NASA Astrophysics Data System (ADS)
Iovine, Raffaella Silvia; Wörner, Gerhard; Carmine Mazzeo, Fabio; Arienzo, Ilenia; Fedele, Lorenzo; Civetta, Lucia; D'Antonio, Massimo; Orsi, Giovanni
2016-04-01
Timescales governing the development of crustal magma reservoirs are a key for understanding magmatic processes such as ascent, storage and mixing event. An estimate of these timescales can provide important constraints for volcanic hazard assessment of active volcanoes. We studied the Agnano-Monte Spina eruption (A-MS; 4.7 ka; VEI = 4; 0.85 km3 D.R.E. of magma erupted) of the Campi Flegrei caldera, one of the most dangerous volcanic areas on Earth. The A-MS eruption has been fed by magmas varying from more to less evolved trachyte whose variable 87Sr/86Sr and trace elements features suggest magma mixing between two end-members. Ba zonation profiles of alkali feldspar phenocrysts have been determined through combined energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS-WDS-EMPA). We focused on distinct compositional breaks near the rim of the crystals that likely represent the last mixing event prior to eruption. We always chose the steepest gradients close to the crystal rims, taking into account that any effects related to cutting angles or crystal orientation should give longer apparent diffusion times. Two different approaches were undertaken: (1) a quantitative Ba compositional profiles were measured by point analyses along a short transect crossing growth discontinuities and (2) grey-scale profiles were taken parallel to the acquired point profiles. Assuming that Ba dominates the backscattered electron intensities in sanidines, greyscale gradients can be used as a diffusive tracer. BSE images were processed using the ImageJ® software, in order to extract a numerical greyscale profile. In both cases, each profile was interpolated through a non-linear Boltzmann fit curve with the Mathematica® software. A few traverses done at angles smaller than 90° to the compositional boundary interface were corrected by multiplying the distance values by the sinus of the traverse angle relative to the vertical on the interface. Our preliminary
... is Spina Bifida? Spina bifida (SB) is a neural tube defect (a disorder involving incomplete development of the brain, ... spinal fluid) protrude from a spinal opening; closed neural tube defects, which consist of a group of defects in ...
... pronounced SPAHY-nuh BIF-i-duh ) is a neural tube defect that frequently occurs in families. Spina ... meninges) alone, called a meningocele, or with some neural elements, called a meningomyelocele. Or the defect may ...
... and sensation. In addition to abnormal sensation and paralysis, another neurological complication associated with spina bifida is Chiari II malformation—a condition common in children with myelomeningocele—in which the brain stem and the cerebellum (hindbrain) protrude downward into ...
... may have learning problems, but most have normal intelligence. Most kids with spina bifida have some problems with their bowels and bladder. The nerves that send and receive messages from the brain can't do their job, so it's hard ...
Resources - spina bifida ... The following organizations are good resources for information on spina bifida : March of Dimes -- www.marchofdimes.org/baby/spina-bifida.aspx National Institute of Neurologic Disorders and ...
Copp, Andrew J; Adzick, N Scott; Chitty, Lyn S; Fletcher, Jack M; Holmbeck, Grayson N; Shaw, Gary M
2015-01-01
Spina bifida is a birth defect in which the vertebral column is open, often with spinal cord involvement. The most clinically significant subtype is myelomeningocele (open spina bifida), which is a condition characterized by failure of the lumbosacral spinal neural tube to close during embryonic development. The exposed neural tissue degenerates in utero, resulting in neurological deficit that varies with the level of the lesion. Occurring in approximately 1 per 1,000 births worldwide, myelomeningocele is one of the most common congenital malformations, but its cause is largely unknown. The genetic component is estimated at 60-70%, but few causative genes have been identified to date, despite much information from mouse models. Non-genetic maternal risk factors include reduced folate intake, anticonvulsant therapy, diabetes mellitus and obesity. Primary prevention by periconceptional supplementation with folic acid has been demonstrated in clinical trials, leading to food fortification programmes in many countries. Prenatal diagnosis is achieved by ultrasonography, enabling women to seek termination of pregnancy. Individuals who survive to birth have their lesions closed surgically, with subsequent management of associated defects, including the Chiari II brain malformation, hydrocephalus, and urological and orthopaedic sequelae. Fetal surgical repair of myelomeningocele has been associated with improved early neurological outcome compared with postnatal operation. Myelomeningocele affects quality of life during childhood, adolescence and adulthood, posing a challenge for individuals, families and society as a whole. For an illustrated summary of this Primer, visit: http://go.nature.com/fK9XNa. PMID:27189655
Copp, Andrew J.; Adzick, N. Scott; Chitty, Lyn S.; Fletcher, Jack M.; Holmbeck, Grayson N.; Shaw, Gary M.
2016-01-01
Spina bifida is a birth defect in which the vertebral column is open (bifid), often with spinal cord involvement. Clinically most significant is myelomeningocele (MMC; open spina bifida) in which the spinal neural tube fails to close during embryonic development. The exposed neural tissue degenerates in utero, resulting in neurological deficit that varies with level of the lesion. Occurring in around 1 per 1000 births worldwide, MMC is one of the commonest congenital malformations, yet its causation is largely unknown. The genetic component of MMC is estimated at 60-70% but few genes have yet been identified, despite much information from mouse models. Non-genetic risk factors include reduced folate intake, maternal anticonvulsant therapy, diabetes mellitus and obesity. Primary prevention by peri-conceptional folic acid has been demonstrated in clinical trials, leading to food fortification programmes in many countries. Prenatal diagnosis is by ultrasound enabling termination of pregnancy. Individuals who survive to birth have their lesions closed surgically, with subsequent management of associated defects, including the Chiari II malformation, hydrocephalus, and urological and orthopaedic sequelae. Fetal surgical repair of MMC has been associated with improved early neurological outcome compared with postnatal operation. MMC affects quality of life during childhood, adolescence, and into adulthood, posing a challenge for individuals, families and society as a whole. PMID:27189655
Khan, Naeem; Bano, Asghari
2016-01-01
The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals.
... Minneapolis Spina Bifida Clinic 2001 Blaisdell Ave. Minneapolis, MN 55404 (952) 993-9100 www.parknicollett.com Shriners ... Clinic (pediatric only) 2025 E. River Parkway Minneapolis, MN 55414 (612) 596-6105 www.twincitiesshrinershospital.org Mayo ...
... that some babies will have it even when women take the right amount every day. Who is at risk for ... population, there is no way to tell which women will have babies with Spina percent of people with SB have no family history. Many things affect pregnancy, including genes, environment and ...
... Ones & When? Smart School Lunches Emmy-Nominated Video "Cerebral Palsy: Shannon's Story" 5 Things to Know About Zika & ... procedure, a thin tube is placed within the brain to drain extra fluid down to the belly, where ... from their spina bifida. Those with paralysis may eventually need walking aids like leg braces, ...
ERIC Educational Resources Information Center
Anderson, Elizabeth M.; Spain, Bernie
Intended for parents as well as professionals, the text provides information and practical suggestions on dealing with spina bifida and hydrocephalus. Part I (chapters 1 and 2) concentrates on the medical and physical aspects of the condition with discussions covering such areas as spina bifida's development, locomotor problems, and the role of…
Integrating Pupils with Spina Bifida
ERIC Educational Resources Information Center
Halliwell, Miles; Spain, Bernie
1977-01-01
A followup survey of parents and teachers of 155 children born with spina bifida, who were mildly handicapped and attended ordinary schools in London, indicated that there were no major problems with the children's placements. (IM)
Spina Bifida: Some Psychological Aspects
ERIC Educational Resources Information Center
Fulthorpe, Derek
1974-01-01
Examined were the intellectual ability, social adjustment, social competence, and personality characteristics of 33 children, 8-to 15-years-old with spina bifida (a malformation of the spinal cord). (CL)
Social Implications of Spina Bifida.
ERIC Educational Resources Information Center
Woodburn, Margaret
Investigated in Southeast Scotland were the social and practical problems faced by the parents of 86 children (ages 18 months to 38 years) with spina bifida, 74 of whom were classified as myelomeningoceles (a more serious condition involving malformation of the spinal cord). Questionnaires and interviews were used to gather information in the…
Spina Bifida Association of America
ERIC Educational Resources Information Center
Exceptional Parent, 1974
1974-01-01
The Statement of the Spina Bifida Association of America (SBAA) explains SB as a malformation of the central nervous system, reports the formation of SBAA in 1974, explains SBAA's emphasis on local chapter organization, and describes SBAA services, including a bimonthly publication, public education efforts, and research validation projects. (GW)
Mathematical Development in Spina Bifida
ERIC Educational Resources Information Center
English, Lianne H.; Barnes, Marcia A.; Taylor, Heather B.; Landry, Susan H.
2009-01-01
Spina bifida (SB) is a neural tube defect diagnosed before or at birth that is associated with a high incidence of math disability often without co-occurring difficulties in reading. SB provides an interesting population within which to examine the development of mathematical abilities and disability across the lifespan and in relation to the…
Urologic Management of Spina Bifida
ERIC Educational Resources Information Center
Clayton, Douglass B.; Brock, John W., III; Joseph, David B.
2010-01-01
The urologist plays an important role in the multidisciplinary team of physicians who provide care for patients with spina bifida. We review common strategies for managing the urinary tract in these patients. The primary objective in all phases of life is protecting kidney function by minimizing bladder hostility and establishing a good capacity,…
Orthopedic Management of Spina Bifida
ERIC Educational Resources Information Center
Thomson, Jeffrey D.; Segal, Lee S.
2010-01-01
The management of orthopedic problems in spina bifida has seen a dramatic change over the past 10 years. The negative effects of spasticity, poor balance, and the tethered cord syndrome on ambulatory function are better appreciated. There is less emphasis on the hip radiograph and more emphasis on the function of the knee and the prevention of…
Spina Bifida, Meningomyelocele, and Meningocele.
Song, Rachel B; Glass, Eric N; Kent, Marc
2016-03-01
Spina bifida with or without meningocele or meningomyelocele is encountered infrequently in small animal practice. The English bulldog and Manx cat are breeds predisposed. Although often silent clinically, in those animals with clinical signs, it is important to recognize the signs early and to understand the appropriate imaging modalities employed in establishing a diagnosis. In a select population of affected animals, proposed surgical intervention may be considered to prevent neurologic decline, prevent secondary complications, and potentially improve outcomes. PMID:26725976
Spina Bifida and Folic Acid Awareness
ERIC Educational Resources Information Center
Exceptional Parent, 2007
2007-01-01
Spina bifida is the most common, permanently disabling birth defect in the United States. It is a birth defect that involves incomplete formation of the spine during the first month of pregnancy--often before a woman even knows she is pregnant. Everyday, an average of eight babies are born with spina bifida or a similar birth defect of the brain…
Educational Placement of Children with Spina Bifida.
ERIC Educational Resources Information Center
Lauder, Calvin E.; And Others
1979-01-01
Procedures of school placement for 38 children (ages 5 to 18 years) with spina bifida in 23 school districts in western New York State were studied 5 years after a mandated process was enacted. (Author)
Frequently Asked Questions about Spina Bifida
... Bifida . Q: Do you know what type of technology is available that condenses all of my child's ... is hope for Spina Bifida also as the technology becomes more advanced and widespread. The March of ...
Learning Among Children with Spina Bifida
... telling time and counting change. 8. Decision Making/Problem Solving People with Spina have trouble making decisions, which ... when the child appears to not improve their problem solving or decision- making, contact professionals. This information does ...
MATHEMATICAL DEVELOPMENT IN SPINA BIFIDA
English, Lianne H.; Barnes, Marcia A.; Taylor, Heather B.; Landry, Susan H.
2011-01-01
Spina bifida (SB) is a neural tube defect diagnosed before or at birth that is associated with a high incidence of math disability often without co-occurring difficulties in reading. SB provides an interesting population within which to examine the development of mathematical abilities and disability across the lifespan and in relation to the deficits in visual-spatial processing that are also associated with the disorder. An overview of math and its cognitive correlates in preschoolers, school-age children and adults with SB is presented including the findings from a longitudinal study linking early executive functions in infancy to the development of later preschool and school age math skills. These findings are discussed in relation to socio-historical perspectives on math education and implications for intervention and directions for further research are presented. PMID:19213013
Spina Bifida. Fact Sheet = Espina Bifida. Hojas Informativas Sobre Discapacidades.
ERIC Educational Resources Information Center
National Information Center for Children and Youth with Disabilities, Washington, DC.
This fact sheet offers definitions of the three types of spina bifida (spina bifida occulta, meningocele, and myelomeningocele), outlines their incidence, describes characteristics of individuals with spina bifida, and reviews educational implications. The fact sheet discusses the need for many children with myelomeningocele to learn to manage…
The handwriting of children with spina bifida.
Pearson, A M; Carr, J; Hallwell, M D
1988-12-01
As part of the Greater London Council (GLC) Spina Bifida Survey the handwriting of 131 11-year-olds with spina bifida and 56 controls was examined. The children copied the sentence "The dog sits in his box" in the course of an extensive battery of intelligence and attainment tests. Writing speed formed one scoring dimension and nine further categories were devised in collaboration with a handwriting consultant. All but one of these ten dimensions consistently discriminated between the spina bifida children and the controls, and between the spina bifida children divided according to such variables as IQ, school type, degree of disability, reading scores and presence or absence of a valve. In every case the differences were in the predicted direction, with the handwriting scores of the brighter, less damaged children, and those attending ordinary schools being higher. These findings are consistent with those obtained by other researchers and reflect an educational disadvantage in that the children with spina bifida had handwriting which was slow, with the letters being poorly formed and the words poorly spaced.
[Spina bifida and "psycho-socioaffective" adjustment].
de Tychey, C
1983-01-01
The author has undertaken a critical review of the publications centered on the psychosocio-affective adaptation of spina-bifida. He considered the construction of personality, the socialization, the relations with family, marital and sexual life and the future professional life. Researches and guidance strategies are suggested.
Neurosurgical Management of Spina Bifida: Research Issues
ERIC Educational Resources Information Center
Bowman, Robin M.; McLone, David G.
2010-01-01
The neurosurgical goal when treating children with spina bifida (predominantly myelomeningocele) is to maintain stable neurological functioning throughout the patient's life time. Unfortunately, few long-term outcome studies are available to help direct the neurosurgical care of a child born with myelomeningocele and often treatment relies more…
The Cognitive Phenotype of Spina Bifida Meningomyelocele
ERIC Educational Resources Information Center
Dennis, Maureen; Barnes, Marcia A.
2010-01-01
A cognitive phenotype is a product of both assets and deficits that specifies what individuals with spina bifida meningomyelocele (SBM) can and cannot do and why they can or cannot do it. In this article, we review the cognitive phenotype of SBM and describe the processing assets and deficits that cut within and across content domains, sensory…
Psychosocial and Family Functioning in Spina Bifida
ERIC Educational Resources Information Center
Holmbeck, Grayson N.; Devine, Katie A.
2010-01-01
A developmentally oriented bio-neuropsychosocial model is introduced to explain the variation in family functioning and psychosocial adjustment in youth and young adults with spina bifida (SB). Research on the family functioning and psychosocial adjustment of individuals with SB is reviewed. The findings of past research on families of youth with…
The Spina Bifida Child in the Classroom.
ERIC Educational Resources Information Center
Mattson, Beverly; And Others
Learning characteristics of children with spina bifida (lesions on the spinal cord) are reviewed in the text of a presentation with slides, and the effects of such factors as hospitalization experiences and the presence of hydrocephalus are considered. Characteristics related to intelligence, sensory integration, tactile responsiveness, tactile…
Depressive Symptoms in Adults with Spina Bifida
Dicianno, Brad E.; Kinback, Nicholas; Bellin, Melissa; Chaikind, Laurie; Buhari, Alhaji; Holmbeck, Grayson N.; Zabel, Andy; Donlan, Robert M.; Collins, Diane M.
2015-01-01
Purpose/Objective To examine the prevalence of depressive symptoms in adults with spina bifida and identify contributing factors for depressive symptomatology. Research Method/Design Retrospective Cohort Study. Data collection was conducted at a regional adult spina bifida clinic. A total of 190 charts from adult patients with spina bifida were included. The main outcome measures were the Beck Depression Inventory-II (BDI-II) and the mobility domain of the Craig Handicap Assessment Reporting Technique Short Form (CHART-SF). Results Of the 190 participants, 49 (25.8%) had BDI-II scores (14+) indicative of depressive symptomatology. Sixty-nine (36.3%) of all participants were on antidepressants for the purpose of treating depressive symptoms, and 31 (63.3%) of those with clinical symptoms of depression were on antidepressants. The total number of participants with a history of depressive symptoms may be as high as 45.7% if both participants with BDI-II scores 14+ and those with antidepressant use specifically for the purposes of depression treatment are combined. In this population, lower CHART-SF mobility score, expressing “emotional concerns” as a reason for the visit on an intake sheet, and use of antidepressant medications were significantly associated with depressive symptoms. Conclusions/Implications Depressive symptomatology appears to be common and undertreated in this cohort of adults with spina bifida, which may warrant screening for emotional concerns in routine clinic appointments. Significant depressive symptoms are associated with fewer hours out of bed and fewer days leaving the house. Additional research is needed to assess the impact of interventions directed towards mobility on depression and in the treatment of depression in this patient population. PMID:26147238
Unusually Stable Spinae from a Freshwater Chlorobium sp
Brooke, J. S.; Koval, S. F.; Beveridge, T. J.
1995-01-01
A green Chlorobium sp. with spinae, strain JSB1, was isolated from an enrichment culture previously obtained from Fayetteville Green Lake, N.Y. (J. S. Brooke, J. B. Thompson, T. J. Beveridge, and S. F. Koval, Arch. Microbiol. 157:319-322, 1992). Cells were gram-negative, nonmotile rods which contained bacteriochlorophyll c and chlorosomes. Spinae were best seen by transmission electron microscopy in thin sections of cells fixed in the presence of tannic acid. High-resolution scanning electron microscopy showed the spinae randomly distributed at the cell surface and at the junctions between cells. Spinae were physically sheared from cells and isolated from the culture supernatant by ultrafiltration. As observed by electron microscopy, spinae demonstrated unusual structural stability when exposed for 1 h at 37 deg C to chemical treatments such as hydrogen bond-breaking agents, detergents, metal-chelating agents, proteases, and organic solvents. They were stable for 1 h at 37 deg C over the pH range 2.3 to 9.9 and in 1 M HCl and 1 M NaOH. The structural integrity of the spinae was also maintained when spinae were subjected to harsher treatments of autoclaving in 2% (wt/vol) sodium dodecyl sulfate and exposure to dithiothreitol at pH 9 for 1 h at 100 deg C. Partially dissociated spinae were obtained after 5 h at 100 deg C in 1 M HCl and 1 M NaOH. In acid, the tubular spinae became amorphous structures, with no helical striations visible. In alkali, the spinae had dissociated into irregular aggregates of disks. Since both high temperature and extremes of pH were required to achieve partial dissociation of the spinae, the strength of the structure presumably comes from covalent bonding. PMID:16534897
Optimizing Health Care for Adults with Spina Bifida
ERIC Educational Resources Information Center
Webb, Thomas S.
2010-01-01
Survival into adulthood for individuals with spina bifida has significantly improved over the last 40 years with the majority of patients now living as adults. Despite this growing population of adult patients who have increased medical needs compared to the general population, including spina bifida (SB)-specific care, age-related secondary…
Optimizing Health Care for Children with Spina Bifida
ERIC Educational Resources Information Center
Liptak, Gregory S.; El Samra, Ahmad
2010-01-01
The health care needs of children with spina bifida are complex. They need specialists, generalists, and an integrated system to deliver this complex care and to align and inform all the providers. Most research in spina bifida has been focused on narrow medical outcomes; it has been noncollaborative, based on small samples of convenience, with no…
Symposium on Spina Bifida (Denver, Colorado, November, 1969).
ERIC Educational Resources Information Center
Colorado Univ., Denver. Medical Center.
The objectives of the symposium were to define the problems of the child with spina bifida and to present practical means of management, using a multi-disciplinary team approach. Eight papers defining the problem cover the epidemiology of spina bifida, pathophysiology, musculoskeletal defects, incontinence of bladder and bowel, problems of…
Psychological and Educational Studies with Spina Bifida Children. Final Report.
ERIC Educational Resources Information Center
Diller, Leonard; And Others
To measure school achievements in spina bifida children, to relate these measures to certain variables, to obtain information on educational problems, and to study facets of cognition and its changes with age, 77 spina bifida children and 53 amputees (all aged 5 to 15) were tested. Sixty non-disabled children were at times used for controls. The…
How Do Health Care Providers Diagnose Spina Bifida?
... examines blood in several ways to look for neural tube defects, such as spina bifida, and other ... 30/2012 Related A-Z Topics Birth Defects Neural Tube Defects (NTDs) NICHD News and Spotlights Boosting ...
Are There Disorders or Conditions Associated with Spina Bifida?
... lead to brain injury. Chiari II Malformation The brains of most children with open spina bifida are positioned abnormally. The lower part of the brain rests farther down than normal, partially in the ...
Surgery on Fetus Reduces Complications of Spina Bifida
... Spotlights Media Resources Interviews & Selected Staff Profiles Multimedia Video: Surgery on Fetus Reduces Complications of Spina Bifida ... opening in the spine. In a new Web video, study author Catherine Y. Spong, M.D., Chief ...
Ethics, justification and the prevention of spina bifida
Gagen, Wendy Jane; Bishop, Jeffrey P
2007-01-01
During the 1970s, prenatal screening technologies were in their infancy, but were being swiftly harnessed to uncover and prevent spina bifida. The historical rise of this screening process and prevention programme is analysed in this paper, and the role of ethical debates in key studies, editorials and letters reported in the Lancet, and other related texts and governmental documents between 1972 and 1983, is considered. The silence that surrounded rigorous ethical debate served to highlight where discussion lay—namely, within the justifications offered for the prevention of spina bifida, and the efficacy and benefits of screening. In other words, the ethical justification for screening and prevention of spina bifida, when the authors are not explicitly interested in ethics, is considered. These justifications held certain notions of disability as costly to society, with an imperative to screen and prevent spina bifida for the good of the society. PMID:17761816
Sexual health in adult men with spina bifida.
Bong, Gary W; Rovner, Eric S
2007-09-01
Medical and surgical advances in the treatment of spina bifida (SB) have resulted in increasing numbers of patients reaching adulthood. As such, issues related to sexual maturity are being investigated to offer optimal healthcare to men with spina bifida. This report constitutes a review of the current literature relating to adults with spina bifida and issues of sexuality, erectile dysfunction and fertility. In general, adult males with spina bifida have normal sexual desires and an interest in addressing these issues with healthcare providers. Sexual education and access to intimacy are delayed compared to the general population. 75% of men achieve erections, but maintaining erections is a problem and some may be merely reflexive in nature. The many of these men show marked improvement with sildenafil. In SB erectile dysfunction and infertility are related to the level of neurological lesion with the best performance status in those with sacral lesions and intact reflexes. Men with lesions higher than T10 are at risk for azoospermia. There is an increased risk of neural tube defects in the children of men with spina bifida, but the current incidence with modern folic acid therapy is unknown. As the number of males with spina bifida reaching sexual maturity increases, further investigation into sexuality, sex education, intimacy, and treatments for erectile dysfunction and infertility will be needed.
Disability and quality of life in spina bifida and hydrocephalus.
Cate, Ineke M Pit-ten; Kennedy, Colin; Stevenson, Jim
2002-05-01
This study examined the impact of severity and type of condition and family resources on quality of life in children with spina bifida and hydrocephalus. A national UK sample of children aged between 6 and 13 years with spina bifida (n=62), hydrocephalus (n=354), and spina bifida plus hydrocephalus (n=128) were identified via the register of the Association for Spina Bifida and Hydrocephalus (ASBAH). Parents completed standardized measures of Child Health Related Quality Of Life (CQOL), family needs survey (FNS), and caregiving self-efficacy scale (CSES) as well as questions on children's health and physical ability. Results showed there were no significant differences in the overall quality of life for the three disability conditions. The overall CQOL was over 1 SD lower for those with spina bifida and hydrocephalus than for children with other physical conditions. Sex and age were not related to overall CQOL. Specific aspects of CQOL differentiated the three groups. Children with spina bifida had poorer CQOL scores on self-care, continence, and mobility/activities whilst those with hydrocephalus had poorer scores on school activities, worries, sight, and communication. Severity of condition and family resources, i.e. CSES and FNS, predicted 32% of the variance in CQOL. Associations were also found between overall CQOL and problems discernible at birth as well as epilepsy. Other factors, including those related to shunts, were not significantly related to CQOL. It was concluded that hydrocephalus is just as great a threat to CQOL as spina bifida. Beyond the general effect of condition severity on CQOL, family resources (as measured by the CSES and FNS) represent an additional influence on CQOL.
Occupational therapy intervention guidelines for children and adolescents with spina bifida.
Watson, D
1991-01-01
Children and adolescents with spina bifida present with a number of characteristics that affect functional performance and developmental skills. The focus of this paper will be to share information about spina bifida and the overall approach to care within the Glenrose Rehabilitation Hospital Spina Bifida Clinic and, more specifically, the role of the occupational therapist.
Epilepsy in patients with spina bifida in the lumbosacral region.
Yoshida, Fumiaki; Morioka, Takato; Hashiguchi, Kimiaki; Kawamura, Tadao; Miyagi, Yasushi; Nagata, Shinji; Mihara, Futoshi; Ohshio, Mayu; Sasaki, Tomio
2006-10-01
This study aimed to assess the relevance of epilepsy and spina bifida in the lumbosacral region. We evaluated 75 patients with spina bifida admitted to the Kyushu University Hospital from 1980 to 2004. Patients were classified as having meningocele (MC, 4 cases), myelomeningocele (MMC, 6), myeloschisis (MS, 45), and lumbosacral lipoma (LL, 20). Nine cases had epileptic disorders, and all showed MS. Meticulous neuroradiological investigations revealed cerebral abnormalities such as polymicrogyria or hypogenesis of the corpus callosum in all epileptic cases. Locations of cerebral abnormalities topographically correlated with areas of interictal EEG abnormalities. Although all epileptic cases had ventriculoperitoneal (VP) shunt for hydrocephalus before the onset of epilepsy, interictal EEG abnormalities could not be explained by location of the VP shunt. In all LL patients, neither history of epilepsy nor cerebral abnormalities were noted on magnetic resonance imaging (MRI). Epileptogenesis in spina bifida patients seemed to correlate with coexisting cerebral abnormalities in MS patients rather than with the VP shunt. However, not all spina bifida patients associated with cerebral abnormalities had epilepsy, and not all cerebral abnormalities were epileptogenic, suggesting that epilepsy in spina bifida patients was multifactorial.
Osteoporosis in paediatric patients with spina bifida
Marreiros, Humberto Filipe; Loff, Clara; Calado, Eulalia
2012-01-01
The prevalence and morbidity associated with osteoporosis and fractures in patients with spina bifida (SB) highlight the importance of osteoporosis prevention and treatment in early childhood; however, the issue has received little attention. The method for the selection of appropriate patients for drug treatment has not been clarified. Objective To review the literature concerning fracture risks and low bone density in paediatric patients with SB. We looked for studies describing state-of-the-art treatments and for prevention of secondary osteoporosis. Methods Articles were identified through a search in the electronic database (PUBMED) supplemented with reviews of the reference lists of selected papers. The main outcome measures were incidence of fractures and risk factors for fracture, an association between bone mineral density (BMD) and occurrence of fracture, risk factors of low BMD, and effects of pharmacological and non-pharmacological treatments on BMD and on the incidence of fractures. We considered as a secondary outcome the occurrence of fractures in relation to the mechanism of injury. Results Results indicated that patients with SB are at increased risk for fractures and low BMD. Risk factors that may predispose patients to fractures include higher levels of neurological involvement, non-ambulatory status, physical inactivity, hypercalciuria, higher body fat levels, contractures, and a previous spontaneous fracture. Limitations were observed in the number and quality of studies concerning osteoporosis prevention and treatment in paediatric patients with SB. The safety and efficiency of drugs to treat osteoporosis in adults have not been evaluated satisfactorily in children with SB. PMID:22330186
Psychosocial and Family Functioning in Spina Bifida
Holmbeck, Grayson N.; Devine, Katie A.
2010-01-01
A developmentally-oriented bio-neuropsychosocial model is introduced to explain variation in family functioning and psychosocial adjustment in youth and young adults with spina bifida (SB). Research on the family functioning and psychosocial adjustment of individuals with SB is reviewed. The findings of past research on families of youth with SB support a resilience-disruption view of family functioning. That is, the presence of a child with SB disrupts normative family functioning, but many families adapt to such disruption and exhibit considerable resilience in the face of adversity. Parents of youth with SB, and particularly those from lower SES homes, are at-risk for psychosocial difficulties. Individuals with SB are at-risk for developing internalizing symptoms, attention problems, educational difficulties, social maladjustment, and delays in the development of independent functioning. Emerging adults are often delayed in achieving milestones related to this stage of development (e.g., vocational and educational achievements). Methodologically-sound, longitudinal, and theory-driven studies of family and psychosocial functioning are needed, as are randomized family-based intervention trials, to promote adaptive functioning and better psychosocial outcomes in families of individuals with SB. PMID:20419770
[Spina bifida aperta in a sheep lamb].
Gutzwiller, N; Hilbe, M; Kircher, P; Bleull, U
2015-01-01
The case report describes the symptoms and diagnostic methods of a spina bifida aperta in a new born lamb. The most relevant clinical findings were recumbency immediately after birth with normal consciousness and suckling reflexes, alterations of the skin and coat in the lumbosacral region as well as dysuria. The biochemical and haematological screening of the blood indicated no abnormalities. While the radiological examination of the spine showed no clear evidence of the cause of the clinical sings the ultrasound and computed tomography examination revealed an incomplete closure of the vertebral arch between the 4th lumbar and the 3rd sacral vertebrae. Additionally, a hernia with similar density to the spinal cord was present in the same region of the spine. Based on the findings the lamb was euthanized. The pathological examination confirmed the incomplete closure of the vertebral arch and moreover a myelomeningocele has been diagnosed. In the histopathological examination the white and grey matter were separated in the area of the macroscopic visible lesions. Due to non-specific clinical symptoms imagining diagnostics can be crucial to confirm the diagnosis of this rare syndrome.
ERIC Educational Resources Information Center
Interstate Research Associates, McLean, VA.
This fact sheet on spina bifida is offered in both English and Spanish. It provides definitions of the three types of spina bifida (spina bifida occulta, meningocele, and myelomeningocele). Incidence figures are given as are typical characteristics of children with spina bifida. Educational implications are briefly noted, including the need to…
Reaching for Independence: Counseling Implications for Youth with Spina Bifida
ERIC Educational Resources Information Center
Brislin, Dawn C.
2008-01-01
Spina bifida, a congenital physical disability, is indirectly associated with difficulties in scholastic achievement, social development, and self-determination. Environment can have an impact on psychosocial development and impede functioning academically, socially, and vocationally. Counselors must be aware of the societal atmosphere to identify…
Physical Education for Students with Spina Bifida: Mothers' Perspectives
ERIC Educational Resources Information Center
An, Jihoun; Goodwin, Donna L.
2007-01-01
This study described the meaning 7 mothers of children with spina bifida ascribed to their children's physical education, the mothers' roles in the schools, and the importance of the IEP in home and school communication. The stories of 4 mothers of elementary and 3 mothers of secondary aged children were gathered using the phenomenological methods…
Observations of a Father: My Son Has Spina Bifida.
ERIC Educational Resources Information Center
Remmel, Carl L.
1982-01-01
The author reviews his experiences as the father of a child with spina bifida, a congenital problem in which the spine is not completely enclosed. He recounts his feelings upon first finding out about the condition and his son's subsequent surgeries and crises. (CL)
Children with Spina Bifida: Why Do They Fail in School?
ERIC Educational Resources Information Center
Eisert, Debra C.; Shelburne, Kathryn
Thirty-eight children with spina bifida, a congenital defect involving the nervous system, were tested for verbal and performance ability and freedom from distractibility on the Wechsler Intelligence Scale for Children-Revised. Achievement on the Wide Range Achievement Test was also measured, and medical and socioeconomic information obtained.…
Joó, József Gábor; Csaba, Ákos; Szigeti, Zsanett; Rigó, János
2013-07-01
Cases of spina bifida alone and in association with ventriculomegaly represent important but different malformations according to clinical characteristics. In our study, we analyzed the data on pregancies terminated because of isolated cases (n=307) and ventriculomegaly-associated cases (n=372) of spina bifida. In spina bifida cases in association with hydrocephalus, positive obstetric history was found approximately 1.5 times more frequently than in the isolated ones. The incidence of positive genetic history was nearly two-fold in the latter cases. In isolated cases of spina bifida, associated malformations were more common than in cases of spina bifida and ventriculomegaly together. The most frequent associated malformations were those of the urogenital system (in cases of spina bifida: 11.1%; in cases of SB+V: 9.14%). The risk of recurrence of SB+V is significantly higher than that of isolated SB (8.9% vs. 2.1%). It can be concluded that positive genetic history is more common in cases of isolated spina bifida. Malformations out of the nervous system are more commonly observed in cases of isolated spina bifida. During the prenatal diagnostics of spina bifida, sonography must focus on malformations of the urogenital system.
Increased incidence of spina bifida occulta in fluorosis prone areas.
Gupta, S K; Gupta, R C; Seth, A K; Chaturvedi, C S
1995-08-01
Spina bifida, a congenital deformity of the posterior wall of vertebrae of the spine, is a midline defect of skin, vertebral arches and neural tube, usually in the lumbosacral region. Its incidence is reported to be 0.2 to 0.4 per 1000 live births. Various hypotheses have been put forward as etiological factors for spina bifida including consumption of potato affected by blight and hardness of drinking water but these have not been proven. Two groups of 50 randomly chosen children were established. The study group consisted of children aged 5 to 12 years, weighing 15 to 30 kg, consuming fluoride rich drinking water (4.5 and 8.5 ppm fluoride; WHO permissible limit is 1.5 ppm fluoride), and manifesting either clinical, dental and/or skeletal fluorosis. The control group consisted of age and weight-matched children, consuming less than or equal to 1.5 ppm fluoride in drinking water and not showing any evidence of fluoride toxicity. These children were evaluated for antenatal history, general clinical examination (especially for dimples, tufts of hair, haemangioma on skin throughout the length of spine), other congenital abnormalities, evidence of fluoride toxicity, biochemical estimation for fluoride levels in blood and serum and by skiagrams of the spine to examine for the presence of spina bifida occulta. A total of 22 (44%) of the 50 children in group A, the study group, and 6 (12%) of the 50 children in group B, the control group, revealed spina bifida occulta in the lumbosacral region.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7572153
[Assessment of life quality in children with spina bifida].
Król, Marianna; Sibiński, Marcin; Stefański, Maciej; Synder, Marek
2011-01-01
The aim of the study was identification and assessment of factors influencing quality of life in children with spina bifida. There were 33 children in the study (19 girls and 14 boys) in the age from 5 to 20 years. They were divided into 2 groups: first in the age from 5 to 12 years (17 patients) and second in the age from 13 to 20 years (16 patients). The Health-related Quality of Life in Spina Bifida Questionnaire and questionnaire done by us were used for the study. Younger children had average score of 158 points and older children average 186 points. In the whole group 64% of children assessed they quality of life as good, 30% as very good, 6% as average. None of our patients think that they quality of life is poor or very poor. Presence of visual perception difficulties in younger group and non-ambulation in alder children is related to poorer assessment of quality of life. Alder children that live in a house had better assessment of quality of life than children living in blocks of flats. Vast majority of children with spina bifida have good specialist medical care. Most common concomitant diseases are hydrocephalus and neurogenic urinary bladder.
Code of Federal Regulations, 2010 CFR
2010-07-01
... program for certain children of Vietnam veterans-spina bifida and covered birth defects. 21.8012 Section...-Spina Bifida and Covered Birth Defects General § 21.8012 Vocational training program for certain children of Vietnam veterans—spina bifida and covered birth defects. VA will provide an evaluation to...
Changes in Medical Practice towards the Child with Spina Bifida: Implications for Schools.
ERIC Educational Resources Information Center
Tew, Brian
1987-01-01
The improved surgical management of children with spina bifida is among the reasons for a decreased number of severely physically and/or mentally affected children. Such improvements have resulted in more spina bifida children attending British ordinary schools and fewer attending special schools. (Author/DB)
Impact of Spina Bifida on Parental Caregivers: Findings from a Survey of Arkansas Families
ERIC Educational Resources Information Center
Grosse, Scott D.; Flores, Alina L.; Ouyang, Lijing; Robbins, James M.; Tilford, John M.
2009-01-01
The well-being of caregivers of children with spina bifida and other conditions is an important topic. We interviewed the primary caregivers of 98 children aged 0-17 years with spina bifida sampled from a population-based birth defects registry in Arkansas and the caregivers of 49 unaffected children. Measures of caregiver well-being were compared…
ERIC Educational Resources Information Center
Anderson, Elizabeth M.; Plewis, Ian
1977-01-01
Twenty 7-10 year old children with spina bifida cystica and hydrocephalus and 20 normals matched for age, sex and IQ were compared on a 12-trial target task, first used by Connolly, Brown & Bassett (1968). Findings are discussed in relation to neurological abnormalities in the spina bifida group. (Editor/RK)
Work Participation among Young Adults with Spina Bifida in the Netherlands
ERIC Educational Resources Information Center
Van Mechelen, M. C.; Verhoef, M.; Van Asbeck, F. W. A.; Post, M. W. M.
2008-01-01
The aim of this study was to: (1) assess work participation among young adults with spina bifida, (2) identify problems perceived in finding employment, and (3) examine which determinants are related to work participation. This cross-sectional study was a follow-up study to the Adolescents with SPina bifida In the Netherlands (ASPINE) study. Data…
ERIC Educational Resources Information Center
Bannink, Femke; Stroeken, Koenraad; Idro, Richard; van Hove, Geert
2015-01-01
This article describes the findings of a qualitative study on knowledge, beliefs, attitudes, and practices towards children with spina bifida and hydrocephalus in four regions of Uganda. Focus group discussions and semi-structured interviews were held with parents of children with spina bifida and hydrocephalus, policy-makers, and service…
Laparoscopic Mitrofanoff continent catheterisable stoma in children with spina bifida
Reddy, Mallikarjun N.; Nerli, Rajendra B.; Patil, Ranjeet A.; Jali, Sujata M.
