be the direct determination of physical heights (orthometric as well as normal) from precise global navigation satellite system (GNSS)-positioning in combination with a next generation combined satellite-terrestrial high-resolution geoid model.

  9. InterMOD: integrated data and tools for the unification of model organism research

    PubMed Central

    Sullivan, Julie; Karra, Kalpana; Moxon, Sierra A. T.; Vallejos, Andrew; Motenko, Howie; Wong, J. D.; Aleksic, Jelena; Balakrishnan, Rama; Binkley, Gail; Harris, Todd; Hitz, Benjamin; Jayaraman, Pushkala; Lyne, Rachel; Neuhauser, Steven; Pich, Christian; Smith, Richard N.; Trinh, Quang; Cherry, J. Michael; Richardson, Joel; Stein, Lincoln; Twigger, Simon; Westerfield, Monte; Worthey, Elizabeth; Micklem, Gos

    2013-01-01

    Model organisms are widely used for understanding basic biology, and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models, and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community. PMID:23652793

  10. InterMOD: integrated data and tools for the unification of model organism research.

    PubMed

    Sullivan, Julie; Karra, Kalpana; Moxon, Sierra A T; Vallejos, Andrew; Motenko, Howie; Wong, J D; Aleksic, Jelena; Balakrishnan, Rama; Binkley, Gail; Harris, Todd; Hitz, Benjamin; Jayaraman, Pushkala; Lyne, Rachel; Neuhauser, Steven; Pich, Christian; Smith, Richard N; Trinh, Quang; Cherry, J Michael; Richardson, Joel; Stein, Lincoln; Twigger, Simon; Westerfield, Monte; Worthey, Elizabeth; Micklem, Gos

    2013-01-01

    Model organisms are widely used for understanding basic biology, and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models, and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community. PMID:23652793

  11. Minimal SUSY SO(10) and Yukawa unification

    SciTech Connect

    Okada, Nobuchika

    2013-05-23

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {l_brace}10 Circled-Plus 126-bar{r_brace} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y{sup 126}) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of {beta}(10{sup 14}GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - {tau} Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - {tau} Yukawa coupling unification is very accurate, the largest element in Y{sub 126} can become {beta}(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - {tau} Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  12. The capital-asset-pricing model and arbitrage pricing theory: a unification.

    PubMed

    Ali Khan, M; Sun, Y

    1997-04-15

    We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset's return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen-Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting.

  13. Unification of the general non-linear sigma model and the Virasoro master equation

    SciTech Connect

    Boer, J. de; Halpern, M.B. |

    1997-06-01

    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfy the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.

  14. Five-dimensional Gauge-Higgs Unification: a Standard Model-like Spectrum

    NASA Astrophysics Data System (ADS)

    Alberti, Maurizio; Irges, Nikos; Knechtli, Francesco; Moir, Graham

    2015-09-01

    We study the viability of five-dimensional gauge theories as candidates for the origin of the Higgs field and its mechanism for spontaneous symmetry breaking. Within the framework of lattice field theory, we consider the simplest model of an SU(2) gauge theory. We construct this theory on a five-dimensional orbifold which explicitly breaks the gauge symmetry to U(1) at the fixed points of the orbifold. Using anisotropic gauge couplings, we find that this theory exhibits three distinct phases which we label as confined, Higgs and hybrid. Within the Higgs phase, close to the Higgs-hybrid phase transition, we find that the ratio of the Higgs to gauge boson masses takes Standard Model-like values. Precisely in this region of the phase diagram, we find dimensional reduction via localisation.

  15. Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models

    NASA Astrophysics Data System (ADS)

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2016-04-01

    To explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine-tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic C P violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.

  16. Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models

    DOE PAGES

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2016-04-25

    In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark andmore » lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.« less

  17. Unification of Dark Matter and Dark Energy in a Modified Entropic Force Model

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Ming-Hua; Li, Xin

    2011-07-01

    In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein equations can be obtained from the first principles and general assumptions. However, the equipartition law of energy is invalid at very low temperatures. We show clearly that the threshold of the equipartition law of energy is related with horizon of the universe. Thus, a one-dimensional Debye (ODD) model in the direction of radius of the modified entropic force (MEF) may be suitable in description of the accelerated expanding universe. We present a Friedmann cosmic dynamical model in the ODD-MEF framework. We examine carefully constraints on the ODD-MEF model from the Union2 compilation of the Supernova Cosmology Project (SCP) collaboration, the data from the observation of the large-scale structure (LSS) and the cosmic microwave background (CMB), i.e. SNe Ia+LSS+CMB. The combined numerical analysis gives the best-fit value of the model parameters ζ ≃ 10-9 and Ωm0 = 0.224, with χ2min = 591.156. The corresponding age of the universe agrees with the result of D. Spergel et al. [J.M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math. Phys. 31 (1973) 161] at 95% confidence level. The numerical result also yields an accelerated expanding universe without invoking any kind of dark energy. Taking ζ(≡ 2πωD/H0) as a running parameter associated with the structure scale r, we obtain a possible unified scenario of the asymptotic flatness of the radial velocity dispersion of spiral galaxies, the accelerated expanding universe and the Pioneer 10/11 anomaly in the entropic force framework of Verlinde.

  18. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  19. Gauge-Higgs EW and grand unification

    NASA Astrophysics Data System (ADS)

    Hosotani, Yutaka

    2016-07-01

    Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase 𝜃H in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for 𝜃H < 0.1, and predicts Z‧ bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.

  20. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  1. Unification of Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Taylor, Foreword by John C.

    2005-10-01

    Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.

  2. Grand unification: quo vadis domine

    SciTech Connect

    Senjanovic, G.

    1985-01-01

    The present theoretical and experimental situation with grand unification is summarized. The issues of proton decay and the Weinberg angle are addressed, going through the predictions of both the standard SU(5) theory and its supersymmetric extension. The SO(10) theory, which provides a minimal one family model, is then studied. The gravitational characteristics of domain walls and strings are then discussed. It is argued that there is a need to go beyond SO(10) in order to incorporate a unified picture of families. This leads to the prediction of mirror fermions, whose physics is analyzed. 31 refs. (LEW)

  3. The minimal SUSY B - L model: from the unification scale to the LHC

    NASA Astrophysics Data System (ADS)

    Ovrut, Burt A.; Purves, Austin; Spinner, Sogee

    2015-06-01

    This paper introduces a random statistical scan over the high-energy initial parameter space of the minimal SUSY B - L model — denoted as the B - L MSSM. Each initial set of points is renormalization group evolved to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of initial parameters that satisfies all such constraints is presented, shown to be robust and to contain a wide range of different configurations of soft supersymmetry breaking masses. The low-energy predictions of each such "valid" point — such as the sparticle mass spectrum and, in particular, the LSP — are computed and then statistically analyzed over the full subspace of valid points. Finally, the amount of fine-tuning required is quantified and compared to the MSSM computed using an identical random scan. The B - L MSSM is shown to generically require less fine-tuninng.

  4. VizieR Online Data Catalog: AGN torus models. SED library (Siebenmorgen+, 2015)

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Heymann, F.; Efstathiou, A.

    2015-08-01

    There are 3600 ASCII tables files in two columns format. The first is the wavelength in microns, the second column is the flux in Jy. SEDs are computed for AGNs at a distance of 50Mpc and a luminosity of 1011L⊙. The file names include the five basic model parameters: a) th: The viewing angle corresponding to bins at 86, 80, 73, 67, 60, 52, 43, 33, and 19 degree measured from the pole (z-axis). thx= th1 ,.., th9 b) R : The inner radius of the dusty torus. R= 300, 514, 772, 1000, 1545 in units: (10^15 cm) c) Vc: The cloud volume filling factor. Vc= 1.5, 7.7, 38.5, 77.7 (%). d) Ac: The optical depth (in V) of the individual clouds. Ac= 0, 4.5, 13.5, 45. e) Ad: The optical depth (in V) of the disk midplane. Ad= 0, 30, 100, 300, 1000. Example: File notation. RxxxxVcxxxAcxxxx_Adxxxx.thx R1545Vc777Ac0135_Ad1000.th9 (2 data files).

  5. Kinetic Modeling of Electron Conduction-Driven Microinstabilities and Their Relevance for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, Gareth; Swisdak, M.; Reynolds, Christopher S.; Drake, James

    2016-04-01

    Since the Intracluster Medium (ICM) is a weakly collisional plasma, the standard Spitzer conduction rate (which relies on collisionality) does not necessarily describe the transport of heat in clusters. In addition, many plasma microinstabilities become unstable at high beta since the magnetic field is easily pliable in the presence of induced pressure anisotropies. These properties imply that the true rate of conduction in an ICM-like plasma could be highly dependent on small-scale effects. We perform 2D kinetic Particle-In-Cell simulations and derive an analytic theory of a conduction-driven electron microinstability present in high-beta collisionless plasmas. We find that scattering by electromagnetic waves significantly reduces the conductive heat flux of electrons in our model. Our results have implications for 1) cool-core clusters in which AGN feedback may play a crucial role in maintaing overall thermodynamic stability, 2) heat flux suppression and scattering by other microinstabilities and 3) basic plasma physics questions that up until this point have not been explored fully.

  6. Hidden SUSY from precision gauge unification

    NASA Astrophysics Data System (ADS)

    Krippendorf, Sven; Nilles, Hans Peter; Ratz, Michael; Winkler, Martin Wolfgang

    2013-08-01

    We revisit the implications of naturalness and gauge unification in the minimal supersymmetric standard model. We find that precision unification of the couplings in connection with a small μ parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between the gluino and lightest supersymmetric particle (LSP), collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.

  7. Small neutrino masses and gauge coupling unification

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane M.; Fonseca, Renato M.; González-Canales, Félix; Valle, José W. F.

    2015-02-01

    The physics responsible for gauge coupling unification may also induce small neutrino masses. We propose a novel gauge-mediated radiative seesaw mechanism for calculable neutrino masses. These arise from quantum corrections mediated by new S U (3 )C⊗S U (3 )L⊗U (1 )X (3-3-1) gauge bosons and the physics driving gauge coupling unification. Gauge couplings unify for a 3-3-1 scale in the TeV range, making the model directly testable at the LHC.

  8. Revisiting the Unified Model of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai

    2015-08-01

    This review describes recent developments related to the unified model of active galactic nuclei (AGNs). It focuses on new ideas about the origin and properties of the central obscurer (torus) and the connection to its surroundings. The review does not address radio unification. AGN tori must be clumpy but uncertainties about their properties persist. Today's most promising models involve disk winds of various types and hydrodynamic simulations that link the large-scale galactic disk to the inner accretion flow. Infrared (IR) studies greatly improved our understanding of the spectral energy distribution of AGNs, but they are hindered by various selection effects. X-ray samples are more complete. The dependence of the covering factor of the torus on luminosity is a basic relationship that remains unexplained. There is also much confusion regarding real type-II AGNs, which do not fit into a simple unification scheme. The most impressive recent results are due to IR interferometry, which is not in accord with most torus models, and the accurate mapping of central ionization cones. AGN unification may not apply to merging systems and is possibly restricted to secularly evolving galaxies.

  9. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  10. Relativistic X-ray reverberation modelling of the combined time-averaged and lag-energy spectra in AGN

    NASA Astrophysics Data System (ADS)

    Chainakun, P.; Young, A. J.; Kara, E.

    2016-08-01

    General relativistic ray tracing simulations of the time-averaged spectrum and energy-dependent time delays in active galactic nuclei (AGN) are presented. We model the lamp-post geometry in which the accreting gas is illuminated by an X-ray source located on the rotation axis of the black hole. The spectroscopic features imprinted in the reflection component are modelled using REFLIONX. The associated time delays after the direct continuum, known as reverberation lags, are computed including the full effects of dilution and ionization gradients on the disc. We perform, for the first time, simultaneous fitting of the time-averaged and lag-energy spectra in three AGN: Mrk 335, IRAS 13224-3809 and Ark 564 observed with XMM-Newton. The best-fitting source height and central mass of each AGN partly agree with those previously reported. We find that including the ionization gradient in the model naturally explains lag-energy observations in which the 3 keV and 7-10 keV bands precede other bands. To obtain the clear 3 keV and 7-10 keV dips in the lag-energy profile, the model requires either a source height >5 rg, or a disc that is highly ionized at small radii and is colder further out. We also show that fitting the lag or the mean spectra alone can lead to different results and interpretations. This is therefore important to combine the spectral and timing data in order to find the plausible but self-consistent fits which are achievable with our model.

  11. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  12. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    detectable in the typically low S/N data of X-ray surveys. Even if absorption is present in only half of the population, the large number of 'red' AGN suggests a development of unification models, where the continuum source is surrounded, over a substantial solid angle, by the wind or atmosphere of an accretion disk/torus. X-ray observations of such AGN not only provide a check on the presence of absorption, but also a unique probe of the absorbing material. Improved information on their space density, in particular as a function of redshift, will soon be provided by Spitzer-Chandra wide area surveys, allowing better estimates of both the importance of red AGN to the full AGN population and their contribution to the CXRB.

  13. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  14. Probing AGN Accretion Physics through AGN Variability: Insights from Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal Pramod

    Active Galactic Nuclei (AGN) exhibit large luminosity variations over the entire electromagnetic spectrum on timescales ranging from hours to years. The variations in luminosity are devoid of any periodic character and appear stochastic. While complex correlations exist between the variability observed in different parts of the electromagnetic spectrum, no frequency band appears to be completely dominant, suggesting that the physical processes producing the variability are exceedingly rich and complex. In the absence of a clear theoretical explanation of the variability, phenomenological models are used to study AGN variability. The stochastic behavior of AGN variability makes formulating such models difficult and connecting them to the underlying physics exceedingly hard. We study AGN light curves serendipitously observed by the NASA Kepler planet-finding mission. Compared to previous ground-based observations, Kepler offers higher precision and a smaller sampling interval resulting in potentially higher quality light curves. Using structure functions, we demonstrate that (1) the simplest statistical model of AGN variability, the damped random walk (DRW), is insufficient to characterize the observed behavior of AGN light curves; and (2) variability begins to occur in AGN on time-scales as short as hours. Of the 20 light curves studied by us, only 3-8 may be consistent with the DRW. The structure functions of the AGN in our sample exhibit complex behavior with pronounced dips on time-scales of 10-100 d suggesting that AGN variability can be very complex and merits further analysis. We examine the accuracy of the Kepler pipeline-generated light curves and find that the publicly available light curves may require re-processing to reduce contamination from field sources. We show that while the re-processing changes the exact PSD power law slopes inferred by us, it is unlikely to change the conclusion of our structure function study-Kepler AGN light curves indicate

  15. Antidepressant-like action of AGN 2979, a tryptophan hydroxylase activation inhibitor, in a chronic mild stress model of depression in rats.

    PubMed

    Gittos, M W; Papp, M

    2001-10-01

    Chronic mild stress (CMS) procedure was used to study an antidepressant-like activity of AGN 2979, a selective inhibitor of tryptophan hydroxylase (TH) activation. At the dose of 4 mg/kg, AGN 2979 fully reversed the CMS-induced reduction in the consumption of 1% sucrose solution. This effect was maintained for at least 1 week after cessation of treatment and no signs of withdrawal were observed in either stressed or control animals receiving AGN 2979. The lower (1 mg/kg) and higher (16 mg/kg) doses were ineffective. The magnitude of action of AGN 2979 in the CMS model was comparable to that of imipramine (10 mg/kg) but its onset of action appears to be faster since the inhibition of sucrose intake in stressed animals was already reversed after the 1st week of AGN 2979 administration while imipramine required 3 weeks of treatment to cause similar effect. These results provide support for the hypothesis that inhibition of TH activation may result in a potent antidepressant activity.

  16. Gauge unification of fundamental forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    The following sections are included: * I. Fundamental Particles, Fundamental Forces, and Gauge Unification * II. The Emergence of Spontaneously Broken SU(2)×U(1) Gauge Theory * III. The Present and Its Problems * IV. Direct Extrapolation from the Electroweak to the Electronuclear * A. The three ideas * B. Tests of electronuclear grand unification * V. Elementarity: Unification with Gravity and Nature of Charge * A. The quest for elementarity, prequarks (preons and pre-preons * B. Post-Planck physics, supergravity, and Einstein's dreams * C. Extended supergravity, SU(8) preons, and composite gauge fields * Appendix A: Examples of Grand Unifying Groups * Appendix B: Does the Grand Plateau really exist * References

  17. Electroweak Gauge-Higgs Unification Scenario

    SciTech Connect

    Hosotani, Yutaka

    2008-11-23

    In the gauge-Higgs unification scenario 4D Higgs fields are unified with gauge fields in higher dimensions. The electroweak model is constructed in the Randall-Sundrum warped space. The electroweak symmetry is dynamically broken by the Hosotani mechanism due to the top quark contribution. The Higgs mass is predicted to be around 50 GeV with the vanishing ZZH and WWH couplings so that the LEP2 bound for the Higgs mass is evaded.

  18. Linguistic Unification and Language Rights.

    ERIC Educational Resources Information Center

    Akinnaso, F. Niyi

    1994-01-01

    This paper examines the tension between linguistic unification and language rights in Nigeria and assesses the nature, causes, and implications of the tension against the backgrounds of the country's history, political development, and language situation. (Contains 116 references.) (MDM)

  19. Yukawa unification predictions with effective "mirage" mediation.

    PubMed

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-22

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective "mirage" mediation. We perform a global χ2 analysis including the observables M(W), M(Z), G(F), α(em)(-1), α(s)(M(Z)), M(t), m(b)(m(b)), M(τ), BR(B→X(s)γ), BR(B(s)→μ(+)μ(-)), and M(h). The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tanβ and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification. PMID:24313477

  20. Yukawa Unification Predictions with Effective ``Mirage'' Mediation

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-01

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective “mirage” mediation. We perform a global χ2 analysis including the observables MW, MZ, GF, αem-1, αs(MZ), Mt, mb(mb), Mτ, BR(B→Xsγ), BR(Bs→μ+μ-), and Mh. The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tan⁡β and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification.

  1. Yukawa unification predictions with effective "mirage" mediation.

    PubMed

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-22

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective "mirage" mediation. We perform a global χ2 analysis including the observables M(W), M(Z), G(F), α(em)(-1), α(s)(M(Z)), M(t), m(b)(m(b)), M(τ), BR(B→X(s)γ), BR(B(s)→μ(+)μ(-)), and M(h). The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tanβ and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification.

  2. Grand unification and intermediate scale supersymmetry

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Nomura, Yasunori

    2014-02-01

    With minimal field content and for an interesting range of the supersymmetric Higgs mixing parameter, 0.5 ≲ tan2 β ≲ 2, the superpartner mass scale, , is found to be at the intermediate scale, ~ 1010±1 GeV, near where the Standard Model Higgs quartic coupling passes through zero. For any 4d supersymmetric grand unified symmetry spontaneously broken by a vacuum expectation value <Σ>, if superpotential interactions for Σ are forbidden e.g. by R symmetries, the uneaten color octet, Σ8, and weak triplet, Σ3, have masses of order m. The combination of superpartner and Σ8,3 states leads to successful gauge coupling unification, removing the disastrously high proton decay rate of minimal Standard Model unification. Proton decay could be seen in future experiments if ~ 1011 GeV,but not if it is lower. If there heating temperature after inflation, T R , is less than dark matter may be axions. If T R > , thermal LSP dark matter may lead to the environmental selection of a TeV-scale LSP, either wino or Higgsino, which could comprise all or just one component of dark matter. In the Higgsino case, the dark matter is found to behave inelastically in direct detection experiments, and gauge coupling unification occurs accurately without the need of any threshold corrections.

  3. Grand unification and low scale implications: D₂ parity for unification and neutrino masses

    SciTech Connect

    Tavartkiladze, Zurab

    2014-01-01

    The Grand Unified SU(5)-SU(5)´ model, augmented with D₂ Parity, is considered. The latter play crucial role for phenomenology. The model has several novel properties and gives interesting phenomenological implications. The charged leptons together with right handed (or sterile) neutrinos emerge es composite states. Within considered scenario, we study the charged fermion and neutrino mass generation. Moreover, we show that the model gives successful gauge coupling unification.

  4. Obscured and powerful AGN and starburst activities at z ~ 3.5

    NASA Astrophysics Data System (ADS)

    Polletta, M.; Omont, A.; Berta, S.; Bergeron, J.; Stalin, C. S.; Petitjean, P.; Giorgetti, M.; Trinchieri, G.; Srianand, R.; McCracken, H. J.; Pei, Y.; Dannerbauer, H.

    2008-12-01

    Aims: Short phases of coeval powerful starburst and AGN activity during the lifetimes of the most massive galaxies are predicted by various models of galaxy formation and evolution. In spite of their recurrence and high luminosity, such events are rarely observed. Finding such systems, understanding their nature, and constraining their number density can provide key constraints to galaxy evolutionary models and insights into the interplay between starburst and AGN activities. Methods: We report the discovery of two sources at z=3.867 and z=3.427 that exhibit both powerful starburst and AGN activities. They benefit from multi-wavelength data from radio to X rays from the CFHTLS-D1/SWIRE/XMDS surveys. Follow-up optical and near-infrared spectroscopy, and millimeter IRAM/MAMBO observations are also available. We performed a multi-wavelength analysis of their spectral energy distributions with the aim of understanding the origin of their emission and constraining their luminosities. A comparison with other composite systems at similar redshifts from the literature is also presented. Results: The AGN and starburst bolometric luminosities are 1013 L⊙. The AGN emission dominates at X ray, optical, mid-infrared wavelengths, and probably also in the radio. The starburst emission dominates in the far-infrared. The estimated star formation rates range from 500 to 3000 M⊙/yr. The AGN near-infrared and X ray emissions are heavily obscured in both sources with an estimated dust extinction {A_V} ≥ 4, and Compton-thick gas column densities. The two sources are the most obscured and most luminous AGNs detected at millimeter wavelengths currently known. Conclusions: The sources presented in this work are heavily obscured QSOs, but their properties are not fully explained by the standard AGN unification model. In one source, the ultraviolet and optical spectra suggest the presence of outflowing gas and shocks, and both sources show emission from hot dust, most likely in the

  5. The central parsecs of AGN across the electromagnetic spectrum

    NASA Astrophysics Data System (ADS)

    Prieto, Almudena

    2016-08-01

    High angular resolution observations across the electromagnetic spectrum of the nearest AGN are providing a view of the nuclear region rather different from- and somewhat simpler than-the one envisaged by the canonical AGN Unification Schemes. I will review the challenges that parsec-scale observations in the IR when combined with comparable physical scales in radio, millimetre, optical, UV and X-ray of some of the nearest AGN are revealing about the nature of the nuclear emission, the transition from the most luminous to the feeble ones, and their accretion power. I will discuss how these observations challenge the requirement of a torus and question one of its fundamental attributes which is the collimation of the nuclear radiation.

  6. MUC (Memory, Unification, Control) and beyond

    PubMed Central

    Hagoort, Peter

    2013-01-01

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. The attention network and the network for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions. PMID:23874313

  7. Multi-faceted AGN

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys R.; Chen, Yanping; Dai, Yuxiao; Zaw, Ingyin

    2016-08-01

    An interesting question is how frequently an object is an AGN by multiple different criteria — e.g., is simultaneously a narrow-line optical AGN and an X-ray or radio AGN, possibly as a function of luminosities in the various wavebands and perhaps host galaxy type. Answering such questions quantitatively has been difficult up to now because of the lack of a complete, uniformly selected optical AGN catalog. Here we report first results of such an analysis, using the new, all-sky catalog of uniformly selected optical AGNs from Zaw, Chen and Farrar (2016), the Swift-BAT 70-month catalog of X-ray AGN (Baumgartner et al., 2013), and the van Velzen et al. (2012) catalog of radio AGN.

  8. An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.

  9. Supersymmetry and supergravity: Phenomenology and grand unification

    SciTech Connect

    Arnowitt, R. |; Nath, P.

    1993-12-31

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) {times} U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field.

  10. Theoretical modelling of the AGN iron line vs. continuum time-lags in the lamp-post geometry

    NASA Astrophysics Data System (ADS)

    Epitropakis, A.; Papadakis, I. E.; Dovčiak, M.; Pecháček, T.; Emmanoulopoulos, D.; Karas, V.; McHardy, I. M.

    2016-10-01

    Context. Theoretical modelling of time-lags between variations in the Fe Kα emission and the X-ray continuum might shed light on the physics and geometry of the X-ray emitting region in active galaxies (AGN) and X-ray binaries. We here present the results from a systematic analysis of time-lags between variations in two energy bands (5-7 vs. 2-4 keV) for seven X-ray bright and variable AGN. Aims: We estimate time-lags as accurately as possible and fit them with theoretical models in the context of the lamp-post geometry. We also constrain the geometry of the X-ray emitting region in AGN. Methods: We used all available archival XMM-Newton data for the sources in our sample and extracted light curves in the 5-7 and 2-4 keV energy bands. We used these light curves and applied a thoroughly tested (through extensive numerical simulations) recipe to estimate time-lags that have minimal bias, approximately follow a Gaussian distribution, and have known errors. Using traditional χ2 minimisation techniques, we then fitted the observed time-lags with two different models: a phenomenological model where the time-lags have a power-law dependence on frequency, and a physical model, using the reverberation time-lags expected in the lamp-post geometry. The latter were computed assuming a point-like primary X-ray source above a black hole surrounded by a neutral and prograde accretion disc with solar iron abundance. We took all relativistic effects into account for various X-ray source heights, inclination angles, and black hole spin values. Results: Given the available data, time-lags between the two energy bands can only be reliably measured at frequencies between ~5 × 10-5 Hz and ~10-3 Hz. The power-law and reverberation time-lag models can both fit the data well in terms of formal statistical characteristics. When fitting the observed time-lags to the lamp-post reverberation scenario, we can only constrain the height of the X-ray source. The data require, or are consistent

  11. The Lack of Torus Emission from BL Lacertae Objects: An Infrared View of Unification with WISE

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard M.; Anderson, Scott F.; Brandt, W. N.; Markoff, Sera; Shemmer, Ohad; Wu, Jianfeng

    2012-02-01

    We use data from the Wide-Field Infrared Survey Explorer (WISE) to perform a statistical study on the mid-infrared (IR) properties of a large number (~102) of BL Lac objects—low-luminosity active galactic nuclei (AGNs) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions. In other BL Lac objects, however, the jet is not strong enough to completely dilute the rest of the AGN emission. We do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. The lack of observable torus emission is consistent with suggestions that BL Lac objects are fed by radiatively inefficient accretion disks. Implications for the "nature versus nurture" debate for FR I and FR II radio galaxies are briefly discussed. Our study supports the notion that, beyond orientation, accretion rate plays an important role in AGN unification.

  12. Modelling the cosmological co-evolution of supermassive black holes and galaxies - I. BH scaling relations and the AGN luminosity function

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Moscardini, Lauro; Springel, Volker

    2008-04-01

    We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a `radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.

  13. Pharmacokinetics of a novel retinoid AGN 190168 and its metabolite AGN 190299 after intravenous administration of AGN 190168 to rats.

    PubMed

    Hsyu, P H; Bowen, B; Tang-Liu, D

    1994-07-01

    The pharmacokinetics of AGN 190168, a novel synthetic retinoid, and its major metabolite, AGN 190299, in rat blood after intravenous administration was investigated. Approximately 4.4 mg kg-1 (high dose) or 0.49 mg kg-1 (low dose) of AGN 190168 was administered to rats via the femoral vein. Blood was collected from the femoral artery at various time points during an 8 h period. Blood concentrations of AGN 190168 and AGN 190299 were determined by a specific and sensitive high-pressure liquid chromatographic (HPLC) method. AGN 190168 was rapidly metabolized in rats. The only detectable drug-related species in the blood was AGN 190299. Therefore, only pharmacokinetics of AGN 190299 were calculated. Elimination of AGN 190299 appeared to be non-linear after administration of the high dose, and linear after administration of the low dose. The maximum elimination rate (Vmax) and the concentration at half of the Vmax (km), as estimated by a Michaelis-Menten one-compartment model, were 7.58 +/- 2.42 micrograms min-1 (mean +/- SD) and 6.10 +/- 1.58 micrograms mL-1, respectively. The value of the area under the blood concentration time curve (AUC) was 9.54 +/- 1.68 micrograms h mL-1 after administration of the high dose and 0.594 +/- 0.095 micrograms h mL-1 after administration of the low dose. The clearance value was 7.79 +/- 1.20 mL min-1 kg-1 after the high dose, statistically significantly different from that after the low dose (p < 0.05), 14.0 +/- 2.2 mL min-1 kg-1. The terminal half-life (t1/2) was 1.25 +/- 0.74 h for the high-dose group and 0.95 +/- 0.16 h for the low-dose group. Study results demonstrate rapid systemic metabolism of AGN 190168 to AGN 190299, non-linear pharmacokinetics of AGN 190299 after the 4.4 mg kg-1 dose, and the lack of difference in disposition profiles between sexes after intravenous administration of AGN 190168 to rats.

  14. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1AGN-ionized gas, the stellar masses of the host galaxies and their star formation rates. We then investigate the relationships between AGN luminosities, specific star formation rates (sSFR) and outflow strengths W_{90} - the 90% velocity width of the [OIII]λ5007Å line power and a proxy for the AGN-driven outflow speed. Outflow strength W_{90} is independent of sSFR for AGN selected based on their mid-IR luminosity. This is in agreement with previous work that demonstrates that star formation is not sufficient to produce the observed ionized gas outflows which have to be powered by AGN activity. More importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  15. Problems in unification and supergravity

    SciTech Connect

    Farrar, G.; Henyey, F.

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)

  16. The origin of UV-optical variability in AGN and test of disc models: XMM-Newton and ground-based observations of NGC 4395

    NASA Astrophysics Data System (ADS)

    McHardy, I. M.; Connolly, S. D.; Peterson, B. M.; Bieryla, A.; Chand, H.; Elvis, M. S.; Emmanoulopoulos, D.; Falco, E.; Gandhi, P.; Kaspi, S.; Latham, D.; Lira, P.; McCully, C.; Netzer, H.; Uemura, M.

    2016-05-01

    The origin of short timescale (weeks/months) variability of AGN, whether due to intrinsic disc variations or reprocessing of X-ray emission by a surrounding accretion disc, has been a puzzle for many years. However recently a number of observational programmes, particularly of NGC 5548 with Swift, have shown that the UV/optical variations lag behind the X-ray variations in a manner strongly supportive of X-ray reprocessing. Somewhat surprisingly, the implied size of the accretion disc is ∼3 times greater than expected from a standard, smooth, Shakura-Sunyaev thin disc model. Although the difference may be explained by a clumpy accretion disc, it is not clear whether the difference will occur in all AGN or whether it may change as, eg, a function of black hole mass, accretion rate, or disc temperature. Measurements of interband lags for most AGN require long timescale monitoring, which is hard to arrange. However for low mass (< 106 M⊙) AGN, the combination of XMM-Newton EPIC (X-rays) with the optical monitor in fast readout mode allows an X-ray/UV-optical lag to be measured within a single long observation. Here we summarise previous related observations and report on XMM-Newton observations of NGC 4395 (mass 100 times lower, accretion rate ∼20 times lower than for NGC 5548). We find that the UVW1 lags the X-rays by ∼ 470 s. Simultaneous observations at 6 different ground based observatories also allowed the g-band lag (∼ 800s) to be measured. These observations are in agreement with X-ray reprocessing but initial analysis suggests that, for NGC 4395, they do not differ markedly from the predictions of the standard thin disc model.

  17. Decreased specific star formation rates in AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J.

    2015-09-01

    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.

  18. SAT Encoding of Unification in EL

    NASA Astrophysics Data System (ADS)

    Baader, Franz; Morawska, Barbara

    Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. In a recent paper, we have shown that unification in EL is NP-complete, and thus of a complexity that is considerably lower than in other Description Logics of comparably restricted expressive power. In this paper, we introduce a new NP-algorithm for solving unification problems in EL, which is based on a reduction to satisfiability in propositional logic (SAT). The advantage of this new algorithm is, on the one hand, that it allows us to employ highly optimized state-of-the-art SAT solvers when implementing an EL-unification algorithm. On the other hand, this reduction provides us with a proof of the fact that EL-unification is in NP that is much simpler than the one given in our previous paper on EL-unification.

  19. Challenges in Finding AGNs in the Low Luminosity Regime

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  20. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  1. Minimal E6 unification

    NASA Astrophysics Data System (ADS)

    Susič, Vasja

    2016-06-01

    A realistic model in the class of renormalizable supersymmetric E6 Grand Unified Theories is constructed. Its matter sector consists of 3 × 27 representations, while the Higgs sector is 27 +27 ¯+35 1'+35 1' ¯+78 . An analytic solution for a Standard Model vacuum is found and the Yukawa sector analyzed. It is argued that if one considers the increased predictability due to only two symmetric Yukawa matrices in this model, it can be considered a minimal SUSY E6 model with this type of matter sector. This contribution is based on Ref. [1].

  2. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  3. Optically-selected AGN

    NASA Astrophysics Data System (ADS)

    Richard, Gordon

    2016-08-01

    will discuss the selection and properties of optically-selected AGN as contrasted with other multi-wavelength investigations. While optical surveys are able to identify *more* AGNs than other wavelengths, this size comes with a bias towards brighter, unobscured sources. Although optical surveys are not ideal for probing obscured AGNs, I will discuss how they can guide our search for them. The bias towards unobscured sources in the optical is partially mitigated, however, by an increase in information content for the sources that *are* identified---in the form of physics probed by the combination of optical continuum, absorption, and emission. An example is the ability to estimate the mass of AGNs based on the optical/UV emission lines. I will discuss the range of mass (and accretion rate) probed by the optical in addition to serious biases in the black hole mass scaling relations that corrupt these estimates at high redshift.

  4. AGN Winds and Blazar Phenomenology

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2012-01-01

    The launch of {\\em Fermi} produced a significant number of AGN detections to allow statistical treatment of their properties. One of the first such systematics was the "Blazar Divide" in FSRQs and BL Lacs according to their gamma-ray spectral index and luminosity. Further data accumulation indicated this separation to be less clear than thought before. An MHD wind model which can model successfully the Seyfert X-ray absorber properties provides the vestiges of an account of the observed blazar classification. We propose to employ this model to model in detail the broad band blazar spectra and their statistical properties in terms of the physical parameters of these MHD winds.

  5. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  6. Time Series Analysis of the UV Flickering in AGN

    NASA Technical Reports Server (NTRS)

    Robinson, Edward L.

    2003-01-01

    Goals of the Research: Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability.

  7. Difficulties with unification.

    PubMed Central

    Singal, A K

    1995-01-01

    The difficulties perceived in the orientation-based unified scheme models, when confronted with the observational data, are pointed out. It is shown that in meter-wavelength selected samples, which presumably are largely free of an orientation bias, the observed numbers of quasars versus radio galaxies are not in accordance with the expectations of the unified scheme models. The observed number ratios seem to depend heavily on the redshift, fluxdensity, or radio luminosity levels of the selected sample. This cannot be explained within the simple orientation-based unified scheme with a fixed average value of the half-opening angle (c approximately 45 degrees ) for the obscuring torus that supposedly surrounds the nuclear optical continuum and the broad-line regions. Further, the large differences seen between radio galaxies and quasars in their size distributions in the luminosity-redshift plane could not be accommodated even if I were to postulate some suitable cosmological evolution of the opening angle of the torus. Some further implications of these observational results for the recently proposed modified versions of the unified scheme model are pointed out. PMID:11607608

  8. Comparing Simulations of AGN Feedback

    NASA Astrophysics Data System (ADS)

    Richardson, Mark L. A.; Scannapieco, Evan; Devriendt, Julien; Slyz, Adrianne; Thacker, Robert J.; Dubois, Yohan; Wurster, James; Silk, Joseph

    2016-07-01

    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock to well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGNs) to the simulations results in much better agreement between the methods. For our AGN model, both simulations display halo gas entropies of 100 keV cm2, similar decrements in the star formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with the AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.

  9. Towards modelling X-ray reverberation in AGN: piecing together the extended corona

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Cackett, E. M.; Fabian, A. C.; Reynolds, C. S.

    2016-05-01

    Models of X-ray reverberation from extended coronae are developed from general relativistic ray tracing simulations. Reverberation lags between correlated variability in the directly observed continuum emission and that reflected from the accretion disc arise due to the additional light travel time between the corona and reflecting disc. X-ray reverberation is detected from an increasing sample of Seyfert galaxies and a number of common properties are observed, including a transition from the characteristic reverberation signature at high frequencies to a hard lag within the continuum component at low frequencies, as well as a pronounced dip in the reverberation lag at 3 keV. These features are not trivially explained by the reverberation of X-rays originating from simple point sources. We therefore model reverberation from coronae extended both over the surface of the disc and vertically. Causal propagation through its extent for both the simple case of constant velocity propagation and propagation linked to the viscous time-scale in the underlying accretion disc is included as well as stochastic variability arising due to turbulence locally on the disc. We find that the observed features of X-ray reverberation in Seyfert galaxies can be explained if the long time-scale variability is dominated by the viscous propagation of fluctuations through the corona. The corona extends radially at low height over the surface of the disc but with a bright central region in which fluctuations propagate up the black hole rotation axis driven by more rapid variability arising from the innermost regions of the accretion flow.

  10. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  11. GT1_pbarthel_1: The Herschel Legacy of distant radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Barthel, P.

    2010-03-01

    We propose Herschel observations of the virtually complete sample of 3CR radio-galaxies and quasars in the redshift range 1 < z < 2.5, and a representative additional set of 4C objects extending to redshift z = 3, in order to quantify the orientation-dependence of AGN radiation (AGN unification), to investigate the interplay between accretion onto the central black-hole and star-formation in the hosts, to understand the evolution of the black-hole/stellar-bulge relation, and to make the first accurate assay of the energetics of AGN at the epoch of their peak activity, the quasar era. The low-frequency radio-selection provides us with very powerful and massive active galaxies free from any orientation/obscuration bias, a requirement for testing AGN unification. The properties of particularly the high-z 3CR sources are well known throughout the electromagnetic spectrum, except in the rest-frame mid- and far-IR, where they were hitherto outside the reach of space missions. We propose PACS/SPIRE 70-500 micron photometry of 71 3CR+4C sources in 5 bands, in order to measure their detailed spectral energy distributions between available Spitzer and SCUBA/MAMBO data. The rest-frame FIR emission serves as an isotropic calorimeter and the MIR/FIR luminosity ratio is determined by the relative strength of the AGN and star-forming contributions combined with dust obscuration. These observations will return crucial new information on the energy processes in powerful AGN and their hosts at the cosmic heyday, providing an essential anchor for studies of galaxy and AGN evolution.

  12. Flavor mixing in gauge-Higgs unification

    SciTech Connect

    Adachi, Y.; Kurahashi, N.; Lim, C. S.; Maru, N.; Tanabe, K.

    2012-07-27

    Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass becomes finite and stable under quantum corrections due to the higher dimensional gauge symmetry. On the other hand, Yukawa coupling is provided by the gauge coupling, which seems to mean that the flavor mixing and CP violation do not arise at it stands. In this talk, we discuss that the flavor mixing is originated from simultaneously non-diagonalizable bulk and brane mass matrices. Then, this mechanism is applied to various flavor changing neutral current (FCNC) processes via Kaluza-Klein (KK) gauge boson exchange at tree level and constraints for compactification scale are obtained.

  13. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    NASA Technical Reports Server (NTRS)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  14. Gravi-weak unification and multiple-point principle

    SciTech Connect

    Das, S. R.; Laperashvili, L. V.; Nielsen, H. B.; Tureanu, A.; Froggatt, C. D.

    2015-05-15

    The problem of self-consistency of the unification of gravity and weak SU(2) interaction in a model that is invariant under the Spin(4, 4) group is studied. For this purpose, consequences of the multicritical-point principle, which admits the existence of two degenerate vacua in the Standard Model, are considered. Also, the existence of a visible and an invisible sector in our Universe is assumed.

  15. Insensitive unification of gauge couplings with three vector-like families

    SciTech Connect

    Dermisek, Radovan

    2013-05-23

    The standard model extended by three vector-like families with masses of order 1 TeV - 100 TeV allows for unification of gauge couplings. The values of gauge couplings at the electroweak scale are highly insensitive to fundamental parameters. The grand unification scale is large enough to avoid the problem with fast proton decay. The electroweak minimum of the Higgs potential is stable.

  16. Revisiting the infrared spectra of active galactic nuclei with a new torus emission model

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Franceschini, A.; Hatziminaoglou, E.

    2006-03-01

    We describe improved modelling of the emission by dust in a toroidal-like structure heated by a central illuminating source within active galactic nuclei (AGNs). We have chosen a simple but realistic torus geometry, a flared disc, and a dust grain distribution function including a full range of grain sizes. The optical depth within the torus is computed in detail taking into account the different sublimation temperatures of the silicate and graphite grains, which solves previously reported inconsistencies in the silicate emission feature in type 1 AGNs. We exploit this model to study the spectral energy distributions (SEDs) of 58 extragalactic (both type 1 and type 2) sources using archival optical and infrared data. We find that both AGN and starburst contributions are often required to reproduce the observed SEDs, although in a few cases they are very well fitted by a pure AGN component. The AGN contribution to the far-infrared luminosity is found to be higher in type 1 sources, with all the type 2 requiring a substantial contribution from a circumnuclear starburst. Our results appear in agreement with the AGN unified scheme, because the distributions of key parameters of the torus models turn out to be compatible for type 1 and type 2 AGNs. Further support to the unification concept comes from comparison with medium-resolution infrared spectra of type 1 AGNs by the Spitzer observatory, showing evidence for a moderate silicate emission around 10 μm, which our code reproduces. From our analysis we infer accretion flows in the inner nucleus of local AGNs characterized by high equatorial optical depths (AV~= 100), moderate sizes (Rmax < 100 pc) and very high covering factors (f~= 80 per cent) on average.

