Science.gov

Sample records for agnes scott college

  1. David Scott

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Dr. David R. Scott was appointed Director of NASA's Flight Research Center on April 18, 1975. From August 1973 he served as Deputy Director of FRC and was appointed acting director in January 1975. He is retired from the U.S. Air Force where he held the rank of Colonel. Dave left the NASA Dryden Flight Research Center on October 30, 1977 after the Center had been renamed in honor of Hugh L. Dryden. As a NASA astronaut, Scott flew on Gemini 8, Apollo 9 and was spacecraft commander of Apollo 15. When he left the astronaut corps in 1972, Scott was named Technical Assistant to the Apollo Program Manager at Johnson Space Center in Houston. Later he served as Special Assistant for Mission Operations and Government Funded Equipment. Dave earned a Bachelor of Science Degree from the United States Military Academy in 1954, standing fifth in a class of 633, and the degrees of Bachelor and Master of Science in Aeronautics and Astronautics from the Massachusetts Institute of Technology (MIT) in 1962. He was awarded an Honorary Doctorate of Astronautical Science from the University of Michigan in 1971. Dave has graduated from the Air Force Experimental Test Pilot School and Aerospace Research Pilot School. He has over 5,600 hours flying time along with 20 hours of extra vehicular activity (EVA) time. Dr. Scott is a Fellow of the American Astronautical Society; Associate Fellow of the American Institute of Aeronautics and Astronautics; a member of the Society of Experimental Test Pilots, Tau Beta Pi, Sigma Xi, and Sigma Gamma Tau. Among Dr. Scott's special honors are two NASA Distinguished Service Medals, the NASA Exceptional Service Medal, two Air Force Distinguished Service Medals, the Air Force Distinguished Flying Cross, the Air Force Association's David C. Schilling Trophy, and the Robert J. Collier Trophy for 1971.

  2. Citation for Scott Doney

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Doney, Scott

    “A man of genius makes no mistakes. His errors are volitional and are the portals of discovery. James Joyce, Ulysses (1922). ”After collaborating with Scott Doney for the past 14 years I know what Joyce meant. When working with someone as bright as Scott it inevitably happens that you just don't understand. And because we're trained skeptics the question immediately arises, ”has our friend and colleague made a mistake?“ But we're wrong; we just didn't see the portal through which people like Scott had already proceeded. Certainly this is what we reserve these awards of ‘outstandingness’ for; those whose insight lead through the portals of discovery”.

  3. Astronaut Scott Carpenter

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut Scott Carpenter, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. Boosted by the Mercury-Atlas vehicle, the MA-7 mission made the second marned orbital flight by the United States, and carried Astronaut Carpenter aboard Aurora 7 spacecraft to orbit the Earth three times.

  4. Scott Gives Salute

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut James B. Irwin, Lunar Module pilot.

  5. Scott and Amundsen: Another Interpretation.

    ERIC Educational Resources Information Center

    Holt, Maurice

    1999-01-01

    Differences between the planning and execution of two 1911-12 polar expeditions transcend matters of aims and resources. Scott's planning approach was deterministic, whereas Amundsen's was deliberative, resolving each problem in its practical, human context. Like Scott's expedition, current U.S. and British attempts to improve education practice…

  6. Scott Brothers Windows and Doors Information Sheet

    EPA Pesticide Factsheets

    Scott Brothers Windows and Doors (the Company) is located in Bridgeville, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Pittsburgh, Pennsylvania.

  7. Abstracts from the First Annual Baylor Scott and White Surgery Research Day

    PubMed Central

    2014-01-01

    The First Annual Baylor Scott and White Surgery Research Day was held on May 2, 2014, in Temple, Texas. The program built on the tradition of eight previous research days for the Texas A&M Health Science Center College of Medicine and Scott & White Memorial Hospital and this year included the Department of Surgery at Baylor University Medical Center at Dallas. The forum is open to all Baylor Scott and White surgery fellows, residents, and medical students and includes a variety of basic science, clinical, and educational research projects with a focus on trainees’ research. The 2014 forum was organized by Dr. J. Scott Thomas and Dr. Raman C. Mahabir, under the guidance of Dr. Harry T. Papaconstantinou. This article highlights the top 16 abstracts selected from the submissions for presentation from the podium. PMID:25484497

  8. Multi-faceted AGN

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys R.; Chen, Yanping; Dai, Yuxiao; Zaw, Ingyin

    2016-08-01

    An interesting question is how frequently an object is an AGN by multiple different criteria — e.g., is simultaneously a narrow-line optical AGN and an X-ray or radio AGN, possibly as a function of luminosities in the various wavebands and perhaps host galaxy type. Answering such questions quantitatively has been difficult up to now because of the lack of a complete, uniformly selected optical AGN catalog. Here we report first results of such an analysis, using the new, all-sky catalog of uniformly selected optical AGNs from Zaw, Chen and Farrar (2016), the Swift-BAT 70-month catalog of X-ray AGN (Baumgartner et al., 2013), and the van Velzen et al. (2012) catalog of radio AGN.

  9. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1AGN-ionized gas, the stellar masses of the host galaxies and their star formation rates. We then investigate the relationships between AGN luminosities, specific star formation rates (sSFR) and outflow strengths W_{90} - the 90% velocity width of the [OIII]λ5007Å line power and a proxy for the AGN-driven outflow speed. Outflow strength W_{90} is independent of sSFR for AGN selected based on their mid-IR luminosity. This is in agreement with previous work that demonstrates that star formation is not sufficient to produce the observed ionized gas outflows which have to be powered by AGN activity. More importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  10. Another Day Will Find Me Brave: Clarissa Scott Delaney, 1901-1927.

    ERIC Educational Resources Information Center

    Randolph, Ruth Elizabeth

    1988-01-01

    Black people and woman are culturally disenfranchised in that they are not aware of many Black and female writers. Clarissa Scott Delaney has gone unnoticed. She was a Black poet who studied at Wellseley College and refused to be intimidated by the racism there. Four of her poems are included. (VM)

  11. Students Speak With NASA Astronaut Scott Kelly

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  12. ASK Talks with W. Scott Cameron

    NASA Technical Reports Server (NTRS)

    Cameron, W. Scott

    2002-01-01

    This paper presents an interview with Scott Cameron who is the Capital Systems Manager for the Food and Beverage Global Business Unit of Procter and Gamble. He has been managing capital projects and mentoring other project managers for the past 20 years at Procter and Gamble within its Beauty Care, Health Care, Food and Beverage, and Fabric and Home Care Businesses. Scott also has been an Academy Sharing Knowledge (ASK) feature writer since Volume One.

  13. Identifying Distant AGNs

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Barger, Amy; Tremonti, Christy

    2014-07-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([OIII]/Hβ versus [NII]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by AGN activity (BPT-AGN). Yet the BPT diagram is limited to z<0.5, the redshift at which [NII]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g-z color, [NeIII]λ3869, and [OII]λλ3726+3729 and can be used for galaxies out to z<1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray selected AGNs as BPT-SF.

  14. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  15. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  16. Optically-selected AGN

    NASA Astrophysics Data System (ADS)

    Richard, Gordon

    2016-08-01

    will discuss the selection and properties of optically-selected AGN as contrasted with other multi-wavelength investigations. While optical surveys are able to identify *more* AGNs than other wavelengths, this size comes with a bias towards brighter, unobscured sources. Although optical surveys are not ideal for probing obscured AGNs, I will discuss how they can guide our search for them. The bias towards unobscured sources in the optical is partially mitigated, however, by an increase in information content for the sources that *are* identified---in the form of physics probed by the combination of optical continuum, absorption, and emission. An example is the ability to estimate the mass of AGNs based on the optical/UV emission lines. I will discuss the range of mass (and accretion rate) probed by the optical in addition to serious biases in the black hole mass scaling relations that corrupt these estimates at high redshift.

  17. Poles apart: Scott, Amundsen and science.

    PubMed

    Larson, Edward J

    2011-12-01

    One hundred years ago, teams led by Roald Amundsen and Robert Scott may have been heading in the same direction but they were poles apart in the way they sought their goals. Amundsen led a five-person team of expert Nordic skiers and dog-sledders with a single goal: getting to the South Pole first. He planned and executed the effort brilliantly. Scott, in contrast, led a complex and multi-faceted Antarctic expedition with 33 explorers and scientists, many of whom were focused on ambitious and often taxing scientific research projects that had nothing whatsoever to do with reaching the Pole. Although Scott failed to reach the South Pole first and died with four men on the return trip, his expedition made significant contributions to Antarctic science. Indeed, at least some of Scott's failure to reach the Pole first and the subsequent death of his polar party on the return trip can be attributed to burden of trying to do too much and not focusing on reaching the pole.

  18. The Ornery American: Orson Scott Card

    ERIC Educational Resources Information Center

    Oatman, Eric

    2008-01-01

    This article profiles Orson Scott Card, the winner of this year's Margaret A. Edwards Award for his outstanding contributions to teen literature, specifically for Ender's Game and Ender's Shadow (1999, both Tor), a companion tale. Card, the magician behind both of these best sellers, is one of the nation's most prolific--and contentious--authors.…

  19. Reframing Michael Scott: Exploring Inappropriate Workplace Communication

    ERIC Educational Resources Information Center

    Schaefer, Zachary A.

    2010-01-01

    Individuals who work in professional settings interact with others who may exhibit a variety of cultural beliefs and decision-making approaches. Page (2007) argues that cognitive diversity (i.e., how people approach and attempt to solve problems) is a vital asset in effective organizations. Michael Scott, who portrays the inept main character on…

  20. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  1. Reading, Learning, Teaching N. Scott Momaday

    ERIC Educational Resources Information Center

    Charles, Jim

    2007-01-01

    This book is an introduction to the literature and art of American writer N. Scott Momaday, winner of the 1969 Pulitzer Prize and member of the Kiowa American Indian Tribe. The book describes the impact of Momaday's family, Kiowa heritage, Pueblo cultural experiences, and academic preparation on his worldview, poetry, novels, essays, children's…

  2. Genetics Home Reference: Aarskog-Scott syndrome

    MedlinePlus

    ... Scott syndrome is inherited in an X-linked recessive pattern . The gene associated with this condition is located on the ... females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. Females who ...

  3. [Sybil Scott and East Texas Baseball Players.

    ERIC Educational Resources Information Center

    Woodfin, Samantha, Ed.

    1996-01-01

    This issue of "Loblolly Magazine" is dedicated to Sybil Scott, born in 1910 and still going at the age of 85. She shares some interesting tales of what it was like growing up in the '10's and '20's in Texas, including her school years. She remembers, very vividly, her childhood and teenage years in East Texas. Among the many interesting…

  4. Scott on Slope of Hadley Delta

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, mission commander, with tongs and gnomon in hand, studies a boulder on the slope of Hadley Delta during the Apollo 15 lunar surface extravehicular activity. The Lunar Roving Vehicle (LRV) or Rover is in right foreground. View is looking slightly south of west. 'Bennett Hill' is at extreme right. Astronaut James B. Irwin, lunar module pilot, took this photograph.

  5. Interview with Scott and Mark Kelly (PART 6)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  6. Interview with Scott and Mark Kelly (PART 2)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  7. Interview with Scott and Mark Kelly (PART 1)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  8. Interview with Scott and Mark Kelly (PART 5)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  9. Interview with Scott and Mark Kelly (PART 4)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  10. Interview with Scott and Mark Kelly (PART 3)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  11. STS-100 Crew Interview: Scott Parazynski

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-100 Mission Specialist Scott Parazynski is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Parazynski then discusses his views about space exploration as it becomes an international collaboration.