2015-01-01
Background: In 1980, Mitrofanoff described the creation of an appendicovesicostomy for continent urinary diversion. This procedure greatly facilitates clean intermittent catheterisation in patients with neurogenic bladder. The purpose of our study was to determine the clinical efficacy of the laparoscopic Mitrofanoff catheterisable stoma for children and adolescents with spina bifida. Materials and Methods: Review of hospital records revealed that 11 children with spina bifida underwent a laparoscopic Mitrofanoff procedure with at least 1-year of follow-up. A four-port transperitoneal laparoscopic approach was used to create a Mitrofanoff appendicovesicostomy. The child was followed-up in the urology clinic at 6 weeks, 3 months, 6 months, 1-year, and then semiannually after that. Questionnaires were administered to determine, from the children's perspective, the level of satisfaction with catheterisation and the psychosocial implications of catheterisation before and after the creation of the Mitrofanoff continent catheterisable stoma. Results: Of the 11 children, six were female, and five were male. The mean age at presentation to Paediatric urological services was 11 ± 3.22 years. Overall the mean operative time was 144.09 ± 17.00 min. Mean estimated blood loss was 37.36 ± 11.44 cc. None of the cases needed conversion to open. Patient satisfaction with their catheterisation was measured at 2.18 ± 0.98 preoperatively, Post-operatively, this improved to 4.27 ± 0.46. Statistical analysis using paired t-test showed significance with P < 001. Conclusions: Laparoscopic Mitrofanoff catheterisable stoma is feasible in children with spina bifida and is associated with reasonable outcome with early recovery, resumption of normal activities and excellent cosmesis. PMID:26168751
Quality of life for families with spina bifida in Kenya.
van't Veer, Toos; Meester, Hanneke; Poenaru, Dan; Kogei, Agnes; Augenstein, Kimberly; Bransford, Richard
2008-07-01
Spina bifida (SB) affects children worldwide. Studies from developed nations have explored the impact of SB on the quality of life of children and their parents. However, there are no such studies available from developing countries. We have therefore undertaken to document the impact of the disability on the families of affected children in Kenya. A questionnaire was administered to 40 mothers and their children, who were receiving treatment for SB at our institution. The results of this study should indicate where community and governmental resources and educational efforts for the disabled should be directed.
[Infantile spondylolysis with spina bifida occulta in athletes].
Kälicke, T; Frangen, T M; Seybold, D; Steuer, K; Arens, S
2004-12-01
Children with evidenced spondylolysis of the lumbar spine should not practice sport with axial compression strain forces or carry out hyperextensional or rotational movements exercises up to the age of eight to ten years, as this could lead to considerable shearing strain to the still cartilaginous disposition of the vertebral arch and therefore initiate an ossification with resulting incomplete closure of the bony elements of the spine (spina bifida occulta). The associated instability of the dorsal vertebral column may yield spondylolisthesis requiring surgical intervention. Competitive sport should be avoided if possible, or carried out in close collaboration with a coach and a physiotherapist under continuous medical supervision with regular radiological monitoring. PMID:15592984
Sacral fatigue fractures in children with sacral spina bifida occulta
Hama, Shingo; Sakai, Toshinori; Higashino, Kosaku; Abe, Mitsunobu; Nagamachi, Akihiro; Sairyo, Koichi
2016-01-01
In this report, we present two cases of 9-year-old children with spina bifida occulta (SBO) of the sacrum, who were diagnosed with sacral fatigue fractures. In both patients, MRI showed a linear signal void and high signal in sacral ala on the short tau inversion recovery sequence. Sacral SBO at the same level of the sacral fracture was observed in each patient on computed tomography images. These lesions healed with rest. This is the first literature reporting cases with sacral stress fractures who had SBO at the same level of fracture. PMID:26196371
From Traditional Usage to Pharmacological Evidence: A Systematic Mini-Review of Spina Gleditsiae
Yang, Xiao; Yin, Weiping
2016-01-01
Spina Gleditsiae is an important herb with various medicinal properties in traditional and folk medicinal systems of East Asian countries. In China through the centuries, it has been traditionally used as a source of drugs for anticancer, detoxication, detumescence, apocenosis, and antiparasites effects. Recently, an increasing number of studies have been reported regarding its chemical constituents and pharmacological activities. To further evidence the traditional use, phytochemicals, and pharmacological mechanisms of this herb, a systematic literature review was performed herein for Spina Gleditsiae. The review approach consisted of searching several web-based scientific databases including PubMed, Web of Science, and Elsevier using the keywords “Spina Gleditsiae”, “Zao Jiao Ci”, and “Gleditsia sinensis”. Based on the proposed criteria, 17 articles were evaluated in detail. According to the reviewed data, it is quite evident that Spina Gleditsiae contains a number of bioactive phytochemical components, which account for variety medicinal values including anticancer, anti-inflammatory, antiatherogenic, antimicrobial, antiallergic, and antivirus activities. The phytochemical and pharmacological studies reviewed herein strongly underpin a fundamental understanding of herbal Spina Gleditsiae and support its ongoing clinical uses in China. The further phytochemical evaluation, safety verification, and clinical trials are expected to progress Spina Gleditsiae-based development to finally transform the traditional TCM herb Spina Gleditsiae to the valuable authorized drug. PMID:27433183
From Traditional Usage to Pharmacological Evidence: A Systematic Mini-Review of Spina Gleditsiae.
Gao, Jiayu; Yang, Xiao; Yin, Weiping
2016-01-01
Spina Gleditsiae is an important herb with various medicinal properties in traditional and folk medicinal systems of East Asian countries. In China through the centuries, it has been traditionally used as a source of drugs for anticancer, detoxication, detumescence, apocenosis, and antiparasites effects. Recently, an increasing number of studies have been reported regarding its chemical constituents and pharmacological activities. To further evidence the traditional use, phytochemicals, and pharmacological mechanisms of this herb, a systematic literature review was performed herein for Spina Gleditsiae. The review approach consisted of searching several web-based scientific databases including PubMed, Web of Science, and Elsevier using the keywords "Spina Gleditsiae", "Zao Jiao Ci", and "Gleditsia sinensis". Based on the proposed criteria, 17 articles were evaluated in detail. According to the reviewed data, it is quite evident that Spina Gleditsiae contains a number of bioactive phytochemical components, which account for variety medicinal values including anticancer, anti-inflammatory, antiatherogenic, antimicrobial, antiallergic, and antivirus activities. The phytochemical and pharmacological studies reviewed herein strongly underpin a fundamental understanding of herbal Spina Gleditsiae and support its ongoing clinical uses in China. The further phytochemical evaluation, safety verification, and clinical trials are expected to progress Spina Gleditsiae-based development to finally transform the traditional TCM herb Spina Gleditsiae to the valuable authorized drug. PMID:27433183
Bernadac, A.; Wu, L.-F.; Santini, C.-L.; Vidaud, C.; Sturgis, J. N.; Menguy, N.; Bergam, P.; Nicoletti, C.; Xiao, T.
2012-01-01
Spinae are tubular surface appendages broadly found in Gram-negative bacteria. Little is known about their architecture, function or origin. Here, we report structural characterization of the spinae from marine bacteria Roseobacter sp. YSCB. Electron cryo-tomography revealed that a single filament winds into a hollow flared base with progressive change to a cylinder. Proteinase K unwound the spinae into proteolysis-resistant filaments. Thermal treatment ripped the spinae into ribbons that were melted with prolonged heating. Circular dichroism spectroscopy revealed a dominant beta-structure of the spinae. Differential scanning calorimetry analyses showed three endothermic transformations at 50–85°C, 98°C and 123°C, respectively. The heating almost completely disintegrated the spinae, abolished the 98°C transition and destroyed the beta-structure. Infrared spectroscopy identified the amide I spectrum maximum at a position similar to that of amyloid fibrils. Therefore, the spinae distinguish from other bacterial appendages, e.g. flagella and stalks, in both the structure and mechanism of assembly. PMID:23230515
Factors Associated With Pressure Ulcers in Individuals With Spina Bifida
Kim, Sunkyung; Ward, Elisabeth; Dicianno, Brad E.; Clayton, Gerald H.; Sawin, Kathleen J.; Beierwaltes, Patricia; Thibadeau, Judy
2015-01-01
Objective To describe factors associated with pressure ulcers in individuals with spina bifida (SB) enrolled in the National Spina Bifida Patient Registry (NSBPR). Design Unbalanced longitudinal multicenter cohort study. Setting Nineteen SB clinics. Participants Individuals with SB (N=3153) enrolled in 19 clinic sites that participate in the NSBPR. Interventions Not applicable. Main Outcome Measures Pressure ulcer status (yes/no) at the annual visit between 2009 and 2012. Results Of 3153 total participants, 19% (n=603) reported ulcers at their most recent annual clinic visit. Seven factors–level of lesion, wheelchair use, urinary incontinence, shunt presence, above the knee orthopedic surgery, recent surgery, and male sex–were significantly associated with the presence of pressure ulcers. Of these factors, level of lesion, urinary incontinence, recent surgery, and male sex were included in the final logistic regression model. The 3 adjusting variables–SB type, SB clinic, and age group–were significant in all analyses (all P<.001). Conclusions By adjusting for SB type, SB clinic, and age group, we found that 7 factors–level of lesion, wheelchair use, urinary incontinence, shunt presence, above the knee orthopedic surgery, recent surgery, and male sex–were associated with pressure ulcers. Identifying key factors associated with the onset of pressure ulcers can be incorporated into clinical practice in ways that prevent and enhance treatment of pressure ulcers in the population with SB. PMID:25796136
A Camp-based Intervention Targeting Independence Among Individuals with Spina Bifida
O’Mahar, Kerry; Jandasek, Barbara; Zukerman, Jill
2010-01-01
Objective To design and evaluate a camp-based intervention, the goal of which was to increase independence among children, adolescents, and adults with spina bifida. Methods An intervention targeting independence was embedded within a typical week long camp experience. The intervention consisted of the following: collaborative (i.e., parent and camper) goal identification, group sessions consisting of psycho-education and cognitive tools, and goal monitoring by camp counselors. Camper and parent report of demographic variables, goal attainment, spina bifida knowledge, and independence were gathered. Interventionist report of adherence to the treatment manual was also collected. Results Campers made significant gains in individual goals, management of spina bifida responsibilities, and independence with general spina bifida tasks, with medium effect sizes observed in goal attainment. Conclusions Results indicated that significant progress was made on individually oriented goals from pre- to post-camp. Design issues are discussed. PMID:20026569
The Infant and Young Child with Spina Bifida: Major Medical Concerns.
ERIC Educational Resources Information Center
Shaer, Catherine M.
1997-01-01
This review of medical concerns in dealing with spina bifida examines neurologic and neurosurgical issues, learning issues, urological dysfunction, orthopedic issues, bowel control, latex allergy, and prenatal diagnosis and prevention. (JDD)
ERIC Educational Resources Information Center
Culatta, Barbara
1978-01-01
Three spina bifida children (mean age 66 months) were studied to illustrate the comprehension deficit and to demonstrate how evaluations can be structured. Available from Eterna Press, P.O. Box 19, Bolingbrook, Illinois 60439. (Author/PHR)
Marital stability following the birth of a child with spina bifida.
Tew, B J; Laurence, K M; Payne, H; Rawnsley, K
1977-07-01
The matrimonial stability of 142 families where a child with neural tube malformation (mostly spina bifida) was born between 1964 and 1966, including 56 families with a surviving spina bifida child, was examined in January 1976. The divorce rate for families with a surviving child was found to be nine times higher than that for the local population and three times higher than for families experiencing bereavement of their spina bifida child. Marriages which followed a pre-nuptial conception resulting in a spina bifida child were particularly vulnerable and had a divorce or separation risk of 50 per cent. All the divorced fathers had remarried, but only one of the mothers. It is concluded that a handicapped child adds greatly to the strain on a marriage, especially when this has not been cemented before the arrival of a child. This strain is diminished by the child's early death.
Results of selective treatment of spina bifida cystica.
Lorber, J; Salfield, S A
1981-01-01
The results of selective treatment in 120 infants with open spina bifida, admitted between May 1971 and December 1976, were prospectively studied. Seventy-one infants had adverse criteria at birth and were not treated. They all died, more than 90% of them within 6 months of birth. Seven had meningocele. All were treated and survived without handicap. Forty-two infants with myelomeningocele were actively treated. Thirty-six survive at follow-up after 3 to 9 years. The quality of survival is much better than when selection was not used but 8 children have moderate or severe handicaps. The parents were fully informed and consulted at every decision-making step; they fully supported the principle of selection and the action taken on behalf of their own child. PMID:6458248
Treatment of the neurogenic bladder in spina bifida
de Jong, Tom P. V. M.; Chrzan, Rafal; Klijn, Aart J.
2008-01-01
Renal damage and renal failure are among the most severe complications of spina bifida. Over the past decades, a comprehensive treatment strategy has been applied that results in minimal renal scaring. In addition, the majority of patients can be dry for urine by the time they go to primary school. To obtain such results, it is mandatory to treat detrusor overactivity from birth onward, as upper urinary tract changes predominantly start in the first months of life. This means that new patients with spina bifida should be treated from birth by clean intermittent catheterization and pharmacological suppression of detrusor overactivity. Urinary tract infections, when present, need aggressive treatment, and in many patients, permanent prophylaxis is indicated. Later in life, therapy can be tailored to urodynamic findings. Children with paralyzed pelvic floor and hence urinary incontinence are routinely offered surgery around the age of 5 years to become dry. Rectus abdominis sling suspension of the bladder neck is the first-choice procedure, with good to excellent results in both male and female patients. In children with detrusor hyperactivity, detrusorectomy can be performed as an alternative for ileocystoplasty provided there is adequate bladder capacity. Wheelchair-bound patients can manage their bladder more easily with a continent catheterizable stoma on top of the bladder. This stoma provides them extra privacy and diminishes parental burden. Bowel management is done by retrograde or antegrade enema therapy. Concerning sexuality, special attention is needed to address expectations of adolescent patients. Sensibility of the glans penis can be restored by surgery in the majority of patients. Electronic supplementary material The online version of this article (doi:10.1007/s00467-008-0780-7) contains supplementary material, which is available to authorized users. PMID:18350321
Work participation among young adults with spina bifida in the Netherlands.
van Mechelen, M C; Verhoef, M; van Asbeck, F W A; Post, M W M
2008-10-01
The aim of this study was to: (1) assess work participation among young adults with spina bifida, (2) identify problems perceived in finding employment, and (3) examine which determinants are related to work participation. This cross-sectional study was a follow-up study to the Adolescents with SPina bifida In the Netherlands (ASPINE) study. Data regarding work participation and problems finding employment were collected with questionnaire developed by the authors. Data on disease characteristics were taken from the ASPINE database. Responses of 136 participants were analyzed (77 females, 59 males; mean age 26 years 1 month [SD 3y1mo], range 21-32y). Twenty participants had spina bifida occulta and 116 had spina bifida aperta, 96 of whom also had hydrocephalus. Work participation rate was 62.5%, of which 22.4% was in a sheltered workplace. Significant determinants of having paid work for at least 1 hour a week were: level of education, level of lesion, hydrocephalus, IQ, functional independence, and ambulation. Significant determinants of full-time employment were the same, plus sex and type of spina bifida. In a multivariate backward logistic regression analysis, however, only level of education remained a significant predictor of work participation. Sex, level of education, and self-care independence were significant predictors of full-time employment. This study shows the importance of educational support and self-care independence training for children with spina bifida. PMID:18699861
ERIC Educational Resources Information Center
National Information Center for Children and Youth with Disabilities, Washington, DC.
This fact sheet offers definitions of the three types of spina bifida, outlines their incidence, describes characteristics of individuals with spina bifida, and reviews educational implications. The fact sheet emphasizes that school programs should be flexible to accommodate these students' special needs and frequent absences, that children with…
Rare LRP6 variants identified in spina bifida patients.
Lei, Yunping; Fathe, Kristin; McCartney, Danielle; Zhu, Huiping; Yang, Wei; Ross, M Elizabeth; Shaw, Gary M; Finnell, Richard H
2015-03-01
Several single-nucleotide variants (SNVs) in low-density lipoprotein receptor-related protein 6 (Lrp6) cause neural tube defects (NTDs) in mice. We therefore examined LRP6 in 192 unrelated infants from California with the NTD, spina bifida, and found four heterozygous missense SNVs, three of which were predicted to be deleterious, among NTD cases and not in 190 ethnically matched nonmalformed controls. Parents and siblings could not be tested because of the study design. Like Crooked tail and Ringleschwanz mouse variants, the p.Tyr544Cys Lrp6 protein failed to bind the chaperone protein mesoderm development and impaired Lrp6 subcellular localization to the plasma membrane of MDCK II cells. Only the p.Tyr544Cys Lrp6 variant downregulated canonical Wnt signaling in a TopFlash luciferase reporter in vitro assay. In contrast, three Lrp6 mutants (p.Ala3Val, p.Tyr544Cys, and p.Arg1574Leu) increased noncanonical Wnt/planar cell polarity (PCP) signaling in an Ap1-luciferase assay. Thus, LRP6 variants outside of YWTD repeats could potentially predispose embryos to NTDs, whereas Lrp6 modulation of Wnt/PCP signaling would be more essential than its canonical pathway role in neural tube closure.
Continence in patients with spina bifida: long term results.
Malone, P S; Wheeler, R A; Williams, J E
1994-01-01
One hundred and forty four questionnaires relating to bladder and bowel control were sent to a random selection of patients with spina bifida throughout the United Kingdom. One hundred and seventeen questionnaires were returned, of which 109 were usable. Twenty eight out of 109 responders had undergone some form of urinary diversion, of whom 20 (71%) were reliably dry. The remaining 81 responders emptied their bladders by a variety of techniques including normal voiding, straining, expression, clean intermittent catheterisation, indwelling catheters, or they dribbled urine continuously. Only 31 (38%) of this group were reliably dry. Ninety four of 109 (86%) responders regularly sat on the toilet to evacuate their bowels and most used some aid such as manual evacuation, laxatives, suppositories, or enemas. Fifty five of 104 (53%) responders soiled regularly, 31 (56%) of whom were also wet. Forty seven per cent of dry patients (24/51) were faecally incontinent. Only 25 of 104 (24%) patients responding to all questions were reliably clean and dry. PMID:8129429
Chiropractic Care of Acute Low Back Pain and Incidental Spina Bifida Occulta: A Case Report
Cofano, Gregory P.; Anderson, Benjamin C.; Stumpff, Eric R.
2014-01-01
Objective The purpose of this case report is to describe chiropractic care of an adolescent with acute low back pain and incidental finding of spina bifida occulta managed with high-velocity low-amplitude manipulation. Clinical Features A 10-year-old boy was referred for chiropractic care by his pediatrician for the management of low back pain after a fall 3 days prior. Examination and medical records revealed the patient also had spina bifida occulta at the level of L5. Intervention and Outcome High-velocity low-amplitude treatment for lower back pain showed resolution of patient's pain after 6 visits. No adverse effects were reported. Conclusion An adolescent patient with lower back pain and incidental finding of spina bifida occulta improved with a course of care that included with high-velocity low-amplitude manipulation therapy. PMID:25435841
Proteomic analysis of amniotic fluid of pregnant rats with spina bifida aperta.
Shan, Liping; Fan, Yang; Li, Hui; Liu, Wei; Gu, Hui; Zhou, Fenghua; Yuan, Zhengwei
2012-02-01
Congenital spina bifida aperta is a common congenital malformation in children and has an incidence of 1‰ to 5‰ in China. However, we currently lack specific biomarkers for screening or prenatal diagnosis and there is no method to entirely cure or prevent such defects. In this study, we used two-dimensional gel electrophoresis (2-DE)/mass spectrometry (MS) to characterize differentially expressed proteins in amniotic-fluid samples (AFSs) of embryonic day (E) 17.5 rat fetuses with spina bifida aperta induced by retinoic acid (RA). We identified five proteins differentially expressed in AFSs of spina bifida aperta, including three upregulated proteins (transferrin, alpha-1 antiproteinase and signal recognition particle receptor, B subunit [SRPRB] 55 kDa), two downregulated proteins (apolipoprotein A IV [APO A4] and Srprb 77 kDa). Specifically, we found 11 alpha-1 fetoprotein (AFP) fragments that were downregulated and 35 AFP fragments that were upregulated in AFSs from embryos with spina bifida aperta. Of the downregulated AFP fragments, 72.7% (8/11) were confined to the AFP N-terminus (amino acids [aas] 25-440) and 77.1% (27/35) of upregulated AFP fragments were confined to the AFP C-terminus (aas 340-596). We also confirmed APO A4 and AFP by immunoblot analysis. This is the first comparative proteomic study of AFSs from rat fetuses with spina bifida aperta. We demonstrate proteomic alterations in the AFS of spina bifida aperta, which may provide new insights in neural tube defects and contribute to the prenatal screening.
Preliminary study of novel, timed walking tests for children with spina bifida or cerebral palsy
Kane, Kyra J; Lanovaz, Joel; Bisaro, Derek; Oates, Alison; Musselman, Kristin E
2016-01-01
Objective: Walking assessment is an important aspect of rehabilitation practice; yet, clinicians have few psychometrically sound options for evaluating walking in highly ambulatory children. The purpose of this study was to evaluate the validity and reliability of two new measures of walking function—the Obstacles and Curb tests—relative to the 10-Meter Walk test and Timed Up and Go test in children with spina bifida or cerebral palsy. Methods: A total of 16 ambulatory children with spina bifida (n=9) or cerebral palsy (n=7) (9 boys; mean age 7years, 7months; standard deviation 3years, 4months) and 16 age- and gender-matched typically developing children participated. Children completed the walking tests, at both self-selected and fast speeds, twice. To evaluate discriminative validity, scores were compared between typically developing and spina bifida/cerebral palsy groups. Within the spina bifida/cerebral palsy group, inter-test correlations evaluated convergent validity and intraclass correlation coefficients evaluated within-session test–retest reliability. Results: At fast speeds, all tests showed discriminative validity (p<0.006 for typically developing and spina bifida/cerebral palsy comparisons) and convergent validity (rho=0.81–0.90, p⩽0.001, for inter-test correlations). At self-selected speeds, only the Obstacles test discriminated between groups (p=0.001). Moderately strong correlations (rho=0.73–0.78, p⩽0.001) were seen between the 10-Meter Walk test, Curb test, and Timed Up and Go test. Intraclass correlation coefficients ranged from 0.81 to 0.97, with higher test–retest reliability for tests performed at fast speeds rather than self-selected speeds. Conclusion: The Obstacles and Curb tests are promising measures for assessing walking in this population. Performing tests at fast walking speeds may improve their validity and test–retest reliability for children with spina bifida/cerebral palsy. PMID:27493754
Prevention of spina bifida: folic acid intake during pregnancy in Gulu district, northern Uganda
Bannink, Femke; Larok, Rita; Kirabira, Peter; Bauwens, Lieven; van Hove, Geert
2015-01-01
Introduction The intake of folic acid before conception and during the first trimester of pregnancy can prevent spina bifida. This paper describes folic acid intake in women in Gulu district in northern Uganda. Methods Structured interviews were held with 394 women attending antenatal care (ANC), 15 mothers of children with spina bifida, and 35 health workers in 2012 and 2013. SPSS16 was used for data analysis. Results 1/4 mothers of children with spina bifida took folic acid during late pregnancy, none preconception. None had knowledge about folic acid and spina bifida prevention. 33.5% of women attending ANC had ever heard about spina bifida, 1% knew folic acid intake can prevent spina bifida. 42.4% took folic acid supplements in late pregnancy, 8.1% during the first trimester, none preconception. All women said to have eaten food rich in folic acid. None were aware about fortified foods. 7% of health workers understood the importance of early folic acid intake. All health workers recommended folic acid intake to women attending ANC. 20% of the health workers and 25% of the women said folic acid supplements are not always available. Conclusion Folic acid intake is limited in northern Uganda. This is attributed to limited education and understanding of women and health workers about the importance of early folic acid intake, late presentation of women at ANC, poor supply chain and dilapidated health services caused by war and poverty. A combination of food fortification, sensitization of health workers, women, and improving folic acid supply is recommended. PMID:26090048
Altered microRNA expression profiles in a rat model of spina bifida
Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-liang; Chen, Xin-rang; Yang, He-ying; Fan, Ying-zhong; Wang, Jia-xiang
2016-01-01
MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493
Quality of life in spina bifida: importance of parental hope
Kirpalani, H.; Parkin, P.; Willan, A.; Fehlings, D.; Rosenbaum, P.; King, D; Van Nie, A. J
2000-01-01
BACKGROUND AND AIMS—Prognosis in spina bifida (SB) is often based only on neurological deficits present at birth. We hypothesised that both parental hope and the neurophysical examination predict quality of life in children and adolescents with SB. METHODS—A previously validated disease and age specific health related quality of life (HRQL) instrument was posted to families of children (aged 5-12 years) and adolescents (aged 13-20 years) with SB. We measured parental hope, determined the child's current physical function, and obtained retrospective data on the neonatal neurophysical examination (NPE). Regression analysis modelled HRQL firstly as a dependent variable on parental hope and NPE ("birth status"); and secondly on parental hope and current physical function ("current function"). RESULTS—Response rates were 71% (137 of 194) for families of children, and 54% (74 of 138) for families of adolescents. NPE data were available for 121 children and 60 adolescents. In children, the birth status model predicted 26% of the variability (R2 hope 21%) compared with 23% of the variability (R2 hope 23%)in the adolescents. The current function model explained 47% of the variability (R2 hope 19%) in children compared with 31% of the variability (R2 hope 24%) in the adolescents. CONCLUSIONS—In both age groups, parental hope was more strongly associated with the HRQL than neonatal or current physical deficits. A prospective study is required to determine whether a causal relation exists between parental hope and HRQL of children and adolescents with SB. PMID:10999858
Tephrostratigraphy of the last 170 ka in sedimentary successions from the Adriatic Sea
NASA Astrophysics Data System (ADS)
Calanchi, Natale; Dinelli, Enrico
2008-10-01
In this study are discussed new SEM-EDS analyses performed on glass shards from five cores collected in the Central Adriatic Sea and two cores recovered from the South Adriatic Sea. A total of 26 tephra layers have been characterized and compared with the geochemical features of terrestrial deposits and other tephra archives in the area (South Adriatic Sea and Lago Grande di Monticchio, Vulture volcano). The compositions are compatible with either a Campanian or a Roman provenance. The cores, located on the Central Adriatic inner and outer shelf, recorded tephra referred to explosive events described in the literature: AP3 (sub-Plinian activity of the Somma-Vesuvius, 2710 ± 60 14C years BP); Avellino eruption (Somma-Vesuvius, 3548 ± 129 14C years BP); Agnano Monte Spina (Phlegrean Fields, 4100 ± 400 years BP); Mercato eruption (Somma-Vesuvius, 8010 ± 35 14C years BP; Agnano Pomici Principali eruption (Phlegrean Fields, 10,320 ± 50 14C years BP); Neapolitan Yellow Tuff (Phlegrean Fields, 12,100 ± 170 14C years BP). Some of these layers were also observed in the South Adriatic core IN68-9 in addition to younger ( AP2, sub-Plinian eruption, Somma-Vesuvius, 3225 ± 140 14C years BP), and older layers ( Pomici di Base eruption, Somma-Vesuvius, 18,300 ± 150 14C years BP). Significant is the tephra record of core RF95-7 that, for the first time in the Adriatic Sea, reports the occurrence of tephra layers older than 60 ka: the well known Mediterranean tephra layers X2 (ca. 70 ka), W1 (ca. 140 ka) and V2 (Roman origin, ca. 170 ka) as well as other tephra layers attributed, on the basis of geochemistry and biostratigraphy, to explosive eruptions occurred at Vico (138 ± 2 and 151 ± 3 ka BP) and Ischia (147-140 ka BP). Previous tephra correlations performed on other cores in the Central Adriatic Sea were also critically revised according to new available data, and integrated with the results of this study for a correlation at a regional scale. The most important key
Park, San-Seong; Choi, Bo-Ram
2016-06-01
[Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population.
Role of Early Parenting and Motor Skills on Development in Children with Spina Bifida
ERIC Educational Resources Information Center
Lomax-Bream, Laura E.; Taylor, Heather B.; Landry, Susan H.; Barnes, Marcia A.; Fletcher, Jack M.; Swank, Paul
2007-01-01
The impact of parenting and motor skills on the development of cognitive, language, and daily living skills was examined in 165 children (91 with spina bifida, SB), from 6-36 months of age. Motor scores significantly influenced cognitive, language, and daily living skills. Higher quality parenting was associated with higher levels of development…
Epidemiologic and Genetic Aspects of Spina Bifida and Other Neural Tube Defects
ERIC Educational Resources Information Center
Au, Kit Sing; Ashley-Koch, Allison; Northrup, Hope
2010-01-01
The worldwide incidence of neural tube defects (NTDs) ranges from 1.0 to 10.0 per 1,000 births with almost equal frequencies between two major categories: anencephaly and spina bifida (SB). Epidemiological studies have provided valuable insight for (a) researchers to identify nongenetic and genetic factors contributing to etiology, (b) public…
Does lumbosacral spina bifida arise by failure of neural folding or by defective canalisation?
Copp, A J; Brook, F A
1989-01-01
The aim of this study was to determine whether open lumbosacral spina bifida results from an abnormality of neural folding (primary neurulation) or medullary cord canalisation (secondary neurulation). Homozygous curly tail (ct) mouse embryos were studied as a model system for human neural tube defects. The rostral end of the spina bifida was found to lie at the level of somites 27 to 32 in over 90% of affected ct/ct embryos. Indian ink marking experiments using non-mutant embryos showed that the posterior neuropore closes, and primary neurulation is completed, at the level of somites 32 to 34. Since neurulation in mammals progresses in a craniocaudal sequence, without overlap between regions of primary and secondary neurulation, we conclude that spina bifida in ct/ct embryos arises initially as a defect of primary neurulation. The position of posterior neuropore closure in human embryos is estimated to lie at the level of the future second sacral segment indicating that in humans, as in the ct mouse, lumbosacral spina bifida usually arises as a defect of posterior neuropore closure. Cranial NTD affect females predominantly, whereas lower spinal NTD are more common in males, both in humans and ct mice. We offer an explanation for this phenomenon based on (a) differences in the effect of embryonic growth retardation on the likelihood that an embryo will develop either cranial or lower spinal NTD and (b) differences in the rate of growth and development of male and female embryos at the time of neurulation. Images PMID:2709393
ERIC Educational Resources Information Center
Ashton, T. Edwin J.; Singh, Mohan
1975-01-01
This study determined the maximal mean values for concentric and eccentric back-lift strength as well as isometric, and examined and compared the relationships between the mean peak voltage of the erectores spinae muscle(s) and maximal force exerted for the three types of muscle contractions. (RC)
ERIC Educational Resources Information Center
Guo, Lan-Yuen; Wang, Yu-Lin; Huang, Yu-Han; Yang, Chich-Haung; Hou, Yi-You; Harn, Hans I-Chen; You, Yu-Lin
2012-01-01
For patients with scoliosis, core stabilization exercises may be beneficial in improving muscle strength and trunk dynamic control. However, few studies have examined whether the erector spinae (ES) activation status during unilateral spinal extensor strengthening meets the guideline for patients with spinal scoliosis. To determine ES activation…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... that appeared in the Federal Register of June 13, 2012 (77 FR 35317). The document announced that Gruma...., Bldg. 32, rm. 3208, Silver Spring, MD 20993, 301-796-9148. SUPPLEMENTARY INFORMATION: In FR Doc. 2012... HUMAN SERVICES Food and Drug Administration 21 CFR Part 172 Gruma Corporation, Spina Bifida...
Spatial Knowledge of Children with Spina Bifida in a Virtual Large-Scale Space
ERIC Educational Resources Information Center
Wiedenbauer, Gunnar; Jansen-Osmann, Petra
2006-01-01
The spatial knowledge of 18 children with spina bifida and 18 healthy control children (matched according to sex, age, and verbal IQ) was investigated in a computer-simulated environment. All children had to learn a route through a virtual floor system containing 18 landmarks. Controlling for cognitive abilities, the results revealed that children…
Risk and Protective Influences in the Lives of Siblings of Youths with Spina Bifida
ERIC Educational Resources Information Center
Bellin, Melissa H.; Kovacs, Pamela J.; Sawin, Kathleen J.
2008-01-01
The impact of childhood chronic health conditions like spina bifida (SB) is a shared family experience. However, the lived experience of siblings is not well known. One hundred and fifty-five brothers and sisters of a child with SB responded to an open-ended question included in an anonymous self-administered mail questionnaire designed to enhance…
Quality of Life in Individuals with Spina Bifida: A Research Update
ERIC Educational Resources Information Center
Sawin, Kathleen J.; Bellin, Melissa H.
2010-01-01
Quality of life (QOL) is an important concept for individuals with chronic health conditions. Measuring and supporting QOL in children, adolescents, and adults with spina bifida (SB) may be especially unique given the broad range of complex health and rehabilitative challenges they encounter. This article provides a research update on (a)…
The Influence of Juggling on Mental Rotation Performance in Children with Spina Bifida
ERIC Educational Resources Information Center
Lehmann, Jennifer; Jansen, Petra
2012-01-01
This study examined the influence of juggling training on mental rotation ability in children with spina bifida. Children between the ages of 8 and 12 solved a chronometric mental rotation test. Half of the children received juggling training (EG) over an 8 week time period; the other half did not receive training (CG). Afterwards, all…
ERIC Educational Resources Information Center
Barnes, Marcia A.; Wilkinson, Margaret; Khemani, Ekta; Boudesquie, Amy; Dennis, Maureen; Fletcher, Jack M.
2006-01-01
Three studies compared 98 children with spina bifida myelomeningocele (SBM)--a disorder associated with high rates of math disability and spatial deficits--to 94 typically developing children on multidigit subtraction and cognitive addition tasks. Children with SBM were classified into those with reading decoding and math disability, only math…
ERIC Educational Resources Information Center
Schellinger, Kriston B.; Holmbeck, Grayson N.; Essner, Bonnie S.; Alvarez, Renae
2012-01-01
The purpose of the study was to examine the extent to which parenting behaviors influence the relation between maternal and child depressive symptoms in youth with spina bifida and a comparison sample. Previous research has found that maternal depression not only negatively impacts the mother-child relationship, but also places the child at risk…
Executive functioning and psychological adjustment in children and youth with spina bifida.
Kelly, Natalie C; Ammerman, Robert T; Rausch, Joseph R; Ris, M Douglas; Yeates, Keith O; Oppenheimer, Sonya G; Enrile, Benedicta G
2012-01-01
Children and adolescents with spina bifida are at risk for poor neuropsychological functioning and psychological outcomes. The relationship between executive functioning and psychological adjustment is an area worthy of investigation in this population. The current study assessed executive functioning and psychological outcomes in a group of children and adolescents with spina bifida (SBM) (n = 51) and nondisabled controls (n = 45). A mediation model was hypothesized, such that Metacognition, as measured by the Behavior Rating Inventory of Executive Function (BRIEF), mediated the relationship between group status (spina bifida versus nondisabled controls) and psychological outcomes. Results indicated that metacognitive skills fully explained the relationship between group and internalizing and depressive symptoms as reported by mothers. In particular, specific components of the BRIEF Metacognition composite were most responsible for this relationship, including Initiate, Working Memory, and Plan/Organize. The study limitations include its cross-sectional nature that precludes drawing conclusions about causality. The results have implications for treatment interventions for children and adolescents with spina bifida and typically developing individuals.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... Raza; Filing of Food Additive Petition AGENCY: Food and Drug Administration, HHS. ACTION: Notice of... National Council of La Raza have jointly filed a petition proposing that the food additive regulations be... a food additive petition (FAP 2A4796) has been jointly filed by Gruma Corporation, Spina...
ERIC Educational Resources Information Center
Tew, Brian
1986-01-01
A longitudinal study of 52 adolescents with spina bifida reveals information about their intelligence and attainments at age 16, achievement examinations, the relationship between IQ and academic achievement, and employment at 18 years. Among findings are significantly lower performance among Ss with shunts and intracranial complications. (CL)
Park, San-Seong; Choi, Bo-Ram
2016-06-01
[Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population. PMID:27390399
ERIC Educational Resources Information Center
Coughlin, Judy; Montague, Marjorie
2011-01-01
This study investigated the effects of cognitive strategy instruction on the mathematical problem solving of three adolescents with spina bifida. Conditions of the multiple-baseline across-individuals design included baseline, two levels of treatment, posttesting, and maintenance. Treatment 1 focused on one-step math problems, and Treatment 2…
ERIC Educational Resources Information Center
Mittler, Joel E.
1986-01-01
The Arnold-Chiari malformation is present in most infants born with myelomeningocele (a form of spina bifida) and hydrocephalus. The syndrome is responsible for structural abnormalities in the brain, and peripheral nervous system. Etiology, symptoms, impact on central nervous system structures, surgical treatment, and implications for education…
Inferential Ability in Children with Cerebral Palsy, Spina Bifida and Pragmatic Language Impairment
ERIC Educational Resources Information Center
Holck, Pernille; Sandberg, Annika Dahlgren; Nettelbladt, Ulrika
2010-01-01
The aim of the study was to investigate and compare the ability to make inferences in three groups of children ranging from 5;2 to 10;9 years: 10 children with cerebral palsy (CP), 10 children with spina bifida and hydrocephalus (SBH) and 10 children with pragmatic language impairment (PLI). The relationship between inferential and literal…
ERIC Educational Resources Information Center
Byrne, Karen; And Others
1990-01-01
Linguistic performance of 7 children (mean age=68 months) with spina bifida, hydrocephalus, and average intelligence was evaluated. Subjects dealt with the semantic-pragmatic requirements of linguistically posed problems in an age-appropriate manner. Performance declined as task demands increased but no more than performance of nondisabled…
The Management and Education of Children with Spina Bifida and Hydrocephalus.
ERIC Educational Resources Information Center
Andrews, Robert J.; Elkins, John
The report describes the population of children in Australia with spina bifida and/or hydrocephalus, notes their needs and characteristics, reviews their school placement and social circumstances, and considers future educational services for them. Initial chapters review the literature on medical, psychoeducational, and social-family aspects of…
ERIC Educational Resources Information Center
Holck, Pernille; Nettelbladt, Ulrika; Sandberg, Annika Dahlgren
2009-01-01
Pragmatically related abilities were studied in three clinical groups of children from 5 to 11 years of age; children with cerebral palsy (CP; n = 10), children with spina bifida and hydrocephalus (SBH; n = 10) and children with pragmatic language impairment (PLI; n = 10), in order to explore pragmatic abilities within each group. A range of…
Transition to Adult Health Care for Adolescents with Spina Bifida: Research Issues
ERIC Educational Resources Information Center
Sawyer, Susan M.; Macnee, Sarah
2010-01-01
The increasing survival of children and young people with congenital disabilities such as spina bifida (SB) provides a challenge to health care systems globally about how best to respond to the multitude of health, developmental, and psychosocial needs of those affected by this complex disorder across the lifespan, not just in childhood and…
Effects of lumbar stabilization exercises on the flexion-relaxation phenomenon of the erector spinae
Park, San-seong; Choi, Bo-ram
2016-01-01
[Purpose] This study evaluated the differences in the flexion-relaxation phenomenon (FRP) of the right and left erector spinae muscles in asymptomatic subjects and the effect of lumbar stabilization exercises on these differences. [Subjects and Methods] Twenty-six participants (12 in the exercise group and 14 in the control group) with a difference in the FRP in the right and left erector spinae muscles were recruited from among healthy students attending Silla University. The exercise group performed two lumbar stabilization exercises (back bridge exercise and hand-knee exercise) for 4 weeks. The control group did not exercise. [Results] No significant group-by-exercise interaction was found. The right and left erector spinae muscles did show a difference in FRP between the control and exercise groups (119.2 ± 69.2 and 131.1 ± 85.2 ms, respectively). In addition, the exercise group showed a significant decrease in post-exercise (50.0 ± 27.0 ms) compared to pre-exercise (112.3 ± 41.5 ms) differences in the right and left FRP. [Conclusion] These results suggest that lumbar stabilization exercises may counter asymmetry of the FRP in the erector spinae muscles, possibly preventing low back pain in the general population. PMID:27390399
Anomalous Development of Brain Structure and Function in Spina Bifida Myelomeningocele
ERIC Educational Resources Information Center
Juranek, Jenifer; Salman, Michael S.