  17. Regular expression order-sorted unification and matching

    PubMed Central

    Kutsia, Temur; Marin, Mircea

    2015-01-01

    We extend order-sorted unification by permitting regular expression sorts for variables and in the domains of function symbols. The obtained signature corresponds to a finite bottom-up unranked tree automaton. We prove that regular expression order-sorted (REOS) unification is of type infinitary and decidable. The unification problem presented by us generalizes some known problems, such as, e.g., order-sorted unification for ranked terms, sequence unification, and word unification with regular constraints. Decidability of REOS unification implies that sequence unification with regular hedge language constraints is decidable, generalizing the decidability result of word unification with regular constraints to terms. A sort weakening algorithm helps to construct a minimal complete set of REOS unifiers from the solutions of sequence unification problems. Moreover, we design a complete algorithm for REOS matching, and show that this problem is NP-complete and the corresponding counting problem is #P-complete. PMID:26523088

  18. Quantum Gravitational Effects and Grand Unification

    SciTech Connect

    Calmet, Xavier; Hsu, Stephen D. H.; Reeb, David

    2008-11-23

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.

  19. Unification of force and substance.

    PubMed

    Wilczek, Frank

    2016-08-28

    Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as 'dynamical systems'. That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: the physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458259

  20. String Scale Gauge Coupling Unification with Vector-Like Exotics and Noncanonical U(1)Y Normalization

    NASA Astrophysics Data System (ADS)

    Barger, V.; Jiang, Jing; Langacker, Paul; Li, Tianjun

    We use a new approach to study string scale gauge coupling unification systematically, allowing both the possibility of noncanonical U(1)Y normalization and the existence of vector-like particles whose quantum numbers are the same as those of the Standard Model (SM) fermions and their Hermitian conjugates and the SM adjoint particles. We first give all the independent sets (Yi) of particles that can be employed to achieve SU(3)C and SU(2)L string scale gauge coupling unification and calculate their masses. Second, for a noncanonical U(1)Y normalization, we obtain string scale SU(3)C ×SU(2)L ×U(1)Y gauge coupling unification by choosing suitable U(1)Y normalizations for each of the Yi sets. Alternatively, for the canonical U(1)Y normalization, we achieve string scale gauge coupling unification by considering suitable combinations of the Yi sets or by introducing additional independent sets (Zi), that do not affect the SU(3)C ×SU(2)L unification at tree level, and then choosing suitable combinations, one from the Yi sets and one from the Zi sets. We also briefly discuss string scale gauge coupling unification in models with higher Kac-Moody levels for SU(2)L or SU(3)C.

  1. AGN Physics in the CTA Era

    NASA Astrophysics Data System (ADS)

    Zech, Andreas; Boisson, Catherine; Sol, Hélène

    With the start of its Preparatory Phase, a new step has been made towards the construction of CTA, the future large Cherenkov Telescope Array of ground-based gamma-ray astronomy. A two-day workshop devoted to "AGN physics in the CTA era" will be held in Toulouse, May 16th-17th 2011, in parallel to a general meeting of the CTA consortium. Combining reviews and contributed talks, the meeting will aim to present the current state of the art and to characterize future observing programmes for the various facets of AGN science at very high energies (VHE). Topics to be discussed include AGN population studies, particle acceleration and VHE emission models, variability studies, multiwavelength approach, EBL connection, VHE extended emission (radiogalaxies, pair haloes, diffuse background), passive black holes, primordial black holes ... Further information, including the full program, can be found on the conference webpage: http://cta.obspm.fr/agnworkshop2011/

  2. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats.

    PubMed

    Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko

    2009-12-01

    The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than 30 brain regions. The measurements were performed using alpha-[(14)C]methyl-l-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental setup) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be

  3. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats

    PubMed Central

    Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko

    2009-01-01

    The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than thirty brain regions. The measurements were performed using α-[14C]methyl-L-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental set up) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be

  4. SWIFT Observations AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift Burst Alert Telescope (BAT) Active Galactic Nuclei (AGN) survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type.

  5. Gauge coupling unification and nonequilibrium thermal dark matter.

    PubMed

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  6. Gauge Coupling Unification and Nonequilibrium Thermal Dark Matter

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Olive, Keith A.; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-01

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale TRH. To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (Mint≃1010-1012GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation TRH3/Mint4. As a consequence, we show that the unification of gauge couplings which determines Mint also fixes the reheating temperature, which can be as high as TRH≃1011GeV.

  7. Gauge coupling unification and nonequilibrium thermal dark matter.

    PubMed

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV. PMID:25165912

  8. A UV to mid-IR study of AGN selection

    SciTech Connect

    Chung, Sun Mi; Kochanek, Christopher S.; Assef, Roberto; Brown, Michael J. I.; Stern, Daniel; Jannuzi, Buell T.; Gonzalez, Anthony H.; Hickox, Ryan C.; Moustakas, John

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  9. Structure Function Analysis of AGN Variability using Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2014-06-01

    We study the variability properties of AGN light-curves observed by the Kepler satellite. AGN optical fluxes are known to exhibit stochastic variations on time-scales of hours, days, months and years. Previous efforts to characterize the stochastic nature of this variability have been hampered by the lack of high-precision space-based measurements of AGN fluxes with regular cadence. Kepler provides light-curves with a S/N ratio of 10-5 for 87 AGN observed over a period of ~ 3 years with a cadence of once every 30 minutes allowing for a detailed examination of the variability process. We probe AGN variability using the Structure Functions of the light-curves of the Kepler AGN. Monte-Carlo simulations of the structure function are used to fit the observed light-curve to models for the Power Spectral Density. We test various models for the form of the PSD including the damped random walk and the powered exponential models. We show that on the shorter time-scales probed by Kepler data, the damped random walk model fails to adequately characterize AGN variability. We find that the PSD may be better modelled by combination of a steep power law of the form 1/f3 on shorter time-scales, and a more shallow power law of the form 1/f2 on the longer time-scales traditionally probed by ground-based variability studies.

  10. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  11. A self-similarity based unification of BL Lacertae objects.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1997-12-01

    BL Lacertae (BL Lac) objects have been traditionally classified as radio selected BL Lacs (RBLs) or X-ray selected BL Lacs (XBLs) according to the discovery method. The recent discovery of a BL Lac population with observational properties intermediate between those of RBLs and XBLs, strongly suggest that this bimodal classification is misleading, and essentially reflects the two different discovery methods. We propose a unification scheme for BL Lac objects based on the following scenario: the kinetic luminosity of the jet Lambda_ {kin} scales with the size of the jet r, following the relation Lambda_ {kin} ~ r(2) . Additionally, the intensive physical variables that describe the relativistic jet in the BL Lac objects have a small intrinsic range of values. The combination of these two assumptions suggests a unification scheme, where the observed properties of a BL Lac depend mainly on the kinetic luminosity of the jet and the angle between the line of sight and the jet axis. We apply this scheme using the accelerating inner jet model, comparing the predictions of this unification with observational data from complete BL Lac samples. Finally, we briefly address the question of extending this unified scheme to include the family of flat spectrum radio quasars.

  12. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  13. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  14. THE LACK OF TORUS EMISSION FROM BL LACERTAE OBJECTS: AN INFRARED VIEW OF UNIFICATION WITH WISE

    SciTech Connect

    Plotkin, Richard M.; Markoff, Sera; Anderson, Scott F.; Brandt, W. N.; Wu Jianfeng; Shemmer, Ohad

    2012-02-15

    We use data from the Wide-Field Infrared Survey Explorer (WISE) to perform a statistical study on the mid-infrared (IR) properties of a large number ({approx}10{sup 2}) of BL Lac objects-low-luminosity active galactic nuclei (AGNs) with a jet beamed toward the Earth. As expected, many BL Lac objects are so highly beamed that their jet synchrotron emission dominates their IR spectral energy distributions. In other BL Lac objects, however, the jet is not strong enough to completely dilute the rest of the AGN emission. We do not see observational signatures of the dusty torus from these weakly beamed BL Lac objects. The lack of observable torus emission is consistent with suggestions that BL Lac objects are fed by radiatively inefficient accretion disks. Implications for the 'nature versus nurture' debate for FR I and FR II radio galaxies are briefly discussed. Our study supports the notion that, beyond orientation, accretion rate plays an important role in AGN unification.

  15. Observational aspects of AGN jets at high energy

    NASA Astrophysics Data System (ADS)

    Kataoka, Jun

    2015-03-01

    For the last two decades, significant and dramatic progress has been made in understanding astrophysical jet sources, particularly in the X-ray and gamma-ray energy bands. For example, the Chandra X-ray observatory reveals a number of AGN jets extending from kpc to Mpc scales. More recently, the Fermi Gamma-ray Space Telescopes launched in 2008 started monitoring the gamma-ray sky with excellent sensitivity of about ten times greater than that of EGRET onboard CGRO, and has detected more than 2,000 sources (mostly AGNs) as of 2014. Moreover, Fermi-LAT has discovered gamma-ray emissions not only from blazars but from a dozen radio galaxies not previously known to emit gamma-rays. Closer to home, the Fermi-bubbles were discovered to extend 50 degrees above and below the Galactic center. These large scale diffuse gamma-ray structures are similar in structure to AGN lobes such as those seen in Cen A and provide evidence for past activity in our Galactic center. In this review, I will first summarize recent highlights of large scale jets in radio galaxies, specifically resolved by the Chandra X-ray observatory. Next I will move on to the gamma-ray sky to present some highlights from Fermi-LAT observations of ``misaligned'' blazars, namely radio galaxies. I will discuss a unification scheme connecting blazars and misaligned radio galaxies. In the last part, I will also briefly comment on recent multiband observations of the Fermi-bubble and possible impacts on the AGN jet physics in the near future.

  16. International Scientific Terminology and Neologisms in the Course of Unification.

    ERIC Educational Resources Information Center

    Stoberski, Zygmunt

    1978-01-01

    Provides a list of international medical and pharmaceutical terminology in three stages of development: (1) established international terms; (2) neologisms in the course of unification; and (3) recent neologisms in the course of unification. (AM)

  17. Physics of Gamma Ray Emitting AGN

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Lovell, Jim; Edwards, Philip; Kadler, Matthias; Monitoringteam, Gamma Ray Blazar

    2011-10-01

    TANAMI is a highly productive LBA program addressing fundamental questions about AGN with VLBI observations. As the only dual-frequency VLBI monitoring program covering the southern third of the sky while Fermi is observing, TANAMI, with its associated optical/UV and X-ray components, is indispensable. For many of the most interesting sources in the sky, TANAMI provides the sole means of tracking parsec-scale jet components and associating their ejection epochs with gamma-ray flares. Further, multi-year VLBI observations are the only way to establish jet parameters, such as speeds and Doppler factors, which are essential to the study of AGN physics. We request the continuation of this program that was granted Large Proposal status from October 2009. Further observations are necessary for the multiwavelength correlation, morphological and kinematic studies for which we have set up an excellent baseline and produced interesting results e.g. shown the necessity for multi-zone models for gamma-ray production in AGN. Simultaneous observations across the electromagnetic spectrum hold the key to answering many riddles posed by AGN and the next 5-10 years when Fermi is observing provide a window of opportunity that TANAMI is exploiting.

  18. A Global Picture of AGN Winds

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Fukumura, K.

    2011-01-01

    We present a unified structure for accretion powered sources across their entire luminosity range from accreting galactic black holes to the most luminous quasars, with emphasis on AGN and their phenomenology. Central to this end is the notion of MHD winds launched from the accretion disks that power these objects. This work similar in spirit to that of Elvis of more that a decade ago, provides, on one hand, only the broadest characteristics of these objects, but on the other, also scaling laws that allow one to make contact with objects of different luminosity. The conclusion of this work is that AGN phenomenology can be accounted for in terms of dot(m), the wind mass flux in units of the Eddington value, the observer's inclination angle theta and alpha_OX the logarithmic slope between UV and X-ray flares. However given the well known correlation between alpha(sub ox) and UV Luminosity, we conclude that the AGN structure depends on only two parameters. The small number of model parameters hence suggests that an understanding of the global AGN properties maybe within reach.

  19. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  20. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  1. Noncommutative Geometry Spectral Action as a Framework for Unification:. Introduction and Phenomenological/cosmological Consequences

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    I will summarize Noncommutative Geometry Spectral Action, an elegant geometrical model valid at unification scale, which offers a purely gravitational explanation of the Standard Model, the most successful phenomenological model of particle physics. Noncommutative geometry states that close to the Planck energy scale, spacetime has a fine structure and proposes that it is given as the product of a four-dimensional continuum compact Riemaniann manifold by a tiny discrete finite noncommutative space. The spectral action principle, a universal action functional on spectral triples which depends only on the spectrum of the Dirac operator, applied to this almost commutative product geometry, leads to the full Standard Model, including neutrino mixing which has Majorana mass terms and a see-saw mechanism, minimally coupled to gravity. It also makes various predictions at unification scale. I will review some of the phenomenological and cosmological consequences of this beautiful and purely geometrical approach to unification.

  2. Toward a Unified AGN Structure

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  3. Temperature-Transformed ``Minimal Coupling'': Magnetofluid Unification

    NASA Astrophysics Data System (ADS)

    Mahajan, S. M.

    2003-01-01

    The dynamics of a relativistic, hot charged fluid is expressed in terms of a hybrid magnetofluid field which unifies the electromagnetic field with an appropriately defined but analogous flow field. The unification is affected by a well-defined prescription that allows the derivation of the equations of motion of a plasma embedded in an electromagnetic field from the field-free equations. The relationship of this prescription with the minimal coupling prescription of particle dynamics is discussed; the changes brought about by the plasma temperature are highlighted. A few consequences of the unification are worked out.

  4. Trilinear gauge boson couplings in the gauge—Higgs unification

    NASA Astrophysics Data System (ADS)

    Adachi, Yuki; Maru, Nobuhito

    2016-07-01

    We examine trilinear gauge boson couplings (TGCs) in the context of the SU(3)_W⊗ U(1)' gauge-Higgs unification scenario. The TGCs play important roles in probes of the physics beyond the standard model, since they are highly restricted by the experiments. We discuss the mass spectrum of the neutral gauge boson with brane-localized mass terms carefully and find that the TGCs and ρ parameter may deviate from standard model predictions. Finally, we put a constraint on these observables and discuss the possible parameter space.

  5. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  6. The bulge-disc decomposition of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; Mortlock, A.; Kocevski, D. D.; McGrath, E. J.; Rosario, D. J.

    2016-05-01

    We present the results from a study of the morphologies of moderate luminosity X-ray-selected active galactic nuclei (AGN) host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multiwavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sérsic and multiple Sérsic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sérsic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are indistinguishable from the general galaxy population except that beyond z ≃ 1.5 they have significantly higher bulge fractions. Even including nuclear sources in our modelling, the probability of this result arising by chance is ˜1 × 10-5, alleviating concerns that previous, purely single Sérsic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This data set also allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity. Our analysis of the bulge and disc fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.

  7. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  8. Principles of the Unification of Our Agency

    ERIC Educational Resources Information Center

    Roth, Klas

    2011-01-01

    Do we need principles of the unification of our agency, our mode of acting? Immanuel Kant and Christine Korsgaard argue that the reflective structure of our mind forces us to have some conception of ourselves, others and the world--including our agency--and that it is through will and reason, and in particular principles of our agency, that we…

  9. An alternative NMSSM phenomenology with manifest perturbative unification

    SciTech Connect

    Hall, Lawrence; Barbieri, Riccardo; Pappadopulo, Duccio; Rychkov, Vyacheslav S.; Hall, Lawrence J.; Papaioannou, Anastasios Y.

    2007-12-18

    Can supersymmetric models with a moderate stop mass be made consistent with the negative Higgs boson searches at LEP, while keeping perturbative unification manifest? The NMSSM achieves this rather easily, but only if extra matter multiplets filling complete SU(5) representations are present at intermediate energies. As a concrete example which makes use of this feature, we give an analytic description of the phenomenology of a constrained NMSSM close to a Peccei-Quinn symmetry point. The related pseudo-Goldstone boson appears in decays of the Higgs bosons and possibly of the lightest neutralino, and itself decays into (b anti-b) and (tau anti-tau).

  10. AGN feedback in galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2016-07-01

    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. Athena will provide (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. I will present new predictions of Athena's ability to measure the energetic impact of powerful jets based on our most recent set of numerical models.

  11. The Disk-Jet Connection in Radio-Loud AGN: The X-Ray Perspective

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2008-01-01

    Unification schemes assume that radio-loud active galactic nuclei (AGN) contain an accretion disk and a relativistic jet perpendicular to the disk, and an obscuring molecular torus. The jet dominance decreases with larger viewing angles from blazars to Broad-Line and Narrow-Line Radio Galaxies. A fundamental question is how accretion and ejecta are related. The X-rays provide a convenient window to study these issues, as they originate in the innermost nuclear regions and penetrate large obscuring columns. I review the data, using observations by Chandra but also from other currently operating high-energy experiments. Synergy with the upcoming GLAST mission will also be highlighted.

  12. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  13. The universal spectrum of AGNs and QSOs

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1985-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon photon absorption of its own radiation are examined. A mechanism is presented which can produce an electron distribution function that can account for the overall spectral distribution of radiation of AGNs and QSOs and the specific slopes observed in the IR to UV and 2-50 keV bands. It is interesting to note that the necessary condition for this mechanism to work (i.e., most of energy injected at e(M sub e)(C sup 2) is realized in the accretion shock model of Kazanas and Ellison. This mechanism involves only one free parameter the compactness of the sources, L/R, whose mean value can also account for the diffuse gamma ray background in terms of AGNs.

  14. Unification and mass spectrum in a B-L extended MSSM

    SciTech Connect

    Hernandez-Pinto, R. J.; Perez-Lorenzana, A.

    2009-04-20

    The simplest B-L extension of the minimum supersymmetric standard model (MSSM) may change some of the conceptions about the path for gauge unification as well as to affect the predicted spectrum of the supersymmetric particles at low energy. We present our results for the running of gauge coupling constants and mass parameter in this context.

  15. Pati-Salam unification from noncommutative geometry and the TeV-scale WR boson

    NASA Astrophysics Data System (ADS)

    Aydemir, Ufuk; Minic, Djordje; Sun, Chen; Takeuchi, Tatsu

    2016-01-01

    We analyze the compatibility of the unified left-right symmetric Pati-Salam models motivated by noncommutative geometry and the TeV-scale right-handed W boson suggested by recent LHC data. We find that the unification/matching conditions place conflicting demands on the symmetry breaking scales and that generating the required WR mass and coupling is nontrivial.

  16. Grand Unification as a Bridge Between String Theory and Phenomenology

    SciTech Connect

    Pati, Jogesh C.

    2006-06-09

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  17. Grand Unification as a Bridge Between String Theory and Phenomenology

    NASA Astrophysics Data System (ADS)

    Pati, Jogesh C.

    In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  18. Searching for Dark Matter in Unification Models: A Hint from Indirect Sensitivities towards Future Signals in Direct Detection and B-decays

    SciTech Connect

    Olive, Keith A.

    2006-11-28

    A comparison is made between accelerator and direct detection constraints in constrained versions of the minimal supersymmetric standard model. Models considered are based on mSUGRA, where scalar and gaugino masses are unified at the GUT scale. In addition, the mSUGRA relation between the (unified) A and B parameters is assumed, as is the relation between m0 and gravitino mass. Also considered are models where the latter two conditions are dropped (the CMSSM), and a less constrained version where the Higgs soft masses are not unified at the GUT scale (the NUHM)

  19. Visualizing gauge unification with high-scale thresholds

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Wells, James D.

    2015-04-01

    Tests of gauge coupling unification require knowledge of thresholds between the weak scale and the high scale of unification. If these scales are far separated, as is the case in most unification scenarios considered in the literature, the task can be factorized into IR and UV analyses. We advocate "Δ λ plots" as an efficient IR analysis projected to the high scale. The data from these plots gives an immediate qualitative guide to the size of threshold corrections needed at the high scale (e.g., the indices of high-scale representations) and provides precise quantitative data needed to test the viability of hypothesized high-scale unification theories. Such an approach shows more clearly the reasonable prospects of nonsupersymmetric grand unification in large rank groups, and also shows the low summed values of high-scale threshold corrections required for supersymmetric unification. The latter may imply tuned cancellations of high-scale thresholds in theories based on weak-scale supersymmetry. For that reason we view nonsupersymmetric unification to be just as viable as supersymmetric unification when confining ourselves only to the question of reasonable high-scale threshold corrections needed for exact unification. We illustrate these features for a nonsupersymmetric S O (10 ) grand unified theory and a supersymmetric S U (5 ) theory.

  20. Three years of Swift/BAT Survey of AGN: Reconciling Theory and Observations?

    SciTech Connect

    Burlon, D.; Ajello, M.; Greiner, J.; Comastri, A.; Merloni, A.; Gehrels, N.; /NASA, Goddard

    2011-02-07

    It is well accepted that unabsorbed as well as absorbed AGN are needed to explain the nature and the shape of the Cosmic X-ray background, even if the fraction of highly absorbed objects (dubbed Compton-thick sources) substantially still escapes detection. We derive and analyze the absorption distribution using a complete sample of AGN detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGN represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGN is 20{sub -6}{sup +9}%. We proved for the first time (also in the BAT band) that the anti-correlation of the fraction of absorbed AGN and luminosity it tightly connected to the different behavior of the luminosity functions (XLFs) of absorbed and unabsorbed AGN. This points towards a difference between the two subsamples of objects with absorbed AGN being, on average, intrinsically less luminous than unobscured ones. Moreover the XLFs show that the fraction of obscured AGN might also decrease at very low luminosity. This can be successfully interpreted in the framework of a disk cloud outflow scenario as the disappearance of the obscuring region below a critical luminosity. Our results are discussed in the framework of population synthesis models and the origin of the Cosmic X-ray Background.

  1. Spherical accretion and AGN feedback

    NASA Astrophysics Data System (ADS)

    Nulsen, Paul

    2014-06-01

    For a supermassive black hole accreting from a hot, quasi-spherical atmosphere, it is almost inevitable that the fluid approximation fails inside some point within the Bondi radius, but well outside the black hole event horizon. Within the region where the particle mean free paths exceed the radius, the flow must be modeled in terms of the Fokker-Planck equation. In the absence of magnetic fields, it is analogous to the "loss cone" problem for consumption of stars by a black hole. The accretion rate is suppressed well below the Bondi accretion rate and a significant power must be conveyed outward for the flow to proceed. This situation is complicated significantly by the presence of a magnetic field, but I will argue that the main outcomes are similar. I will also argue that the power emerging from such a flow, although generally far too little to suppress cooling on large scales, is an important ingredient of the AGN feedback cycle on scales comparable to the Bondi radius.

  2. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  3. Unification of Theoretical Models of Academic Self-Concept/Achievement Relations: Reunification of East and West German School Systems after the Fall of the Berlin Wall

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Koller, Olaf

    2004-01-01

    Longitudinal data (five waves) from large cohorts of 7th grade students in East Germany ("n"=2,119) and West Germany ("n"=1,928) were collected from the start of the reunification of the school systems following the fall of the Berlin Wall. Here we integrate the two major theoretical models of relations between academic self-concept and…

  4. Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Lamastra, A.; Menci, N.; Bongiorno, A.; Fiore, F.

    2015-04-01

    Using an advanced semi-analytical model (SAM) for galaxy formation, we investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where galaxy mergers and fly-by events (interactions, IT) are responsible for producing a sudden destabilization of large quantities of gas, causing the mass inflow onto the central supermassive black hole. The effects of including IT and DI modes in our SAM were studied and compared with observations separately to single out the regimes in which they might be responsible for triggering AGN activity. We obtained the following results: i) the predictions of our model concerning the stellar mass functions of AGN hosts point out that both DI and IT modes are able to account for the observed abundance of AGN host galaxies with M∗ ≲ 1011M⊙; for more massive hosts, the DI scenario predicts a much lower space density than the IT model in every redshift bin, lying below the observational estimates for redshift z > 0.8. ii) The analysis of the colour-magnitude diagram of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively distinguish between DI and IT mode, since DIs are expected to yield AGN host galaxy colours skewed towards bluer colours, while in the IT scenario the majority of hosts are expected to reside in the red sequence. iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies. The lack of DI AGN in passive hosts is rather insensitive to changes in the model describing the DI mass inflow, and it is mainly caused by the criterion for the onset of disk instabilities included in our SAM. iv) The two modes are characterized by a different duration of the AGN phase, with DIs

  5. SED and Emission Line Properties of Red 2MASS AGN

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Joanna; Wilkes, Belinda J.; Schmidt, Gary; Ghosh, Himel

    2009-09-01

    Radio and far-IR surveys, and modeling of the cosmic X-ray background suggest that a large population of obscured AGN has been missed by traditional, optical surveys. The Two Micron All-Sky Survey (2MASS) has revealed a large population (surface density comparable to that of optically selected AGN with Ks<14.5mag) of mostly nearby (median z=0.25), red, moderately obscured AGN, among which 75% are previously unidentified emission-line AGN, with 85% showing broad emission lines. We present the SED and emission line properties of 44 such red (J-Ks>2) 2MASS AGN observed with Chandra. They lie at z<0.37, span a full range of spectral types (Type 1, intermediate, Type 2),Ks-to-X-ray slopes, and polarization (<13%). Their IR-to-X-ray spectral energy distributions (SEDs) are red in the near-IR/opt/UV showing little or no blue bump. The optical colors are affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The levels of obscuration obtained from optical, X-rays, and far-IR imply N_H AGN light. PCA analysis of the IR-X-ray SED and emission line properties shows that, while obscuration/inclination is important, the dominant cause of variance in the sample (eigenvector 1) is the L/L_{edd} ratio (perhaps because the red near-IR selection limits the range of inclination/obscuration values in our sample). This analysis also distinguishes two sources of obscuration: the host galaxy and circumnuclear absorption.

  6. Inverse Compton X-ray signature of AGN feedback

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei

    2013-12-01

    Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.

  7. IR properties of AGN and SB

    NASA Astrophysics Data System (ADS)

    Talezade Lari, M. H.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    Through multi-wavelength flux ratios it is possible to detect AGN and Star-burst Galaxies. Techniques of detecting extragalactic objects as well as AGN are studied in different wavelengths (X-Ray, Radio and IR). Specification of AGN as IR and radio sources is discussed. IR catalogues of 2MASS and WISE were used to study the interrelationship between interactions/merging, starburst and AGN phenomena.

  8. The Star-Forming Properties of an Ultra-Hard X-ray Selected Sample of AGN

    NASA Astrophysics Data System (ADS)

    Shimizu, Thomas Taro; Mushotzky, Richard; Melendez, Marcio; Koss, Michael

    2015-08-01

    We present results from our Herschel follow-up survey of the Swift/BAT AGN 58 month catalog. Using the PACS and SPIRE instruments, 313 AGN were imaged at 5 far-infrared (FIR) wavelengths (70, 160, 250, 350, and 500 μm) producing the largest and most complete FIR catalog of local AGN. We combine our FIR photometry with archival mid-infrared photometry to form broadband spectral energy distributions (SEDs) that for the first time reach into the sub-millimeter regime. We fit these SEDs with several models to determine the star-forming properties of the host galaxies such as star-formation rate (SFR), IR luminosity, dust temperature, and dust mass and measure their relationship with various AGN properties such as X-ray luminosity, Eddington ratio, black hole mass, and column density. We find a weak dependence of the global SFR on the AGN strength indicating either the AGN has little influence on star formation over the entire galaxy or that the variability of the AGN on short timescales washes away any correlation between star formation and the AGN. Comparing the BAT AGN to a sample of normal star-forming galaxies on the “main sequence”, we find the BAT AGN systematically have decreased levels of specific SFR (sSFR = SFR/stellar mass). This is possibly indirect evidence that the AGN has suppressed star-formation in its host galaxy. Analysis of the FIR images themselves reveals that many of the BAT AGN are compact which leads to increased levels of SFR surface density, high enough for starburst driven winds. Finally, we show the 70 μm luminosity can be heavily contaminated by AGN emission and should not be used as a SFR indicator for AGN host galaxies.

  9. Unification of the family of Garrison-Wright's phases

    PubMed Central

    Cui, Xiao-Dong; Zheng, Yujun

    2014-01-01

    Inspired by Garrison and Wight's seminal work on complex-valued geometric phases, we generalize the concept of Pancharatnam's “in-phase” in interferometry and further develop a theoretical framework for unification of the abelian geometric phases for a biorthogonal quantum system modeled by a parameterized or time-dependent nonhermitian hamiltonian with a finite and nondegenerate instantaneous spectrum, that is, the family of Garrison-Wright's phases, which will no longer be confined in the adiabatic and nonadiabatic cyclic cases. Besides, we employ a typical example, Bethe-Lamb model, to illustrate how to apply our theory to obtain an explicit result for the Garrison-Wright's noncyclic geometric phase, and also to present its potential applications in quantum computation and information. PMID:25056412

  10. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Swinbank, A. M.

    2014-07-01

    We present integral field unit observations covering the [O III]λλ4959, 5007 and Hβ emission lines of 16 z < 0.2 type 2 active galactic nuclei (AGN). Our targets are selected from a well-constrained parent sample of ≈24 000 AGN so that we can place our observations into the context of the overall AGN population. Our targets are radio quiet with star formation rates (SFRs; ≲[10-100] M⊙ yr-1) that are consistent with normal star-forming galaxies. We decouple the kinematics of galaxy dynamics and mergers from outflows. We find high-velocity ionized gas (velocity widths ≈600-1500 km s-1; maximum velocities ≤1700 km s-1) with observed spatial extents of ≳(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z < 0.2, luminous (i.e. L[O III] > 1041.7 erg s-1) type 2 AGN and that ionized outflows are not only common but also in ≥70 per cent (3σ confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultraluminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ≈10 times the SFRs), kinetic energies (≈0.5-10 per cent of LAGN) and momentum rates (typically ≳10-20 × LAGN/c) consistent with theoretical models that predict AGN-driven outflows play a significant role in shaping the evolution of galaxies.

  11. F-theory family unification

    NASA Astrophysics Data System (ADS)

    Mizoguchi, S.

    2014-07-01

    We propose a new geometric mechanism for naturally realizing unparallel three families of flavors in string theory, using the framework of F-theory. We consider a set of coalesced local 7-branes of a particular Kodaira singularity type and allow some of the branes to bend and separate from the rest, so that they meet only at an intersection point. Such a local configuration can preserve supersymmetry. Its matter spectrum is investigated by studying string junctions near the intersection, and shown to coincide, after an orbifold projection, with that of a supersymmetric coset sigma model whose target space is a homogeneous Kähler manifold associated with a corresponding painted Dynkin diagram. In particular, if one starts from the E 7 singularity, one obtains the E 7 /(SU(5) × U(1)3) model yielding precisely three generations with an unparallel family structure. Possible applications to string phenomenology are also discussed.

  12. Induced gravity II: grand unification

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-05-01

    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass)2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.

  13. Education in Germany since Unification. Oxford Studies in Comparative Education.

    ERIC Educational Resources Information Center

    Phillips, David, Ed.

    This collection of papers discusses issues related to education in Germany since its unification. The papers include: "The Legacy of Unification" (David Phillips); "Change and Continuity in Education After the 'Wende'" (E. J. Neather); "A Study of Teachers' Perceptions in Brandenburg 'Gesamtschulen'" (Stephanie Wilde); "Memory and Judgement: How…

  14. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  15. New limits on the low energy predictions for the preon grand unification

    NASA Astrophysics Data System (ADS)

    Chaichian, M.; Kolmakov, Yu. N.; Nelipa, N. F.

    1989-09-01

    An SU(36) grand unification model for the preons which leads to the standard set of quark-leptons with family replication is proposed. The particle content and the symmetry breaking patterns of the model are also considered. From the analysis of the renormalization group equations it follows that the allowed region of low energy predictions of such a model is larger than the one of usual models of grand unifications for the quarks and leptons. In particular, proton can be practically stable. The problem of absence of exotic states is also discussed. The whole approach is a prototype of the problems which appear if one applies the superstring-type models at the preon level.

  16. Dark Energy/matter Unification

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon; Lederer, Yoav; Karasik, David

    2003-03-01

    Let our Universe resemble a 4-dim bubble, floating in a flat (or AdS) 5-dim background, but insist on its evolution being governed by the standard Einstein-Hilbert action. The conserved bulk energy then parameterizes an intriguing deviation from general relativity with an essential built-in Einstein limit. Even an apparently `empty' bubble Universe is effectively infested by a dark (= beyond Einstein) component. In particular, the geodetic evolution of a Λ-dominated toy Universe, absolutely free of genuine matter, gets translated into a specific FRW cosmology which is barely distinguishable from ΛCDM. A more realistic model presents a dark dominated era which bridges past (radiation/baryon dominated) and future (Λ-dominated) Einstein regimes. To prove the clumpiness property of our unified dark component, we have derived the geodesic brane analog of Schwarzschild solution. It is characterized by (i) Dark cosmological background, (ii) Newtonian limit, and quite serendipitously allows for (iii) Non-singular dusty core.

  17. Effects of supersymmetric threshold corrections on the Yukawa matrix unification

    NASA Astrophysics Data System (ADS)

    Iskrzyński, Mateusz

    2015-02-01

    We present an updated analysis of the Yukawa matrix unification within the renormalizable R-parity-conserving Minimal Supersymmetric Standard Model. It is assumed that the soft terms are non-universal but flavour-diagonal in the super-CKM basis at the GUT scale. Trilinear Higgs-squark-squark -terms can generate large threshold corrections to the Yukawa matrix at the superpartner decoupling scale. In effect, the boundary condition at the GUT scale can be satisfied. However, such large trilinear terms make the usual Higgs vacuum metastable (though long-lived). We broaden previous studies by including results from the first LHC phase, notably the measurement of the Higgs particle mass, as well as a quantitative investigation of flavour observables.

  18. Compton thick AGN in the XMM-COSMOS survey

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Ranalli, P.; Georgantopoulos, I.; Georgakakis, A.; Delvecchio, I.; Akylas, T.; Berta, S.; Bongiorno, A.; Brusa, M.; Cappelluti, N.; Civano, F.; Comastri, A.; Gilli, R.; Gruppioni, C.; Hasinger, G.; Iwasawa, K.; Koekemoer, A.; Lusso, E.; Marchesi, S.; Mainieri, V.; Merloni, A.; Mignoli, M.; Piconcelli, E.; Pozzi, F.; Rosario, D. J.; Salvato, M.; Silverman, J.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.

    2015-01-01

    Heavily obscured, Compton thick (CT, NH> 1024 cm-2) active galactic nuclei (AGN) may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background at its peak. However, unambiguously identifying CT AGN beyond the local Universe is a challenging task even in the deepest X-ray surveys, and given the expected low spatial density of these sources in the 2-10 keV band, large area surveys are needed to collect sizable samples. Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3 × 1023 cm-2) at bright X-ray fluxes (F2-10 ≳ 10-14 erg s-1 cm-2) in the 2 deg2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the shallow XMM-Newton data, the presence of bona fide CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample comprises ten CT AGN (six of them also have a detected Fe Kα line with EW ~ 1 keV), spanning a wide range of redshifts (z ~ 0.1-2.5) and luminosity (L2-10 ~ 1043.5-1045 erg s-1) and is complemented by 29 heavily obscured AGN spanning the same redshift and luminosity range. We collected the rich multi-wavelength information available for all these sources, in order to study the distribution of super massive black hole and host properties, such as black hole mass (MBH), Eddington ratio (λEdd), stellar mass (M∗), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller MBH and higher λEdd with respect to unobscured sources, while a weaker evolution in M∗ is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshifts. We also present and briefly discuss optical spectra, broadband spectral energy distribution (SED) and morphology for the sample of ten CT AGN. Both

  19. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  20. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)-BH mergers play a major role in spinning up the central SMBHs in these objects.

  1. The Close AGN Reference Survey (CARS)

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Husemann, Bernd; Busch, Gerold; Dierkes, Jens; Eckart, Andreas; Krajnovic, Davor; Scharwaechter, Julia; Tremblay, Grant R.; Urrutia, Tanya

    2015-08-01

    We present the first science results from the Close AGN Reference Survey (CARS). This program is a snapshot survey of 39 local type 1 AGN (0.01 < z <0.06) designed to address the issue of AGN-driven star formation quenching by characterizing the condition for star formation in AGN host galaxies. The primary sample was observed with Multi Unit Spectrscopic Explorer (MUSE), an optical wavelength integral field unit (IFU) with a 1'x1' field of view on the VLT. The optical 3D spectroscopy complements existing sub-mm CO(1-0) data and near-IR imaging to establish a unique dataset combining molecular and stellar masses with star formation rates, gas, stellar kinematics and AGN properties. The primary goals of CARS are to:1) investigate if the star formation efficiency and gas depletion time scales are suppressed as a consequence of AGN feedback; 2) identify AGN-driven outflows and their relation to the molecular gas reservoir of the host galaxy; 3) investigate the the balance of AGN feeding and feedback through the ratio of the gas reservoir to the AGN luminosity; and 4) provide the community with a reference survey of local AGN with a high legacy value. Future work will incorporate near-infrared IFU observations to present a complete spatially resolved picture of the interplay among AGN, star-formation, stellar populations, and the ISM.

  2. AGN proximity zone fossils and the delayed recombination of metal lines

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Benjamin D.; Schaye, Joop

    2013-09-01

    We model the time-dependent evolution of metal-enriched intergalactic and circumgalactic gas exposed to the fluctuating radiation field from an active galactic nucleus (AGN). We consider diffuse gas densities (nH = 10-5-10-2.5 cm-3) exposed to the extra-galactic background (EGB) and initially in thermal equilibrium (T ˜ 104-104.5 K). Once the proximate AGN field turns on, additional photo-ionization rapidly ionizes the HI and metals. The enhanced AGN radiation field turns off after a typical AGN lifetime (τAGN = 1-20 Myr) and the field returns to the EGB intensity, but the metals remain out of ionization equilibrium for time scales that can significantly exceed τAGN. We define this phase as the AGN proximity zone `fossil' phase and show that high ionization stages (e.g. OVI, NeVIII, MgX) are in general enhanced, while the abundances of low ions (e.g. CIV, OIV, MgII) are reduced. In contrast, HI re-equilibrates rapidly (≪τAGN) owing to its low neutral fraction at diffuse densities. We demonstrate that metal column densities of intervening gas observed in absorption in quasar sight lines are significantly affected by delayed recombination for a wide range of densities, metallicities, AGN strengths, AGN lifetimes and AGN duty cycles. As an example, we show that a fossil zone model can simultaneously reproduce the observed NeVIII, MgII, HI and other metal columns of the z = 0.927 PG1206+259 absorption system observed by Tripp et al. using a single, T ˜ 104 K phase model. At low redshift even moderate-strength AGN that are off for 90 per cent of the time could significantly enhance the high-ion metal columns in the circum-galactic media of galaxies observed without active AGN. Fossil proximity zones may be particularly important during the quasar era, z ˜ 2-5. Indeed, we demonstrate that at these redshifts a large fraction of the metal-enriched intergalactic medium may consist of out-of-equilibrium fossil zones. AGN proximity zone fossils allow a whole new class

  3. On the electron-positron cascade in AGN central engines

    NASA Astrophysics Data System (ADS)

    Ford, Alex; Keenan, Brett; Medvedev, Mikhail

    2016-03-01

    Processes around spinning supermassive black holes (BH) in active galactic nuclei (AGN) are believed to determine how relativistic jets are launched and how the BH energy is extracted. The key ``ingredient'' is the origin of plasma in BH magnetospheres. In order to explore the process of the electron-positron plasma production, we developed a numerical code which models a one-dimensional (along a magnetic field line) dynamics of the cascade. Our simulations show that plasma production is controlled by the spectrum of the ambient photon field, the B-field strength, the BH spin and mass. Implications of our results to the Galactic Center and AGNs are discussed.

  4. AGN Survey to characterize the clumpy torus using FORCAST

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, Enrique

    2015-10-01

    A geometrically and optically thick torus of gas and dust obscures the black hole and accretion disk in active galactic nuclei (AGN) in some lines of sight. One of the most important question that still remain uncertain is: How do the properties, such as torus geometry and distribution of clumps, of the torus depend on the AGN luminosity and/or activity class? Infrared (IR) observations are essential to these investigations as the torus intercepts and re-radiates (peaking within 30-40 um) a substantial amount of flux from the central engine. Near-IR (NIR) and mid-IR (MIR) observations from the ground have been key to advance our knowledge in this field. However, the atmosphere is opaque to the 30-40 um range and observations are impossible from ground-based telescopes. FORCAST presents a unique opportunity to explore AGN, providing the best angular resolution observations within the 30-40 um range for the current suite of instruments. From our analysis using Cycle 2 observations, we found that FORCAST provides the largest constraining power of the clumpy torus models in the suggested wavelength range. We therefore request an AGN Survey using FORCAST of snapshot imaging observations of a flux-limited (>500 mJy at 37.1 um) sample of 23 Seyfert galaxies with existing high-angular resolution MIR spectra observed on 8-m class telescopes. Using the FORCAST data requested here in combination with already acquired NIR and MIR data, we will have an unprecedentedly homogeneous AGN sample of IR (1-40 um) SED at the largest spatial-resolution, which yield to a better knowledge of the torus structure in the AGN unified model.

  5. Tracing outflows in the AGN forbidden region with SINFONI

    NASA Astrophysics Data System (ADS)

    Kakkad, D.; Mainieri, V.; Padovani, P.; Cresci, G.; Husemann, B.; Carniani, S.; Brusa, M.; Lamastra, A.; Lanzuisi, G.; Piconcelli, E.; Schramm, M.