  12. The evolution of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brightman, Murray

    2012-09-01

    We present results on the evolution of Compton thick AGN with redshift, and the nature of this obscuration, important for understanding the accretion history of the universe and for AGN unification schemes. We use lessons learned from spectral complexity of local AGN (Brightman & Nandra 2012) and up to date spectral models of heavily absorbed AGN, which take into account Compton scattering, self consistent Fe Ka modeling and the geometry of the circumnuclear material (Brightman & Nandra 2011), to optimise our identification of Compton thick AGN and understanding of the obscuring material. Results from the Chandra Deep Field South are presented (Brightman & Ueda, 2012), which show an increasing fraction of CTAGN with redshift and that most heavily obscured AGN are geometrically deeply buried in material, as well as new results from and extension of this study to AEGIS-XD and Chandra-COSMOS survey, which aim to fully characterise the dependence of heavy AGN obscuration on redshift and luminosity.

  13. STS-105 Crew Interview: Scott Horowitz

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  14. STS-82 Pilot Scott Horowitz at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz flashes a wide grin for photographers after he lands his T-38 jet at KSCs Shuttle Landing Facility. Horowitz and the other six members of the STS-82 crew came from their home base at Johnson Space Center in Houston, TX, to spend the last few days before launch at KSC. STS-82 is scheduled for liftoff on Feb. 11 during a 65-minute launch window which opens at 3:56 a.m. EST. The 10-day flight aboard the Space Shuttle Discovery will be the second Hubble Space Telescope servicing mission.

  15. STS-103 Crew Interviews: Scott Kelly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage of a preflight interview with Pilot Scott J. Kelly is seen. The interview addresses many different questions including why Kelly became an astronaut, the events that led to his interest, any role models that he had, and his inspiration. Other interesting information that this one-on-one interview discusses is an explanation of the why this required mission to service the Hubble Space Telescope must take place at such an early date, replacement of the gyroscopes, transistors, and computers. Also discussed are the Chandra X Ray Astrophysics Facility, and a brief touch on Kelly's responsibility during any of the given four space walks scheduled for this mission.

  16. 12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER AND SOUTH SECONDARY CONDENSER IN BACKGROUND, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  17. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  18. Community Attitudes about Economic Impacts of Colleges: A Case Study. AIR 1996 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Stout, Robert J.

    This study examined attitudes of people about benefits of the economic impacts of two local colleges (Palmer College of Chiropractic and Scott Community College) in the metropolitan Quad Cities area of Rock Island County (Illinois) and Scott County (Iowa). The study compared impacts considered important by the community with those estimated by the…

  19. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  20. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries.

  1. 76 FR 71042 - Scott S. Reuben: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... HUMAN SERVICES Food and Drug Administration Scott S. Reuben: Debarment Order AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is issuing an ] order under the Federal Food, Drug, and Cosmetic Act permanently debarring Scott S. Reuben, M.D. from...

  2. Kleene, Rabin, and Scott Are Available

    NASA Astrophysics Data System (ADS)

    Hoenicke, Jochen; Meyer, Roland; Olderog, Ernst-Rüdiger

    We are concerned with the availability of systems, defined as the ratio between time of correct functioning and uptime. We propose to model guaranteed availability in terms of regular availability expressions (rae) and availability automata. We prove that the intersection problem of rae is undecidable. We establish a Kleene theorem that shows the equivalence of the formalisms and states precise correspondence of flat rae and simple availability automata. For these automata, we provide an extension of the powerset construction for finite automata due to Rabin and Scott. As a consequence, we can state a complementation algorithm. This enables us to solve the synthesis problem and to reduce model checking of availability properties to reachability.

  3. Mission Specialist Scott Parazynski arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski notes the time on his watch upon his late arrival aboard a T-38 jet at the Shuttle Landing Facility. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  4. STS-101 Crew Interview / Scott Horowitz

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of a preflight interview with Pilot Scott J. Horowitz is seen. The interview addresses many different questions including why Horowitz became an astronaut, the events that led to his interest, any role models that he had, and his inspiration. Other interesting information that this one-on-one interview discusses is the reaction and reasons for the splitting-up of the objectives for STS-101 with STS-106. Horowitz also mentions the scheduled space-walk, docking with the International Space Station (ISS), the new glass cockpit of Atlantis, the repairs of equipment and change of the batteries. Horowitz also discusses his responsibilities during the space-walk, and docking of the spacecraft. He stresses that he will have an added challenge during the space-walk, his inability to see where he needs to place the Extravehicular Activities (EVA) crew.

  5. The Changing Looks of AGN

    NASA Astrophysics Data System (ADS)

    LaMassa, S.

    2015-09-01

    According to the AGN unification model, the difference between Type 1 and Type 2 AGN is explained by the orientation of a circumnuclear obscuring torus to the observer's line of sight. Observations of seemingly anomalous sources challenge this theory. A handful of AGN have been discovered which have transitioned from Type 1, with strong, prominent broad-emission lines, to Type 1.8 or 1.9, with weak broad components to only H-alpha and/or H-beta, or vice versa. The rate of discovery of these objects has increased this past year thanks to the Sloan Digital Sky Survey BOSS and TDSS surveys which have repeated spectroscopic observations of AGN. While in some cases this transition can be explained by circumnuclear clouds eclipsing the broad line region, it seems clear that stochastic accretion is responsible for other changing-look AGN. In this talk, I will discuss the changing-look AGN discovered thus far and the implications these objects have for AGN unification and the intermittency of AGN activity.

  6. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  7. Selected Collective Bargaining Agreements of Kansas Two-Year Colleges.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC.

    Collective bargaining agreements between the boards of trustees and faculty associations of 10 selected community colleges in Kansas are presented, representing contracts in effect in 1987. Contracts for the following colleges are included: Butler County Community College, Dodge City Community College, Fort Scott Community College, Garden City…

  8. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  9. Astronaut Scott Carpenter and technician Joe Schmidt during suiting exercise

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Mercury Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, and Crew Equipment Specialist Joe Schmidt are before a suiting exercise. Schmidt is seen checking the gloves on the Carpenter's pressure suit.

  10. STS-75 Pilot Scott Horowitz in white room

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Pilot Scott J. 'Doc' Horowitz (center) prepares to enter the Space Shuttle Columbia at Launch Pad 39B with assistance from white room closeout crew members Paul Arnold (left), Dave Law and Bob Saulnier.

  11. 10. TRUSS DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, Berlin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. TRUSS DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, Berlin Construction Company) Sheet 1 of 2, July 5, 1927 - Bridge No. 475, Spanning Pequabuck River on U.S. Route 6, Farmington, Hartford County, CT

  12. 11. FLOOR SYSTEM DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. FLOOR SYSTEM DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, Berlin Construction Company) Sheet 2 of 2, July 9, 1927 - Bridge No. 475, Spanning Pequabuck River on U.S. Route 6, Farmington, Hartford County, CT

  13. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  14. Probing AGN Accretion Physics through AGN Variability: Insights from Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal Pramod

    Active Galactic Nuclei (AGN) exhibit large luminosity variations over the entire electromagnetic spectrum on timescales ranging from hours to years. The variations in luminosity are devoid of any periodic character and appear stochastic. While complex correlations exist between the variability observed in different parts of the electromagnetic spectrum, no frequency band appears to be completely dominant, suggesting that the physical processes producing the variability are exceedingly rich and complex. In the absence of a clear theoretical explanation of the variability, phenomenological models are used to study AGN variability. The stochastic behavior of AGN variability makes formulating such models difficult and connecting them to the underlying physics exceedingly hard. We study AGN light curves serendipitously observed by the NASA Kepler planet-finding mission. Compared to previous ground-based observations, Kepler offers higher precision and a smaller sampling interval resulting in potentially higher quality light curves. Using structure functions, we demonstrate that (1) the simplest statistical model of AGN variability, the damped random walk (DRW), is insufficient to characterize the observed behavior of AGN light curves; and (2) variability begins to occur in AGN on time-scales as short as hours. Of the 20 light curves studied by us, only 3-8 may be consistent with the DRW. The structure functions of the AGN in our sample exhibit complex behavior with pronounced dips on time-scales of 10-100 d suggesting that AGN variability can be very complex and merits further analysis. We examine the accuracy of the Kepler pipeline-generated light curves and find that the publicly available light curves may require re-processing to reduce contamination from field sources. We show that while the re-processing changes the exact PSD power law slopes inferred by us, it is unlikely to change the conclusion of our structure function study-Kepler AGN light curves indicate

  15. AGN Observations with STACEE

    NASA Astrophysics Data System (ADS)

    Bramel, D. A.; Boone, L. M.; Carson, J.; Chae, E.; Covault, C. E.; Fortin, P.; Gingrich, D. M.; Hanna, D. S.; Hinton, J. A.; Mukherjee, R.; Mueller, C.; Ong, R. A.; Ragan, K.; Scalzo, R. A.; Schuette, D. R.; Theoret, C. G.; Williams, D. A.; Wong, J.; Zweerink, J.

    2003-03-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a gamma-ray detector designed to study astrophysical sources at energies between 50 and 500 GeV. It uses 64 large, steerable mirrors at the National Solar Tower Test Facility near Albuquerque, NM, USA to collect Cherenkov light from extended air showers and concentrate it onto an array of photomultiplier tubes. The large light-collection area gives it a lower energy threshold than imaging-type Cherenkov detectors. STACEE is now fully operational, and we report here on the performance of the complete STACEE instrument, as well as preliminary results of recent observations of several AGN targets. This work was supported in part by the National Science Foundation (under Grant Numbers PHY-9983836, PHY-0070927, and PHY-0070953), the Natural Sciences and Engineering Research Council, Le Fond Quebecois de la Recherche sur la Nature et les Technologies (FQRNT), the Research Corporation, and the California Space Institute. CEC is a Cottrell Scholar of the Research Corporation.

  16. Intermittent Activity in AGN

    NASA Astrophysics Data System (ADS)

    Janiuk, A.; Czerny, B.; Siemiginowska, A.

    2004-10-01

    There is a growing evidence that the AGN activity could be intermittent. It remains an open question if this behavior is caused by changes in the fuel sup- ply to the supermassive black hole from the large distances, or rather by a processes intrinsic to the active nucleus. We consider the possibility that ac- cretion onto a supermassive black hole is controlled by an accretion disk which is subject to the hydro- gen ionization instability. This drives the observed on-off activity cycle, since periodically the accretion flow becomes inefficient and the disk goes to quies- cence. We consider effects of the MHD turbulence on the viscosity during the evolution of a standard α - disk. We perform a self-consistency check of the α de- scription of the angular momentum transfer. Hav- ing shown that the viscosity parameter is constant throughout the whole instability cycle, as implied by the strength of the MHD turbulence, we calcu- late the time evolution of the disk under the influ- ence of the ionization instability. We demonstrate that if the accretion onto a supermassive black hole proceeds through an outer standard accretion disk and inner, radiatively inefficient and advection dom- inated flow, the modelled amplitudes of disk lumi- nosity variations are sufficiently high to account for the observations. Key words: accretion disks; galaxies: active.