2010-01-01
Spina bifida myelomeningocele (SBM) is a specific type of neural tube defect whereby the open neural tube at the level of the spinal cord alters brain development during early stages of gestation. Some structural anomalies are virtually unique to individuals with SBM, including a complex pattern of cerebellar dysplasia known as the Chiari II…
Health Risk Behaviors in Spina Bifida: The Need for Clinical and Policy Action
ERIC Educational Resources Information Center
Sawin, Kathleen J.; Brei, Timothy J.
2012-01-01
Health risk behaviors (HRBs) in adults with spina bifida such as poor diet, reduced physical activity, increased television viewing time, and substance abuse often have their genesis in early childhood. They are potentially preventable but if not addressed aggressively may continue to progress across the lifespan. Findings from a population-based…
2010-10-20
The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.
Awareness of folic acid use increases its consumption, and reduces the risk of spina bifida.
Kondo, Atsuo; Morota, Nobuhito; Date, Hiroaki; Yoshifuji, Kazuhisa; Morishima, Toshibumi; Miyazato, Minoru; Shirane, Reizo; Sakai, Hideki; Pooh, Kyong Hon; Watanabe, Tomoyuki
2015-07-14
The majority of neural tube defects were believed to be folic acid (FA)-preventable in the 1990s. The Japanese government recommended women planning pregnancy to take FA supplements of 400 μg/d in 2000, but the incidence of spina bifida has not decreased. We aimed to evaluate the OR of having an infant with spina bifida for women who periconceptionally took FA supplements and the association between an increase in supplement use and possible promoters for the increase. This is a case-control study which used 360 case women who gave birth to newborns afflicted with spina bifida, and 2333 control women who gave birth to healthy newborns during the first 12 years of this century. They were divided into two 6-year periods; from 2001 to 2006 and from 2007 to 2012. Logistic regression analyses were conducted to compute OR between cases and controls. The adjusted OR of having an infant with spina bifida for supplement users was 0.48 in the first period, and 0.53 in the second period. The proportion of women who periconceptionally consumed supplements significantly increased from 10 % in the first period to 30 % in the second period. Awareness of the preventive role of FA was a promoter for an increase in supplement use, and thus an FA campaign in high school seems rational and effective. The failure of the current public health policy is responsible for an epidemic of spina bifida. Mandatory food fortification with FA is urgent and long overdue in Japan.
Awareness of folic acid use increases its consumption, and reduces the risk of spina bifida.
Kondo, Atsuo; Morota, Nobuhito; Date, Hiroaki; Yoshifuji, Kazuhisa; Morishima, Toshibumi; Miyazato, Minoru; Shirane, Reizo; Sakai, Hideki; Pooh, Kyong Hon; Watanabe, Tomoyuki
2015-07-14
The majority of neural tube defects were believed to be folic acid (FA)-preventable in the 1990s. The Japanese government recommended women planning pregnancy to take FA supplements of 400 μg/d in 2000, but the incidence of spina bifida has not decreased. We aimed to evaluate the OR of having an infant with spina bifida for women who periconceptionally took FA supplements and the association between an increase in supplement use and possible promoters for the increase. This is a case-control study which used 360 case women who gave birth to newborns afflicted with spina bifida, and 2333 control women who gave birth to healthy newborns during the first 12 years of this century. They were divided into two 6-year periods; from 2001 to 2006 and from 2007 to 2012. Logistic regression analyses were conducted to compute OR between cases and controls. The adjusted OR of having an infant with spina bifida for supplement users was 0.48 in the first period, and 0.53 in the second period. The proportion of women who periconceptionally consumed supplements significantly increased from 10 % in the first period to 30 % in the second period. Awareness of the preventive role of FA was a promoter for an increase in supplement use, and thus an FA campaign in high school seems rational and effective. The failure of the current public health policy is responsible for an epidemic of spina bifida. Mandatory food fortification with FA is urgent and long overdue in Japan. PMID:25999131
Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting
2016-10-01
GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding. PMID:26446020
Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Koo, Jung-Wan
2016-01-01
[Purpose] This study investigated the flexion-relaxation phenomenon of the erector spinae in elderly women with chronic knee osteoarthritis and determined whether the flexion-relaxation phenomenon can be used as a pain evaluation tool in such cases. [Subjects and Methods] Seventeen elderly females with chronic knee osteoarthritis and 13 healthy young females voluntarily participated in this study. They performed three postural positions in 15 s: trunk flexion, complete trunk flexion, and trunk extension, each for 5 s. While these positions were held, muscle activation of the thoracic and lumbar erector spinae were measured using surface electromyography. The flexion-relaxation rate was determined by dividing the values for trunk extension by those of complete trunk flexion and by dividing the values for trunk flexion by those of complete trunk flexion. [Results] According to our results, the flexion-relaxation phenomenon was different between healthy young and elderly females with chronic knee osteoarthritis. Specifically, there was a difference in the left thoracic erector spinae muscle, but not in the left and right lumbar erector spinae or right thoracic spinae muscle. [Conclusion] Our study demonstrated that the erector spinae muscle flexion-relaxation phenomenon can be used as a pain evaluation tool in elderly females with chronic knee osteoarthritis. PMID:27512244
2006-05-09
The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.
Spondylolisthesis in an Etruscan woman from Spina (Ferrara, Italy): an iron age case report.
Manzon, Vanessa Samantha; Onisto, Nicoletta; Gualdi-Russo, Emanuela
2014-06-01
Spondylolisthesis consists of the slippage of a vertebra in relation to the one beneath. It is caused by separation of the neural arch from the vertebral body (spondylolysis), and predominantly occurs at the isthmus (pars interarticularis). Originally thought to be a congenital anomaly, its strict correlation with certain activities that seem to exert stress on lower spine was later demonstrated. This paper describes a case of progression of spondylolysis to spondylolisthesis found on an adult female skeleton from the Etruscan necropolis of Spina (Ferrara, Italy). The case in question was identified among 209 skeletons exhumed at Spina. As spondylolisthesis is strictly connected with activities that exert stress on lower spine, the evidence suggests that this woman was engaged in stressful physical activity, perhaps related to the specific trade function of the site. PMID:25145016
Impact of functional severity on self concept in young people with spina bifida.
Minchom, P E; Ellis, N C; Appleton, P L; Lawson, V; Böll, V; Jones, P; Elliott, C E
1995-07-01
This study examines the relationship between medical and functional severity of disability and levels of self esteem and self concept in 79 young people with spina bifida. Greater feelings of global self worth and of self esteem in physical appearance were associated with greater severity of disability. This was only in part an effect of lower IQ among the most disabled young people. Many of the least disabled had marked impairment of self esteem. Analysis of the impact of individual aspects of disability confirmed the association between increased self esteem in physical appearance and global self worth, and diminished functional ability. Academic self ratings, however, were higher in the less disabled. Hydrocephalus and continence appeared to have minimal effect on self esteem. The relationship between severity of disability in spina bifida and self concept is complex and mediated by a range of factors. It is incorrect to assume that the psychological impact is less in the mildly disabled young person.
A family study of spina bifida and anencephalus in Belfast, Northern Ireland (1964 to 1968).
Nevin, N C; Johnston, W P
1980-01-01
The parents of 226 of the 360 patients with anencephalus or spinal bifida or both, born in Belfast 1964 to 1968, were visited to document the occurrence of these malformations among other relatives. The proportions of sibs with anencephalus and spina bifida were 10.41% for spina bifida index patients and 6.4% for anencephalus. For patients born after the index patients, the proportions were 12.19% and 6.35%, respectively. The overall incidence of either malformation among sibs was 8.87%. This estimate is higher than the 4 to 5% commonly reported and is probably related to the specific background of the Northern Ireland population, which is known to have the highest incidence of CNS malformations in the United Kingdom. The substantial size of this risk indicates the importance of amniocentesis for monitoring subsequent pregnancies of women who have had one child with a CNS malformation. PMID:6995614
Applying a knowledge-to-action framework for primary prevention of spina bifida in tropical Africa.
Claude, Kasereka M; Juvenal, Kwibuka L; Hawkes, Michael
2012-04-01
Maternal periconceptual folate supplementation reduces the incidence of neural tube defects; however, in settings where population-level food fortification is not available, it is not clear how best to promote this prevention strategy. Guided by a knowledge-to-action methodology, we used mixed quantitative and qualitative methods to define the local disease burden, then designed, implemented and evaluated a culturally tailored educational intervention in eastern Democratic Republic of Congo, where resource limitations and threats to human security contribute to restricted capacity for the prevention and management of congenital malformations. A descriptive case series of 27 patients undergoing surgery for spina bifida demonstrated a short-term mortality of 15% and long-term disability in survivors. A survey of knowledge, attitudes and practices demonstrated a low level of folate awareness (53%) among women of reproductive age. Focus group discussions revealed exotic aetiologic views, significant gender issues and several barriers to folate use. A culturally tailored radio broadcast and an educational video were designed and produced locally based on qualitative and quantitative findings. Evaluation of the video documented high levels of viewer satisfaction and unequivocal knowledge gain (P ≤ 0.001). We conclude that spina bifida poses a significant burden on affected patients and their families in the African context, but folate is underutilized as a prevention strategy. Patient education through video media results in increased awareness and understanding of spina bifida and folate, a first step in empowering women to reduce the risk of spina bifida in their children in the absence of population-wide food fortification.
Improved Survival Among Children with Spina Bifida in the United States
Shin, Mikyong; Kucik, James E.; Siffel, Csaba; Lu, Chengxing; Shaw, Gary M.; Canfield, Mark A.; Correa, Adolfo
2015-01-01
Objective To evaluate trends in survival among children with spina bifida by race/ethnicity and possible prognostic factors in 10 regions of the United States. Study design A retrospective cohort study was conducted of 5165 infants with spina bifida born during 1979-2003, identified by 10 birth defects registries in the United States. Survival probabilities and adjusted hazard ratios were estimated for race/ethnicity and other characteristics using the Cox proportional hazard model. Results During the study period, the 1-year survival probability among infants with spina bifida showed improvements for whites (from 88% to 96%), blacks (from 79% to 88%), and Hispanics (from 88% to 93%). The impact of race/ethnicity on survival varied by birth weight, which was the strongest predictor of survival through age 8. There was little racial/ethnic variation in survival among children born of very low birth weight. Among children born of low birth weight, the increased risk of mortality to Hispanics was approximately 4-6 times that of whites. The black-white disparity was greatest among children born of normal birth weight. Congenital heart defects did not affect the risk of mortality among very low birth weight children but increased the risk of mortality 4-fold among children born of normal birth weight. Conclusions The survival of infants born with spina bifida has improved; however, improvements in survival varied by race/ethnicity, and blacks and Hispanics continued to have poorer survival than whites in the most recent birth cohort from 1998-2002. Further studies are warranted to elucidate possible reasons for the observed differences in survival. PMID:22727874
Wound care challenges in children and adults with spina bifida: an open-cohort study.
Ottolini, Katherine; Harris, Amy B; Amling, June K; Kennelly, Ann M; Phillips, Leslie A; Tosi, Laura L
2013-01-01
Skin breakdown is a frequent concern for individuals with spina bifida. We explored wound incidence in patients with spina bifida and how it varies across a person's life span and functional neurologic level. We examined the settings in which skin breakdown most commonly occurred, looking for evidence of chronic, non-healing wounds. We also sought to develop criteria to improve wound monitoring. We identified reported wound episodes in an open-cohort study over a 13-year period, examining the hospital and outpatient clinical records of spina bifida patients at Children's National Medical Center (CNMC). Current age, age at wound presentation, sex, weight, functional neurologic level, wound location, setting in which the wound was acquired, the development of a chronic wound, and presence of a shunt were recorded. Of the 376 patients in our clinical population, 123 (average age: 18.8 years, range: infancy-56 years) developed a total of 375 wounds; the majority of patients who developed one wound went on to develop one or more additional wounds, and 20 patients developed chronic wounds. Our data suggest that age bracket (adolescents), wheelchair use, and bare feet, as well as possibly obesity and reduced executive functioning, are key risk factors for wound development. These findings have led to a focused effort to increase wound education and prevention. In addition we report on our early experience using a wound care specialist to champion this initiative.
A snapshot of the adult spina bifida patient – high incidence of urologic procedures
Liu, Joceline S.; Greiman, Alyssa; Casey, Jessica T.; Mukherjee, Shubhra
2016-01-01
Introduction To describe the urologic outcomes of contemporary adult spina bifida patients managed in a multidisciplinary clinic. Material and methods A retrospective chart review of patients seen in our adult spina bifida clinic from January 2004 to November 2011 was performed to identify urologic management, urologic surgeries, and co-morbidities. Results 225 patients were identified (57.8% female, 42.2% male). Current median age was 30 years (IQR 27, 36) with a median age at first visit of 25 years (IQR 22, 30). The majority (70.7%) utilized clean intermittent catheterization, and 111 patients (49.3%) were prescribed anticholinergic medications. 65.8% had urodynamics performed at least once, and 56% obtained appropriate upper tract imaging at least every other year while under our care. 101 patients (44.9%) underwent at least one urologic surgical procedure during their lifetime, with a total of 191 procedures being performed, of which stone procedures (n = 51, 26.7%) were the most common. Other common procedures included continence procedures (n = 35, 18.3%) and augmentation cystoplasty (n = 29, 15.2%). Only 3.6% had a documented diagnosis of chronic kidney disease and 0.9% with end-stage renal disease. Conclusions Most adult spina bifida patient continue on anticholinergic medications and clean intermittent catheterization. A large percentage of patients required urologic procedures in adulthood. Patients should be encouraged to utilize conservative and effective bladder management strategies to reduce their risk of renal compromise. PMID:27123330
Papanna, Ramesha; Mann, Lovepreet K.; Snowise, Saul; Morales, Yisel; Prabhu, Sanjay P.; Tseng, Scheffer C. G.; Grill, Raymond; Fletcher, Stephen; Moise, Kenneth J.
2016-01-01
Objectives The objective of our study was to test the hypothesis that in utero repair of surgically created spina bifida in a sheep model using cryopreserved human umbilical cord (HUC) patch improves neurological outcome. Methods Spina bifida with myelotomy was surgically created in timed pregnant ewes at gestational day (GD) 75. The fetuses were randomly assigned to unrepaired versus HUC and treated at GD 95 and then delivered at GD 140. Neurological evaluation was performed using the Texas Spinal Cord Injury Scale (TSCIS), bladder control using ultrasound, and the hindbrain herniation. Results Three lambs without the spina bifida creation served as controls. There were four lambs with spina bifida: two were unrepaired and two underwent HUC repair. The control lambs had normal function. Both unrepaired lambs had nonhealed skin lesions with leakage of cerebrospinal fluid, a 0/20 TSCIS score, no bladder control, and the hindbrain herniation. In contrast, both HUC lambs had a completely healed skin defect and survived to day 2 of life, a 3/20 and 4/20 TSCIS score (nociception), partial bladder control, and normal hindbrain anatomy. Conclusions Cryopreserved HUC patch appears to improve survival and neurological outcome in this severe form of the ovine model of spina bifida. PMID:27621952
Papanna, Ramesha; Mann, Lovepreet K.; Snowise, Saul; Morales, Yisel; Prabhu, Sanjay P.; Tseng, Scheffer C. G.; Grill, Raymond; Fletcher, Stephen; Moise, Kenneth J.
2016-01-01
Objectives The objective of our study was to test the hypothesis that in utero repair of surgically created spina bifida in a sheep model using cryopreserved human umbilical cord (HUC) patch improves neurological outcome. Methods Spina bifida with myelotomy was surgically created in timed pregnant ewes at gestational day (GD) 75. The fetuses were randomly assigned to unrepaired versus HUC and treated at GD 95 and then delivered at GD 140. Neurological evaluation was performed using the Texas Spinal Cord Injury Scale (TSCIS), bladder control using ultrasound, and the hindbrain herniation. Results Three lambs without the spina bifida creation served as controls. There were four lambs with spina bifida: two were unrepaired and two underwent HUC repair. The control lambs had normal function. Both unrepaired lambs had nonhealed skin lesions with leakage of cerebrospinal fluid, a 0/20 TSCIS score, no bladder control, and the hindbrain herniation. In contrast, both HUC lambs had a completely healed skin defect and survived to day 2 of life, a 3/20 and 4/20 TSCIS score (nociception), partial bladder control, and normal hindbrain anatomy. Conclusions Cryopreserved HUC patch appears to improve survival and neurological outcome in this severe form of the ovine model of spina bifida. PMID:27621952
Brown, F.B.; Sutton, T.M.
1996-02-01
This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.
NASA Astrophysics Data System (ADS)
Bardenet, Rémi
2013-07-01
Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC) methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
Correlation between spina bifida manifesta in fetal rats and c-Jun N-terminal kinase signaling★
Ma, Yinghuan; Bao, Yongxin; Li, Chenghao; Jiao, Fubin; Xin, Hongjie; Yuan, Zhengwei
2012-01-01
Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway. PMID:25337099
Link between the CSF shunt and achievement in adults with spina bifida
Hunt, G.; Oakeshott, P.; Kerry, S.
1999-01-01
OBJECTIVES—A few enterprising adults with shunt treated spina bifida live independently in the community, have a job in competitive employment, and drive to work in their own car. By contrast others with similar disability but lacking their motivation remain dependent on care and supervision. The aim of this study was to identify events in the history of their shunt which may have influenced their subsequent achievement. METHODS—Between June 1963 and January 1971 117 babies born in East Anglia with open spina bifida had their backs closed regardless of the severity of their condition. When reviewed in 1997 every case was ascertained. Sixty had died and the 57 survivors had a mean age of 30. These were assigned to two groups: achievers and non-achievers, according to their attainments in independence, employment, and use of a car. RESULTS—Of the 57 survivors nine had no shunt and eight of these were achievers. All were of normal intelligence (IQ⩾80) and only one was severely disabled. Of the 48 with shunts only 20 were achievers (OR 11.2, 95% confidence interval (95% CI) 1.3-96.8). Lack of achievement in these 48 was associated with revisions of the shunt, particularly when revisions were performed after the age of 2. Sixteen patients had never required a revision and 11 (69%) were achievers; 10 had had revisions only during infancy and five (50%) were achievers; 22 had had revisions after their second birthday and only four (18%) were achievers (p<0.001). Elective revisions were not performed in this cohort and in 75% of patients revisions had been preceded by clear symptoms of raised intracranial pressure. CONCLUSION—Revisions of the shunt, particularly after the age of 2, are associated with poor long term achievement in adults with spina bifida. PMID:10519863
Paternal exposure to Agent Orange and spina bifida: a meta-analysis.
Ngo, Anh Duc; Taylor, Richard; Roberts, Christine L
2010-01-01
The objective of this study is to conduct a meta-analysis of published and unpublished studies that examine the association between Agent Orange (AO) exposure and the risk of spina bifida. Relevant studies were identified through a computerized literature search of Medline and Embase from 1966 to 2008; a review of the reference list of retrieved articles and conference proceedings; and by contacting researchers for unpublished studies. Both fixed-effects and random-effects models were used to pool the results of individual studies. The Cochrane Q test and index of heterogeneity (I(2)) were used to evaluate heterogeneity, and a funnel plot and Egger's test were used to evaluate publication bias. Seven studies, including two Vietnamese and five non-Vietnamese studies, involving 330 cases and 134,884 non-cases were included in the meta-analysis. The overall relative risk (RR) for spina bifida associated with paternal exposure to AO was 2.02 (95% confidence interval [CI]: 1.48-2.74), with no statistical evidence of heterogeneity across studies. Non-Vietnamese studies showed a slightly higher summary RR (RR = 2.22; 95% CI: 1.38-3.56) than Vietnamese studies (RR = 1.92 95% CI: 1.29-2.86). When analyzed separately, the overall association was statistically significant for the three case-control studies (Summary Odds Ratio = 2.25, 95% CI: 1.31-3.86) and the cross sectional study (RR = 1.97, 95% CI: 1.31-2.96), but not for the three cohort studies (RR: 2.11; 95% CI: 0.78-5.73). Paternal exposure to AO appears to be associated with a statistically increased risk of spina bifida. PMID:19894129
Screening of polymorphisms for MTHFR and DHFR genes in spina bifida children and their mothers
NASA Astrophysics Data System (ADS)
Husna, M. Z.; Endom, I.; Ibrahim, S.; Selvi, N. Amaramalar; Fakhrurazi, H.; Htwe, R. Ohnmar; Kanehaswari, Y.; Halim, A. R. Abdul; Wong, S. W.; Subashini, K.; Syahira, O. Nur; Aishah, S.
2013-11-01
Mechanism underlying the beneficial effect of folic acid supplementation in reducing the risk of neural tube defect is still not well understood. Current evidences show the involvement of folic acid metabolic gene's polymorphism as contributing factors that regulate this pathway. Therefore, the objective of this research was to determine the presence of C677T polymorphism for methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR-19 bp deletion) genes between mother-children pairs of case and control. With the approval of UKMMC ethic committee, genomic DNA was extracted from one hundred and forty consented bloods. Polymerase chain reaction (PCR), PCR-RFLP (Restriction Fragment Length Polymorphism) and sequencing were employed to verify each nucleotide change. Our result shows that mutant MTHFR and DHFR alleles are present in all Malaysian sub-ethnic groups, case and control. Even though mutant MTHFR are found to be slightly higher in the case groups, 75% of the affected child is a non carrier for this allele and 62.5% of the mothers with an affected child are genotypically normal. For DHFR, almost all (87.5-100%) investigated samples are a carrier or having a double DHFR deletion be it a case or control pairs. However, strong maternal inheritance shown by the deleted allele might be due to a cascade effect of lacks of folate consumption or maternal uniparental disomy. In conclusion, the use of MTHFR and DHFR as markers in determining the risk of having spina bifida baby is uninformative and plays a small indirect role as the genetic causes of spina bifida. Therefore, spina bifida remains etiologically unknown polygenic and quantitative developmental trait whereby the searches for positive genetic marker need to be continued.
The ethnobotany of Christ's Thorn Jujube (Ziziphus spina-christi) in Israel
Dafni, Amots; Levy, Shay; Lev, Efraim
2005-01-01
This article surveys the ethnobotany of Ziziphus spina-christi (L.) Desf. in the Middle East from various aspects: historical, religious, philological, literary, linguistic, as well as pharmacological, among Muslims, Jews, and Christians. It is suggested that this is the only tree species considered "holy" by Muslims (all the individuals of the species are sanctified by religion) in addition to its status as "sacred tree " (particular trees which are venerated due to historical or magical events related to them, regardless of their botanical identity) in the Middle East. It has also a special status as "blessed tree" among the Druze. PMID:16270941
Holmbeck, G N; Aspinall, C L
2015-05-01
The purpose of this review is to discuss research methods and clinical management strategies employed with other conditions (i. e., spina bifida and craniofacial conditions) and how these methods and strategies could be applied to youth with disorders of sex development (DSD). The review focuses specifically on the potential overlap between DSD and these other conditions across the following 3 areas: (1) developmentally-oriented theories that underlie the research base for chronic physical conditions; (2) research designs and methodological features that have proved fruitful in these areas; and (3) the potential applicability to DSD of clinical management practices for youth with craniofacial conditions.
Age-related parenting stress differences in mothers of children with spina bifida.
Macias, Michelle M; Saylor, Conway F; Rowe, Brandy P; Bell, Nancy L
2003-12-01
This study examined whether ages of child and parent were risk factors for general parenting stress and disability-specific stress in families of children with spina bifida. Parents of 64 children with spina bifida completed the Parenting Stress Index-Short Form, Parents of Children with Disabilities Inventory, and measures of family support and resources. Scores of families with children under 6 years (preschool) versus 6- to 12-yr.-old children (school age) were compared, as were scores of mothers above or below Age 35. Parents of school-aged children reported significantly higher stress on the Concerns for the Child domain of the Parents of Children with Disabilities Inventory. Mothers over 35 tended to report higher stress in the Concerns for the Child and Medical/Legal Concerns domains of the Parents of Children with Disabilities Inventory. No associations with medical severity, socioeconomic status, family resources, or family support were detected. As the children age and disability-related differences become more apparent, the same level of functioning and severity of disability may be associated with additional parenting stress. Older mothers and those with school-age children may need more resources than current social support systems typically provide.
Kelly, Lauren M.; O’Mahar, Kerry
2011-01-01
Objectives A longitudinal multi-method, multi-informant design was utilized to investigate parental expressed emotion (EE) as a predictor of depressive symptoms among adolescents with spina bifida (n = 60) and a matched comparison sample (n = 65). Methods A newly modified self-administered audiotaped interview methodology was used to assess parental warmth and criticism across the middle adolescent developmental period (ages 14–17). Parent- and youth-reports of adolescent depressive symptoms were obtained at each time point. Results Significant cross-sectional associations between parental EE variables and youth depressive symptoms were found for both groups. Significant longitudinal relations between maternal criticism and parent proxy-report of youth depressive symptoms were also found across 2 years for the spina bifida group and across 4 years for both groups. Conclusions This modified measure of parental EE can be used in future pediatric research that focuses on precursors or outcomes of this important parenting construct. PMID:20870752
Assistive Technology Use Among Adolescents and Young Adults With Spina Bifida
Johnson, Kurt L.; Dudgeon, Brian; Kuehn, Carrie; Walker, William
2007-01-01
Objectives. We sought to determine the use of assistive technology among a population of individuals with spina bifida. Methods. We performed a descriptive analysis of individuals aged 13 to 27 years diagnosed with myelomeningocele (n=348) using data obtained from an existing database at Children’s Hospital and Regional Medical Center, Seattle, Washington. We summarized disease characteristics, utilization of assistive technology, community and self-care independence, and other variables. Results. Eighty-four percent of the respondents lived with at least 1 of their natural parents. Fifty-seven percent used wheelchairs, 35% used braces, and 23% used walking aids. Independent self-care was a common skill, but 72% reported limited participation in structured activities. Half were aged 18 years or older; of those, only 50% had completed high school and 71% were unemployed. Those aged younger than 18 years were all still in school (100%). Conclusions. Adolescents and young adults with spina bifida rely on assistive technology and specialized care routines to maintain their health. Assistive technology use for mobility is common; little is known about secondary complications associated with use of these technologies or the use of assistive technology to address learning disabilities and other societal barriers. Underutilization of assistive technology could delay successful transitions to independent living and community participation. PMID:17194874
Accessibility of mHealth Self-Care Apps for Individuals with Spina Bifida.
Yu, Daihua X; Parmanto, Bambang; Dicianno, Brad E; Pramana, Gede
2015-01-01
As the smartphone becomes ubiquitous, mobile health is becoming a viable technology to empower individuals to engage in preventive self-care. An innovative mobile health system called iMHere (Internet Mobile Health and Rehabilitation) has been developed at the University of Pittsburgh to support self-care and adherence to self-care regimens for individuals with spina bifida and other complex conditions who are vulnerable to secondary complications. The goal of this study was to explore the accessibility of iMHere apps for individuals with spina bifida. Six participants were asked to perform tasks in a lab environment. Though all of the participants were satisfied with the iMHere apps and would use them again in the future, their needs and preferences to access and use iMHere apps differed. Personalization that provides the ability for a participant to modify the appearance of content, such as the size of the icons and the color of text, could be an ideal solution to address potential issues and barriers to accessibility. The importance of personalization--and potential strategies--for accessibility are discussed. PMID:26755902
Curly tail: a 50 year history of the mouse spina bifida model
van Straaten, Henny W.M.; Copp, Andrew J.
2014-01-01
Summary This paper reviews 50 years of progress towards understanding the aetiology and pathogenesis of neural tube defects (NTD) in the curly tail (ct) mutant mouse. More than 45 papers have been published on various aspects of curly tail with the result that it is now the best understood mouse model of NTD pathogenesis. The failure of closure of the spinal neural tube, which leads to spina bifida in this mouse, has been traced back to a tissue-specific defect of cell proliferation in the tail bud of the E9.5 embryo. This cell proliferation defect results in a growth imbalance in the caudal region that generates ventral curvature of the body axis. Neurulation movements are opposed, leading to delayed neuropore closure and spina bifida, or tail defects. It is interesting to reflect that these advances have been achieved in the absence of information on the nature of the ct gene product, which remains unidentified. In addition to the principal ct gene, which maps to distal Chromosome 4, the curly tail phenotype is influenced by several modifier genes and by environmental factors. NTD in curly tail are resistant to folic acid, but can be prevented by myo-inositol. These and other features of NTD in this system bear striking similarities to the situation in humans, making curly tail a model for understanding a sub-type of human NTD. PMID:11396850
Educational attainments of spina bifida children attending ordinary or special schools.
Carr, J; Halliwell, M D; Pearson, A M
1981-12-01
Children with spina bifida who attend special schools are usually found to be retarded in their school attainment compared with those who attend ordinary schools. This finding has, however, often been confounded by the fact that the special school children tend to have lower IQs. In this study two groups of children were identified from those in the Greater London Council (GLC) Spina Bifida Survey, one attending ordinary and the other special schools. There were 11 pairs of boys and 11 of girls, each pair being closely matched for IQ. Examination of their scores on attainment tests showed that while results of reading tests did not differ significantly between the two types of schools, children of both sexes at special schools were behind their ordinary school counterparts in number work. These results were supported by similar findings, using analysis of co-variance, on the larger group of children in the GLC survey. The effect of other factors such as physical handicap, presence of a valve, and time spent in hospital, were explored, and possible explanations for the findings are discussed.
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.
ERIC Educational Resources Information Center
Holmbeck, Grayson N.; DeLucia, Christian; Essner, Bonnie; Kelly, Lauren; Zebracki, Kathy; Friedman, Deborah; Jandasek, Barbara
2010-01-01
Objective: As a follow-up to an earlier cross-sectional study (Holmbeck et al., 2003), the current multimethod, multi-informant investigation examined individual growth in psychosocial adjustment across the adolescent transition in 2 samples: young adolescents with spina bifida (SB) and typically developing adolescents (N = 68 in both groups at…
Brooks, E.D. III )
1989-08-01
We introduce a new implicit Monte Carlo technique for solving time dependent radiation transport problems involving spontaneous emission. In the usual implicit Monte Carlo procedure an effective scattering term in dictated by the requirement of self-consistency between the transport and implicitly differenced atomic populations equations. The effective scattering term, a source of inefficiency for optically thick problems, becomes an impasse for problems with gain where its sign is negative. In our new technique the effective scattering term does not occur and the excecution time for the Monte Carlo portion of the algorithm is independent of opacity. We compare the performance and accuracy of the new symbolic implicit Monte Carlo technique to the usual effective scattering technique for the time dependent description of a two-level system in slab geometry. We also examine the possibility of effectively exploiting multiprocessors on the algorithm, obtaining supercomputer performance using shared memory multiprocessors based on cheap commodity microprocessor technology. {copyright} 1989 Academic Press, Inc.
Yoo, Won-gyu
2015-01-01
[Purpose] This study compared the isolated contraction ratios of the hip extensors, erector spinae muscles of the lumbar region, and thoracic muscles during different back extension exercises. [Subjects] Twelve males participated in this study. [Methods] The subjects performed various back extension exercises. The activities of the T7 erector spinae muscles, L3 erector spinae muscles, and the gluteus maximus were measured, and the isolation contraction ratios were calculated. [Results] The isolated contraction ratio of the T7 erector spinae muscles significantly increased during exercise 2. The isolated contraction ratio of the gluteus maximus increased by a significant degree during exercise 1 compared with the other exercises. [Conclusion] This study demonstrated that the back extension exercises 1 and 2 can be applied to selectively exercise the hip extensors, thoracic muscles, and muscles of the lumbar region. PMID:25729158
Perception of strong-meter and weak-meter rhythms in children with spina bifida meningomyelocele
HOPYAN, TALAR; SCHELLENBERG, E. GLENN; DENNIS, MAUREEN
2011-01-01
Neurodevelopmental disorders such as spina bifida meningomyelocele (SBM) are often associated with dysrhythmic movement. We studied rhythm discrimination in 21 children with SBM and in 21 age-matched controls, with the research question being whether both groups showed a strong-meter advantage whereby rhythm discrimination is better for rhythms with a strong-meter, in which onsets of longer intervals occurred on the beat, than those with a weak-meter, in which onsets of longer intervals occurred off the beat. Compared to controls, the SBM group was less able to discriminate strong-meter rhythms, although they performed comparably in discriminating weak-meter rhythms. The attenuated strong-meter advantage in children with SBM shows that their rhythm deficits occur at the level of both perception and action, and may represent a central processing disruption of the brain mechanisms for rhythm. PMID:19573270
Ogata, A J; Camano, L; Brunoni, D
1992-01-01
The objective of the present study was to determine the presence of risk factors for the occurrence of neural tube defects. Data for 33,535 births which occurred at Hospital do Servidor Público Estadual de São Paulo from July 1973 to December 1986 were collected in a prospective manner as recommended by "Estudo Colaborativo Latino-Americano de Malformações Congênitas" (ECLAMC, Collaborative Latin American Study on Congenital Malformations). Twenty-six cases of neural tube defects were detected (0.77/1000 births). Of these, 11 were cases of spina bifida (0.39/1000 births), 9 of anencephaly (0.27/1000 births) and 6 of encephalocele (0.18/1000 births). We observed a higher frequency of polyhydramnios, premature labor, Apgar scores of less than 7 at the first and fifth minutes, low birth weight and intrauterine growth retardation.
Lack of significant association between spina bifida and the fragile X syndrome
Schiano, C.M.; Demb, H.B.; Brown, W.T.
1995-12-04
Folic acid is involved in two common disorders associated with developmental disabilities. Spina bifida is a malformation that may be associated with mental retardation, learning disabilities, and epilepsy. Its incidence can be reduced by the ingestion of folic acid before, and at the time of, conception. The fragile X syndrome is a genetic disorder which is the most common form of inherited mental retardation. This disorder can be diagnosed by the induction of fragile sites on the X chromosome which is cultured in a medium deficient in folic acid. In several studies, folic acid was reported to alleviate some of the developmental and behavioral manifestations associated in the fragile X syndrome, while in others, it has no effect. 9 refs.
Reading and writing skills in young adults with spina bifida and hydrocephalus.
Barnes, Marcia; Dennis, Maureen; Hetherington, Ross
2004-09-01
Reading and writing were studied in 31 young adults with spina bifida and hydrocephalus (SBH). Like children with this condition, young adults with SBH had better word decoding than reading comprehension, and, compared to population means, had lower scores on a test of writing fluency. Reading comprehension was predicted by word decoding and listening comprehension. Writing was predicted by fine motor finger function, verbal intelligence, and short-term and working memory. These findings are consistent with cognitive models of reading and writing. Writing, but not reading, was related to highest level of education achieved and writing fluency predicted several aspects of functional independence. Reading comprehension and writing remain deficient in adults with SBH and have consequences for educational attainments and functional independence.
Brown, F.B.
1981-01-01
Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes.
Assessment on self-care, mobility and social function of children with spina bifida in Turkey
Sirzai, Hulya; Dogu, Beril; Demir, Selamet; Yilmaz, Figen; Kuran, Banu
2014-01-01
The aim of the study was to investigate the functional performance in children with spina bifida, using the Pediatric Evaluation of Disability Inventory (PEDI) to look into capacity of twenty-eight children with spina bifida with lesions at different levels in different dimensions of self-care, mobility and social function. Mean age of the patients was 3.5 ± 2.3 (1–10) years. In the muscle test carried out, 13 patients (44.8%) had no movements including pelvic elevation in lower extremity muscles and they were at level 5. Sixteen patients (54%) were non-ambulatory according to the Hoofer ambulation classification. Raw and scale scores in the self-care, mobility and social function domains both in the functional skill scale and in the caregiver scale were found to be lower compared to the data of the normal population. A statistically significant correlation was observed in the self-care values of the Functional Skills Scales and the Caregiver Assistance Scale measurements, which was positive for age and negative for Functional Ambulation Scale and muscle test (P < 0.05). A positive relation was found between the Functional Skills Scales-mobility area and age while a negative relation was observed between Functional Ambulation Scale and muscle test (P < 0.005). A negative relation was also found between Caregiver Assistance Scale-mobility and Functional Ambulation Scale and muscle test (P < 0.005). In our study, the functional performance of the children was found to be low. Low-level lesions, encouraging muscular strength and independence in mobility are all very important factors for functional independence. PMID:25206788
A two-view ultrasound CAD system for spina bifida detection using Zernike features
NASA Astrophysics Data System (ADS)
Konur, Umut; Gürgen, Fikret; Varol, Füsun
2011-03-01
In this work, we address a very specific CAD (Computer Aided Detection/Diagnosis) problem and try to detect one of the relatively common birth defects - spina bifida, in the prenatal period. To do this, fetal ultrasound images are used as the input imaging modality, which is the most convenient so far. Our approach is to decide using two particular types of views of the fetal neural tube. Transcerebellar head (i.e. brain) and transverse (axial) spine images are processed to extract features which are then used to classify healthy (normal), suspicious (probably defective) and non-decidable cases. Decisions raised by two independent classifiers may be individually treated, or if desired and data related to both modalities are available, those decisions can be combined to keep matters more secure. Even more security can be attained by using more than two modalities and base the final decision on all those potential classifiers. Our current system relies on feature extraction from images for cases (for particular patients). The first step is image preprocessing and segmentation to get rid of useless image pixels and represent the input in a more compact domain, which is hopefully more representative for good classification performance. Next, a particular type of feature extraction, which uses Zernike moments computed on either B/W or gray-scale image segments, is performed. The aim here is to obtain values for indicative markers that signal the presence of spina bifida. Markers differ depending on the image modality being used. Either shape or texture information captured by moments may propose useful features. Finally, SVM is used to train classifiers to be used as decision makers. Our experimental results show that a promising CAD system can be actualized for the specific purpose. On the other hand, the performance of such a system would highly depend on the qualities of image preprocessing, segmentation, feature extraction and comprehensiveness of image data.
... spine, or spinal cord. It happens if the spinal column of the fetus doesn't close completely during the first month of pregnancy. This can damage the nerves and spinal cord. Screening tests during pregnancy can check for ...
... Ultrasound . This test uses sound waves and a computer screen to show a picture of your baby ... scans use special X-ray equipment and powerful computers to make pictures of the inside of your ...
... Myelomeningocele (sounds like: my-low-ma-nin-jo-seal; hear how âmyelomeningoceleâ sounds ) When people talk ... the legs. Meningocele (sounds like: ma-nin-jo-seal; hear how âmeningoceleâ sounds ) Another type of ...