    2016-08-01

    Context. Active galactic nucleus (AGN) driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were at their maximum. Radiatively driven outflows are therefore believed to be common during this epoch. Aims: We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially resolved kinematics of the [O iii] λ5007 line in two targets which reveal the morphology and spatial extension of the outflows. Methods: We present SINFONI observations in the J band and the H + K band of five AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km s-1) and kiloparsec scale extended ionized outflows in at least three of our targets, using [O iii] λ5007 line kinematics tracing the AGN narrow line region. We estimate the total mass of the outflow, the mass outflow rate, and the kinetic power of the outflows based on theoretical models and report on the uncertainties associated with them. Results: We find mass outflow rates of ~1-10 M⊙/yr for the sample presented in this paper. Based on the high star formation rates of the host galaxies, the observed outflow kinetic power, and the expected power due to the AGN, we infer that both star formation and AGN radiation could be the dominant source for the outflows. The outflow models suffer from large uncertainties, hence we call for further detailed observations for an accurate determination of the outflow properties to confirm the exact source of these outflows.

  6. On the relation between X-ray absorption and optical extinction in AGN

    NASA Astrophysics Data System (ADS)

    Ordovás-Pascual, Ignacio; Mateos, Silvia; Carrera, Francisco J.; Wiersema, Klaas; Caccianiga, Alessandro; Severgnini, Paola; Della Ceca, Roberto; Ballo, Lucia; Moretti, Alberto

    2016-08-01

    According to the Unified Model of Active Galactic Nuclei (AGN), an X-ray unabsorbed AGN should appear as unobscured in the optical (Type-1) and viceversa (Type-2). However, there is an important fraction (10-30%) of AGN whose optical and X-ray classifications do not match. To provide insight into the origin of such apparent discrepancies, we have conducted two analyses: 1) a detailed study of the UV-to-near-IR emission of two X-ray unabsorbed Type-2 AGN drawn from the Bright Ultra-Hard XMM-Newton Survey (BUXS); 2) a statistical analysis of the optical obscuration and X-ray absorption properties of 159 Type-1 AGN drawn from BUXS to determine the distribution of dust-to-gas ratios in AGN over a broad range of luminosities and redshifts. In our works we have also determined the impact of contamination from the AGN hosts in the optical classification of AGNs. Our studies are already provided very exciting results such as the detection of objects with extreme dust-to-gas ratios, between 300-10000 times below the Galactic dust-to-gas ratio.

  7. Optical variability of the Kepler AGN

    NASA Astrophysics Data System (ADS)

    Edelson, Rick

    2014-01-01

    Kepler has opened a new era for the study of AGN optical variability, producing light curves with ~0.1% errors (for a ~15th magnitude source), 30 min sampling, >90% duty cycle and durations of years. Thanks to an intensive identification campaign, the number of Seyfert 1s/quasars monitored by Kepler rose from just one (Zw 229-15) in the first year to 37 by the time of May 2013 reaction wheel failure. We measured the optical power spectral density (PSD) functions of these Kepler AGN finding that that on timescales of ~6 hr to 1 month, the PSDs are typically well-fitted with a slop of ~-3, steeper than seen in the X-rays. In a few sources there is also evidence for a flattening at the longest timescales. We also find a broad correlation between rms variability and flux level. These results broadly support the model in which the optical fluctuations are due to vicious instabilities in the accretion disk. I will also present the light curve for W2R1926+42, the only rapidly variable BL Lac object known to be monitored by Kepler. With data covering over a year and sampling rates of 1-30 min, this may be the information-richest AGN light curve ever gathered at any wavelength. The PSD appears to bend from a slope of -2.6 to -1.2 on a ~7 hr timescale, but fits are formally unacceptable. These data indicate that the phenomenon of blazar "microvariability" (sporadic variations on timescales shorter than the ~12 hour window available from the ground) actually results from a combination of rapid, powerful variability interspersed with longer, relatively quiescent periods.

  8. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    SciTech Connect

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  9. String Theory, Unification and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Stelle, K. S.

    An overview is given of the way in which the unification program of particle physics has evolved into the proposal of superstring theory as a prime candidate for unifying quantum gravity with the other forces and particles of nature. A key concern with quantum gravity has been the problem of ultraviolet divergences, which is naturally solved in string theory by replacing particles with spatially extended states as the fundamental excitations. String theory turns out, however, to contain many more extended-object states than just strings. Combining all this into an integrated picture, called M-theory, requires recognition of the rôle played by a web of nonperturbative duality symmetries suggested by the nonlinear structures of the field-theoretic supergravity limits of string theory.

  10. Radio AGN signatures in massive quiescent galaxies out to z=1.5

    NASA Astrophysics Data System (ADS)

    Järvelä, Emilia

    2016-08-01

    Detection of gamma-rays from narrow-line Seyfert 1 galaxies (NLS1) by Fermi confirmed the presence of powerful relativistic jets in them, and thus challenged our understanding of active galactic nuclei (AGN). In the current AGN paradigm powerful relativistic jets are produced in massive elliptical galaxies with supermassive black holes. NLS1s differ from them significantly; they harbour lower mass black holes accreting at higher Eddington ratios, have preferably compact radio morphology, reside mostly in spiral galaxies, and were thought to be radio-quiet.Fermi's discovery invokes questions about the AGN evolution; what triggers and maintains the AGN activity, and what are the evolutionary lines of the different populations? It is also necessary to revise the AGN unification schemes to fit in NLS1s. They convolute the whole AGN scenario, but offer us a new look on the jet phenomena and will help us construct a more comprehensive big picture of AGN.Despite their importance, NLS1s are rather poorly studied as a class. For example, some NLS1s seem to be totally radio-silent, but a considerable fraction are radio-loud and thus probably host jets. This, along with other observational evidence, implies that they do not form a homogeneous class. However, it remains unclear what is triggering the radio loudness in some of them, but, for example, the properties of the host galaxy and the large-scale environment might play a role. Also the parent population of NLS1s remains an open question.We used various statistical methods, for example, multiwavelength correlations and principal component analysis to study a large sample of NLS1 sources. We will present the results and discuss the interplay between their properties, such as emission properties, black hole masses, large-scale environments, and their effect on radio loudness. We will also introduce the Metsähovi Radio Observatory NLS1 galaxy observing programme, which is the first one dedicated to systematical observations

  11. Computational Unification: a Vision for Connecting Researchers

    NASA Astrophysics Data System (ADS)

    Troy, R. M.; Kingrey, O. J.

    2002-12-01

    Computational Unification of science, once only a vision, is becoming a reality. This technology is based upon a scientifically defensible, general solution for Earth Science data management and processing. The computational unification of science offers a real opportunity to foster inter and intra-discipline cooperation, and the end of 're-inventing the wheel'. As we move forward using computers as tools, it is past time to move from computationally isolating, "one-off" or discipline-specific solutions into a unified framework where research can be more easily shared, especially with researchers in other disciplines. The author will discuss how distributed meta-data, distributed processing and distributed data objects are structured to constitute a working interdisciplinary system, including how these resources lead to scientific defensibility through known lineage of all data products. Illustration of how scientific processes are encapsulated and executed illuminates how previously written processes and functions are integrated into the system efficiently and with minimal effort. Meta-data basics will illustrate how intricate relationships may easily be represented and used to good advantage. Retrieval techniques will be discussed including trade-offs of using meta-data versus embedded data, how the two may be integrated, and how simplifying assumptions may or may not help. This system is based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, whose goals were to find an alternative to the Hughes EOS-DIS system and is presently offered by Science Tools corporation, of which the author is a principal.

  12. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  13. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  14. Plebanski action extended to a unification of gravity and Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Smolin, Lee

    2009-12-01

    We study a unification of gravity with Yang-Mills fields based on a simple extension of the Plebanski action to a Lie group G which contains the local Lorentz group. The Coleman-Mandula theorem is avoided because the dynamics has no global spacetime symmetry. This may be applied to Lisi’s proposal of an E8 unified theory, giving a fully E8 invariant action. The extended form of the Plebanski action suggests a new class of spin foam models.

  15. Interpreting the IR SED of z~0.3-2.8 IR-Luminous Galaxies and AGN Using Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Roebuck, Eric John; Sajina, Anna; Hayward, Christopher C.; Pope, Alexandra; Kirkpatrick, Allison; Hernquist, Lars E.; Yan, Lin

    2016-01-01

    We use three-dimensional hydrodynamical galaxy merger simulations to further investigate the nature of a sample of 342 24 μm-selected (ultra) luminous infrared galaxies at z~0.3-2.8. All of our sources have low-resolution Spitzer/IRS spectra -- the largest such sample outside the local universe. These spectra allow us to determine that our sample consists of a mixture of star forming galaxies (SFGs), AGN, and composites. We address the question of how well do empirical IR AGN fraction estimates trace the intrinsic AGN fraction (i.e. the AGN-to-total power in the galaxy prior to dust re-processing), including how they relate to galaxy properties such as merger stage, dust/gas content, and star formation rates. We do this by fitting the observed SEDs of our sample with theoretical SEDs based on GADGET hydrodynamic merger simulations additionally processed through the SUNRISE radiative transfer code. We additionally investigate systematic uncertainties associated with these quantities using the goodness of fits to our model library. The key findings are: 1) our simulation-based fits are in broad agreement with the empirical model-based fits, 2) much of the AGN fraction of LIR is missed if the AGN's contribution to heating the host galaxy dust is not accounted for, and 3) the IR AGN fraction traces the intrinsic AGN fraction up to the coalescence stage, however may underestimate the intrinsic AGN fraction post coalescence.

  16. Is AGN feedback necessary to form red elliptical galaxies?

    NASA Astrophysics Data System (ADS)

    Khalatyan, A.; Cattaneo, A.; Schramm, M.; Gottlöber, S.; Steinmetz, M.; Wisotzki, L.

    2008-06-01

    We have used the smoothed particle hydrodynamics (SPH) code GADGET-2 to simulate the formation of an elliptical galaxy in a group-size cosmological dark matter halo with mass Mhalo ~= 3 × 1012h-1Msolar at z = 0. The use of a stellar population synthesis model has allowed us to compute magnitudes, colours and surface brightness profiles. We have included a model to follow the growth of a central black hole and we have compared the results of simulations with and without feedback from active galactic nuclei (AGN). We have studied the interplay between cold gas accretion and merging in the development of galactic morphologies, the link between colour and morphology evolution, the effect of AGN feedback on the photometry of early-type galaxies, the redshift evolution in the properties of quasar hosts, and the impact of AGN winds on the chemical enrichment of the intergalactic medium (IGM). We have found that the early phases of galaxy formation are driven by the accretion of cold filamentary flows, which form a disc galaxy at the centre of the dark matter halo. Disc star formation rates in this mode of galaxy growth are about as high as the peak star formation rates attained at a later epoch in galaxy mergers. When the dark matter halo is sufficiently massive to support the propagation of a stable shock, the gas in the filaments is heated to the virial temperature, cold accretion is shut down, and the star formation rate begins to decline. Mergers transform the spiral galaxy into an elliptical one, but they also reactivate star formation by bringing gas into the galaxy. Without a mechanism that removes gas from the merger remnants, the galaxy ends up with blue colours, which are atypical for its elliptical morphology. We have demonstrated that AGN feedback can solve this problem even with a fairly low heating efficiency. Our simulations support a picture where AGN feedback is important for quenching star formation in the remnant of wet mergers and for moving them to

  17. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  18. Unification and explanation in early Kaluza-Klein theories

    NASA Astrophysics Data System (ADS)

    Muntean, Ioan Lucian

    Unifying distinct domains of phenomena is one of the most important non-empirical virtues of scientific theories. However, what counts as unification and what makes it important are philosophically controversial. I canvass two positions toward unification (the enthusiasts and the dissenters) as well as two methods to approach unification: the general approach and the specific approach based on case studies. Some philosophers take unification to be truth conducive (Friedman, Glymour, etc.) others to be central to scientific explanation (Kitcher) and still others find it to be typically neither (esp. Morrison). To make progress on these questions, attention should be paid to concrete, historical episodes. In my dissertation I tackle one of the most significant episodes in the history of physics, an episode that---oddly given how important the theory is now in the context of String Theory---has escaped historical and philosophical investigations or it has been under-investigated. That episode is the early attempt to unify gravity and electromagnetism within a five-dimensional spacetime by Kaluza (1921) and Klein (1926). This theory is philosophically interesting in its own light, but as the ancestor to current attempts to unify gravity with matter fields, it is rich with consequences for the contemporary foundations of physics. Morrison (2000) argues that many instances of unification are trivial, spurious or related neither to explanatory power, nor to scientific realism. Others have recently argued that unification in general is neither necessary, nor sufficient for explanation, although there may be some (weak) correlations between unification and explanation. Against this background I emphasize the novelty of my approach by making room for a new type of unification illustrated by Kaluza, and especially by Klein, in which unification is strongly related to explanation. Although some aspects of my case study are suggested in the philosophical literature, they are

  19. International Scientific Terminology and Neologisms in the Course of Unification.

    ERIC Educational Resources Information Center

    Stoberski, Zygmunt

    1979-01-01

    Presents a glossary of scientific neologisms, compiled by the International Committee For Unification of Terminological Neologisms. Entries are presented and defined in French, then glossed in various other languages. (AM)

  20. The Study of Relativistic AGN Jets and Experimental Survey of AGN Properties

    NASA Astrophysics Data System (ADS)

    Sabzali, V.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    AGN, their evolution and their relativistic jets were studied on the basis of data from multi-wavelength surveys. NRAO VLA Sky Survey (NVSS) and VLBI were used to study radio jets and radio continuum emission of AGN. A population of AGN will be selected and used in a future optical survey for their jets.

  1. Warped Supersymmetric Unification with Non-Unified Superparticle Spectrum

    SciTech Connect

    Nomura, Yasunori; Tucker-Smith, David; Tweedie, Brock

    2004-03-16

    We present a new supersymmetric extension of the standard model. The model is constructed in warped space, with a unified bulk symmetry broken by boundary conditions on both the Planck and TeV branes. In the supersymmetric limit, the massless spectrum contains exotic colored particles along with the particle content of the minimal supersymmetric standard model (MSSM). Nevertheless, the model still reproduces the MSSM prediction for gauge coupling unification and does not suffer from a proton decay problem. The exotic states acquire masses from supersymmetry breaking, making the model completely viable, but thereis still the possibility that these states will be detected at the LHC. The lightest of these states is most likely A_5^XY, the fifth component of the gauge field associated with the broken unified symmetry. Because supersymmetry is broken on the SU(5)-violating TeV brane, the gaugino masses generated at the TeV scale are completely independent of one another. We explore some of the unusual features that the superparticle spectrum might have as a consequence.

  2. LHC phenomenology of natural MSSM with non-universal gaugino masses at the unification scale

    NASA Astrophysics Data System (ADS)

    Abe, Hiroyuki; Kawamura, Junichiro; Omura, Yuji

    2015-08-01

    In this letter, we study collider phenomenology in the supersymmetric Standard Model with a certain type of non-universal gaugino masses at the gauge coupling unification scale, motivated by the little hierarchy problem. In this scenario, especially the wino mass is relatively large compared to the gluino mass at the unification scale, and the heavy wino can relax the fine-tuning of the higgsino mass parameter, so-called μ-parameter. Besides, it will enhance the lightest Higgs boson mass due to the relatively large left-right mixing of top squarks through the renormalization group (RG) effect. Then 125 GeV Higgs boson could be accomplished, even if the top squarks are lighter than 1 TeV and the μ parameter is within a few hundreds GeV. The right-handed top squark tends to be lighter than the other sfermions due to the RG runnings, then we focus on the top squark search at the LHC. Since the top squark is almost right-handed and the higgsinos are nearly degenerate, 2 b + E T miss channel is the most sensitive to this scenario. We figure out current and expected experimental bounds on the lightest top squark mass and model parameters at the gauge coupling unification scale.

  3. Is There an Obscured AGN in the Normal Galaxy IRASF01063-8034

    NASA Technical Reports Server (NTRS)

    Greenhill, Lincoln J.

    2005-01-01

    The XMM target for this program is ostensibly a "normal" galaxy, but the presence of water maser emission indicated that it may be an obscured AGN. Our primary goal is to test this hypothesis; detection hard X-ray emission and a reflection-dominated spectrum would indicate an AGN is present. Demonstration that the local universe contains obscured AGN is important to constraining models of the hard cosmic X-ray background, as is identification of efficient methods to locate them (e.g., ground-based detection of maser emission at microwave frequencies).

  4. Unification Yang-Mills Groups and Representations with CP as a Gauge Symmetry

    NASA Astrophysics Data System (ADS)

    Zhang, Huazhong

    We investigate more generally the possible unification Yang-Mills groups GYM and representations with CP as a gauge symmetry. Besides the possible Yang-Mills groups E8, E7, SO(2n + 1), SO(4n), SP(2n), G2 or F4 (or a product of them) which only allow self-contragredient representations, we present other unification groups GYM and representations which may allow CP as a gauge symmetry. These include especially SU(N) containing Weyl fermions and their CP conjugates from low energy spectra in a basic irreducible representation (IR). Such an example is the 496-dimensional basic IR (on antisymmetric tensors of rank two) of SU(32) containing SO(32) as a subgroup in the adjoint IR, or SU(248) in a fundamental IR containing E8 as a subgroup in the adjoint IR. Our consideration also leads to the construction of a physical operator (CP) intrinsically as an inner automorphism of order higher than two for the unification group. We have also generalized the possible groups as unification GYM to include nonsemisimple Lie groups with CP arising as a gauge symmetry. In this case with U(1) ideals in the GYM, we found that the UY(1) for weak hypercharge in the standard model or a U(1) gauge symmetry at low energies in general is traceless. Possible relevance to superstring theory is also briefly discussed. We expect that our results may open new alternatives for unified model building, especially with deeper or more generalized understanding of anomaly-free theories.

  5. A Viewing Angle-Kinetic Luminosity Unification Scheme for BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Georganopoulos, Markos; Marscher, Alan P.

    1998-10-01

    We propose a unified classification for BL Lac objects (BLs), focusing on the synchrotron peak frequency νs of the spectral energy distribution. The unification scheme is based on the angle Θ that describes the orientation of the relativistic jet and on the electron kinetic luminosity Λkin of the jet. We assume that Λkin scales with the size of the jet r in a self-similar fashion (Λkin ~ r2), as supported by observational data. The jets are self-similar in geometry and have the same pressure and median magnetic field at the inlet, independent of size. The self-similarity is broken for the highest energy electrons, which radiate mainly at high frequencies, since for large sources they suffer more severe radiative energy losses over a given fraction of the jet length. We calculate the optically thin synchrotron spectrum using an accelerating inner jet model based on simple relativistic gasdynamics and show that it can fit the observed infrared-to-X-ray spectrum of PKS 2155-304. We couple the accelerating jet model to the unification scheme and compare the results to complete samples of BLs. The negative apparent evolution of X-ray-selected BLs is explained as a result of positive evolution of the jet electron kinetic luminosity Λkin. We review observational arguments in favor of the existence of scaled-down accretion disks and broad emission-line regions in BLs. The proposed unification scheme can explain the lack of observed broad emission lines in X-ray-selected BLs, as well as the existence of those lines preferentially in luminous radio-selected BLs. Finally, we review observational arguments that suggest the extension of this unification scheme to all blazars.

  6. Disc outflows and high-luminosity true type 2 AGN

    NASA Astrophysics Data System (ADS)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  7. Feedback from AGN: The Kinetic/Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Melini, Gabriele; La Franca, Fabio; Fiore, Fabrizio

    2010-05-01

    We have measured the probability distribution function of the ratio RX = log L1.4/LX, where L1.4/LX = ν Lν(1.4 GHz)/LX(2-10 keV), between the 1.4 GHz and the unabsorbed 2-10 keV luminosities and its dependence on LX and z. We have used a complete sample of ~1800 hard X-ray selected AGN, observed in the 1.4 GHz band, cross-correlated in order to exclude FR II-type objects, and thus obtain a contemporaneous measure of the radio and X-ray emission. The distribution P(RX|LX,z) is shown in Figure 1. Convolution of the distribution P(RX|LX,z) with the 2-10 keV X-ray AGN luminosity function from La Franca et al. (2005) and the relations between radio power and kinetic energy from Best et al. (2006) and Willott et al. (1999) allows us to derive the AGN kinetic power and its evolution. As shown in Figure 1, our results are in good agreement with the predictions of the most recent models of galaxy formation and evolution (e.g., Croton et al. 2006), where AGN radio feedback is required to quench the star formation.

  8. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  9. Time Series Analysis of the UV Flickering in AGN

    NASA Technical Reports Server (NTRS)

    Robinson, Edward L.; Welsh, William F.

    2001-01-01

    Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability. We hoped to answer these specific questions: 1) What does the intrinsic flickering continuum spectrum look like? 2) What do the intrinsic flickering emission-line profiles look like? 3) What is the power spectrum of the flickering? 4) What is the wavelength dependence of the power spectrum? 5) Is the flickering spectrum timescale dependent? and 6) What do the high-order cross correlation functions look like? A short summary of the papers produced by this research is presented.

  10. LHC-scale left-right symmetry and unification

    NASA Astrophysics Data System (ADS)

    Arbeláez, Carolina; Romão, Jorge C.; Hirsch, Martin; Malinský, Michal

    2014-02-01

    We construct a comprehensive list of nonsupersymmetric standard model extensions with a low-scale left-right (LR)-symmetric intermediate stage that may be obtained as simple low-energy effective theories within a class of renormalizable SO(10) grand unified theories. Unlike the traditional "minimal" LR models many of our example settings support a perfect gauge coupling unification even if the LR scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model building conforming the basic constraints from the quark and lepton sector flavor structure, proton decay limits, etc. We pay special attention to the theoretical uncertainties related to the limited information about the underlying unified framework in the bottom-up approach, in particular, to their role in the possible extraction of the LR-breaking scale. We observe a general tendency for the models without new colored states in the TeV domain to be on the verge of incompatibility with the proton stability constraints.

  11. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 AGN and star formation by combining the galaxy evolution code PÉGASE.3 with an AGN torus model. We find that three components are necessary to reproduce the observed SEDs: an evolved and massive stellar component, a submm bright young starburst, and an AGN torus. We find that powerful radio galaxies form at very high-redshift, but experience episodic and important growth at 1 AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  12. A Sub-Arcsecond Mid-Infrared Survey of X-Ray-Selected AGN

    NASA Astrophysics Data System (ADS)

    Levenson, N. A.; Alonso-Herrero, A.; Packham, Chris; Los Piratas AGN Science Team

    2015-08-01

    Detailed studies of local active galactic nuclei (AGN) following X-ray selection yields significant measurements of the physical properties of the AGN and their host galaxies. In turn, the complete analysis of the nearby cases at high spatial resolution---to distinguish multiple physical components---and high signal-to-noise ratio informs broader surveys of more distant examples where such observations are not possible. We apply these methods in the Los Piratas survey, which emphasizes new observations at mid-infrared wavelengths obtained using CanariCam on the 10.4m Gran Telescopio Canarias. We measure intrinsic bolometric luminosity of the roughly 100 AGN in the sample using X-rays, ensuring a span of luminosity over a range of activity level (from low-ionization nuclei through Seyfert galaxies and quasars), optical type, and radio loudness. The mid-infrared observations at resolution of ~0.3arcsec correspond to typical spatial scales of 60 pc for the low-luminosity AGN and Seyferts and 400 pc for other types. We isolate the AGN emission that is reprocessed by dust in the central regions, which we model in a clumpy distribution. We distinguish this emission from the stellar contributions on larger scales. Across types, the AGN-heated dust emission is overall well-correlated with the X-ray flux, but stellar contributions can be significant on larger scales, especially at moderate AGN luminosity.

  13. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  14. The dust covering factor in AGN

    NASA Astrophysics Data System (ADS)

    Stalevski, Marko

    2016-08-01

    We undertook a critical investigation of a common estimator of the dust covering factor in active galactic nuclei (AGN). The infrared radiation emitted by the obscuring dusty structure ("the dusty torus") is nothing but a reprocessed fraction of the accretion disk emission, so the ratio of their luminosities (L_torus /L_AGN) should correspond to the fraction of the AGN sky obscured by dust. Using state-of-the-art Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. Using this grid of SEDs, we studied the relation between L_torus /L_AGN and the dust covering factor for different parameters of the torus. We found that in case of type 1 AGNs, due to the torus anisotropy, L_torus/L AGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs covering factors are always underestimated. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of these effects for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on L_AGN, with values in the range of approx. 0.6 ‑ 0.7. Our results suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys. We discuss the possible causes of this discrepancy and demonstrate that it is partially due to the presence of a Compton-thick AGN population, which is missed by X-ray surveys, but not by infrared.

  15. SU(2/1) gauge-Higgs unification

    NASA Astrophysics Data System (ADS)

    Loginov, E. K.

    2016-06-01

    We discuss a question whether the observed Weinberg angle and Higgs mass are calculable in the formalism based on a construction in which the electroweak gauge group SU(2) × U(1)Y is embedded in the graded Lie group SU(2/1). Here, we follow original works of Ne’eman and Fairlie believing that bosonic fields take their values in the Lie superalgebra and fermionic fields take their values in its representation space. At the same time, our approach differs significantly. The main one is that while for them the gauge symmetry group is SU(2/1), here we consider only symmetries generated by its even subgroup, i.e. symmetries of the standard electroweak model. The reason is that such formalism fixes the quartic Higgs coupling and at the same time removes the sign and statistics problems. The main result is that the presented model predicts values of the Weinberg angle and the Higgs mass correctly up to the two-loop level. Moreover, the model sets the unification scale coinciding with the electroweak scale and automatically describes the fermions correctly with the correct quark and lepton charges.

  16. SU(8) family unification with boson-fermion balance

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2014-08-01

    We formulate an SU(8) family unification model motivated by requiring that the theory should incorporate the graviton, gravitinos, and the fermions and gauge fields of the standard model, with boson-fermion balance. Gauge field SU(8) anomalies cancel between the gravitinos and spin ½ fermions. The 56 of scalars breaks SU(8) to SU(3)family × SU(5) × U(1)/Z5, with the fermion representation content needed for "flipped" SU(5) with three families, and with residual scalars in the 10 and /line{10} representations that break flipped SU(5) to the standard model. Dynamical symmetry breaking can account for the generation of 5 representation scalars needed to break the electroweak group. Yukawa couplings of the 56 scalars to the fermions are forbidden by chiral and gauge symmetries, so in the first stage of SU(8) breaking fermions remain massless. In the limit of vanishing gauge coupling, there are N = 1 and N = 8 supersymmetries relating the scalars to the fermions, which restrict the form of scalar self-couplings and should improve the convergence of perturbation theory, if not making the theory finite and "calculable." In an Appendix we give an analysis of symmetry breaking by a Higgs component, such as the (1, 1)(-15) of the SU(8) 56 under SU(8) ⊃ SU(3) × SU(5) × U(1), which has nonzero U(1) generator.

  17. SU(8) Family Unification with Boson Fermion Balance

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2015-03-01

    We formulate an SU(8) family unification model motivated by requiring that the theory should incorporate the graviton, gravitinos, and the fermions and gauge fields of the standard model, with boson.fermion balance. Gauge field SU(8) anomalies cancel between the gravitinos and spin 1/2 fermions. The 56 of scalars breaks SU(8) to SU(3)family×SU(5)×U(1)/Z5, with the fermion representation content needed for "flipped" SU(5) with three families, and with residual scalars in the 10 and overline {10} representations that break flipped SU(5) to the standard model. Dynamical symmetry breaking can account for the generation of 5 representation scalars needed to break the electroweak group. Yukawa couplings of the 56 scalars to the fermions are forbidden by chiral and gauge symmetries, so in the first stage of SU(8) breaking fermions remain massless. In the limit of vanishing gauge coupling, there are N = 1 and N = 8 supersymmetries relating the scalars to the fermions, which restrict the form of scalar self-couplings and should improve the convergence of perturbation theory, if not making the theory finite and "calculable." In an Appendix we give an analysis of symmetry breaking by a Higgs component, such as the (1, 1)(-15) of the SU(8) 56 under SU(8) ⊃ SU(3) × SU(5) × U(1), which has nonzero U(1) generator.

  18. Exact SU(5) Yukawa matrix unification in the general flavour violating MSSM

    NASA Astrophysics Data System (ADS)

    Iskrzyński, Mateusz; Kowalska, Kamila

    2015-04-01

    We investigate the possibility of satisfying the SU(5) boundary condition Y d = Y eT at the GUT scale within the renormalizable R-parity conserving Minimal Supersymmetric Standard Model (MSSM). Working in the super-CKM basis, we consider non-zero flavour off-diagonal entries in the soft SUSY-breaking mass matrices and the A-terms. At the same time, the diagonal A-terms are assumed to be suppressed by the respective Yukawa couplings. We show that a non-trivial flavour structure of the soft SUSY-breaking sector can contribute to achieving precise Yukawa coupling unification for all three families, and that the relevant flavour-violating parameters are , , and A {12/21/ d }. We indicate the parameter space regions where the Yukawa unification condition can be satisfied, and we demonstrate that it is consistent with a wide set of experimental constraints, including flavour and electroweak observables, Higgs physics and the LHC bounds. However, as a consequence of the down-electron Yukawa unification requirement, the MSSM vacuum in our scenario is metastable, though long-lived. We also point out that the lightest neutralino needs to be almost purely bino-like and relatively light, with the mass in the ballpark of 250 GeV. Since the proper value of the dark matter relic density is in this case obtained through co-annihilation with a sneutrino, at least one generation of sleptons must be light. Such a clear experimental prediction makes the flavour-violating SU(5) Yukawa unification scenario fully testable at the LHC TeV with the 3-lepton searches for electroweakino production.

  19. A radio view of high-energy emitting AGNs

    NASA Astrophysics Data System (ADS)

    Schulz, Robert Frank

    2016-07-01

    Active galactic nuclei (AGNs) are among the most energetic objects in the Universe. These galaxies that are dominated in part or even throughout the electromagnetic spectrum by emission from their central, compact region. AGNs are extensively studied by multi-wavelength observations. In the standard picture, the main driver of an AGN is a supermassive black hole (SMBH) in its centre that is surrounded by an accretion disk. Perpendicular to the disk, in the vicinity of highly magnetized SMBH relativistic outflows of plasma, so-called jets, can form on either side that can reach far beyond the host galaxy. Only about 10% of all AGNs are dominated by emission from these jets due to relativistic beaming effects and these so-called blazars dominate the extragalactic gamma-ray sky. It is commonly accepted that the low-energy emission (radio to UV/X-ray) is due to synchrotron emission from the jet. The high-energy emission is considered to stem from inverse-Compton scattering of photons on the jet particles, but different sources for these photons are discussed (internal or external to the AGN) and other models for the high-energy emission have also been proposed. The nature of the high-energy emission is strongly linked to the location of the emission region in the jet which requires a detailed understanding of the formation and evolution of jets. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-pc scales, close to their formation region. In this thesis, I focus on the properties of three different AGNs, IC 310, PKS2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large monitoring programmes MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) and

  20. AGN Clustering in the Local Universe: An Unbiased Picture from Swift-BAT

    SciTech Connect

    Cappelluti, N.; Ajello, M.; Burlon, D.; Krumpe, M.; Miyaji, T.; Bonoli, S.; Greiner, J.; /Garching, Max Planck Inst., MPE

    2011-08-11

    We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-correlation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r{sub 0} = 5.56{sup +0.49}{sub -0.43} Mpc/h and a slope {gamma} = 1.64{sup -0.08}{sub -0.07}. We also measured the auto-correlation function of Tyep I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are {approx} log(M{sub DMH) {approx} 12-14 h{sup -1}M/M{sub {circle_dot}} which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime {tau}{sub AGN} {approx}0.7 Gyr, it is powered by SMBH with mass M{sub BH} {approx}1-10x10{sup 8} M{sub {circle_dot}} and accreting with very low efficiency, log({epsilon}){approx}-2.0>. We also conclude that local AGN galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10{sup 10} h{sup -1}M{sub {circle_dot}}. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement.

  1. The radio luminosity function and redshift evolution of radio-mode and quasar-mode AGN

    NASA Astrophysics Data System (ADS)

    Pracy, Mike

    2016-08-01

    The properties of the AGN population indicate that there are two fundamentally different accretion modes operating. In the quasar-mode, material is accreted onto the supermassive black hole via a small, thin, optically luminous accretion disc. Accretion in this mode is recognisable by emission lines in the optical spectrum. However, there is a population of AGN observable only by their radio emission and without optical emission lines. These radio-mode AGN are likely powered by radiatively inefficient accretion from a hot gas halo. I will describe the cosmic evolution of these two populations via radio luminosity functions. The radio luminosity functions are constructed from a new survey of over 4000 radio galaxies out to z=1, all with confirmed redshifts and their accretion mode classified from their optical spectra. This is 20 times larger than the only other survey used to make such a measurement. The radio-mode AGN population displays no statistically significant evolution in space density out to redshift z=1. In contrast the quasar mode AGN exhibits rapid evolution in space density, increasing by a factor of 8 over the same redshift range. The characteristic break in the radio luminosity function occurs at a significantly higher power for the quasar-mode AGN in comparison to the radio-mode AGN and we demonstrate this is consistent with the two populations representing fundamentally different accretion modes. The radio luminosity function is used to estimate the total amount of mechanical energy available for radio mode feedback as a function of redshift, and is found to be in good agreement with cosmological models and previous measurements. Again, by separating by accretion mode, the previously estimated increase in available mechanical energy per unit volume out to z=1 (approximately a factor of 2) can be attributed to the rapid evolution of the quasar-mode AGN, while for the classical radio-mode AGN the total mechanical energy output remains roughly

  2. SWIFT BAT Survey of AGN

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  3. Toward realistic gauge-Higgs grand unification

    NASA Astrophysics Data System (ADS)

    Furui, Atsushi; Hosotani, Yutaka; Yamatsu, Naoki

    2016-09-01

    The SO(11) gauge-Higgs grand unification in the Randall-Sundrum warped space is presented. The 4D Higgs field is identified as the zero mode of the fifth-dimensional component of the gauge potentials, or as the fluctuation mode of the Aharonov-Bohm phase θ along the fifth dimension. Fermions are introduced in the bulk in the spinor and vector representations of SO(11). SO(11) is broken to SO(4)×SO(6) by the orbifold boundary conditions, which is broken to SU2×U1×SU3 by a brane scalar. Evaluating the effective potential V(θ), we show that the electroweak symmetry is dynamically broken to U1. The quark-lepton masses are generated by the Hosotani mechanism and brane interactions, with which the observed mass spectrum is reproduced. Proton decay is forbidden thanks to the new fermion number conservation. It is pointed out that there appear light exotic fermions. The Higgs boson mass is determined with the quark-lepton masses given; however, it turns out to be smaller than the observed value.

  4. AGN Zoo and Classifications of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  5. Supernovae and AGN Driven Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Nath, Biman B.

    2013-01-01

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v_\\star ˜ (\\dot{E} / 2 \\dot{M})^{1/2} describes the effect of starburst activity, with \\dot{E} and \\dot{M} as energy and mass injection rate in a central region of radius R; (2) v • ~ (GM •/2R)1/2 for the effect of a central black hole of mass M • on gas at distance R; and (3) v_{s} =(GM_h / 2 {C}r_s)^{1/2}, which is closely related to the circular speed (vc ) for an NFW halo, where rs is the halo scale radius and {C} is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v 2 sstarf + 6(Γ - 1)v • 2 - 4v 2 s )1/2, where Γ is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 1011.5 M ⊙ <= Mh <= 1012.5 M ⊙ galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is ~400-1000 km s-1, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds >~ 1000 km s-1. We also find that the ratio [2v 2 sstarf - (1 - Γ)v • 2]/v 2 c dictates the amount of gas lost through winds. Used in conjunction with an appropriate relation between M • and Mh and an appropriate opacity of dust grains in infrared (K band), this ratio has the attractive property of being minimum at a certain halo

  6. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  7. Grand unification, axion, and inflation in Intermediate Scale Supersymmetry

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Nomura, Yasunori; Shirai, Satoshi

    2014-06-01

    A class of supersymmetric grand unified theories is introduced that has a single scale below the cutoff, that of the supersymmetry breaking masses . For a wide range of the dimensionless parameters, agreement with the observed mass of the Higgs boson determines ~ 109-1013 GeV, yielding Intermediate Scale Supersymmetry. We show that within this framework it is possible for seesaw neutrino masses, axions, and inflation to be described by the scale m, offering the possibility of a unified origin of disparate phenomena. Neutrino masses allowing for thermal leptogenesis can be obtained, and the axion decay constant lies naturally in the range f a ~ 109-1011 GeV, consistent with a recent observational suggestion of high scale inflation. A minimal SU(5) model is presented that illustrates these features. In this model, the only states at the grand unified scale are those of the heavy gauge supermultiplet. The grand unified partners of the Higgs doublets have a mass of order m, leading to the dominant proton decay mode p → K +, which may be probed in upcoming experiments. Dark matter may be winos, with mass environmentally selected to the TeV scale, and/or axions. Gauge coupling unification is found to be successful, especially if the wino is at the TeV scale.

  8. VizieR Online Data Catalog: Catalog of Type-1 AGNs from SDSS-DR7 (Oh+, 2015)

    NASA Astrophysics Data System (ADS)

    Oh, K.; Yi, S. K.; Schawinski, K.; Koss, M.; Trakhtenbrot, B.; Soto, K.

    2015-08-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z<0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII]λ5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles. (2 data files).

  9. HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs

    SciTech Connect

    Hickox, Ryan C.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Brodwin, Mark; Narayan, Ramesh; Kenter, Almus; Caldwell, Nelson; Anderson, Michael E.; Kochanek, Christopher S.; Eisenstein, Daniel; Jannuzi, Buell T.; Dey, Arjun; Brown, Michael J. I.; Stern, Daniel; Eisenhardt, Peter R.; Gorjian, Varoujan; Cool, Richard J.

    2009-05-01

    We explore the connection between different classes of active galactic nuclei (AGNs) and the evolution of their host galaxies, by deriving host galaxy properties, clustering, and Eddington ratios of AGNs selected in the radio, X-ray, and infrared (IR) wavebands. We study a sample of 585 AGNs at 0.25 < z < 0.8 using redshifts from the AGN and Galaxy Evolution Survey (AGES). We select AGNs with observations in the radio at 1.4 GHz from the Westerbork Synthesis Radio Telescope, X-rays from the Chandra XBooetes Survey, and mid-IR from the Spitzer IRAC Shallow Survey. The radio, X-ray, and IR AGN samples show only modest overlap, indicating that to the flux limits of the survey, they represent largely distinct classes of AGNs. We derive host galaxy colors and luminosities, as well as Eddington ratios, for obscured or optically faint AGNs. We also measure the two-point cross-correlation between AGNs and galaxies on scales of 0.3-10 h {sup -1} Mpc, and derive typical dark matter halo masses. We find that: (1) radio AGNs are mainly found in luminous red sequence galaxies, are strongly clustered (with M {sub halo} {approx} 3 x 10{sup 13} h {sup -1} M {sub sun}), and have very low Eddington ratios {lambda} {approx}< 10{sup -3}; (2) X-ray-selected AGNs are preferentially found in galaxies that lie in the 'green valley' of color-magnitude space and are clustered similar to the typical AGES galaxies (M {sub halo} {approx} 10{sup 13} h {sup -1} M {sub sun}), with 10{sup -3} {approx}< {lambda} {approx}< 1; (3) IR AGNs reside in slightly bluer, slightly less luminous galaxies than X-ray AGNs, are weakly clustered (M {sub halo} {approx}< 10{sup 12} h {sup -1} M {sub sun}), and have {lambda}>10{sup -2}. We interpret these results in terms of a simple model of AGN and galaxy evolution, whereby a 'quasar' phase and the growth of the stellar bulge occurs when a galaxy's dark matter halo reaches a critical mass between {approx}10{sup 12} and 10{sup 13} M {sub sun}. After this event

  10. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    SciTech Connect

    Ajello, M.; Alexander, D.M.; Greiner, J.; Madejski, G.M.; Gehrels, N.; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  11. Unification of Binary Star Ephemeris Solutions

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; Van Hamme, W.

    2014-01-01

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  12. Unification of binary star ephemeris solutions

    SciTech Connect

    Wilson, R. E.; Van Hamme, W. E-mail: vanhamme@fiu.edu

    2014-01-10

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  13. Hard X-ray spectral properties of distant AGN in the NuSTAR surveys

    NASA Astrophysics Data System (ADS)

    Del Moro, Agnese

    2016-08-01

    I will present a study on the average broad X-ray band (~0.5-30 keV) spectral properties of the NuSTAR sources detected in the ECDF-S, EGS and COSMOS fields. Constructing the rest-frame composite spectra of AGN in different hydrogen column density (NH) and 10-40 keV luminosity bins, using Chandra and NuSTAR data, we investigate the typical spectral parameters of the AGN population, such as the photon index, NH, strength of the iron emission line (~6.4 keV) and of the Compton reflection at ~20-30 keV. Placing constraints on the reflection fraction (R) is of particular importance for the synthesis models of the cosmic X-ray background (CXB), as this parameter is strongly linked with the fraction of Compton-thick AGN needed to fit the CXB spectrum. Thanks to its sensitivity at ~20-30 keV, NuSTAR allows for the first time, to directly place such constraints for non-local AGN. We find typical reflection fractions of R~1-1.5, consistent the AGN in the local Universe, with a tentative evidence for the most obscured AGN to have, on average, stronger Compton reflection compared to unobscured AGN. Moreover, contrary to previous works, we do not find significant evidence for a decrease of the reflection strength with luminosity for typical Γ=1.8-1.9. Our results support CXB models that require a relatively small fraction of CT AGN, of the order of ~10-15%.