  17. AGN jets as pion factories

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl

    There has been a dramatic revolution in gamma-ray astronomy throughout the last few years. Beginning with the discovery made by the spark chamber EGRET on board the Compton Gamma Ray Observatory that AGN with jets are the most powerful quasi-steady gamma-ray sources in the Universe, air-Cerenkov telescopes have soon after succeeded in detecting gamma-rays up to TeV energies. In the last year, it has become clear that these AGN emit photons even up to 10 TeV and more. This is a strong indication for proton acceleration going on in them, since protons owing to their large mass suffer weaker energy losses than electrons and can thus reach higher energies. Nucleons escaping from the AGN jets contribute to the local flux of cosmic rays at highest energies. If AGN produce the diffuse gamma-ray background, they would also be able to produce all the cosmic rays above the ankle in the local spectrum. The majority of AGN resides at large distances, indicated by their cosmological redshifts, and can therefore not be seen through the fog of electron-positron pairs which they produce interacting with diffuse infrared radiation from the era of galaxy formation. To observe the cosmic accelerators at large redshifts, neutrino observations are required. It is important to understand the astrophysical neutrino sources in order to be able to recognize signatures of new physics, e.g. due to decaying or annihilating particles from the early phases of the Universe.

  18. College Library Technology and Cooperation Grants Program, Higher Education Act, Title II-D. Final Performance Report.

    ERIC Educational Resources Information Center

    Hanifan, Thomas; Hoogheem, Cynthia L.

    The Eastern Iowa Community College District (EICCD) libraries received a federal College Library Technology and Cooperation grant to provide and link public access catalogs at each college of the district--Clinton Community College, Muscatine Community College, and Scott Community College. That network is named Quad-LINC (Quad Cities Libraries in…

  19. Heavily Obscured AGN with SIMBOL-X

    SciTech Connect

    Ceca, R. Della; Caccianiga, A.; Severgnini, P.

    2009-05-11

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s)

  20. Heavily Obscured AGN with SIMBOL-X

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Caccianiga, A.; Severgnini, P.

    2009-05-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  1. AGN identification: what lies ahead

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Sotiria

    2016-08-01

    Classification has been one the first concerns of modern astronomy, starting from stars sorted in the famous Harvard classification system and promptly followed by the morphological classification of galaxies by none other than Edwin Hubble himself (Hubble 1926). Both classification schema are essentially connected to the physics of the objects reflecting the temperature for stars and e.g. the age of the star population for galaxies. Systematic observations of galaxies have revealed the intriguing class of Active Galactic Nuclei (AGN), objects of tremendous radiation that do not share the same properties of what we now call normal galaxies. Observations have led to the definition of distinct and somewhat arbitrary categories (Seyfert galaxies, quasars, QSO, radio AGN, etc), essentially rediscovering the many faces of the same phenomenon, up until the unification of AGN (Antonucci 1993, Urry and Padovani 1995). Even after the realization that all AGN have the same engine powering their amazing radiation, astronomers are still using and refining the selection criteria within their favorite electromagnetic range in the hope to better understand the impact of the AGN phenomenon in the greater context of galaxy evolution. In the dawn of Big Data astronomy we find ourselves equipped with new tools. I will present the prospects of machine learning methods in better understanding the AGN population. Namely, I will show results from supervised learning algorithms whereby a labeled training set is used to amalgamate decision tree(s) (Fotopoulou et al., 2016) or neural network(s), and unsupervised learning where the algorithm performs clustering analysis of the full dataset in a multidimensional space identifying clusters of objects sharing potentially the same physical properties (Fotopoulou in prep.).

  2. Aarskog-scott syndrome: a review and case report.

    PubMed

    Closs, Luciane Q; Tovo, Maximiano; Dias, Caroline; Corradi, Daniele P; Vargas, Ivana A

    2012-09-01

    This paper reports the treatment and 12-year follow-up of a patient 7 years old who had been diagnosed with Aarskog-Scott syndrome. The patient had a history of premature multiple tooth loss, vertical dimension loss and severe dentoalveolar discrepancy. Orthopedic and orthodontic rehabilitation treatments were performed to improve the patient's esthetic, functional and psychological condition. How to cite this article: Closs LQ, Tovo M, Dias C, Corradi DP, Vargas IA. Aarskog-Scott Syndrome: A Review and Case Report. Int J Clin Pediatr Dent 2012;5(3):209-212.

  3. APOLLO 9: Dave scott performs Extra Vehicular Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Dave Scott performs Extra Vehicular Activities around the Command Module 'Gumdrop'. From the film documentary 'APOLLO 9: The Duet of Spider & Gumdrop': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) Mission: APOLLO 9: Earth orbital flight with James A. McDivitt, David R. Scott, and Russell Schweickart. First flight of the Lunar Module. Performed rendezvous, docking and E.V.A..Mission Duration 241hrs 0m 54s.

  4. Fading AGN Candidates: AGN Histories and Outflow Signatures

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Lintott, Chris J.; Maksym, W. Peter; Bennert, Vardha N.; Chojnowski, S. Drew; Moiseev, Alexei; Smirnova, Aleksandrina; Schawinski, Kevin; Sartori, Lia F.; Urry, C. Megan; Pancoast, Anna; Schirmer, Mischa; Scott, Bryan; Showley, Charles; Flatland, Kelsi

    2017-02-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Qion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Qion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2 × 104 yr before the direct view of the nucleus. The e-folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission

  5. The Close AGN Reference Survey (CARS)

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Husemann, Bernd; Busch, Gerold; Dierkes, Jens; Eckart, Andreas; Krajnovic, Davor; Scharwaechter, Julia; Tremblay, Grant R.; Urrutia, Tanya

    2015-08-01

    We present the first science results from the Close AGN Reference Survey (CARS). This program is a snapshot survey of 39 local type 1 AGN (0.01 < z <0.06) designed to address the issue of AGN-driven star formation quenching by characterizing the condition for star formation in AGN host galaxies. The primary sample was observed with Multi Unit Spectrscopic Explorer (MUSE), an optical wavelength integral field unit (IFU) with a 1'x1' field of view on the VLT. The optical 3D spectroscopy complements existing sub-mm CO(1-0) data and near-IR imaging to establish a unique dataset combining molecular and stellar masses with star formation rates, gas, stellar kinematics and AGN properties. The primary goals of CARS are to:1) investigate if the star formation efficiency and gas depletion time scales are suppressed as a consequence of AGN feedback; 2) identify AGN-driven outflows and their relation to the molecular gas reservoir of the host galaxy; 3) investigate the the balance of AGN feeding and feedback through the ratio of the gas reservoir to the AGN luminosity; and 4) provide the community with a reference survey of local AGN with a high legacy value. Future work will incorporate near-infrared IFU observations to present a complete spatially resolved picture of the interplay among AGN, star-formation, stellar populations, and the ISM.

  6. Beyond Marvelous: Conventions and Inventions in John Scott's Gemini.

    ERIC Educational Resources Information Center

    Wilson, Brent; Wilson, Marjorie

    1980-01-01

    Fifteen-year-old John Scott created a 35-page science fiction comic. The authors describe his effort to demonstrate that art teachers should not denigrate such work simply because it derives from popular culture, for it is a valid form of creative expression and one which teaches important artistic processes. (SJL)

  7. Scott Morgan Johnson Middle School: Personalization Leads to Unlimited Success

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    The well-known lyrics may be "The Eyes of Texas Are Upon You," but at Scott Morgan Johnson Middle School in McKinney, TX, it's definitely the "eye of the tiger" that sets the bar for Tiger PRIDE (perseverance, respect, integrity, determination, and excellence). This article describes how those ideals have been infused…

  8. Joan Wallach Scott on Threats to Academic Freedom

    ERIC Educational Resources Information Center

    Academe, 2005

    2005-01-01

    Historian Joan Wallach Scott has served on the AAUP's Committee A on Academic Freedom and Tenure since 1993. She was committee chair from 1999 until this past June, when she became a consultant to the committee. To mark her transition from chair to consultant, "Academe" asked her to participate in an interview about her experience with the…

  9. Moving the Education Needle: A Conversation with Scott Hamilton

    ERIC Educational Resources Information Center

    Jacobs, Joanne

    2014-01-01

    Scott Hamilton is the Forrest Gump of education reform, although with a lot more IQ points and fewer chocolates. He worked for Bill Bennett in the U.S. Department of Education and for Benno Schmidt at the Edison Project. He authorized charter schools in Massachusetts, co-founded the KIPP network, quadrupled the size of Teach For America (TFA), and…

  10. Michael Scott: An Individual and the International System

    ERIC Educational Resources Information Center

    Reardon, Betty

    1971-01-01

    This article describes the efforts of Michael Scott in trying to gain dignity and justice for victims of political violence. It indicates that, though limited, there are still nonviolent recourses open to those who will not use the war system. (Author/JB)

  11. Theorizing Steampunk in Scott Westerfeld's YA Series Leviathan

    ERIC Educational Resources Information Center

    Mielke, Tammy L.; LaHaie, Jeanne M.

    2015-01-01

    In this article, we offer an explanation of steampunk and theorize the genre and its functions within Scott Westerfeld's YA series Leviathan. In order to do so, we examine the "cogs" of the genre machine and its use of nostalgic longing for a revised past/future to rebel against present day cultural norms. Critics note that steampunk…

  12. WASTE MINIMIZATION OPPORTUNITY ASSESSMENT: SCOTT AIR FORCE BASE

    EPA Science Inventory

    This report describes a waste minimization assessment of three operations at Scott AFB. ircuit board manufacturing, non-destructive wheel inspection, and paint shipping/painting/parts cleaning are the operations addressed in this assessment. he primary focus of the assessment was...

  13. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott practicing for Gemini 8 extravehicular acitivity (EVA) in bldg 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the the Hand-Held Maneuvering Unit which he will use during the EVA.

  14. "Children of the Sun" by N. Scott Momaday. Cue Sheet.

    ERIC Educational Resources Information Center

    Waterfall, Milde M.

    This performance guide is designed for teachers to use with students before and after a performance of "Children of the Sun," by N. Scott Momaday. The guide, called a "Cuesheet," is in the form of a Director's Notebook--a scrapbook/journal of clippings, memos, lists, illustrations, notes, and other items--to show students how a…

  15. STS-86 Mission Specialist Scott Parazynski in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 crew members, including Mission Specialist Scott E. Parazynski, at center, prepare to enter the Space Shuttle Atlantis at Launch Pad 39A. They are being assisted by Rick Welty, at left, the United Space Alliance (USA) vehicle closeout chief, and George Schramm, USA mechanical technician.

  16. Prison became second home for psychiatrist (George Scott).

    PubMed

    Trent

    1996-04-01

    Retired prison psychiatrist George Scott recalls his career working in Canada's penal system, including his peacemaking role in a hostage-taking incident and his work with Steven Truscott. Life "inside" is dangerous for guards, inmates, staff and psychiatrists, he says, but he never regretted his decision to devote his career to studying criminal behaviour.

  17. Astronaut Scott Carpenter in pressure suit awaiting simulated mission

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter smiles, in his pressure suit, prior to participating in a simulated mission run at Cape Canaveral, Florida. Astronaut Carpenter had been selected as the prime pilot on the nation's second attempt to put a man into orbit around the earth.

  18. Astronaut Scott Carpenter practices in the ALFA trainer at Langley

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter practices in the Air Lubricated Free Attitude (ALFA) trainer located at NASA's Manned Spacecraft Center at Langley AFB, Virginia. This trainer allows the astronaut to see the image of the earth's surface at his feet while manually controlling the spacecraft.

  19. Astronaut Scott Carpenter inserted into Aurora 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut M. Scott Carpenter, pilot of the Mercury-Atlas 7 space flight, is inserted into Aurora 7 spacecraft during the prelaunch countdown. Carpenter is assisted into the spacecraft by Astronaut John Glenn and Gunter Vendt, McDonnell Douglas pad capsule test conducter.