Monte Carlo neutrino oscillations
Kneller, James P.; McLaughlin, Gail C.
2006-03-01
We demonstrate that the effects of matter upon neutrino propagation may be recast as the scattering of the initial neutrino wave function. Exchanging the differential, Schrodinger equation for an integral equation for the scattering matrix S permits a Monte Carlo method for the computation of S that removes many of the numerical difficulties associated with direct integration techniques.
ERIC Educational Resources Information Center
Houser, Larry L.
1981-01-01
Monte Carlo methods are used to simulate activities in baseball such as a team's "hot streak" and a hitter's "batting slump." Student participation in such simulations is viewed as a useful method of giving pupils a better understanding of the probability concepts involved. (MP)
Olesen, Jamie D; Kiddoo, Darcie A; Metcalfe, Peter D
2013-01-01
OBJECTIVE: To determine the association between urinary continence and quality of life (QoL) in a paediatric spina bifida population. METHODS: After appropriate ethics approval, a prospective study was initiated using multiple validated QoL instruments that were distributed to patients as they presented for their annual appointment at the Northern Alberta Spina Bifida Clinic (Edmonton, Alberta). General demographic information was collected and validated questionnaires were used. The survey package included two instruments to assess overall QoL: Global Pediatric QoL (PedsQL 4.0) and Health Specific QoL-Spina Bifida (HRQoL-SB). Two instruments were also included to quantify urinary symptoms and assess urinary specific QoL: the Urinary Incontinence Severity Index – Pediatric (ISI-P) and Urinary Specific QoL (PinQ). RESULTS: A total of 71 patients were enrolled in the study. The general QoL (PedsQL 4.0) and health-specific QoL (HRQoL-SB) scores for the population indicated an overall QoL of 66% (n=69) and 83% (n=67), respectively. Approximately 46% (33 of 71) reported >1 episode of urinary incontinence per week. Urinary continence was associated with a significantly higher urinary-specific QoL (PinQ; P<0.001), general QoL (PedsQL 4.0; P<0.05) and health-specific QoL (HRQoL-SB; P<0.05). Furthermore, urinary incontinence and its effect on QoL was not influenced by the presence of a shunt, level of the lesion or manner of dysraphism. CONCLUSION: These data suggest that QoL in patients with spina bifida is related to urinary continence. This effect appears to be independent of the type and level of the spinal dysraphism and the presence or absence of a shunt. PMID:24421717
Jafarian, Abbas; Zolfaghari, Behzad; Shirani, Kobra
2014-01-01
Background: It has been shown that plants from the family Rhamnaceae possess anticancer activity. In this study, we sought to determine if Ziziphus spina-christi, a species from this family, has cytotoxic effect on cancer cell lines. Materials and Methods: Using maceration method, different extracts of leaves of Z. spina-christi were prepared. Hexane, chloroform, chloroform-methanol (9:1), methanol-water (7:1) methanol, butanol and water were used for extraction, after preliminary phytochemical analyses were done. The cytotoxic activity of the extracts against Hela and MDA-MB-468 tumor cells was evaluated by MTT assay. Briefly, cells were seeded in microplates and different concentrations of extracts were added. After incubation of cells for 72 h, their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. Results: Hexane, chloroform, chloroform-methanol, butanol, methanol-water and aqueous extracts of Z. spina-christi significantly and concentration-dependently reduced viability of Hela and MAD-MB-468 cells. In the both cell lines, chloroform-methanol extract of Z. spina-christi was more potent than the other extracts. Results: From the finding of this study it can be concluded that Z. spina-christi is a good candidate for further study for new cytotoxic agents. PMID:24627846
Motor learning in children with spina bifida: intact learning and performance on a ballistic task.
Dennis, Maureen; Jewell, Derryn; Edelstein, Kim; Brandt, Michael E; Hetherington, Ross; Blaser, Susan E; Fletcher, Jack M
2006-09-01
Learning and performance on a ballistic task were investigated in children with spina bifida meningomyelocele (SBM), with either upper level spinal lesions (n = 21) or lower level spinal lesions (n = 81), and in typically developing controls (n = 35). Participants completed three phases (20 trials each) of an elbow goniometer task that required a ballistic arm movement to move a cursor to one of two target positions on a screen, including (1) an initial learning phase, (2) an adaptation phase with a gain change such that recalibration of the ballistic arm movement was required, and (3) a learning reactivation phase under the original gain condition. Initial error rate, asymptotic error rate, and learning rate did not differ significantly between the SBM and control groups. Relative to controls, the SBM group had reduced volumes in the cerebellar hemispheres and pericallosal gray matter (the region including the basal ganglia), although only the pericallosal gray matter was significantly correlated with motor adaptation. Congenital cerebellar dysmorphology is associated with preserved motor skill learning on voluntary, nonreflexive tasks in children with SBM, in whom the relative roles of the cerebellum and basal ganglia may differ from those in the adult brain.
Spina bifida in fetus is associated with an altered pattern of DNA methylation in placenta.
Zhang, Xiaojuan; Pei, Lijun; Li, Runting; Zhang, Wei; Yang, Hua; Li, Yongchao; Guo, Yu; Tan, Pingping; Han, Jingdong J; Zheng, Xiaoying; Ma, Runlin Z
2015-10-01
Failure in closure of neural tube leads to neural tube defects (NTDs), which are among the most common symptoms of human birth defects. Although epigenetic status in placenta is linked to fetal development, the mechanism behind this remains unknown. Because of the importance of DNA methylation in gene function, we set to explore whether or not DNA methylation in human placenta is also linked to fetal NTDs. Here we show for the first time that alteration of DNA methylation in placenta is closely associated with the phenotypes of fetal spina bifida (Sb). We found that patterns of DNA methylation for genes in neurological system process were differentially altered in the Sb placenta. In particular, the transcription regulatory regions of TRIM26 and GANS were kept at the hypomethylation status in Sb placenta alone. Accordingly, the protein levels of TRIM26 and GNAS were significantly elevated only in the Sb placenta but not in the Sb-affected fetuses. In cellular model of CHO cells deficient in Dihydrofolate reductase and treated with 5-aza-2'-deoxycytidine, the protein levels of GNAS and TRIM26 were significantly higher than those in normal control cells. These findings suggested that epigenetic status of genes in placenta have profound impacts on the development of NTDs.
Anomalous development of brain structure and function in spina bifida myelomeningocele.
Juranek, Jenifer; Salman, Michael S
2010-01-01
Spina bifida myelomeningocele (SBM) is a specific type of neural tube defect whereby the open neural tube at the level of the spinal cord alters brain development during early stages of gestation. Some structural anomalies are virtually unique to individuals with SBM, including a complex pattern of cerebellar dysplasia known as the Chiari II malformation. Other structural anomalies are not necessarily unique to SBM, including altered development of the corpus callosum and posterior fossa. Within SBM, tremendous heterogeneity is reflected in the degree to which brain structures are atypical in qualitative appearance and quantitative measures of morphometry. Hallmark structural features of SBM include overall reductions in posterior fossa and cerebellum size and volume. Studies of the corpus callosum have shown complex patterns of agenesis or hypoplasia along its rostral-caudal axis, with rostrum and splenium regions particularly susceptible to agenesis. Studies of cortical regions have demonstrated complex patterns of thickening, thinning, and gyrification. Diffusion tensor imaging studies have reported compromised integrity of some specific white matter pathways. Given equally complex ocular motor, motor, and cognitive phenotypes consisting of relative strengths and weaknesses that seem to align with altered structural development, studies of SBM provide new insights to our current understanding of brain structure-function associations.
Juranek, Jenifer; Stuebing, Karla; Cirino, Paul T.; Dennis, Maureen; Fletcher, Jack M.
2013-01-01
Abstract Abnormalities of the midbrain tectum are common but variable malformations in spina bifida meningomyelocele (SBM) and have been linked to neuropsychological deficits in attention orienting. The degree to which variations in tectum structure influence white matter (WM) connectivity to cortical regions is unknown. To assess the relationship of tectal structure and connectivity to frontal and parietal cortical regions, probabilistic diffusion tractography was performed on 106 individuals (80 SBM, 26 typically developing [TD]) to isolate anterior versus posterior tectocortical WM pathways. Results showed that those with SBM exhibited significantly reduced tectal volume, along with decreased fractional anisotropy (FA) in posterior but not anterior tectocortical WM pathways when compared with TD individuals. The group with SBM also showed greater within-subject discrepancies between frontal and parietal WM integrity compared with the TD group. Of those with SBM, qualitative classification of tectal beaking based on radiological review was associated with increased axial diffusivity across both anterior and posterior tectocortical pathways, relative to individuals with SBM and a normal appearing tectum. These results support previous volumetric findings of greater impairment to posterior versus anterior brain regions in SBM, and quantifiably relate tectal volume, tectocortical WM integrity, and tectal malformations in this population. PMID:23937233
[The quality of life of Brazilian and North-American adolescents with spina bifida].
Soares, Ana Helena Rotta; Moreira, Martha Cristina Nunes; Monteiro, Lúcia Maria Costa
2008-12-01
The purpose of the present research is to explore and describe the quality of life of adolescents in two different cultural environments, the Brazilian and the North American. The point of reference of the investigation is the dimension encompassing the concept of quality of life. This qualitative research utilized semi-structured interviews and focal groups in two health-care units specialized in the care of youths with spina bifida, one in Brazil and another in the USA. The discourses reflected the need for more comprehensive categories of quality of life, not pulverizing the life experience. The results reveal inequality in the interactions between the healthy and the disabled and show that the stigma permeates all dimensions of the life of these individuals, interfering in their social inclusion, as well as in their subjective construction and self-esteem. Two fields of reference were identified for the concept of quality of life: (1) the micro-political that refers to social values, beliefs and expectations that are created through face to face encounters; and (2) the macro-political referring to the public universe, democracy and human rights. PMID:19039405
Attention in spina bifida myelomeningocele: Relations with brain volume and integrity
Kulesz, Paulina A.; Treble-Barna, Amery; Williams, Victoria J.; Juranek, Jenifer; Cirino, Paul T.; Dennis, Maureen; Fletcher, Jack M.
2015-01-01
This study investigated the relations of tectal volume and superior parietal cortex, as well as alterations in tectocortical white matter connectivity, with the orienting and executive control attention networks in individuals with spina bifida myelomeningocele (SBM). Probabilistic diffusion tractography and quantification of tectal and superior parietal cortical volume were performed on 74 individuals aged 8–29 with SBM and a history of hydrocephalus. Behavioral assessments measured posterior (covert orienting) and anterior (conflict resolution, attentional control) attention network functions. Reduced tectal volume was associated with slower covert orienting; reduced superior parietal cortical volume was associated with slower conflict resolution; and increased axial diffusivity and radial diffusivity along both frontal and parietal tectocortical pathways were associated with reduced attentional control. Results suggest that components of both the orienting and executive control attention networks are impaired in SBM. Neuroanatomical disruption to the orienting network appears more robust and a direct consequence of characteristic midbrain dysmorphology; whereas, executive control difficulties may emerge from parietal cortical anomalies and reduced frontal and parietal cortical–subcortical white matter pathways susceptible to the pathophysiological effects of congenital hydrocephalus. PMID:26106529
Shappira, Z; Terkel, J; Egozi, J; Nyska, A; Friedman, J
1990-06-01
The present study investigates the possibility that plants used in traditional medicine for birth control may also reduce reproduction in their natural herbivores. Ten species of plants utilized by Bedouins for birth control were selected. These were dried, ground, and mixed with the standard diet and offered to female laboratory rats. Six plant species (60%) were found to reduce reproduction rate in white female rats, and the shoots and fruit of one of the effective species,Ziziphus spina-christi, when offered to its natural herbivore,Meriones tristrami, at the level of 35% of the standard diet, postponed female puberty and significantly reduced offspring survival. Plants that are known to be an effective factor in human birth control may have similar effects on their natural mammalian herbivores. In such cases, when the seeds of the plant are part of the herbivore diet, a certain percentage of the seeds will be dispersed and germinate, while the resulting population control of the animal achieved by its consumption of the seeds will prevent overgrazing, thus maintaining a mutual balance. It is suggested that ethnopharmacological data may assist in uncovering plants that, under the following conditions, have the potential to regulate reproduction in mammalian herbivores (with implications for human reproduction): (1) the plant is an important component of the animal's diet and (2) the active secondary metabolites of the plant directly interact with the physiological systems governing reproduction in the herbivore. PMID:24264003
Associations of Ethnicity and SES with IQ and Achievement in Spina Bifida Meningomyelocele
Garnaat, Sarah L.; Myszka, Katherine A.; Fletcher, Jack M.; Dennis, Maureen
2010-01-01
Objectives We evaluated whether the phenotypic pattern of higher verbal than nonverbal IQ in children with spina bifida meningomyelocele (SBM) is consistent across subgroups differing in ethnicity and SES. We also explored the relation of cognitive and academic performance. Methods Non-Hispanic White (n = 153) and Hispanic (n = 80) children with SBM received the Stanford Binet Test of Intelligence-IV and achievement subtests of the Woodcock–Johnson. Parents completed questionnaires assessing the family environment [socioeconomic status (SES), resources, and educational opportunities]. Results Multivariate analysis revealed that Hispanic children with lower SES had lower verbal than nonverbal scores. Hispanic children with higher SES and non-Hispanic White children demonstrated the reverse pattern. Verbal and nonverbal IQ interacted to predict reading and math performance. Conclusions Lower SES is associated with lower verbal IQ in economically disadvantaged Hispanic children with SBM. Academic achievement is largely correlated with verbal IQ, but children with lower verbal IQ may partially compensate with higher nonverbal ability. PMID:20150339
Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue
2010-01-01
Background The flexion-relaxation phenomenon (FRP) is defined by reduced lumbar erector spinae (ES) muscle myoelectric activity during full trunk flexion. The objectives of this study were to quantify the effect of hip and back extensor muscle fatigue on FRP parameters and lumbopelvic kinematics. Methods Twenty-seven healthy adults performed flexion-extension tasks under 4 different experimental conditions: no fatigue/no load, no fatigue/load, fatigue/no load, and fatigue/load. Total flexion angle corresponding to the onset and cessation of myoelectric silence, hip flexion angle, lumbar flexion angle and maximal trunk flexion angle were compared across different experimental conditions by 2 × 2 (Load × Fatigue) repeated-measures ANOVA. Results The angle corresponding to the ES onset of myoelectric silence was reduced after the fatigue task, and loading the spine decreased the lumbar contribution to motion compared to the hip during both flexion and extension. A relative increment of lumbar spine motion compared to pelvic motion was also observed in fatigue conditions. Conclusions Previous results suggested that ES muscles, in a state of fatigue, are unable to provide sufficient segmental stabilization. The present findings indicate that, changes in lumbar-stabilizing mechanisms in the presence of muscle fatigue seem to be caused by modulation of lumbopelvic kinematics. PMID:20525336
Ethics of selective treatment of spina bifida. Report by a working party.
1975-01-11
Ethical problems in medicine usually arise when normal guiding principles appear to be in conflict. In the case of babies with severe spina bifida, or similar abnormalities, two such fundamental principles may be applied with opposing conclusions. The first is that any decision requires an estimate of the balance of suffering and happiness for those concerned in an action, and the other is the assertion that human life is sacred. Resolution of the conflict between these is possible by looking at the problem in a different and less fundamental way, and one such approach is through the concept of ordinary and extraordinary means. While man does not possess power of absolute ownership over life, his duties of stewardship require him to use ordinary means of safeguarding life; he may use, but is not obliged to use, extraordinary means. The distinction between ordinary and extraordinary means may vary with circumstance, and so the application of this principle involves decisions at a third or more practical level. These include an assessment of the child's abnormality, of the effects of this upon the quality of life possible for the child, and of the burdens that will be placed on the family and society. At each level the ethical decisions involve complex choices, and clearly any present policies must be regarded as temporary unavoidable compromises rather than as final solutions.
Hannay, H. Julia; Dennis, Maureen; Kramer, Larry; Blaser, Susan; Fletcher, Jack M.
2009-01-01
After a review of Arthur Benton’s conceptual and methodological contributions to the understanding of normal and pathological development, we discuss agenesis of the corpus callosum (CC), criteria for potential neuroanatomical compensatory mechanisms in CC agenesis, and the results of an examination of magnetic resonance imaging (MRI) data of the CC in 193 children with spina bifida meningomyelocele (SBM). There were 26 CC regional patterns. Although complete agenesis did not occur, partial agenesis was observed in 102 children and within 15 CC regional patterns. Only 4.1% had a normal CC. Quantitative assessment of the area of the CC in 26 NC children and 68 children with SBM revealed that all subgroups with CC anomalies had smaller areas than did a subgroup with a normal CC. Areas were especially small in rostral/splenial agenesis and splenial agenesis but larger with rostral agenesis. Subgroups with normal/hypoplastic regions or complete hypoplasia also had CC areas that were smaller than normal but larger than the areas for the splenial agenesis groups. The relative rarity of anterior commissure enlargement (3.1%) and longitudinal bundles of Probst (0.1%) suggest that these particular fiber tract anomalies are unlikely candidates for structural compensatory mechanisms. The hippocampal commissure, enlarged in 13%, may be a more promising candidate. Overall, however, the functionality of anomalous fiber tracts and commissures in SBM is yet to be determined. PMID:19052950
Krebs, P; Eickelberg, W; Krobath, H; Baruch, I
1989-02-01
The purpose of this research was to investigate the effects of active exercise of the arms on various physiological, perceptual, and cognitive parameters of children with spina bifida manifesta who were aged 9 to 12 yr. Following a 5-min. rest interval, subjects were either not exercised (control days) for a 6-min. period or were exercised (experimental days) for a 6-min. period. Cardiac measures, respiratory function, peripheral vision, and figural learning trials were recorded after exercise. Wilcoxon matched-pairs signed rank tests were computed on the means of the exercise and no-exercise conditions for each measure. Six minutes of active exercise resulted in significant increases in peripheral vision, respiratory and cardiac measures and significant decreases in figural learning trials for these children. A floor effect was noted for the figural learning test. It was concluded that exercise increased blood flow through the lungs allowing for greater oxygen diffusion in the brain and other facilitatory effects resulting in more effective cerebral activity. Curriculum revisions for such children seem to indicate the importance of activity in facilitating subsequent learning.
Computer-mediated support for adolescents with cerebral palsy or spina bifida.
Barnfather, Alison; Stewart, Miriam; Magill-Evans, Joyce; Ray, Lynne; Letourneau, Nicole
2011-01-01
Social support plays a key role in improving health outcomes for children with chronic conditions. Internet connections are an important component of adolescents' social networks and may overcome geographic and environmental barriers for those with disabilities. This article focuses on the processes associated with a 6-month online support intervention for adolescents with cerebral palsy or spina bifida. Specifically, the purpose was to determine the extent to which adolescents used an online peer support intervention, the processes used, and the perceived benefits and satisfaction with the intervention. Five peer mentors with the same disabilities provided information, affirmation, and emotional support. The online environment created a safe space to foster reciprocal interpersonal connections and appropriate social comparison. Two-thirds of the participants viewed the computer-mediated support intervention as fun. Factors influencing the perceived utility of the intervention included typing speed, cognitive skills, and perceived need for additional support. Girls were significantly more likely to contribute messages than were boys. Peer mentors wished that this type of support program had been available when they were teens, appreciated the supportive elements, and reported learning from the teen participants. Health professionals wanting to implement online support need to consider the age and ability levels of participants and the optimal length and format of the support program.
Visual assessment of segmental muscle ultrasound images in spina bifida aperta.
Brandsma, Rick; Verbeek, Renate J; Maurits, Natasha M; Hamminga, Janneke T; Brouwer, Oebele F; van der Hoeven, Johannes H; Burger, Huibert; Sival, Deborah A
2012-08-01
In spina bifida aperta (SBA), spinal MRI provides a surrogate marker to estimate muscle damage caudal to the myelomeningocele (MMC). This muscle damage by the MMC can be quantified by intra-individual comparison of muscle ultrasound density (MUD) caudal versus cranial to the MMC (dMUD = [MUD(caudal-to-the-MMC)] - [MUD(cranial-to-the-MMC)]). Quantitative dMUD assessment requires time, equipment and expertise, whereas it could also be visually determined by differences in muscle echodensity caudal vs. cranial to the MMC (visual-dMUD). If visual and quantitative dMUD correspond, visual dMUD assessment could provide a clinical screening parameter. In 100 SBA muscle ultrasound recordings of patients with various MMC levels, we aimed to compare quantitative dMUD (dMUD = [MUD(calf-muscle/S1)] - [MUD(quadriceps-muscle/L2-L4)]) with visual dMUD assessments by 20 different observers. Results indicate that quantitative dMUD can be visually detected (sensitivity 86%; specificity 57%), implicating that visual dMUD screening could provide a quick, clinical screening tool for muscle impairment by the MMC.
Monte Carlo fluorescence microtomography
NASA Astrophysics Data System (ADS)
Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge
2011-07-01
Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.
2004-05-01
Neural tube defects (NTDs) are serious birth defects of the spine (e.g., spina bifida) and the brain (e.g., anencephaly) that occur during early pregnancy, often before a woman knows she is pregnant; 50%-70% of these defects can be prevented if a woman consumes sufficient folic acid daily before conception and throughout the first trimester of her pregnancy. In 1992, to reduce the number of cases of spina bifida and other NTDs, the U.S. Public Health Service (USPHS) recommended that all women capable of becoming pregnant consume 400 microg of folic acid daily. Three approaches to increase folic acid consumption were cited: 1) improve dietary habits, 2) fortify foods with folic acid, and 3) use dietary supplements containing folic acid. Mandatory fortification of cereal grain products went into effect in January 1998; during October 1998-December 1999, the reported prevalence of spina bifida declined 31%, and the prevalence of anencephaly declined 16%. Other studies have indicated similar trends. To update the estimated numbers of NTD-affected pregnancies and births, CDC recently analyzed data from 23 population-based surveillance systems that include prenatal ascertainment of these birth defects. This report summarizes the results of that analysis, which indicate that the estimated number of NTD-affected pregnancies in the United States declined from 4,000 in 1995-1996 to 3,000 in 1999-2000. This decline in NTD-affected pregnancies highlights the partial success of the U.S. folic acid fortification program as a public health strategy. To reduce further the number of NTD-affected pregnancies, all women capable of becoming pregnant should follow the USPHS recommendation and consume 400 microg of folic acid every day. PMID:15129193
2010-01-01
Background Spina bifida is a malformation of the neural tube and is the most common of neural tube defects (NTDs). The etiology of spina bifida is largely unknown, although it is thought to be multi-factorial, involving multiple interacting genes and environmental factors. Mutations in transcriptional co-activator genes-Cited2, p300, Cbp, Tfap2α, Carm1 and Cart1 result in NTDs in murine models, thus prompt us to investigate whether homologues of these genes are associated with NTDs in humans. Methods Data and biological samples from 297 spina bifida cases and 300 controls were derived from a population-based case-control study conducted in California. 37 SNPs within CITED2, EP300, CREBBP, TFAP2A, CARM1 and ALX1 were genotyped using an ABI SNPlex assay. Odds ratios and 95% confidence intervals were calculated for alleles, genotypes and haplotypes to evaluate the risk for spina bifida. Results Several SNPs showed increased or decreased risk, including CITED2 rs1131431 (OR = 5.32, 1.04~27.30), EP300 rs4820428 (OR = 1.30, 1.01~1.67), EP300 rs4820429 (OR = 0.50, 0.26~0.50, in whites, OR = 0.7, 0.49~0.99 in all subjects), EP300 rs17002284 (OR = 0.43, 0.22~0.84), TFAP2A rs3798691 (OR = 1.78, 1.13~2.87 in Hispanics), CREBBP rs129986 (OR = 0.27, 0.11~0.69), CARM1 rs17616105 (OR = 0.41, 0.22~0.72 in whites). In addition, one haplotype block in EP300 and one in TFAP2A appeared to be associated with increased risk. Conclusions Modest associations were observed in CITED2, EP300, CREBBP, TFAP2A and CARM1 but not ALX1. However, these modest associations were not statistically significant after correction for multiple comparisons. Searching for potential functional variants and rare causal mutations is warranted in these genes. PMID:20932315
A Description of Spina Bifida Cases and Co-Occurring Malformations, 1976–2011
Parker, Samantha E.; Yazdy, Mahsa M.; Mitchell, Allen A.; Demmer, Laurie A.; Werler, Martha M.
2015-01-01
Mandatory folic acid fortification in the United States corresponded with a decline in the prevalence of spina bifida (SB). The aim of this study was to describe the epidemiologic characteristics of isolated versus non-isolated SB cases in both pre- and post-fortification periods. SB cases in the Slone Epidemiology Center Birth Defects Study from 1976 to 2011 without chromosomal anomalies and syndromes were included. A maternal interview, conducted within 6 months of delivery, collected information on demographics, reproductive history, diet, and supplement use. Daily folic acid intake in the periconceptional period was calculated using both dietary and supplement information and categorized as low intake (<400 μg/day) or high intake (≥400 μg/day). SB cases (n=1170) were classified as isolated (80.4%) or non-isolated (19.1%). Non-isolated cases were further divided into subgroups based on accompanying major malformations (midline, renal, genital, heart, laterality). Compared to non-isolated cases, isolated cases were more likely to be white, non-Hispanic and have more than 12 years of education. Cases in the renal, genital, and heart subgroups had the lowest proportions of mothers with a high folic acid intake. The change from pre- to post-fortification was associated with a decrease in the proportion of isolated cases from 83% to 72%, though in both periods isolated cases were more likely to be female and their mothers were more likely to have high folic acid intake. These findings highlight the importance of separating isolated and non-isolated cases in etiologic research of SB. PMID:24357196
Comparison of Health-Related Quality of Life between children with cerebral palsy and spina bifida.
Tezcan, Sezen; Simsek, Tülay Tarsuslu
2013-09-01
This study has two aims-the first is to compare the Health Related Quality of Life (HRQoL) between children with cerebral palsy (CP) and children with spina bifida (SB); the second is to investigate the relationship between HRQoL and age, sex, body mass index (BMI), level of ambulation, cooperation, family income and the mother's education level in both groups of children. The study included 96 children with CP and 70 children with SB (aged 5-18) who attended a physiotherapy and rehabilitation program at an institute of special training and rehabilitation. Socio-demographic information was obtained within the study. The Child Health Questionnaire (CHQ-PF50) was used to evaluate HRQoL. A significant difference was found in terms of age and BMI between children with CP and SB (p<0.05). HRQoL was lower for children with CP. There was a significant difference between the two groups in terms of role/social limitations - emotional behavioral, behavior, global behavior, parental impact-emotional and parental impact-time (p<0.05). A positive correlation was found between BMI and self-esteem in children with SB, unlike children with CP. The HRQoL of children with CP was lower than children with SB. The parameters of behavior and parental impact were particularly affected in the children with CP. Minimizing behavioral problems (which can improve with advancing age) of the children with CP and reducing parental impact are important for improving the HRQoL of both the child and parents. There is a need for further studies on this issue. PMID:23787116
Factors associated with the timeliness of postnatal surgical repair of spina bifida
Cassell, Cynthia H.; Laditka, Sarah B.; Thibadeau, Judy K.; Correia, Jane; Grosse, Scott D.; Kirby, Russell S.
2016-01-01
Purpose Clinical guidelines recommend repair of open spina bifida (SB) prenatally or within the first days of an infant’s life. We examined maternal, infant, and health care system factors associated with time-to-repair among infants with postnatal repair. Methods This retrospective, statewide, population-based study examined infants with SB born in Florida 1998–2007, ascertained by the Florida Birth Defects Registry. We used procedure codes from hospital discharge records to identify the first recorded myelomeningocele repair (ICD-9 CM procedure code 03.52) among infants with birth hospitalizations. Using Poisson multivariable regression, we examined time-to-repair by hydrocephalus, SB type (isolated [no other coded major birth defect] versus non-isolated), and other selected factors. Results Of 199 infants with a recorded birth hospitalization and coded myelomeningocele repair, 87.9 % had hydrocephalus and 19.6 % had non-isolated SB. About 76.4 % of infants had repair by day 2 of life. In adjusted analyses, infants with hydrocephalus were more likely to have timely repair (adjusted prevalence ratio (aPR) = 1.48, 95 % confidence interval (CI) 1.02–2.14) than infants without hydrocephalus. SB type was not associated with repair timing. Infants born in lower level nursery care hospitals with were less likely to have timely repairs (aPR = 0.71, 95 % CI 0.52–0.98) than those born in higher level nursery care hospitals. Conclusions Most infants with SB had surgical repair in the first 2 days of life. Lower level birth hospital nursery care was associated with later repairs. Prenatal diagnosis can facilitate planning for a birth hospital with higher level of nursery care, thus improving opportunities for timely repair. PMID:27179533
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-387, 10 June 2003
This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.
Marcus, Ryan C.
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Albano, J P; Shannon, S G; Alem, N M; Mason, K T
1996-08-01
Spina bifida occulta (SBO) occurs in 18-34% of the normal U.S. population. Recently, 16.5% of normal, asymptomatic male soldier volunteer candidates in a U.S. Army Aeromedical Research Laboratory ride motion study were excluded from the study because they had SBO at one vertebral level. Disqualifying this percentage of screened research subject candidates threatened the timely completion of the schedule-intense protocol. Although one study suggests that SBO at spinal level S1 has a higher incidence of posterior disc herniation, the preponderance of clinical literature reports that spina bifida occulta is not a medical problem. The impact literature indicates that lumbosacral vertebral bodies fracture at 7.14 kN in static compression and 20+ G during dynamic vertical impacts. In this paper, we examined the human data observed in ejection seat incidents, the rationale for excluding volunteers with single level SBO and the path of axial load transmission through the lumboscral spine. Based on the findings, we concluded that research volunteers with single level SBO are not at increased risk for injury and recommended inclusion of these volunteers in future studies involving repeated axial impacts due to ride motion. PMID:8853834
Wages, Nathan P; Beck, Travis W; Ye, Xin; Hofford, Craig W
2013-10-01
Musculoskeletal disorders are some of the most commonly occurring chronic conditions affecting the US population, with the most self-reported and diagnosed disorder being low back pain. Low back pain is often due to suboptimal back muscle function, at least in part, as a result of muscle inactivity and disuse. Resistance exercise has been shown to be successful in the treatment of low back pain. The purpose of the present investigation was to examine resting mechanomyographic (MMG) amplitude for the erector spinae and trapezius muscles prior to and following resistance exercise. Twenty healthy, college-aged men were measured for resting MMG amplitude levels prior to, and following a resistance training workout. The workout consisted of three sets of ten repetitions on the conventional deadlift, bent-over row, and lat pulldown exercises, with 1 min of rest between all sets and exercises. The results showed that there were approximate 10% and 15% decreases in normalized MMG amplitude after exercise for the erector spinae and trapezius muscles, respectively. These findings demonstrate a relaxation effect in the back muscles after exercise that could potentially be helpful in alleviating low back pain. PMID:24045398
Kim, Yu-Ri; Yoo, Won-Gyu
2016-01-01
[Purpose] The purpose of this study was to investigate activities of the hip extensors and erector spinae during bridging exercise by using instruments with a laser pointer on the pelvic belt. [Subjects] Twelve subjects (age, 23 to 33 years) with non-specific low back pain volunteered for this study. [Methods] Subjects performed bridging exercises with and without trajectory exercises by using a laser pointer fixed to a pelvic strap. The erector spinae, gluteus maximus and hamstring activities with and without trajectory exercises using a laser pointer were recorded on using electromyography. [Results] Compared to the without laser pointer group, the group that underwent bridging with trajectory exercises using a laser pointer had significantly higher gluteus maximus activity and significantly lower erector spinae activity. Significantly higher gluteus maximus/erector spinae activity ratios were observed when performing trajectory exercises using a laser pointer during bridging exercises. [Conclusion] This result suggests that trajectory exercises using a laser pointer during a bridging exercise would be effective for improving gluteus maximus activity. PMID:27065555
Kim, Yu-Ri; Yoo, Won-Gyu
2016-01-01
[Purpose] The purpose of this study was to investigate activities of the hip extensors and erector spinae during bridging exercise by using instruments with a laser pointer on the pelvic belt. [Subjects] Twelve subjects (age, 23 to 33 years) with non-specific low back pain volunteered for this study. [Methods] Subjects performed bridging exercises with and without trajectory exercises by using a laser pointer fixed to a pelvic strap. The erector spinae, gluteus maximus and hamstring activities with and without trajectory exercises using a laser pointer were recorded on using electromyography. [Results] Compared to the without laser pointer group, the group that underwent bridging with trajectory exercises using a laser pointer had significantly higher gluteus maximus activity and significantly lower erector spinae activity. Significantly higher gluteus maximus/erector spinae activity ratios were observed when performing trajectory exercises using a laser pointer during bridging exercises. [Conclusion] This result suggests that trajectory exercises using a laser pointer during a bridging exercise would be effective for improving gluteus maximus activity. PMID:27065555
Kim, Yu-Ri; Yoo, Won-Gyu
2016-01-01
[Purpose] The purpose of this study was to investigate activities of the hip extensors and erector spinae during bridging exercise by using instruments with a laser pointer on the pelvic belt. [Subjects] Twelve subjects (age, 23 to 33 years) with non-specific low back pain volunteered for this study. [Methods] Subjects performed bridging exercises with and without trajectory exercises by using a laser pointer fixed to a pelvic strap. The erector spinae, gluteus maximus and hamstring activities with and without trajectory exercises using a laser pointer were recorded on using electromyography. [Results] Compared to the without laser pointer group, the group that underwent bridging with trajectory exercises using a laser pointer had significantly higher gluteus maximus activity and significantly lower erector spinae activity. Significantly higher gluteus maximus/erector spinae activity ratios were observed when performing trajectory exercises using a laser pointer during bridging exercises. [Conclusion] This result suggests that trajectory exercises using a laser pointer during a bridging exercise would be effective for improving gluteus maximus activity.
ERIC Educational Resources Information Center
Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger
2009-01-01
Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…
Quantum Gibbs ensemble Monte Carlo
Fantoni, Riccardo; Moroni, Saverio
2014-09-21
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
Katayose, Masaki; Watanabe, Kota
2016-01-01
Study Design Cross-sectional study of healthy volunteers. Purpose We aimed to investigate the variation in the lumbar facet joint orientation in an adult Asian population. The relationship between the facet joint orientation and muscle cross-sectional area (CSA) of multifidus and erector spinae was also clarified. Overview of Literature Several studies have reported that lumbar pathologies, such as lumbar spondylolysis and degenerative spondylolisthesis, were related to the horizontally shaped lumbar facet joint orientation at the lower lumbar level. However, data regarding variations in the facet joint orientation in asymptomatic subjects have not been well documented. Methods In 31 healthy male adult Asian volunteers, the facet joint orientation and CSA of multifidus and erector spinae were measured using magnetic resonance imaging at the L4–5 and L5–S1 levels. Variation in the facet joint orientation was examined using coefficients of variation (CV). Pearson's product-moment coefficient was used to investigate the relationship between the facet joint orientation and CSA of multifidus and erector spinae. Results Lumbar facet joint orientation had a wider range of variation at L5–S1 (CV=0.30) than at L4–5 (CV=0.18). The L4–5 facet joint orientation had a weak but significant correlation with the CSA of erector spinae (r=0.40; p=0.031). The CSA of the multifidus had no relationship with the facet joint orientation at the L4–5 (r=0.19; p=0.314) and the L5–S1 level (r=0.19; p=0.312). Conclusions The lumbar facet joint orientation was found to have a wide variation, particularly at the L5–S1 in the Asian adult population, and the facet joint orientation had a relationship with the CSA of the erector spinae at the L4–5. PMID:27790316
Wormhole Hamiltonian Monte Carlo
Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak
2015-01-01
In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function. PMID:25861551
Isotropic Monte Carlo Grain Growth
2013-04-25
IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.
Discrete Diffusion Monte Carlo for grey Implicit Monte Carlo simulations.
Densmore, J. D.; Urbatsch, T. J.; Evans, T. M.; Buksas, M. W.
2005-01-01
Discrete Diffusion Monte Carlo (DDMC) is a hybrid transport-diffusion method for Monte Carlo simulations in diffusive media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Thus, DDMC produces accurate solutions while increasing the efficiency of the Monte Carlo calculation. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for grey Implicit Monte Carlo calculations. First, we employ a diffusion equation that is discretized in space but is continuous time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. In addition, we treat particles incident on an optically thick region using the asymptotic diffusion-limit boundary condition. This interface technique can produce accurate solutions even if the incident particles are distributed anisotropically in angle. Finally, we develop a method for estimating radiation momentum deposition during the DDMC simulation. With a set of numerical examples, we demonstrate the accuracy and efficiency of our improved DDMC method.
Straker, L C; Raposo, M A; Attias, Márcia
2008-05-01
The importance of feathers for the avian group has made them one of the most studied epidermal structures both from the morphological and evolutionary point of view. Surprisingly, our observations by Scanning Electron Microscopy detected the presence of two structures widely distributed within different avian groups and not yet described. In this paper we describe these two new structures (Spina cortica and Tapetum spinosus) and map their distribution within modern birds. The S. cortica is a thorn-like microstructure that grows on the barb cortex and the T. spinosus is the assemblage of these thorns. The distribution of these new structures among birds and their morphological diversity could be of great interest to taxonomists and evolutionary biologists interested in the origin of bird flight.
Bellin, Melissa Hayden; Sawin, Kathleen J; Roux, Gayle; Buran, Constance F; Brei, Timothy J
2007-01-01
Adolescent women with spina bifida (SB) face unique and diverse challenges. The purpose of this qualitative component of a larger mixed-method study on adaptation was to heighten rehabilitation nurses' understanding of self-concept and family relationships during adolescence. Interviews were conducted with 31 adolescent women and analyzed for themes. The women described a range of experiences, including challenges of typical adolescence, specific concerns about living with SB, school-based stressors, and incidences of teasing and bullying. The overall self-concept was primarily positive, despite the diverse stressors encountered. A significant source of strength was the close relationships with parents, although an undercurrent of tension related to independence was also expressed. Results from this study support the need for rehabilitation nurses to address not only the functional status but also the well-being and psychosocial challenges of adolescent women with SB. PMID:17432634
Hannay, H. Julia; Walker, Amy; Dennis, Maureen; Kramer, Larry; Blaser, Susan; Fletcher, Jack M.