  14. What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.

  15. Quasar Unification Via Disk Winds: From Phenomenology to Physics

    NASA Astrophysics Data System (ADS)

    Knigge, C.

    2015-09-01

    I will give an overview of a collaborative project aimed at testing the viability of QSO unification via accretion disk winds. In this scenario, most of the characteristic spectral features of QSOs are formed in these outflows. More specifically, broad absorption lines (BALs) are produced for sight lines within the outflow, while broad emission lines (BELs) are observed for other viewing angles. In order to test these ideas, we use a state-of- the-art Monte Carlo radiative transfer and photoionization code to predict emergent spectra for a wide range of viewing angles and quasar properties (black hole mass, accretion rate, X-ray luminosity, etc). It turns out to be relatively straightforward to produce BALs, but harder to obtain sufficiently strong BELs. We also find that it is easy to overionize the wind with realistic X-ray luminosities. In addition, we are using our code to test and improve hydrodynamic disk wind models for quasars. So far, we have been able to demonstrate that the treatment of ionization in existing hydrodynamic models of line-driven disk winds is too simplistic to yield realistic results: the modelled outflows would be strongly overionized and hence would not feel the line-driving forces that are asssumed to produce them. We have therefore embarked on an effort to model line-driven disk winds self-consistently by linking a hydrodynamics code with our ionization and radiative transfer code. Finally, we can also predict the reverberation signatures produced by disk winds, which can be directly compared to the results of the latest reverberation mapping campaigns.

  16. Looking for the broad emission lines in AGN2 with deep NIR spectroscopy and the measure of the mass of Intermediate Mass BH

    NASA Astrophysics Data System (ADS)

    Onori, Francesca; La Franca, Fabio; Ricci, Federica

    According to the current models of galaxy evolution, in a hierarchical cosmology low mass Black Holes (10 (4) - 10 (7) M_⊙) at low redshift contain clues about the formation of the first Black Holes and Galaxies. Moreover, as they extend the dynamic range of the BH-mass/galaxy scaling relations to extreme values, they could be very useful in constraining the AGN/Galaxy co-evolutionary models. In the past years, in the framework of the verification of the AGN unified model, there have been several attempts to detect faint broad emission lines in type 2 AGN with both NIR and polarised spectroscopy. We here present the new results from a systematic study, performed using deep NIR (VLT and LBT) spectroscopy, of about 50 AGN2, drawn from the complete SWIFT/BAT 22-month had X-ray selected sample. A new virial relation able to measure the BH mass using the broad component of the Paschenbeta line will be also presented. Thanks to the above relation we have been able to directly measure, when the BLR has been detected, the BH mass of type 2 AGNs, finding that AGN2 show on average lower masses than the AGN1 population. The implications to the AGN unified model and AGN/galaxy co-evolution scenarios will be discussed.

  17. Dual AGNs in Mergers: An X-ray and IR investigation

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Secrest, Nathan; Rothburg, Barry; Ellison, Sara L.; McNulty, Paul

    2016-01-01

    Since the vast majority of galaxies contain supermassive black holes (SMBHs) and galaxy interactions trigger nuclear gas accretion, a direct consequence of the hierarchical model of galaxy formation would be the existence of binary active galactic nuclei (AGNs). The existence, frequency, and characteristics of such binary AGNs have important astrophysical implications on the SMBH mass function, the interplay between SMBHs and the host galaxy, and the M-sigma relation. Despite decades of searching, and strong theoretical reasons that they should exist, observationally confirmed cases of binary AGNs are extremely rare, and most have been discovered serendipitously. Using the all-sky WISE survey, we identified a population of over one hundred strongly interacting galaxies that display extreme red mid-infrared colors thus far exclusively associated in extragalactic sources with powerful AGNs. In this talk, I will summarize follow-up X-ray and near-IR spectroscopic observations of this population that reveal a population of optically quiescent dual AGNs at kpc scales. These observations demonstrate that mid_IR surveys are an ideal pre-selection strategy in finding dual AGNs in the most advanced mergers.

  18. Cosmic Ray Generation by Massive Binary Black Hole in AGN

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav I.

    A model of nonstationary giant bow shocks produced by a supersonic orbital motion of a gravitationally bound massive binary black hole in the dense and highly inhomegeneous environment of the central Broad line Region (BLR) of AGN is proposed. The environment necessary for shocks generation is provided by numerous short-living clouds of dense plasma which are continuously reproduced by destructive collissions of fast moving stars in a very compact central stellar cluster of AGN. Some part of the gravitational energy of supersonically orbiting massive binary black hole transforms into the shock wave and then into the broad -range electromagnetic radiation up to the high -energy gamma radiation and the energetic cosmic ray particles. The orbit of a binary is evolutionary contracting due to a frictional drag in a dense plasma until the gravitational radiation becomes more influential. The model provide also the suitable conditions for the acceleration of cosmic ray protons up to the ultra-high energies under the realistic parameters of a massive binary black hole and the BLR in AGN.

  19. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  20. The Multiwavelength AGN Population and the X-ray Background

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, Claudia M.; Schawinski, Kevin; Simmons, Brooke D.; Natarajan, Priyamvada; Volonteri, Marta

    2014-07-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (L X ~ 1044 erg/s) sources (Seyfert-type AGN), at z~ 0.5-1 and in heavily obscured but Compton-thin, NH ~ 1023cm-2, systems. However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We further investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~ 0 to z~ 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth. Finally, we constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. We estimate an accreted mass density <1000 M⊙Mpc-3 at z~ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations.

  1. The Evolution of Obscuration in AGN

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, M.; Virani, S.

    2006-09-01

    One fundamental ingredient in our understanding of the AGN population is the ratio of obscured to unobscured AGN and whether this ratio depends on other parameters like intrinsic luminosity or redshift. Observationally, deep X-ray surveys found that the obscured AGN fraction depends on luminosity. However, the dependence on redshift is less clear. In this work, we constructed the largest sample to date of AGN selected in hard X-rays, containing a total of 1229 sources, 631 of them obscured, with a high spectroscopic completeness in order to study the possible dependence of the fraction of obscured sources with redshift and/or luminosity. We confirm that this fraction decreases with increasing luminosity as previously reported and found that at the same time it increases with increasing redshift. This is the first time that this evolution is significantly detected using only optical spectroscopy to separate obscured and unobscured AGN. Additionally, we use the spectral shape and intensity of the X-ray background as a separate constraint on the evolution of the obscured AGN fraction finding consistent results. This result can be interpreted as an evolution in the location of the obscuration, from the central parsec-scale region (the torus) at low redshift to kiloparsec scales (the host galaxy) at high redshift, as it is known that most galaxies contained more dust in the past. Using these results, we calculate the integrated bolometric AGN emission finding it to be at most 5% of the total extragalactic light. Hence, while AGN contribute most of the light at X-ray wavelengths, they constitute only a small fraction of the integrated extragalactic light. We thank the support of the Centro de Astrof\\'{\\i}sica FONDAP and from NASA/{\\it INTEGRAL} grant NNG05GM79G.

  2. First Detections of Compact AGN-triggered Radio Cores in RQ AGNs in the ECDFS

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Maini, A.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-08-01

    The mechanism triggering the radio emission in Radio-Quiet (RQ) Active Galactic Nuclei (AGN), found to be a relevant component of the faint radio population in deep fields, is hotly debated. Most RQ AGNs are unresolved or barely resolved at a few arcsec scale, comparable to the host galaxy size. RQ AGNs have also been found to share many properties with Star Forming Galaxies (SFG). They have similar radio luminosities and similar optical- /infrared-to-radio flux ratios. Their radio luminosity functions show similar evolutionary trends, and their host galaxies have similar colours, optical morphologies and stellar masses. For all these reasons it was concluded that the radio emission in such RQ AGNs is mainly triggered by star formation (SF). However in the local Universe (z<0.5) it is well known that both AGN and SF processes can contribute to the total radio emission in RQ AGNs (see e.g., Seyfert 2 galaxies), and there is growing evidence that composite SF/AGN systems are common at mid to high redshift (z>1-2). We used the Australian Long Baseline Array to observe a number of RQ AGNs in the Extended Chandra Deep Field South (ECDFS), and we detected compact, high-surface-brightness radio cores in some of them. Our pilot study shows that at least some of the sources classified as radio quiet contain an AGN that can contribute significantly (~50% or more) to the total radio emission. This is a first direct evidence of the presence of such AGN-triggered radio emission in RQ AGNs at cosmological redshifts.

  3. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  4. Educational Systems and Rising Inequality: Eastern Germany after Unification

    ERIC Educational Resources Information Center

    von Below, Susanne; Powell, Justin J. W.; Roberts, Lance W.

    2013-01-01

    Educational systems considerably influence educational opportunities and the resulting social inequalities. Contrasting institutional regulations of both structures and contents, the authors present a typology of educational system types in Germany to analyze their effects on social inequality in eastern Germany after unification. After 1990, the…

  5. Gauge coupling unification and light exotica in string theory.

    PubMed

    Raby, Stuart; Wingerter, Akin

    2007-08-01

    In this Letter we consider the consequences for the CERN Large Hadron Collider of light vectorlike exotica with fractional electric charge. It is shown that such states are found in orbifold constructions of the heterotic string. Moreover, these exotica are consistent with gauge coupling unification at one loop, even though they do not come in complete multiplets of SU(5).

  6. A method for determining AGN accretion phase in field galaxies

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Martinović, Nemanja; Sinha, Manodeep

    2016-09-01

    Recent observations of active galactic nucleus (AGN) activity in massive galaxies (log M*/ M⊙ > 10.4) show the following: (1) at z < 1, AGN-hosting galaxies do not show enhanced merger signatures compared with normal galaxies, (2) also at z < 1, most AGNs are hosted by quiescent galaxies and (3) at z > 1, the percentage of AGNs in star-forming galaxies increases and becomes comparable to the AGN percentage in quiescent galaxies at z ˜ 2. How can major mergers explain AGN activity in massive quiescent galaxies that have no merger features and no star formation to indicate a recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger-triggered AGN activity is consistent with the observations. By distinguishing between `peak' AGNs (recently merger-triggered and hosted by star-forming galaxies) and `faded' AGNs (merger-triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star-forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z < 1, the only AGNs left to be observed are the ones triggered by old mergers that are now in the declining phase of their nuclear activity, hosted by quiescent galaxies. As we go towards higher redshifts, the galaxy merger rate increases and the percentages of `peak' AGNs and `faded' AGNs become comparable.

  7. The AGN Population and the Cosmic X-ray Background

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, C. Meg; Schawinski, Kevin

    2015-08-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (Lx~1044 erg/s) sources (Seyfert-type AGN), at z~0.5-1 and in heavily obscured but Compton-thin, NH~1023 cm-2, systems.However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. Using a combination of X-ray stacking and multi wavelength selection techniques we constrain the amount of black hole accretion as a function of cosmic history, from z~0 to z~6. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations.We finally investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~0 to z~3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth.

  8. Cadenced IRAC Monitoring of Infrared-Variable AGNs, Part II

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew; Fouesneau, Morgan; Hora, Joseph; Krick, Jessica; Smith, Howard; Surace, Jason

    2008-03-01

    We have analyzed IRAC imaging data from all 97 Spitzer visits to a very well-studied field, the IRAC Dark Calibration Field (IRAC-CF) near the north ecliptic pole. With this extensive dataset we have already identified a unique sample of 30 IR-variable galaxies which we are now working to characterize with respect to variability amplitudes and timescales, panchromatic SEDs, and host morphologies, among other quantities. Unfortunately, the continual change in spacecraft roll angle means that our sources are typically observed for at most six months at a time by each IRAC FOV in succession -- in other words, the visibility windows are exactly out of phase. Thus the existing data, despite the fact that they extend over more than four years, present large, unavoidable gaps that frustrate the time-delay analysis we wish to perform on exactly the timescales known to be common in active galaxies. This has only changed beginning in 2007 July: since that time cadenced IRAC observations have been carried out in synchrony with the IRAC-CF dark-calibration observations as part of our approved Cycle-4 program (PID 40553). Here we are proposing to continue this successful AGN monitoring campaign until the end of the cryogenic mission. The resulting timelines (covering 1500 days thus far and expected to run ultimately to some 2200+ days), will be a unique legacy of the Spitzer mission. This dataset, especially for the sizable, unbiased AGN sample we now have, holds unique promise for measuring the colors and temperatures of IR-varying AGN, and will have much to say about the underlying physical models of the infrared AGN emission. Accordingly we ask for just 8 h to gather IRAC photometry in the temporal gaps that would otherwise accrue in Cycle 5.

  9. Triggering star formation by both radiative and mechanical AGN feedback

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gan, Zhao-Ming; Xie, Fu-Guo

    2013-08-01

    We perform two dimensional hydrodynamic numerical simulations to study the positive active galactic nucleus (AGN) feedback which triggers, rather than suppresses, star formation. Recently, it was shown by Nayakshin et al. and Ishibashi et al. that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure, respectively. Mass outflow is ubiquitous in this astrophysical context, and radiation pressure is also important if the AGN is luminous. For the first time in this subject, we incorporate both mass outflow feedback and radiative feedback into our model. Consequently, the ISM is shocked into shells by the AGN feedback, and these shells soon fragment into clumps and filaments because of Rayleigh-Taylor and thermal instabilities. We have two major findings: (1) the star formation rate can indeed be very large in the clumps and filaments. However, the resultant star formation rate density is too large compared with previous works, which is mainly because we ignore the fact that most of the stars that are formed would be disrupted when they move away from the galactic center. (2) Although radiation pressure feedback has a limited effect, when mass outflow feedback is also included, they reinforce each other. Specifically, in the gas-poor case, mass outflow is always the dominant contributor to feedback.

  10. Are the variability properties of the Kepler AGN light curves consistent with a damped random walk?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-08-01

    We test the consistency of active galactic nuclei (AGN) optical flux variability with the damped random walk (DRW) model. Our sample consists of 20 multiquarter Kepler AGN light curves including both Type 1 and 2 Seyferts, radio-loud and -quiet AGN, quasars, and blazars. Kepler observations of AGN light curves offer a unique insight into the variability properties of AGN light curves because of the very rapid (11.6-28.6 min) and highly uniform rest-frame sampling combined with a photometric precision of 1 part in 105 over a period of 3.5 yr. We categorize the light curves of all 20 objects based on visual similarities and find that the light curves fall into five broad categories. We measure the first-order structure function of these light curves and model the observed light curve with a general broken power-law power spectral density (PSD) characterized by a short-time-scale power-law index γ and turnover time-scale τ. We find that less than half the objects are consistent with a DRW and observe variability on short time-scales (˜2 h). The turnover time-scale τ ranges from ˜10-135 d. Interesting structure function features include pronounced dips on rest-frame time-scales ranging from 10-100 d and varying slopes on different time-scales. The range of observed short-time-scale PSD slopes and the presence of dip and varying slope features suggests that the DRW model may not be appropriate for all AGN. We conclude that AGN variability is a complex phenomenon that requires a more sophisticated statistical treatment.

  11. Nebular emission from AGN in the ultraviolet/optical: diagnostics of the ionizing source and gas properties

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2016-08-01

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, forthcoming facilities such as JWST and the E-ELT, will provide rest-frame ultraviolet and optical spectra of the very distant AGN. To lay the groundwork for the interpretation of these revolutionary datasets, we have recently computed new photoionization models of the narrow-line emitting regions (NLR) of AGN and combined them with similar models of the nebular emission from star-forming galaxies. In this talk, I will first describe how new ultraviolet and standard optical spectral diagnostics allow one to distinguish between nuclear activity and star formation. I will then explain how predictions of AGN nebular emission can be best used to understand the physical properties of the AGN NLR gas. In particular, I will present recent results from a study on one of the most comprehensive set of optical spectra (from VIMOS/VLT) sampling the rest-frame ultraviolet range of ~90 type 2 AGN (1.5 < z < 3), drawn from the z-COSMOS deep survey. To conclude, I will show how the implementation of AGN photoionization calculations in an innovative Bayesian fitting code can help us best interpret current, and future, spectro-photometric data on active galaxies.

  12. Germany Since Unification. Workshop Leader's Manual. An Introduction to Social Studies Instructional Resource Materials for Teaching about Germany Since Unification.

    ERIC Educational Resources Information Center

    Blankenship, Glen

    This manual is designed to offer support for the instructional resources guides on "Germany since Unification." It provides the basis for a full-day inservice training session on the use of those materials. The format can be modified to meet the needs of leaders, audiences, and time frames. Using the materials developed by teachers and sponsored…

  13. Early evolution stage of AGN

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, M.; Labiano, A.; Siemiginowska, A.; Guainazzi, M.; Gawroński, M.

    2015-03-01

    Radio sources are divided into two distinct morphological groups of objects: Fanaroff-Riley type I and type II sources. There is a relatively sharp luminosity boundary between these at low frequency. The nature of the FR division is still an open issue, as are the details of the evolutionary process in which younger and smaller GHz-peaked spectrum (GPS) and compact steep spectrum (CSS) sources become large-scale radio structures. It is still unclear whether FRII objects evolve to become FRIs, or whether a division has already occurred amongst CSS sources and some of these then become FRIs and some FRIIs. We explored evolution scenarios of AGNs using new radio, optical and X-ray data of unstudied so far Low Luminosity Compact (LLC) sources. We suggest that the determining factors of the further evolution of compact radio objects could occur at subgalactic (or even nuclear) scales, or they could be related to the radio jet - interstellar medium (ISM) interactions and evolution. Our studies show that the evolutionary track could be related to the interaction, strength of the radio source and excitation levels of the ionized gas instead of the radio morphology of the young radio source.

  14. Gas phase synthesis and reactivity of Agn+ and Ag(n-1)H+ cluster cations.

    PubMed

    Khairallah, George N; O'Hair, Richard A J

    2005-08-21

    Multi-stage mass spectrometry (MSn) on [(M + Ag - H)x + Ag]+ precursor ions (where M = an amino acid such as glycine or N,N-dimethylglycine) results in the formation of stable silver (Ag3+, Ag5+ and Ag7+) and silver hydride (Ag2H+, Ag4H+ and Ag6H+) cluster cations in the gas phase. Deuterium labelling studies reveal that the source of the hydride can be either from the alpha carbon or from one of the heteroatoms. When M = glycine, the silver cyanide clusters Ag4CN+ and Ag5(H,C,N)+ are also observed. Collision induced dissociation (CID) and DFT calculations were carried out on each of these clusters to shed some light on their possible structures. CID of the Agn+ and Ag(n-1)H+ clusters generally results in the formation of the same Ag(n-2)+ product ions via the loss of Ag2 and AgH respectively. DFT calculations also reveal that the Agn+ and Ag(n-1)H+ clusters have similar structural features and that the Ag(n-1)H+ clusters are only slightly less stable than their all silver counterparts. In addition, Agn+ and Ag(n-1)H+ clusters react with 2-propanol and 2-butylamine via similar pathways, with multiple ligand addition occurring and a coupled deamination-dehydration reaction occurring upon condensation of a third (for Ag2H+) or a fourth (for all other silver clusters) 2-butylamine molecule onto the clusters. Taken together, these results suggest that the Agn+ and Ag(n-1)H+ clusters are structurally related via the replacement of a silver atom with a hydrogen atom. This replacement does not dramatically alter the cluster stability or its unimolecular or bimolecular chemistry with the 2-propanol and 2-butylamine reagents.

  15. The effects of AGN feedback and SPH formulation on black hole growth in galaxies

    NASA Astrophysics Data System (ADS)

    Liu, MaoSheng; Di Matteo, Tiziana; Feng, Yu

    2016-05-01

    We perform simulations of isolated galaxies and major mergers to investigate the effects on black hole (BH) growth due to variations in active galactic nuclei (AGN) feedback models and different smooth particle hydrodynamic (SPH) solvers. In particular we examine density-SPH versus newer pressure-SPH formulation and their significance relative to minor changes in subgrid AGN feedback prescriptions. The aim is to use these idealized simulations to understand the impact of these effects for large cosmological volume simulations where these models are often adopted. In both isolated galaxies and galaxy mergers, we find that star formation histories are largely insensitive to the choice of SPH schemes whilst BH accretion rate can change. This can result in a factor of 2-3 difference in final BH mass for the two hydrodynamic formulations. However, the differences are much smaller than those obtained even with small changes in the subgrid AGN feedback prescription. In particular, depending on the size of the region and the manner in which the AGN energy is deposited, the star formation rate is suppressed by a factor of 2 in isolated galaxies and the star burst completely quenched during the coalescence of two galaxies. The final BH mass differs by over an order of magnitude by changes in AGN feedback model. Our results indicated that any change in the hydrodynamic formulation is likely subdominant to the effects of changing subgrid physics around the BH, although thermodynamic state and morphology of the gas remnant are also sensitive to the change in hydrodynamic solver.

  16. The Chandra View of Radiative and Kinetic Dissipation in AGN: Toward a Complete Picture of Energy Transport in Active Galaxies

    NASA Astrophysics Data System (ADS)

    Evans, Daniel A.; Lee, J.; Turner, J.; Kraft, R.; Bianchi, S.; Hardcastle, M.; Marshall, H.; Gallagher, S.; Weaver, K.; Canizares, C.

    2009-01-01

    X-ray grating spectroscopy, combined with high-resolution multiwavelength imaging, are powerful tools for probing the nuclei and circumnuclear environments of AGN and elucidating the connections between accretion and outflows in active galaxies. We present the results from a new series of Chandra, XMM-Newton, and Suzaku observations of radio-loud and radio-quiet AGN, and address the following questions: 1) What are the roles of photoionization and outflows in creating the ionized kpc-scale circumnuclear environments of AGN. How does this affect the gas supply to the black hole? 2) What are the physical conditions of the accretion flow and absorption in AGN? Are there intrinsic differences between radio-loud and radio-quiet AGN, and what does this imply for the disk-jet connection? First, we use X-ray gratings spectroscopy and imaging to provide detailed diagnostics of the spatially resolved, multiphase narrow-line regions (NLRs) in Seyfert galaxies. These AGN show a range of outflow properties, from truly radio-quiet sources to those with kpc-scale outflows. The detection of narrow RRC features and He-like triplets with the HETG and RGS spectrometers, strongly suggests that photoionization from the AGN dominates the energetics of these kpc-scale regions. However, additional constraints from VLA, HST, and Chandra imaging indicate that jets also play a significant role in governing their environments. We discuss the consequences for models that link outflows with feedback between accretion and black-hole growth. Next, we examine the connection between accretion and jet production in AGN with new Suzaku observations. We show that radio-loud AGN systematically tend to lack the signatures of reprocessed X-ray emission from an neutral accretion disk that are commonly observed in radio-quiet sources. This has important implications for the structure of accretion flow in its inner regions and supports models in which the accretion flow plays a prominent role in the

  17. String scale unification in an SU(6)xSU(2) GUT

    NASA Astrophysics Data System (ADS)

    Rizos, J.; Tamvakis, K.

    1997-11-01

    We construct and analyze an SU(6)xSU(2) GUT. The model is k=1 string embedable in the sense that we employ only chiral representations allowed at the k=1 level of the associated Kač-Moody Algebra. Both cases SU(6)xSU(2)L and SU(6)xSU(2)R are realized. The model is characterized by the SU(6)xSU(2)-->SU(4)xSU(2)xSU(2) breaking scale MX, and the SU(4)xSU(2)xSU(2)-- >SU(3)CxSU(2)LxU(1)Y breaking scale MR. The spectrum bellow MR includes an extra pair of charge-1/3 colour-triplets of mass MI<=MR that does not couple to matter fields and, possibly, an extra pair of isodoublets. Above MX the SU(6) and SU(2) gauge couplings always unify at a scale which can be taken to be the string unification scale Ms~5x1017 GeV. The model has Yukawa coupling unification since quarks and leptons obtain their masses from a single Yukawa coupling. Neutrinos obtain acceptably small masses through a see-saw mechanism. Coloured triplets that couple to matter fields are naturally split from the coexisting isodoublets without the need of any numerical fine tuning.

  18. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  19. Self-consistent two-phase AGN torus models⋆. SED library for observers

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED

  20. CHAIRMEN'S PREFACE AND EDITORS' NOTE: Unification of Fundamental Interactions

    NASA Astrophysics Data System (ADS)

    Brink, Lars; Nilsson, Jan S.; Salomonson, Per; Skagerstam, Bo-Sture

    1987-01-01

    Chairmen's PrefaceIn 1984 we obtained a grant from the Nobel Foundation to organize a Nobel Symposium on "Unification of the Fundamental Interactions". In our proposal which we submitted in the fall of 1983 we stated that we wanted to cover the various attempts to unification such as GUT'S, supergravity, Kaluza-Klein theories and superstrings. What has happened in particle physics since then is already history. With the realization that certain superstring theories could be anomaly free, it became clear that these models could encompass earlier attempts to unification as well as solving the fundamental problem of quantum gravity. The excitement that some of us had felt for some time now spread through most of the particle physics community and this excitement certainly was evident during the Symposium. With the international advisory committee we originally chose a list of around 30 invitees which could best represent the various subjects listed above. When it came to the final planning of the programme essentially all talks dealt with superstrings! We were very fortunate that almost all of the invitees managed to come to the Symposium. From the western world only three were unable to participate, André Neveu, Steven Weinberg and Bruno Zumino. We certainly missed them during the meeting. We were particularly happy that Stephen Hawking managed to take part actively. Our real problem was to get participants from the Soviet Union. Out of eight invitations only one came through. We were very happy to have Renata Kallosh, who really did her utmost to enlighten us about not only her own work but also about recent progress in the USSR, However, we were very sorry that in spite of all our letters, telegrammes and endless attempts to get telephone calls through and despite the good relations between the Swedish and Soviet Academies of Sciences we had to miss Ludwig Faddeev, Valodja Gribov, Andrej Linde, Victor Ogievetsky, Sasha Polyakov, Misha Shifman and Arkadij

  1. AGN Feedback in Overdense Environments at z=2.23

    NASA Astrophysics Data System (ADS)

    Lucy, Adrian B.; Lehmer, B.; Alexander, D. M.; Best, P.; Geach, J.; Harrison, C. M.; Hornschemeier, A. E.; Matsuda, Y.; Mullaney, J.; Smail, I.; Sobral, D.

    2013-01-01

    We present results from a ≈100 ks Chandra observation of the 2QZ Cluster 1004+00 galaxy overdensity at z=2.23. This 2QZ Clus structure was first identified as an overdensity of four optically-selected quasars; that sample was subsequently found to overlap with an overdensity of 22 Hα-emitting galaxies (HAEs) identified through narrow and broad band near-infrared imaging by Matsuda et al. (2011). In addition to the preselected quasars in 2QZ Clus, our Chandra observation reveals that a further three HAEs are X-ray sources, all characterized by X-ray luminosities and spectral slopes consistent with unobscured active galactic nuclei (AGN). In total, we find that ≈30% of HAEs in our observed region of 2QZ Clus are AGN. This AGN fraction is high compared to AGN fractions among HAEs in the Chandra-COSMOS field (C-COSMOS), and if this enhancement is purely a result of the quasar selection bias of our sample, we estimate that such activity is rare at this redshift. Hα is a tracer of star formation, so 2QZ Clus is well suited to the investigation of the coeval growth of supermassive black holes and their host galaxies in the precursors to rich local clusters. Moreover, we have an ideal control sample in C-COSMOS; this survey contains a large sample of HAEs classified identically using infrared imaging, but without any selection of quasars. We calculate AGN fraction as a function of galaxy overdensity in C-COSMOS, and perform stacking analyses of Chandra and 250μ Herschel SPIRE data to obtain mean black hole accretion rates dMBH/dt and star formation rates SFR. Preliminary results indicate that dMBH/dt and its ratio to SFR are significantly elevated in 2QZ Clus compared to similarly overdense regions of C-COSMOS. We discuss these relations in the context of theoretical models describing the emergence of the MBH/Mgal relation of the local Universe.

  2. Obscuring Torus Geometry from the NuSTAR Survey of Swift/BAT AGN

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR

    2016-06-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the spectral window above 10 keV with unprecedented spatial resolution and two orders of magnitude better sensitivity than any other instrument operating in that energy range. As a part of its long-term extragalactic program NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT). I will present spectroscopic results based on NuSTAR and Swift observations of ~150 Swift/BAT AGN surveyed in the first three years of NuSTAR operation. This sample forms an atlas of the highest quality hard X-ray spectra available to date for a large number of AGN, providing unprecedented insight into the variety AGN spectra in the hard X-ray band. In addition to phenomenology, which is an essential ingredient of Cosmic X-ray Background studies, it is possible to use new fitting models to directly probe the geometry of the toroidal obscurer (torus). Its main spectral features lie within the NuSTAR bandpass, making it possible to test the common assumption that a similar Compton-thick torus exists around essentially every Seyfert-type AGN. I will discuss torus geometry constraints based on the X-ray spectra in relation to those from other wavelengths, the effects on interpretation of high-redshift AGN observations, and the limitations of the current results.

  3. The Broad Line Region in AGNs: Structure, Physics, and the f Factor

    NASA Astrophysics Data System (ADS)

    Grier, Catherine; Peterson, B. M.; Martini, P.; Pogge, R. W.; Pancoast, A.; Treu, T.; Watson, L. C.

    2014-01-01

    We present recent results in an effort to investigate the structure of the broad line region in active galactic nuclei (AGNs) using reverberation mapping data. AGNs provide our only means for exploring the black hole (BH) population outside the local universe. To measure black hole masses (MBH) in AGNs, we use the broad line region (BLR) by assuming that the motion of the emitting gas is dominated by the gravity of the BH. Virial MBH measurements can be made using the resulting Doppler-broadened emission lines: MBH = fRΔV^2/G. R is the distance of the emitting gas from the BH, ΔV is the velocity dispersion of the emitting gas, obtained from the width of the emission line, and f is a dimensionless factor that accounts for the geometry and orientation of the BLR. Because the BLR is unresolvable, the true value of f in for each object is unknown. Typically, an average virial factor f is used, calculated by assuming that AGNs follow the same MBH--σ relation as quiescent galaxies. Our inability to directly observe the structure of the BLR and is a major source of uncertainties in MBH measurements. To learn about BLR structure, we must rely on either reverberation mapping techniques or microlensing of gravitationally lensed quasars. We have been working on various aspects of this problem using high-quality reverberation-mapping data from various observing campaigns based at MDM Observatory on Kitt Peak. Results from these reverberation efforts have a broad impact on our understanding of AGN physics as well as on all MBH measurements in AGNs that provide a basis for galaxy evolution and AGN feedback models.

  4. Evidence for Distributed Young Stellar Populations in Strong AGN at z 1

    NASA Astrophysics Data System (ADS)

    Ammons, Mark; Melbourne, J.; Koo, D.; Max, C.

    2008-09-01

    We present stellar populations analysis of 8 AGN hosts at z 1 and derive stellar age trends that compare to local AGN host samples. We utilize laser guide star adaptive optics imaging in K-band, taken at the Keck Observatory, of hosts in the Great Observatories Origins Deep Survey (GOODS) South. Combination of these data with imaging in B, V, i, z from the HST Advanced Camera for Surveys (ACS) gives multi-color photometry with comparable spatial resolution of better than 100 mas in all bands. The AGN nature of these hosts is implied from their large X-ray luminosities (log L > 42 in ergs/s, 2-10 keV) as measured by Chandra. We fit Bruzual & Charlot (2003) stellar populations models to the 5-band photometry. Our use of near-IR fluxes in the fitting process gives tighter constraints on the dust extinction. The strongest conclusion is that the presence of distributed younger stellar populations (age less than 100 Myr) is correlated with the [OIII] line luminosity or X-ray (2-10 keV) luminosity. This finding is consistent with similar studies at lower redshift. However, we also find that strong Type II AGN hosts at this redshift are more likely to have some disk component or be irregulars than all Type I sources, which tend to be of earlier type. The mid-IR SEDs of the strong Type II AGN indicates that they are excited to LIRG status via galactic starbursting, while the strong Type I AGN are excited to LIRG status via hot dust surrounding the central engine. This suggests that the obscured nature of Type II AGN at this redshift is connected with global starbursting and that they may be extincted by kpc-scale dusty features that are byproducts of this starbursting. This study is funded by the Bachmann family and the NSF.

  5. The Horizon-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  6. Cosmology with AGN dust time lags - Simulating the new VEILS survey

    NASA Astrophysics Data System (ADS)

    Hönig, S. F.; Watson, D.; Kishimoto, M.; Gandhi, P.; Goad, M.; Horne, K.; Shankar, F.; Banerji, M.; Boulderstone, B.; Jarvis, M.; Smith, M.; Sullivan, M.

    2016-10-01

    The time lag between optical and near-infrared continuum emission in active galactic nuclei (AGN) shows a tight correlation with luminosity and has been proposed as a standardisable candle for cosmology. In this paper, we explore the use of these AGN hot-dust time lags for cosmological model fitting under the constraints of the new VISTA Extragalactic Infrared Legacy Survey VEILS. This new survey will target a 9 deg2 field observed in J- and Ks-band with a 14-day cadence and will run for three years. The same area will be covered simultaneously in the optical griz bands by the Dark Energy Survey, providing complementary time-domain optical data. We perform realistic simulations of the survey setup, showing that we expect to recover dust time lags for about 450 objects out of a total of 1350 optical type 1 AGN, spanning a redshift range of 0.1 < z < 1.2. We use the lags recovered from our simulations to calculate precise distance moduli, establish a Hubble diagram, and fit cosmological models. Assuming realistic scatter in the distribution of the dust around the AGN as well as in the normalisation of the lag-luminosity relation, we are able to constrain Ω _Λ in ΛCDM with similar accuracy as current supernova samples. We discuss the benefits of combining AGN and supernovae for cosmology and connect the present work to future attempts to reach out to redshifts of z > 4.

  7. Gauge unification in extra dimensions: power corrections vs. higher dimension operators

    NASA Astrophysics Data System (ADS)

    Hebecker, A.; Westphal, A.

    2004-11-01

    Power-like loop corrections to gauge couplings are a generic feature of higher-dimensional field theories. In supersymmetric grand unified theories in d=5 dimensions, such corrections arise only in the presence of a vacuum expectation value of the adjoint scalar of the gauge multiplet. We show that, using the analysis of the exact quantum effective action by Intriligator, Morrison and Seiberg, these power corrections can be understood as the effect of higher dimension operators. Such operators, both classical and quantum, are highly constrained by gauge symmetry and supersymmetry. As a result, even non-perturbatively large contributions to gauge coupling unification can be unambiguously determined within 5d low-energy effective field theory. Since no massive hypermultiplet matter exists in 6 dimensions, the predictivity is further enhanced by embedding the 5d model in a 6d gauge theory relevant at smaller distances. Thus, large and quantitatively controlled power-law contributions to gauge couplings arise naturally and can, in the most extreme case, lead to calculable TeV-scale power law unification. We identify a simple 5d SU(5) model with one massless 10 in the bulk where the power-law effect is exactly MSSM-like.

  8. Higher prevalence of X-ray selected AGN in intermediate-age galaxies up to z ˜ 1

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Pérez-González, Pablo G.; Barro, Guillermo; Aird, James; Ferreras, Ignacio; Cava, Antonio; Cardiel, Nicolás; Esquej, Pilar; Gallego, Jesús; Nandra, Kirpal; Rodríguez-Zaurín, Javier

    2014-10-01

    We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34 < z < 1.07 with ultradeep (mAB = 26.5, 3σ) optical medium-band (R ˜ 50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Å break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (LX < 1044 erg s-1) are hosted by massive galaxies (typically M* >1010.5 M⊙) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependences of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U - V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 Å breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U - V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000) ˜ 1.4 and light-weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognizing these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.

  9. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  10. The Effective Eddington Limit for AGN

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ranjan

    2008-10-01

    Feedback is an integral component of AGN and galaxy co-evolution. The outward radiation pressure balances the inward gravitational force on the dusty gas in the galaxy bulge at an effective Eddington limit, which is lower than the canonical Eddington limit. We have shown that absorption in AGN in The Swift/BAT 9-month survey is overwhelmingly located below the effective Eddington limit. Here we propose to observe the only three objects from this survey which are at this limit. Other sources near this boundary exhibit warm absorbers and outflows, and searching for evidence of such features in our proposed observations will provide an unprecedented level of detail in understanding sources in which the AGN is in the process of shaping the host galaxy.

  11. Left-corner unification-based natural language processing

    SciTech Connect

    Lytinen, S.L.; Tomuro, N.

    1996-12-31

    In this paper, we present an efficient algorithm for parsing natural language using unification grammars. The algorithm is an extension of left-corner parsing, a bottom-up algorithm which utilizes top-down expectations. The extension exploits unification grammar`s uniform representation of syntactic, semantic, and domain knowledge, by incorporating all types of grammatical knowledge into parser expectations. In particular, we extend the notion of the reachability table, which provides information as to whether or not a top-down expectation can be realized by a potential subconstituent, by including all types of grammatical information in table entries, rather than just phrase structure information. While our algorithm`s worst-case computational complexity is no better than that of many other algorithms, we present empirical testing in which average-case linear time performance is achieved. Our testing indicates this to be much improved average-case performance over previous leftcomer techniques.

  12. AGNfitter: SED-fitting code for AGN and galaxies from a MCMC approach

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph F.; Hogg, David W.

    2016-07-01

    AGNfitter is a fully Bayesian MCMC method to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGN) and galaxies from the sub-mm to the UV; it enables robust disentanglement of the physical processes responsible for the emission of sources. Written in Python, AGNfitter makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the nuclear and host galaxy emission simultaneously. The model consists of four physical emission components: an accretion disk, a torus of AGN heated dust, stellar populations, and cold dust in star forming regions. AGNfitter determines the posterior distributions of numerous parameters that govern the physics of AGN with a fully Bayesian treatment of errors and parameter degeneracies, allowing one to infer integrated luminosities, dust attenuation parameters, stellar masses, and star formation rates.

  13. FE Features in Highly Obscured AGN

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.

    1999-01-01

    This final report is a summary of the combined study of ASCA (Advanced Satellite for Cosmology and Astrophysics) observations of NGC 7582 with archival ROSAT HRI (High Resolution Imager) and PSPC (Position Sensitive Proportional Counter) data. These observations were important in that they established that X-ray emission in NGC 7582, the most narrow-line of NLXGs (narrow-line X-ray galaxies), is associated with an AGN (Active Galactic Nuclei). Thus implying that all NLXGs are obscured AGN, as has been hypothesized to explain the X-ray spectral background paradox.

  14. Revisiting Stochastic Variability of AGNs with Structure Functions

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-08-01

    Discrepancies between reported structure function (SF) slopes and their overall flatness as compared to the expectations from the damped random walk (DRW) model, which generally well describes the variability of active galactic nuclei (AGNs), have triggered us to study this problem in detail. We review common AGN variability observables and identify their most common problems. Equipped with this knowledge, we study ˜9000 r-band AGN light curves from Stripe 82 of the Sloan Digital Sky Survey, using SFs described by stochastic processes with the power exponential covariance matrix of the signal. We model the “subensemble” SFs in the redshift-absolute magnitude bins with the full SF equation (including the turnover and the noise part) and a single power law (SPL; in the “red noise regime” after subtracting the noise term). The distribution of full-equation SF (SPL) slopes peaks at γ =0.55+/- 0.08 (0.52 ± 0.06) and is consistent with the DRW model. There is a hint of a weak correlation of γ with the luminosity and a lack of correlation with the black hole mass. The typical decorrelation timescale in the optical is τ =0.97+/- 0.46 year. The SF amplitude at one year obtained from the SPL fitting is {{SF}}0=0.22+/- 0.06 mag and is overestimated because the SF is already at the turnover part, so the true value is {{SF}}0=0.20+/- 0.06 mag. The asymptotic variability is {{SF}}∞ =0.25+/- 0.06 mag. It is strongly anticorrelated with both the luminosity and the Eddington ratio and is correlated with the black hole mass. The reliability of these results is fortified with Monte Carlo simulations.

  15. Revisiting Stochastic Variability of AGNs with Structure Functions

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-08-01

    Discrepancies between reported structure function (SF) slopes and their overall flatness as compared to the expectations from the damped random walk (DRW) model, which generally well describes the variability of active galactic nuclei (AGNs), have triggered us to study this problem in detail. We review common AGN variability observables and identify their most common problems. Equipped with this knowledge, we study ˜9000 r-band AGN light curves from Stripe 82 of the Sloan Digital Sky Survey, using SFs described by stochastic processes with the power exponential covariance matrix of the signal. We model the “subensemble” SFs in the redshift–absolute magnitude bins with the full SF equation (including the turnover and the noise part) and a single power law (SPL; in the “red noise regime” after subtracting the noise term). The distribution of full-equation SF (SPL) slopes peaks at γ =0.55+/- 0.08 (0.52 ± 0.06) and is consistent with the DRW model. There is a hint of a weak correlation of γ with the luminosity and a lack of correlation with the black hole mass. The typical decorrelation timescale in the optical is τ =0.97+/- 0.46 year. The SF amplitude at one year obtained from the SPL fitting is {{SF}}0=0.22+/- 0.06 mag and is overestimated because the SF is already at the turnover part, so the true value is {{SF}}0=0.20+/- 0.06 mag. The asymptotic variability is {{SF}}∞ =0.25+/- 0.06 mag. It is strongly anticorrelated with both the luminosity and the Eddington ratio and is correlated with the black hole mass. The reliability of these results is fortified with Monte Carlo simulations.

  16. Spectro-temporal diagnostics to evaluate physical structure around the AGN

    NASA Astrophysics Data System (ADS)

    Mizumoto, M.; Ebisawa, K.