  20. Astronaut Scott Carpenter examines protective material on pressure bulkhead

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Mercury Astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead in the white room facility at Hanger S, Cape Canaveral, Florida. This is the spacecraft which will carry astronaut Carpenter on the nation's second manned orbital flight.

  1. Astronauts Scott Carpenter and Walter Schirra completes water egress test

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronauts M. Scott Carpenter, prime pilot of the Mercury-Atlas 7, prepares to go through a water egress test. Astronaut Walter M. Schirra (back to camera), the backup MA-7 pilot is also present. Carpenter and Schirra are in the Mercury pressure suit, without the helmet. Behind them is an inflated life raft.

  2. Astronauts Scott and Armstrong undergoe water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  3. Narrating Socialization: Linda Scott DeRosier's Memoirs

    ERIC Educational Resources Information Center

    Locklear, Erica Abrams

    2007-01-01

    Linda Scott DeRosier's autobiographical accounts of literacy attainment in "Creeker: A Woman's Journey" and "Songs of Life and Grace" reveal that entrance into a secondary discourse community via literacy can bring both pleasure and pain. Analyzing the identity negotiations DeRosier encounters reveals that although she…

  4. Walter Dill Scott and the Student Personnel Movement

    ERIC Educational Resources Information Center

    Biddix, J. Patrick; Schwartz, Robert A.

    2012-01-01

    Walter Dill Scott (1869-1955), tenth president of Northwestern University and pioneer of industrial psychology, is an essential architect of student personnel work. This study of his accomplishments, drawing on records from the Northwestern University archives, tells a story about the people he influenced and his involvement in codifying what was…

  5. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    NASA Astrophysics Data System (ADS)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  6. 78 FR 77791 - Dakota, Minnesota & Eastern Railroad Corporation-Abandonment Exemption-in Scott County, Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Scott County, Iowa Dakota, Minnesota & Eastern Railroad Corporation d/b/a Canadian Pacific (DM&E) has... +/- in Scott County, Iowa (the Line). The Line traverses United States Postal Service Zip Code 52802....

  7. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  8. 76 FR 71375 - Scott D. Fedosky, M.D.; Denial of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... Enforcement Administration Scott D. Fedosky, M.D.; Denial of Application On March 30, 2010, the Deputy... Show Cause to Scott D. Fedosky, M.D. (Respondent), of Fayetteville, Arkansas. The Show Cause Order... Scott David Fedosky, M.D. (Ark. Med. Bd. Feb. 17, 2004). On October 8, 2003, Respondent...

  9. Non-thermal AGN models

    SciTech Connect

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  10. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  11. The Importance of Winds for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Fischer, T. C.; Gagne, J.

    2014-01-01

    Active galactic nuclei (AGN) are fed by accretion of matter onto supermassive black holes (SMBHs), generating huge amounts of radiation from very small volumes. AGN also provide feedback to their environments via mass outflows of ionized gas, which could play a critical role in the formation of large-scale structure in the early Universe, chemical enrichment of the intergalactic medium, and self-regulation of SMBH and galactic bulge growth. We provide an update on our research on the winds in nearby moderate-luminosity AGN, In particular, we concentrate on winds that occur on relatively large scales (hundreds of parsecs) that are revealed through spatially resolved HST spectra of emission-line gas in the narrow line regions (NLRs) of nearby AGN. We discuss the techniques for measuring the mass outflow rates and kinetic luminosities of these AGN winds and gauge their importance for providing significant AGN feedback.

  12. Comparing Simulations of AGN Feedback

    NASA Astrophysics Data System (ADS)

    Richardson, Mark L. A.; Scannapieco, Evan; Devriendt, Julien; Slyz, Adrianne; Thacker, Robert J.; Dubois, Yohan; Wurster, James; Silk, Joseph

    2016-07-01

    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock to well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGNs) to the simulations results in much better agreement between the methods. For our AGN model, both simulations display halo gas entropies of 100 keV cm2, similar decrements in the star formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with the AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.

  13. New insights into AGN coronae

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne; Fabian, Andrew C.; Malzac, Julien; Belmont, Renaud; Buisson, Douglas

    2016-04-01

    Active galactic nuclei (AGN) are some of the most energetic sources of radiation in the Universe. The conversion of gravitational energy into radiation is thought to take place in an accretion disk/corona system just outside the black hole. In this system thermal, UV/optical photons from the accretion disk are upscattered in a corona of hot electrons situated above the accretion disk producing X-rays. The nature of this Comptonizing corona remains a key open question in AGN physics. The NuSTAR satellite provides the opportunity to study the Comptonization spectrum produced by the corona in great detail. In our talk we will show some key results from these new studies of the Comptonization spectrum. We explore how, together with our growing knowledge of coronal sizes, we are able to draw first conclusions about the physics taking place in the corona. We find evidence for coronae to be hot and radiatively compact, putting them close to the boundary of the region in the compactness-temperature diagram which is forbidden due to runaway pair production. This suggests that pair production and annihilation are essential ingredients in the coronae of AGN and that they control the coronal temperature and shape of the observed spectra.

  14. Detecting Dual AGN at High Redshift

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.

    2012-01-01

    The existence of supermassive black holes (SMBHs) in most, if not all, galaxies, along with observations of galaxy mergers, suggests that pairs of SMBHs should exist for some time in the merger remnant. Observational evidence for these systems at kpc-scale separations (i.e. dual AGN) has dramatically increased recently through a combination of spectral and morphological selections. I discuss observations of CXOXBJ142607.6+353351 (CXOJ1426+35), a candidate dual AGN at z=1.175, and put its properties, including significant obscuration, within the context of other candidate/confirmed dual AGN at lower redshifts. Though dual AGN are expected to be more common at higher redshifts, they are more difficult to detect. Furthermore, adding to the difficulties of detection are a number of other physical mechanisms which can mimic the spectroscopic signature of two Type 2 AGN. In particular, I will discuss the possibility of strong outflows from an AGN. These outflow phenomena can be an important feedback mechanism in galaxies and are apparently common in AGN, making them a viable alternative to the dual AGN scenario. Based on our candidate's luminosity and emission line intensities, we find that an outflow is a possibility. If this is the case, such an outflow would be especially strong and has implications for AGN feedback in galaxies. However, the dual AGN scenario cannot be ruled out, and at z=1.175, the two putative AGN could potentially be resolved with Chandra. Other candidate dual AGN at similar redshifts and with significant obscuration could also be confirmed this way. This research was sponsored by the Strategic University Research Partnership Program, the National Aeronautics and Space Administration and the Arkansas NASA EPSCoR program.

  15. AGN feedback in action? - outflows and star formation in type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z < 0.3. First, we find a dramatic difference of the outflow signatures between AGNs and star-forming galaxies based on the [OIII] emission line kinematics. While the [OIII] velocity and velocity dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  16. The Universal Unification Model of AGN

    NASA Astrophysics Data System (ADS)

    Vilkoviskij, E. Y.

    1998-12-01

    It is shown, that the model calculations of the absorption line profiles are possible in the framework of a common model both for BAL QSOs and the Seyfert galaxies with BAL. We suppose that in both cases the BAL-clouds move in the space between two conic surface, starting in the internal surface of the absorbing torus. We argue that the common nature of the intrinsic line absorption in these objects can be explained in an universal unified AGN model, where BAL AGNs are objects intermediate between AGN1 and AGN2

  17. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    NASA Astrophysics Data System (ADS)

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  18. Cerebrovascular disease associated with Aarskog-Scott syndrome.

    PubMed

    Diluna, Michael L; Amankulor, Nduka M; Johnson, Michele H; Gunel, Murat

    2007-05-01

    Faciogenital dysplasia, also known as Aarskog-Scott syndrome (AAS), is an X-linked dominant congenital disorder characterized by multiple facial, musculoskeletal, dental, neurological and urogenital abnormalities, ocular manifestations, congenital heart defects, low IQ and behavioral problems. Here we describe an unusual presentation of dysplastic carotid artery, basilar artery malformation or occlusion and posterior circulation aneurysm in a 13-year-old male with AAS.

  19. Astronaut Scott Carpenter completes top egress training in white room

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter, prime pilot of the Mercury-Atlas 7 (the nation's second manned orbital flight), completing top egress training in the white room at Cape Canaveral, Florida. The line he is holding is known as the 'man line' which attaches the survival kit to the astronaut. The bag is the survival kit he carries for contingency landings. Clearly visible around his neck is the bag containing the life vest.

  20. John Scott Haldane: The father of oxygen therapy

    PubMed Central

    Sekhar, KC; Rao, SSC Chakra

    2014-01-01

    John Scott Haldane was a versatile genius who solved several problems of great practical significance. His ability to look beyond the laboratory and investigate theory added crucial findings in the field of respiratory physiology. His work on high altitude physiology, diving physiology, oxygen therapy, and carbon monoxide poisoning led to a sea change in clinical medicine and improved safety and reduced mortality and morbidity in many high risk situations. PMID:25024490

  1. STS-82 Pilot Scott Horowitz arrives for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz arrives at KSCs Shuttle Landing Facility in a T-38 jet from Houston, TX. Horowitz and the other six crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The crew aboard the Space Shuttle Discovery on STS-82 will conduct the second Hubble Space Telescope servicing mission. The 10-day flight is targeted for a Feb. 11 liftoff.

  2. STS-75 Pilot Scott Horowitz arrives at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Pilot Scott J. Horowitz arrives at KSC's Shuttle Landing Facility. Altogether seven crew members are assigned to the second Shuttle flight of 1996, which will be highlighted by the re-flight of the Italian Tethered Satellite System (TSS-1R). Liftoff is slated to occur during a two-and-a-half window opening at 3:18 p.m. EST, Feb. 22.

  3. SWIFT BAT Survey of AGN

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  4. Measuring Feedback in Nearby AGN

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2012-08-01

    We investigate the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) AGN. From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in total mass outflow rate (Ṁout) and kinetic luminosity (LK) for each AGN, summed over all of the absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, or other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine Ṁout and LK. The 6 Seyfert 1s with moderate bolometric luminosities (Lbol = 1043 - 1045 ergs s-1) all have mass outflow rates that are 10 - 1000 times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC 4051, NGC 3516, and NGC 3783) have LK in the range 0.5 - 5% Lbol, which is the range typically required by feedback models for efficient self-regulation of black-hole and galactic bulge growth. The other three (NGC 5548, NGC 4151, and NGC 7469) have LK > 0.1%Lbol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGN have the potential to deliver significant feedback to their environments.

  5. Spectral Energy Distributions of Quasars and AGN

    NASA Astrophysics Data System (ADS)

    Wilkes, B.

    2004-06-01

    Active Galactic Nuclei (AGN) are multiwavelength emitters. To have any hope of understanding them, or even to determine their energy output, we must observe them in multiple wavebands using many telescopes. I will review what we have learned from broad-band observations of relatively bright, low-redshift AGN over the past ˜ 15 years. AGN can be found at all wavelengths but each provides a different view of the intrinsic population, often with little overlap between samples selected in different wavebands. I look forward to the full view of the intrinsic population which we will obtain over the next few years with surveys using today's new, sensitive observatories. These surveys are already finding enough new and different AGN candidates to pose the question ``What IS an AGN?".