2009-01-01
Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agenesis of the rostrum and0or splenium, and a smaller number (n = 20) showed hypoplasia (thinning) of all CC regions (rostrum, genu, body, and splenium). The expected right ear advantage (REA) was exhibited by normal controls and children with SBM having a normal or hypoplastic splenium. It was not shown by children with SBM who were left handed, missing a splenium, or had a higher level spinal cord lesion. Perhaps the right hemisphere of these children is more involved in processing some aspects of linguistic stimuli. PMID:18764972
Konno, Takuya; Suwabe, Tatsuya; Kasahara, Sou; Umeda, Yoshitaka; Oyake, Mutsuo; Fujita, Nobuya
2015-01-01
A 77-year-old woman presented with conus medullaris and cauda equina syndrome following a sudden pain in the bilateral lower abdomen and right buttock. Lumbar magnetic resonance imaging (MRI) showed not only a conus medullaris lesion, but also several lesions in the vertebral bodies (L1, L2), right major psoas muscle, right multifidus muscle and bilateral erector spinae muscles. As these areas receive blood supply from each branch of the same segmental artery, we considered all of the lesions as infarctions that were a result of a single parent vessel occlusion. It is known that a vertebral body lesion can be accompanied by a spinal cord infarction, but in combination with infarction of a muscle has not been reported. This is the first report of a concomitant spinal cord and muscle infarction revealed by MRI. It is noteworthy that a spinal cord infarction could expand not only to neighboring vertebral bodies, but also to muscles.
Crytzer, T M; Dicianno, B E; Robertson, R J; Cheng, Yu-Ting
2015-02-01
This study assessed the concurrent and construct validity of the Borg 6-20 Scale and WHEEL Scale during arm ergometry exercise stress testing in (n = 24) adolescents and adults with spina bifida. Significant, moderate, positive correlations were observed between power output and relative heart rate and power output to relative VO2peak. Further, a moderate, significant correlation between physiologic criterion variables and the rating of perceived exertion derived from the Borg Scale and the WHEEL Scale was found. Concurrent validity was supported by the following findings: (1) relative heart rate was significantly correlated with the Borg (Kendall's τ = .41) and WHEEL Scales (τ = .44), and relative VO2 was significantly correlated with the Borg (τ = .46) and WHEEL Scales (τ = .47); (2) content validity was supported by the finding that the Borg and WHEEL Scales shared significant variance (τ = .70), demonstrating internal consistency. The WHEEL Scale shows strong potential for use in this cohort subsequent to further testing and validation.
Benedum, Corey M.; Yazdy, Mahsa M.; Mitchell, Allen A.; Werler, Martha M.
2013-01-01
This study was conducted to assess the association between the risks of spina bifida (SB) in relation to cigarette, alcohol, and caffeine consumption by women during the first month of pregnancy. Between 1988–2012, this multi-center case-control study interviewed mothers of 776 SB cases and 8,756 controls about pregnancy events and exposures. We evaluated cigarette smoking, frequency of alcohol drinking, and caffeine intake during the first lunar month of pregnancy in relation to SB risk. Logistic regression models were used to calculate adjusted odds ratios and 95% confidence intervals. Levels of cigarette smoking (1–9 and ≥10/day), alcohol intake (average ≥4 drinks/day) and caffeine intake (<1, 1, and ≥2 cups/day) were not likely to be associated with increased risk of SB. Further, results were similar among women who ingested less than the recommended amount of folic acid (400 μg/day). PMID:23917813
Psihogios, Alexandra M.; Kolbuck, Victoria
2015-01-01
Objective This study aimed to evaluate rates of medical adherence, responsibility, and independence skills across late childhood and adolescence in youth with spina bifida (SB) and to explore associations among these disease self-management variables. Method 111 youth with SB, their parents, and a health professional participated at two time points. Informants completed questionnaires regarding medical adherence, responsibility-sharing, and child independence skills. Results Youth gained more responsibility and independence skills across time, although adherence rates did not follow a similar trajectory. Increased child medical responsibility was related to poorer adherence, and father-reported independence skills were associated with increased child responsibility. Conclusions This study highlights medical domains that are the most difficult for families to manage (e.g., skin checks). Although youth appear to gain more autonomy across time, ongoing parental involvement in medical care may be necessary to achieve optimal adherence across adolescence. PMID:26002195
Khoshbin, A; Vivas, L; Law, P W; Stephens, D; Davis, A M; Howard, A; Jarvis, J G; Wright, J G
2014-09-01
The purpose of this study was to evaluate the long-term outcome of adults with spina bifida cystica (SBC) who had been treated either operatively or non-operatively for scoliosis during childhood. We reviewed 45 patients with a SBC scoliosis (Cobb angle ≥ 50º) who had been treated at one of two children's hospitals between 1991 and 2007. Of these, 34 (75.6%) had been treated operatively and 11 (24.4%) non-operatively. After a mean follow-up of 14.1 years (standard deviation (sd) 4.3) clinical, radiological and health-related quality of life (HRQOL) outcomes were evaluated using the Spina Bifida Spine Questionnaire (SBSQ) and the 36-Item Short Form Health Survey (SF-36). Although patients in the two groups were demographically similar, those who had undergone surgery had a larger mean Cobb angle (88.0º (sd 20.5; 50.0 to 122.0) ; : versus 65.7º (sd 22.0; 51.0 to 115.0); p < 0.01) and a larger mean clavicle-rib intersection difference (12.3 mm; (sd 8.5; 1 to 37); versus 4.1 mm, (sd 5.9; 0 to 16); p = 0.01) than those treated non-operatively. Both groups were statistically similar at follow-up with respect to walking capacity, neurological motor level, sitting balance and health-related quality of life (HRQOL) outcomes. Spinal fusion in SBC scoliosis corrects coronal deformity and stops progression of the curve but has no clear effect on HRQOL.
Fairman, Andrea D.; Dicianno, Brad E.; Datt, Nicole; Garver, Amanda; Parmanto, Bambang; McCue, Michael
2013-01-01
The purpose of this study was to gather information regarding the receptivity of clinicians, caregivers and family members, and adults with spina bifida (SB) to the use of a mHealth application, iMobile Health and Rehabilitation (iMHere) system. Surveys were administered to end user groups in conjunction with a conference presentation at the Spina Bifida Association’s 38th Annual Conference. The survey results were obtained from a total of 107 respondents. Likert scale and qualitative results are provided in consideration of future application of the iMHere system in clinical practice. The results of this survey indicate respondents were receptive and supportive with regard to adopting such a system for personal and professional use. Challenges likely to be encountered in the introduction of the iMHere system are also revealed and discussed. PMID:25945209
2016-04-01
This rule adopts as final a proposed rule of the Department of Veterans Affairs (VA) to amend its regulations concerning the provision of health care to birth children of Vietnam veterans and veterans of covered service in Korea diagnosed with spina bifida, except for spina bifida occulta, and certain other birth defects. In the proposed rule published on May 15, 2015, VA proposed changes to more clearly define the types of health care VA provides, including day health care and health-related services, which we defined as homemaker or home health aide services that provide assistance with Activities of Daily Living or Instrumental Activities of Daily Living that have therapeutic value. We also proposed changes to the list of health care services that require preauthorization by VA. This final rule addresses comments received from the public and adopts as final the proposed rule, without change.
2016-04-01
This rule adopts as final a proposed rule of the Department of Veterans Affairs (VA) to amend its regulations concerning the provision of health care to birth children of Vietnam veterans and veterans of covered service in Korea diagnosed with spina bifida, except for spina bifida occulta, and certain other birth defects. In the proposed rule published on May 15, 2015, VA proposed changes to more clearly define the types of health care VA provides, including day health care and health-related services, which we defined as homemaker or home health aide services that provide assistance with Activities of Daily Living or Instrumental Activities of Daily Living that have therapeutic value. We also proposed changes to the list of health care services that require preauthorization by VA. This final rule addresses comments received from the public and adopts as final the proposed rule, without change. PMID:27051894
Proton Upset Monte Carlo Simulation
NASA Technical Reports Server (NTRS)
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Hardie, Rebecca; Haskew, Rachel; Harris, Joel; Hughes, Gerwyn
2015-01-01
Back pain is common in adolescents which has been associated with carrying a bag. However, there is little research examining the effects of bag style in female adolescents. The aim of the study was to investigate the effects of different bag conditions on muscle activity of the trapezius, erector spinae and latissimus dorsi muscles in female university students during walking. Twelve female university students walked on a treadmill for 5 minutes at 1.1 m/s during five conditions; control, 1 strapped rucksack, 2 strapped rucksack, ipsilateral shoulder strap and contralateral shoulder strap, each containing 10% bodyweight. Electromyography for the trapezius, erector spinae and latissimus dorsi was recorded for the last 30 s of each condition. Two-way ANOVA and paired t-tests were used to identify differences between right and left muscles and between bag conditions. Results showed that muscle activity of the left trapezius was significantly higher than the right trapezius during the 1 strap rucksack condition. For the left trapezius, the 2 strapped rucksack and the control condition had significantly lower muscle activity compared to the 1 strapped rucksack and the ipsilateral shoulder strap. For the left erector spinae muscle, there was significantly greater muscle activity when wearing the contralateral shoulder strap compared to the control. For the right erector spinae, significantly lower muscle activity was observed when wearing the 2 strapped rucksack compared to the ipsilateral shoulder strap and contralateral shoulder strap. There were no significant differences in muscle activity of the latissimus dorsi muscles between any of the bag conditions. These findings suggest that a two strapped rucksack should be used when carrying loads to reduce spinal muscle activity which may, in turn, reduce reports of back pain in female adolescents. PMID:25964808
Mineralogy of Libya Montes, Mars
NASA Astrophysics Data System (ADS)
Perry, K. A.; Bishop, J. L.; McKeown, N. K.
2009-12-01
Observations by CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) have revealed a range of minerals in Libya Montes including olivine, pyroxene, and phyllosilicate [1]. Here we extend our spectral analyses of CRISM images in Libya Montes to identify carbonates. We have also performed detailed characterization of the spectral signature of the phyllosilicate- and carbonate-bearing outcrops in order to constrain the types of phyllosilicates and carbonates present. Phyllosilicate-bearing rocks in Libya Montes have spectral bands at 1.42, 2.30 and 2.39 µm, consistent with Fe- and Mg- bearing smectites. The mixture of Fe and Mg in Libya Montes may be within the clay mineral structure or within the CRISM pixel. Because the pixels have 18 meter/pixel spatial resolution, it is possible that the bands observed are due to the mixing of nontronite and saponite rather than a smectite with both Fe and Mg. Carbonates found in Libya Montes are similar to those found in Nili Fossae [2]. The carbonates have bands centered at 2.30 and 2.52 µm. Libya Montes carbonates most closely resemble the Mg-carbonate, magnesite. Olivine spectra are seen throughout Libya Montes, characterized by a positive slope from 1.2-1.8 µm. Large outcrops of olivine are relatively rare on Mars [3]. This implies that fresh bedrock has been recently exposed because olivine weathers readily compared to pyroxene and feldspar. Pyroxene in Libya Montes resembles an Fe-bearing orthopyroxene with a broad band centered at 1.82 µm. The lowermost unit identified in Libya Montes is a clay-bearing unit. Overlying this is a carbonate-bearing unit with a clear unit division visible in at least one CRISM image. An olivine-bearing unit unconformably overlies these two units and may represent a drape related to the Isidis impact, as suggested for Nili Fossae [2]. However, it appears that the carbonate in Libya Montes is an integral portion of the rock underlying the olivine-bearing unit rather than an
MontePython: Implementing Quantum Monte Carlo using Python
NASA Astrophysics Data System (ADS)
Nilsen, Jon Kristian
2007-11-01
We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo (QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial and parallel cases to show that the overhead using Python can be negligible. Program summaryProgram title: MontePython Catalogue identifier: ADZP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 519 No. of bytes in distributed program, including test data, etc.: 114 484 Distribution format: tar.gz Programming language: C++, Python Computer: PC, IBM RS6000/320, HP, ALPHA Operating system: LINUX Has the code been vectorised or parallelized?: Yes, parallelized with MPI Number of processors used: 1-96 RAM: Depends on physical system to be simulated Classification: 7.6; 16.1 Nature of problem: Investigating ab initio quantum mechanical systems, specifically Bose-Einstein condensation in dilute gases of 87Rb Solution method: Quantum Monte Carlo Running time: 225 min with 20 particles (with 4800 walkers moved in 1750 time steps) on 1 AMD Opteron TM Processor 2218 processor; Production run for, e.g., 200 particles takes around 24 hours on 32 such processors.
Lee, Sangyong; Lee, Daehee; Park, Jungseo
2015-01-01
[Purpose] The purpose of this study was to examine the influence of the cervical flexion angle when using a smart phone on muscle fatigue of the cervical erector spinae (CES) and upper trapezius (UT). [Subjects] This study recruited 12 healthy adults. [Methods] Each subject sat on a chair, with his/her back against the wall and held a smart phone with both hands. Fatigue of the neck and shoulder muscles at different cervical flexion angles (0°, 30°, and 50°) was measured by electromyography. The following muscles were assessed: the right upper trapezius (RtUT), left upper trapezius (LtUT), right cervical erector spinae (RtCES), and left cervical erector spinae (LtCES). A cervical range of motion instrument was attached to the subjects’ heads to measure the cervical angle during the experiment. [Results] The RtUT and LtUT showed the highest muscle fatigue at a cervical flexion angle of 50° and the lowest fatigue at an angle of 30°. There was no significant difference in the muscle fatigue of the RtCES and LtCES at any of the cervical flexion angles. [Conclusion] UT muscle fatigue depends on the cervical flexion angle when using a smart phone. PMID:26180333
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan
2016-08-24
Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less
Monte Carlo calculations of nuclei
Pieper, S.C.
1997-10-01
Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.
Monte Carlo Experiments: Design and Implementation.
ERIC Educational Resources Information Center
Paxton, Pamela; Curran, Patrick J.; Bollen, Kenneth A.; Kirby, Jim; Chen, Feinian
2001-01-01
Illustrates the design and planning of Monte Carlo simulations, presenting nine steps in planning and performing a Monte Carlo analysis from developing a theoretically derived question of interest through summarizing the results. Uses a Monte Carlo simulation to illustrate many of the relevant points. (SLD)
Monte Carlo Simulation for Perusal and Practice.
ERIC Educational Resources Information Center
Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.
The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…
Shell model Monte Carlo methods
Koonin, S.E.; Dean, D.J.
1996-10-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.
Zimmerman, G.B.
1997-06-24
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
Womersley, J. . Dept. of Physics)
1992-10-01
The D0 detector at the Fermilab Tevatron began its first data taking run in May 1992. For analysis of the expected 25 pb[sup [minus]1] data sample, roughly half a million simulated events will be needed. The GEANT-based Monte Carlo program used to generate these events is described, together with comparisons to test beam data. Some novel techniques used to speed up execution and simplify geometrical input are described.
What young people with spina bifida want to know about sex, and aren’t being told
LIGHT, Alexis; SHERMAN, Laura; POLVINEN, Julie; RICH, Michael
2015-01-01
Objective To examine sexual knowledge, concerns, and needs of youth with spina bifida (SB) to inform the medical community on ways to better support their sexual health. Methods As part of the Video Intervention/Prevention Assessment (VIA) – Transitions, a prospective cohort study, 309 hours of video data were collected from 14 participants (13–28 years) with SB. Participants were loaned a video camcorder for 8–12 weeks to shoot visual narratives about any aspects of their lives. VIA visual narratives were analyzed with Grounded Theory using NVivo. Results Out of 14 participants, 11 (6 females) addressed issues surrounding romantic relationships and sexuality in their video clips. Analysis revealed shared concerns, questions, and challenges regarding sexuality gathered under 4 main themes: romantic relationships, sexuality, fertility and parenthood, and need for more talk on sexuality. Conclusions Youth with SB reported difficulties in finding answers to questions regarding their sexuality, romantic relationships, and fertility. This study revealed a need for help from the medical community to inform and empower youth with SB in the area of sexual health. Through sexual and reproductive health education with patients and parents starting at an early age, medical providers can further encourage healthy emotional and physical development in adolescents transitioning into adulthood. PMID:26331351
Farahpour, Nader; Ghasemi, Safoura; Allard, Paul; Saba, Mohammad Sadegh
2014-10-01
The aim of this study was to evaluate electromyographic (EMG) responses of erector spinae (ES) and lower limbs' muscles to dynamic forward postural perturbation (FPP) and backward postural perturbation (BPP) in patients with adolescent idiopathic scoliosis (AIS) and in a healthy control group. Ten right thoracic AIS patients (Cobb=21.6±4.4°) and 10 control adolescents were studied. Using bipolar surface electrodes, EMG activities of ES muscle at T10 (EST10) and L3 (ESL3) levels, biceps femoris (BF), gastrocnemius lateralis (G) and rectus femoris (RF) muscles in the right and the left sides during FPP and BPP were evaluated. Muscle responses were measured over a 1s time window after the onset of perturbation. In FPP test, the EMG responses of right EST10, ESL3 and BF muscles in the scoliosis group were respectively about 1.40 (p=0.035), 1.43 (p=0.07) and 1.45 (p=0.01) times greater than those in control group. Also, in BPP test, at right ESL3 muscle of the scoliosis group the EMG activity was 1.64 times higher than that in the control group (p=0.01). The scoliosis group during FPP displayed asymmetrical muscle responses in EST10 and BF muscles. This asymmetrical muscle activity in response to FPP is hypothesized to be a possible compensatory strategy rather than an inherent characteristic of scoliosis.
Bradley, Kailyn A; Juranek, Jenifer; Romanowska-Pawliczek, Anna; Hannay, H Julia; Cirino, Paul T; Dennis, Maureen; Kramer, Larry A; Fletcher, Jack M
2016-04-01
Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8-36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development. PMID:26798959
Bhaskar; Khonglah, Tashi; Bareh, Jerryson
2013-01-01
Tuberculous dactylitis is a distinctly uncommon, yet well recognized form of tuberculosis involving the small bones of the hand or foot. It occurs in young children in endemic areas under 5 years of age. Tuberculosis of the short tubular bones like phalanges, metacarpals or metatarsals is quite uncommon beyond 6 years of age, once the epiphyseal centers are well established. The radiographic features of cystic expansion have led to the name “Spina Ventosa” for tuberculous dactylitis of the short bones. Scrofuloderma is a mycobacterial infection affecting children and young adults, representing direct extension of tuberculosis into the skin from underlying structures e.g. lymph nodes. An 8-year-old malnourished girl had multiple axillary ulcers with lymphadenopathy. Tuberculous dactylitis with ipsilateral axillary scrofuloderma was suspected on clinical and radiological grounds. The suspicion was confirmed by histology and bacteriology. The patient responded to antitubercular drugs with progressive healing of the lesions without surgery. Concomitant presence of these dual lesions suggesting active disseminated tuberculosis in immune-competent child over 6 years is very rare and hardly reported. PMID:23977657
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder. PMID:21418718
Present status of vectorized Monte Carlo
Brown, F.B.
1987-01-01
Monte Carlo applications have traditionally been limited by the large amounts of computer time required to produce acceptably small statistical uncertainties, so the immediate benefit of vectorization is an increase in either the number of jobs completed or the number of particles processed per job, typically by one order of magnitude or more. This results directly in improved engineering design analyses, since Monte Carlo methods are used as standards for correcting more approximate methods. The relatively small number of vectorized programs is a consequence of the newness of vectorized Monte Carlo, the difficulties of nonportability, and the very large development effort required to rewrite or restructure Monte Carlo codes for vectorization. Based on the successful efforts to date, it may be concluded that Monte Carlo vectorization will spread to increasing numbers of codes and applications. The possibility of multitasking provides even further motivation for vectorizing Monte Carlo, since the step from vector to multitasked vector is relatively straightforward.
Bassuk, Alexander G.; Muthuswamy, Lakshmi B.; Boland, Riley; Smith, Tiffany L.; Hulstrand, Alissa M.; Northrup, Hope; Hakeman, Matthew; Dierdorff, Jason M.; Yung, Christina K.; Long, Abby; Brouillette, Rachel B.; Au, Kit Sing; Gurnett, Christina; Houston, Douglas W.; Cornell, Robert A.; Manak, J. Robert
2013-01-01
Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development. PMID:23223018
Shan, Xinhai; Wei, Yugang; Chen, Zhentao; Fan, Lixia; Shi, Weifei; Yang, Shulong
2014-01-01
Investigations corresponding to the affected factors of the cross-correlation of pair muscles are limited though muscle activation patterns of bilateral erector spinae (ES) during trunk flexion-extension performance in standing have been utilized as an indicator in the evaluation of low back pain condition. The purpose of the study is to evaluate the effect of leg support on the cross-correlation of bilateral ES, and to test if the average of bilateral ES could weaken this effect. Twenty male university students volunteered for this study. Each performed the trunk flexion-extension in three leg support conditions randomly with the condition of single left leg support, double leg support and single right leg support, respectively. Each condition included three trials of trunk flexion-extension with the cycle of 5s flexion and 5s extension in standing. Surface electromyography from the right ES muscle as well as from the left one was recorded. The cross-correlation both in pair muscle of right-left ES and in pair muscle of right-average of bilateral ES was calculated in the flexion as well as extension period. A one-way ANOVA with repeated measures was used. The results showed that leg support has some effect on cross-correlation of bilateral ES, which causes the absolute value of phase lag to be significantly larger in flexion period. It is suggested that this effect could be weakened by the average of bilateral ES through significantly increasing the cross-correlation coefficient, and decreasing the absolute value of phase lag.
Uncertainty Propagation with Fast Monte Carlo Techniques
NASA Astrophysics Data System (ADS)
Rochman, D.; van der Marck, S. C.; Koning, A. J.; Sjöstrand, H.; Zwermann, W.
2014-04-01
Two new and faster Monte Carlo methods for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations are presented (the "Fast TMC" and "Fast GRS" methods). They are addressing the main drawback of the original Total Monte Carlo method (TMC), namely the necessary large time multiplication factor compared to a single calculation. With these new methods, Monte Carlo simulations can now be accompanied with uncertainty propagation (other than statistical), with small additional calculation time. The new methods are presented and compared with the TMC methods for criticality benchmarks.
Multidimensional stochastic approximation Monte Carlo.
Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Monte Carlo surface flux tallies
Favorite, Jeffrey A
2010-11-19
Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.
Zedka, M; Kumar, S; Narayan, Y
1997-10-01
The influence of electrode type, interelectrode distance (IED) and electrode orientation on EMG signals from the paraspinal muscles was investigated. Bipolar electrodes were placed at distances 2, 3, 4, 6 and 8 cm over the erector spinae in the cranio-caudal direction ("in series") as well as in the direction perpendicular to it ("in parallel"). Ten subjects performed 5 s isometric contractions of the erector spinae at 20, 40, 60, 80 and 100% MVC by pulling upward on a handlebar attached to the floor. RMS EMG signals were analyzed for mean average amplitude (AA). Mean total power (TP) and mean median frequency (MF) of the raw EMG signal were determined using fast Fourier transform. In addition to graded loading, sustained fatiguing contractions were performed from which TP and MF were obtained. With increasing IED the AA and TP increased while MF decreased. Although a trend towards higher AA, TP and MF was found for electrodes "in series", as compared to those "in parallel", the difference never reached significance. It is concluded that consistent information about muscle activity was obtained with Miniature Biopotential Skin Electrodes and 14445C Hewlett-Packard electrodes independently from IED or orientation. Orientation "in parallel" prevented the electrodes from sliding during muscle contraction. The third tested type, electrodes developed in the Neuromuscular Research Center, Boston, proved extremely sensitive to movement.
Monte Carlo Simulations for Radiobiology
NASA Astrophysics Data System (ADS)
Ackerman, Nicole; Bazalova, Magdalena; Chang, Kevin; Graves, Edward
2012-02-01
The relationship between tumor response and radiation is currently modeled as dose, quantified on the mm or cm scale through measurement or simulation. This does not take into account modern knowledge of cancer, including tissue heterogeneities and repair mechanisms. We perform Monte Carlo simulations utilizing Geant4 to model radiation treatment on a cellular scale. Biological measurements are correlated to simulated results, primarily the energy deposit in nuclear volumes. One application is modeling dose enhancement through the use of high-Z materials, such gold nanoparticles. The model matches in vitro data and predicts dose enhancement ratios for a variety of in vivo scenarios. This model shows promise for both treatment design and furthering our understanding of radiobiology.
Structural mapping of Maxwell Montes
NASA Technical Reports Server (NTRS)
Keep, Myra; Hansen, Vicki L.
1993-01-01
Four sets of structures were mapped in the western and southern portions of Maxwell Montes. An early north-trending set of penetrative lineaments is cut by dominant, spaced ridges and paired valleys that trend northwest. To the south the ridges and valleys splay and graben form in the valleys. The spaced ridges and graben are cut by northeast-trending graben. The northwest-trending graben formed synchronously with or slightly later than the spaced ridges. Formation of the northeast-trending graben may have overlapped with that of the northwest-trending graben, but occurred in a spatially distinct area (regions of 2 deg slope). Graben formation, with northwest-southeast extension, may be related to gravity-sliding. Individually and collectively these structures are too small to support the immense topography of Maxwell, and are interpreted as parasitic features above a larger mass that supports the mountain belt.
Vaidyanathan, Subramanian; Samsudin, Azi; Singh, Gurpreet; Hughes, Peter L; Soni, Bakul M; Selmi, Fahed
2016-01-01
Introduction Paraplegic patients are at greater risk of developing complications following ureteroscopic lithotripsy because of urine infection associated with neuropathic bladder, difficulties in access due to altered anatomy of urinary bladder and urethra, spinal curvature, spasticity, and contractures. We report the occurrence of large subcapsular hematoma following ureteroscopy and discuss lessons we learn from this case. Case report A 48-year-old male patient with spina bifida underwent ureteroscopy with laser lithotripsy and ureteric stenting for left ureteric stone and staghorn calculus with hydronephrosis; laser lithotripsy was repeated after 3 months; both procedures were performed by a senior urologist and did not result in any complications. Ureteroscopic laser lithotripsy was performed 5 months later by a urological trainee; it was difficult to negotiate the scope as vision became poor because of bleeding (as a result of the procedure). Postoperatively, hematuria persisted; temperature was 39°C. Cefuroxime was given intravenously followed by gentamicin for 5 days; hematuria subsided gradually; he was discharged home. Ten days later, this patient developed temperature, the urine culture grew Pseudomonas aeruginosa, and ciprofloxacin was given orally. Computed tomography (CT) of the urinary tract, performed 4 weeks after ureteroscopy, revealed a 9×7 cm subcapsular collection on the left kidney compressing underlying parenchyma. Percutaneous drainage was not feasible because of severe curvature of spine. Isotope renogram revealed deterioration in left renal function from 30% to 17%. Follow-up CT revealed reduction in the size of subcapsular hematoma, no hydronephrosis, and several residual calculi. Conclusion Risk of subcapsular hematoma following ureteroscopic lithotripsy can be reduced by avoiding prolonged endoscopy and performing ureteroscopy under low pressure. When a paraplegic patient develops features of infection after ureteroscopy, renal
2016-01-01
Purpose: To investigate the prevalence of spina bifida occulta (SBO) and its relationship with the presence of overactive bladder (OAB) in middle-aged and elderly people in China. Methods: A cross-sectional community-based survey was carried out at 7 communities in Zhengzhou City, China from December 15, 2013 to June 10, 2014, where residents aged over 40 years were randomly selected to participate. All of the participants underwent lumbosacral radiographic analysis and relevant laboratory tests. A questionnaire including basic information, past medical history and present illness, and the OAB symptom score was filled out by all participants. Chi-square tests and logistic regression were used for data analysis with a P-value of <0.05 denoting statistical significance. Results: A total of 1,061 subjects were qualified for the final statistical analysis (58.8±11.7 years; male, 471 [44.4%]; female, 590 [55.6%]). The overall prevalence of SBO was 15.1% (160 of 1,061): 18.3% (86 of 471) in men and 12.5% (74 of 590) in women. Among these subjects, 13.7% (145 of 1,061) had OAB: 13.2% (62 of 471) in men and 14.1% (83 of 590) in women. The results of logistic regression showed that age, SBO, history of cerebral infarction (HCI), and constipation were risk factors for OAB (P<0.05), while sex, history of childhood enuresis (HCE), body mass index (BMI), and diabetes mellitus (DM) were not (P>0.05). In men, age, SBO, and constipation were risk factors for OAB (P<0.05), while HCE, BMI, DM, HCI, and benign prostate hyperplasia were not (P>0.05). In women, age, SBO, and HCI were risk factors for OAB (P<0.05), while HCE, BMI, DM, vaginal delivery, and constipation were not (P>0.05). Conclusions: The prevalence of SBO is high and it is related to OAB in middle-aged and elderly people in China. PMID:27377948
Vaidyanathan, Subramanian; Samsudin, Azi; Singh, Gurpreet; Hughes, Peter L; Soni, Bakul M; Selmi, Fahed
2016-01-01
Introduction Paraplegic patients are at greater risk of developing complications following ureteroscopic lithotripsy because of urine infection associated with neuropathic bladder, difficulties in access due to altered anatomy of urinary bladder and urethra, spinal curvature, spasticity, and contractures. We report the occurrence of large subcapsular hematoma following ureteroscopy and discuss lessons we learn from this case. Case report A 48-year-old male patient with spina bifida underwent ureteroscopy with laser lithotripsy and ureteric stenting for left ureteric stone and staghorn calculus with hydronephrosis; laser lithotripsy was repeated after 3 months; both procedures were performed by a senior urologist and did not result in any complications. Ureteroscopic laser lithotripsy was performed 5 months later by a urological trainee; it was difficult to negotiate the scope as vision became poor because of bleeding (as a result of the procedure). Postoperatively, hematuria persisted; temperature was 39°C. Cefuroxime was given intravenously followed by gentamicin for 5 days; hematuria subsided gradually; he was discharged home. Ten days later, this patient developed temperature, the urine culture grew Pseudomonas aeruginosa, and ciprofloxacin was given orally. Computed tomography (CT) of the urinary tract, performed 4 weeks after ureteroscopy, revealed a 9×7 cm subcapsular collection on the left kidney compressing underlying parenchyma. Percutaneous drainage was not feasible because of severe curvature of spine. Isotope renogram revealed deterioration in left renal function from 30% to 17%. Follow-up CT revealed reduction in the size of subcapsular hematoma, no hydronephrosis, and several residual calculi. Conclusion Risk of subcapsular hematoma following ureteroscopic lithotripsy can be reduced by avoiding prolonged endoscopy and performing ureteroscopy under low pressure. When a paraplegic patient develops features of infection after ureteroscopy, renal
Monte Carlo Shower Counter Studies
NASA Technical Reports Server (NTRS)
Snyder, H. David
1991-01-01
Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.
Monte Carlo Ion Transport Analysis Code.
2009-04-15
Version: 00 TRIPOS is a versatile Monte Carlo ion transport analysis code. It has been applied to the treatment of both surface and bulk radiation effects. The media considered is composed of multilayer polyatomic materials.
Improved Monte Carlo Renormalization Group Method
DOE R&D Accomplishments Database
Gupta, R.; Wilson, K. G.; Umrigar, C.
1985-01-01
An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.
Analytical Applications of Monte Carlo Techniques.
ERIC Educational Resources Information Center
Guell, Oscar A.; Holcombe, James A.
1990-01-01
Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)
Monte Carlo simulation of aorta autofluorescence
NASA Astrophysics Data System (ADS)
Kuznetsova, A. A.; Pushkareva, A. E.
2016-08-01
Results of numerical simulation of autofluorescence of the aorta by the method of Monte Carlo are reported. Two states of the aorta, normal and with atherosclerotic lesions, are studied. A model of the studied tissue is developed on the basis of information about optical, morphological, and physico-chemical properties. It is shown that the data obtained by numerical Monte Carlo simulation are in good agreement with experimental results indicating adequacy of the developed model of the aorta autofluorescence.
Hadizadeh, I; Peivastegan, B; Kolahi, M
2009-01-01
Anti-mycotic activity of the ethanol extracts from Nettle (Urtica dioica L.), Colocynth (Citrullus colocynthis L. Schrad), Konar (Ziziphus spina-christi L.) and Oleander (Nerium oleander L.) floral parts were screened in vitro against four important plant pathogenic fungi viz.; Alternaria alternate, Fusarium oxysporum, Fusarium solani and Rizoctonia solani using agar dilution bioassay. Extracts showed antifungal activity against all the tested fungi. Among the plants, Nettle and Colocynth were the most effective against A. alternate and R. solani while Oleander possesses the best inhibition on F. oxysporum and F. solani. Konar was the most effective extract by reducing the growth of Rizoctonia solani than other fungi. These results showed that extracts could be considered suitable alternatives to chemical additives for the control of fungal diseases in plants.
James, C. C. Michael
1971-01-01
There is an urgent need for criteria upon which to base the decision to close a myelomeningocoele soon after birth. Orthopaedic experience advises that early closure of the spinal lesion should not be done unless there is active flexion power at both hips. This criterion is offered with the knowledge that there may occasionally be other exceptional factors to contradict it, but it is based on experience of 96 personal cases aged between 18 months and 7 years. These cases are analysed and discussed. A further possible criterion for not closing the spinal lesion early is the presence of a gross lumbosacral kyphosis. PMID:4945864
Monte Carlo Shielding Analysis Capabilities with MAVRIC
Peplow, Douglas E.
2011-01-01
Monte Carlo shielding analysis capabilities in SCALE 6 are centered on the CADIS methodology Consistent Adjoint Driven Importance Sampling. CADIS is used to create an importance map for space/energy weight windows as well as a biased source distribution. New to SCALE 6 are the Monaco functional module, a multi-group fixed-source Monte Carlo transport code, and the MAVRIC sequence (Monaco with Automated Variance Reduction Using Importance Calculations). MAVRIC uses the Denovo code (also new to SCALE 6) to compute coarse-mesh discrete ordinates solutions which are used by CADIS to form an importance map and biased source distribution for the Monaco Monte Carlo code. MAVRIC allows the user to optimize the Monaco calculation for a specify tally using the CADIS method with little extra input compared to a standard Monte Carlo calculation. When computing several tallies at once or a mesh tally over a large volume of space, an extension of the CADIS method called FW-CADIS can be used to help the Monte Carlo simulation spread particles over phase space to get more uniform relative uncertainties.
NASA Astrophysics Data System (ADS)
McLeod, David M.; Ataide, Italani; McLeod, Roger D.
2006-03-01
Individuals harboring the herpes zoster virus following chicken pox, are susceptible to attacks of shingles. They may indicate peculiar awareness of pricking `pin and needle' sensations and co-symptoms of tinnitus and/or Meuniere's syndrome. RDM used similar symptoms in FL to predict the earthquake ninety miles north of Guantanamo bay in 1998. An astounding burial site in Florida from over six thousand years ago had a teenaged boy with severe spina bifida, with non-Asian genes, who could not have survived without very capable health support. Two youthful individuals likewise afflicted with spina bifida were unearthed from one site at Pompeii, entombed by the eruption of Vesuvius, August 24 and 25, CE 79. We know how to locate sites, active with EMF, which have tornado, hurricane and earthquake associations, and would like to foster joint research also involving Hawaiian and other volcanoes.
Shell model the Monte Carlo way
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
Interaction picture density matrix quantum Monte Carlo
Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.
Monte Carlo electron/photon transport
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs.
Geodesic Monte Carlo on Embedded Manifolds
Byrne, Simon; Girolami, Mark
2013-01-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
Monte carlo simulations of organic photovoltaics.
Groves, Chris; Greenham, Neil C
2014-01-01
Monte Carlo simulations are a valuable tool to model the generation, separation, and collection of charges in organic photovoltaics where charges move by hopping in a complex nanostructure and Coulomb interactions between charge carriers are important. We review the Monte Carlo techniques that have been applied to this problem, and describe the results of simulations of the various recombination processes that limit device performance. We show how these processes are influenced by the local physical and energetic structure of the material, providing information that is useful for design of efficient photovoltaic systems.
Fast quantum Monte Carlo on a GPU
NASA Astrophysics Data System (ADS)
Lutsyshyn, Y.
2015-02-01
We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.
Monte Carlo simulation of neutron scattering instruments
Seeger, P.A.
1995-12-31
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.
Interaction picture density matrix quantum Monte Carlo.
Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.
Geodesic Monte Carlo on Embedded Manifolds.
Byrne, Simon; Girolami, Mark
2013-12-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
2016-01-01
Background We desire to review our experience with bladder augmentation in spina bifida patients followed in a transitional and adult urologic practice. This paper will specifically focus on three major complications: bladder calculi, the most frequent complication found following bladder augmentation, perforation of the augmentation, its most lethal complication and finally we will address loss of renal function as a direct result of our surgical reconstructive procedures. Methods We reviewed a prospective data base maintained on patients with spina bifida followed in our transitional and adult urology clinic from 1986 to date. Specific attention was given to patients who had developed bladder calculi, sustained a spontaneous perforation of the augmented bladder or had developed new onset of renal scarring or renal insufficiency (≥ stage 3 renal failure) during prolonged follow-up. Results The development of renal stones (P<0.05) and symptomatic urinary tract infections (P<0.0001) were found to be significantly reduced by the use of high volume (≥240 mL) daily bladder wash outs. Individuals who still developed bladder calculi recalcitrant to high volume wash outs were not benefited by the correction of underlying metabolic abnormalities or mucolytic agents. Spontaneous bladder perforations in the adult patient population with spina bifida were found to be directly correlated to substance abuse and noncompliance with intermittent catheterization, P<0.005. Deterioration of the upper tracts as defined by the new onset of renal scars occurred in 40% (32/80) of the patients managed by a ileocystoplasty and simultaneous bladder neck outlet procedure during a median follow-up interval 14 years (range, 8–45 years). Development of ≥ stage 3 chronic renal failure occurred within 38% (12/32) of the patients with scarring i.e., 15% (12/80) of the total patient population. Prior to the development of the renal scarring, 69% (22/32) of the patients had been noncompliant
Monte Carlo simulations of lattice gauge theories
Rebbi, C
1980-02-01
Monte Carlo simulations done for four-dimensional lattice gauge systems are described, where the gauge group is one of the following: U(1); SU(2); Z/sub N/, i.e., the subgroup of U(1) consisting of the elements e 2..pi..in/N with integer n and N; the eight-element group of quaternions, Q; the 24- and 48-element subgroups of SU(2), denoted by T and O, which reduce to the rotation groups of the tetrahedron and the octahedron when their centers Z/sub 2/, are factored out. All of these groups can be considered subgroups of SU(2) and a common normalization was used for the action. The following types of Monte Carlo experiments are considered: simulations of a thermal cycle, where the temperature of the system is varied slightly every few Monte Carlo iterations and the internal energy is measured; mixed-phase runs, where several Monte Carlo iterations are done at a few temperatures near a phase transition starting with a lattice which is half ordered and half disordered; measurements of averages of Wilson factors for loops of different shape. 5 figures, 1 table. (RWR)
Advances in Monte Carlo computer simulation
NASA Astrophysics Data System (ADS)
Swendsen, Robert H.
2011-03-01
Since the invention of the Metropolis method in 1953, Monte Carlo methods have been shown to provide an efficient, practical approach to the calculation of physical properties in a wide variety of systems. In this talk, I will discuss some of the advances in the MC simulation of thermodynamics systems, with an emphasis on optimization to obtain a maximum of useful information.
Scalable Domain Decomposed Monte Carlo Particle Transport
O'Brien, Matthew Joseph
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
A comparison of Monte Carlo generators
Golan, Tomasz
2015-05-15
A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and π{sup +} two-dimensional energy vs cosine distribution.
Structural Reliability and Monte Carlo Simulation.
ERIC Educational Resources Information Center
Laumakis, P. J.; Harlow, G.