    2016-06-01

    X-ray energy spectra from the AGN exhibit a lot of emission/absorption lines, which have been studied in detail by grating devices such as RGS on XMM-Newton. Variability of these spectral lines is considered to reflect physical conditions of the line emitting/absorbing matter. Thus, we study root-mean-square (RMS) spectra of several AGN observed with RGS to diagnose physical structures around these AGN. As a result, we have found clear peaks/dips in the RMS spectrum of NGC 4051, which can be modeled with variable absorption lines and non-variable emission lines. Several absorbers with different ionization states are required, where a lower-ionized (logξ=1.5) absorber shows larger variability and a higher-ionized (logξ=2.5) absorber shows little variability. These results directly give hints on physical structure around the AGN. We also show simulated RMS spectra of several AGN with Hitomi SXS, which is a more powerful diagnostic tool than RGS.

  17. Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales

    NASA Astrophysics Data System (ADS)

    Tristam, Konrad R. W.

    2016-08-01

    The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.

  18. Proton decay prediction from a gauge-Higgs unification scenario in five dimensions

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Okada, Nobuchika; Yamada, Toshifumi

    2016-10-01

    The Higgs boson mass and top quark mass imply that the Higgs quartic coupling vanishes around the scale of 109- 1013 GeV , depending on the precise value of the top quark mass. The vanishing quartic coupling can be naturally addressed if the Higgs field originates from a five-dimensional gauge field and the fifth dimension is compactified at the scale of the vanishing Higgs quartic coupling, which is a scenario based on gauge-Higgs unification. We present a general prediction of the scenario on the proton decay process p →π0e+. In many gauge-Higgs unification models, the first-generation fermions are localized towards an orbifold fixed point in order to realize the realistic Yukawa couplings. Hence, four-fermion operators responsible for the proton decay can appear with a suppression of the five-dimensional Planck scale (not the four-dimensional Planck scale). Since the five-dimensional Planck scale is connected to the compactification scale, we have a correlation between the proton partial decay width and the top quark mass. We show that the future Hyper-Kamiokande experiment may discover the proton decay if the top quark pole mass is larger than about 172.5 GeV.

  19. Nearest-neighbor-interactions from a minimal discrete flavor symmetry within SU(5) grand unification

    NASA Astrophysics Data System (ADS)

    Emmanuel-Costa, D.; Simões, C.

    2012-01-01

    A flavor symmetry based on Z4 is analyzed in the context of SU(5) Grand Unification with the standard fermionic content plus three right-handed neutrinos. The role of Z4 is to forbid some Yukawa couplings of up- and down-quarks to Higgs scalars such that the quark mass matrices Mu, Md have Nearest-Neighbor-Interaction (NNI) structure, once they are generated through the electroweak symmetry breaking. It turns out in this framework that Z4 is indeed the minimal discrete symmetry and its implementation requires the introduction of at least two Higgs quintets, which leads to a two Higgs doublet model at low energy scale. Because of the SU(5) unification, it is shown that the charged lepton mass matrix develops also NNI form. However, the effective neutrino mass matrix exhibits a nonparallel pattern, in the framework of the type-I seesaw mechanism. Analyzing all possible zero textures allowed by gauge-horizontal symmetry SU(5)×Z4, it is seen that only two patterns are in agreement with the leptonic experimental data and they could be further distinguished by the light neutrino mass spectrum hierarchy. It is also demonstrated that Z4 freezes out the possibility of proton decay through exchange of color Higgs triplets at tree-level.

  20. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-07-01

    We study the spatial distribution of X-ray selected active galactic nuclei (AGN) in the framework of hierarchical coevolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the theoretical model developed by Croton et al., De Lucia & Blaizot and Marulli et al. to the output of the Millennium Run and obtained hundreds of realizations of past light cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations both in the soft and in the hard X-ray bands, except at fluxes <~10-15ergcm-2s-1, where the model systematically overestimates the observations. However, a large fraction of these faint objects are typically excluded from the spectroscopic AGN samples of the Chandra fields. We find that the spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20h-1Mpc, in close agreement with observations. Our model matches the correlation length r0 of AGN in the Chandra Deep Field-North but underestimates it in the Chandra Deep Field-South. When fixing the slope to γ = 1.4, as in Gilli et al., the statistical significance of the mismatch is 2σ-2.5σ, suggesting that the predicted cosmic variance, which dominates the error budget, may not account for the different correlation length of the AGN in the two fields. However, the overall mismatch between the model and the observed correlation function decreases when both r0 and γ are allowed to vary, suggesting that more realistic AGN models and a full account of all observational errors may significantly reduce the tension between AGN clustering in the two fields. While our results are robust to changes in the model prescriptions for the AGN light curves, the luminosity dependence of the clustering is sensitive to the different light-curve models adopted. However, irrespective of the model

  1. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    NASA Astrophysics Data System (ADS)

    Jacobsen, Idunn B.; Wu, Kinwah; On, Alvina Y. L.; Saxton, Curtis J.

    2015-08-01

    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A (Koers & Tinyakov and Becker & Biermann), we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from Chandra and Swift/BAT X-ray luminosity functions (Silverman et al. and Ajello et al.). We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by IceCube (by ˜4-106 × at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.

  2. Infrared and X-Ray Evidence of an AGN in the NGC 3256 Southern Nucleus

    NASA Astrophysics Data System (ADS)

    Ohyama, Youichi; Terashima, Yuichi; Sakamoto, Kazushi

    2015-06-01

    We investigate signs of an active galactic nucleus (AGN) in the luminous infrared (IR) galaxy NGC 3256 at both IR and X-ray wavelengths. NGC 3256 has double nuclei: the northern and southern (hereafter, N and S nuclei, respectively). We show that the Spitzer IRAC colors extracted at the S nucleus are AGN-like, and the Spitzer IRS spectrum is bluer at \\lt 6 μm than at the N nucleus. We built for the S nucleus an AGN-starburst composite model with a heavily absorbed AGN to successfully reproduce not only the IRAC and IRS specrophotometries at ≃ 3″, but also the very deep silicate 9.7 μm absorption observed at a 0.″ 36 scale by Díaz-Santos et al. We found a 2.2 μm compact source at the S nucleus in an HST NICMOS image and identified its unresolved core (at 0.″ 26 resolution) with the compact core in previous mid-infrared observations at comparable resolution. The flux of the 2.2 μm core is consistent with our AGN spectral energy distribution model. We also analyzed a deeper than ever Chandra X-ray spectrum of the unresolved (at 0.″ 5 resolution) source at the S nucleus. We found that a dual-component power-law model (for primary and scattered ones) fits an apparently very hard spectrum with a moderately large absorption on the primary component. Together with a limit on equivalent width of a fluorescent Fe-K emission line at 6.4 keV, the X-ray spectrum is consistent with a typical Compton-thin Seyfert 2. We therefore suggest that the S nucleus hosts a heavily absorbed low-luminosity AGN.

  3. An Adynamical, Graphical Approach to Quantum Gravity and Unification

    NASA Astrophysics Data System (ADS)

    Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy

    We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum

  4. Polarimetry and Unification of Low-Redshift Radio Galaxies

    SciTech Connect

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  5. The X-ray nuclei of radio-loud AGN from the 2Jy sample

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2009-10-01

    X-ray observations of AGN samples provide crucial information about both the AGN themselves and the material that obscures them. Understanding the properties of the active nuclei of radio-loud AGN is particularly vital given that these objects seem likely to have a key role in models of galaxy formation and evolution. The 2Jy sample of radio galaxies and quasars has uniquely good multiwavelength data, but until recently has been poorly studied in the X-ray. We have recently been awarded time to observe all the low-z 2Jy steep-spectrum sample with Chandra, and here propose short observations of the high-z half of the sample with XMM which will give us a complete picture of the nuclear activity in these objects, and allow a wide range of projects to be carried out.

  6. The X-ray nuclei of radio-loud AGN from the 2Jy sample

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2010-10-01

    X-ray observations of AGN samples provide crucial information about both the AGN themselves and the material that obscures them. Understanding the properties of the active nuclei of radio-loud AGN is particularly vital given that these objects seem likely to have a key role in models of galaxy formation and evolution. The 2Jy sample of radio galaxies and quasars has uniquely good multiwavelength data, but until recently has been poorly studied in the X-ray. We have recently been awarded time to observe all the low-z 2Jy steep-spectrum sample with Chandra, and here propose short observations of the high-z half of the sample with XMM which will give us a complete picture of the nuclear activity in these objects, and allow a wide range of projects to be carried out.

  7. The Role of Turbulence in AGN Self-Regulation in Galaxy Clusters

    SciTech Connect

    Scannapieco, Evan; Brueggen, Marcus

    2009-12-18

    Cool cores of galaxy clusters are thought to be heated by low-power active galactic nuclei (AGN), whose accretion is regulated by feedback. However, the interaction between the hot gas ejected by the AGN and the ambient intracluster medium is extremely difficult to simulate, as it involves a wide range of spatial scales and gas that is Rayleigh-Taylor (RT) unstable. Here we use a subgrid model for RT-driven turbulence to overcome these problems and present the first observationally-consistent hydrodynamical simulations of AGN self-regulation in galaxy clusters. For a wide range of parameter choices the cluster in our three-dimensional simulations regulates itself for at least several 10{sup 9} years. Heating balances cooling through a string of outbreaks with a typical recurrence time of {approx_equal}80 Myrs, a timescale that depends only on the global cluster properties.

  8. Nuclear stellar kinematics of hard X-ray selected AGNs with matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yin; Davies, Richard; Burtscher, Leonard; Rosario, David

    2016-08-01

    In a matched sample of local, 14-195 keV selected active galactic nuclei (AGN) and inactive galaxies, we investigate the spatially resolved stellar kinematics and distributions on the scale of 10-300 pc. Here we present first results on part of the sample. We use a simple model to look for non-circular motions in the observed stellar velocity fields of both AGNs and inactive galaxies. Combining the luminosity profile with larger scale data, we decompose the large-scale disk, bulge and nuclear components. And with the stellar velocity dispersion, we search for the evidence of dynamically cold nuclear stellar populations distinct from the bulge, and study the nuclear K-band stellar mass to light ratios. The key goal of this study is to understand the role of nuclear star formation in the AGN fueling process.

  9. The Kepler Light Curves of KSwAGS AGN: A Unique Window into Accretion Physics

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard; Boyd, Padi; Edelson, Rick; Howell, Steve; Gelino, Dawn; Brown, Alex

    2016-08-01

    The Kepler-Swift Active Galaxies Survey (KSwAGS) discovered ~160 AGN in the Kepler and K2 fields. The optical Kepler and K2 light curves of these AGN are by far the most precise and evenly-sampled ever obtained. There are unique challenges involved in adapting Kepler/K2 data for use with AGN since the Kepler pipeline removes stochasticity; however, once mitigated, these data provide an unprecedented glimpse of the accretion disk's variability. We have also conducted follow-up spectral observations to determine black hole masses and accretion rates for the sample, which fill a wide parameter space (6.9 < Log MBH < 9.4, 0.003 < L/Ledd < 0.6). These, in tandem with the light curves, may be able to distinguish between different accretion models.

  10. Mabel Agnes Elliott, We Hardly Knew You

    ERIC Educational Resources Information Center

    McGonigal, Kathryn; Galliher, John F.

    2008-01-01

    Sociologist Mabel Agnes Elliott was elected the fourth president of the Society for the Study of Social Problems in 1956-1957 and was the first woman to hold this position. She was an anti-war activist, a feminist and a creative and diligent writer. Yet she experienced many challenges. The Federal Bureau of Investigation kept an active file on…

  11. AGN identification and host galaxies properties in the MOSDEF survey

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF Team

    2016-06-01

    We present new results on the identification and host galaxy properties of X-ray, IR and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey, which is obtaining rest-frame optical spectra of ~1,500 galaxies and AGN using the new Keck/MOSFIRE instrument. We find clear selection effects when identifying AGN at different wavelengths, in that optically-selected AGN are more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. There is also a bias against finding AGN at any wavelength in low mass galaxies. We find that optical AGN selection identifies less powerful AGN that may be obscured at other wavelengths. Combining the AGN we identify at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass. Finally, we do not find a significant correlation between either SFR or stellar mass and L[OIII], which argues against the presence of strong AGN feedback.

  12. AGN Identification and Host Galaxy Properties in the MOSDEF Survey

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    2016-08-01

    I will present new results on the identification and host galaxy properties of X-ray, IR, and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey. MOSDEF is obtaining rest-frame optical spectra of ~1300 galaxies and AGN using the newly commissioned MOSFIRE instrument on Keck. We find clear selection biases when identifying AGN at different wavelengths, in that AGN at any wavelength are typically found in more massive galaxies, while optically-selected AGN are also more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. We also find that optical and X-ray AGN selection identifies AGN with a wider range of accretion rates than IR AGN selection. By combining AGN samples selected at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass.

  13. The Horizon-AGN Simulation: Morphological Diversity of Galaxies ,Promoted by AGN Feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations HORIZON-AGN and HORIZON-NOAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  14. THE XMM-NEWTON WIDE FIELD SURVEY IN THE COSMOS FIELD: REDSHIFT EVOLUTION OF AGN BIAS AND SUBDOMINANT ROLE OF MERGERS IN TRIGGERING MODERATE-LUMINOSITY AGNs AT REDSHIFTS UP TO 2.2

    SciTech Connect

    Allevato, V.; Hasinger, G.; Salvato, M.; Finoguenov, A.; Brusa, M.; Bongiorno, A.; Merloni, A.; Cappelluti, N.; Miyaji, T.; Gilli, R.; Zamorani, G.; Comastri, A.; Shankar, F.; James, J. B.; Peacock, J. A.; McCracken, H. J.; Silverman, J.

    2011-08-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I{sub AB} < 23 and spectroscopic redshifts z < 4, extracted from the 0.5-2 keV X-ray mosaic of the 2.13 deg{sup 2} XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over time. We find evidence of a redshift evolution of the bias factor for the total population of XMM-COSMOS AGNs from b-bar (z-bar =0.92)=2.30{+-}0.11 to b-bar (z-bar =1.94)=4.37{+-}0.27 with an average mass of the hosting dark matter (DM) halos log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.12 {+-} 0.12 that remains constant at all z < 2. Splitting our sample into broad optical line AGNs (BL), AGNs without broad optical lines (NL), and X-ray unobscured and obscured AGNs, we observe an increase of the bias with redshift in the range z-bar = 0.7-2.25 and z-bar = 0.6-1.5 which corresponds to a constant halo mass of log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.28 {+-} 0.07 and log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.00 {+-} 0.06 for BL/X-ray unobscured AGNs and NL/X-ray obscured AGNs, respectively. The theoretical models, which assume a quasar phase triggered by major mergers, cannot reproduce the high bias factors and DM halo masses found for X-ray selected BL AGNs with L{sub BOL} {approx} 2 x 10{sup 45} erg s{sup -1}. Our work extends up to z {approx} 2.2 the z {approx}< 1 statement that, for moderate-luminosity X-ray selected BL AGNs, the contribution from major mergers is outnumbered by other processes, possibly secular ones such as tidal disruptions or disk instabilities.

  15. Monopoles of SU(15) grand unification

    SciTech Connect

    Pal, P.B.

    1991-03-01

    In a recently analyzed grand unified model based on the gauge group SU(15), monopoles are automatically consistent with the cosmological mass density bound. The Parker bound of monopole flux puts some constaints on the model which can be easily satisfied.

  16. What are the galaxies that host MIR-selected AGN?

    NASA Astrophysics Data System (ADS)

    Rosario, David

    2016-08-01

    Infra-red selection techniques, sensitive to dust strongly heated by an AGN, offer a way to identify some of the most obscured accretion events in the Universe. I will describe the results of a comprehensive multi-wavelength study of AGN to z>2 selected using Spitzer/IRAC based methods in the COSMOS field. Armed with AGN-optimised redshifts and stellar masses, we explore the dust emission from the active nucleus and the host galaxy. We demonstrate that IR-selected AGN tend to be found in low mass host galaxies, when compared to other AGN identification methods. The star-formation rates of obscured and unobscured IR-selected AGN are very similar, implying that large-scale obscuration with co-eval star-bursts are not found in a major proportion of heavily obscured AGN.

  17. AGN-host galaxy connection: multiwavelength study

    NASA Astrophysics Data System (ADS)

    Pović, M.; Sánchez-Portal, M.; García, A. M. Pérez; Bongiovanni, A.; Cepa, J.; Cepa

    2013-02-01

    The connection between active galactic nuclei (AGN) and their hosts showed to be important for understanding the formation and evolution of active galaxies. Using X-ray and deep optical data, we study how morphology and colours are related to X-ray properties at redshifts z<=2.0 for a sample of > 300 X-ray detected AGN in the Subaru/XMM-Newton Deep Survey (SXDS; Furusawa et al. 2008) and Groth-Westphal Strip (GWS; Pović et al. 2009) fields. We performed our morphological classification using the galSVM code (Huertas-Company et al. 2008), which is a new method that is particularly suited when dealing with high-redshift sources. To separate objects between X-ray unobscured and obscured, we used X-ray hardness ratio HR(0.5-2 keV/2-4.5 keV). Colour-magnitude diagrams were studied in relationship to redshift, morphology, X-ray obscuration, and X-ray-to-optical flux ratio. Around 50% of X-ray detected AGN at z<=2.0 analysed in this work reside in spheroidal and bulge-dominated galaxies, while at least 18% have disk-dominated hosts. This suggests that different mechanisms may be responsible for triggering the nuclear activity. When analysing populations of X-ray detected AGN in both colour-magnitude (CMD) and colour-stellar mass diagrams (Figure 1), the highest number of sources is found to reside in the green valley at redshifts ~ 0.5-1.5. For the first time we studied CMD of these AGN in relation to morphology and X-ray obscuration, finding that they can reside in both early- and late-type hosts, where both morphological types cover similar ranges of X-ray obscuration (Figure 1). Our findings appear to confirm some previous suggestions that X-ray selected AGN residing in the green valley represent a transitional population (e.g. Nandra et al. 2007, Silverman et al. 2008, Treister et al. 2009), quenching star formation by means of different AGN feedback mechanisms and evolving to red-sequence galaxies. More details on analysis and results presented here can be found in

  18. AGNfitter: An MCMC Approach to Fitting SEDs of AGN and galaxies

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph; Hogg, David W.

    2016-08-01

    I will present AGNfitter: a tool to robustly disentangle the physical processes responsible for the emission of active galactic nuclei (AGN). AGNfitter is the first open-source algorithm based on a Markov Chain Monte Carlo method to fit the spectral energy distributions of AGN from the sub-mm to the UV. The code makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the host galaxy and the nuclear emission simultaneously. The model consists in four physical components comprising stellar populations, cold dust distributions in star forming regions, accretion disk, and hot dust torus emissions. AGNfitter is well suited to infer numerous parameters that rule the physics of AGN with a proper handling of their confidence levels through the sampling and assumptions-free calculation of their posterior probability distributions. The resulting parameters are, among many others, accretion disk luminosities, dust attenuation for both galaxy and accretion disk, stellar masses and star formation rates. We describe the relevance of this fitting machinery, the technicalities of the code, and show its capabilities in the context of unobscured and obscured AGN. The analyzed data comprehend a sample of 714 X-ray selected AGN of the XMM-COSMOS survey, spectroscopically classified as Type1 and Type2 sources by their optical emission lines. The inference of variate independent obscuration parameters allows AGNfitter to find a classification strategy with great agreement with the spectroscopical classification for ˜ 86% and ˜ 70% for the Type1 and Type2 AGNs respectively. The variety and large number of physical properties inferred by AGNfitter has the potential of contributing to a wide scope of science-cases related to both active and quiescent galaxies studies.

  19. The Global Implications of the Hard Excess. II. Analysis of the Local Population of Radio-quiet AGNs

    NASA Astrophysics Data System (ADS)

    Tatum, M. M.; Turner, T. J.; Miller, L.; Reeves, J. N.; DiLiello, J.; Gofford, J.; Patrick, A.; Clayton, M.

    2016-02-01

    Active galactic nuclei (AGNs) show evidence for reprocessing gas, outflowing from the accreting black hole. The combined effects of absorption and scattering from the circumnuclear material likely explain the “hard excess” of X-ray emission above 20 keV, compared with the extrapolation of spectra from lower X-ray energies. In a recent Suzaku study, we established that the ubiquitous hard excess in hard, X-ray-selected, radio-quiet type 1 AGNs is consistent with a reprocessing of the X-ray continuum in an ensemble of clouds, located tens to hundreds of gravitational radii from the nuclear black hole. Here we add hard X-ray-selected, type 2 AGNs to extend our original study and show that the gross X-ray spectral properties of the entire local population of radio-quiet AGNs may be described by a simple unified scheme. We find a broad, continuous distribution of spectral hardness ratio and Fe Kα equivalent width across all AGN types, which can be reproduced by varying the observer's sightline through a single, simple model cloud ensemble, provided that the radiative transfer through the model cloud distribution includes not only photoelectric absorption but also three-dimensional (3D) Compton scattering. Variation in other parameters of the cloud distribution, such as column density or ionization, should be expected between AGNs, but such variation is not required to explain the gross X-ray spectral properties.

  20. A POWERFUL AGN OUTBURST IN RBS 797

    SciTech Connect

    Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.; Nulsen, P. E. J.; Gitti, M.; Brueggen, M.; Rafferty, D. A.

    2011-05-10

    Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{sup 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.

  1. A Mixture Evolution Scenario of the AGN Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng; Zhou, Ming; Mao, Jirong

    2016-03-01

    We propose a mixture evolution scenario to model the evolution of the radio luminosity function (RLF) of steep-spectrum AGNs (active galactic nuclei), based on a Bayesian method. In this scenario, the shape of the RLF is determined by both the density and luminosity evolution. Our models indicate that the density evolution is positive until a redshift of ∼ 0.9, at which point it becomes negative, while the luminosity evolution is positive to a higher redshift (z∼ 5 for model B and z∼ 3.5 for model C), where it becomes negative. Our mixture evolution model works well, and the modeled RLFs are in good agreement with previous determinations. The mixture evolution scenario can naturally explain the luminosity-dependent evolution of the RLFs.

  2. Revisiting the relationship between 6 μm and 2-10 keV continuum luminosities of AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Rovilos, E.; Hernán-Caballero, A.; Barcons, X.; Blain, A.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.

    2015-05-01

    We have determined the relation between the AGN luminosities at rest-frame 6 μm associated with the dusty torus emission and at 2-10 keV energies using a complete, X-ray-flux-limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 1042 and 1046 erg s-1 and redshifts from 0.05 to 2.8. The rest-frame 6 μm luminosities were computed using data from the Wide-field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fitting relationship for the full sample is consistent with being linear, L6 μm ∝ L_{2-10 keV}^{0.99± 0.03}, with intrinsic scatter, Δ log L6 μm ˜ 0.35 dex. The L_{6 μ m}/L_{2-10 keV} luminosity ratio is largely independent of the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 μm and are overall ˜1.3-2 times fainter at 6 μm than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 μm is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame ˜6 μm are subject to modest dust obscuration biases.

  3. 'Harder when Brighter' Spectral Variability in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Connolly, S.; McHardy, I.; Skipper, C.; Dwelly, T.

    2015-07-01

    We present X-ray spectral variability of four low accretion rate AGN - M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the `softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely main source of spectral variability is found to be luminosity-dependent changes in the photon index of the power law component. An anticorrelation between the photon index and the count rate is found in all of the sources. The anticorrelation is likely to be caused by accretion via a radiatively-inefficient accretion flow, expected in low-Eddington ratio systems such as these, and/or due to the presence of a jet. This behaviour is similar to that seen in the `hard state' of X-ray binaries, implying that these LLAGN are in a similar state.

  4. Supersymmetry, grand unification and flavor symmetry

    NASA Astrophysics Data System (ADS)

    Enkhbat, Tsedenbaljir

    In this thesis I have presented the findings of my research pursued during my Ph.D. study. The purpose of this thesis was to study different theoretical ideas in high energy physics model building addressed primarily towards understanding the fermion mass problem and the gauge hierarchy problem. These include: Anomalous flavor U(1) symmetry and its experimental implications, finite GUT models with discrete family symmetry, and a product GUT model in a 2D deconstructed theory space. The second and third chapters of the thesis describe our study of lepton flavor violation (LFV) and electric dipole moments (EDM) induced by a flavor-dependent anomalous U(1) gauge symmetry of string origin. The models considered also address the fermion mass hierarchy problem successfully. We have shown that the U(1) sector induces significant LFV and EDMs through the SUSY breaking parameters. These effects arise via renormalization group evolution of the parameters in the momentum regime between the string and the anomalous U(1) breaking scale. The fourth chapter of the thesis contains our work on a concrete realization of SUSY breaking using interference between the anomalous U(1) flavor gauge symmetry and a strongly coupled SU(N c), leading to the so called Split SUSY spectrum where the sfermions and the gravitino acquire masses of order 105 ÷ 108 GeV while the gauginos and the Higgsinos have masses of order 102 ÷ 103 GeV. We have calculated the leading order supergravity corrections and have presented a class of explicit models of Split SUSY which are phenomenologically consistent. In the fifth chapter I have presented models for realistic quark masses and mixings in the context of finite SU(5) GUT wherein the beta functions for the gauge and the Yukawa couplings vanish to all orders in perturbation theory. The models presented are based on non-Abelian discrete symmetries. In the case of (Z4)3 x P and A4 symmetries we have found models finite to all order of perturbation theory

  5. Ideas on the unification of radiobilogical theories

    SciTech Connect

    Curtis, S.B.

    1982-10-01

    A unified formulation of cell inactivation has been developed that incorporates major ideas of several theories (hypotheses) of how individual mammalian cells are inactivated by ionizing radiation. Elements from the repair-misrepair, lethal-potentially lethal, sublesion interaction, and track structure models are combined to produce a single set of mutually compatible hypotheses.

  6. Grand Unification with and without Supersymmetry

    SciTech Connect

    Melfo, Alejandra

    2007-06-19

    Grand Unified Theories based on the group SO(10) generically provide interesting and testable relations between the charged fermions and neutrino sector masses and mixings. In the light of the recent neutrino data, we reexamine these relations both in supersymmetric and non-supersymmetric models, and give a brief review of their present status.

  7. The SRG/eROSITA All-Sky Survey: A new era of large-scale structure studies with AGN

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2015-08-01

    The four-year X-ray All-Sky Survey (eRASS) of the eROSITA telescope aboard the Spektrum-Roentgen-Gamma (SRG) satellite will detect about 3 million active galactic nuclei (AGN) with a median redshift of z~1 and typical luminosity of L0.5-2.0keV ~ 1044 erg/s. We demonstrate that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure (LSS) studies.We show that with this sample of X-ray selected AGN, it will become possible for the first time to perform detailed redshift- and luminosity-resolved studies of the AGN clustering. This enable us to put strong constraints on different AGN triggering/fueling models as a function of AGN environment, which will dramatically improve our understanding of super-massive black hole growth and its correlation with the co-evolving LSS.Further, the eRASS AGN sample will become a powerful cosmological probe. We demonstrate for the first time that, given the breadth and depth of eRASS, it will become possible to convincingly detect baryonic acoustic oscillations (BAOs) with ~8σ confidence in the 0.8 < z < 2.0 range, currently uncovered by any existing BAO survey.Finally, we discuss the requirements for follow-up missions and demonstrate that in order to fully exploit the potential of the eRASS AGN sample, photometric and spectroscopic surveys of large areas and a sufficient depth will be needed.

  8. Gas Dynamics in AGN Galaxies: First Results of the HI-NUGA Survey

    NASA Astrophysics Data System (ADS)

    Haan, S.; Schinnerer, E.; Mundell, C. G.; García-Burillo, S.; Combes, F.

    2007-05-01

    Active Galactic Nuclei (AGN) galaxies are generally known as very luminous galaxies where a small emitting region is associated with gas accretion onto a central supermassive black hole. Up to now the process of fueling the AGN with material (gas or stars) generally far away from the gravitational influence of the central black hole is controversial and not understood. Since the required material has to remove its high angular momentum in order to fall into the center, various mechanisms may play a role, including m = 2 perturbations (bars and spirals), m = 1 perturbations (spirals, warps, lopsidedness), tidal interactions between galaxies, and galaxy mergers. In order to study the gas transport from the outskirts to the centers of AGN galaxies, we are carrying out a key project, named NUGA (Nuclei of Galaxies), which is a high spectral and angular resolution CO and HI survey of low luminosity AGN in nearby galaxies (Seyferts, LINERs and transition objects). The complete dataset provides us with the unique opportunity to understand and ultimately model the whole disk kinematics on spatial scales ranging over several orders of magnitude. Here, we will present observations of 15 galaxies recently obtained in the 21 cm emission of neutral hydrogen using the Very Large Array. First results on the HI gas and velocity distribution of these galaxies are summarized and discussed. The derived properties, including the ratio of dynamical mass versus gas mass (+ stellar mass), will be presented and compared with the AGN activity types in order to search for possible dependences. Additionally, effects of satellites and tidal disturbances onto the HI disk as well as their correlation with AGN type and dynamical modes probed by CO (inner kpc) will be examined.

  9. Multi-wavelength properties and SMBH's masses of the isolated AGNs in the Local Universe

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Vasylenko, A. A.; Babyk, Iu. V.; Pulatova, N. G.

    2016-08-01

    The sample of 36 nearest isolated AGNs was cross-matched by 2MIG and Veron-Cetty catalogues and limited to Ks ≤ 12.0m and Vr < 15 000 km/s in the northern sky (δ ≥ -15°). These objects were in isolation during ~ 3 Gyrs. For revealing their multi-wavelength properties we used all the available databases obtained with ground-based and space observatories (from radio to X-ray ranges). It is allowed us to separate the internal evolution mechanisms from the environment influence and consider them as two separate processes related to fueling nuclear activity and accretion on the SMBHs outside of the environment. In this report we present briefly main results, which were already published (Pulatova N., Vavilova I., Sawangwit U. et al. The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky, MNRAS, 447, Issue 3, p. 2209-2223 (2015)). We accentuate that for the first time we revealed that the host isolated galaxies with AGNs of Sy1 type (without faint companions) appear to possess the bar morphological features (e.g., the interaction with neighboring galaxies is not necessary condition for broad-line region formation). We give also current results as concerns with more detail X-ray analysis, emission features and spectral models for several AGNs for which a cumulative soft and hard energy spectrum was reconstructed. The estimates of SMBH masses show that are systematically lower than the SMBH masses of AGNs located in a dense environment.

  10. On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan

    2013-01-01

    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.

  11. The 5-10 keV AGN luminosity function at 0.01 < z < 4.0

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.

    2016-03-01

    The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three

  12. Dynamics of matter available for accretion in AGN

    NASA Astrophysics Data System (ADS)

    Proga, Daniel

    We propose to study fluid dynamics in the central regions of active galaxies. Several key attributes of AGN, such as infall rates onto the central black hole and the geometry and rates of outward energy and momentum transfer, are determined in their central regions. However, despite many years of intensive studies, how radiation and mass outflows affect the structure of active galaxies remains uncertain, mostly because multi- dimensional geometrical effects and the dynamics of gas and dust are poorly understood. We will construct time-dependent, multi-dimensional radiation hydrodynamical simulations to study, from first principles, the morphology of central galactic flows on scales ranging from subparsec to tens of parsecs. The novel features of our proposed models are: (1) radiative heating and cooling of dust and gas, (2) radiation pressure on dust and gas,
(3) the essential physics of dust sublimation, and (4) radiative transfer. The results of this project will reveal the basic physical properties of flows in AGN with unprecedented accuracy and detail. We will use our models to calculate diagnostics such as line profiles, broad band spectra, and intensity maps. These diagnostics will be compared with observations by both current NASA missions such as HST, Chandra, Spitzer, and Swift and planned missions such as JWST.

  13. X-ray Surface Brightness Profiles of Active Galactic Nuclei in the Extended Groth Strip: Implications for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Newman, Jeffrey A.; Jeltema, Tesla; Myers, Adam D.; Aird, James; Coil, Alison L.; Cooper, Michael; Finoguenov, Alexis; Laird, Elise; Montero-Dorta, Antonio; Nandra, Kirpal; Willmer, Christopher; Yan, Renbin

    2015-08-01

    Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM)/intracluster medium (ICM) in both active and normal galaxies at 0.3 <= z <= 1.3. For both active galactic nuclei (AGN) host galaxy and normal galaxy samples that are matched in restframe color, luminosity, and redshift distribution, we tentatively detect excess X-ray emission at scales of 1-10'' at a few σ significance in the surface brightness profiles. The exact significance of this detection is sensitive to the true characterization of Chandra's point-spread function. The observed excess in the surface brightness profiles is suggestive of lower extended emission in AGN hosts compared to normal galaxies. This is qualitatively similar to theoretical predictions of the X-ray surface brightness profile from AGN feedback models, where feedback from AGN is likely to evacuate the gas from the center of the galaxy/cluster. We propose that AGN that are intrinsically underluminous in X-rays, but have equivalent bolometric luminosities to our sources will be the ideal sample to study more robustly the effect of AGN feedback on diffuse ISM/ICM gas.

  14. AGN flickering on 10-100 kyr timescales

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Kill, Bill; Maksym, Peter; Koss, Michael; Argo, Megan; Urry, Meg; Wong, Ivy; Lintott, Chris

    2016-08-01

    The study of AGN variability on timescales of 10^4-10^5 years is important in order to understand the BH - host galaxy interaction and coevolution. The discovery of "Hanny's Voorwerp" (HV), an extended emission line region associated with the nearby galaxy IC 2497, provided us with a laboratory to study AGN variability over such timescales. HV was illuminated by a strong quasar in IC 2497, but this quasar significantly shut down in the last 200 kyrs. Thanks to its recent shutdown we can now explore the host galaxy unimpeded by the presence of a quasar dominating the observations, while the Voorwerp preserves the echoes of its past activity. Recent studies on the optical properties of hard X-ray selected AGN suggest that AGN may flicker on and off hundreds or thousands times with each burst lasting ~10^5 yrs. Systems similar to IC 2497 and HV, the so-called Voorwerpjes, allow us to constrain the last stages of the AGN lifecycle. On the other hand, we recently suggested that the switch on phase may be observed in the so-called optically elusive AGN. In this talk I will review both observational evidence and results from simulation work which support this picture, and explain how optically elusive AGN and Voorwerpjes galaxies can help us to understand different phases of the AGN lifecycle. Moreover, I will discuss possible implications for AGN feedback, BH - host galaxy coevolution, and the analogy between AGN and X-ray binaries accretion physics.

  15. Nontrivial asymptotically nonfree gauge theories and dynamical unification of couplings

    SciTech Connect

    Kubo, J.

    1995-12-01

    Evidence for the nontriviality of asymptotically nonfree (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC.

  16. Quantized Fields à la Clifford and Unification

    NASA Astrophysics Data System (ADS)

    Pavšič, Matej

    It is shown that the generators of Clifford algebras behave as creation and annihilation operators for fermions and bosons. They can create extended objects, such as strings and branes, and can induce curved metric of our space-time. At a fixed point, we consider the Clifford algebra Cl(8) of the 8D phase space, and show that one quarter of the basis elements of Cl(8) can represent all known particles of the first generation of the Standard model, whereas the other three quarters are invisible to us and can thus correspond to dark matter.

  17. One Germany, Two Identities? Challenges to Political Education in Germany Following Unification.

    ERIC Educational Resources Information Center

    Sussmuth, Hans

    After a discussion of the circumstances that led to the unification of the two German states, this paper then evaluates the challenges to political education in Germany after unification. Beginning with the focus by the media and politics on the effects of East German political changes on the two German states, the revolution in East Germany and…

  18. 76 FR 15209 - 150th Anniversary of the Unification of Italy, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Sig.) [FR Doc. 2011-6720 Filed 3-18-11; 8:45 am] Billing code 3195-W1-P ... the Unification of Italy, 2011 By the President of the United States of America A Proclamation On March 17, Italy celebrates the 150th anniversary of its unification as a single state. On this day,...

  19. THE BULK OF THE BLACK HOLE GROWTH SINCE z {approx} 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER-AGN CONNECTION

    SciTech Connect

    Cisternas, Mauricio; Jahnke, Knud; Inskip, Katherine J.; Robaina, Aday R.; Andrae, Rene; Kartaltepe, Jeyhan; Koekemoer, Anton M.; Lisker, Thorsten; Scodeggio, Marco; Sheth, Kartik; Capak, Peter; Trump, Jonathan R.; Impey, Chris D.; Miyaji, Takamitsu; Lusso, Elisabeta; Brusa, Marcella; Cappelluti, Nico; Civano, Francesca; Ilbert, Olivier; Leauthaud, Alexie

    2011-01-10

    What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGNs) activity? To answer this long-standing question, we analyze 140 XMM-Newton-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z {approx} 0.3-1.0 and M{sub *} < 10{sup 11.7} M{sub sun} with high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field. The visual analysis of their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies in the AGN and control samples, i.e., quantifying the signature of recent mergers which might potentially be responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies do not show strong distortions and (2) there is no significant difference in the distortion fractions between active and inactive galaxies. Our findings provide the best direct evidence that, since z {approx} 1, the bulk of black hole (BH) accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e., internal secular processes and minor interactions, are the leading triggers for the episodes of major BH growth. We also exclude an alternative interpretation of our results: a substantial time lag between merging and the observability of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to (1) recent major mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGNs, (2) the lack of a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low levels of soft X-ray obscuration for AGNs hosted by interacting galaxies, in contrast to model predictions.

  20. ACTIVE GALAXY UNIFICATION IN THE ERA OF X-RAY POLARIMETRY

    SciTech Connect

    Dorodnitsyn, A.; Kallman, T.

    2010-03-10

    Active galactic nuclei (AGNs), Seyfert galaxies, and quasars are powered by luminous accretion and often accompanied by winds that are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes that are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (warm absorbers). Here, we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow and the gas responsible for launching and collimating it. We present calculations that show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance-line scattering, and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three-dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV energy range is dominated by the effects of resonance lines. We predict a 5%-25% X-ray polarization signature of type-2 objects in this energy range. These results are generalized to flows that originate from a cold torus-like structure, located {approx}1 pc from the BH, which wraps the BH and is ultimately responsible for the apparent dichotomy between type 1 and type 2 AGNs. Such signals will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism Small Explorer.

  1. The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans

    2016-07-01

    Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured

  2. AGN feedback in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; Clarke, Tracy E.; Intema, Huib; Fabian, Andrew C.; Taylor, Gregory B.; Blundell, Katherine

    2016-04-01

    Deep Chandra images of the Perseus cluster of galaxies have revealed a succession of cavities created by the jets of the central supermassive black hole, pushing away the X-ray emitting gas and leaving bubbles filled with radio emission. Perseus is one of the rare examples showing buoyantly rising lobes from past radio outbursts, characterized by a steep spectral index and known as ghost cavities. All of these structures trace the complete history of mechanical AGN feedback over the past 500 Myrs. I will present results on new, ultra deep 230-470 MHz JVLA data. This low-frequency view of the Perseus cluster will probe the old radio-emitting electron population and will allow us to build the most detailed map of AGN feedback in a cluster thus far.

  3. Unification of Einstein's Gravity with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2010-02-01

    The four tetrad and six spin-connection Cartan 1-forms of Einstein's GeoMetroDynamic (GMD) field emerge from the eight virtual gluon macro-quantum coherent QCD post-inflation vacuum condensates that form in the inflationary phase transition. This joint emergence of gravity and the strong force is similar to the emergence of irrotational superflow with vortex defects in liquid helium below the Lambda Point. Repulsive dark energy is from the residual random virtual bosons that did not cohere in the moment of inflation. Similarly, attractive dark matter is from the residual random virtual fermion-antifermion pairs. Therefore, I predict that the LHC will not detect any on-mass-shell real particles that can explain φDM˜0.23. As first suggested by Abdus Salam (f-gravity) the low energy tail of the nuclear force can be explained as strong short-range Yukawa gravity. QCD's IR confinement and UV asymptotic freedom are elementary consequences in this simple model. )

  4. Correlaciones cruzadas quasar-galaxia y AGN-galaxia

    NASA Astrophysics Data System (ADS)

    Martínez, H. J.; Merchán, M. E.; Valotto, C. A.; García Lambas, D.

    We compute quasar-galaxy and AGN-galaxy cross-correlation functions for samples taken from the Véron-Cetty & Véron (1998) catalog of quasars and active galaxies, using tracer galaxies taken from the Edinburgh/Durham Southern Catalog. The sample of active galaxy targets shows positive correlation at projected separations rp < 6 h-1 ~Mpc consistent with the usual power-law. On the other hand, we do not find a statistically significant positive quasar-galaxy correlation signal except in the range 3 h-1 Mpc < rp < 6 h-1 Mpc where we find similar AGN-galaxy and quasar-galaxy correlation amplitudes. At separations rp<3~h-1 ~Mpc a strong decline of quasar-galaxy correlations is observed, suggesting a significant local influence of quasars in galaxy formation. In an attempt to reproduce the observed cross-correlation between quasars and galaxies, we have performed CDM cosmological hydrodynamical simulations and tested the viability of a scenario based on the model developed by Silk & Rees (1998). In this scheme a fraction of the energy released by quasars is considered to be transferred into the baryonic component of the intergalactic medium in the form of winds. The results of the simulations suggest that the shape of the observed quasar-galaxy cross-correlation function could be understood in a scenario where a substantial amount of energy is transferred to the medium at the redshift of maximum quasar activity.

  5. Dielectric recombination and stability of warm gas in AGN

    SciTech Connect

    Chakravorty, Susmita; Kembhavi, Ajit K.; Elvis, Martin; Ferland, Gary; Badnell, N. R.