  6. The BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Berney, Simon; Schawinski, Kevin; Balokovic, Mislav; Baronchelli, Linda; Gehrels, Neil; Stern, Daniel; Mushotzky, Richard; Veilleux, Sylvain; Ueda, Yoshihiro; Crenshaw, D. Michael; Harrison, Fiona; Fischer, Travis C.; Treister, Ezequiel; BASS Team; Swift BAT Team

    2017-01-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at z<0.2. Starting from an all-sky catalog of AGN detected based on their 14-195 keV flux from the 70-month Swift/BAT catalog, we analyze a total of 1279 optical spectra, taken from twelve dierent telescopes, for a total of 642 spectra of unique AGN. We present the absorption and emission line measurements as well as black hole masses and accretion rates for the majority of obscured and un-obscured AGN (473), representing more than a factor of 10 increase from past studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics. Additionally, we discuss follow-on efforts to study the variation of [OIII] to Xray measurements, a new method to measure accretion rates from using line ratios, a sample of 100 AGN observed with NIR spectroscopy, and an effort to measure the accretion rates and obscuration with merger stage in a subsample of mergers.

  7. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    SciTech Connect

    Ajello, M.; Alexander, D.M.; Greiner, J.; Madejski, G.M.; Gehrels, N.; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  8. Spitzer's contribution to the AGN population

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer Lynn

    2009-06-01

    Using large multiwavelength datasets, we study obscured AGN in the distant universe that have been missed via traditional selection techniques (e.g. UV/ optical/X-ray). To do so, we take particular advantage of the mid-IR, which is minimally affected by obscuration. We first select as AGN candidates those objects whose radio emission is significantly brighter, relative to the mid-IR, than would be predicted by the well known radio/infrared correlation, indicating that the radio emission originates in the central engine. We find that of the 27 such sources identified in the CDF-N, 60% lack solid X-ray detections and 25% lack even 2s X-ray emission. The absorbing columns of the faint X-ray-detected objects indicate that they are obscured but unlikely to be Compton thick, whereas the radio-excess AGN which are X-ray non-detected are Compton-thick candidates. We similarly use the infrared emission to select IRAC (3.6-8.0 mm) power-law AGN. In these luminous AGN, the hot dust emission from the AGN fills in the gap in a galaxy's SED between the 1.6 mm stellar bump and the long-wavelength dust emission feature. While sources selected in this way are more luminous than the radio-excess AGN, we find a similar X-ray detection fraction. Of the 62 power- law galaxies in the CDF-N, only 55% are detected in the X-ray, and 15% lack evidence for even weak 2s X-ray emission. A study of their X-ray properties indicates that ~ 75% are obscured. Finally, we test IRAC color-color and infrared-excess selection criteria. We find that while these selection techniques identify a number of obscured AGN, they may also select a significant number of star-forming galaxies. By combining only the secure AGN candidates selected via all methods discussed above, we estimate that the addition of Spitzer-selected AGN candidates to the deepest X-ray selected AGN samples directly increases the number of known AGN by 54-77%, and implies a total increase to the number of AGN of 71-94%.

  9. The Scotts Mills, Oregon earthquake on March 25, 1993

    USGS Publications Warehouse

    Wong, Ivan; Hemphill-Haley, Mark; Salah-Mars-Woodward-Clyde, Said

    1993-01-01

    At 5:34 a.m. on March 25, 1993, much of northwestern Oregon and southwestern Washington was shaken by one if the largest historic earthquakes ever observed in the region. The Richter magnitude 5.6 earthquake occurred near the small town of Scotts Mills, 48 km south of Portland, Oregon. The March 25 earthquake was felt over a large part of the Pacific Northwest extending from Seattle, Washington, in the north to the town of Roseburg in southern Oregon. Due in large part to the moderate size of the event and its location in a rural setting, only minor injuries occurred, principally from falling objects and broken glass.

  10. STS-82 Pilot Scott J. 'Doc' Horowitz Suit Up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz puts on a glove of his launch and entry suit with assistance from a suit technician in the Operations and Checkout Building. This is Horowitz''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  11. STS-75 Pilot Scott J. 'Doc' Horowitz suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Pilot Scott J. 'Doc' Horowitz dons his launch/entry suit in the Operations and Checkout Building with the assistance of a suit technician. STS-75 will be the first trip into space for Horowitz, who was selected by NASA in 1992 to join the astronaut corps. Horowitz and an international crew will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half-hour launch window opening at 3:18 p.m. EST.

  12. Installation Development Environmental Assessment at Scott Air Force Base, Illinois

    DTIC Science & Technology

    2007-05-01

    County and the St. Louis metropolitan area. Summers are warm and humid, with temperatures of 90ºF or higher occurring 35-40 days per year (with at...most five days of 100ºF or more per year). Winter temperatures drop below 0ºF only two or three days per year with temperatures below freezing...listed plant species have been observed (Scott AFB, 2005d). The bald eagle (Haliaeetus leucocephalus) is typically attracted to large, open water bodies

  13. Magic neutrino mass matrix and the Bjorken Harrison Scott parameterization

    NASA Astrophysics Data System (ADS)

    Lam, C. S.

    2006-09-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter Ue 3, in a form discussed recently by Bjorken, Harrison, and Scott.

  14. APOLLO 15: Commander Scott on those who gave all

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 15: A demonstration of a classic experiment. From the film documentary 'APOLLO 15: 'The mountains of the Moon'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 15: Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley rilleon July 30, 1971;performed EVA with Lunar Roving Vehicle; deployed experiments. P& F Subsattelite spring-launched from SM in lunar orbit. Mission Duration 295 hrs 11 min 53sec

  15. AGN Accretion Physics: Insights from K2

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    We propose to use Kepler K2 mission observations of 1800 supermassive black holes at the centers of galaxies (Active Galactic Nuclei; AGN) to test models for accretion physics, to study the relationship between variability and other AGN properties such as accretion rate, and to guide methods for detecting and classifying AGN in future time-domain surveys. AGN exhibit optical brightness fluctuations on timescales from below an hour up to many years. These fluctuations are determined by the physics of accretion of matter onto black holes from their galactic environment. By observing variability on timescales down to below an hour, Kepler probes the accretion region on length scales that are too small to be directly imaged using conventional telescopes. These data allow us to test competing models for accretion physics that make different predictions for the statistics of variability. Our previous work provides strong evidence that models of AGN variability that work on long timescale data are not adequate to describe the full range of fluctuation timescales probed by Kepler. We will analyze the light curves of 1800 AGN that have been monitored by Kepler during recent and ongoing K2 campaigns. These objects span a large range of luminosity and AGN type, thus allowing study of the relationship between variability and other physical properties. We will characterize the statistics of AGN variability using state-of-the-art methods of time series analysis that are appropriate for quantifying the stochastic behavior of AGN. This analysis builds on our previous work in which we developed and tested new analysis software that extracts the full information content of these light curves and will enable several key outcomes: (1) Measurement of the relationship between types of AGN and their variability. (2) Tests for dependence of variability on accretion rate. (3) Investigation of changes in variability behavior that point to changes in the mode of accretion. (4) Correlations

  16. The Secrets of St. Agnes

    ERIC Educational Resources Information Center

    Ross, Janell

    2006-01-01

    This article reveals the disturbing truths uncovered by a retired biology professor about the past practices of a North Carolina hospital. In the 1990s, Irene Clark was a biology professor at St. Augustine's College, a historically Black college in Raleigh, North Carolina. One day, a janitor asked the native Virginian what she knew about the…

  17. Geologic Map of the Scott City 7.5-Minute Quadrangle, Scott and Cape Girardeau Counties, Missouri

    USGS Publications Warehouse

    Harrison, Richard W.; Palmer, James R.; Hoffman, David; Vaughn, James D.; Repetski, John E.; Frederiksen, Norman O.; Forman, Steven L.

    2002-01-01

    The Scott City quadrangle is located at the northern end of the Mississippi embayment (fig. 1). The quadrangle contains parts of three physiographic features: the abandoned channel of the ancestral Mississippi River, the Benton Hills, and the flood plain of the ancestral Ohio River and modern Mississippi River. These features are largely the manifestation of the Quaternary evolution of the Mississippi and Ohio Rivers, the chronology and analysis of which has been discussed by Fisk (1944), Saucier (1968, 1974, 1994), Guccione and others (1990), Madole and others (1991), Autin and others (1991), Porter and Guccione (1994), and Blum and others (1995a,b).

  18. Resolving AGN with PanSTARRS transients

    NASA Astrophysics Data System (ADS)

    Lawrence, Andy

    2012-10-01

    With PanSTARRS we have discovered a new class of slow, blue nuclear transients which we believe to be rare examples of background AGN microlensed by stars in foreground galaxies, amplified by a factor of 10--100. The background AGN should be somewhat resolved by the foreground lens, providing a unique new diagnostic of AGN size and structure - the UV, optical, IR, BLR, and X-ray regions should have differing evolutions during the event. This proposal is a first step towards understanding the structure of the X-ray source : testing the microlensing hypothesis, characterising the SED, and establishing the first two epochs in an expected gradual decline.

  19. Probing Agn Accretion Physics With Kepler

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael

    We propose to use Kepler observations of a sample of ~100 supermassive black holes at the centers of galaxies (Active Galactic Nuclei; AGN) to test models for accretion physics, to study the relationship between variability and other AGN properties, and to guide methods for detecting and classifying AGN in future time-domain surveys. AGN exhibit optical brightness fluctuations on timescales from below an hour up to many years. These fluctuations are determined by the physics of accretion of matter onto black holes from their galactic environment. By observing variability on timescales down to below an hour, Kepler probes the accretion region on length scales that are too small to be directly imaged using conventional telescopes. Data from this unique time- domain telescope now allow us to test competing models for accretion physics that make different predictions for the statistics of variability. Preliminary work provides strong evidence that models of AGN variability that work on long timescale data are not adequate to describe the full range of fluctuation timescales probed by Kepler. We will analyze the light curves of Kepler AGN that span a large range of luminosity and AGN type, thus allowing study of the relationship between variability and other physical properties. Using methods developed and tested by the Kepler team, we will perform custom post-processing of these light curves to remove known systematics. Statistical analyses of the AGN light curves will include estimation of the Structure Function, which quantifies the correlations of brightness fluctuations, and maximum likelihood light curve reconstruction. Competing models for the stochastic behavior of AGN will be tested to evaluate which models best describe variability of AGN over the full range of timescales probed by Kepler. Correlations between the stochastic model parameters and physical parameters will provide new methods for classification of AGN from their variability and aid in

  20. Toward a Unified AGN Structure

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  1. The Evolution of Obscuration in AGN

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, M.; Virani, S.

    2006-09-01

    One fundamental ingredient in our understanding of the AGN population is the ratio of obscured to unobscured AGN and whether this ratio depends on other parameters like intrinsic luminosity or redshift. Observationally, deep X-ray surveys found that the obscured AGN fraction depends on luminosity. However, the dependence on redshift is less clear. In this work, we constructed the largest sample to date of AGN selected in hard X-rays, containing a total of 1229 sources, 631 of them obscured, with a high spectroscopic completeness in order to study the possible dependence of the fraction of obscured sources with redshift and/or luminosity. We confirm that this fraction decreases with increasing luminosity as previously reported and found that at the same time it increases with increasing redshift. This is the first time that this evolution is significantly detected using only optical spectroscopy to separate obscured and unobscured AGN. Additionally, we use the spectral shape and intensity of the X-ray background as a separate constraint on the evolution of the obscured AGN fraction finding consistent results. This result can be interpreted as an evolution in the location of the obscuration, from the central parsec-scale region (the torus) at low redshift to kiloparsec scales (the host galaxy) at high redshift, as it is known that most galaxies contained more dust in the past. Using these results, we calculate the integrated bolometric AGN emission finding it to be at most 5% of the total extragalactic light. Hence, while AGN contribute most of the light at X-ray wavelengths, they constitute only a small fraction of the integrated extragalactic light. We thank the support of the Centro de Astrof\\'{\\i}sica FONDAP and from NASA/{\\it INTEGRAL} grant NNG05GM79G.