2002-01-01
Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)
Monte Carlo Simulation of Counting Experiments.
ERIC Educational Resources Information Center
Ogden, Philip M.
A computer program to perform a Monte Carlo simulation of counting experiments was written. The program was based on a mathematical derivation which started with counts in a time interval. The time interval was subdivided to form a binomial distribution with no two counts in the same subinterval. Then the number of subintervals was extended to…
The scientific observatories on Mont Blanc.
Richalet, J P
2001-01-01
Since the first ascent of Mont Blanc by Jacques Balmat and Dr. Michel-Gabriel Paccard in 1786, numerous scientific events have taken place on the highest peak of Europe. Horace Benédict de Saussure, since his first ascent in 1787, made numerous observations on barometric pressure, temperature, geology, and mountain sickness on Mont Blanc. Over the next 100 years, scientists and physicians climbed Mont Blanc and made many interesting although anecdotal reports. Science on Mont Blanc exploded at the end of the 19th century. A major player at that time was Joseph Vallot (1854-1925), who constructed an observatory in 1890 at 4,358 m on the Rochers des Bosses and then moved it in 1898 to a better location at 4,350 m. There Vallot and invited scientists made observations over more than 30 years: studies in geology, glaciology, astronomy, cartography, meteorology, botany, physiology and medicine were performed and published in the seven volumes of the Annales de l'Observatoire du Mont Blanc, between 1893 and 1917, and in the Comptes Rendus de l'Académie des Sciences. While Jules Janssen and Xaver Imfeld were preparing the construction of the new observatory on the top of Mont Blanc, Dr. Jacottet died in 1891 at the Observatoire Vallot from a disease that was clearly attributed by Dr. Egli-Sinclair to the effect of high altitude. This was probably the first case of high altitude pulmonary edema documented by an autopsy and suspected to be directly due to high altitude. Extensive studies on ventilation were made from 1886 to 1900. Increase in ventilation with altitude was documented, with the phenomenon of "ventilatory acclimatization." Paul Bert's theories on the role of oxygen in acute mountain sickness were confirmed in 1903 and 1904 by studying the effects of oxygen inhalation. In 1913, Vallot documented for the first time the decrease in physical performance at the top of Mont Blanc using squirrels. After that pioneering era, few studies were done until 1984, when a
Pike, Meredith; Swank, Paul; Taylor, Heather; Landry, Susan; Barnes, Marcia A
2013-04-01
Children with spina bifida myelomeningocele (SBM) are more likely to display a pattern of good-decoding/poor comprehension than their neurologically intact peers. The goals of the current study were to (1) examine the cognitive origins of one of the component skills of comprehension, bridging inferences, from a developmental perspective and (2) to test the effects of those relations on reading comprehension achievement. Data from a sample of children with SBM and a control group (n = 78) who participated in a longitudinal study were taken from age 36-month and 9.5-year time points. A multiple mediation model provided evidence that three preschool cognitive abilities (working memory/inhibitory control, oral comprehension, narrative recall), could partially explain the relation between group and bridging inference skill. A second mediation model supported that each of the 36-month abilities had an indirect effect on reading comprehension through bridging inference skill. Findings contribute to an understanding of both typical and atypical comprehension development, blending theories from the developmental, cognitive, and neuropsychological literature.
Pike, Meredith; Swank, Paul; Taylor, Heather; Landry, Susan; Barnes, Marcia A.
2014-01-01
Children with spina bifida myelomeningocele (SBM) are more likely to display a pattern of good-decoding/poor comprehension than their neurologically intact peers. The goals of the current study were to (1) examine the cognitive origins of one of the component skills of comprehension, bridging inferences, from a developmental perspective and (2) to test the effects of those relations on reading comprehension achievement. Data from a sample of children with SBM and a control group (n = 78) who participated in a longitudinal study were taken from age 36-month and 9.5-year time points. A multiple mediation model provided evidence that three preschool cognitive abilities (working memory/inhibitory control, oral comprehension, narrative recall), could partially explain the relation between group and bridging inference skill. A second mediation model supported that each of the 36-month abilities had an indirect effect on reading comprehension through bridging inference skill. Findings contribute to an understanding of both typical and atypical comprehension development, blending theories from the developmental, cognitive, and neuropsychological literature. PMID:23388065
Lamoth, Claudine J C; Daffertshofer, Andreas; Meijer, Onno G; Beek, Peter J
2006-02-01
In healthy walking, the timing between trunk and pelvic rotations, as well as erector spinae (ES) activity varies systematically with walking velocity, whereas a comparable velocity-dependent adaptation of trunk-pelvis coordination is often reduced or absent in persons with low back pain (LBP). Based on the hypothesis that trunk-pelvis coordination is linked to overall gait stability, persons with LBP can be expected to have difficulties in dealing with perturbations. We examined the ability of 12 persons with LBP and 12 controls to adapt trunk and pelvis rotations and ES activity to sudden changes in velocity. 3D angular movements of thoracic, lumbar, and pelvic segments and surface EMG were recorded during treadmill walking at six different velocities, which increased or decreased unexpectedly. Relative phases of segmental rotations were determined and (in-)variant properties of kinematics and ES activity were studied using principal component analysis. Compared to healthy controls, persons with LBP exhibited a reduced ability to adapt trunk-pelvis coordination and ES muscle activity to changes in velocity. Altered coordination and muscular control may reflect an attempt to stabilise the spine and prevent the occurrence of unexpected perturbations. The assessment of gait patterns in terms of coordination may help clinicians to quantify movement impairments and may suggest interventions aimed at facilitating the emergence of desired coordination patterns.
Crytzer, Theresa M.; Dicianno, Brad E.; Fairman, Andrea D.
2013-01-01
Background Obesity, deconditioning, cognitive impairment, and poor exercise tolerance are health issues concerning adults with spina bifida (SB). Our aim is to describe exercise participation and identify motivating tactics and exercise devices that increase participation. Design In a quasi-experimental randomized crossover design, the GameCycle was compared to a Saratoga Silver I arm ergometer. Personalized free or low cost text/voice message reminders to exercise were sent. Methods Nineteen young adults with SB were assigned to either the GameCycle or Saratoga exercise group. Within each group, participants were randomized to receive reminders to exercise, or no reminders, then crossed over to the opposite message group after eight weeks. Before and after a 16 week exercise program we collected anthropometric, metabolic, exercise testing and questionnaire data, and recorded participation. Results Miles traveled by the GameCycle group were significantly higher than the Saratoga exercise groups. No significant differences were found in participation between the message reminder groups. Low participation rates were seen overall. Conclusions Those using the GameCycle traveled more miles. Barriers to exercise participation may have superseded ability to motivate adults with SB to exercise even with electronic reminders. Support from therapists to combat deconditioning and develop coping skills may be needed. PMID:24620701
Amaro, Christina M.; Devine, Katie A.; Psihogios, Alexandra M.; Murphy, Lexa K.; Holmbeck, Grayson N.
2015-01-01
Objective To examine observed autonomy-promoting and -inhibiting parenting behaviors during preadolescence as predictors of adjustment outcomes in emerging adults with and without spina bifida (SB). Methods Demographic and videotaped interaction data were collected from families with 8/9-year-old children with SB (n = 68) and a matched group of typically developing youth (n = 68). Observed interaction data were coded with macro- and micro-coding schemes. Measures of emerging adulthood adjustment were collected 10 years later (ages 18/19 years; n = 50 and n = 60 for SB and comparison groups, respectively). Results Autonomy-promoting (behavioral control, autonomy-relatedness) and -inhibiting (psychological control) observed preadolescent parenting behaviors prospectively predicted emerging adulthood adjustment, particularly within educational, social, and emotional domains. Interestingly, high parent undermining of relatedness predicted better educational and social adjustment in the SB sample. Conclusions Parenting behaviors related to autonomy have long-term consequences for adjustment in emerging adults with and without SB. PMID:24864277
Monte Carlo Particle Transport: Algorithm and Performance Overview
Gentile, N; Procassini, R; Scott, H
2005-06-02
Monte Carlo methods are frequently used for neutron and radiation transport. These methods have several advantages, such as relative ease of programming and dealing with complex meshes. Disadvantages include long run times and statistical noise. Monte Carlo photon transport calculations also often suffer from inaccuracies in matter temperature due to the lack of implicitness. In this paper we discuss the Monte Carlo algorithm as it is applied to neutron and photon transport, detail the differences between neutron and photon Monte Carlo, and give an overview of the ways the numerical method has been modified to deal with issues that arise in photon Monte Carlo simulations.
Interaction picture density matrix quantum Monte Carlo.
Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116
Status of Monte Carlo at Los Alamos
Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.
1980-05-01
Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner.
An enhanced Monte Carlo outlier detection method.
Zhang, Liangxiao; Li, Peiwu; Mao, Jin; Ma, Fei; Ding, Xiaoxia; Zhang, Qi
2015-09-30
Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte Carlo outlier detection method by establishing cross-prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples. One simulated and three real datasets were used to illustrate and validate the performance of our method, and the results indicated that this method outperformed Monte Carlo outlier detection in outlier diagnosis. After these outliers were removed, the value of validation by Kovats retention indices and the root mean square error of prediction decreased from 3.195 to 1.655, and the average cross-validation prediction error decreased from 2.0341 to 1.2780. This method helps establish a good model by eliminating outliers. © 2015 Wiley Periodicals, Inc.
Monte Carlo simulations on SIMD computer architectures
Burmester, C.P.; Gronsky, R.; Wille, L.T.
1992-03-01
Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.
Status of Monte Carlo at Los Alamos
Thompson, W.L.; Cashwell, E.D.
1980-01-01
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.
Monte Carlo simulations of fluid vesicles.
Sreeja, K K; Ipsen, John H; Sunil Kumar, P B
2015-07-15
Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations. PMID:26087479
Monte Carlo simulations of fluid vesicles
NASA Astrophysics Data System (ADS)
Sreeja, K. K.; Ipsen, John H.; Kumar, P. B. Sunil
2015-07-01
Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations.
Monte Carlo Methods in the Physical Sciences
Kalos, M H
2007-06-06
I will review the role that Monte Carlo methods play in the physical sciences. They are very widely used for a number of reasons: they permit the rapid and faithful transformation of a natural or model stochastic process into a computer code. They are powerful numerical methods for treating the many-dimensional problems that derive from important physical systems. Finally, many of the methods naturally permit the use of modern parallel computers in efficient ways. In the presentation, I will emphasize four aspects of the computations: whether or not the computation derives from a natural or model stochastic process; whether the system under study is highly idealized or realistic; whether the Monte Carlo methodology is straightforward or mathematically sophisticated; and finally, the scientific role of the computation.
Monte Carlo modeling of exospheric bodies - Mercury
NASA Technical Reports Server (NTRS)
Smith, G. R.; Broadfoot, A. L.; Wallace, L.; Shemansky, D. E.
1978-01-01
In order to study the interaction with the surface, a Monte Carlo program is developed to determine the distribution with altitude as well as the global distribution of density at the surface in a single operation. The analysis presented shows that the appropriate source distribution should be Maxwell-Boltzmann flux if the particles in the distribution are to be treated as components of flux. Monte Carlo calculations with a Maxwell-Boltzmann flux source are compared with Mariner 10 UV spectrometer data. Results indicate that the presently operating models are not capable of fitting the observed Mercury exosphere. It is suggested that an atmosphere calculated with a barometric source distribution is suitable for more realistic future exospheric models.
Monte Carlo simulation of Alaska wolf survival
NASA Astrophysics Data System (ADS)
Feingold, S. J.
1996-02-01
Alaskan wolves live in a harsh climate and are hunted intensively. Penna's biological aging code, using Monte Carlo methods, has been adapted to simulate wolf survival. It was run on the case in which hunting causes the disruption of wolves' social structure. Social disruption was shown to increase the number of deaths occurring at a given level of hunting. For high levels of social disruption, the population did not survive.
Monte Carlo simulation of Touschek effect.
Xiao, A.; Borland, M.; Accelerator Systems Division
2010-07-30
We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.
Quantum Monte Carlo with known sign structures
NASA Astrophysics Data System (ADS)
Nilsson, Johan
We investigate the merits of different Hubbard-Stratonovich transformations (including fermionic ones) for the description of interacting fermion systems, focusing on the single band Hubbard model as a model system. In particular we revisit an old proposal of Batrouni and Forcrand (PRB 48, 589 1993) for determinant quantum Monte Carlo simulations, in which the signs of all configurations is known beforehand. We will discuss different ways that this knowledge can be used to make more accurate predictions and simulations.
Venus - Detailed mapping of Maxwell Montes region
NASA Astrophysics Data System (ADS)
Alexandrov, Yu. N.; Crymov, A. A.; Kotelnikov, V. A.; Petrov, G. M.; Rzhiga, O. N.; Sidorenko, A. I.; Sinilo, V. P.; Zakharov, A. I.; Akim, E. L.; Basilevski, A. T.; Kadnichanski, S. A.; Tjuflin, Yu. S.
1986-03-01
From October 1983 to July 1984, the north hemisphere of Venus, from latitude 30° to latitude 90°, was mapped by means of the radar imagers and altimeters of the spacecraft Venera 15 and Venera 16. This report presents the results of the radar mapping of the Maxwell Montes region, one of the most interesting features of Venus' surface. A radar mosaic map and contour map have been compiled.
Applications of Maxent to quantum Monte Carlo
Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. ); Jarrell, M. . Dept. of Physics)
1990-01-01
We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.
Monte Carlo Generators for the LHC
NASA Astrophysics Data System (ADS)
Worek, M.
2007-11-01
The status of two Monte Carlo generators, HELAC-PHEGAS, a program for multi-jet processes and VBFNLO, a parton level program for vector boson fusion processes at NLO QCD, is briefly presented. The aim of these tools is the simulation of events within the Standard Model at current and future high energy experiments, in particular the LHC. Some results related to the production of multi-jet final states at the LHC are also shown.
Four decades of implicit Monte Carlo
Wollaber, Allan B.
2016-04-25
In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less
NASA Technical Reports Server (NTRS)
2000-01-01
[figure removed for brevity, see original site] (A) [figure removed for brevity, see original site] (B) [figure removed for brevity, see original site] (C)
This Mars Global Surveyor Mars Orbiter Camera narrow angle image (top) shows an intermountain valley floor in the Libya Montes region of Mars. Its regional setting is seen in the wide angle color mosaic (Figure A). The Libya Montes were formed by the giant impact that created the ancient Isidis basin. The Libya Mountains and valleys--like the one shown here--were subsequently modified and eroded by other processes, including wind, impact cratering, and flow of liquid water to make the small valley that runs across the middle of the scene. Until the mission was canceled, the Libya Montes region was among the top two candidates for the Mars Surveyor 2001 Lander. This image, illuminated by sunlight from the left, covers an area 3 kilometers (1.9 miles) wide and 19 kilometers (11.8 miles) long. The scene is located near 1.5oN, 278.4oW and was acquired on June 27, 1999. The high resolution color view (top) was created by combining the colors derived from Mars Orbiter Camera Wide Angle views of the region obtained in May 1999 (Figures A and B) with the high resolution view obtained in June 1999 (Figure C).
Monte Carlo small-sample perturbation calculations
Feldman, U.; Gelbard, E.; Blomquist, R.
1983-01-01
Two different Monte Carlo methods have been developed for benchmark computations of small-sample-worths in simplified geometries. The first is basically a standard Monte Carlo perturbation method in which neutrons are steered towards the sample by roulette and splitting. One finds, however, that two variance reduction methods are required to make this sort of perturbation calculation feasible. First, neutrons that have passed through the sample must be exempted from roulette. Second, neutrons must be forced to undergo scattering collisions in the sample. Even when such methods are invoked, however, it is still necessary to exaggerate the volume fraction of the sample by drastically reducing the size of the core. The benchmark calculations are then used to test more approximate methods, and not directly to analyze experiments. In the second method the flux at the surface of the sample is assumed to be known. Neutrons entering the sample are drawn from this known flux and tracking by Monte Carlo. The effect of the sample or the fission rate is then inferred from the histories of these neutrons. The characteristics of both of these methods are explored empirically.
jTracker and Monte Carlo Comparison
NASA Astrophysics Data System (ADS)
Selensky, Lauren; SeaQuest/E906 Collaboration
2015-10-01
SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.
Path Integral Monte Carlo Methods for Fermions
NASA Astrophysics Data System (ADS)
Ethan, Ethan; Dubois, Jonathan; Ceperley, David
2014-03-01
In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.
NASA Astrophysics Data System (ADS)
Díez, A.; Largo, J.; Solana, J. R.
2006-08-01
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.
NASA Astrophysics Data System (ADS)
Dioguardi, Fabio; Dellino, Pierfrancesco
2014-05-01
PYFLOW is a computer code designed for quantifying the hazard related to Dilute Pyroclastic Density Currents (DPDC). DPDCs are multiphase flows that form during explosive volcanic eruptions. They are the major source of hazard related to volcanic eruptions, as they exert a significant stress over buildings and transport significant amounts of volcanic ash, which is hot and unbreathable. The program calculates the DPDC's impact parameters (e.g. dynamic pressure and particle volumetric concentration) and is founded on the turbulent boundary layer theory adapted to a multiphase framework. Fluid-dynamic variables are searched with a probabilistic approach, meaning that for each variable the average, maximum and minimum solutions are calculated. From these values, PYFLOW creates probability functions that allow to calculate the parameter at a given percentile. The code is written in Fortran 90 and can be compiled and installed on Windows, Mac OS X, Linux operating systems (OS). A User's manual is provided, explaining the details of the theoretical background, the setup and running procedure and the input data. The model inputs are DPDC deposits data, e.g. particle grainsize, layer thickness, particles shape factor and density. PYFLOW reads input data from a specifically designed input file or from the user's direct typing by command lines. Guidelines for writing input data are also contained in the package. PYFLOW guides the user at each step of execution, asking for additional data and inputs. The program is a tool for DPDC hazard assessment and, as an example, an application to the DPDC deposits of the Agnano-Monte Spina eruption (4.1 ky BP) at Campi Flegrei (Italy) is presented.
Status of Monte-Carlo Event Generators
Hoeche, Stefan; /SLAC
2011-08-11
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
Quantum Monte Carlo for vibrating molecules
Brown, W.R. |
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.
Venus - Maxwell Montes and Cleopatra Crater
NASA Technical Reports Server (NTRS)
1991-01-01
This Magellan full-resolution image shows Maxwell Montes, and is centered at 65 degrees north latitude and 6 degrees east longitude. Maxwell is the highest mountain on Venus, rising almost 11 kilometers (6.8 miles) above mean planetary radius. The western slopes (on the left) are very steep, whereas the eastern slopes descend gradually into Fortuna Tessera. The broad ridges and valleys making up Maxwell and Fortuna suggest that the topography resulted from compression. Most of Maxwell Montes has a very bright radar return; such bright returns are common on Venus at high altitudes. This phenomenon is thought to result from the presence of a radar reflective mineral such as pyrite. Interestingly, the highest area on Maxwell is less bright than the surrounding slopes, suggesting that the phenomenon is limited to a particular elevation range. The pressure, temperature, and chemistry of the atmosphere vary with altitude; the material responsible for the bright return probably is only stable in a particular range of atmospheric conditions and therefore a particular elevation range. The prominent circular feature in eastern Maxwell is Cleopatra. Cleopatra is a double-ring impact basin about 100 kilometers (62 miles) in diameter and 2.5 kilometers (1.5 miles) deep. A steep-walled, winding channel a few kilometers wide breaks through the rough terrain surrounding the crater rim. A large amount of lava originating in Cleopatra flowed through this channel and filled valleys in Fortuna Tessera. Cleopatra is superimposed on the structures of Maxwell Montes and appears to be undeformed, indicating that Cleopatra is relatively young.
Discovering correlated fermions using quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Wagner, Lucas K.; Ceperley, David M.
2016-09-01
It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.
Monte Carlo procedure for protein design
NASA Astrophysics Data System (ADS)
Irbäck, Anders; Peterson, Carsten; Potthast, Frank; Sandelin, Erik
1998-11-01
A method for sequence optimization in protein models is presented. The approach, which has inherited its basic philosophy from recent work by Deutsch and Kurosky [Phys. Rev. Lett. 76, 323 (1996)] by maximizing conditional probabilities rather than minimizing energy functions, is based upon a different and very efficient multisequence Monte Carlo scheme. By construction, the method ensures that the designed sequences represent good folders thermodynamically. A bootstrap procedure for the sequence space search is devised making very large chains feasible. The algorithm is successfully explored on the two-dimensional HP model [K. F. Lau and K. A. Dill, Macromolecules 32, 3986 (1989)] with chain lengths N=16, 18, and 32.
Monte Carlo methods to calculate impact probabilities
NASA Astrophysics Data System (ADS)
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
Monte Carlo radiation transport¶llelism
Cox, L. J.; Post, S. E.
2002-01-01
This talk summarizes the main aspects of the LANL ASCI Eolus project and its major unclassified code project, MCNP. The MCNP code provide a state-of-the-art Monte Carlo radiation transport to approximately 3000 users world-wide. Almost all hardware platforms are supported because we strictly adhere to the FORTRAN-90/95 standard. For parallel processing, MCNP uses a mixture of OpenMp combined with either MPI or PVM (shared and distributed memory). This talk summarizes our experiences on various platforms using MPI with and without OpenMP. These platforms include PC-Windows, Intel-LINUX, BlueMountain, Frost, ASCI-Q and others.
Monte Carlo algorithm for free energy calculation.
Bi, Sheng; Tong, Ning-Hua
2015-07-01
We propose a Monte Carlo algorithm for the free energy calculation based on configuration space sampling. An upward or downward temperature scan can be used to produce F(T). We implement this algorithm for the Ising model on a square lattice and triangular lattice. Comparison with the exact free energy shows an excellent agreement. We analyze the properties of this algorithm and compare it with the Wang-Landau algorithm, which samples in energy space. This method is applicable to general classical statistical models. The possibility of extending it to quantum systems is discussed.
Marcus, Ryan C.
2012-07-24
Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.
Quantum Monte Carlo calculations for light nuclei.
Wiringa, R. B.
1998-10-23
Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.
Monte Carlo simulation for the transport beamline
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
Kinetic Monte Carlo simulations of proton conductivity
NASA Astrophysics Data System (ADS)
Masłowski, T.; Drzewiński, A.; Ulner, J.; Wojtkiewicz, J.; Zdanowska-Frączek, M.; Nordlund, K.; Kuronen, A.
2014-07-01
The kinetic Monte Carlo method is used to model the dynamic properties of proton diffusion in anhydrous proton conductors. The results have been discussed with reference to a two-step process called the Grotthuss mechanism. There is a widespread belief that this mechanism is responsible for fast proton mobility. We showed in detail that the relative frequency of reorientation and diffusion processes is crucial for the conductivity. Moreover, the current dependence on proton concentration has been analyzed. In order to test our microscopic model the proton transport in polymer electrolyte membranes based on benzimidazole C7H6N2 molecules is studied.
Discovering correlated fermions using quantum Monte Carlo.
Wagner, Lucas K; Ceperley, David M
2016-09-01
It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior. PMID:27518859
Quantum Monte Carlo : not just for energy levels.
Nollett, K. M.; Physics
2007-01-01
Quantum Monte Carlo and realistic interactions can provide well-motivated vertices and overlaps for DWBA analyses of reactions. Given an interaction in vaccum, there are several computational approaches to nuclear systems, as you have been hearing: No-core shell model with Lee-Suzuki or Bloch-Horowitz for Hamiltonian Coupled clusters with G-matrix interaction Density functional theory, granted an energy functional derived from the interaction Quantum Monte Carlo - Variational Monte Carlo Green's function Monte Carlo. The last two work directly with a bare interaction and bare operators and describe the wave function without expanding in basis functions, so they have rather different sets of advantages and disadvantages from the others. Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave function, built on shell model like structure modified by operator correlations. Green's function Monte Carlo (GFMC) uses an operator method to project the true ground state out of a reasonable guess wave function.
State-of-the-art Monte Carlo 1988
Soran, P.D.
1988-06-28
Particle transport calculations in highly dimensional and physically complex geometries, such as detector calibration, radiation shielding, space reactors, and oil-well logging, generally require Monte Carlo transport techniques. Monte Carlo particle transport can be performed on a variety of computers ranging from APOLLOs to VAXs. Some of the hardware and software developments, which now permit Monte Carlo methods to be routinely used, are reviewed in this paper. The development of inexpensive, large, fast computer memory, coupled with fast central processing units, permits Monte Carlo calculations to be performed on workstations, minicomputers, and supercomputers. The Monte Carlo renaissance is further aided by innovations in computer architecture and software development. Advances in vectorization and parallelization architecture have resulted in the development of new algorithms which have greatly reduced processing times. Finally, the renewed interest in Monte Carlo has spawned new variance reduction techniques which are being implemented in large computer codes. 45 refs.
Neutron transport calculations using Quasi-Monte Carlo methods
Moskowitz, B.S.
1997-07-01
This paper examines the use of quasirandom sequences of points in place of pseudorandom points in Monte Carlo neutron transport calculations. For two simple demonstration problems, the root mean square error, computed over a set of repeated runs, is found to be significantly less when quasirandom sequences are used ({open_quotes}Quasi-Monte Carlo Method{close_quotes}) than when a standard Monte Carlo calculation is performed using only pseudorandom points.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Monte Carlo techniques for analyzing deep-penetration problems
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1986-02-01
Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications.
Monte Carlo modeling of spatial coherence: free-space diffraction.
Fischer, David G; Prahl, Scott A; Duncan, Donald D
2008-10-01
We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335
Parallel and Portable Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.
1997-08-01
We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.
Quantum Monte Carlo for atoms and molecules
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
WATERS, LAURIE S.; MCKINNEY, GREGG W.; DURKEE, JOE W.; FENSIN, MICHAEL L.; JAMES, MICHAEL R.; JOHNS, RUSSELL C.; PELOWITZ, DENISE B.
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
Experimental Monte Carlo Quantum Process Certification
NASA Astrophysics Data System (ADS)
Steffen, Lars; Fedorov, Arkady; Baur, Matthias; Palmer da Silva, Marcus; Wallraff, Andreas
2012-02-01
Experimental implementations of quantum information processing have now reached a state, at which quantum process tomography starts to become impractical, since the number of experimental settings as well as the computational cost of the post processing required to extract the process matrix from the measurements scales exponentially with the number of qubits in the system. In order to determine the fidelity of an implemented process relative to the ideal one, a more practical approach called Monte Carlo quantum process certification was proposed in Ref. [1]. Here we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup. Our system is realized with three superconducting transmon qubits coupled to a coplanar microwave resonator which is used for the joint-readout of the qubit states. We demonstrate an implementation of Monte Carlo quantum process certification and determine the fidelity of different two- and three-qubit gates such as cphase-, cnot-, 2cphase- and Toffoli-gates. The obtained results are compared with the values obtained from conventional process tomography and the errors of the obtained fidelities are determined. [4pt] [1] M. P. da Silva, O. Landon-Cardinal and D. Poulin, arXiv:1104.3835(2011)
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Monte Carlo simulations within avalanche rescue
NASA Astrophysics Data System (ADS)
Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg
2016-04-01
Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Scalable Domain Decomposed Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
O'Brien, Matthew Joseph
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε^{–2}) or (ε^{–2}(lnε)^{2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε^{–3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10^{–5}. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Monte Carlo methods in lattice gauge theories
Otto, S.W.
1983-01-01
The mass of the O/sup +/ glueball for SU(2) gauge theory in 4 dimensions is calculated. This computation was done on a prototype parallel processor and the implementation of gauge theories on this system is described in detail. Using an action of the purely Wilson form (tract of plaquette in the fundamental representation), results with high statistics are obtained. These results are not consistent with scaling according to the continuum renormalization group. Using actions containing higher representations of the group, a search is made for one which is closer to the continuum limit. The choice is based upon the phase structure of these extended theories and also upon the Migdal-Kadanoff approximation to the renormalizaiton group on the lattice. The mass of the O/sup +/ glueball for this improved action is obtained and the mass divided by the square root of the string tension is a constant as the lattice spacing is varied. The other topic studied is the inclusion of dynamical fermions into Monte Carlo calculations via the pseudo fermion technique. Monte Carlo results obtained with this method are compared with those from an exact algorithm based on Gauss-Seidel inversion. First applied were the methods to the Schwinger model and SU(3) theory.
Quantum Monte Carlo Endstation for Petascale Computing
Lubos Mitas
2011-01-26
NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13
NASA Astrophysics Data System (ADS)
Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.
2016-05-01
Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.
Resist develop prediction by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sohn, Dong-Soo; Jeon, Kyoung-Ah; Sohn, Young-Soo; Oh, Hye-Keun
2002-07-01
Various resist develop models have been suggested to express the phenomena from the pioneering work of Dill's model in 1975 to the recent Shipley's enhanced notch model. The statistical Monte Carlo method can be applied to the process such as development and post exposure bake. The motions of developer during development process were traced by using this method. We have considered that the surface edge roughness of the resist depends on the weight percentage of protected and de-protected polymer in the resist. The results are well agreed with other papers. This study can be helpful for the developing of new photoresist and developer that can be used to pattern the device features smaller than 100 nm.
Hybrid algorithms in quantum Monte Carlo
Esler, Kenneth P; Mcminis, Jeremy; Morales, Miguel A; Clark, Bryan K.; Shulenburger, Luke; Ceperley, David M
2012-01-01
With advances in algorithms and growing computing powers, quantum Monte Carlo (QMC) methods have become a leading contender for high accuracy calculations for the electronic structure of realistic systems. The performance gain on recent HPC systems is largely driven by increasing parallelism: the number of compute cores of a SMP and the number of SMPs have been going up, as the Top500 list attests. However, the available memory as well as the communication and memory bandwidth per element has not kept pace with the increasing parallelism. This severely limits the applicability of QMC and the problem size it can handle. OpenMP/MPI hybrid programming provides applications with simple but effective solutions to overcome efficiency and scalability bottlenecks on large-scale clusters based on multi/many-core SMPs. We discuss the design and implementation of hybrid methods in QMCPACK and analyze its performance on current HPC platforms characterized by various memory and communication hierarchies.
Monte Carlo Studies of Protein Aggregation
NASA Astrophysics Data System (ADS)
Jónsson, Sigurður Ægir; Staneva, Iskra; Mohanty, Sandipan; Irbäck, Anders
The disease-linked amyloid β (Aβ) and α-synuclein (αS) proteins are both fibril-forming and natively unfolded in free monomeric form. Here, we discuss two recent studies, where we used extensive implicit solvent all-atom Monte Carlo (MC) simulations to elucidate the conformational ensembles sampled by these proteins. For αS, we somewhat unexpectedly observed two distinct phases, separated by a clear free-energy barrier. The presence of the barrier makes αS, with 140 residues, a challenge to simulate. By using a two-step simulation procedure based on flat-histogram techniques, it was possible to alleviate this problem. The barrier may in part explain why fibril formation is much slower for αS than it is for Aβ
Nuclear reactions in Monte Carlo codes.
Ferrari, A; Sala, P R
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references.
Vectorization of Monte Carlo particle transport
Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V. . Computer Center; Los Alamos National Lab., NM; Supercomputing Research Center, Bowie, MD )
1989-01-01
Fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP. 32 refs., 12 figs., 1 tab.
Monte Carlo stratified source-sampling
Blomquist, R.N.; Gelbard, E.M.
1997-09-01
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo {open_quotes}eigenvalue of the world{close_quotes} problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress.
Angular biasing in implicit Monte-Carlo
Zimmerman, G.B.
1994-10-20
Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise.
Experimental Monte Carlo Quantum Process Certification
NASA Astrophysics Data System (ADS)
Steffen, L.; da Silva, M. P.; Fedorov, A.; Baur, M.; Wallraff, A.
2012-06-01
Experimental implementations of quantum information processing have now reached a level of sophistication where quantum process tomography is impractical. The number of experimental settings as well as the computational cost of the data postprocessing now translates to days of effort to characterize even experiments with as few as 8 qubits. Recently a more practical approach to determine the fidelity of an experimental quantum process has been proposed, where the experimental data are compared directly with an ideal process using Monte Carlo sampling. Here, we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup to determine the fidelity of 2-qubit gates, such as the CPHASE and the CNOT gate, and 3-qubit gates, such as the Toffoli gate and two sequential CPHASE gates.
MORSE Monte Carlo radiation transport code system
Emmett, M.B.
1983-02-01
This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected. (WHK)
Monte Carlo simulation of neutron scattering instruments
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.
1998-12-01
A code package consisting of the Monte Carlo Library MCLIB, the executing code MC{_}RUN, the web application MC{_}Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC{_}RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown.
Monte Carlo simulations of medical imaging modalities
Estes, G.P.
1998-09-01
Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.
Coherent scatter imaging Monte Carlo simulation.
Hassan, Laila; MacDonald, Carolyn A
2016-07-01
Conventional mammography can suffer from poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter slot scan imaging is an imaging technique which provides additional information and is compatible with conventional mammography. A Monte Carlo simulation of coherent scatter slot scan imaging was performed to assess its performance and provide system optimization. Coherent scatter could be exploited using a system similar to conventional slot scan mammography system with antiscatter grids tilted at the characteristic angle of cancerous tissues. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The simulated carcinomas were detectable for tumors as small as 5 mm in diameter, so coherent scatter analysis using a wide-slot setup could be promising as an enhancement for screening mammography. Employing coherent scatter information simultaneously with conventional mammography could yield a conventional high spatial resolution image with additional coherent scatter information. PMID:27610397
Monte Carlo Simulation of Endlinking Oligomers
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Young, Jennifer A.
1998-01-01
This report describes initial efforts to model the endlinking reaction of phenylethynyl-terminated oligomers. Several different molecular weights were simulated using the Bond Fluctuation Monte Carlo technique on a 20 x 20 x 20 unit lattice with periodic boundary conditions. After a monodisperse "melt" was equilibrated, chain ends were linked whenever they came within the allowed bond distance. Ends remained reactive throughout, so that multiple links were permitted. Even under these very liberal crosslinking assumptions, geometrical factors limited the degree of crosslinking. Average crosslink functionalities were 2.3 to 2.6; surprisingly, they did not depend strongly on the chain length. These results agreed well with the degrees of crosslinking inferred from experiment in a cured phenylethynyl-terminated polyimide oligomer.
The Chasmata and Montes of Charon
NASA Astrophysics Data System (ADS)
Beyer, Ross A.; Barnouin, Olivier; Ennico, Kimberly; Moore, Jeff; Nimmo, Francis; Olkin, Cathy B.; Schenk, Paul; Spencer, John; Stern, S. Alan; Weaver, Hal A.; Young, Leslie A.
2015-11-01
The New Horizons spacecraft made the first-ever high-resolution observations of Pluto's largest moon, Charon, on 14 July 2015. Those observations returned views of complicated topography on this icy world in the outer solar system. Charon posseses a series of chasmata and fossae that appear to form an organized tectonic belt that spans across the disk of the Pluto-facing hemisphere and may extend beyond. In addition, there are enigmatic, isolated mountains visible that are surrounded by depressions. These, in turn, are surrounded by a relatively smooth plain, broken by occaisional rilles, that stretches from these montes northward up to the chasmata region. We will discuss these features and more. This work was supported by NASA's New Horizons project.
The Chasmata and Montes of Charon
NASA Astrophysics Data System (ADS)
Beyer, R. A.; Schenk, P.; Spencer, J. R.; Moore, J. M.; Nimmo, F.; Barnouin, O. S.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; McKinnon, W. B.
2015-12-01
The New Horizons spacecraft made the first-ever high-resolution observations of Pluto's largest moon, Charon, on 14 July 2015. Those observations returned views of complicated topography on this icy world in the outer solar system. Charon posseses a series of chasmata and fossae that appear to form an organized tectonic belt that spans across the disk of the Pluto-facing hemisphere and may extend beyond. In addition, there are enigmatic, isolated mountains visible that are surrounded by depressions. These, in turn, are surrounded by a relatively smooth plain, broken by occaisional rilles, that stretches from these montes northward up to the chasmata region. We will discuss these features and more.
Exploring theory space with Monte Carlo reweighting
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Total Monte Carlo evaluation for dose calculations.
Sjöstrand, H; Alhassan, E; Conroy, S; Duan, J; Hellesen, C; Pomp, S; Österlund, M; Koning, A; Rochman, D
2014-10-01
Total Monte Carlo (TMC) is a method to propagate nuclear data (ND) uncertainties in transport codes, by using a large set of ND files, which covers the ND uncertainty. The transport code is run multiple times, each time with a unique ND file, and the result is a distribution of the investigated parameter, e.g. dose, where the width of the distribution is interpreted as the uncertainty due to ND. Until recently, this was computer intensive, but with a new development, fast TMC, more applications are accessible. The aim of this work is to test the fast TMC methodology on a dosimetry application and to propagate the (56)Fe uncertainties on the predictions of the dose outside a proposed 14-MeV neutron facility. The uncertainty was found to be 4.2 %. This can be considered small; however, this cannot be generalised to all dosimetry applications and so ND uncertainties should routinely be included in most dosimetry modelling.
Exploring theory space with Monte Carlo reweighting
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Monte Carlo modeling and meteor showers
NASA Technical Reports Server (NTRS)
Kulikova, N. V.
1987-01-01
Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.
Chemical application of diffusion quantum Monte Carlo
NASA Technical Reports Server (NTRS)
Reynolds, P. J.; Lester, W. A., Jr.
1984-01-01
The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.
abcpmc: Approximate Bayesian Computation for Population Monte-Carlo code
NASA Astrophysics Data System (ADS)
Akeret, Joel
2015-04-01
abcpmc is a Python Approximate Bayesian Computing (ABC) Population Monte Carlo (PMC) implementation based on Sequential Monte Carlo (SMC) with Particle Filtering techniques. It is extendable with k-nearest neighbour (KNN) or optimal local covariance matrix (OLCM) pertubation kernels and has built-in support for massively parallelized sampling on a cluster using MPI.
QWalk: A quantum Monte Carlo program for electronic structure
Wagner, Lucas K. Bajdich, Michal Mitas, Lubos
2009-05-20
We describe QWalk, a new computational package capable of performing quantum Monte Carlo electronic structure calculations for molecules and solids with many electrons. We describe the structure of the program and its implementation of quantum Monte Carlo methods. It is open-source, licensed under the GPL, and available at the web site (http://www.qwalk.org)
Economic Risk Analysis: Using Analytical and Monte Carlo Techniques.
ERIC Educational Resources Information Center
O'Donnell, Brendan R.; Hickner, Michael A.; Barna, Bruce A.
2002-01-01
Describes the development and instructional use of a Microsoft Excel spreadsheet template that facilitates analytical and Monte Carlo risk analysis of investment decisions. Discusses a variety of risk assessment methods followed by applications of the analytical and Monte Carlo methods. Uses a case study to illustrate use of the spreadsheet tool…
Recent Developments in Quantum Monte Carlo: Methods and Applications
NASA Astrophysics Data System (ADS)
Aspuru-Guzik, Alan; Austin, Brian; Domin, Dominik; Galek, Peter T. A.; Handy, Nicholas; Prasad, Rajendra; Salomon-Ferrer, Romelia; Umezawa, Naoto; Lester, William A.