    2012-05-25

    High resolution ultraviolet and X-ray spectra show that material outflow occur from the close neighbourhoods of super-massive black holes in active galactic nuclei (AGN). The absorption features seen in the high resolution soft X-ray spectra is attributed to gas which is conventionally termed as the warm absorber (WA) and often the thermal equilibrium (stability) curve is used as a theoretical tool to offer insights into the nature of the WA. The shape of the stability curve is determined by factors like the spectral energy distribution of the ionizing flux and the chemical composition of the absorbing gas. We found that the stability curves obtained under the same set of assumptions for the prevalent physical conditions in the AGN environment, but using recently derived dielectronic recombination rates, give significantly different results from what is predicted with older atomic data. The variations in phase space region of the stability curves corresponding to WAs, lead to different physical predictions. The results obtained with the current dielectronic recombination rate coefficients are more reliable because the WA models along the stability curve have computed, updated coefficient values.

  6. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  7. X-Rays and Infrared Selected AGN

    NASA Astrophysics Data System (ADS)

    Kirhakos, S. D.; Steiner, J. E.

    1990-11-01

    RESUMEN. En la busqueda de nucleos activos galacticos (NAG) oscurecidos, seleccionamos una tnuestra de galaxias ernisoras de rayos S infrarrojos, Ia mayoria de las cuales son vistas de perf ii. La 6ptica de la regi6n nuclear de las galaxias seleccionadas revelan que el 76% de ellas muestran lineas de emisi5n La clasificaci6n de los es- pectros de acuerdo a los anchos y a la intensidad de cocientes de lineas muestran que existen 34 NAG, 34 objetos de tipo de transici6n y 34 galaxias de la regi6n con nucleos de tipo regi6n H II. Entre los NAG, 3 son del tipo Seyfert I y las otras son del tipo 2. Sugerimos que los objetos identificados como NAG de llneas angostas son objetos tipo Seyfert I oscurecidos ABSTRACT. Looking for obscured active galactic nuclei (AGN), we selected a sample of infrarediX-rays emitting galaxies, mos"t of which are seen as edge-on. Optical spectroscopy of the nuclear region of the selected galaxies revealed that 76 % of them show emission l 'nes. Classification of the spectra according to the widths and line intensity ratios shows that there are 34 AGN, 34 transition type objects and 43 nuclear HIl-like region galaxies. Among the AGN, three are Seyfert type 1 and the others are type 2 objects. We suggest that the objects identified as narrow line AGN are obscured Seyfert 1. o'L : GALAXIES-ACTIVE - X-RAY S-GENERAL

  8. Fundamental Problems in the Unification of Physics

    NASA Astrophysics Data System (ADS)

    Heller, Michael; Pysiak, Leszek; Sasin, Wiesław

    2011-05-01

    We discuss the following problems, plaguing the present search for the "final theory": (1) How to find a mathematical structure rich enough to be suitably approximated by the mathematical structures of general relativity and quantum mechanics? (2) How to reconcile nonlocal phenomena of quantum mechanics with time honored causality and reality postulates? (3) Does the collapse of the wave function contain some hints concerning the future quantum gravity theory? (4) It seems that the final theory cannot avoid the problem of dynamics, and consequently the problem of time. What kind of time, if this theory is supposed to be background free? (5) Will the dynamics of the "final theory" be probabilistic? Quantum probability exhibits some essential differences as compared with classical probability; are they but variations of some more general probabilistic measure theory? (6) Do we need a radically new interpretation of quantum mechanics, or rather an entirely new theory of which the present quantum mechanics is an approximation? (7) If the final theory is to be background free, it should provide a mechanism of space-time generation. Should we try to explain not only the generation of space-time, but also the generation of its material content? (8) As far as the existence of the initial singularity is concerned, one usually expects either "yes" or "not" answers from the final theory. However, if the mathematical structure of the future theory is supposed to be truly more general that the mathematical structures of the present general relativity and quantum mechanics, is a "third answer" possible? Could this third answer be related to the probabilistic character of the final theory? We discuss these questions in the framework of a working model unifying gravity and quanta. The analysis reveals unexpected aspects of these rather wildly discussed issues.

  9. H →Z γ in the gauge-Higgs unification

    NASA Astrophysics Data System (ADS)

    Funatsu, Shuichiro; Hatanaka, Hisaki; Hosotani, Yutaka

    2015-12-01

    The decay rate of the Higgs decay H →Z γ is evaluated at the one-loop level in the S O (5 )×U (1 ) gauge-Higgs unification. Although an infinite number of loops with Kaluza-Klein states contribute to the decay amplitude, there appears the cancellation among the loops, and the decay rate is found to be finite and nonzero. It is found that the decay rate is well approximated by the decay rate in the standard model multiplied by cos2θH, where θH is the Aharonov-Bohm phase induced by the vacuum expectation value of an extra-dimensional component of the gauge field.

  10. The GBVP approach for vertical datum unification: recent results in North America

    NASA Astrophysics Data System (ADS)

    Amjadiparvar, B.; Rangelova, E.; Sideris, M. G.

    2016-01-01

    Two levelling-based vertical datums have been used in North America, namely CGVD28 in Canada and NAVD88 in the USA and Mexico. Although the two datums will be replaced by a common and continent-wide vertical datum in a few years, their connection and unification are of great interest to the scientific and user communities. In this paper, the geodetic boundary value problem (GBVP) approach is studied as a rigorous method for connecting two or more vertical datums through computed datum offsets from a global equipotential surface defined by a GOCE-based geoid. The so-called indirect bias term, the effect of the GOCE geoid omission error, the effect of the systematic levelling datum errors and distortions, and the effect of the geodetic data errors on the datum unification are four important factors affecting the practical implementation of this approach. These factors are investigated numerically using the GNSS-levelling and tide gauge stations in Canada, the USA, Alaska, and Mexico. The results show that the indirect bias term can be omitted if a GOCE-based global geopotential model is used in gravimetric geoid computations. The omission of the indirect bias term simplifies the linear system of equations for the estimation of the datum offset(s). Because of the existing systematic levelling errors and distortions in the Canadian and US levelling networks, the datum offsets are investigated in eight smaller regions along the Canadian and US coastal areas. Using GNSS-levelling stations in the US coastal regions, the mean datum offset can be estimated with a 1 cm standard deviation if the GOCE geoid omission error is taken into account by means of the local gravity and topographic information. In the Canadian Atlantic and Pacific regions, the datum offsets can be estimated with 2.3 and 3.5 cm standard deviation, respectively, using GNSS-levelling stations. However, due to the low number of tide gauge stations, the standard deviation of the CGVD28 and NAVD88 datum

  11. Neutron electric dipole moment in the gauge-Higgs unification

    SciTech Connect

    Adachi, Yuki; Lim, C. S.; Maru, Nobuhito

    2009-09-01

    We study the neutron electric dipole moment (EDM) in a five-dimensional SU(3) gauge-Higgs unification compactified on M{sup 4}xS{sup 1}/Z{sub 2} space-time including a massive fermion. We point out that to realize the CP violation is a nontrivial task in the gauge-Higgs unification scenario and argue how the CP symmetry is broken spontaneously by the vacuum expectation value of the Higgs, the extra space component of the gauge field. We emphasize the importance of the interplay between the vacuum expectation value of the Higgs and the Z{sub 2}-odd bulk mass term to get physically the CP violation. We then calculate the one-loop contributions to the neutron EDM as the typical example of the CP violating observable and find that the EDM appears already at the one-loop level, without invoking the three-generation scheme. We then derive a lower bound for the compactification scale, which is around 2.6 TeV, by comparing the contribution due to the nonzero Kaluza-Klein modes with the experimental data.

  12. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    PubMed

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis.

  13. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    PubMed

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis. PMID:21129589

  14. Physics of Gamma Ray Emitting AGN

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Lovell, Jim; Edwards, Philip; Kadler, Matthias; Monitoringteam, Gamma Ray Blazar

    2012-10-01

    The TANAMI VLBI monitoring program, which was granted Large Proposal status from Oct 2009, was set up to capitalize on a 5-10 year window of opportunity provided by the Fermi gamma-ray telescope. TANAMI and its associated components at other wavebands perform simultaneous observations of AGN across the electromagnetic spectrum. Such observations are key to addressing fundamental questions of AGN physics. TANAMI is the only dual-frequency VLBI monitoring program covering the southern third of the sky while Fermi is observing. As such, it is indispensable for tracking parsec-scale jet components and associating their behaviour with changes at high energies. Jet parameters such as speeds and Doppler factors, that are essential inputs to understanding AGN physics, can only be measured with VLBI observations over many years. We request continuation of TANAMI so that the baseline of unique information on kinematics, morphology and the correlation of changes in both with emission at other wavebands, that we have set up can continue to provide important results and indeed produce its highest impact science as we reach critical number of epochs of data on an increasing fraction of our sample.

  15. AGN Black Hole Masses from Reverberation Mapping

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.

    2004-01-01

    Emission-line variability data on bright AGNs indicates that the central objects in these sources have masses in the million to few-hundred million solar mass range. The time-delayed response of the emission lines to continuum variations can be used to infer the size of the line-emitting region via light travel-time arguments. By combining these sizes with the Doppler widths of the variable part of the emission lines, a virial mass estimate can be obtained. For three especially well-studied sources, NGC 5548, NGC 7469, and 3C 390.3, data on multiple emission lines can be used to test the virial hypothesis. In each of these cases, the response time of the various emission lines is anticorrelated with the line width, with the dependence as expected for gravitationally bound motion of the line-emitting clouds, i.e., that the square of the Doppler line width is inversely proportional to the emission-line time delay. Virial masses based on the Balmer lines have now been measured for about three dozen AGNs. Systematic effects currently limit the accuracy of these masses to a factor of several, but characteristics of the radius-luminosity and mass-luminosity relationships for AGNs are beginning to emerge.

  16. Morphology of AGN in the Central Kiloparsec

    NASA Astrophysics Data System (ADS)

    Martini, Paul

    Hubble Space Telescope observations of the central kiloparsec of AGN have revealed a wealth of structure, particularly nuclear bars and spirals, that are distinct from analogous features in the disks of spiral galaxies. WFPC2 and NICMOS images of a large sample of AGN observed at high spatial resolution make it possible to quantify the frequency and detailed properties of these structures. Nearly all AGN have nuclear spiral dust lanes in the central kiloparsec, while only a small minority contain nuclear bars. If these nuclear dust spirals trace shocks in the circumnuclear, gaseous disks, they may dissipate sufficient angular momentum to fuel the active nucleus. I would like to thank my collaborators in this project---Rick Pogge, John Mulchaey, and Mike Regan---for allowing me to present this work in advance of publication, as well as Johan Knapen for organizing such an interesting meeting. Support for this work was provided by NASA through grant numbers GO-7867 and GO-8597 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. A simple way to improve AGN feedback prescription in SPH simulations

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; Bourne, Martin A.; Nayakshin, Sergei

    2016-03-01

    Active galactic nuclei (AGN) feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of smoothed particle hydrodynamics simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the supermassive black hole (SMBH) particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring any noticeable increase in the computational cost of the simulation.

  18. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  19. Delving into X-ray obscuration of type 2 AGN, near and far

    SciTech Connect

    LaMassa, Stephanie M.; Meg Urry, C.; Yaqoob, Tahir; Ptak, Andrew F.; Gandhi, Poshak

    2014-05-20

    Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [O III] 5007 Å selected active galactic nuclei (AGNs), 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; four AGNs have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate 'naked' Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L{sub 2-10} {sub keV,} {sub in}) to L{sub [O} {sub III]} is 1.54 ± 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe Kα luminosity is significantly correlated with L{sub [O} {sub III]} but with substantial scatter. Finally, we do not find a trend between L {sub 2-10keV,} {sub in} and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction, or between scattering fraction and redshift.

  20. Delving Into X-ray Obscuration of Type 2 AGN, Near and Far

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Ptak, Andrew F.; Jia, Jianjun; Heckman, Timothy M.; Gandhi, Poshak; Meg Urry, C.

    2014-05-01

    Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [O III] 5007 Å selected active galactic nuclei (AGNs), 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; four AGNs have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate "naked" Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L 2-10 keV, in) to L [O III] is 1.54 ± 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe Kα luminosity is significantly correlated with L [O III] but with substantial scatter. Finally, we do not find a trend between L 2-10 keV, in and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction, or between scattering fraction and redshift.

  1. Delving into X-Ray Obscuration of Type 2 AGN, Near and Far

    NASA Technical Reports Server (NTRS)

    Lamassa, Stephanie M.; Yaqoob, Tahir; Ptak, Andrew F.; Jia, Jianjun; Heckman, Timothy M.; Gandhi, Poshak; Urry, C. Meg

    2014-01-01

    Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [O iii] 5007Å selected active galactic nuclei (AGNs), 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; four AGNs have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate "naked" Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L2-10 keV,in) to L[O iii] is 1.54 +/- 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe K(alpha) luminosity is significantly correlated with L[O iii] but with substantial scatter. Finally, we do not find a trend between L2-10 keV,in and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction, or between scattering fraction and redshift. Key words: galaxies: active - galaxies: Seyfert - X-rays: general

  2. PRIMUS: The Relationship between Star Formation and AGN Accretion

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Aird, James; Coil, Alison L.; Moustakas, John; Mendez, Alexander J.; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun

    2015-06-01

    We study the evidence for a connection between active galactic nuclei (AGNs) fueling and star formation by investigating the relationship between the X-ray luminosities of AGNs and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGNs with {10}41\\lt {L}X\\lt {10}44 erg s-1 at 0.2\\lt z\\lt 1.2 in the PRIMUS redshift survey. We find AGNs in galaxies with a wide range of SFR at a given LX. We do not find a significant correlation between SFR and the observed instantaneous LX for star-forming AGN host galaxies. However, there is a weak but significant correlation between the mean LX and SFR of detected AGNs in star-forming galaxies, which likely reflects that LX varies on shorter timescales than SFR. We find no correlation between stellar mass and LX within the AGN population. Within both populations of star-forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star-forming galaxy ˜2-3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGNs, but AGNs are often hosted by quiescent galaxies.

  3. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  4. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  5. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  6. Mapping the radial structure of AGN tori

    NASA Astrophysics Data System (ADS)

    Kishimoto, M.; Hönig, S. F.; Antonucci, R.; Millour, F.; Tristram, K. R. W.; Weigelt, G.

    2011-12-01

    We present mid-IR interferometric observations of six type 1 AGNs at multiple baseline lengths ranging from 27 m to 130 m, reaching high angular resolutions up to λ/B ~ 0.02 arcsec. For two of the targets, we have simultaneous near-IR interferometric measurements as well, taken within a week. We find that all the objects are partially resolved at long baselines in these IR wavelengths. The multiple-baseline data directly probe the radial distribution of the material on sub-pc scales. We show that for our sample, which is small but spans over ~2.5 orders of magnitudes in the UV/optical luminosity L of the central engine, the radial distribution clearly and systematically changes with luminosity. The brightness distribution at a given mid-IR wavelength seems to be rather well described by a power law, which makes a simple Gaussian or ring size estimation quite inadequate. In this case, a half-light radius R1/2 can be used as a representative size. We show that the higher luminosity objects become more compact in normalized half-light radii R1/2/Rin in the mid-IR, where Rin is the dust sublimation radius empirically given by the L1/2 fit of the near-IR reverberation radii. This means that, contrary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proportional to L1/2, but increases with L much more slowly. With our current datasets, we find that R1/2 ∝ L0.21 ± 0.05 at 8.5 μm, and R1/2 nearly constant at 13 μm. The derived size information also seems to correlate with the properties of the total flux spectrum, in particular the smaller R1/2/Rin objects having bluer mid-IR spectral shape. We use a power-law temperature/density gradient model as a reference, and infer that the radial surface density distribution of the heated dust grains at a radius r changes from a steep ~r-1 structure in high luminosity objects to a shallower ~r0 structure in those of lower luminosity. The inward dust temperature distribution does not seem to smoothly

  7. The merger fraction of radio-loud and radio quiet AGN: clues on the AGN triggering mechanism

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco

    2016-08-01

    Radio-loud AGNs are important objects. They are associated with the most massive black holes and thus with the most massive galaxies, and they are often located in clusters of galaxies. Studying radio galaxies at z>1 not only allows us to get insights on the mechanisms responsible for launching their powerful relativistic jets, but also to better understand important aspects of the formation and evolution of massive galaxies and clusters. I will focus on results obtained from our successful HST snapshot survey of 3CR radio-loud AGN at z>1. Statistical analysis of different samples of carefully selected radio-quiet AGN, radio-loud AGN and non-active galaxies shows strong evidence that galaxy mergers (and possibly black hole mergers) are intimately tied to the triggering mechanism for radio-loud AGN activity. The same may not hold for the radio-quiet AGN class.

  8. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  9. DOES SIZE MATTER? THE UNDERLYING INTRINSIC SIZE DISTRIBUTION OF RADIO SOURCES AND IMPLICATIONS FOR UNIFICATION BY ORIENTATION

    SciTech Connect

    DiPompeo, M. A.; Runnoe, J. C.; Myers, A. D.; Boroson, T. A.

    2013-09-01

    Unification by orientation is a ubiquitous concept in the study of active galactic nuclei. A gold standard of the orientation paradigm is the hypothesis that radio galaxies and radio-loud quasars are intrinsically the same, but are observed over different ranges of viewing angles. Historically, strong support for this model was provided by the projected sizes of radio structure in luminous radio galaxies, which were found to be significantly larger than those of quasars, as predicted due to simple geometric projection. Recently, this test of the simplest prediction of orientation-based models has been revisited with larger samples that cover wider ranges of fundamental properties-and no clear difference in projected sizes of radio structure is found. Cast solely in terms of viewing angle effects, these results provide convincing evidence that unification of these objects solely through orientation fails. However, it is possible that conflicting results regarding the role orientation plays in our view of radio sources simply result from insufficient sampling of their intrinsic size distribution. We test this possibility using Monte Carlo simulations constrained by real sample sizes and properties. We develop models for the real intrinsic size distribution of radio sources, simulate observations by randomly sampling intrinsic sizes and viewing angles, and analyze how likely each sample is to support or dispute unification by orientation. We find that, while it is possible to reconcile conflicting results purely within a simple, orientation-based framework, it is very unlikely. We analyze the effects that sample size, relative numbers of radio galaxies and quasars, the critical angle that separates the two subclasses, and the shape of the intrinsic size distribution have on this type of test.

  10. Poynting Robertson Battery and the Chiral Magnetic Fields of AGN Jets

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2010-01-01

    We propose that the magnetic fields in the accretion disks of active galactic nuclei (AGNs) are generated by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with the AGN photons (the Poynting Robertson battery). This process provides a unique relation between the polarity of the poloidal B field to the angular velocity Omega of the accretion disk (B is parallel to Omega), a relation absent in the more popular dynamo B-field generation. This then leads to a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry comes about by chance being approx.0.06 %. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.

  11. Dichotomy in the population of young AGN: Optical, radio, and X-ray properties

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, M.

    2016-02-01

    There are numerous examples of radio sources with various sizes which surprisingly exhibit very similar morphology. This observational fact helped to create a standard evolutionary model in which young and small radio-loud active galactic nuclei (AGN), called gigahertz-peaked spectrum (GPS) sources and compact steep spectrum (CSS) sources, become large-scale radio objects. However, many details of this evolutionary process are still unclear. We explored evolution scenarios of radio-loud AGN using new radio, optical and X-ray data of so far unstudied low luminosity compact (LLC) sources and we summarize the results in this paper. Our studies show that the evolutionary track is very ``individualized'' although we can mention common factors affecting it. These are interaction with the ambient medium and AGN power. The second feature affects the production of the radio jets which, if they are weak, are more vulnerable for instabilities and disruption. Thus not all GPS and CSS sources will be able to develop large scale morphologies. Many will fade away being middle-aged (105 yr). It seems that only radio strong, high excitation compact AGN can be progenitors of large-scale FR II radio sources.

  12. Newly Discovered AGN and their Multi-year Light Curves from Kepler

    NASA Astrophysics Data System (ADS)

    Shaya, Edward J.; Olling, R.; Mushotzky, R.

    2014-01-01

    Variability seen at the center of a galaxy is an easy and reliable way to identify AGN. The Kepler space mission provides the ability to find galaxies with very low amplitude variability over a wide range in time delays. We report on a 2 year project to monitor ~400 galaxies with Kepler and our reduction software to stabilize long term photometric trends. We will present light curves for several of our newly discovered AGN with variability measured from the 30 minute to ~2 year timescales. The optical variability that Kepler explores is probably related to accretion disk instabilities, variation in accretion rate or changes in the accretion disk's structure. We developed, in a white paper, a future Kepler project to monitor of order 10,000 galaxies. Statistical analysis of light curves from hundreds of AGN would reveal the physical character of gas, dust or stars falling into AGN or eclipsing the light source and allow better models to be developed of the inner accretion disks/tori. In addition, this project should also find a large number of supernovae and other exotic transient events such as stellar tidal disruption and eta Carinae or P-Cygni type outbursts.

  13. AGN Feedback: Radio-Loudness Distribution and the Kinetic Luminosity function

    NASA Astrophysics Data System (ADS)

    La Franca, Fabio; Melini, Gabriele; Fiore, Fabrizio

    We have studied the AGN radio emission from the largest existing compilation of hard X-ray selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGN have been used. For the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity RX , which has been function-ally fitted as dependent from the X-ray luminosity and redshift. These measures have allowed us to estimate the AGN kinetic luminosity function and its evo-lution. It results that, in agreement with previous estimates, the efficiency kin in converting the accreted mass energy into kinetic power (LK = kin mc2 ) is on average kin ˜5 × 10-3 . ˙ The derived value and evolution of the kinetic energy density is in qualitative agreement with some of the last generation galaxy evolution models, where radio mode AGN feedback is invoked to quench the star formation in galaxies and slow down the cooling flows in galaxy clusters.

  14. A neuronal gamma oscillatory signature during morphological unification in the left occipitotemporal junction.

    PubMed

    Levy, Jonathan; Hagoort, Peter; Démonet, Jean-François

    2014-12-01

    Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60-85 Hz, 260-440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing. PMID:25044125

  15. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  16. Exploring AGNs in the Local Universe through High Angular Resolution Spectroscopy and Optical Variability Monitoring

    NASA Astrophysics Data System (ADS)

    Walsh, Jonelle L.

    This dissertation presents the results of several observational projects designed to explore AGNs, on scales of about 100 pc and smaller, in nearby galaxies. High angular resolution spectroscopy acquired from HST STIS and Keck LGS AO OSIRIS observations are used to study the kinematic structure of gas disks and stars on scales comparable to the gravitational sphere of influence of the supermassive black hole. Specifically, I use multi-slit STIS data of low-luminosity AGNs to map out the emission-line kinematics, and to look for regularly rotating velocity fields suitable for future gas dynamical black hole mass measurements. The HST data is further useful for searching for electron-density gradients and for examining how the emission-line velocity dispersion varies as a function of aperture size. In another project, I aim to resolve a discrepancy between two previous gas dynamical measurements of the black hole in the elliptical galaxy M84. I perform new measurements of the gas kinematics from archival multi-slit STIS data, and carry out a more comprehensive dynamical model of the emission-line disk than had been previously attempted. With the most recent project, I measure high-resolution stellar kinematics from LGS AO OSIRIS data and large-scale kinematics from long-slit LRIS data of the S0 galaxy NGC 3998. Using triaxial orbit-based stellar dynamical models, I determine the black hole mass. The stellar dynamical value is then compared to a previous gas dynamical determination in order to test the consistency between these two main mass measurement methods. In addition to using high spatial resolution spectroscopy, AGN variability can be used to probe the inner regions of AGNs. The Lick AGN Monitoring Project targeted 12 galaxies expected to harbor low-mass black holes. Through reverberation mapping, the collaboration measured the masses of nine black holes, and learned about the geometry and kinematics of the broad-line region in several of the objects. I

  17. Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach

    NASA Astrophysics Data System (ADS)

    Gerlach, Christian; Rummel, Reiner

    2013-01-01

    One of the main objectives of ESA's Gravity Field and Steady-State Ocean Circulation mission GOCE (Gravity field and steady-state ocean circulation mission, 1999) is to allow global unification of height systems by directly providing potential differences between benchmarks in different height datum zones. In other words, GOCE provides a globally consistent and unbiased geoid. If this information is combined with ellipsoidal (derived from geodetic space techniques) and physical heights (derived from leveling/gravimetry) at the same benchmarks, datum offsets between the datum zones can be determined and all zones unified. The expected accuracy of GOCE is around 2-3 cm up to spherical harmonic degree n max ≈ 200. The omission error above this degree amounts to about 30 cm which cannot be neglected. Therefore, terrestrial residual gravity anomalies are necessary to evaluate the medium and short wavelengths of the geoid, i.e. one has to solve the Geodetic Boundary Value Problem (GBVP). The theory of height unification by the GBVP approach is well developed, see e.g. Colombo (A World Vertical Network. Report 296, Department of Geodetic Science and Surveying, 1980) or Rummel and Teunissen (Bull Geod 62:477-498, 1988). Thereby, it must be considered that terrestrial gravity anomalies referring to different datum zones are biased due to the respective datum offsets. Consequently, the height reference surface of a specific datum zone deviates from the unbiased geoid not only due to its own datum offset ( direct bias term) but is also indirectly affected by the integration of biased gravity anomalies. The latter effect is called the indirect bias term and it considerably complicates the adjustment model for global height unification. If no satellite based gravity model is employed, this error amounts to about the same size as the datum offsets, i.e. 1-2 m globally. We show that this value decreases if a satellite-only gravity model is used. Specifically for GOCE with n max

  18. Ultrasound-Guided Unification of Noncommunicating Uterine Cavities

    PubMed Central

    Mullesserill, Bijoy T.; Dumesic, Daniel A.; Damario, Mark A.

    2003-01-01

    Background: The benefits of ultrasound-guided hysteroscopic metroplasty have been well described in the management of the partial septate uterus. The use of ultrasonography at the time of hysteroscopy provides visualization of the intrauterine instruments within the uterine cavity. This report describes a case where ultrasound-guidance was used to enter a noncommunicating uterine cavity hysteroscopically. Methods: A 22-year-old female after her third miscarriage experienced worsening dysmenorrhea. The patient underwent a laparoscopy and hysteroscopy to further evaluate the cause of pelvic pain and to treat the Müllerian anomaly. Under ultrasound-guidance, the 2 uterine cavities were unified by hysteroscopic metroplasty. Results: Postoperative sonohysterography demonstrated unification of the 2 cavities. Conclusions: This unique application of ultrasound-guidance in hysteroscopic surgery may aid the surgeon in entering a noncommunicating uterine cavity. PMID:12856848

  19. Origin of families and S O (18 ) grand unification

    NASA Astrophysics Data System (ADS)

    BenTov, Yoni; Zee, A.

    2016-03-01

    We exploit a recent advance in the study of interacting topological superconductors to propose a solution to the family puzzle of particle physics in the context of S O (18 ) [or more correctly, Spin(18 )] grand unification. We argue that Yukawa couplings of intermediate strength may allow the mirror matter and extra families to decouple at arbitrarily high energies. As was clear from the existing literature, we have to go beyond the Higgs mechanism in order to solve the family puzzle. A pattern of symmetry breaking which results in the S U (5 ) grand unified theory with horizontal or family symmetry U S p (4 )=Spin(5 ) [or more loosely, S O (5 )] leaves exactly three light families of matter and seems particularly appealing. We comment briefly on an alternative scheme involving discrete non-Abelian family symmetries. In a few lengthy Appendices we review some of the pertinent condensed matter theory.

  20. Predictions of the Higgs Mass and the Weak Mixing Angle in the 6D Gauge-Higgs Unification

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kouhei; Lim, Chong-Sa; Maru, Nobuhito

    2016-07-01

    In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is on the order of g2 and the Higgs boson is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question on whether there exists a model of gauge-Higgs unification in six-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, using a useful formula, we give a general argument on the condition for obtaining a realistic prediction of the weak mixing angle sin2θW = 1/4, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that, in the models with one Higgs doublet, the predicted Higgs mass is always the same: MH = 2MW. However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction MH ≤ 2MW at the leading order of the perturbation. Thus, it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where MH ≤ MZ at the classical level and the predicted Higgs mass cannot recover the observed value.

  1. AGN content of X-ray, IR and radio sources

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.

    2016-09-01

    We have carried out a number of surveys and identification works related to X-ray, IR and radio sources and searched for extragalactic ones. Among them, most interesting are Active Galactic Nuclei (AGN) and Starburst (SB) Galaxies. Some 4500 AGN have been revealed from ROSAT BSC and FSC sources, and many more are hidden ones; those showing evidence of activity but with no emission lines in optical wavelengths. We estimated AGN content of X-ray sources as 52.9%. IR sources contain thousands of SBs, and most important are those having signs of interaction and/or merging. We have carried out optical identifications of IRAS point sources, and 1278 IR galaxies have been revealed, including LIRGs and ULIRGs. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed to estimate AGN content among IR sources as 23.7%. Extragalactic radio sources contain bright galaxies, AGN and SBs. We have studied the border between AGN and normal galaxies by radio/optical flux ratios to establish which objects may be attributed to AGN based on radio properties. Interestingly, absolute majority of objects associated with both X-ray and radio sources are AGN.

  2. Search for the Multiwavelength AGN Properties in Dependence on Environment

    NASA Astrophysics Data System (ADS)

    Vavilova, Iryna; Chesnok, Nadya; Melnyk, Olga

    We present new results on the research of isolated AGNs and quasars which are located in regions with the low density environment. Our sample of AGNs was compiled at the basis of the 2MIG Catalog (2MASS Isolated Galaxies, Karachentseva et al., Bull. SAO RAS, 2010) and Catalog of AGNs by Veron+ 2006. The 2MIG Catalog' galaxies (N=3227) were chosen by Karachentseva's isolation criterion, stellar magnitude Ks= 4,0 -12,0 and angle diameters a¿ 30', effective catalog depth -6000 km/s. Our sample of isolated AGNs contains 48 objects as well as the sample of galaxies by Mrk type (N=40) from 2MIG catalog was compiled separately. We analyze the main physical properties of AGNs from these samples in comparison with environment using the isolation parameter as the distance to neighbors (Vavilova et al., Astron. Nachr., 2009). Additionally, for isolated galaxies of Mrk type we calculated their masses by Eddington limit formula (Chesnok et al., AIP, 2009) as well as we considered the spectral properties of isolated AGNs chosen from SDSS catalogue. Altogether our sample of isolated AGNs is presented by the objects having different manifestory properties in IR, visual, UV, X-ray and radio ranges of the electromagnetic waves that allows us to consider it as the unique laboratory for the AGNs study n dependence on the environment.

  3. The Starburst-AGN Connection under the Multiwavelength Limelight

    NASA Astrophysics Data System (ADS)

    Guainazzi, Matteo

    2011-11-01

    Since the discovery of a tight relation between supermassive black hole masses, the bulge luminosity, and the stellar velocity dispersion in the local universe galaxies, mounting experimental evidence has been collected pointing to a connection between nuclear activity and star formation over a wide range of redshifts. Although a growing number of galaxies from different samples exhibit simultaneous starburst and AGN phenomenology, it is still a matter of debate whether this is the smoking gun of a causal relation between them, and, if so, with which trend. Basic issues in modern astrophysics, such as the evolution of galaxies and supermassive black holes, AGN feeding and feedback to the interstellar and intergalactic medium, as well as the role played by the environment on the star formation history are related to this "Starburst-AGN Connection". This Workshop aims at gathering observational and theoretical astronomers so as to answer the following questions: * The "Starburst-AGN Connection": A causal relation? * "Starburst-AGN Connection" at low and high redshift: any evidence for evolution? * Is there a connection between AGN obscuration and star formation? * In which way are the star formation and AGN phenomena affected by the environment? * Do stars contribute to AGN fueling? Multiwavelength observations in the last decade have given a paramount contribution to improve our understanding in this field. The Workshop will build on this panoptic view, and aims at contributing to the scientific case of future ground-based and space large observatories.

  4. Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Planelles, Susana; Borgani, Stefano; Viel, Matteo; Rasia, Elena; Murante, Giuseppe; Dolag, Klaus; Steinborn, Lisa K.; Biffi, Veronica; Beck, Alexander M.; Ragone-Figueroa, Cinthia

    2016-03-01

    By means of zoom-in hydrodynamic simulations, we quantify the amount of neutral hydrogen (H I) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics, include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split into two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analysed to account for H I self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter haloes monotonically increases with the halo mass and can be well described by a power law of the form M_{H I}(M,z)∝ M^{3/4}. Our results point out that AGN feedback reduces both the total halo mass and its H I mass, although it is more efficient in removing H I. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by ˜50 per cent, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within haloes is also affected by AGN feedback, whose effect is to decrease the fraction of H I that resides in the halo inner regions. By extrapolating our results to haloes not resolved in our simulations, we derive astrophysical implications from the measurements of Ω _{H I}(z): haloes with circular velocities larger than ˜25 km s-1 are needed to host H I in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of Ω _{H I}b_{H I} derived from available 21 cm intensity mapping observations.

  5. A Compton-thick AGN in the barred spiral galaxy NGC 4785

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Yamada, S.; Ricci, C.; Asmus, D.; Mushotzky, R. F.; Ueda, Y.; Terashima, Y.; La Parola, V.

    2015-05-01

    We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66-month Swift/BAT (Burst Array Telescope) all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width ≳1 keV. Fitting the broad-band spectra with physical reflection models shows the source to be a Compton-thick AGN with NH of at least 2 × 1024 cm-2 and absorption-corrected 2-10 keV X-ray power L2-10 ˜ few times 1042 erg s-1. Realistic uncertainties on L2-10 computed from the joint confidence interval on the intrinsic power-law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton-thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton-thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disc, adding to the list of known Compton-thick AGN in barred host galaxies.

  6. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  7. Synergy Between Observations of AGN with GLAST and MAXI

    SciTech Connect

    Madejski, Grzegorz

    2002-03-25

    In five years' time we will witness the launch of two important missions developed to observe celestial sources in the high energy regime: GLAST, sensitive in the high energy {gamma}-ray band, and MAXI, the all-sky X-ray monitor. Simultaneous monitoring observations by the two instruments will be particularly valuable for variable sources, allowing cross-correlations of time series between the two bands. We present the anticipated results from such observations of active galaxies, and in particular, of the jet-dominated sub-class of AGN known as blazars. We discuss the constraints on the structure and emission processes--and in particular, on the internal shock models currently invoked to explain the particle acceleration processes in blazars--that can be derived with simultaneous {gamma}-ray and X-ray data.

  8. AGN Spectral Energy Distributions of GLAST Telescope Network Program Objects

    NASA Astrophysics Data System (ADS)

    Adkins, Jeff; Lacy, Mark; Daou, Doris; Rapp, Steve; Stefaniak, Linda

    2005-03-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the "GLAST Telescope Network" (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project will observe one of these objects with the Spitzer MIPS and the IRAC instruments to determine their Spectral Energy Distribution (SED), which will be compared to a computer model of disk emission in order to determine what component of the SED is due to the disk and what component is due to synchrotron radiation induced by the jets. In addition we will observe our program objects prior to, simultaneously with, and after Spitzer observes them. This gives a direct connection from Spitzer research to student activities in the classroom.

  9. Clues to the Structure of AGN Through Massive Variability Surveys

    NASA Astrophysics Data System (ADS)

    Lawrence, A.

    2016-06-01

    Variability studies hold information on otherwise unresolvable regions in Active Galactic Nuclei (AGN). Population studies of large samples likewise have been very productive for our understanding of AGN. These two themes are coming together in the idea of systematic variability studies of large samples - with SDSS, PanSTARRS, and soon, LSST. I summarise what we have learned about the optical and UV variability of AGN, and what it tells us about accretion discs and the BLR. The most exciting recent results have focused on rare large-scale outbursts and collapses - Tidal Disruption Events, changing-look AGN, and large amplitude microlensing. All of these promise to give us new insight into AGN physics.

  10. Propiedades de los AGNs oscurecidos y no oscurecidos

    NASA Astrophysics Data System (ADS)

    Taormina, M.; Bornancini, C.

    In this work we analyze the properties of obscured and unobscured AGNs selected from the "Multiwavelength Survey by Yale-Chile" (MUSYC). The sample of AGNs was selected base on their mid-infrared colors ([3.6], [4.5], [5.8] y [8.0] μm), from images obtained with the Spitzer Space Telescope. We select obscured and unobscured AGN samples using a simple criterion based on the observed optical to mid-IR color with limits R - [4.5] = 3.04 (AB system) and with redshifts in the range 1 < z < 3. Obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR- selected AGNs have significant dust extinction. FULL TEXT IN SPANISH

  11. Do the Kepler AGN light curves need reprocessing?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.; Williams, Joshua; Carini, Michael T.

    2015-10-01

    We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST data base with a reprocessed light curve constructed from raw pixel data. We use the first-order structure function, SF(δt), to fit both light curves to the damped power-law PSD (power spectral density) of Kasliwal et al. On short time-scales, we find a steeper log PSD slope (γ = 2.90 to within 10 per cent) for the reprocessed light curve as compared to the light curve found on MAST (γ = 2.65 to within 10 per cent) - both inconsistent with a damped random walk (DRW) which requires γ = 2. The log PSD slope inferred for the reprocessed light curve is consistent with previous results that study the same reprocessed light curve. The turnover time-scale is almost identical for both light curves (27.1 and 27.5 d for the reprocessed and MAST data base light curves). Based on the obvious visual difference between the two versions of the light curve and on the PSD model fits, we conclude that there remain significant levels of spacecraft-induced effects in the standard pipeline reduction of the Kepler data. Reprocessing the light curves will change the model inferenced from the data but is unlikely to change the overall scientific conclusions reached by Kasliwal et al. - not all AGN light curves are consistent with the DRW.

  12. AGN disks and black holes on the weighting scales

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.; Surville, C.; Nakai, N.; Jacq, T.

    2011-06-01

    We exploit our formula for the gravitational potential of finite size, power-law disks to derive a general expression linking the mass of the black hole in active galactic nuclei (AGN), the mass of the surrounding disk, its surface density profile (through the power index s), and the differential rotation law. We find that the global rotation curve v(R) of the disk in centrifugal balance does not obey a power law of the cylindrical radius R (except in the confusing case s = -2 that mimics a Keplerian motion), and discuss the local velocity index. This formula can help to understand how, from position-velocity diagrams, mass is shared between the disk and the black hole. To this purpose, we checked the idea by generating a sample of synthetic data with different levels of Gaussian noise, added in radius. It turns out that, when observations are spread over a large radial domain and exhibit low dispersion (standard deviation σ ≲ 10% typically), the disk properties (mass and s-parameter) and black hole mass can be deduced from a non linear fit of kinematic data plotted on a (R,Rv2)-diagram. For σ ≳ 10%, masses are estimated fairly well from a linear regression (corresponding to the zeroth-order treatment of the formula), but the power index s is no longer accessible. We have applied the model to 7 AGN disks whose rotation has already been probed through water maser emission. For NGC 3393 and UGC 3789, the masses seem well constrained through the linear approach. For IC 1481, the power-law exponent s can even be deduced. Because the model is scale-free, it applies to any kind of star/disk system. Extension to disks around young stars showing deviation from Keplerian motion is thus straightforward.

  13. The Prevalence of Gas Outflows in Type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak; Bae, Hyun-Jin; Son, Donghoon; Karouzos, Marios

    2016-02-01

    To constrain the nature and fraction of the ionized gas outflows in active galactic nuclei (AGNs), we perform a detailed analysis on gas kinematics as manifested by the velocity dispersion and shift of the [{{O}}\\{{III}}] λ5007 emission line, using a large sample of ˜39,000 type 2 AGNs at z < 0.3. First, we confirm a broad correlation between [{{O}} {{III}}] and stellar velocity dispersions, indicating that the bulge gravitational potential plays a main role in determining the [{{O}} {{III}}] kinematics. However, [{{O}} {{III}}] velocity dispersion is on average larger than stellar velocity dispersion by a factor of 1.3-1.4 for AGNs with double Gaussian [{{O}} {{III}}], suggesting that the non-gravitational component, i.e., outflows, is almost comparable to the gravitational component. Second, the increase of the [{{O}} {{III}}] velocity dispersion (after normalized by stellar velocity dispersion) with both AGN luminosity and Eddington ratio suggests that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [{{O}} {{III}}] velocity-velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the majority of luminous AGNs present the non-gravitational kinematics in the [{{O}} {{III}}] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [{{O}} {{III}}] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs.

  14. Exploring AGN-starburst coexistence in galaxies at z ˜ 0.8 using the [O III]4959+5007/[O III]4363 line ratio

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2016-09-01

    Using detailed modelling, we analyse the spectra observed from the sample galaxies at z ˜ 0.8 presented by Ly et al., constraining the models by the [O III]5007+4959/[O III]4363 line ratios. Composite models (shock + photoionization) are adopted. Shock velocities ≥100 km s-1 and pre-shock densities n0 ˜ 200 cm-3 characterize the gas surrounding the starburst (SB), while n0 are higher by a factor of 1.5-10 in the AGN emitting gas. SB effective temperatures are similar to those of quiescent galaxies (T* ˜ 4-7 × 104 K). Cloud geometrical thicknesses in the SB are ≤1016 cm, indicating major fragmentation, while in AGN they reach >10 pc. O/H are about solar for all the objects, except for a few AGN clouds with O/H = 0.3-0.5 solar. SB models reproduce most of the data within the observational errors. About half of the objects' spectra are well fitted by an accreting AGN. Some galaxies show multiple radiation sources, such as SB + AGN, or a double AGN.