  2. Partners in Excellence: Development of the Temple College Clinical Simulation Center

    ERIC Educational Resources Information Center

    Coker, Neil

    2006-01-01

    Temple College (TC) is a comprehensive community college located in Temple, Texas. Temple also is home to Scott & White Hospital, Central Texas Veterans Health Care System, King's Daughters Hospital, and Texas A&M University College of Medicine's clinical campus. In the summer of 2001, TC's health-sciences programs were scattered across…

  3. A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Yi, Sukyoung K.; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Soto, Kurt

    2015-07-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z\\lt 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [O iii] λ 5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles.

  4. First Detections of Compact AGN-triggered Radio Cores in RQ AGNs in the ECDFS

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Maini, A.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-08-01

    The mechanism triggering the radio emission in Radio-Quiet (RQ) Active Galactic Nuclei (AGN), found to be a relevant component of the faint radio population in deep fields, is hotly debated. Most RQ AGNs are unresolved or barely resolved at a few arcsec scale, comparable to the host galaxy size. RQ AGNs have also been found to share many properties with Star Forming Galaxies (SFG). They have similar radio luminosities and similar optical- /infrared-to-radio flux ratios. Their radio luminosity functions show similar evolutionary trends, and their host galaxies have similar colours, optical morphologies and stellar masses. For all these reasons it was concluded that the radio emission in such RQ AGNs is mainly triggered by star formation (SF). However in the local Universe (z<0.5) it is well known that both AGN and SF processes can contribute to the total radio emission in RQ AGNs (see e.g., Seyfert 2 galaxies), and there is growing evidence that composite SF/AGN systems are common at mid to high redshift (z>1-2). We used the Australian Long Baseline Array to observe a number of RQ AGNs in the Extended Chandra Deep Field South (ECDFS), and we detected compact, high-surface-brightness radio cores in some of them. Our pilot study shows that at least some of the sources classified as radio quiet contain an AGN that can contribute significantly (~50% or more) to the total radio emission. This is a first direct evidence of the presence of such AGN-triggered radio emission in RQ AGNs at cosmological redshifts.

  5. AGN Absorption Linked to Host Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stéphanie

    2014-07-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection.

  6. Obscured AGN Accretion Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    We propose to combine data from XMM-Newton, the Chandra X-ray Observatory, and the Spitzer Space Telescope with ground-based optical spectroscopy from Keck and Magellan to measure the relationship between AGN obscuration and accretion activity over the bulk of cosmic history. This work will establish the prominence of both obscured and unobscured growth phases of black holes and shed light on the processes that trigger and fuel AGN as a function of time. We will complete three complementary projects that focus on a) understanding the completeness and biases of AGN selection at mid-IR versus X-ray wavelengths, b) tracing optical obscuration as a function of luminosity and redshift, and c) measuring the distribution and evolution of X-ray absorption of AGN. We will undertake a study of AGN demographics comparing selection techniques at three different wavelengths: mid-IR selection using data from the Spitzer Space Telescope, X- ray selection using data from the XMM-Newton and Chandra satellites, and broad-line optical selection using PRIMUS spectroscopy. We will determine the overlap and uniqueness of samples created using each method, to quantify the completeness and biases inherent in AGN selection at each wavelength. This will lead to a constraint on the fraction of heavily obscured, Compton-thick AGN to z~1. To study the optical obscuration of AGN, we will use three recently-completed spectroscopic surveys -- PRIMUS, DEEP2, and our own Keck program -- to robustly determine the ratio of unobscured (broad-line) to obscured (non--broad-line) X-ray selected AGN as a function of luminosity from z~0.2 to z~3. We will utilize the well- understood selection functions and characterize the AGN completeness of each survey as a function of redshift, magnitude, and obscuration properties. This will allow us to correct for a variety of observational effects to measure the underlying joint redshift- and luminosity-dependence of optical obscuration, which has direct implications

  7. 76 FR 71611 - Notice of Establishment of the Fort Winfield Scott Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Fort Winfield Scott as a new national center focused on service and leadership development. DATES... on the establishment of a new national center (``Center'') focused on service and leadership... dedicated to service and leadership at Fort Scott in the Presidio of San Francisco; (b)...

  8. 77 FR 7182 - Scott W. Houghton, M.D.; Decision and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... record, revoking the registrant's registration would not be appropriate. Morall v. DEA, 412 F.3d 165, 174... Registration BH8796077, issued to Scott W. Houghton, M.D., be, and it hereby is, revoked. I further order that any pending application of Scott W. Houghton, M.D., to renew or modify his registration, be, and...

  9. Astronaut David Scott undergoes water egress training in building 260A

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott, pilot of the Gemini 8 prime crew, undergoes water egress training in a special tank in building 260A at the Manned Spacecraft Center (MSC), Houston, Texas. An MSC swimmer assists in the training exercise. A boilerplate model of a Gemini spacecraft floats in water beside Scott.

  10. To Flame With a Wild Life: Florida Scott-Maxwell's Experience of Old Age.

    ERIC Educational Resources Information Center

    Berman, Harry J.

    1986-01-01

    Analyzes an intimate journal, Florida Scott-Maxwell's "The Measure of My Days". Scott-Maxwell's journal contains suggestive ideas about the experience of aging among the old-old, about the theoretical issue of late life individuation, and about successful aging. (Author/ABB)

  11. Astronaut David Scott simulates use of Apollo 15 Lunar Surface Drill at KSC

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander of the Apollo 15 lunar landing mission, simulates use of the Apollo 15 Lunar Surface Drill (ALSD) at Kennedy Space Center (KSC), Florida. Scott's fellow moon-exploring crewman, Astronaut James Irwin, can be seen in the background near Lunar Roving Vehicle (LRV) trainer.

  12. Three-variable reversible Gray-Scott model

    NASA Astrophysics Data System (ADS)

    Mahara, Hitoshi; Suematsu, Nobuhiko J.; Yamaguchi, Tomohiko; Ohgane, Kunishige; Nishiura, Yasumasa; Shimomura, Masatsugu

    2004-11-01

    Even though the field of nonequilibrium thermodynamics has been popular and its importance has been suggested by Demirel and Sandler [J. Phys. Chem. B 108, 31 (2004)], there are only a few investigations of reaction-diffusion systems from the aspect of thermodynamics. A possible reason is that model equations are complicated and difficult to analyze because the corresponding chemical reactions need to be reversible for thermodynamical calculations. Here, we introduce a simple model for calculation of entropy production rate: a three-variable reversible Gray-Scott model. The rate of entropy production in self-replicating pattern formation is calculated, and the results are compared with those reported based on the Brusselator model in the context of biological cell division.

  13. STS-120 Mission Specialist Scott Parazynski Repairs ISS Solar Array

    NASA Technical Reports Server (NTRS)

    2007-01-01

    While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  14. STS-120 Mission Specialist Scott Parazynski Repairs ISS Solar Array

    NASA Technical Reports Server (NTRS)

    2006-01-01

    While anchored to a foot restraint on the end of the Orbiter Boom Sensor System (OBSS), astronaut Scott Parazynski, STS-120 mission specialist, participated in the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). During the 7-hour and 19-minute space walk, Parazynski cut a snagged wire and installed homemade stabilizers designed to strengthen the structure and stability of the damaged P6 4B solar array wing. Astronaut Doug Wheelock (out of frame), mission specialist, assisted from the truss by keeping an eye on the distance between Parazynski and the array. Once the repair was complete, flight controllers on the ground successfully completed the deployment of the array.

  15. Mission Specialist Scott Parazynski arrives late at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The T-38 jet aircraft arrives at the Shuttle Landing Facility carrying STS-95 Mission Specialist Scott E. Parazynski (second seat). The pilot is astronaut Kent Rominger. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  16. STS-90 Pilot Scott Altman is suited up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Pilot Scott Altman is assisted during suit-up activities by Lockheed Suit Technician Valerie McNeil from Johnson Space Center in KSC's Operations and Checkout Building. Altman and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Altman is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body - - the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  17. AGN multi-wavelength identification and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF Team; PRIMUS Team

    2017-01-01

    I present results on AGN identification, selection biases, and host galaxy properties at z~2.3 and results on the relation between AGN accretion and star formation activity at z~0.8. In the MOSDEF survey, with a sample of X-ray, IR, and optically selected AGN at z~2.3, using rest-frame optical spectra obtained with the Keck/MOSFIRE instrument, I find clear selection biases in identifying AGN at these wavelengths. There is a strong bias against identifying AGN at any wavelength in low mass galaxies, and an additional bias against identifying IR AGN in the most massive galaxies. While AGN hosts span a wide range of SFR, IR AGN are mainly in less dusty galaxies with relatively higher SFR and optical AGN are in dusty galaxies with relatively lower SFR in our sample. X-ray AGN selection does not display a bias with host SFR. I also consider the relation between the growth of galaxies and their SMBHs using a large sample of X-ray AGN in the PRIMUS survey. I do not find a significant correlation between SFR and AGN instantaneous luminosity. However, I find a weak but significant correlation between the average luminosity of AGN and SFR, which likely reflects that AGN luminosities vary on shorter timescales than host galaxies SFR. My results indicate that AGN are also often hosted by quiescent galaxies, and within both the star-forming and quiescent galaxy populations the probability of hosting an AGN is a power-law distribution as a function of specific accretion rate. However, at a given stellar mass, I find that a star-forming galaxy is ~2-3 times more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation, while in quiescent galaxies increases with SFR.

  18. The Angular Clustering of WISE-Selected AGN: Different Haloes for Obscured and Unobscured AGN

    NASA Astrophysics Data System (ADS)

    Yan, Lin

    2015-08-01

    We calculate the angular correlation function for a sample of 170,000 AGN extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 - W2 > 0.8) and 4.6 micron flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGN, and to have a mean redshift of z=1.1. In total, the angular clustering of WISE-AGN is roughly similar to that of optical AGN. We cross-match these objects with the photometric SDSS catalog and distinguish obscured sources with (r - W2) > 6 from bluer, unobscured AGN. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGN are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find obscured sources at mean redshift z=0.9 have a bias of b = 2.9 \\pm 0.6 and are hosted in dark matter halos with a typical mass of log(M/M_odot)~13.5. In contrast, unobscured AGN at z~1.1 have a bias of b = 1.6 \\pm 0.6 and inhabit halos of log(M/M_odot)~12.4. These findings suggest that obscured AGN inhabit denser environments than unobscured AGN, and are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  19. The ROSAT/NVSS AGN sample

    NASA Astrophysics Data System (ADS)

    Paronyan, Gurgen M.; Abrahamyan, Hayk V.; Harutyunyan, Gohar S.; Mickaelian, Areg M.

    2014-07-01

    We attempt to create an X-ray/radio AGN catalog and make its multiwavelength studies. ROSAT Bright Source Catalogue (BSC) contains 18,806 and ROSAT Faint Source Catalogue (FSC), 105,922 X-ray sources giving the total number of ROSAT X-ray sources 124,727 (one source is listed twice). On the other hand, NVSS radio catalogue contains 1,773,484 sources. Taking into account that X-ray sources contain AGN, bright stars and galaxies, clusters, white dwarfs (WD), cataclysmic variables (CV), etc., the cross-identification with radio catalogue may distinguish the extragalactic sources. We have cross-correlated ROSAT catalogs with NVSS one with a search radius 30 arcsec. 9,193 associations have been found. To distinguish AGN from the normal bright galaxies and clusters, Veron-Cetty & Veron AGN catalog (v.13, 2010; VCV-13) containing 168,940 objects have been used. A cross-correlation of the 9,193 ROSAT/NVSS sources with the VCV-13 with a search radius 30 arcsec resulted in 3,094 associations. Thus we are left with more 6,099 X-ray/radio sources without an optical identification. Brighter objects are normal bright galaxies, while we believe that all faint ones are candidate AGN with some contamination of distant clusters. SDSS spectroscopic survey allows us classify objects by activity types, and a number of our candidate AGN is found to be present in SDSS. We attempt to find connections between the fluxes in different wavelength ranges, which will allow us to confirm AGN and blazars candidates and in some cases find new ones.