2007-12-01
The quantum Monte Carlo method in the diffusion Monte Carlo form has become recognized for its capability of describing the electronic structure of atomic, molecular and condensed matter systems to high accuracy. This talk will briefly outline the method with emphasis on recent developments connected with trial function construction, linear scaling, and applications to selected systems.
Adjoint electron-photon transport Monte Carlo calculations with ITS
Lorence, L.J.; Kensek, R.P.; Halbleib, J.A.; Morel, J.E.
1995-02-01
A general adjoint coupled electron-photon Monte Carlo code for solving the Boltzmann-Fokker-Planck equation has recently been created. It is a modified version of ITS 3.0, a coupled electronphoton Monte Carlo code that has world-wide distribution. The applicability of the new code to radiation-interaction problems of the type found in space environments is demonstrated.
Monte Carlo Test Assembly for Item Pool Analysis and Extension
ERIC Educational Resources Information Center
Belov, Dmitry I.; Armstrong, Ronald D.
2005-01-01
A new test assembly algorithm based on a Monte Carlo random search is presented in this article. A major advantage of the Monte Carlo test assembly over other approaches (integer programming or enumerative heuristics) is that it performs a uniform sampling from the item pool, which provides every feasible item combination (test) with an equal…
Quantum Monte Carlo using a Stochastic Poisson Solver
Das, D; Martin, R M; Kalos, M H
2005-05-06
Quantum Monte Carlo (QMC) is an extremely powerful method to treat many-body systems. Usually quantum Monte Carlo has been applied in cases where the interaction potential has a simple analytic form, like the 1/r Coulomb potential. However, in a complicated environment as in a semiconductor heterostructure, the evaluation of the interaction itself becomes a non-trivial problem. Obtaining the potential from any grid-based finite-difference method, for every walker and every step is unfeasible. We demonstrate an alternative approach of solving the Poisson equation by a classical Monte Carlo within the overall quantum Monte Carlo scheme. We have developed a modified ''Walk On Spheres'' algorithm using Green's function techniques, which can efficiently account for the interaction energy of walker configurations, typical of quantum Monte Carlo algorithms. This stochastically obtained potential can be easily incorporated within popular quantum Monte Carlo techniques like variational Monte Carlo (VMC) or diffusion Monte Carlo (DMC). We demonstrate the validity of this method by studying a simple problem, the polarization of a helium atom in the electric field of an infinite capacitor.
A Primer in Monte Carlo Integration Using Mathcad
ERIC Educational Resources Information Center
Hoyer, Chad E.; Kegerreis, Jeb S.
2013-01-01
The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…
Accelerated GPU based SPECT Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
A Regional View of the Libya Montes
NASA Technical Reports Server (NTRS)
2000-01-01
[figure removed for brevity, see original site]
The Libya Montes are a ring of mountains up-lifted by the giant impact that created the Isidis basin to the north. During 1999, this region became one of the top two that were being considered for the now-canceled Mars Surveyor 2001 Lander. The Isidis basin is very, very ancient. Thus, the mountains that form its rims would contain some of the oldest rocks available at the Martian surface, and a landing in this region might potentially provide information about conditions on early Mars. In May 1999, the wide angle cameras of the Mars Global Surveyor Mars Orbiter Camera system were used in what was called the 'Geodesy Campaign' to obtain nearly global maps of the planet in color and in stereo at resolutions of 240 m/pixel (787 ft/pixel) for the red camera and 480 m/pixel (1575 ft/pixel) for the blue. Shown here are color and stereo views constructed from mosaics of the Geodesy Campaign images for the Libya Montes region of Mars. After they formed by giant impact, the Libya Mountains and valleys were subsequently modified and eroded by other processes, including wind, impact cratering, and flow of liquid water to make the many small valleys that can be seen running northward in the scene. The pictures shown here cover nearly 122,000 square kilometers (47,000 square miles) between latitudes 0.1oN and 4.0oN, longitudes 271.5oW and 279.9oW. The mosaics are about 518 km (322 mi) wide by 235 km (146 mi)high. Red-blue '3-D' glasses are needed to view the stereo image.
Monte Carlo modelling of TRIGA research reactor
NASA Astrophysics Data System (ADS)
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Fission Matrix Capability for MCNP Monte Carlo
Carney, Sean E.; Brown, Forrest B.; Kiedrowski, Brian C.; Martin, William R.
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Vectorized Monte Carlo methods for reactor lattice analysis
NASA Technical Reports Server (NTRS)
Brown, F. B.
1984-01-01
Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.
Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo.
Zhang, Jinfeng; Kou, S C; Liu, Jun S
2007-06-14
An efficient exploration of the configuration space of a biopolymer is essential for its structure modeling and prediction. In this study, the authors propose a new Monte Carlo method, fragment regrowth via energy-guided sequential sampling (FRESS), which incorporates the idea of multigrid Monte Carlo into the framework of configurational-bias Monte Carlo and is suitable for chain polymer simulations. As a by-product, the authors also found a novel extension of the Metropolis Monte Carlo framework applicable to all Monte Carlo computations. They tested FRESS on hydrophobic-hydrophilic (HP) protein folding models in both two and three dimensions. For the benchmark sequences, FRESS not only found all the minimum energies obtained by previous studies with substantially less computation time but also found new lower energies for all the three-dimensional HP models with sequence length longer than 80 residues.
Recent advances and future prospects for Monte Carlo
Brown, Forrest B
2010-01-01
The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codes such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Coupled Electron-Ion Monte Carlo calculations of atomic hydrogen
NASA Astrophysics Data System (ADS)
Holzmann, Markus; Pierleoni, Carlo; Ceperley, David M.
2005-07-01
We present a new Monte Carlo method which couples Path Integral for finite temperature protons with Quantum Monte Carlo for ground state electrons, and we apply it to metallic hydrogen for pressures beyond molecular dissociation. This method fills the gap between high temperature electron-proton Path Integral and ground state Diffusion Monte Carlo methods. Our data exhibit more structure and higher melting temperatures of the proton crystal than Car-Parrinello Molecular Dynamics results using LDA. We further discuss the quantum motion of the protons and the zero temperature limit.
Variance reduction in Monte Carlo analysis of rarefied gas diffusion.
NASA Technical Reports Server (NTRS)
Perlmutter, M.
1972-01-01
The problem of rarefied diffusion between parallel walls is solved using the Monte Carlo method. The diffusing molecules are evaporated or emitted from one of the two parallel walls and diffuse through another molecular species. The Monte Carlo analysis treats the diffusing molecule as undergoing a Markov random walk, and the local macroscopic properties are found as the expected value of the random variable, the random walk payoff. By biasing the transition probabilities and changing the collision payoffs, the expected Markov walk payoff is retained but its variance is reduced so that the Monte Carlo result has a much smaller error.
Diffusion Monte Carlo in internal coordinates.
Petit, Andrew S; McCoy, Anne B
2013-08-15
An internal coordinate extension of diffusion Monte Carlo (DMC) is described as a first step toward a generalized reduced-dimensional DMC approach. The method places no constraints on the choice of internal coordinates other than the requirement that they all be independent. Using H(3)(+) and its isotopologues as model systems, the methodology is shown to be capable of successfully describing the ground state properties of molecules that undergo large amplitude, zero-point vibrational motions. Combining the approach developed here with the fixed-node approximation allows vibrationally excited states to be treated. Analysis of the ground state probability distribution is shown to provide important insights into the set of internal coordinates that are less strongly coupled and therefore more suitable for use as the nodal coordinates for the fixed-node DMC calculations. In particular, the curvilinear normal mode coordinates are found to provide reasonable nodal surfaces for the fundamentals of H(2)D(+) and D(2)H(+) despite both molecules being highly fluxional.
Biofilm growth: a lattice Monte Carlo model
NASA Astrophysics Data System (ADS)
Tao, Yuguo; Slater, Gary
2011-03-01
Biofilms are complex colonies of bacteria that grow in contact with a wall, often in the presence of a flow. In the current work, biofilm growth is investigated using a new two-dimensional lattice Monte Carlo algorithm based on the Bond-Fluctuation Algorithm (BFA). One of the distinguishing characteristics of biofilms, the synthesis and physical properties of the extracellular polymeric substance (EPS) in which the cells are embedded, is explicitly taken into account. Cells are modelled as autonomous closed loops with well-defined mechanical and thermodynamic properties, while the EPS is modelled as flexible polymeric chains. This BFA model allows us to add biologically relevant features such as: the uptake of nutrients; cell growth, division and death; the production of EPS; cell maintenance and hibernation; the generation of waste and the impact of toxic molecules; cell mutation and evolution; cell motility. By tuning the structural, interactional and morphologic parameters of the model, the cell shapes as well as the growth and maturation of various types of biofilm colonies can be controlled.
Monte Carlo Approach To Gomos Ozone Retrieval
NASA Astrophysics Data System (ADS)
Tamminen, J.; Kyrölä, E.
Satellite measurements of the atmosphere are non-direct and therefore the data pro- cessing requires inverse methods. In this paper we apply the Bayesian approach and use the Markov chain Monte Carlo (MCMC) method for solving the retrieval problem of GOMOS mesurements. With the MCMC method we are able to compute the true nonlinear posterior distribution of the solution without linearizing the problem. The MCMC technique can easily be implemented in a great variety of retrieval prob- lems including nonlinear problems with various prior or noise structures. Therefore, MCMC methods, though somewhat slow for operational processing of large amounts of data, provide excellent tools for development and validation purposes. Moreover, when the signal-to-noise ratio is poor the MCMC methods can be used to find even the faintest fingerprints of the absorbers in the signal. The MCMC methods, and especially the reversible jump MCMC can also be used in problems where the dimension of the model space is unknown. We will discuss the possibility of using MCMC approach also in a model selection problem, namely, for choosing the model for the wavelength dependence of the aerosol cross sections and studying the optimal constituent set to be retrieved.
Monte Carlo Simulation of River Meander Modelling
NASA Astrophysics Data System (ADS)
Posner, A. J.; Duan, J. G.
2010-12-01
This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.
Atomistic Monte Carlo Simulation of Lipid Membranes
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314
Monte Carlo simulation of a quantized universe.
NASA Astrophysics Data System (ADS)
Berger, Beverly K.
1988-08-01
A Monte Carlo simulation method which yields groundstate wave functions for multielectron atoms is applied to quantized cosmological models. In quantum mechanics, the propagator for the Schrödinger equation reduces to the absolute value squared of the groundstate wave function in the limit of infinite Euclidean time. The wave function of the universe as the solution to the Wheeler-DeWitt equation may be regarded as the zero energy mode of a Schrödinger equation in coordinate time. The simulation evaluates the path integral formulation of the propagator by constructing a large number of paths and computing their contribution to the path integral using the Metropolis algorithm to drive the paths toward a global minimum in the path energy. The result agrees with a solution to the Wheeler-DeWitt equation which has the characteristics of a nodeless groundstate wave function. Oscillatory behavior cannot be reproduced although the simulation results may be physically reasonable. The primary advantage of the simulations is that they may easily be extended to cosmologies with many degrees of freedom. Examples with one, two, and three degrees of freedom (d.f.) are presented.
Monte Carlo Production Management at CMS
NASA Astrophysics Data System (ADS)
Boudoul, G.; Franzoni, G.; Norkus, A.; Pol, A.; Srimanobhas, P.; Vlimant, J.-R.
2015-12-01
The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events. During the RunI of LHC (20102012), CMS has produced over 12 Billion simulated events, organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up). In order to aggregate the information needed for the configuration and prioritization of the events production, assure the book-keeping of all the processing requests placed by the physics analysis groups, and to interface with the CMS production infrastructure, the web- based service Monte Carlo Management (McM) has been developed and put in production in 2013. McM is based on recent server infrastructure technology (CherryPy + AngularJS) and relies on a CouchDB database back-end. This contribution covers the one and half year of operational experience managing samples of simulated events for CMS, the evolution of its functionalities and the extension of its capability to monitor the status and advancement of the events production.
Markov Chain Monte Carlo and Irreversibility
NASA Astrophysics Data System (ADS)
Ottobre, Michela
2016-06-01
Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.
Realistic Monte Carlo Simulation of PEN Apparatus
NASA Astrophysics Data System (ADS)
Glaser, Charles; PEN Collaboration
2015-04-01
The PEN collaboration undertook to measure the π+ -->e+νe(γ) branching ratio with a relative uncertainty of 5 ×10-4 or less at the Paul Scherrer Institute. This observable is highly susceptible to small non V - A contributions, i.e, non-Standard Model physics. The detector system included a beam counter, mini TPC for beam tracking, an active degrader and stopping target, MWPCs and a plastic scintillator hodoscope for particle tracking and identification, and a spherical CsI EM calorimeter. GEANT 4 Monte Carlo simulation is integral to the analysis as it is used to generate fully realistic events for all pion and muon decay channels. The simulated events are constructed so as to match the pion beam profiles, divergence, and momentum distribution. Ensuring the placement of individual detector components at the sub-millimeter level and proper construction of active target waveforms and associated noise, enables us to more fully understand temporal and geometrical acceptances as well as energy, time, and positional resolutions and calibrations in the detector system. This ultimately leads to reliable discrimination of background events, thereby improving cut based or multivariate branching ratio extraction. Work supported by NSF Grants PHY-0970013, 1307328, and others.
Hot Dog and Butterfly, Nereidum Montes
NASA Technical Reports Server (NTRS)
1999-01-01
Some of the pictures returned from Mars by the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft show features that--at a glance--resemble familiar, non-geological objects on Earth. For example, the picture above at the left shows several low, relatively flat-topped hills (mesas) on the floor of a broad valley among the mountains of the Nereidum Montes region, northeast of Argyre Planitia. One of the mesas seen here looks like half of a butterfly (upper subframe on right). Another hill looks something like a snail or a hot dog wrapped and baked in a croissant roll (lower subframe on right). These mesas were formed by natural processes and are most likely the eroded remnants of a formerly more extensive layer of bedrock. In the frame on the left, illumination is from the upper left and the scene covers an area 2.7 km (1.7 miles) wide by 6.8 km (4.2 miles) high. The 'butterfly' is about 800 meters (875 yards) in length and the 'hot dog' is about 1 km (0.62 miles) long.
Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.
Commensurabilities between ETNOs: a Monte Carlo survey
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-07-01
Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.
Finding Planet Nine: a Monte Carlo approach
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-06-01
Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30°, and an argument of perihelion of 150°. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of the four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.
Monte Carlo techniques for analyzing deep penetration problems
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs.
Monte Carlo variance reduction approaches for non-Boltzmann tallies
Booth, T.E.
1992-12-01
Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2014-03-31
The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.
Combinatorial geometry domain decomposition strategies for Monte Carlo simulations
Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.
2013-07-01
Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)
COMPARISON OF MONTE CARLO METHODS FOR NONLINEAR RADIATION TRANSPORT
W. R. MARTIN; F. B. BROWN
2001-03-01
Five Monte Carlo methods for solving the nonlinear thermal radiation transport equations are compared. The methods include the well-known Implicit Monte Carlo method (IMC) developed by Fleck and Cummings, an alternative to IMC developed by Carter and Forest, an ''exact'' method recently developed by Ahrens and Larsen, and two methods recently proposed by Martin and Brown. The five Monte Carlo methods are developed and applied to the radiation transport equation in a medium assuming local thermodynamic equilibrium. Conservation of energy is derived and used to define appropriate material energy update equations for each of the methods. Details of the Monte Carlo implementation are presented, both for the random walk simulation and the material energy update. Simulation results for all five methods are obtained for two infinite medium test problems and a 1-D test problem, all of which have analytical solutions. Conclusions regarding the relative merits of the various schemes are presented.
Enhancements in Continuous-Energy Monte Carlo Capabilities in SCALE
Bekar, Kursat B; Celik, Cihangir; Wiarda, Dorothea; Peplow, Douglas E.; Rearden, Bradley T; Dunn, Michael E
2013-01-01
Monte Carlo tools in SCALE are commonly used in criticality safety calculations as well as sensitivity and uncertainty analysis, depletion, and criticality alarm system analyses. Recent improvements in the continuous-energy data generated by the AMPX code system and significant advancements in the continuous-energy treatment in the KENO Monte Carlo eigenvalue codes facilitate the use of SCALE Monte Carlo codes to model geometrically complex systems with enhanced solution fidelity. The addition of continuous-energy treatment to the SCALE Monaco code, which can be used with automatic variance reduction in the hybrid MAVRIC sequence, provides significant enhancements, especially for criticality alarm system modeling. This paper describes some of the advancements in continuous-energy Monte Carlo codes within the SCALE code system.
Monte Carlo Hybrid Applied to Binary Stochastic Mixtures
2008-08-11
The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.
A Particle Population Control Method for Dynamic Monte Carlo
NASA Astrophysics Data System (ADS)
Sweezy, Jeremy; Nolen, Steve; Adams, Terry; Zukaitis, Anthony
2014-06-01
A general particle population control method has been derived from splitting and Russian Roulette for dynamic Monte Carlo particle transport. A well-known particle population control method, known as the particle population comb, has been shown to be a special case of this general method. This general method has been incorporated in Los Alamos National Laboratory's Monte Carlo Application Toolkit (MCATK) and examples of it's use are shown for both super-critical and sub-critical systems.
Shift: A Massively Parallel Monte Carlo Radiation Transport Package
Pandya, Tara M; Johnson, Seth R; Davidson, Gregory G; Evans, Thomas M; Hamilton, Steven P
2015-01-01
This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, developed at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.
Monte Carlo methods and applications in nuclear physics
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.
Development of Monte Carlo Capability for Orion Parachute Simulations
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
Parachute test programs employ Monte Carlo simulation techniques to plan testing and make critical decisions related to parachute loads, rate-of-descent, or other parameters. This paper describes the development and use of a MATLAB-based Monte Carlo tool for three parachute drop test simulations currently used by NASA. The Decelerator System Simulation (DSS) is a legacy 6 Degree-of-Freedom (DOF) simulation used to predict parachute loads and descent trajectories. The Decelerator System Simulation Application (DSSA) is a 6-DOF simulation that is well suited for modeling aircraft extraction and descent of pallet-like test vehicles. The Drop Test Vehicle Simulation (DTVSim) is a 2-DOF trajectory simulation that is convenient for quick turn-around analysis tasks. These three tools have significantly different software architectures and do not share common input files or output data structures. Separate Monte Carlo tools were initially developed for each simulation. A recently-developed simulation output structure enables the use of the more sophisticated DSSA Monte Carlo tool with any of the core-simulations. The task of configuring the inputs for the nominal simulation is left to the existing tools. Once the nominal simulation is configured, the Monte Carlo tool perturbs the input set according to dispersion rules created by the analyst. These rules define the statistical distribution and parameters to be applied to each simulation input. Individual dispersed parameters are combined to create a dispersed set of simulation inputs. The Monte Carlo tool repeatedly executes the core-simulation with the dispersed inputs and stores the results for analysis. The analyst may define conditions on one or more output parameters at which to collect data slices. The tool provides a versatile interface for reviewing output of large Monte Carlo data sets while preserving the capability for detailed examination of individual dispersed trajectories. The Monte Carlo tool described in
de Finetti Priors using Markov chain Monte Carlo computations
Bacallado, Sergio; Diaconis, Persi; Holmes, Susan
2015-01-01
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three way models for discrete exponential families using polynomial priors and Gröbner bases. PMID:26412947
DPEMC: A Monte Carlo for double diffraction
NASA Astrophysics Data System (ADS)
Boonekamp, M.; Kúcs, T.
2005-05-01
We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations. Program summaryTitle of the program:DPEMC, version 2.4 Catalogue identifier: ADVF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systems Operating system: UNIX; Linux Programming language used: FORTRAN 77 High speed storage required:<25 MB No. of lines in distributed program, including test data, etc.: 71 399 No. of bytes in distributed program, including test data, etc.: 639 950 Distribution format: tar.gz Nature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur
Spina Bifida Association of America
... Another Way to Go Ask the Expert Beyond Crayons Living Well with SB Research Center Resource Directory ... Another Way to Go Ask the Expert Beyond Crayons Living Well with SB Research Center Resource Directory ...
... getting or maintaining an erection. This is called erectile dysfunction (ED). Often, satisfactory erections are possible, but may ... to father children. Can ED be treated? Although erectile dysfunction (ED) is common in men with SB (as ...
Spina Bifida Data and Statistics
... Materials About Us Information For... Media Policy Makers Data and Statistics Recommend on Facebook Tweet Share Compartir ... non-Hispanic white and non-Hispanic black women. Data from 12 state-based birth defects tracking programs ...
Genetics Home Reference: spina bifida
... when the spine forms, the bones of the spinal column do not close completely around the developing nerves ... severe, depending on where the opening in the spinal column is located and how much of the spinal ...
Monte Carlo study of microdosimetric diamond detectors
NASA Astrophysics Data System (ADS)
Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona
2015-09-01
Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.
Monte Carlo study of microdosimetric diamond detectors.
Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona
2015-09-21
Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy. PMID:26309235
Monte Carlo simulation of large electron fields.
Faddegon, Bruce A; Perl, Joseph; Asai, Makoto
2008-03-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.
Monte Carlo simulation of large electron fields
Faddegon, Bruce A; Perl, Joseph; Asai, Makoto
2010-01-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different “physics lists,” were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the buildup region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy. PMID:18296775
Monte Carlo simulation of large electron fields
NASA Astrophysics Data System (ADS)
Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto
2008-03-01
Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different 'physics lists,' were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the six electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the build-up region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy.
Monte Carlo study of microdosimetric diamond detectors.
Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona
2015-09-21
Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.
Monte Carlo simulations for spinodal decomposition
Sander, E.; Wanner, T.
1999-06-01
This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, the authors are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u{sub 0} {equivalent_to} {mu} in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u{sub 0}. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, the authors numerically compare these two mathematical approaches. In fact, they are able to synthesize the understanding they gain from the numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, they can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. The approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter {var_epsilon} of the governing equation. The authors give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. They observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. They explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. They also describe the dynamics of these exceptional solutions.
Monte carlo sampling of fission multiplicity.
Hendricks, J. S.
2004-01-01
Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.
Monte-Carlo simulation of Callisto's exosphere
NASA Astrophysics Data System (ADS)
Vorburger, A.; Wurz, P.; Lammer, H.; Barabash, S.; Mousis, O.
2015-12-01
We model Callisto's exosphere based on its ice as well as non-ice surface via the use of a Monte-Carlo exosphere model. For the ice component we implement two putative compositions that have been computed from two possible extreme formation scenarios of the satellite. One composition represents the oxidizing state and is based on the assumption that the building blocks of Callisto were formed in the protosolar nebula and the other represents the reducing state of the gas, based on the assumption that the satellite accreted from solids condensed in the jovian sub-nebula. For the non-ice component we implemented the compositions of typical CI as well as L type chondrites. Both chondrite types have been suggested to represent Callisto's non-ice composition best. As release processes we consider surface sublimation, ion sputtering and photon-stimulated desorption. Particles are followed on their individual trajectories until they either escape Callisto's gravitational attraction, return to the surface, are ionized, or are fragmented. Our density profiles show that whereas the sublimated species dominate close to the surface on the sun-lit side, their density profiles (with the exception of H and H2) decrease much more rapidly than the sputtered particles. The Neutral gas and Ion Mass (NIM) spectrometer, which is part of the Particle Environment Package (PEP), will investigate Callisto's exosphere during the JUICE mission. Our simulations show that NIM will be able to detect sublimated and sputtered particles from both the ice and non-ice surface. NIM's measured chemical composition will allow us to distinguish between different formation scenarios.
Monte Carlo Volcano Seismic Moment Tensors
NASA Astrophysics Data System (ADS)
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Perturbation Monte Carlo methods for tissue structure alterations.
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome
2013-01-01
This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.
Quantum Monte Carlo Endstation for Petascale Computing
David Ceperley
2011-03-02
CUDA GPU platform. We restructured the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and efficiently utilize the GPU memory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommunication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error. We developed an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and used it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We computed the static contribution to the free energy with the QMC method and obtained the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We computed the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy. We compared experimental and theoretical results on the momentum distribution and the quasiparticle renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron momentum density, we derived its discontinuity at the Fermi wavevector finding an accurate measure of the renormalization factor that we compared with quantum-Monte-Carlo and G0W0 calculations performed both on crystalline sodium and on the homogeneous electron gas. Our calculated results are in good agreement with the experiment. We have been studying the heat of formation for various Kubas complexes of molecular
Neutrino oscillation parameter sampling with MonteCUBES
NASA Astrophysics Data System (ADS)
Blennow, Mattias; Fernandez-Martinez, Enrique
2010-01-01
We present MonteCUBES ("Monte Carlo Utility Based Experiment Simulator"), a software package designed to sample the neutrino oscillation parameter space through Markov Chain Monte Carlo algorithms. MonteCUBES makes use of the GLoBES software so that the existing experiment definitions for GLoBES, describing long baseline and reactor experiments, can be used with MonteCUBES. MonteCUBES consists of two main parts: The first is a C library, written as a plug-in for GLoBES, implementing the Markov Chain Monte Carlo algorithm to sample the parameter space. The second part is a user-friendly graphical Matlab interface to easily read, analyze, plot and export the results of the parameter space sampling. Program summaryProgram title: MonteCUBES (Monte Carlo Utility Based Experiment Simulator) Catalogue identifier: AEFJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 69 634 No. of bytes in distributed program, including test data, etc.: 3 980 776 Distribution format: tar.gz Programming language: C Computer: MonteCUBES builds and installs on 32 bit and 64 bit Linux systems where GLoBES is installed Operating system: 32 bit and 64 bit Linux RAM: Typically a few MBs Classification: 11.1 External routines: GLoBES [1,2] and routines/libraries used by GLoBES Subprograms used:Cat Id ADZI_v1_0, Title GLoBES, Reference CPC 177 (2007) 439 Nature of problem: Since neutrino masses do not appear in the standard model of particle physics, many models of neutrino masses also induce other types of new physics, which could affect the outcome of neutrino oscillation experiments. In general, these new physics imply high-dimensional parameter spaces that are difficult to explore using classical methods such as multi-dimensional projections and minimizations, such as those
Finding organic vapors - a Monte Carlo approach
NASA Astrophysics Data System (ADS)
Vuollekoski, Henri; Boy, Michael; Kerminen, Veli-Matti; Kulmala, Markku
2010-05-01
drawbacks in accuracy, the inability to find diurnal variation and the lack of size resolution. Here, we aim to shed some light onto the problem by applying an ad hoc Monte Carlo algorithm to a well established aerosol dynamical model, the University of Helsinki Multicomponent Aerosol model (UHMA). By performing a side-by-side comparison with measurement data within the algorithm, this approach has the significant advantage of decreasing the amount of manual labor. But more importantly, by basing the comparison on particle number size distribution data - a quantity that can be quite reliably measured - the accuracy of the results is good.
Probability Forecasting Using Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Duncan, M.; Frisbee, J.; Wysack, J.
2014-09-01
Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a
Coherent Scattering Imaging Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Hassan, Laila Abdulgalil Rafik
Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness
Frequency domain optical tomography using a Monte Carlo perturbation method
NASA Astrophysics Data System (ADS)
Yamamoto, Toshihiro; Sakamoto, Hiroki
2016-04-01
A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.
An unbiased Hessian representation for Monte Carlo PDFs
NASA Astrophysics Data System (ADS)
Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan
2015-08-01
We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.
Tool for Rapid Analysis of Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.
2011-01-01
Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.
Efficiency of Monte Carlo sampling in chaotic systems.
Leitão, Jorge C; Lopes, J M Viana Parente; Altmann, Eduardo G
2014-11-01
In this paper we investigate how the complexity of chaotic phase spaces affect the efficiency of importance sampling Monte Carlo simulations. We focus on flat-histogram simulations of the distribution of finite-time Lyapunov exponent in a simple chaotic system and obtain analytically that the computational effort: (i) scales polynomially with the finite time, a tremendous improvement over the exponential scaling obtained in uniform sampling simulations; and (ii) the polynomial scaling is suboptimal, a phenomenon known as critical slowing down. We show that critical slowing down appears because of the limited possibilities to issue a local proposal in the Monte Carlo procedure when it is applied to chaotic systems. These results show how generic properties of chaotic systems limit the efficiency of Monte Carlo simulations.
Monte Carlo simulation in statistical physics: an introduction
NASA Astrophysics Data System (ADS)
Binder, K., Heermann, D. W.
Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methods and gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. This fourth edition has been updated and a new chapter on Monte Carlo simulation of quantum-mechanical problems has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was the winner of the Berni J. Alder CECAM Award for Computational Physics 2001.
Domain decomposition methods for a parallel Monte Carlo transport code
Alme, H J; Rodrigue, G H; Zimmerman, G B
1999-01-27
Achieving parallelism in simulations that use Monte Carlo transport methods presents interesting challenges. For problems that require domain decomposition, load balance can be harder to achieve. The Monte Carlo transport package may have to operate with other packages that have different optimal domain decompositions for a given problem. To examine some of these issues, we have developed a code that simulates the interaction of a laser with biological tissue; it uses a Monte Carlo method to simulate the laser and a finite element model to simulate the conduction of the temperature field in the tissue. We will present speedup and load balance results obtained for a suite of problems decomposed using a few domain decomposition algorithms we have developed.
Monte Carlo tests of the ELIPGRID-PC algorithm
Davidson, J.R.
1995-04-01
The standard tool for calculating the probability of detecting pockets of contamination called hot spots has been the ELIPGRID computer code of Singer and Wickman. The ELIPGRID-PC program has recently made this algorithm available for an IBM{reg_sign} PC. However, no known independent validation of the ELIPGRID algorithm exists. This document describes a Monte Carlo simulation-based validation of a modified version of the ELIPGRID-PC code. The modified ELIPGRID-PC code is shown to match Monte Carlo-calculated hot-spot detection probabilities to within {plus_minus}0.5% for 319 out of 320 test cases. The one exception, a very thin elliptical hot spot located within a rectangular sampling grid, differed from the Monte Carlo-calculated probability by about 1%. These results provide confidence in the ability of the modified ELIPGRID-PC code to accurately predict hot-spot detection probabilities within an acceptable range of error.
Application of biasing techniques to the contributon Monte Carlo method
Dubi, A.; Gerstl, S.A.W.
1980-01-01
Recently, a new Monte Carlo Method called the Contribution Monte Carlo Method was developed. The method is based on the theory of contributions, and uses a new receipe for estimating target responses by a volume integral over the contribution current. The analog features of the new method were discussed in previous publications. The application of some biasing methods to the new contribution scheme is examined here. A theoretical model is developed that enables an analytic prediction of the benefit to be expected when these biasing schemes are applied to both the contribution method and regular Monte Carlo. This model is verified by a variety of numerical experiments and is shown to yield satisfying results, especially for deep-penetration problems. Other considerations regarding the efficient use of the new method are also discussed, and remarks are made as to the application of other biasing methods. 14 figures, 1 tables.
Mission Analysis, Operations, and Navigation Toolkit Environment (Monte) Version 040
NASA Technical Reports Server (NTRS)
Sunseri, Richard F.; Wu, Hsi-Cheng; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.
2012-01-01
Monte is a software set designed for use in mission design and spacecraft navigation operations. The system can process measurement data, design optimal trajectories and maneuvers, and do orbit determination, all in one application. For the first time, a single software set can be used for mission design and navigation operations. This eliminates problems due to different models and fidelities used in legacy mission design and navigation software. The unique features of Monte 040 include a blowdown thruster model for GRAIL (Gravity Recovery and Interior Laboratory) with associated pressure models, as well as an updated, optimalsearch capability (COSMIC) that facilitated mission design for ARTEMIS. Existing legacy software lacked the capabilities necessary for these two missions. There is also a mean orbital element propagator and an osculating to mean element converter that allows long-term orbital stability analysis for the first time in compiled code. The optimized trajectory search tool COSMIC allows users to place constraints and controls on their searches without any restrictions. Constraints may be user-defined and depend on trajectory information either forward or backwards in time. In addition, a long-term orbit stability analysis tool (morbiter) existed previously as a set of scripts on top of Monte. Monte is becoming the primary tool for navigation operations, a core competency at JPL. The mission design capabilities in Monte are becoming mature enough for use in project proposals as well as post-phase A mission design. Monte has three distinct advantages over existing software. First, it is being developed in a modern paradigm: object- oriented C++ and Python. Second, the software has been developed as a toolkit, which allows users to customize their own applications and allows the development team to implement requirements quickly, efficiently, and with minimal bugs. Finally, the software is managed in accordance with the CMMI (Capability Maturity Model
PEPSI — a Monte Carlo generator for polarized leptoproduction
NASA Astrophysics Data System (ADS)
Mankiewicz, L.; Schäfer, A.; Veltri, M.
1992-09-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.
Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems
NASA Astrophysics Data System (ADS)
Svistunov, Boris
2013-03-01
In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA
Monte Carlo simulations of phosphate polyhedron connectivity in glasses
ALAM,TODD M.
2000-01-01
Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses
ALAM,TODD M.
1999-12-21
Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Mesh Optimization for Monte Carlo-Based Optical Tomography
Edmans, Andrew; Intes, Xavier
2015-01-01
Mesh-based Monte Carlo techniques for optical imaging allow for accurate modeling of light propagation in complex biological tissues. Recently, they have been developed within an efficient computational framework to be used as a forward model in optical tomography. However, commonly employed adaptive mesh discretization techniques have not yet been implemented for Monte Carlo based tomography. Herein, we propose a methodology to optimize the mesh discretization and analytically rescale the associated Jacobian based on the characteristics of the forward model. We demonstrate that this method maintains the accuracy of the forward model even in the case of temporal data sets while allowing for significant coarsening or refinement of the mesh. PMID:26566523
Collective translational and rotational Monte Carlo moves for attractive particles
NASA Astrophysics Data System (ADS)
RÅ¯žička, Štěpán; Allen, Michael P.
2014-03-01
Virtual move Monte Carlo is a Monte Carlo (MC) cluster algorithm forming clusters via local energy gradients and approximating the collective kinetic or dynamic motion of attractive colloidal particles. We carefully describe, analyze, and test the algorithm. To formally validate the algorithm through highlighting its symmetries, we present alternative and compact ways of selecting and accepting clusters which illustrate the formal use of abstract concepts in the design of biased MC techniques: the superdetailed balance and the early rejection scheme. A brief and comprehensive summary of the algorithms is presented, which makes them accessible without needing to understand the details of the derivation.
Novel Quantum Monte Carlo Approaches for Quantum Liquids
NASA Astrophysics Data System (ADS)
Rubenstein, Brenda M.
Quantum Monte Carlo methods are a powerful suite of techniques for solving the quantum many-body problem. By using random numbers to stochastically sample quantum properties, QMC methods are capable of studying low-temperature quantum systems well beyond the reach of conventional deterministic techniques. QMC techniques have likewise been indispensible tools for augmenting our current knowledge of superfluidity and superconductivity. In this thesis, I present two new quantum Monte Carlo techniques, the Monte Carlo Power Method and Bose-Fermi Auxiliary-Field Quantum Monte Carlo, and apply previously developed Path Integral Monte Carlo methods to explore two new phases of quantum hard spheres and hydrogen. I lay the foundation for a subsequent description of my research by first reviewing the physics of quantum liquids in Chapter One and the mathematics behind Quantum Monte Carlo algorithms in Chapter Two. I then discuss the Monte Carlo Power Method, a stochastic way of computing the first several extremal eigenvalues of a matrix too memory-intensive to be stored and therefore diagonalized. As an illustration of the technique, I demonstrate how it can be used to determine the second eigenvalues of the transition matrices of several popular Monte Carlo algorithms. This information may be used to quantify how rapidly a Monte Carlo algorithm is converging to the equilibrium probability distribution it is sampling. I next present the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm. This algorithm generalizes the well-known Auxiliary-Field Quantum Monte Carlo algorithm for fermions to bosons and Bose-Fermi mixtures. Despite some shortcomings, the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm represents the first exact technique capable of studying Bose-Fermi mixtures of any size in any dimension. In Chapter Six, I describe a new Constant Stress Path Integral Monte Carlo algorithm for the study of quantum mechanical systems under high pressures. While
Monte Carlo calculation of monitor unit for electron arc therapy
Chow, James C. L.; Jiang Runqing
2010-04-15
Purpose: Monitor unit (MU) calculations for electron arc therapy were carried out using Monte Carlo simulations and verified by measurements. Variations in the dwell factor (DF), source-to-surface distance (SSD), and treatment arc angle ({alpha}) were studied. Moreover, the possibility of measuring the DF, which requires gantry rotation, using a solid water rectangular, instead of cylindrical, phantom was investigated. Methods: A phase space file based on the 9 MeV electron beam with rectangular cutout (physical size=2.6x21 cm{sup 2}) attached to the block tray holder of a Varian 21 EX linear accelerator (linac) was generated using the EGSnrc-based Monte Carlo code and verified by measurement. The relative output factor (ROF), SSD offset, and DF, needed in the MU calculation, were determined using measurements and Monte Carlo simulations. An ionization chamber, a radiographic film, a solid water rectangular phantom, and a cylindrical phantom made of polystyrene were used in dosimetry measurements. Results: Percentage deviations of ROF, SSD offset, and DF between measured and Monte Carlo results were 1.2%, 0.18%, and 1.5%, respectively. It was found that the DF decreased with an increase in {alpha}, and such a decrease in DF was more significant in the {alpha} range of 0 deg. - 60 deg. than 60 deg. - 120 deg. Moreover, for a fixed {alpha}, the DF increased with an increase in SSD. Comparing the DF determined using the rectangular and cylindrical phantom through measurements and Monte Carlo simulations, it was found that the DF determined by the rectangular phantom agreed well with that by the cylindrical one within {+-}1.2%. It shows that a simple setup of a solid water rectangular phantom was sufficient to replace the cylindrical phantom using our specific cutout to determine the DF associated with the electron arc. Conclusions: By verifying using dosimetry measurements, Monte Carlo simulations proved to be an alternative way to perform MU calculations effectively
Research in the Mont Terri Rock laboratory: Quo vadis?
NASA Astrophysics Data System (ADS)
Bossart, Paul; Thury, Marc
During the past 10 years, the 12 Mont Terri partner organisations ANDRA, BGR, CRIEPI, ENRESA, FOWG (now SWISSTOPO), GRS, HSK, IRSN, JAEA, NAGRA, OBAYASHI and SCK-CEN have jointly carried out and financed a research programme in the Mont Terri Rock Laboratory. An important strategic question for the Mont Terri project is what type of new experiments should be carried out in the future. This question has been discussed among partner delegates, authorities, scientists, principal investigators and experiment delegates. All experiments at Mont Terri - past, ongoing and future - can be assigned to the following three categories: (1) process and mechanism understanding in undisturbed argillaceous formations, (2) experiments related to excavation- and repository-induced perturbations and (3) experiments related to repository performance during the operational and post-closure phases. In each of these three areas, there are still open questions and hence potential experiments to be carried out in the future. A selection of key issues and questions which have not, or have only partly been addressed so far and in which the project partners, but also the safety authorities and other research organisations may be interested, are presented in the following. The Mont Terri Rock Laboratory is positioned as a generic rock laboratory, where research and development is key: mainly developing methods for site characterisation of argillaceous formations, process understanding and demonstration of safety. Due to geological constraints, there will never be a site specific rock laboratory at Mont Terri. The added value for the 12 partners in terms of future experiments is threefold: (1) the Mont Terri project provides an international scientific platform of high reputation for research on radioactive waste disposal (= state-of-the-art research in argillaceous materials); (2) errors are explicitly allowed (= rock laboratory as a “playground” where experience is often gained through
Optix: A Monte Carlo scintillation light transport code
NASA Astrophysics Data System (ADS)
Safari, M. J.; Afarideh, H.; Ghal-Eh, N.; Davani, F. Abbasi
2014-02-01
The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements.