  15. X-ray Spectroscopy of the most extreme Balmer-line disk-emission AGN

    NASA Astrophysics Data System (ADS)

    Eracleous, Michael

    2005-10-01

    We propose to obtain simultaneous X-ray and UV observations of the most extreme AGN with double-peaked Balmer emission lines (FWHM > 19000km/s). We will use the XMM-Newton data to measure their X-ray spectral shapes and construct spectral energy distributions. We will combine these with measurements of the optical emission line profiles (from simultaneous HET observations) and luminosities to (a) test models for illumination of the outer disk by the central X-ray source, (b) test models for the structure of the inner accretion disk (radiatively inefficient accretion vs. standard disk), and (c) compare the X-ray-to-optical properties of these broadest Balmer-line objects to those of broad and narrow line AGN to test models for the origin of the low-ionization broad lines.

  16. Logarithmic unification from symmetries enhanced in the sub-millimeter infrared

    SciTech Connect

    Arkani-Hamed, Nima; Dimopoulos, Savas; March-Russell, John

    1999-08-21

    In theories with TeV string scale and sub-millimeter extra dimensions the attractive picture of logarithmic gauge coupling unification at 10{sup 16} GeV is seemingly destroyed. In this paper we argue to the contrary that logarithmic unification can occur in such theories. The rationale for unification is no longer that a gauge symmetry is restored at short distances, but rather that a geometric symmetry is restored at large distances in the bulk away from our 3-brane. The apparent ''running'' of the gauge couplings to energies far above the string scale actually arises from the logarithmic variation of classical fields in (sets of) two large transverse dimensions. We present a number of N = 2 and N = 1 supersymmetric D-brane constructions illustrating this picture for unification.

  17. Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) for the determination of [Zn(2+)] in estuarine waters.

    PubMed

    Pearson, Holly B C; Galceran, Josep; Companys, Encarna; Braungardt, Charlotte; Worsfold, Paul; Puy, Jaume; Comber, Sean

    2016-03-17

    Zinc (Zn) has been classified as a "Specific Pollutant" under Annex VIII of the EU Water Framework Directive by two thirds of the EU member states. As a result, the UK Environmental Quality Standard (EQS) for Transitional and Coastal (TrAC) Waters has been reduced from 612 nM to 121 nM total dissolved Zn. It is widely accepted that the free metal ion ([Zn(2+)]) is the most bioavailable fraction, but there are few techniques available to determine its concentration in these waters. In this work, Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) has been applied, for the first time, to determine [Zn(2+)] in estuarine waters. The AGNES method had a mean RSD of ±18%, a (deposition time dependent) limit of detection of 0.73 nM and a [Zn(2+)] recovery of 112 ± 19% from a certified reference material (BCR-505; Estuarine Water). AGNES results for 13 estuarine samples (salinity 0.1-31.9) compared well (P = 0.02) with Competitive Ligand Exchange Cathodic Stripping Voltammetry (CLE-AdCSV) except for one sample. AGNES requires minimal sample manipulation, is unaffected by adsorption of interfering species at the electrode surface and allows direct determination of free zinc ion concentrations. Therefore AGNES results can be used in conjunction with ecotoxicological studies and speciation modelling to set and test compliance with water quality standards. PMID:26920770

  18. X-ray Properties of the Central kpc of AGN and Starbursts: The Latest News from Chandra

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The X-ray properties of 15 nearby (v less than 3,000 km/s) galaxies that possess AGN (active galactic nuclei) and/or starbursts are discussed. Two-thirds have nuclear extended emission on scales from approx. 0.5 to approx. 1.5 kpc that is either clearly associated with a nuclear outflow or morphologically resembles an outflow. Galaxies that are AGN-dominated tend to have linear structures while starburst-dominated galaxies tend to have plume-like structures. Significant X-ray absorption is present in the starburst regions, indicating that a circumnuclear starburst is sufficient to block an AGN at optical wavelengths. Galaxies with starburst activity possess more X-ray point sources within their central kpc than non-starbursts. Many of these sources are more luminous than typical X-ray binaries. The Chandra results are discussed in terms of the starburst-AGN connection, a revised unified model for AGN, and possible evolutionary scenarios.

  19. AGN and stellar feedback in star-forming galaxies at redshift 2 : outflows, mass-loading and quenching

    NASA Astrophysics Data System (ADS)

    Roos, O.

    2016-06-01

    Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift. Such galactic outflows are mainly generated by internal sources of feedback: young stars, supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well understood, and their main driver is still debated. Up to now, most simulations take into account AGN feedback or stellar feedback but not both, because both phenomena happen on very different spatial and time scales. Most of them also still fail to reproduce all observed parameters from first principles. In this poster, we present the POGO project: Physical Origins of Galactic Outflows. With this suite of 23 simulations, we model AGN and stellar feedback simultaneously based on physical assumptions for the first time at very high resolution (6 to 1.5 pc), and investigate their impact on the outflow parameters of the host-galaxy. Here, we show that AGN and stellar feedback couple non-linearly, and that the mass-loading of the resulting outflow highly depends on the mass of the host, all the more because the coupling can either be positive (small masses) or negative (intermediate masses). Nevertheless, the main driver of the outflow remains the AGN at all masses.

  20. Naturalness, Dark Matter, and Unification with a 125 GeV Higgs

    NASA Astrophysics Data System (ADS)

    Pinner, David

    remaining parameter space. Our results are broadly applicable, and account for a variety of thermal and non-thermal cosmological histories, including scenarios in which neutralinos are just a component of the observed dark matter today. Because this analysis is indifferent to the fine-tuning of electroweak symmetry breaking, our findings also hold for many models of neutralino dark matter in the MSSM, NMSSM, and Split Supersymmetry. We have identified parameter regions at low tan beta which sit in a double blind spot for both spin-independent and spin-dependent scattering. Interestingly, these low tan beta regions are independently favored in the NMSSM and models of Split Supersymmetry which accommodate a Higgs mass near 125 GeV. Finally, we consider precision b--tau Yukawa unification as an alternate motivation for supersymmetry near the weak scale. We show that for an LSP that is a bino-Higgsino admixture, this requirement leads to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta ≈ 50, which is needed for t--b--tau unification, the stops must be lighter than 2.8 TeV when At has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the Higgs mass. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for Bs → mu + mu-- will be observed to be significantly lower than the SM value.

  1. Sparticle spectroscopy with neutralino dark matter from t-b-{tau} quasi-Yukawa unification

    SciTech Connect

    Dar, Shahida; Gogoladze, Ilia; Shafi, Qaisar; Uen, Cem Salih

    2011-10-15

    We consider two classes of t-b-{tau} quasi-Yukawa unification scenarios which can arise from realistic supersymmetric SO(10) and SU(4){sub C}xSU(2){sub L}xSU(2){sub R} models. We show that these scenarios can be successfully implemented in the nonuniversal Higgs model with m{sub H{sub u}}=m{sub H{sub d}}{ne}m{sub 0} and the constrained minimal sumersymmetric model frameworks, and they yield a variety of sparticle spectra with Wilkinson Microwave Anisotropy Probe compatible neutralino dark matter. In the nonuniversal Higgs model with m{sub H{sub u}}=m{sub H{sub d}}{ne}m{sub 0}, we find bino-Higgsino dark matter as well as the stau coannihilation and A-funnel solutions. The constrained minimal sumersymmetric model case yields the stau coannihilation and A-funnel solutions. The gluino and squark masses are found to lie in the TeV range.

  2. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  3. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P.

    2015-06-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of M_stel= 8.8 × 10^{10}-6.0 × 10^{11} M_{⊙}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 haloes with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter haloes and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed MBH-σ relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of 2 compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ˜10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with σ = 200 km s- 1, the X-ray luminosity is reduced from 1042 erg s- 1 to 1040 erg s- 1. It also efficiently suppresses late-time star formation, reducing the specific star formation rate from 10-10.5 yr- 1 to 10-14 yr- 1 on average and resulting in quiescent galaxies since z = 2, whereas the thermal feedback model shows higher late-time in situ star formation rates than observed.

  4. GOCE++ Dynamical Coastal Topography and tide gauge unification using altimetry and GOCE.

    NASA Astrophysics Data System (ADS)

    Baltazar Andersen, Ole; Knudsen, Per; Nielsen, Karina; Hughes, Chris; Woodworth, Phil; Woppelmann, Guy; Gravelle, Mederic; Bingham, Rory; Fenoblio, Luciana; Kern, Michael

    2016-04-01

    ESA has recently released a study on the potential of ocean levelling as a novel approach to the study of height system unification taking the recent development in geoid accuracy trough GOCE data into account. The suggested investigation involves the use of measurements and modelling to estimate Mean Dynamic Topography (MDT) of the ocean along a coastline which contributes/requires reconciling altimetry, tide gauge and vertical land motion. The fundamental use of the MDT computed using altimetry, ocean models or through the use of tide gauges has values of between -2 and +1 meters at different points in the ocean. However, close to the coast the determination of the MDT is problematic due to i.e., the altimeter footprint, land motion or parameterization/modelling of coastal currents. The objective of this activity is to perform a consolidated and improved understanding and modelling of coastal processes and physics responsible for sea level changes on various temporal/spatial scales. The study runs from October 2015 to march 2017 and involves elements like: Develop an approach to estimate a consistent DT at tide gauges, coastal areas, and open ocean; Validate the approach in well-surveyed areas where DT can be determined at tide gauges; Determine a consistent MDT using GOCE with consistent error covariance fields; Connect measurements of a global set of tide gauges and investigate trends

  5. Gauge-Higgs unification, neutrino masses, and dark matter in warped extra dimensions

    SciTech Connect

    Carena, Marcela; Medina, Anibal D.; Shah, Nausheen R.; Wagner, Carlos E. M.

    2009-05-01

    Gauge-Higgs unification in warped extra dimensions provides an attractive solution to the hierarchy problem. The extension of the standard model gauge symmetry to SO(5)xU(1){sub X} allows the incorporation of the custodial symmetry SU(2){sub R} plus a Higgs boson doublet with the right quantum numbers under the gauge group. In the minimal model, the Higgs mass is in the range 110-150 GeV, while a light Kaluza-Klein excitation of the top quark appears in the spectrum, providing agreement with precision electroweak measurements and a possible test of the model at a high luminosity LHC. The extension of the model to the lepton sector has several interesting features. We discuss the conditions necessary to obtain realistic charged lepton and neutrino masses. After the addition of an exchange symmetry in the bulk, we show that the odd neutrino Kaluza-Klein modes provide a realistic dark-matter candidate, with a mass of the order of 1 TeV, which will be probed by direct dark-matter detection experiments in the near future.

  6. Compton-thick AGN in the 70-month Swift-BAT All-Sky Hard X-ray Survey: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Akylas, A.; Georgantopoulos, I.; Ranalli, P.; Gkiokas, E.; Corral, A.; Lanzuisi, G.

    2016-10-01

    The 70-month Swift-BAT catalogue provides a sensitive view of the extragalactic X-ray sky at hard energies (>10 keV) containing about 800 active galactic nuclei (AGN). We explore its content in heavily obscured, Compton-thick AGN by combining the BAT (14-195 keV) with the lower energy XRT (0.3-10 keV) data. We apply a Bayesian methodology using Markov chains to estimate the exact probability distribution of the column density for each source. We find 53 possible Compton-thick sources (probability range 3-100%) translating to a ~7% fraction of the AGN in our sample. We derive the first parametric luminosity function of Compton-thick AGN. The unabsorbed luminosity function can be represented by a double power law with a break at L⋆ ~ 2 × 1042erg s-1 in the 20-40 keV band. The Compton-thick AGN contribute ~17% of the total AGN emissivity. We derive an accurate Compton-thick number count distribution taking into account the exact probability of a source being Compton-thick and the flux uncertainties. This number count distribution is critical for the calibration of the X-ray background synthesis models, i.e. for constraining the intrinsic fraction of Compton-thick AGN. We find that the number counts distribution in the 14-195 keV band agrees well with our models which adopt a low intrinsic fraction of Compton-thick AGN (~ 12%) among the total AGN population and a reflected emission of ~ 5%. In the extreme case of zero reflection, the number counts can be modelled with a fraction of at most 30% Compton-thick AGN of the total AGN population and no reflection. Moreover, we compare our X-ray background synthesis models with the number counts in the softer 2-10 keV band. This band is more sensitive to the reflected component and thus helps us to break the degeneracy between the fraction of Compton-thick AGN and the reflection emission. The number counts in the 2-10 keV band are well above the models which assume a 30% Compton-thick AGN fraction and zero reflection, while

  7. Star Formation Quenching and Identifying AGN in Galaxies

    NASA Astrophysics Data System (ADS)

    Mendez, Alexander; Coil, A. L.; Lotz, J. M.; Aird, J.; Diamond-Stanic, A. M.; Moustakas, J.; Salim, S.; Simard, L.; Blanton, M. R.; Eisenstein, D.; Wong, K. C.; Cool, R. J.; Zhu, G.; PRIMUS; AEGIS

    2014-01-01

    I will discuss two observational projects related to galaxy and active galactic nuclei (AGN) evolution at z < 1. First I will present a statistical study of the morphologies of galaxies in which star formation is being shut down or quenched; this has implications for how red, elliptical galaxies are formed. I will discuss the physical processes behind star formation quenching from the morphological transformations that galaxies undergo during this process. Then I will focus on multi-wavelength AGN selection methods and tie together disparate results in the literature. Several IR-AGN selection methods have been developed using Spitzer/IRAC data in order to supplement traditional X-ray AGN selection; I will characterize the uniqueness and complementarity of these methods as a function of both IR and X-ray depth. I will use data from the PRIsm MUlti-object Survey (PRIMUS) to compare the efficiency of IR and X-ray AGN selection and discuss the properties of the AGN and host galaxy populations of each. Finally, I will briefly mention ongoing work to compare the clustering of observed IR and X-ray AGN samples relative to stellar mass-matched galaxy samples.

  8. The Role of Outburst Shock Heating in AGN Feedback

    NASA Astrophysics Data System (ADS)

    Randall, Scott W.; Nulsen, Paul; Jones, Christine; Forman, William R.

    2016-04-01

    One of the major discoveries of modern X-ray observatories is that central AGN in galaxies, groups, and clusters can regulate cooling in the diffuse X-ray emitting gas. This connection is demonstrated by the presence of large cavities in the diffuse gas, usually filled with radio-emitting plasma, that have been evacuated by jets from the AGN. This AGN feedback has important consequences for star formation, galaxy evolution, super-massive black hole growth, galaxy/black hole scaling relations, cluster scaling relations, and the growth of structure. Although it has generally been found that the kinetic output of central AGN scales with the gas cooling rate and is energetic enough to offset cooling, the details of how and where this energy is transferred to heat the gas are poorly understood. I will discuss the role of weak AGN outburst shocks in heating the diffuse gas, and present some results from a very deep (650 ks) Chandra observation of the galaxy group NGC 5813. With three three pairs of collinear cavities, each pair associated with an elliptical AGN outburst shock, NGC 5813 is uniquely well-suited to studying the outburst history of the AGN and the mean shock heating rate.

  9. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  10. Studying AGN Feedback with Galactic Outflows in Luminous Obscured Quasar

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    2016-01-01

    Feedback from Active galactic nuclei (AGN) has been proposed as an important quenching mechanism to suppress star formation in massive galaxies. We investigate the most direct form of AGN feedback - galactic outflows - in the most luminous obscured AGN (L>10^45 erg/s) from the SDSS sample in the nearby universe (z<0.2). Using ALMA and Magellan observations to target molecular and ionized outflows, we find that luminous AGN can impact the dynamics and phase of the galactic medium, and confirm the complex multi-phase and multi-scaled nature of the feedback phenomenon. In particular, we found that most of these luminous AGN hosts ionized outflows. The outflow size, velocity, and energetics correlate with the AGN luminosity, and can be very extended (r > 10 kpc) and fast (v > 1000 km/s) for the most luminous ones. I end with presenting a new technique to find extended ionized outflows using broadband imaging surveys, and to characterize their occurrence rate, morphology, size distribution, and their dependence on the AGN luminosity. This technique will open a new window for feedback studies in the era of large-scale optical imaging surveys, e.g., HSC and then LSST.

  11. Mini-Survey on SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. There is a common wisdom that every massive galaxy has a massive black hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low $L_X$ (at all $z$). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of {it optically-selected samples} shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [O{\\sc iii}] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a min-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([O{\\sc iii}]) to check the relation with the $L_X$ observed with Swift.

  12. Compton Thick AGN in the XMM-COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Gruppioni, C.; Comastri, A.

    2016-06-01

    I will present results we published in two recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, A≈A 578A 120) on the properties of X-ray selected Compton Thick (CT, NH>10^{24} cm^{-2}) AGN, in the XMM-COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems. We also demonstrated the detectability of even more heavily obscured AGN (NH>10^{25} cm^{-2}), thanks to a truly multi-wavelength approach in the same field, and to the unrivaled XMM sensitivity. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line. The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.

  13. Compton Thick AGN in the 70 Month Swift-BAT All-Sky Hard X-ray Survey: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Ranalli, P.; Corral, A.; Lanzuisi, G.

    2016-08-01

    The 70 month Swift/BAT catalogue provides a sensitive view of the extragalactic X-ray sky at hard energies 14-195 keV containing about 800 Active Galactic Nuclei. We explore its content in heavily obscured Compton-thick AGN by combining the BAT (14-195 keV) with the XRT data (0.3-10 keV) at lower energies. We apply a Bayesian methodology using Markov chains to estimate the exact probability distribution of the column density. We find 54 possible Compton-thick sources (from 3 to 100 % probability) translating to a 7% fraction of the total AGN population. We derive an accurate Compton-thick number count distribution taking into account the exact probability of a source being Compton-thick as well as the flux errors. The number density of Compton-thick AGN is critical for the calibration of X-ray background synthesis models. We find that the number count distribution agrees with models that adopt a low intrinsic fraction of Compton-thick AGN (15%) among the total AGN population and a reflected emission of (~5%). Finally, we derive the first parametric luminosity function of Compton-thick AGN in the local universe. The unabsorbed luminosity function can be represented by a double power-law with a break at L* ~2 x 10^42 ergs in the 20-40 keV band. The Compton-thick AGN constitute a substantial fraction of the AGN density at low luminosities (<10^42 erg/s).

  14. Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin; Olechowski, Marek; Pokorski, Stefan

    2013-10-01

    It is shown that substantially enhanced Higgs to diphoton rate induced by light staus with large left-right mixing in MSSM requires at the GUT scale non-universal gaugino masses with bino and/or wino lighter than gluino. The possibility of such enhancement is investigated in MSSM models with arbitrary gaugino masses at the GUT scale with additional restriction of top-bottom-tau Yukawa unification, as predicted by minimal SO(10) GUTs. Many patterns of gaugino masses leading to enhanced Higgs to diphoton rate and the Yukawa unification are identified. Some of these patterns can be accommodated in a well-motivated scenarios such as mirage mediation or SUSY breaking F -terms being a non- singlet of SO(10). Phenomenological implications of a scenario with non-universal gaugino masses generated by a mixture of the singlet F -term and the F -term in a 24-dimensional representation of SU(5) ⊂ SO(10) are studied in detail. Possible non-universalities of other soft terms generated by such F-terms are discussed. The enhancement of Higgs to diphoton rate up to 30% can be obtained in agreement with all phenomenological constraints, including vacuum metastability bounds. The lightest sbottom and pseudoscalar Higgs are within easy reach of the 14 TeV LHC. The LSP can be either bino-like or wino-like. The thermal relic abundance in the former case may be in agreement with the cosmological data thanks to efficient stau coannihilation.

  15. Multiwavelength Studies of X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Paronyan, G. M.; Mickaelian, A. M.; Abrahamyan, H. V.

    2016-06-01

    We present multiwavelength studies of the AGN and galaxy samples of the HRC/BHRC Joint Catalogue, optical identifications of ROSAT BSC and FSC sources. The extragalactic sample contains 4253 candidate AGN and 492 galaxies without a sign of activity. Multiwavelength data were retrieved from γ-ray to radio providing 62 photometric points in the range 100 GeV - 151 MHz. Color-color diagrams were built to investigate the nature of these objects. Activity types were taken from the SDSS DR12 spectroscopic database, as well as NED and HyperLEDA. So far, 451 objects remain as AGN candidates to be confirmed by spectroscopic observations.

  16. Unification of action and entropy leads to a preferred frame

    NASA Astrophysics Data System (ADS)

    Haller, John

    2016-03-01

    By proposing the Bernoulli process as the mathematical framework for the discrete motion of an electron, one is able to see how probabilities are related to velocity. This provides an interesting quandary, as our experimental evidence is that velocities are relative; yet I argue that probabilities are not. Deriving the entropy of the electron shows another link between probability and velocity. Showing that the entropy is exactly equal to the action of the electron (specifically time integral of mass energy minus Lagrangian all divided by quantum of action), we see a unification of the second law of thermodynamics and the principle of least action. I propose two classes of experiments that can validate the framework and find the probability a particle at rest on Earth steps to the right; and by direct proportion the velocity of the Earth in a preferred reference frame. One class of experiments is to compare the ensemble average of one step in the motion of an electron to its expected value. The second class is to measure the variance of the diffusion of an electron as a function of the orientation of the experimental device.

  17. Toward unification of taxonomy databases in a distributed computer environment

    SciTech Connect

    Kitakami, Hajime; Tateno, Yoshio; Gojobori, Takashi

    1994-12-31

    All the taxonomy databases constructed with the DNA databases of the international DNA data banks are powerful electronic dictionaries which aid in biological research by computer. The taxonomy databases are, however not consistently unified with a relational format. If we can achieve consistent unification of the taxonomy databases, it will be useful in comparing many research results, and investigating future research directions from existent research results. In particular, it will be useful in comparing relationships between phylogenetic trees inferred from molecular data and those constructed from morphological data. The goal of the present study is to unify the existent taxonomy databases and eliminate inconsistencies (errors) that are present in them. Inconsistencies occur particularly in the restructuring of the existent taxonomy databases, since classification rules for constructing the taxonomy have rapidly changed with biological advancements. A repair system is needed to remove inconsistencies in each data bank and mismatches among data banks. This paper describes a new methodology for removing both inconsistencies and mismatches from the databases on a distributed computer environment. The methodology is implemented in a relational database management system, SYBASE.

  18. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  19. Tools for Computing the AGN Feedback: Radio-loudness Distribution and the Kinetic Luminosity Function

    NASA Astrophysics Data System (ADS)

    La Franca, F.; Melini, G.; Fiore, F.

    2010-07-01

    We studied the active galactic nucleus (AGN) radio emission from a compilation of hard X-ray-selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGNs with 2-10 keV de-absorbed luminosities higher than 1042 erg s-1 cm-2 were used. For a sub-sample of about fifty z <~ 0.1 AGNs, it was possible to reach ~80% of radio detections and therefore, for the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity RX = log(L 1.4/LX ), where L 1.4/LX = νL ν(1.4 GHz)/LX (2-10 keV). The probability distribution function of RX was functionally fitted as dependent on the X-ray luminosity and redshift, P(RX |LX , z). It roughly spans over six decades (-7< RX <-1) and does not show any sign of bi-modality. The result is that the probability of finding large values of the RX ratio increases with decreasing X-ray luminosities and (possibly) with increasing redshift. No statistically significant difference was found between the radio properties of the X-ray absorbed (N H>1022 cm-2) and un-absorbed AGNs. Measurement of the probability distribution function of RX allowed us to compute the kinetic luminosity function and the kinetic energy density which, at variance with that assumed in many galaxy evolution models, is observed to decrease by about a factor of 5 at redshift below 0.5. About half of the kinetic energy density results in being produced by the more radio quiet (RX <-4) AGNs. In agreement with previous estimates, the AGN efficiency epsilonkin in converting the accreted mass energy into kinetic power (L_K=ɛ_kin\\dot{m} c^2) is, on average, epsilonkin ~= 5 × 10-3. The data suggest a possible increase of epsilonkin at low redshifts.

  20. A bispecific antibody (ScBsAbAgn-2/TSPO) target for Ang-2 and TSPO resulted in therapeutic effects against glioblastomas.

    PubMed

    Li, Jia; Zhang, Zhiming; Lv, Lianjie; Qiao, Haibo; Chen, Xiuju; Zou, Changlin

    2016-04-01

    Antibody-based targeted therapy of cancers requires the antibody targeting of specific molecules inducing tumor cells apoptosis or death. Angiopoietin-2 (Agn-2) and translocator protein (TSPO) are identified as potential target molecules for glioblastoma therapy. The single chain anti-Agn-2 antibody (Anag-2) and anti-TSPO antibody (ATSPO) were obtained by monoclonal antibody screening. In the present study, for specific targeting and killing, we generated a recombinant bispecific antibody comprising a single-chain Fragment variable (ScFv) of anti-human Agn-2 and anti-human TSPO (ScBsAbAgn-2/TSPO), which is the mediator for mitochondrial apoptosis and tumor angiogenesis. In vitro, ScBsAbAgn-2/TSPO simultaneously bounded to both targets with a high antigen-binding affinity to Anag-2 and TSPO compared to the individual antibody. The higher expression of Ang-2 and TSPO was observed in bevacizumab-treated glioblastoma compared to normal rat brain endothelium. We also observed apoptosis-mediated cytotoxicity was improved, which resulted in the elimination of up to 90% of the target cells within 72 h. ScBsAbAgn-2/TSPO inhibited tumor growth, decreased vascular permeability, led to extended survival, improved pericyte coverage, depletion of tumor-associated macrophages, and increased numbers of intratumoral T lymphocytes infiltration in a murine bevacizumab-treated glioblastoma model. These findings were also confirmed ex vivo using glioblastoma cells from bevacizumab-treated rats with glioblastoma. We conclude that ScBsAbAgn-2/TSPO targeting of glioblastoma cell lines can be achieved in vitro and in vivo that the efficient elimination of glioblastoma cells supports the potential of ScBsAbAgn-2/TSPO as a potent, novel immunotherapeutic agent. PMID:26898800

  1. A bispecific antibody (ScBsAbAgn-2/TSPO) target for Ang-2 and TSPO resulted in therapeutic effects against glioblastomas.

    PubMed

    Li, Jia; Zhang, Zhiming; Lv, Lianjie; Qiao, Haibo; Chen, Xiuju; Zou, Changlin

    2016-04-01

    Antibody-based targeted therapy of cancers requires the antibody targeting of specific molecules inducing tumor cells apoptosis or death. Angiopoietin-2 (Agn-2) and translocator protein (TSPO) are identified as potential target molecules for glioblastoma therapy. The single chain anti-Agn-2 antibody (Anag-2) and anti-TSPO antibody (ATSPO) were obtained by monoclonal antibody screening. In the present study, for specific targeting and killing, we generated a recombinant bispecific antibody comprising a single-chain Fragment variable (ScFv) of anti-human Agn-2 and anti-human TSPO (ScBsAbAgn-2/TSPO), which is the mediator for mitochondrial apoptosis and tumor angiogenesis. In vitro, ScBsAbAgn-2/TSPO simultaneously bounded to both targets with a high antigen-binding affinity to Anag-2 and TSPO compared to the individual antibody. The higher expression of Ang-2 and TSPO was observed in bevacizumab-treated glioblastoma compared to normal rat brain endothelium. We also observed apoptosis-mediated cytotoxicity was improved, which resulted in the elimination of up to 90% of the target cells within 72 h. ScBsAbAgn-2/TSPO inhibited tumor growth, decreased vascular permeability, led to extended survival, improved pericyte coverage, depletion of tumor-associated macrophages, and increased numbers of intratumoral T lymphocytes infiltration in a murine bevacizumab-treated glioblastoma model. These findings were also confirmed ex vivo using glioblastoma cells from bevacizumab-treated rats with glioblastoma. We conclude that ScBsAbAgn-2/TSPO targeting of glioblastoma cell lines can be achieved in vitro and in vivo that the efficient elimination of glioblastoma cells supports the potential of ScBsAbAgn-2/TSPO as a potent, novel immunotherapeutic agent.

  2. Connecting AGN Feedback, the Star-Forming Interstellar Medium, and Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip

    The biggest shortcoming in our models of star, supermassive black hole, and galaxy formation is our poor and incomplete understanding of 'feedback' processes. In nearly all models, strong feedback from stars and black holes plays a critical role in regulating the nature of the interstellar medium (ISM) and subsequent generations of star formation and black hole growth. But our theoretical understanding of these processes has largely been restricted to either idealized cases, or simple phenomenological 'sub-grid' prescriptions. These have limited predictive power, and invoke highly uncertain assumptions for the unresolved ISM physics. As such, developing more realistic, explicit treatment of these processes is critical, and one of the primary challenges facing models of both galaxy and star formation. In this proposal, we focus on improving our understanding of AGN feedback by combining novel, high-resolution studies of both black hole growth and galaxy evolution. Critically, these will simultaneously resolve the ISM and both fueling and feedback from black holes, and include fundamentally new physics on galactic scales. Our goal is to anchor these calculations as much as possible in first principles, eliminating large uncertainties in the current models, and enable new predictions on galactic scales. Recently, we developed new numerical models to resolve star formation and feedback on scales from molecular cloud star-forming regions through galaxies. These simulations explicitly follow the energy, momentum, mass, and metal fluxes from stellar radiation pressure, photo-heating, supernovae, and stellar winds; in all cases feedback is tied directly to stellar evolution models. Unlike those previous, the models naturally produce an ISM in which molecular clouds form and disperse rapidly, with realistic phase structure and turbulence. These mechanisms simultaneously drive large galactic outflows; the galactic environment is radically different from the smooth medium of

  3. X-ray AGN in the XMM-LSS galaxy clusters: no evidence of AGN suppression

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Plionis, M.; Melnyk, O.; Elyiv, A.; Georgantopoulos, I.; Clerc, N.; Surdej, J.; Chiappetti, L.; Pierre, M.

    2014-07-01

    We present a study of the overdensity of X-ray-selected active galactic nuclei (AGN) in 33 galaxy clusters in the XMM-LSS field (The XMM-Newton Large Scale Structure Survey), up to redshift z = 1.05 and further divided into a lower (0.14 ≤ z ≤ 0.35) and a higher redshift (0.43 ≤ z ≤ 1.05) subsample. Previous studies have shown that the presence of X-ray-selected AGN in rich galaxy clusters is suppressed, since their number is significantly lower than what is expected from the high galaxy overdensities in the area. In the current study we have investigated the occurrence of X-ray-selected AGN in low (⟨ Lx,bol ⟩ = 2.7 × 1043 erg/s) and moderate (⟨ Lx,bol ⟩ = 2.4 × 1044 erg/s) X-ray luminosity galaxy clusters in an attempt to trace back the relation between high-density environments and nuclear activity. Owing to the wide contiguous XMM-LSS survey area, we were able to extend the study to the cluster outskirts. We therefore determined the projected overdensity of X-ray point-like sources around each cluster out to 6r500 radius, within δr500 = 1 annulus, with respect to the field expectations based on the X-ray source log N - log S of the XMM-LSS field. To provide robust statistical results we also conducted a consistent stacking analysis separately for the two z ranges. We investigated whether the observed X-ray overdensities are to be expected thanks to the obvious enhancement of galaxy numbers in the cluster environment by also estimating the corresponding optical galaxy overdensities, and we assessed the possible enhancement or suppression of AGN activity in clusters. We find a positive X-ray projected overdensity in both redshift ranges at the first radial bins, which however has the same amplitude as that of optical galaxies. Therefore, no suppression (or enhancement) of X-ray AGN activity with respect to the field is found, in sharp contrast to previous results based on rich galaxy clusters, implying that the mechanisms responsible for the

  4. Neutron and electron electric dipole moment in N=1 supergravity unification

    SciTech Connect

    Ibrahim, T.; Nath, P.

    1998-01-01

    An analysis of the neutron EDM and of the electron EDM in minimal N=1 supergravity unification with two CP-violating phases is given. For the neutron the analysis includes the complete one loop gluino, chargino, and neutralino exchange diagrams for the electric dipole and the chromoelectric dipole operators, and also the contribution of the purely gluonic dimension-six operator. It is shown that there exist significant regions in the six-dimensional parameter space of the model where cancellations between the gluino and the chargino exchanges reduce the electric and the chromoelectric contributions, and further cancellations among the electric, the chromoelectric, and the purely gluonic parts lead to a dramatic lowering of the neutron EDM sometimes below the electron EDM value. This phenomenon gives a new mechanism, i.e., that of internal cancellations, for the suppression of the neutron EDM in supersymmetric theories. The cancellation mechanism can significantly reduce the severe fine-tuning problem associated with CP-violating phases in SUSY and SUGRA unified models. {copyright} {ital 1997} {ital The American Physical Society}

  5. On the unification of nuclear-structure theory: A response to Bortignon and Broglia

    NASA Astrophysics Data System (ADS)

    Cook, Norman D.

    2016-09-01

    Nuclear-structure theory is unusual among the diverse fields of quantum physics. Although it provides a coherent description of all known isotopes on the basis of a quantum-mechanical understanding of nucleon states, nevertheless, in the absence of a fundamental theory of the nuclear force acting between nucleons, the prediction of all ground-state and excited-state nuclear binding energies is inherently semi-empirical. I suggest that progress can be made by returning to the foundational work of Eugene Wigner from 1937, where the mathematical symmetries of nucleon states were first defined. Those symmetries were later successfully exploited in the development of the independent-particle model ( IPM ˜ shell model , but the geometrical implications noted by Wigner were neglected. Here I review how the quantum-mechanical, but remarkably easy-to-understand geometrical interpretation of the IPM provides constraints on the parametrization of the nuclear force. The proposed "geometrical IPM" indicates a way forward toward the unification of nuclear-structure theory that Bortignon and Broglia have called for.

  6. Unification of regression-based methods for the analysis of natural selection.

    PubMed

    Morrissey, Michael B; Sakrejda, Krzysztof

    2013-07-01

    Regression analyses are central to characterization of the form and strength of natural selection in nature. Two common analyses that are currently used to characterize selection are (1) least squares-based approximation of the individual relative fitness surface for the purpose of obtaining quantitatively useful selection gradients, and (2) spline-based estimation of (absolute) fitness functions to obtain flexible inference of the shape of functions by which fitness and phenotype are related. These two sets of methodologies are often implemented in parallel to provide complementary inferences of the form of natural selection. We unify these two analyses, providing a method whereby selection gradients can be obtained for a given observed distribution of phenotype and characterization of a function relating phenotype to fitness. The method allows quantitatively useful selection gradients to be obtained from analyses of selection that adequately model nonnormal distributions of fitness, and provides unification of the two previously separate regression-based fitness analyses. We demonstrate the method by calculating directional and quadratic selection gradients associated with a smooth regression-based generalized additive model of the relationship between neonatal survival and the phenotypic traits of gestation length and birth mass in humans.

  7. Mass-metallicity relations and metallicity gradients of galaxies in chemodynamical simulations with AGN feedback

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2015-08-01

    I show metallicities of high-redshift galaxies and their time evolution in our cosmological, hydrodynamical simulations with the feedback from active galactic nuclei (AGN). We have applied a new model for the formation of black holes motivated by the first star formation, in contrast to the merging scenario of previous works. The model parameters are determined from observational constraints, namely, the cosmic star formation rate history, black hole mass-galaxy mass relation, and the size-mass relation of galaxies. We then obtain better agreement with the observed down-sizing phenomena, namely, the colour-magnitude relation, specific star formation rates, and the \\alpha enhancement of early type galaxies. In massive galaxies, AGN-driven outflows transport metals into the circumgalactic medium and the intergalactic medium, which is important for a large-scale chemical enrichment in the Universe. Smaller galaxies can get external enrichment from nearby AGN depending on their environment. Nonetheless, these metallicity changes are negligible, and the mass-metallicity relations, which are mainly generated by supernova feedback at the first star burst, are preserved. The mass-metallicity relations evolve showing a steeper slope at higher redshifts. Metallicity radial gradients dramatically evolve depending on the their merging histories, and at the present we find a weak correlation between the gradients and galaxy mass. These predictions will be tested with on-going spectral and IFU surveys.

  8. AGN-selected clusters as revealed by weak lensing

    NASA Technical Reports Server (NTRS)

    Wold, M.; Lacy, M.; Dahle, H.; Lilje, P. B.; Ridgway, S. E.

    2002-01-01

    We discuss the results in light of the cooling flow and the merger/interaction scenarios for triggering and fuelling AGN in clusters, but find that the data do not point unambiguously to neither of the two.

  9. Theoretical and Observational Studies of the Central Engines of AGN

    NASA Technical Reports Server (NTRS)

    Sivron, Ran

    1995-01-01

    In Active Galactic Nuclei (AGN) the luminosity is so intense that the effect of radiation pressure on a particle may exceed the gravitational attraction. It was shown that when such luminosities are reached, relatively cold (not completely ionized) thermal matter clouds may form in the central engines of AGN, where most of the luminosity originates. We show that the spectrum of emission from cold clouds embedded in hot relativistic matter is similar to the observed spectrum. We also show that within the hot relativistic matter, cold matter moves faster than the speed of sound or the Alfven speed, and shocks form. The shocks provide a mechanism by which a localized perturbation can propagate throughout the central engine. The shocked matter can emit the observed luminosity, and can explain the flux and spectral variability. It may also provide an efficient mechanism for the outward transfer of angular momentum and provide the outward flow of winds. With observations from X-ray satellites, emission features from the cold and hot matter may be revealed. Our analysis of X-ray data from the Seyfert 1 galaxy MCG - 6-30-15 over five years using detectors on the Ginga and Rosat satellites, revealed some interesting variable features. A source with hot matter emits non-thermal radiation which is Compton reflected from cold matter and then absorbed by warm (partially ionized) absorbing matter in the first model, which can be fit to the data if both the cold and warm absorbers are near the central engine. An alternative model in which the emission from the hot matter is partially covered by very warm matter (in which all elements except Iron are mostly ionized) is also successful. In this model the cold and warm matter may be at distances of up to 100 times the size of the central engine, well within the region where broad optical lines are produced. The flux variability is more naturally explained by the second model. Our results support the existence of cold matter in, or

  10. 3D simulations of the early stages of AGN jets: geometry, thermodynamics and backflow

    NASA Astrophysics Data System (ADS)

    Cielo, S.; Antonuccio-Delogu, V.; Macciò, A. V.; Romeo, A. D.; Silk, J.

    2014-04-01

    We investigate the interplay between jets from active galactic nuclei (AGNs) and the surrounding interstellar medium (ISM) through full 3D, high-resolution, adaptive mesh refinement simulations performed with the FLASH code. We follow the jet-ISM system for several Myr in its transition from an early, compact source to an extended one including a large cocoon. During the jet evolution, we identify three major evolutionary stages and we find that, contrary to the prediction of popular theoretical models, none of the simulations shows a self-similar behaviour. We also follow the evolution of the energy budget, and find that the fraction of input power deposited into the ISM (the AGN coupling constant) is of the order of a few per cent during the first few Myr. This is in broad agreement with galaxy formation models employing AGN feedback. However, we find that in these early stages, this energy is deposited only in a small fraction (<1 per cent) of the total ISM volume. Finally, we demonstrate the relevance of backflows arising within the extended cocoon generated by a relativistic AGN jet within the ISM of its host galaxy, previously proposed as a mechanism for self-regulating the gas accretion on to the central object. These backflows tend later to be destabilized by the 3D dynamics, rather than by hydrodynamic (Kelvin-Helmholtz) instabilities. Yet, in the first few hundred thousand years, backflows may create a central accretion region of significant extent, and convey there as much as a few millions of solar masses.

  11. Broad Band Properties of the BAT Selected AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard; Winter, Lisa; Tueller, jack

    2008-01-01

    We will present the x-ray spectral properties of approximately 150 Burst Alert Telescope (BAT) selected active galactic nuclei (AGN) focusing on the issues of spectral complexity, x-ray absorption and its distribution and that contribution of sources to the x-ray background. If time permits we will also present the nature of the host galaxies of the AGN and their relationship to merger candidates.

  12. On the physical origin of AGN outflow driving mechanisms

    NASA Astrophysics Data System (ADS)

    Ishibashi, Wako

    2016-07-01

    Super-massive black holes in active galactic nuclei (AGN) respond to the accretion process by feeding back energy and momentum into the surrounding environment. Galaxy-scale outflows are thought to provide the physical link connecting the small scales of the central black hole to the large scales of the host galaxy. Such powerful outflows are now starting to be commonly observed, and have been considered as a proof of AGN feedback in action. However, the physical origin of the mechanism driving the observed outflows is still unclear, and whether it is due to energy-driving or radiation-driving is a source of much debate in the literature. We consider AGN feedback driven by radiation pressure on dust, and show that AGN radiative feedback is capable of driving powerful outflows on galactic scales. In particular, we can obtain outflowing shells with high velocity and large momentum flux, by properly taking into account the effects of radiation trapping. Alternatively, the observed outflow characteristics may be significantly biased by AGN variability. I will discuss the resulting implications in the global context of black hole accretion-AGN feedback coupling.

  13. YOUNG AGN OUTBURST RUNNING OVER OLDER X-RAY CAVITIES

    SciTech Connect

    Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.; Forman, William R.; Randall, Scott; Jones, Christine; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher P.; Baum, Stefi A.; Noell-Storr, Jacob

    2014-02-20

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  14. Young AGN Outburst Running over Older X-Ray Cavities

    NASA Astrophysics Data System (ADS)

    Bogdan, Akos; van Weeren, Reinout Johannes; Kraft, Ralph; Forman, William; Scott, Randall; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher; Baum, Stefi; Noell-Storr, Jacob; Jones, Christine

    2015-08-01

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193 -- a nearby lenticular galaxy in a group -- based on X-ray and radio observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced about 78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  15. Mini-Survey Of SDSS of [OIII] AGN With Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.; George, I. M.; Hill, J.; Padgett, C. A.; Mushotzky, R. F.