  20. Heroes for the past and present: a century of remembering Amundsen and Scott.

    PubMed

    Roberts, Peder

    2011-12-01

    In 1911-1912 Roald Amundsen and Robert Falcon Scott led rival parties in a race to the geographic South Pole. While both parties reached the Pole--Amundsen first--Scott's men died on the return journey. Amundsen became a Norwegian icon through his record-setting travels; Scott became a symbol of courage and devotion to science. The memory of each was invoked at various points during the twentieth century in the context of contemporary Antarctic events. Scott's status as a scientific figure was central to the Scott Polar Research Institute, while Amundsen's lack of scientific legacy became a way for British polar explorers to differentiate themselves from Norwegian contemporaries during the interwar years. After 1945 Scott and Amundsen were again invoked as exemplars of national polar achievement, even as the rise of large-scale science on the continent overshadowed past British and Norwegian achievements. In the present Amundsen and Scott remain wedded to particular values, focused respectively on national achievement and sacrifice in the name of science, while their race has become secondary.

  1. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  2. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  3. Satellites of Radio AGN in SDSS: Insights into AGN Triggering and Feedback

    NASA Astrophysics Data System (ADS)

    Pace, Cameron; Salim, Samir

    2014-04-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best & Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ~1% of radio AGN.

  4. Reverberation Mapping of AGN Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  5. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  6. Probing AGN Accretion History Through X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Paolillo, Maurizio; Papadakis, I.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F.; Koekemoer, A.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X.

    2016-10-01

    I will present recent results on AGN variability in the CDFS survey. Using over 10 years of X-ray monitoring and comparison with local AGNs we are able to constrain the variability dependence on BH mass and accreton rate, and use it to trace the accretion hisory of the AGN population up to z=3.

  7. Detailed Analysis of Starburst and AGN Activity in Blue E/S0 Galaxies in RESOLVE

    NASA Astrophysics Data System (ADS)

    Bittner, Ashley; Snyder, Elaine M.; Kannappan, Sheila; Norman, Dara J.; Norris, Mark A.; Moffett, Amanda J.; Hoversten, Erik A.; Stark, David; RESOLVE Team

    2016-01-01

    We identify a population of ~120 blue E/S0 galaxies among the ~1350 galaxies that are targeted for spectroscopy and have measured morphologies in the highly complete REsolved Spectroscopy Of a Local Volume (RESOLVE) survey. Blue E/S0s are identified as being early type objects morphologically classified between E and S0/a that fall on the blue sequence. Most (~85%) of our blue E/S0s have stellar masses <10^10 M_sun. Using pPXF, we have measured the stellar velocity dispersions (sigma values) from high resolution 485 - 550 nm spectroscopy for ~15% of the blue E/S0 sample. Using three variations of the M_BH -- sigma relation, this kinematic subsample is estimated to typically host central black holes within the range log M_BH = 4-6 M_sun. Following up on previous suggestions of nuclear activity in the blue E/S0 population, we investigate nuclear starburst and/or AGN activity occurring within the full sample. Preliminary results from cross-checking known AGN catalogs with the blue E/S0 sample have revealed nuclear activity in ~20 of these galaxies based on heterogeneous criteria (BPT line ratio analysis, spectral line broadening, etc.), some of which may not entirely distinguish starburst from AGN activity. In an attempt to break the degeneracy between AGN and starburst activity, we perform detailed spectral analysis for a few of the galaxies with kinematic data. We also consider the viability of alternate AGN detection methods based on L_Edd estimates calculated from the M_BH estimates. This research has been supported by the National Science Foundation through the CAP REU Program (ACI-1156614) and the RESOLVE Survey (AST-0955368) as well as the National Space Grant College and Fellowship Program and the NC Space Grant Consortium.

  8. STS-103 Pilot Scott Kelly during TCDT activities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Pilot Scott J. Kelly is ready to take his turn at driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him (left) is Mission Specialist Jean-Frangois Clervoy of France, who is with the European Space Agency. At right is Mission Specialist Steven L. Smith. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The other STS-103 crew members are Commander Curtis L. Brown Jr. and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland, who also is with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  9. AGN Host Galaxy Properties And Mass Function

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angela

    2016-10-01

    Supermassive black hole growth, nuclear activity, and galaxy evolution have been found to be closely related. In the context of AGN-galaxy coevolution, I will discuss about the relation found between the host galaxy properties and the central BH and I will present the latest determination of the host galaxy stellar mass function (HGMF), and the specific accretion rate distribution function (SARDF), derived from the XMM-COSMOS sample up to z˜2.5, with particular focus on AGN feedback as possible responsible mechanism for galaxy quenching.

  10. PS1-1000305 an AGN outburst?

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Mahabal, A. A.; Djorgovski, S. G.; Graham, M. J.; Williams, R.; Prieto, J.; Catelan, M.; Christensen, E.; Beshore, E. C.; Larson, S. M.

    2010-07-01

    Kankare et al. (2010, ATel#2716) recently reported the discovery of an AGN outburst (PS1-1000305) detected in PS1 taken data on May 19.3 UT. The redshift of the AGN is given by Kankare et al. as z=0.77 with the host galaxy SDSS J152844.16+425722.5. We have extracted the five year archival CSS/CRTS lightcurve at the location of PS1-1000305.

  11. Multi-Frequency View Of Jetted AGN

    NASA Astrophysics Data System (ADS)

    Giroletti, Marcello; Orienti, M.; D'Ammando, F.; Lico, R.; Giovannini, G.:

    2016-10-01

    I will present a review on the context and the most recent results about radio loud AGNs as seen in different parts of the electromagnetic spectrum, with an eye also to multi-messenger astrophysics and neutrinos in particular. I will focus on various topics of interest about RL AGNs, such as: the study of the physics of relativistic jets and particle acceleration, in particular through VLBI and gamma ray observations; the feedback to the host galaxy and on galaxy cluster scales; the possibility to probe distant and obscured environments.

  12. Star Formation and AGN activity of X-ray selected AGN host galaxies in the Chandra-COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon

    2017-01-01

    One of the ongoing issues for understanding the galaxy formation and evolution is how active galactic nuclei (AGNs) affect the growth of their host galaxies. We investigate the correlations between AGN activity and star formation properties of a large sample of ~3700 X-ray selected AGNs over a wide range of luminosities (42 < log Lx < 45) up to z~5 in the Chandra-COSMOS Legacy Survey. We perform a multi-component modeling from the far-infrared, when available, to the near-UV using AGN emission from the big-blue-bump (for Type 1 AGNs), a nuclear dust torus model, a galaxy model and a starburst component for the spectral energy distributions (SEDs). Through detailed analysis of SEDs, we derive AGN host galaxy properties, such as stellar masses, star formation rates (SFRs), and AGN luminosities. We find that AGN host galaxies have, on average, similar SFRs compared to the normal star-forming main sequence galaxies, suggesting no significant enhancement or quenching of star formation. The average SFR of AGN host galaxies shows a flat distribution in bins of AGN luminosity, consistent with recent ideas that the shorter variability timescale of AGN compared to star formation can lead to a flat relationship between the SFR and black hole accretion rates. Our results suggest that both star formation and nuclear activity in the majority of AGN host galaxies might be driven more by internal secular processes at z<3, implying that they have substantially grown at much earlier epoch.

  13. Ron Scott d/b/a White Dog Painting Information Sheet

    EPA Pesticide Factsheets

    Ron Scott d/b/a White Dog Painting (the Company) is located in Kansas City, Missouri. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Kansas City, Missouri.

  14. Scott Tannenbaum on the “Science of Teamwork”: HHP Directorate Innovation Lecture Series

    NASA Video Gallery

    Scott Tannenbaum, Ph.D. is President and Co-Founder of gOE. Under his leadership, gOE has served more than 500 organizations globally across all major industries. Dr. Tannenbaum is a leading expert...

  15. Astronaut Scott Carpenter being recovered from Ocean after MA-7 flight

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 (MA-7) mission, is seen being recovered from Atlantic Ocean after MA-7 flight. A diver helps Carpenter into a life raft while the capsule floats nearby.

  16. Astronaut Scott Carpenter on recovery ship U.S.S. Intrepid after MA-7 flight

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 (MA-7) mission, arrives aboard the prime recovery ship, U.S.S. Intrepid, during recovery operations following his earth-orbital mission.

  17. Astronauts Scott and Irwin shown on Lunar Roving Vehicle at KSC

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts David R. Scott (right), commander, and James B. Irwin, lunar module pilot, are shown on the Lunar Roving Vehicle at the Kennedy Space Center (KSC) during Apollo 15 lunar surface extravehicular activity simlations.

  18. APOLLO 15 ASTRONAUTS SCOTT AND IRWIN BRIEFED NEWSMEN ON THE LUNAR ROVING VEHICLE

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 15 astronauts David Scott, right, and James Irwin, left, briefed newsmen today on the Lunar Roving Vehicle which will be used for lunar exploration for the first time during July's Apollo 15 mission.

  19. W. Kerr Scott Reservoir Sedimentation Resurveys for May 1978 and September 1979.

    DTIC Science & Technology

    1980-03-01

    Scott Reservoir, Yadkin River , N.C. Surveys of May 1978 and Sept. 1979, dated Mar. 1980. 4. AGENCY MAKING SURVEY U.S. Army Corps of Engineers 49... River , ATTN: MRDED Division Engineer , North Atlantic, ATTN: NADEN Division Engineer , North Central, ATTN: NCDED SDivision Engineer , Ohio River , ATTN...41±59 294 NI KERR SCOTT RESERVOIR SEDIMENTATION RESURVEYS FOR MAY 1/x ±978 AND SEPTEMBER ±979(U) CORPS OF ENGINEERS CHARLESTON SC CHARLESTON DISTRICT

  20. An estimating function approach to inference for inhomogeneous Neyman-Scott processes.

    PubMed

    Waagepetersen, Rasmus Plenge

    2007-03-01

    This article is concerned with inference for a certain class of inhomogeneous Neyman-Scott point processes depending on spatial covariates. Regression parameter estimates obtained from a simple estimating function are shown to be asymptotically normal when the "mother" intensity for the Neyman-Scott process tends to infinity. Clustering parameter estimates are obtained using minimum contrast estimation based on the K-function. The approach is motivated and illustrated by applications to point pattern data from a tropical rain forest plot.

  1. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-12-01

    The interplay between cosmic gas accretion on to galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations HORIZON-AGN and HORIZON-NOAGN, we unambiguously identify the critical role of active galactic nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the centre of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown to be driven not only by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  2. A Global Picture of AGN Winds

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Fukumura, K.