Monte Carlo Form-Finding Method for Tensegrity Structures
NASA Astrophysics Data System (ADS)
Li, Yue; Feng, Xi-Qiao; Cao, Yan-Ping
2010-05-01
In this paper, we propose a Monte Carlo-based approach to solve tensegrity form-finding problems. It uses a stochastic procedure to find the deterministic equilibrium configuration of a tensegrity structure. The suggested Monte Carlo form-finding (MCFF) method is highly efficient because it does not involve complicated matrix operations and symmetry analysis and it works for arbitrary initial configurations. Both regular and non-regular tensegrity problems of large scale can be solved. Some representative examples are presented to demonstrate the efficiency and accuracy of this versatile method.
Monte Carlo simulation of electrons in dense gases
NASA Astrophysics Data System (ADS)
Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron
2014-10-01
We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.
Cl constrains on shallow plumbing system and pre-eruptive conditions of the Phlegrean Fields.
NASA Astrophysics Data System (ADS)
Zdanowicz, Géraldine; Balcone-Boissard, Hélène; Boudon, Georges; Civetta, Lucia; Orsi, Giovanni; D'Antonio, Massimo
2015-04-01
The bay of Naples is known to concentrate several dangerous volcanoes that erupted a lot of times in prehistorical and historical periods: Vesuvius, Phlegrean Fields and Ischia Island. Phlegrean Fields produced voluminous high-magnitude eruptions including: the Campanian Ignimbrite (39 ka BP), one of the two largest explosive eruptions of the Mediterranean region during the last 200,000 years, with 300 km3 of magma emitted, and the Neapolitan Yellow Tuff (15 ka BP), the second major eruption (40 km3 of magma emitted). The Ischia Island is located in the Bay of Naples and its eruptive history has been recently detailed. We present a geochemical investigation of volatile components on the fallout products of the major explosive eruptions of Phlegrean Fields: the Campanian Ignimbrite (39 ka BP), the Neapolitan Yellow Tuff (15 ka BP), the Pomici Principali (10 ka BP; 0.38 km3 DRE magma), the Agnano Monte-Spina (4.1 ka BP; 0.60 km3 DRE magma); the Astroni 6 (3.8 ka BP; 0.70 km3 DRE magma); the Monte Nuovo (1,538 AD), which is the most recent eruption of the Phlegrean Fields (0.04 km3 DRE magma), and for comparison the Cretaio eruption of the Ischia Island (1,800 a BP; 0.02 km3 DRE magma). Volatiles of magmas (H2O, CO2, SO2, Cl, F) are informative not only because they play a key role in the eruptive dynamic but also because they, and especially chlorine, may allow estimating the pressure of localization of the magma storage and pre-eruptive water content (prior the eruption). In the alkaline magmas involved during the Phlegrean Fields eruptions, H2O is the main volatile species but Cl behaviour is particularly interesting to study. Experimentally, it has been demonstrated that in a pressure, temperature and composition domain a water-saturated magma may be in equilibrium with a fluid phase consisting of a water-rich vapor and a chlorine-rich brine. In that case, the Cl content in magma is buffered. This effect allows determining the pressure of localization of
Observations on variational and projector Monte Carlo methods.
Umrigar, C J
2015-10-28
Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed. PMID:26520496
Observations on variational and projector Monte Carlo methods
NASA Astrophysics Data System (ADS)
Umrigar, C. J.
2015-10-01
Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed.
Reagents for Electrophilic Amination: A Quantum Monte CarloStudy
Amador-Bedolla, Carlos; Salomon-Ferrer, Romelia; Lester Jr.,William A.; Vazquez-Martinez, Jose A.; Aspuru-Guzik, Alan
2006-11-01
Electroamination is an appealing synthetic strategy toconstruct carbon-nitrogen bonds. We explore the use of the quantum MonteCarlo method and a proposed variant of the electron-pair localizationfunction--the electron-pair localization function density--as a measureof the nucleophilicity of nitrogen lone-pairs as a possible screeningprocedure for electrophilic reagents.
Error estimations and their biases in Monte Carlo eigenvalue calculations
Ueki, Taro; Mori, Takamasa; Nakagawa, Masayuki
1997-01-01
In the Monte Carlo eigenvalue calculation of neutron transport, the eigenvalue is calculated as the average of multiplication factors from cycles, which are called the cycle k{sub eff}`s. Biases in the estimators of the variance and intercycle covariances in Monte Carlo eigenvalue calculations are analyzed. The relations among the real and apparent values of variances and intercycle covariances are derived, where real refers to a true value that is calculated from independently repeated Monte Carlo runs and apparent refers to the expected value of estimates from a single Monte Carlo run. Next, iterative methods based on the foregoing relations are proposed to estimate the standard deviation of the eigenvalue. The methods work well for the cases in which the ratios of the real to apparent values of variances are between 1.4 and 3.1. Even in the case where the foregoing ratio is >5, >70% of the standard deviation estimates fall within 40% from the true value.
Monte Carlo study of TLD measurements in air cavities.
Haraldsson, Pia; Knöös, Tommy; Nyström, Håkan; Engström, Per
2003-09-21
Thermoluminescent dosimeters (TLDs) are used for verification of the delivered dose during IMRT treatment of head and neck carcinomas. The TLDs are put into a plastic tube, which is placed in the nasal cavities through the treated volume. In this study, the dose distribution to a phantom having a cylindrical air cavity containing a tube was calculated by Monte Carlo methods and the results were compared with data from a treatment planning system (TPS) to evaluate the accuracy of the TLD measurements. The phantom was defined in the DOSXYZnrc Monte Carlo code and calculations were performed with 6 MV fields, with the TLD tube placed at different positions within the cylindrical air cavity. A similar phantom was defined in the pencil beam based TPS. Differences between the Monte Carlo and the TPS calculations of the absorbed dose to the TLD tube were found to be small for an open symmetrical field. For a half-beam field through the air cavity, there was a larger discrepancy. Furthermore, dose profiles through the cylindrical air cavity show, as expected, that the treatment planning system overestimates the absorbed dose in the air cavity. This study shows that when using an open symmetrical field, Monte Carlo calculations of absorbed doses to a TLD tube in a cylindrical air cavity give results comparable to a pencil beam based treatment planning system.
Calibration and Monte Carlo modelling of neutron long counters
NASA Astrophysics Data System (ADS)
Tagziria, Hamid; Thomas, David J.
2000-10-01
The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivity of the Monte Carlo calculations for the efficiency of the De Pangher long counter to perturbations in density and cross-section of the polyethylene used in the construction has been investigated.
Bayesian Monte Carlo Method for Nuclear Data Evaluation
Koning, A.J.
2015-01-15
A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using TALYS. The result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by an experiment based weight.
Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm
NASA Astrophysics Data System (ADS)
Gubernatis, James
2014-03-01
A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.
Shifted-Contour Monte Carlo Method for Nuclear Structure
Stoitcheva, G.S.; Dean, D.J.
2004-09-13
We propose a new approach for alleviating the 'sign' problem in the nuclear shell model Monte Carlo method. The approach relies on modifying the integration contour of the Hubbard-Stratonovich transformation to pass through an imaginary stationary point in the auxiliary-field associated with the Hartree-Fock density.
Monte Carlo shipping cask calculations using an automated biasing procedure
Tang, J.S.; Hoffman, T.J.; Childs, R.L.; Parks, C.V.
1983-01-01
This paper describes an automated biasing procedure for Monte Carlo shipping cask calculations within the SCALE system - a modular code system for Standardized Computer Analysis for Licensing Evaluation. The SCALE system was conceived and funded by the US Nuclear Regulatory Commission to satisfy a strong need for performing standardized criticality, shielding, and heat transfer analyses of nuclear systems.
A Variational Monte Carlo Approach to Atomic Structure
ERIC Educational Resources Information Center
Davis, Stephen L.
2007-01-01
The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.
Improved geometry representations for Monte Carlo radiation transport.
Martin, Matthew Ryan
2004-08-01
ITS (Integrated Tiger Series) permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. ITS allows designers to predict product performance in radiation environments.
Monte Carlo method for magnetic impurities in metals
NASA Technical Reports Server (NTRS)
Hirsch, J. E.; Fye, R. M.
1986-01-01
The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.
Microbial contamination in poultry chillers estimated by Monte Carlo simulations
Technology Transfer Automated Retrieval System (TEKTRAN)
The risk of microbial contamination during poultry processing may be reduced by the operating characteristics of the chiller. The performance of air chillers and immersion chillers were compared in terms of pre-chill and post-chill contamination using Monte Carlo simulations. Three parameters were u...
A Monte Carlo Approach for Adaptive Testing with Content Constraints
ERIC Educational Resources Information Center
Belov, Dmitry I.; Armstrong, Ronald D.; Weissman, Alexander
2008-01-01
This article presents a new algorithm for computerized adaptive testing (CAT) when content constraints are present. The algorithm is based on shadow CAT methodology to meet content constraints but applies Monte Carlo methods and provides the following advantages over shadow CAT: (a) lower maximum item exposure rates, (b) higher utilization of the…
Diffuse photon density wave measurements and Monte Carlo simulations.
Kuzmin, Vladimir L; Neidrauer, Michael T; Diaz, David; Zubkov, Leonid A
2015-10-01
Diffuse photon density wave (DPDW) methodology is widely used in a number of biomedical applications. Here, we present results of Monte Carlo simulations that employ an effective numerical procedure based upon a description of radiative transfer in terms of the Bethe–Salpeter equation. A multifrequency noncontact DPDW system was used to measure aqueous solutions of intralipid at a wide range of source–detector separation distances, at which the diffusion approximation of the radiative transfer equation is generally considered to be invalid. We find that the signal–noise ratio is larger for the considered algorithm in comparison with the conventional Monte Carlo approach. Experimental data are compared to the Monte Carlo simulations using several values of scattering anisotropy and to the diffusion approximation. Both the Monte Carlo simulations and diffusion approximation were in very good agreement with the experimental data for a wide range of source–detector separations. In addition, measurements with different wavelengths were performed to estimate the size and scattering anisotropy of scatterers.
Observations on variational and projector Monte Carlo methods
Umrigar, C. J.
2015-10-28
Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed.
Monte Carlo Simulations of Light Propagation in Apples
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper reports on the investigation of light propagation in fresh apples in the visible and short-wave near-infrared region using Monte Carlo simulations. Optical properties of ‘Golden Delicious’ apples were determined over the spectral range of 500-1100 nm using a hyperspectral imaging method, ...
Exploring Mass Perception with Markov Chain Monte Carlo
ERIC Educational Resources Information Center
Cohen, Andrew L.; Ross, Michael G.
2009-01-01
Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…
Practical Implementation of "Soka" Education: A Dialogue with Monte Joffee
ERIC Educational Resources Information Center
Joffee, Monte; Goulah, Jason; Gebert, Andrew
2009-01-01
This article presents a dialogue with Monte Joffee. Joffee has been an active leader in the small school and charter school movements in New York City for over 20 years. He is a cofounder of The Renaissance Charter School in New York City and served as its founding principal (1993-2007). In this dialogue, Joffee articulates the ways in which…
Monte Carlo Capabilities of the SCALE Code System
NASA Astrophysics Data System (ADS)
Rearden, B. T.; Petrie, L. M.; Peplow, D. E.; Bekar, K. B.; Wiarda, D.; Celik, C.; Perfetti, C. M.; Ibrahim, A. M.; Hart, S. W. D.; Dunn, M. E.
2014-06-01
SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a "plug-and-play" framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE's graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2, to be released in 2014, will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. An overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.
Monte Carlo radiation transport: A revolution in science
Hendricks, J.
1993-04-01
When Enrico Fermi, Stan Ulam, Nicholas Metropolis, John von Neuman, and Robert Richtmyer invented the Monte Carlo method fifty years ago, little could they imagine the far-flung consequences, the international applications, and the revolution in science epitomized by their abstract mathematical method. The Monte Carlo method is used in a wide variety of fields to solve exact computational models approximately by statistical sampling. It is an alternative to traditional physics modeling methods which solve approximate computational models exactly by deterministic methods. Modern computers and improved methods, such as variance reduction, have enhanced the method to the point of enabling a true predictive capability in areas such as radiation or particle transport. This predictive capability has contributed to a radical change in the way science is done: design and understanding come from computations built upon experiments rather than being limited to experiments, and the computer codes doing the computations have become the repository for physics knowledge. The MCNP Monte Carlo computer code effort at Los Alamos is an example of this revolution. Physicians unfamiliar with physics details can design cancer treatments using physics buried in the MCNP computer code. Hazardous environments and hypothetical accidents can be explored. Many other fields, from underground oil well exploration to aerospace, from physics research to energy production, from safety to bulk materials processing, benefit from MCNP, the Monte Carlo method, and the revolution in science.
Monte Carlo event generators for hadron-hadron collisions
Knowles, I.G.; Protopopescu, S.D.
1993-06-01
A brief review of Monte Carlo event generators for simulating hadron-hadron collisions is presented. Particular emphasis is placed on comparisons of the approaches used to describe physics elements and identifying their relative merits and weaknesses. This review summarizes a more detailed report.
Monte Carlo capabilities of the SCALE code system
Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; Bekar, Kursat B.; Wiarda, Dorothea; Celik, Cihangir; Perfetti, Christopher M.; Ibrahim, Ahmad M.; Hart, S. W. D.; Dunn, Michael E.; Marshall, William J.
2014-09-12
SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.
Monte Carlo capabilities of the SCALE code system
Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; Bekar, Kursat B.; Wiarda, Dorothea; Celik, Cihangir; Perfetti, Christopher M.; Ibrahim, Ahmad M.; Hart, S. W. D.; Dunn, Michael E.; et al
2014-09-12
SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less
Quantum Monte Carlo simulation with a black hole
NASA Astrophysics Data System (ADS)
Benić, Sanjin; Yamamoto, Arata
2016-05-01
We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous symmetry breaking induced by an inhomogeneous gravitational field.
Parallel Monte Carlo simulation of multilattice thin film growth
NASA Astrophysics Data System (ADS)
Shu, J. W.; Lu, Qin; Wong, Wai-on; Huang, Han-chen
2001-07-01
This paper describe a new parallel algorithm for the multi-lattice Monte Carlo atomistic simulator for thin film deposition (ADEPT), implemented on parallel computer using the PVM (Parallel Virtual Machine) message passing library. This parallel algorithm is based on domain decomposition with overlapping and asynchronous communication. Multiple lattices are represented by a single reference lattice through one-to-one mappings, with resulting computational demands being comparable to those in the single-lattice Monte Carlo model. Asynchronous communication and domain overlapping techniques are used to reduce the waiting time and communication time among parallel processors. Results show that the algorithm is highly efficient with large number of processors. The algorithm was implemented on a parallel machine with 50 processors, and it is suitable for parallel Monte Carlo simulation of thin film growth with either a distributed memory parallel computer or a shared memory machine with message passing libraries. In this paper, the significant communication time in parallel MC simulation of thin film growth is effectively reduced by adopting domain decomposition with overlapping between sub-domains and asynchronous communication among processors. The overhead of communication does not increase evidently and speedup shows an ascending tendency when the number of processor increases. A near linear increase in computing speed was achieved with number of processors increases and there is no theoretical limit on the number of processors to be used. The techniques developed in this work are also suitable for the implementation of the Monte Carlo code on other parallel systems.
MODELING LEACHING OF VIRUSES BY THE MONTE CARLO METHOD
A predictive screening model was developed for fate and transport
of viruses in the unsaturated zone. A database of input parameters
allowed Monte Carlo analysis with the model. The resulting kernel
densities of predicted attenuation during percolation indicated very ...
Bayesian methods, maximum entropy, and quantum Monte Carlo
Gubernatis, J.E.; Silver, R.N. ); Jarrell, M. )
1991-01-01
We heuristically discuss the application of the method of maximum entropy to the extraction of dynamical information from imaginary-time, quantum Monte Carlo data. The discussion emphasizes the utility of a Bayesian approach to statistical inference and the importance of statistically well-characterized data. 14 refs.
Testing Dependent Correlations with Nonoverlapping Variables: A Monte Carlo Simulation
ERIC Educational Resources Information Center
Silver, N. Clayton; Hittner, James B.; May, Kim
2004-01-01
The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…
A Monte Carlo solution of heat conduction and Poisson equations
Grigoriu, M.
2000-02-01
A Monte Carlo method is developed for solving the heat conduction, Poisson, and Laplace equations. The method is based on properties of Brownian motion and Ito processes, the Ito formula for differentiable functions of these processes, and the similarities between the generator of Ito processes and the differential operators of these equations. The proposed method is similar to current Monte Carlo solutions, such as the fixed random walk, exodus, and floating walk methods, in the sense that it is local, that is, it determines the solution at a single point or a small set of points of the domain of definition of the heat conduction equation directly. However, the proposed and the current Monte Carlo solutions are based on different theoretical considerations. The proposed Monte Carlo method has some attractive features. The method does not require to discretize the domain of definition of the differential equation, can be applied to domains of any dimension and geometry, works for both Dirichlet and Neumann boundary conditions, and provides simple solutions for the steady-state and transient heat equations. Several examples are presented to illustrate the application of the proposed method and demonstrate its accuracy.
Does standard Monte Carlo give justice to instantons?
NASA Astrophysics Data System (ADS)
Fucito, F.; Solomon, S.
1984-01-01
The results of the standard local Monte Carlo are changed by offering instantons as candidates in the Metropolis procedure. We also define an O(3) topological charge with no contribution from planar dislocations. The RG behavior is still not recovered. Bantrell Fellow in Theoretical Physics.
Monte Carlo methods for multidimensional integration for European option pricing
NASA Astrophysics Data System (ADS)
Todorov, V.; Dimov, I. T.
2016-10-01
In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.
Aqueous Alteration at a Delta in Eastern Libya Montes
NASA Astrophysics Data System (ADS)
Bishop, Janice L.; Tirsch, Daniela; Tornabene, Livio L.; Seelos, Frank P.; Erkeling, Gino; Hiesinger, Harald; Jaumann, Ralf
2015-04-01
Libya Montes hosts ancient Noachian basalt altered by hydrothermal action from the Isidis impact, olivine- and pyroxene-bearing lavas from the Syrtis volcanic outflows, multiple craters that have excavated these geologic units, and numerous Hesperian-Amazonian-aged fluvial features that carved channels across the surface and may have transported material downward towards Isidis. Mineralogical analyses of a delta region in Eastern Libya Montes using recently available MTR3 CRISM images have revealed the presence of carbonate in additional to Al-, Fe-, and Mg-bearing phyllosilicates. We are investigating the origins of these aqueous components through stratigraphical and morphological analyses. We hypothesize that the carbonate and Fe/Mg-phyllosilicates are alteration products of the ancient basalt and that the Al-smectite formed as a result of the delta and more recent lacustrine or fluvial processes. The Al-smectite spectral features are most consistent with beidellite, which forms at elevated temperatures compared to montmorillonite. We seek to determine if the beidellite likely formed in warm delta waters or if it may have formed via burial diagenesis and was then excavated by the delta. Newly developed CRISM parameters are being utilized for analysis of the MTR3 versions of CRISM images FRT0000B0CB and FRT0001E2F2 in the fan and delta region of eastern Libya Montes. The MTR3 images feature joined short-wavelength and long-wavelength images and improved spectral signals through new atmospheric separation and noise removal techniques. This enables better detection of spectral signatures from small outcrops of aqueous components. We have placed these new CRISM mineral maps over HRSC stereo images to evaluate the stratigraphy of the aqueous components in relation to the ancient basalt and Syrtis lavas as in previous analyses of the central Libya Montes region. Coordinated CRISM-HiRISE views are expected to provide insights into the morphologies of the aqueous units
Multiple-time-stepping generalized hybrid Monte Carlo methods
Escribano, Bruno; Akhmatskaya, Elena; Reich, Sebastian; Azpiroz, Jon M.
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
Fast Monte Carlo for radiation therapy: the PEREGRINE Project
Hartmann Siantar, C.L.; Bergstrom, P.M.; Chandler, W.P.; Cox, L.J.; Daly, T.P.; Garrett, D.; House, R.K.; Moses, E.I.; Powell, C.L.; Patterson, R.W.; Schach von Wittenau, A.E.
1997-11-11
The purpose of the PEREGRINE program is to bring high-speed, high- accuracy, high-resolution Monte Carlo dose calculations to the desktop in the radiation therapy clinic. PEREGRINE is a three- dimensional Monte Carlo dose calculation system designed specifically for radiation therapy planning. It provides dose distributions from external beams of photons, electrons, neutrons, and protons as well as from brachytherapy sources. Each external radiation source particle passes through collimator jaws and beam modifiers such as blocks, compensators, and wedges that are used to customize the treatment to maximize the dose to the tumor. Absorbed dose is tallied in the patient or phantom as Monte Carlo simulation particles are followed through a Cartesian transport mesh that has been manually specified or determined from a CT scan of the patient. This paper describes PEREGRINE capabilities, results of benchmark comparisons, calculation times and performance, and the significance of Monte Carlo calculations for photon teletherapy. PEREGRINE results show excellent agreement with a comprehensive set of measurements for a wide variety of clinical photon beam geometries, on both homogeneous and heterogeneous test samples or phantoms. PEREGRINE is capable of calculating >350 million histories per hour for a standard clinical treatment plan. This results in a dose distribution with voxel standard deviations of <2% of the maximum dose on 4 million voxels with 1 mm resolution in the CT-slice plane in under 20 minutes. Calculation times include tracking particles through all patient specific beam delivery components as well as the patient. Most importantly, comparison of Monte Carlo dose calculations with currently-used algorithms reveal significantly different dose distributions for a wide variety of treatment sites, due to the complex 3-D effects of missing tissue, tissue heterogeneities, and accurate modeling of the radiation source.
Accurate characterization of Monte Carlo calculated electron beams for radiotherapy.
Ma, C M; Faddegon, B A; Rogers, D W; Mackie, T R
1997-03-01
Monte Carlo studies of dose distributions in patients treated with radiotherapy electron beams would benefit from generalized models of clinical beams if such models introduce little error into the dose calculations. Methodology is presented for the design of beam models, including their evaluation in terms of how well they preserve the character of the clinical beam, and the effect of the beam models on the accuracy of dose distributions calculated with Monte Carlo. This methodology has been used to design beam models for electron beams from two linear accelerators, with either a scanned beam or a scattered beam. Monte Carlo simulations of the accelerator heads are done in which a record is kept of the particle phase-space, including the charge, energy, direction, and position of every particle that emerges from the treatment head, along with a tag regarding the details of the particle history. The character of the simulated beams are studied in detail and used to design various beam models from a simple point source to a sophisticated multiple-source model which treats particles from different parts of a linear accelerator as from different sub-sources. Dose distributions calculated using both the phase-space data and the multiple-source model agree within 2%, demonstrating that the model is adequate for the purpose of Monte Carlo treatment planning for the beams studied. Benefits of the beam models over phase-space data for dose calculation are shown to include shorter computation time in the treatment head simulation and a smaller disk space requirement, both of which impact on the clinical utility of Monte Carlo treatment planning.
Wet-based glaciation in Phlegra Montes, Mars.
NASA Astrophysics Data System (ADS)
Gallagher, Colman; Balme, Matt
2016-04-01
Eskers are sinuous landforms composed of sediments deposited from meltwaters in ice-contact glacial conduits. This presentation describes the first definitive identification of eskers on Mars still physically linked with their parent system (1), a Late Amazonian-age glacier (~150 Ma) in Phlegra Montes. Previously described Amazonian-age glaciers on Mars are generally considered to have been dry based, having moved by creep in the absence of subglacial water required for sliding, but our observations indicate significant sub-glacial meltwater routing. The confinement of the Phlegra Montes glacial system to a regionally extensive graben is evidence that the esker formed due to sub-glacial melting in response to an elevated, but spatially restricted, geothermal heat flux rather than climate-induced warming. Now, however, new observations reveal the presence of many assemblages of glacial abrasion forms and associated channels that could be evidence of more widespread wet-based glaciation in Phlegra Montes, including the collapse of several distinct ice domes. This landform assemblage has not been described in other glaciated, mid-latitude regions of the martian northern hemisphere. Moreover, Phlegra Montes are flanked by lowlands displaying evidence of extensive volcanism, including contact between plains lava and piedmont glacial ice. These observations provide a rationale for investigating non-climatic forcing of glacial melting and associated landscape development on Mars, and can build on insights from Earth into the importance of geothermally-induced destabilisation of glaciers as a key amplifier of climate change. (1) Gallagher, C. and Balme, M. (2015). Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars, Earth and Planetary Science Letters, 431, 96-109.
Reconstruction of Human Monte Carlo Geometry from Segmented Images
NASA Astrophysics Data System (ADS)
Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican
2014-06-01
Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the
Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hidek; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki
2009-10-01
Purpose: To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. Methods and Materials: The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. Results: The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Conclusions: Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
Efficient, Automated Monte Carlo Methods for Radiation Transport.
Kong, Rong; Ambrose, Martin; Spanier, Jerome
2008-11-20
Monte Carlo simulations provide an indispensible model for solving radiative transport problems, but their slow convergence inhibits their use as an everyday computational tool. In this paper, we present two new ideas for accelerating the convergence of Monte Carlo algorithms based upon an efficient algorithm that couples simulations of forward and adjoint transport equations. Forward random walks are first processed in stages, each using a fixed sample size, and information from stage k is used to alter the sampling and weighting procedure in stage k + 1. This produces rapid geometric convergence and accounts for dramatic gains in the efficiency of the forward computation. In case still greater accuracy is required in the forward solution, information from an adjoint simulation can be added to extend the geometric learning of the forward solution. The resulting new approach should find widespread use when fast, accurate simulations of the transport equation are needed. PMID:23226872
Monte Carlo Strategies for Selecting Parameter Values in Simulation Experiments.
Leigh, Jessica W; Bryant, David
2015-09-01
Simulation experiments are used widely throughout evolutionary biology and bioinformatics to compare models, promote methods, and test hypotheses. The biggest practical constraint on simulation experiments is the computational demand, particularly as the number of parameters increases. Given the extraordinary success of Monte Carlo methods for conducting inference in phylogenetics, and indeed throughout the sciences, we investigate ways in which Monte Carlo framework can be used to carry out simulation experiments more efficiently. The key idea is to sample parameter values for the experiments, rather than iterate through them exhaustively. Exhaustive analyses become completely infeasible when the number of parameters gets too large, whereas sampled approaches can fare better in higher dimensions. We illustrate the framework with applications to phylogenetics and genetic archaeology. PMID:26012871
Sign problem and Monte Carlo calculations beyond Lefschetz thimbles
Alexandru, Andrei; Basar, Gokce; Bedaque, Paulo F.; Ridgway, Gregory W.; Warrington, Neill C.
2016-05-10
We point out that Monte Carlo simulations of theories with severe sign problems can be profitably performed over manifolds in complex space different from the one with fixed imaginary part of the action (“Lefschetz thimble”). We describe a family of such manifolds that interpolate between the tangent space at one critical point (where the sign problem is milder compared to the real plane but in some cases still severe) and the union of relevant thimbles (where the sign problem is mild but a multimodal distribution function complicates the Monte Carlo sampling). As a result, we exemplify this approach using amore » simple 0+1 dimensional fermion model previously used on sign problem studies and show that it can solve the model for some parameter values where a solution using Lefschetz thimbles was elusive.« less
Advanced interacting sequential Monte Carlo sampling for inverse scattering
NASA Astrophysics Data System (ADS)
Giraud, F.; Minvielle, P.; Del Moral, P.
2013-09-01
The following electromagnetism (EM) inverse problem is addressed. It consists in estimating the local radioelectric properties of materials recovering an object from global EM scattering measurements, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on high performance computing machines. Applied to a large training data set, a statistical analysis reduces the problem to a simpler probabilistic metamodel, from which Bayesian inference can be performed. Considering the radioelectric properties as a hidden dynamic stochastic process that evolves according to the frequency, it is shown how advanced Markov chain Monte Carlo methods—called sequential Monte Carlo or interacting particles—can take benefit of the structure and provide local EM property estimates.
Mesh-based weight window approach for Monte Carlo simulation
Liu, L.; Gardner, R.P.
1997-12-01
The Monte Carlo method has been increasingly used to solve particle transport problems. Statistical fluctuation from random sampling is the major limiting factor of its application. To obtain the desired precision, variance reduction techniques are indispensable for most practical problems. Among various variance reduction techniques, the weight window method proves to be one of the most general, powerful, and robust. The method is implemented in the current MCNP code. An importance map is estimated during a regular Monte Carlo run, and then the map is used in the subsequent run for splitting and Russian roulette games. The major drawback of this weight window method is lack of user-friendliness. It normally requires that users divide the large geometric cells into smaller ones by introducing additional surfaces to ensure an acceptable spatial resolution of the importance map. In this paper, we present a new weight window approach to overcome this drawback.
Monte Carlo Strategies for Selecting Parameter Values in Simulation Experiments.
Leigh, Jessica W; Bryant, David
2015-09-01
Simulation experiments are used widely throughout evolutionary biology and bioinformatics to compare models, promote methods, and test hypotheses. The biggest practical constraint on simulation experiments is the computational demand, particularly as the number of parameters increases. Given the extraordinary success of Monte Carlo methods for conducting inference in phylogenetics, and indeed throughout the sciences, we investigate ways in which Monte Carlo framework can be used to carry out simulation experiments more efficiently. The key idea is to sample parameter values for the experiments, rather than iterate through them exhaustively. Exhaustive analyses become completely infeasible when the number of parameters gets too large, whereas sampled approaches can fare better in higher dimensions. We illustrate the framework with applications to phylogenetics and genetic archaeology.
Estimation of beryllium ground state energy by Monte Carlo simulation
Kabir, K. M. Ariful; Halder, Amal
2015-05-15
Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.
Visibility assessment : Monte Carlo characterization of temporal variability.
Laulainen, N.; Shannon, J.; Trexler, E. C., Jr.
1997-12-12
Current techniques for assessing the benefits of certain anthropogenic emission reductions are largely influenced by limitations in emissions data and atmospheric modeling capability and by the highly variant nature of meteorology. These data and modeling limitations are likely to continue for the foreseeable future, during which time important strategic decisions need to be made. Statistical atmospheric quality data and apportionment techniques are used in Monte-Carlo models to offset serious shortfalls in emissions, entrainment, topography, statistical meteorology data and atmospheric modeling. This paper describes the evolution of Department of Energy (DOE) Monte-Carlo based assessment models and the development of statistical inputs. A companion paper describes techniques which are used to develop the apportionment factors used in the assessment models.
Bayesian Monte Carlo method for nuclear data evaluation
NASA Astrophysics Data System (ADS)
Koning, A. J.
2015-12-01
A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using the nuclear model code TALYS and the experimental nuclear reaction database EXFOR. The method is applied to all nuclides at the same time. First, the global predictive power of TALYS is numerically assessed, which enables to set the prior space of nuclear model solutions. Next, the method gradually zooms in on particular experimental data per nuclide, until for each specific target nuclide its existing experimental data can be used for weighted Monte Carlo sampling. To connect to the various different schools of uncertainty propagation in applied nuclear science, the result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by the EXFOR-based weight.
Nuclear pairing within a configuration-space Monte Carlo approach
NASA Astrophysics Data System (ADS)
Lingle, Mark; Volya, Alexander
2015-06-01
Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and problems when the relevant configuration space is large.
A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification
NASA Astrophysics Data System (ADS)
Wu, Keyi; Li, Jinglai
2016-09-01
In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithms, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo methods.
Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds
NASA Astrophysics Data System (ADS)
Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.
2012-11-01
A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.
Monte Carlo Methods in ICF (LIRPP Vol. 13)
NASA Astrophysics Data System (ADS)
Zimmerman, George B.
2016-10-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved SOX in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography
Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.
2000-02-01
The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.
Monte Carlo Simulations on a 9-node PC Cluster
NASA Astrophysics Data System (ADS)
Gouriou, J.
Monte Carlo simulation methods are frequently used in the fields of medical physics, dosimetry and metrology of ionising radiation. Nevertheless, the main drawback of this technique is to be computationally slow, because the statistical uncertainty of the result improves only as the square root of the computational time. We present a method, which allows to reduce by a factor 10 to 20 the used effective running time. In practice, the aim was to reduce the calculation time in the LNHB metrological applications from several weeks to a few days. This approach includes the use of a PC-cluster, under Linux operating system and PVM parallel library (version 3.4). The Monte Carlo codes EGS4, MCNP and PENELOPE have been implemented on this platform and for the two last ones adapted for running under the PVM environment. The maximum observed speedup is ranging from a factor 13 to 18 according to the codes and the problems to be simulated.
Analytical band Monte Carlo analysis of electron transport in silicene
NASA Astrophysics Data System (ADS)
Yeoh, K. H.; Ong, D. S.; Ooi, C. H. Raymond; Yong, T. K.; Lim, S. K.
2016-06-01
An analytical band Monte Carlo (AMC) with linear energy band dispersion has been developed to study the electron transport in suspended silicene and silicene on aluminium oxide (Al2O3) substrate. We have calibrated our model against the full band Monte Carlo (FMC) results by matching the velocity-field curve. Using this model, we discover that the collective effects of charge impurity scattering and surface optical phonon scattering can degrade the electron mobility down to about 400 cm2 V-1 s-1 and thereafter it is less sensitive to the changes of charge impurity in the substrate and surface optical phonon. We also found that further reduction of mobility to ˜100 cm2 V-1 s-1 as experimentally demonstrated by Tao et al (2015 Nat. Nanotechnol. 10 227) can only be explained by the renormalization of Fermi velocity due to interaction with Al2O3 substrate.
Monte Carlo Study of Real Time Dynamics on the Lattice
NASA Astrophysics Data System (ADS)
Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.
2016-08-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Computer Monte Carlo simulation in quantitative resource estimation
Root, D.H.; Menzie, W.D.; Scott, W.A.
1992-01-01
The method of making quantitative assessments of mineral resources sufficiently detailed for economic analysis is outlined in three steps. The steps are (1) determination of types of deposits that may be present in an area, (2) estimation of the numbers of deposits of the permissible deposit types, and (3) combination by Monte Carlo simulation of the estimated numbers of deposits with the historical grades and tonnages of these deposits to produce a probability distribution of the quantities of contained metal. Two examples of the estimation of the number of deposits (step 2) are given. The first example is for mercury deposits in southwestern Alaska and the second is for lode tin deposits in the Seward Peninsula. The flow of the Monte Carlo simulation program is presented with particular attention to the dependencies between grades and tonnages of deposits and between grades of different metals in the same deposit. ?? 1992 Oxford University Press.
The MCLIB library: Monte Carlo simulation of neutron scattering instruments
Seeger, P.A.
1995-09-01
Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.
Radiotherapy Monte Carlo simulation using cloud computing technology.
Poole, C M; Cornelius, I; Trapp, J V; Langton, C M
2012-12-01
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Minimising biases in full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2015-03-14
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step. PMID:25770522
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Large-cell Monte Carlo renormalization of irreversible growth processes
NASA Technical Reports Server (NTRS)
Nakanishi, H.; Family, F.
1985-01-01
Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.
Five dimensional binary hard hypersphere mixtures: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Bishop, Marvin; Whitlock, Paula A.
2016-10-01
Additive binary mixtures of five dimensional hyperspheres were investigated by Monte Carlo simulations. Both equal packing fraction and equal mole fraction systems with diameter ratios of 0.4 and 0.5 were examined. A range of total densities were studied, spanning low to moderate density fluids. The pair correlation functions and the equations of state were determined and compared with molecular dynamics data and a variety of theoretical predictions. A significant result of the equal packing fraction simulations was the discovery of how quickly the larger hyperspheres reorganized into a dense fluid after a random initial placement. In the equal mole fraction case, the pair correlation functions for the larger hypersphere agree with the pair correlation function of a pure fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.
Recent advances in the Mercury Monte Carlo particle transport code
Brantley, P. S.; Dawson, S. A.; McKinley, M. S.; O'Brien, M. J.; Stevens, D. E.; Beck, B. R.; Jurgenson, E. D.; Ebbers, C. A.; Hall, J. M.
2013-07-01
We review recent physics and computational science advances in the Mercury Monte Carlo particle transport code under development at Lawrence Livermore National Laboratory. We describe recent efforts to enable a nuclear resonance fluorescence capability in the Mercury photon transport. We also describe recent work to implement a probability of extinction capability into Mercury. We review the results of current parallel scaling and threading efforts that enable the code to run on millions of MPI processes. (authors)
Quantum Monte Carlo Calculations of Symmetric Nuclear Matter
Gandolfi, Stefano; Pederiva, Francesco; Fantoni, Stefano; Schmidt, Kevin E.
2007-03-09
We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon-nucleon interactions by means of auxiliary field diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and represents an important step forward towards a quantitative understanding of problems in nuclear structure and astrophysics.
Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy.
Descalle, Marie-Anne; Hartmann Siantar, Christine L; Dauffy, Lucile; Nigg, David W; Wemple, Charles A; Yuan, Aina; DeNardo, Gerald L
2003-02-01
Recent clinical results have demonstrated the promise of targeted radionuclide therapy for advanced cancer. As the success of this emerging form of radiation therapy grows, accurate treatment planning and radiation dose simulations are likely to become increasingly important. To address this need, we have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA system. The goal of the MINERVA dose calculation system is to provide 3-D Monte Carlo simulation-based dosimetry for radiation therapy, focusing on experimental and emerging applications. For molecular targeted radionuclide therapy applications, MINERVA calculates patient-specific radiation dose estimates using computed tomography to describe the patient anatomy, combined with a user-defined 3-D radiation source. This paper describes the validation of the 3-D Monte Carlo transport methods to be used in MINERVA for molecular targeted radionuclide dosimetry. It reports comparisons of MINERVA dose simulations with published absorbed fraction data for distributed, monoenergetic photon and electron sources, and for radioisotope photon emission. MINERVA simulations are generally within 2% of EGS4 results and 10% of MCNP results, but differ by up to 40% from the recommendations given in MIRD Pamphlets 3 and 8 for identical medium composition and density. For several representative source and target organs in the abdomen and thorax, specific absorbed fractions calculated with the MINERVA system are generally within 5% of those published in the revised MIRD Pamphlet 5 for 100 keV photons. However, results differ by up to 23% for the adrenal glands, the smallest of our target organs. Finally, we show examples of Monte Carlo simulations in a patient-like geometry for a source of uniform activity located in the kidney. PMID:12667310