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work (e.g. Ferrarese and Merritt 2000) strongly suggests every massive galaxy has a central black hole. However, most of these objects either are not radiating or have been very difficult to detect. We are now in the era of large surveys, and the luminosity function (LF) of AGN has been estimated in various ways. In the X-ray band, Chandra and XMM surveys (e.g., Barger et al. 2005; Hasinger, et al. 2005) have revealed that the LF of Hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(x) (at al z). This is seen for all types of AGN, but is stronger for the broad-line objects (e.g., Steffen et al. 2004). In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects (Hao et al. 2005). If, as been suggested, hard X-ray and optical emission line can both be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  16. Properties and evolution of radio-AGN hosts since z~4

    NASA Astrophysics Data System (ADS)

    Delvecchio, Ivan

    2016-08-01

    We analyse the multi-wavelength properties of about 6200 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively-efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<2, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples.

  17. Modernization and unification: Strategic goals for NASA STI program

    NASA Technical Reports Server (NTRS)

    Blados, W.; Cotter, Gladys A.

    1993-01-01

    Information is increasingly becoming a strategic resource in all societies and economies. The NASA Scientific and Technical Information (STI) Program has initiated a modernization program to address the strategic importance and changing characteristics of information. This modernization effort applies new technology to current processes to provide near-term benefits to the user. At the same time, we are developing a long-term modernization strategy designed to transition the program to a multimedia, global 'library without walls.' Notwithstanding this modernization program, it is recognized that no one information center can hope to collect all the relevant data. We see information and information systems changing and becoming more international in scope. We are finding that many nations are expending resources on national systems which duplicate each other. At the same time that this duplication exists, many useful sources of aerospace information are not being collected because of resource limitations. If nations cooperate to develop an international aerospace information system, resources can be used efficiently to cover expanded sources of information. We must consider forming a coalition to collect and provide access to disparate, multidisciplinary sources of information, and to develop standardized tools for documenting and manipulating this data and information. In view of recent technological developments in information science and technology, as well as the reality of scarce resources in all nations, it is time to explore the mutually beneficial possibilities offered by cooperation and international resource sharing. International resources need to be mobilized in a coordinated manner to move us towards this goal. This paper reviews the NASA modernization program and raises for consideration new possibilities for unification of the various aerospace database efforts toward a cooperative international aerospace database initiative that can optimize the cost

  18. One Einstein, two Scientific Revolutions, three Routes to Unification, four Very dark clouds

    NASA Astrophysics Data System (ADS)

    Ne'emann, Yuval

    2006-11-01

    We analyze the discoveries in Physics at the turn of the XIXth to XXth Centuries and trace Einstein's essential contribution to the resolution of the riddles posed by Lord Kelvin's two "dark Clouds", namely Relativity and Quantum Mechanics, with the latter triggering the first and with their overlap as yet undecided between two candidate theories. We review the 1960-1975 emergence of the Standard Model and evaluate three geometric routes to further unification: (a)Higher Dimensions (T.Kaluza, O.Klein, Randall -Sundrum, N. Arkani-Hamed), (b) Post-Riemannian Geometry, with torsion (A. Einstein & B.Kauffmann, E.Cartan, Supergravity and Superstrings) or nonmetricity (F.W. Hehl et al.), (c) Gauge Theory Connections: H.Weyl (1918-1929), C.N. Yang & R, Mills (1954), P. Higgs (1961), Ne'eman-Fairlie (1979), D. Quillen (1985), A. Connes & J.Lotte (1989), and list four very dark clouds at our XXIst cent. Horizons, namely in the large (a) Dark Matter & (b) Quintessence, and in the small (c) Measurement and (d) Nonlocality. We close with recent results in Evolutionary Epistemology.

  19. Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime

    SciTech Connect

    Hosotani, Y.; Noda, S.; Sakamura, Y.; Shimasaki, S.

    2006-05-01

    In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime, the Higgs boson mass is predicted in the range 120-290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the Kaluza-Klein excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of 10{sup -8}, 10{sup -6}, and 10{sup -2} for {mu}-e, {tau}-e and t-e, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor cos(1/2){theta}{sub W} where {theta}{sub W} is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.

  20. Small Steps Towards a Grand Unification and the Electron/Positron Excesses in Cosmic-Ray Experiments

    SciTech Connect

    Ibe, Masahiro; /SLAC

    2010-06-11

    We consider a small extension of the standard model by adding two Majorana fermions; those are adjoint representations of the SU(2){sub L} and SU(3){sub c} gauge groups of the standard model. In this extension, the gauge coupling unification at an energy scale higher than 10{sup 15} GeV is realized when the masses of the triplet and the octet fermions are smaller than 10{sup 4} GeV and 10{sup 12} GeV, respectively. We also show that an appropriate symmetry ensures a long lifetime of the neutral component of the triplet fermion whose thermal relic density naturally explains the observed dark matter density. The electron/positron excesses observed in recent cosmic-ray experiments can be also explained by the decay of the triplet fermion.

  1. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  2. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  3. Constraints on Black Hole Spin in a Sample of Broad Iron Line AGN

    NASA Technical Reports Server (NTRS)

    Brenneman, Laura W.; Reynolds, Christopher S.

    2008-01-01

    We present a uniform X-ray spectral analysis of nine type-1 active galactic nuclei (AGN) that have been previously found to harbor relativistically broadened iron emission lines. We show that the need for relativistic effects in the spectrum is robust even when one includes continuum "reflection" from the accretion disk. We then proceed to model these relativistic effects in order to constrain the spin of the supermassive black holes in these AGN. Our principal assumption, supported by recent simulations of geometrically-thin accretion disks, is that no iron line emission (or any associated Xray reflection features) can originate from the disk within the innermost stable circular orbit. Under this assumption, which tends to lead to constraints in the form of lower limits on the spin parameter, we obtain non-trivial spin constraints on five AGN. The spin parameters of these sources range from moderate (a approximates 0.6) to high (a > 0.96). Our results allow, for the first time, an observational constraint on the spin distribution function of local supermassive black holes. Parameterizing this as a power-law in dimensionless spin parameter (f(a) varies as absolute value of (a) exp zeta), we present the probability distribution for zeta implied by our results. Our results suggest 90% and 95% confidence limits of zeta > -0.09 and zeta > -0.3 respectively.

  4. Recent Results for AGN Observed by the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Madejski, G. M.; Done, C.; Zycki, P.

    2000-01-01

    The Rossi X-ray Timing Explorer (RXTE) has produced many excellent observations of active galaxies, providing the best sensitivity in the 10 - 20 keV range so far. This presentation reports selected RTXE data for AGN in the context of the currently popular models. One is the recent result for two Seyfert 1 galaxies, NGC 5548 and IC4329a: both show the "canonical" Seyfert I X-ray spectra, with an underlying power law, plus Gaussian iron K line and Compton reflection. Interestingly, in both cases, the profile of the Fe K line does not extend as far to the red as seen in the famous NCG-6-30-15, and this indicates that the regions where the Fe K lines originate in AGN are diverse. Independently, in both objects we see a strong spectral variability of the primary continua, which soften as the sources brighten. The second result is for the heavily absorbed Seyfert 2 NGC 4945. The RXTE data confirm the strong absorption corresponding to the optical depth to electron scattering of about 2, but also reveal rapid variability of the hard (8-30 keV) X-ray emission on a time scale of a day or less. This suggests that for NGC 4945, the putative parsec-size molecular torus cannot be both geometrically and optically thick, and implies that the Cosmic X-ray Background is unlikely to be made up primarily of AGN with geometry as inferred for this object.

  5. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    NASA Astrophysics Data System (ADS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Tihminlioglu, Funda; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  6. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  7. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  8. UNDERSTANDING THE AGN-HOST CONNECTION IN BROAD Mg II EMISSION-SELECTED AGN-HOST HYBRID QUASARS

    SciTech Connect

    Wang, J.; Wei, J. Y.

    2009-05-01

    We study the issue of active galactic nucleus (AGN)-host connection in intermediate-z (1.2>z > 0.4) galaxies with hybrid spectra (hybrid QSOs for short). The observed spectra redward of the Balmer limit are dominated by starlight, and the spectra at the blue end by both an AGN continuum and an Mg II broad emission line. This unique property allows us to examine both an AGN and its host galaxy in an individual galaxy simultaneously. First, 15 hybrid QSOs are selected from the Sloan Digital Sky Survey (SDSS) Data Release 6. The spectra are then analyzed in detail for three objects: SDSS J162446.49+461946.7, SDSS J102633.32+103443.8, and SDSS J090036.44+381353.0. Our spectral analysis shows that the current star formation activities are strongly suppressed, and that the latest burst ages range from {approx}400 Myr to 1 Gyr. Based on the Mg II black hole masses, the three hybrid QSOs are consistent with the D{sub n} (4000) - L/L {sub Edd} sequence that was previously established in local AGNs. The three hybrid QSOs are located in the middle range of the sequence, which implies that the hybrid QSOs are at the transition stage not only from young to old AGNs, but also from a host-dominated phase to an AGN-dominated phase.

  9. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  10. GOODS-Herschel: ultra-deep XMM-Newton observations reveal AGN/star-formation connection

    NASA Astrophysics Data System (ADS)

    Rovilos, E.; Comastri, A.; Gilli, R.; Georgantopoulos, I.; Ranalli, P.; Vignali, C.; Lusso, E.; Cappelluti, N.; Zamorani, G.; Elbaz, D.; Dickinson, M.; Hwang, H. S.; Charmandaris, V.; Ivison, R. J.; Merloni, A.; Daddi, E.; Carrera, F. J.; Brandt, W. N.; Mullaney, J. R.; Scott, D.; Alexander, D. M.; Del Moro, A.; Morrison, G.; Murphy, E. J.; Altieri, B.; Aussel, H.; Dannerbauer, H.; Kartaltepe, J.; Leiton, R.; Magdis, G.; Magnelli, B.; Popesso, P.; Valtchanov, I.

    2012-10-01

    Models of galaxy evolution assume some connection between the AGN and star formation activity in galaxies. We use the multi-wavelength information of the CDFS to assess this issue. We select the AGNs from the 3 Ms XMM-Newton survey and measure the star-formation rates of their hosts using data that probe rest-frame wavelengths longward of 20 μm, predominantly from deep 100 μm and 160 μm Herschel observations, but also from Spitzer-MIPS-70 μm. Star-formation rates are obtained from spectral energy distribution fits, identifying and subtracting an AGN component. Our sample consists of sources in the z ≈ 0.5-4 redshift range, with star-formation rates SFR ≈ 101-103 M⊙ yr-1 and stellar masses M⋆ ≈ 1010-1011.5 M⊙. We divide the star-formation rates by the stellar masses of the hosts to derive specific star-formation rates (sSFR) and find evidence for a positive correlation between the AGN activity (proxied by the X-ray luminosity) and the sSFR for themost active systems with X-ray luminosities exceeding Lx ≃ 1043 erg s-1 and redshifts z ≳ 1. We do not find evidence for such a correlation for lower luminosity systems or those at lower redshifts, consistent with previous studies. We do not find any correlation between the SFR (or the sSFR) and the X-ray absorption derived from high-quality XMM-Newton spectra either, showing that the absorption is likely to be linked to the nuclear region rather than the host, while the star-formation is not nuclear. Comparing the sSFR of the hosts to the characteristic sSFR of star-forming galaxies at the same redshift (the so-called "main sequence") we find that the AGNs reside mostly in main-sequence and starburst hosts, reflecting the AGN-sSFR connection; however the infrared selection might bias this result. Limiting our analysis to the highest X-ray luminosity AGNs (X-ray QSOs with Lx > 1044 erg s-1), we find that the highest-redshift QSOs (with z ≳ 2) reside predominantly in starburst hosts, with an average s

  11. OT1_rmushotz_1: Determining the Bolometric Luminosity of AGN

    NASA Astrophysics Data System (ADS)

    Mushotzky, R.

    2010-07-01

    Determining the bolometric luminosities of AGN is key to understanding their evolution. Uncertainties in the total radiation from AGN translate into uncertainties in their lifetimes, Eddington ratios, mass accretion rates, the form of their radiation, and the predicted black hole spin. However, we still have major problems in measuring this critical quantity. AGN and their host galaxies emit a large fraction of their light in the MIR to FIR, but the origin of this radiation and the connection to the AGN are not well understood. It is not clear whether this radiation is associated with the AGN or with star formation in the galaxy. We propose to use Herschel's unique capabilities to establish the properties of the Swift-BAT all sky sample of local AGN selected at 15-195 keV. We will measure the MIR to FIR (65-500 microns) properties of a complete low-redshift sample (309 objects at z<0.05). The Swift-BAT survey is the least biased all sky survey for AGN with respect to host galaxy properties and obscuration in the line-of-sight, and thus it is superior to optical, IR, or radio surveys for understanding the the nuclear component of the MIR to FIR radiation from active galaxies. The low redshift of our sample, the uniformity of selection, and the large amount of parallel data which have already been obtained (Spitzer, optical, and X-ray spectra, and optical and UV imaging) will allow the most precise determination of the physical origin (AGN versus star formation) of the light. The low redshifts allow the best possible angular resolution for spatially separating star-formation and nuclear components, while only requiring short Herschel exposures. The Herschel BAT survey will provide a comprehensive database for determining the bolometric light of AGN and will be an invaluable reference sample for analyzing higher redshift AGN. It will be a powerful resource for many years to come. We will make it available in a comprehensive and accessible form as rapidly as possible.

  12. A total and polarized infrared flux view of the AGN clumpy torus

    NASA Astrophysics Data System (ADS)

    Lopez Rodriguez, Enrique

    2013-12-01

    Magnetohydrodynamical theories consider the torus of Active Galactic Nuclei (AGN) to be part of an outflow wind moving away from the central engine. In this framework, the torus is a particular region of the wind, where dusty and optically thick clouds are formed. The outflows are strongly related to the accretion rate and magnetic field strength, which play an important role in the creation, morphology and evolution of the torus. Through infrared (IR) imaging and polarimetry observations, this dissertation (1) searches for signatures of dusty tori in low-luminosity AGN (LLAGN); (2) explores the role and strength of magnetic field in the torus; and (3) investigates the nucleus of radio-loud AGN. Recent theoretical models predicted that LLAGN do not host a Seyfert-like torus, since low-luminosities (<1042 erg s-1 ) cannot sustain the required outflow rate. High-spatial resolution mid-IR (MIR) imaging and nuclear spectral energy distribution of 22 LLAGN reveals different IR characteristics by dividing the sample in terms of the Eddington ratio. These galaxies show a diversity of nuclear morphologies and have a high MIR/X-ray luminosity ratio compared to higher-luminosity AGN. Star formation, jets and/or truncated accretion disk can explain the MIR excess. Although several models have been made to account for the outflowing dusty winds from the central engine, the magnetic field strength at the position of the torus remains poorly characterized. Through a novel study using near-IR polarimetry, the magnetic field strength in the clumpy torus was estimated. Specifically, if paramagnetic alignment is assumed in the dusty clouds of the torus, the magnetic field strength of the torus of IC5063 is estimated to be in the range of 12--128 mG. Alternatively, Chandrasekhar-Fermi method suggests a lower-limit magnetic field strength of 13 mG. For the archetypical radio-loud AGN, Cygnus A, MIR polarimetry using CanariCam on the 10.4-m Gran Telescopio de Canarias revealed a high

  13. Multi-Wavelength AGN from Ground and Space, from Far-IR to High-Energy

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2014-07-01

    I will discuss multi-wavelength AGN studies, with a focus on mid-IR and radio selected obscured AGN. Obscured AGN, which are robustly identified across the full sky by WISE, are the dominant AGN population. I will discuss several aspects of the mid-IR obscured AGN population, ranging from detailed studies of extreme sources, the so-called WISE ultraluminous `hot dust-obscured galaxy' or `hot DOG' sample, as well as more general studies comparing obscured and unobscured AGN identified in wide-area surveys.

  14. A practical coordinate unification method for integrated tactile-optical measuring system

    NASA Astrophysics Data System (ADS)

    Li, Feng; Peter Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    To meet the requirement of both high speed and high accuracy 3D measurements for dimensional metrology, multi-sensor measuring systems have been developed to measure, analyse and reverse engineer the geometry of objects. This paper presents a new development in coordinate unification called the "centroid of spherical centres" method, which can be used instead of the traditional method which uses three datum-points to perform the geometric transformation and unification of tactile and optical sensors. The benefits of the proposed method are improved accuracy in coordinate unification and the method is used to integrate a coordinate measuring machine (CMM) and optical sensors (structured light scanning system and FaroArm laser line probe). A sphere-plate artefact is developed for data fusion of the multi-sensor system and experimental results validate the accuracy and effectiveness of this method.

  15. Fast oscillatory dynamics during language comprehension: Unification versus maintenance and prediction?

    PubMed

    Lewis, Ashley Glen; Wang, Lin; Bastiaansen, Marcel

    2015-09-01

    The role of neuronal oscillations during language comprehension is not yet well understood. In this paper we review and reinterpret the functional roles of beta- and gamma-band oscillatory activity during language comprehension at the sentence and discourse level. We discuss the evidence in favor of a role for beta and gamma in unification (the unification hypothesis), and in light of mounting evidence that cannot be accounted for under this hypothesis, we explore an alternative proposal linking beta and gamma oscillations to maintenance and prediction (respectively) during language comprehension. Our maintenance/prediction hypothesis is able to account for most of the findings that are currently available relating beta and gamma oscillations to language comprehension, and is in good agreement with other proposals about the roles of beta and gamma in domain-general cognitive processing. In conclusion we discuss proposals for further testing and comparing the prediction and unification hypotheses.

  16. Exploring the Use of Enterprise Content Management Systems in Unification Types of Organizations

    NASA Astrophysics Data System (ADS)

    Izza Arshad, Noreen; Mehat, Mazlina; Ariff, Mohamed Imran Mohamed

    2014-03-01

    The aim of this paper is to better understand how highly standardized and integrated businesses known as unification types of organizations use Enterprise Content Management Systems (ECMS) to support their business processes. Multiple case study approach was used to study the ways two unification organizations use their ECMS in their daily work practices. Arising from these case studies are insights into the differing ways in which ECMS is used to support businesses. Based on the comparisons of the two cases, this study proposed that unification organizations may use ECMS in four ways, for: (1) collaboration, (2) information sharing that supports a standardized process structure, (3) building custom workflows that support integrated and standardized processes, and (4) providing links and access to information systems. These findings may guide organizations that are highly standardized and integrated in fashion, to achieve their intended ECMS-use, to understand reasons for ECMS failures and underutilization and to exploit technologies investments.

  17. 3 CFR 8637 - Proclamation 8637 of March 16, 2011. 150th Anniversary of the Unification of Italy, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Anniversary of the Unification of Italy, 2011 8637 Proclamation 8637 Presidential Documents Proclamations Proclamation 8637 of March 16, 2011 Proc. 8637 150th Anniversary of the Unification of Italy, 2011By the President of the United States of America A Proclamation On March 17, Italy celebrates the 150th...

  18. GOCE-based height system unification between Greece and Turkey. First considerations over marine and land areas

    NASA Astrophysics Data System (ADS)

    Vergos, Georgios S.; Erol, Bihter; Natsiopoulos, Dimitrios A.; Grigoriadis, Vassilios N.; Serkan Işık, Mustafa; Tziavos, Ilias N.

    2016-04-01

    The unification of local vertical Datums (LVDs) at a country-wide scale has gained significant attention lately, due to the availability of GOCE-based Global Geopotential Models (GGMs). The latter, offer unprecedented geoid height accuracies at the 1-1.5 cm level for spherical harmonic expansions to d/o 225-230. Within a single country, several LVDs may be used, especially in the event of islandic nations, therefore the unification of all of them to a single nation-wide LVD is of utmost importance. The same holds for neighboring countries, where the unification of their vertical datums is necessary as a tool of engineering, cross-border collaboration and environmental and risk management projects. The aforementioned set the main scope of the work carried out in the frame of the present study, which referred to the use of GOCE and GOCE/GRACE GGMs in order to unify the LVDs of Greece and Turkey. It is well-known that the two countries share common borders and are a path for large-scale engineering projects in the energy sector. Therefore, the availability of a common reference for orthometric heights in both countries and/or the determination of the relative offset of their individual zero-level geopotential value poses an emerging issue. The determination of the geopotential value Wo(LVD) for the Greek and Turkish LVDs was first carried out separately for each region performing as well different estimates for the marine area of the Aegean Sea and the terrestrial border-region along eastern Thrace. From that, possible biases of the Hellenic and Turkish LVDs themselves have been drawn and analyzed to determine spatial correlations. Then, the relative offset between the two LVDs was determined employing GPS/Levelling data for both areas and the latest GO-DIR-R5, GO-TIM-R5 and GOCO05s models as well as EGM2008. The estimation of the mean offset was used to provide as well a direct link between the Greek and Turkish LVDs with the IAG conventional value recently proposed

  19. Spectropolarimetry of AGN, and `Women &\\ Science'

    NASA Astrophysics Data System (ADS)

    Kay, L.

    1999-12-01

    I have been using optical spectropolarimetry to investigate the nature of AGN. For the CAREER project, I have worked with A. M. Magalhães of the IAG in Brazil to use a visiting polarimetry module with the RC Spectrograph at CTIO, as well as conduct observations at Lick. Projects include observations of broad--line radio galaxies with double--peaked emission line profiles suggestive of accretion disks, and observations of a sample of X-ray selected narrow--line Seyfert 1 galaxies. Another project involves optical and X-ray observations of a complete sample of nearby Seyfert 2 galaxies in order to investigate the frequency of obscured broad--line regions and to determine their contribution to the X-ray background. In addition to involving undergraduate students in research, my educational efforts have focused on getting science into our Women's Studies program. I teach a course on the history and sociology of women in science, co-teach a course on feminist science studies, helped to create a course on women's health, organized a faculty seminar on gender and science issues, and lead a project at Barnard on gender and scientific literacy. I gratefully acknowledge support from NSF CAREER grant AST-9501835, as well as support from NSF International Research Fellowship INT-9423970, and from NSF grant EHR-9555808 to the AAC&U for the Gender and Scientific Literacy project.

  20. Radio-Loud AGN: The Suzaku View

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2009-01-01

    We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.

  1. Using AGN to Observe the Growth of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Murray, S.; Jones, C.; Forman, W.; Kenter, A.; Vihklinin, A.; Markevitch, M.; Brand, K.; Jannuzi, B.; Kochanek, C.; Eisenstein, D.

    We present X-ray and optical observations of the contiguous 9 3 sq deg XBootes survey made with the ACIS instrument on Chandra The X-ray survey consists of 126 5ksec pointings that achieve a sensitivity of about 4 times10 -15 erg cm -2 s -1 in the 0 5--7 keV band At this sensitivity limit we detect 4642 X-ray sources As part of the AGES galaxy survey in the Bootes region Kochanek et al 2005 we have obtained 1800 redshifts of the X-ray selected objects most of which are AGN yielding a density of sim150 AGN per square degree The mean AGN redshift is 1 3 with the distribution extending to z 4 We have analyzed the spatial distribution of the X-ray selected AGN and compared this to the distribution of the sim20000 AGES galaxies To z sim0 7 the limit of galaxy sample the galaxies and AGN both trace the same structures and show the same web of voids and filaments At larger redshifts the X-ray AGN continue to show the characteristic structure of voids and filaments Quantitatively we computed the spatial 2-point correlation function for the X-ray selected AGN and find that the correlation length r 0 simeq6 4 h -1 Mpc and the exponent gamma simeq-1 7 of the correlation function are similar to the canonical values derived for galaxies In addition we have compared the correlation function in several redshift intervals and find that the correlation length is approximately constant to z sim1 5

  2. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  3. Wide-band X-ray spectral and timing analysis of AGNs

    NASA Astrophysics Data System (ADS)

    Hiragi, Kazuyoshi; Fukazawa, Yasushi; Mizuno, Motohiro; Takahashi, Hiromitsu; Yamasaki, Tomonori

    X-ray spectra of AGNs contain conplex features such as the continuum, emission line, ab-sorption, reflection component, high energy cut-off. These features are thought to reflect the material structure around AGN, and X-ray studies can clarify a physical geometry of AGNs. Especially, the hard X-ray observation above 10 keV is important to measure the reflection component. So far, hard X-ray studies of time variation of AGN spectra have been limited because of high background rate. Suzaku HXD achieve the highest S/N ratio by an effective background rejection. Combining the data with the XIS soft X-ray date, we can study the AGN X-ray spectra in more detail than ever. Here, we report the spectral and timing analysis of 14 Seyfert galaxies observed with Suzaku, in order to decompose each spectral component. The reflection component via a torus is considered to be less variable, while the varible component is considered to come from the central engine directly. Using this consideration, we tried to decompose a direct component and a reflection component. We compared the spectral parameters obtained by spectral fitting with direct nuclear plus reflection with those obtained from the difference spectra between high and low state. In particular, we forcus attention on the power-law index, reflection fraction, and the Fe-Ka line. As a result, the photon index, the Fe line intensity, and the refrection component is almost the same between high and low state. However, some of them are not the case, and the equivalent width of Fe-Ka line against the best-fit reflection component is unreasonable for some objects. These indicate that two-component model is valid for most of Seyfert galaxies, but the behavior of some Seyfert galaxies cannot be explained by two-conmponent model. Highly ionized Fe-K lines are observed as both emission and absorption, and some objects show a time variability of these lines. We will report this matter.

  4. Implications of the CMS search for W R on grand unification

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Triparno; Brahmachari, Biswajoy; Raychaudhuri, Amitava

    2016-02-01

    The CMS experiment at the Large Hadron Collider has reported a 2.8σ excess in the (2 e)(2 jets) channel around 2.1 TeV. Interpretation of this data is reconsidered in terms of the production of a right-handed weak gauge boson, W R , of the left-right symmetric model and in an SO(10) grand unified theory abiding by the Extended Survival Hypothesis. The left-right symmetric model can be consistent with this excess if (a) the heavy right-handed neutrino has a mass near W R , or (b) if g L ≠ g R , or (c) the right-handed CKM matrix is nontrivial. Combinations of the above possibilities are also viable. A W R with a mass in the TeV region if embedded in SO(10) is not compatible with g L = g R . Rather, it implies 0 .64 ≤ g R /g L ≤ 0 .78. Further, a unique symmetry-breaking route — the order being left-right discrete symmetry breaking first, followed by SU(4) C and finally SU(2) R — to the standard model is picked out. The L ↔ R discrete symmetry has to be broken at around 1016 GeV. The grand unification scale is pushed to 1018 GeV making the detection of proton decay in ongoing searches rather unlikely. The SU(4) C breaking scale can be at its allowed lower limit of 106 GeV so that n-overline{n} oscillation or flavour changing processes such as K L → μe and B d,s → μe may be detectable. The Higgs scalar multiplets responsible for SO(10) symmetry breaking at various stages are uniquely identified so long as one adheres to a minimalist principle. We also remark, en passant, about a partially unified Pati-Salam model.

  5. AGN duty cycle estimates for the ultra-steep spectrum radio relic VLSS J1431.8+1331

    NASA Astrophysics Data System (ADS)

    Shulevski, A.; Morganti, R.; Barthel, P. D.; Harwood, J. J.; Brunetti, G.; van Weeren, R. J.; Röttgering, H. J. A.; White, G. J.; Horellou, C.; Kunert-Bajraszewska, M.; Jamrozy, M.; Chyzy, K. T.; Mahony, E.; Miley, G.; Brienza, M.; Bîrzan, L.; Rafferty, D. A.; Brüggen, M.; Wise, M. W.; Conway, J.; de Gasperin, F.; Vilchez, N.

    2015-11-01

    Context. Steep spectrum radio sources associated with active galactic nuclei (AGN) may contain remnants of past AGN activity episodes. Studying these sources gives us insight into the AGN activity history. Novel instruments like the LOw Frequency ARray (LOFAR) are enabling studies of these fascinating structures to be made at tens to hundreds of MHz with sufficient resolution to analyse their complex morphology. Aims: Our goal is to characterize the integrated and resolved spectral properties of VLSS J1431+1331 and estimate source ages based on synchrotron radio emission models, thus putting constraints on the AGN duty cycle. Methods: Using a broad spectral coverage, we have derived spectral and curvature maps, and used synchrotron ageing models to determine the time elapsed from the last time the source plasma was energized. We used LOFAR, Giant Metrewave Radio Telescope (GMRT) and Jansky Very Large Array (VLA) data. Results: We confirm the morphology and the spectral index values found in previous studies of this object. Based on our ageing analysis, we infer that the AGN that created this source currently has very low levels of activity or that it is switched off. The derived ages for the larger source component range from around 60 to 130 Myr, hinting that the AGN activity decreased or stopped around 60 Myr ago. We observe that the area around the faint radio core located in the larger source component is the youngest, while the overall age of the smaller source component shows it to be the oldest part of the source. Conclusions: Our analysis suggests that VLSS J1431.8+1331 is an intriguing, two-component source. The larger component seems to host a faint radio core, suggesting that the source may be an AGN radio relic. The spectral index we observe from the smaller component is distinctly flatter at lower frequencies than the spectral index of the larger component, suggesting the possibility that the smaller component may be a shocked plasma bubble. From the

  6. Detecting AGNs using multi-filter imaging data

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoyi

    2012-05-01

    The purpose of this research project was to develop and test a technique to detect active galactic nuclei, AGNs, using high quality, multi-filter imaging data alone. In order to perform a physically meaningful aperture photometric measurement, we have adapted an image manipulation method - shapelets. shapelets can remove the Point Spread Function (PSF) from an image without the traditional deconvolution in Fourier space. It can therefore be used to adjust the image PSF, i.e., to sharpen the PSF and to make each filter's PSF have the same full width at half maximum (FWHM). shapelets is realized by an IDL based package SHAPELETS, originally designed for studying weak gravitational lensing, and adjusted to suit our application. The primary data we used were selected from the CFHT Legacy Survey Wide Survey field W4. The sample included 6670 galaxies, with u magnitudes ≤ +22 mag, and inclinations ≤ 60°. We applied shapelets to each galaxy for each filter. The result was a shapelets reconstructed image with a 2-D Gaussian PSF with FWHM=3 pixels. We then made relevant photometric measurements on the reconstructed image. In order to calculate distance-dependent parameters such as the galaxy luminosity, we estimated the photometric redshift using an artificial neural network (ANN) with a root mean square (RMS) of 0.025. We designed another neural net to classify the galaxy morphological type based on its photometric properties. The classification was based on Nair and Abraham (2010), and has an accuracy < 2T types. Because galaxy colours alone cannot be used to distinguish AGNs from "normal" galaxies, we also designed a neural net to separate AGN, "normal" , and starforming/starburst galaxies. The accuracy of this classification technique is about 75%. Because our method relies largely on the spatial resolution of the data, we limited our analysis to z ≤ 0.1. The sample contained 1570 galaxies, and we detected 178 AGNs (11.3%), 176 "normal" (11.2%), and 1216

  7. X-ray Obscured AGN in the GOODS-N

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, E.

    2010-07-01

    We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ / fR > 1000. This population has been proposed to contain a significant fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is flat with Γ=1±0.1 very similar to the stacked spectrum of the undetected DOGs (Γ=0.8±0.2). However, most of our X-ray detected DOGs present only moderate absorption with column densities 1022 < NH < 1024 cm-2. Only three sources (20%) present very flat spectra and are probably associated with reflection dominated Compton-thick sources. Our finding is rather at odds with papers which claim that the vast majority of DOGs are associated with Compton-thick sources. In any case, such sources at high redshift (z > 2) present limited interest for the X-ray background: the population synthesis models predict a contribution, for the z > 2 Compton-thick AGN, to the X-ray background flux at 30 keV, of less than 1 percent.

  8. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Leon-Tavares, Jonathan; Chavushyan, Vahram H.

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  9. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds.

    PubMed

    Zhang, Jinhui; Li, Li; Jiang, Cheng; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2012-12-01

    Korean Angelica gigas Nakai (AGN) is a major medicinal herb used in Asian countries such as Korea and China. Traditionally, its dried root has been used to treat anemia, pain, infection and articular rheumatism in Korea, most often through boiling in water to prepare the dosage forms. The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major chemical components in the alcoholic extracts of the root of AGN. The in vitro anti-tumor activities of decursin and/or DA against prostate cancer, lung cancer, breast cancer, colon cancer, bladder cancer, sarcoma, myeloma and leukemia have been increasingly reported in the past decade whereas the in vivo efficacy in mouse models was established only for a few organ sites. Preliminary pharmacokinetic studies by us and others in rodent models indicated that decursinol (DOH), which has much less in vitro direct anticancer activities by itself, is the major and rapid in vivo hydrolysis metabolite of both decursin and DA. Besides decursin, DA and DOH, other chemical components in AGN such as polysaccharides and polyacetylenes have been reported to exert anti-cancer and anti-inflammation activities as well. We systematically reviewed the published literature on the anti-cancer and other bio-activities effects of AGN extract and decursin, DA and DOH, as well as other chemicals identified from AGN. Although a number of areas are identified that merit further investigation, one critical need is first-in-human studies of the pharmacokinetics of decursin/DA to determine whether humans differ from rodents in absorption and metabolism of these compounds.

  10. Non-thermal Radiation Processes in Relativistic Outflows from AGN

    NASA Astrophysics Data System (ADS)

    Lefa, Eva

    2012-11-01

    Non-thermal, leptonic radiation processes have been extensively studied for the interpretation of the observed radiation from jets of Active Galactic Nuclei (AGN). This work addresses the synchrotron and Inverse Compton scattering (ICS) mechanisms, and investigates the potential of a self-consistent, time-dependent approach to currently unsolved problems. Furthermore, it examines how deviations from standard, one-zone models can modify the radiated spectrum. A detailed analysis of the shape of the ICS spectrum is also performed. In the first part a possible interpretation of the hard γ-ray blazar spectra in the framework of leptonic models is investigated. It is demonstrated that hard γ-ray spectra can be generated and maintained in the presence of energy losses, under the basic assumption of a narrow electron energy distribution (EED). Broader spectra can also be modeled if multiple zones contribute to the emission. In such a scheme, hard flaring events, like the one in Mkn 501 in 2009, can be successfully interpreted within a "leading blob" scenario, when one or few zones of emission become dominant. In the second part the shape of the Compton spectrum close to the maximum cutoff is investigated. Analytical approximations for the spectral shape in the cutoff region are derived for various soft photon fields, providing a direct link between the parent EED and the upscattered spectrum. Additionally, a generalization of the beaming pattern for various processes is derived, which accounts for non-stationary, anisotropic and non-homogeneous EEDs. It is shown that anisotropic EEDs may lead to radiated spectra substantially different from the isotropic case. Finally, a self-consistent, non-homogeneous model describing the synchrotron emission from stratified jets is developed. It is found that transverse jet stratification leads to characteristic features in the emitted spectrum different to expectations in homogeneous models.

  11. Mini-Survey of SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelina, Lorella; George, Ian

    2007-01-01

    There is a common wisdom that every massive galaxy has a massive block hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low Lx (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of (optically-selected samples) shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [OIII] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a mini-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([OIII]) to check the relation with the Lx observed with Swift.

  12. A Meeting on the AGN/Galaxy Connection

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1999-01-01

    This grant was used for travel support of several junior astronomers to attend the meeting "The Actice Galactic Nuclei (AGN)/Normal Galaxy Connection", Session El.2 of the 32nd COSPAR Assembly held in Nagoya, Japan, 12-19 July 1998. This meeting included the contributions from both theoretical and observational astronomers to the following fundamental questions: What causes the activity in galaxies? What is the difference between normal and active galaxies? Which processes are responsible for fueling the AGN? Do all galaxies have central Black Holes? What is the difference between low and high luminosity AGN? The observational papers discussed themes like: the detection of the black hole at the nucleus of our Galaxy, as well as in other galaxies; results from surveys of AGN in local galaxies, the source of their activity and their cold gas content; the observations of quasar host galaxies; the properties of Ultraluminous Infrared Galaxies. These papers used data from ground based observatories and several space missions (e.g. ASCA, ROSAT, HST, ISO) in wavebands from radio through gamma-rays. The theoretical papers discussed issues like: mechanisms to fuel the AGN; the physics of the accretion process; the formation of black-holes, quasars and their jets.

  13. The Overdue Discovery of Quasars and AGN

    NASA Astrophysics Data System (ADS)

    Kellermann, Ken I.

    2012-09-01

    The extragalactic nature of quasars as a major new component of the Universe was not recognized until 1963 when Maarten Schmidt somewhat accidentally measured the spectrum of 3C 273 and recognized that the relatively simple hydrogen line Balmer series spectrum implied a redshift of 0.16. Curiously, 3C 48 and other very compact radio sources had been previously identified with ``quasi-stellar'' objects several years earlier. Even though the redshift of 3C48 was measured as early as 1960 as 0.37, it was rejected due to apparent spectroscopic technicalities and preconceived ideas about what appeared to be an unrealistically high luminosity. The strong radio source known as 3C 273 was first catalogued in 1959 and the now recognized magnitude 13 optical counterpart was known at least as early as 1887. Although, since 1960, much fainter optical counterparts were being routinely identified using accurate radio interferometer positions, interestingly, 3C273 eluded identification until a series of lunar occultations by Hazard et al. in 1962 were used to determine the position and morphology of the radio source. Acceptance of the cosmological nature of quasars and the implied excessive radio and optical luminosity was not universal, and claims for a more local population continued for at least several decades, confused perhaps by the recognition of the much larger class of radio quiet quasi stellar objects and active galactic nuclei (AGN), the uncertain connection with previously known Seyfert and other compact galaxies, as well as attempts to classify quasars into numerous sub-categories based on their observed optical, radio, IR and high energy properties.

  14. Agnes Pockels: Life, Letters and Papers

    NASA Astrophysics Data System (ADS)

    Helm, Christiane A.

    2004-03-01

    Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).

  15. AGN variability in the radio band

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2016-08-01

    Variability is an important and defining characteristic of AGN, that along with their broadband spectral energy distribution make their study interesting and challenging. A complete understanding of the physics of these objects requires monitoring observations over the whole electromagnetic spectrum, and includes studying their properties at a given band and also the relationship between multiple wavelengths. Here we present the main results obtained so far with the ongoing OVRO 40m blazar monitoring program at 15 GHz with twice a week cadence. This program started in mid-2007 and is currently monitoring about 1800 blazars, including most of the bright blazars north of declination -20 degrees. These results include: characterization of the variability in the radio band; its relationship with optical and gamma-ray properties; and its relationship to gamma-ray emission as observed with Fermi-LAT, which can provide constrains on the location of the gamma-ray emission region. We will also discuss our ongoing work on the characterization of radio variability using the power spectral density. For this, we are using 8 years of OVRO 40m data for ~1200 sources, and also F-GAMMA monitoring data taken with the Effelsberg 100m telescope for 60 sources with about monthly cadence monitoring data at 8 frequencies between 2.6 and 43.0 GHz. These studies will provide an improved understanding of blazar variability, a better basis to evaluate the statistics of correlated variability between different emission bands, and a long and consistent record of radio observations to be used in gamma-ray and multi-wavelength investigations.

  16. Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon

    PubMed Central

    2014-01-01

    Background Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent ‘natural’ phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes. Results Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued. Conclusions The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies. The ontology release files associated with the ontology merge described in this manuscript are available at: http://purl.obolibrary.org/obo/uberon/releases/2013-02-21/ Current ontology release files are available always available at: http://purl.obolibrary.org/obo/uberon/releases/ PMID:25009735

  17. AGN feedback and jet-induced star formation

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.

    2015-12-01

    We studied the impact of the AGN in radio galaxies on star formation along the radio jet. Our main goal was to determine whether star formation is more efficient in the shocked region along the jet. A first large scale work based on IRAM-30m CO observations of 3C 285 and Minkowski's Object has shown the star-forming spots located a few tens of kpc along the radio jet appears to form stars at least as efficiently as typical spiral galaxies or even boosted. This result supports the AGN positive feedback scenario. On the opposite, a small scale multi-wavelength analysis of the northern filaments of Centaurus A tends to quench star formation in the filaments, maybe due to the AGN negative feedback.

  18. The predominance of dust in the polar region of AGN

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian; Gandhi, Poshak

    2016-08-01

    Recent mid-infrared (MIR) interferometric observations showed in few AGN that the bulk of the infrared emission originates from the polar region above the putative torus, where only little dust should be present. Our investigation of 149 Seyferts with high angular resolution MIR images from, e.g., VLT/VISIR shows that significant polar dust emission is probably very common in AGN. The relative amount of resolved MIR emission is at least 40 per cent and scales with the narrow emission line fluxes implying a strong connection between the extended continuum and line emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGN. We will discuss some of the resulting implications and give prospects for future instruments to further test this scenario.

  19. Feedback Mechanisms of Starbursts and AGNs through Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Matsushita, S.; Krips, M.; Lim, J.; Muller, S.; Tsai, A.-L.

    2013-10-01

    Our deep molecular line images of nearby starburst galaxies and AGNs exhibit molecular outflows in most galaxies, and have revealed that the molecular outflows co-exist with outflows or jets seen in other wavelengths. In case of starbursts, X-ray outflows have higher energy and pressure than those of molecular outflows, suggesting that plasma outflows are blowing the molecular gas away from starburst regions, which suggests a strong negative feedback. On the other hand, current starburst regions in M82 can be seen at the inner edge of an expanding molecular bubble, suggesting a positive feedback. In case of AGNs, jets seem to entrain the surrounding molecular gas away from the AGNs, suggesting a negative feedback.

  20. A Unification of Mathematics and Computer Programming to Find Polynomial Zeros and Display Graphs

    ERIC Educational Resources Information Center

    Ecker, Michael W.

    2005-01-01

    In this article, the author proves a theorem about polynomial zeros, but the focus is on how the theorem is integrated into a QuickBASIC computer program, and how that program answers the questions of the theorem--a unification of mathematics and computer programming. For a given polynomial, how can one overcome assorted problems in finding zeros…