    2011-01-01

    We present a unified structure for accretion powered sources across their entire luminosity range from accreting galactic black holes to the most luminous quasars, with emphasis on AGN and their phenomenology. Central to this end is the notion of MHD winds launched from the accretion disks that power these objects. This work similar in spirit to that of Elvis of more that a decade ago, provides, on one hand, only the broadest characteristics of these objects, but on the other, also scaling laws that allow one to make contact with objects of different luminosity. The conclusion of this work is that AGN phenomenology can be accounted for in terms of dot(m), the wind mass flux in units of the Eddington value, the observer's inclination angle theta and alpha_OX the logarithmic slope between UV and X-ray flares. However given the well known correlation between alpha(sub ox) and UV Luminosity, we conclude that the AGN structure depends on only two parameters. The small number of model parameters hence suggests that an understanding of the global AGN properties maybe within reach.

  3. The AGN Luminosity Fraction in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  4. NuSTAR Observations of Bright AGNs

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Ballantyne, D. R.; Blandford, R. D.; Boggs, S.; Boydstun, K.; Brenneman, L.; Cappi, M.; Christensen, F.; Craig, W.; Fabian, A.; Fuerst, F.; Guainazzi, M.; Hailey, C. J.; Harrison, F.; Madejski, G. M.; Marinucci, A.; Matt, G.; Nandra, K.; Reynolds, C. S.; Stern, D.; Walton, D.; Zhang, W.; NuSTAR Team

    2013-01-01

    The dramatically improved signal-to-noise provided by NuSTAR up to ~80 keV allows a qualitative change in our understanding of the X-ray emission of Active Galactic Nuclei (AGNs). Despite intensive investigation for over 30 years, during which the 0.1-10 keV spectra and variability of AGNs have been mapped out in detail, we do not know the origin of the X-ray source in AGNs. The "standard model" of supermassive black hole, accretion disk and relativistic jet does not predict an X-ray source in a straightforward way. It is usually assumed that the X-rays were UV photons from the accretion disk that have been Compton up-scattered in a "hot corona", but the temperature, optical depth and geometry of this corona are unknown - if it exists. NuSTAR enables the measurement of the high energy cut-off of the X-ray spectrum, and so the corona temperature, to be measured precisely for the first time, and tests the relativistic Fe-K line and Compton reflection models. If this model is correct then, with Suzaku and XMM-Newton, NuSTAR can measure black hole spins to high accuracy. We outline the NuSTAR GTO program on bright, unobscured, AGNs including simultaneous observations with Suzaku and XMM-Newton, and show early data.

  5. Mabel Agnes Elliott, We Hardly Knew You

    ERIC Educational Resources Information Center

    McGonigal, Kathryn; Galliher, John F.

    2008-01-01

    Sociologist Mabel Agnes Elliott was elected the fourth president of the Society for the Study of Social Problems in 1956-1957 and was the first woman to hold this position. She was an anti-war activist, a feminist and a creative and diligent writer. Yet she experienced many challenges. The Federal Bureau of Investigation kept an active file on…

  6. What are the galaxies that host MIR-selected AGN?

    NASA Astrophysics Data System (ADS)

    Rosario, David

    2016-08-01

    Infra-red selection techniques, sensitive to dust strongly heated by an AGN, offer a way to identify some of the most obscured accretion events in the Universe. I will describe the results of a comprehensive multi-wavelength study of AGN to z>2 selected using Spitzer/IRAC based methods in the COSMOS field. Armed with AGN-optimised redshifts and stellar masses, we explore the dust emission from the active nucleus and the host galaxy. We demonstrate that IR-selected AGN tend to be found in low mass host galaxies, when compared to other AGN identification methods. The star-formation rates of obscured and unobscured IR-selected AGN are very similar, implying that large-scale obscuration with co-eval star-bursts are not found in a major proportion of heavily obscured AGN.

  7. AGN-host galaxy connection: multiwavelength study

    NASA Astrophysics Data System (ADS)

    Pović, M.; Sánchez-Portal, M.; García, A. M. Pérez; Bongiovanni, A.; Cepa, J.; Cepa

    2013-02-01

    The connection between active galactic nuclei (AGN) and their hosts showed to be important for understanding the formation and evolution of active galaxies. Using X-ray and deep optical data, we study how morphology and colours are related to X-ray properties at redshifts z<=2.0 for a sample of > 300 X-ray detected AGN in the Subaru/XMM-Newton Deep Survey (SXDS; Furusawa et al. 2008) and Groth-Westphal Strip (GWS; Pović et al. 2009) fields. We performed our morphological classification using the galSVM code (Huertas-Company et al. 2008), which is a new method that is particularly suited when dealing with high-redshift sources. To separate objects between X-ray unobscured and obscured, we used X-ray hardness ratio HR(0.5-2 keV/2-4.5 keV). Colour-magnitude diagrams were studied in relationship to redshift, morphology, X-ray obscuration, and X-ray-to-optical flux ratio. Around 50% of X-ray detected AGN at z<=2.0 analysed in this work reside in spheroidal and bulge-dominated galaxies, while at least 18% have disk-dominated hosts. This suggests that different mechanisms may be responsible for triggering the nuclear activity. When analysing populations of X-ray detected AGN in both colour-magnitude (CMD) and colour-stellar mass diagrams (Figure 1), the highest number of sources is found to reside in the green valley at redshifts ~ 0.5-1.5. For the first time we studied CMD of these AGN in relation to morphology and X-ray obscuration, finding that they can reside in both early- and late-type hosts, where both morphological types cover similar ranges of X-ray obscuration (Figure 1). Our findings appear to confirm some previous suggestions that X-ray selected AGN residing in the green valley represent a transitional population (e.g. Nandra et al. 2007, Silverman et al. 2008, Treister et al. 2009), quenching star formation by means of different AGN feedback mechanisms and evolving to red-sequence galaxies. More details on analysis and results presented here can be found in

  8. A POWERFUL AGN OUTBURST IN RBS 797

    SciTech Connect

    Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.; Nulsen, P. E. J.; Gitti, M.; Brueggen, M.; Rafferty, D. A.

    2011-05-10

    Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{sup 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.

  9. AGN Variability: Probing Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  10. Presidential Leadership: Intellectual Vocation, Moral Mandate.

    ERIC Educational Resources Information Center

    Casteen, John T., III

    2002-01-01

    The president of the University of Virginia encourages a new academic leadership characterized by modesty and vigorous moral seriousness. Agnes Scott College's Mary Brown Bullock agrees, and adds her thoughts on the president's role in discussing international issues. (EV)

  11. Increasing Access to College: Extending Possibilities for All Students. SUNY Series, Frontiers in Education.

    ERIC Educational Resources Information Center

    Tierney, William G., Ed.; Hagedorn, Linda Serra, Ed.

    This collection of papers examines pre-college enrichment programs that offer a specific remedy to the problem of low income and underrepresented students' access to higher education. The 10 papers are: (1) "Pre-College Outreach Programs: A National Perspective" (Watson Scott Swail and Laura W. Perna); (2) "The Relationship between…

  12. AGN flickering on 10-100 kyr timescales

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Kill, Bill; Maksym, Peter; Koss, Michael; Argo, Megan; Urry, Meg; Wong, Ivy; Lintott, Chris

    2016-08-01

    The study of AGN variability on timescales of 10^4-10^5 years is important in order to understand the BH - host galaxy interaction and coevolution. The discovery of "Hanny's Voorwerp" (HV), an extended emission line region associated with the nearby galaxy IC 2497, provided us with a laboratory to study AGN variability over such timescales. HV was illuminated by a strong quasar in IC 2497, but this quasar significantly shut down in the last 200 kyrs. Thanks to its recent shutdown we can now explore the host galaxy unimpeded by the presence of a quasar dominating the observations, while the Voorwerp preserves the echoes of its past activity. Recent studies on the optical properties of hard X-ray selected AGN suggest that AGN may flicker on and off hundreds or thousands times with each burst lasting ~10^5 yrs. Systems similar to IC 2497 and HV, the so-called Voorwerpjes, allow us to constrain the last stages of the AGN lifecycle. On the other hand, we recently suggested that the switch on phase may be observed in the so-called optically elusive AGN. In this talk I will review both observational evidence and results from simulation work which support this picture, and explain how optically elusive AGN and Voorwerpjes galaxies can help us to understand different phases of the AGN lifecycle. Moreover, I will discuss possible implications for AGN feedback, BH - host galaxy coevolution, and the analogy between AGN and X-ray binaries accretion physics.

  13. The Lick AGN Monitoring Project 2016: Extending Reverberation Mapping to Higher Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    U, Vivian; LAMP2016 Collaboration

    2017-01-01

    The technique of reverberation mapping has been used to estimate virial black hole masses and, more fundamentally, to probe the broad line region structure in Seyfert I galaxies. Efforts from the previous Lick AGN Monitoring Project (LAMP) campaigns and other studies to date have culminated in a large sample of reverberation mapped AGNs and measurements of their black hole masses, which in turn enabled major improvement to various AGN scaling relations. However, the high-luminosity end of such relations remains poorly constrained; this is because of observational challenges presented by the weaker continuum flux variations and longer time dilation in these sources. To this end, we have initiated a new LAMP2016 campaign to target AGNs with luminosities of 10^44 erg/s, with predicted H-beta lags of ~20 - 60 days or black hole masses of 10^7 - 10^8.5 Msun. Designed to monitor ~20 AGNs biweekly from Spring 2016 through Winter 2017 with the Kast spectrograph on the 3-m Shane Telescope at Lick Observatory, we aim to probe luminosity-dependent trends in broad line region structure and dynamics, improve calibrations for single-epoch estimates of high-redshift quasar black hole masses, and test photoionization models for the radially-stratified structure of the broad line region. In this talk, I will present the overview and scope of LAMP2016 and show preliminary results from our ongoing campaign.

  14. AGN Coronae through a Jet Perspective

    NASA Astrophysics Data System (ADS)

    King, Ashley L.; Lohfink, Anne; Kara, Erin

    2017-02-01

    This paper presents an in-depth look at the jet and coronal properties of 41 active galactic nuclei (AGNs). Utilizing the highest quality NuSTAR, XMM-Newton, and NRAO VLA Sky Survey 1.4 GHz data, we find that the radio Eddington luminosity inversely scales with X-ray reflection fraction, and positively scales with the distance between the corona and the reflected regions in the disk. We next investigate a model fit to the data that predicts the corona is outflowing and propagates into the large-scale jet. We find this model describes the data well and predicts that the corona has mildly relativistic velocities, 0.04< β < 0.40. We discuss our results in the context of disk–jet connections in AGNs.

  15. AGN feedback in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; Clarke, Tracy E.; Intema, Huib; Fabian, Andrew C.; Taylor, Gregory B.; Blundell, Katherine

    2016-04-01

    Deep Chandra images of the Perseus cluster of galaxies have revealed a succession of cavities created by the jets of the central supermassive black hole, pushing away the X-ray emitting gas and leaving bubbles filled with radio emission. Perseus is one of the rare examples showing buoyantly rising lobes from past radio outbursts, characterized by a steep spectral index and known as ghost cavities. All of these structures trace the complete history of mechanical AGN feedback over the past 500 Myrs. I will present results on new, ultra deep 230-470 MHz JVLA data. This low-frequency view of the Perseus cluster will probe the old radio-emitting electron population and will allow us to build the most detailed map of AGN feedback in a cluster thus far.

  16. Study of the mid-infrared properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Severgnini, P.; Caccianiga, A.; della Ceca, R.

    2008-10-01

    The comprehension of the physical properties of obscured AGNs is one of the main goals of the high energy astronomy given their key role in tracing the accretion history of the Universe. Although X-ray and infrared data of AGN with a different level of absorption could provide a direct tool to test the predictions of the AGN models, only few sparse SED of obscured AGN are available so far. We present here the results obtained from Spitzer observations of a statistically complete sample of obscured AGN drawn from the XMM-Newton Hard Bright Sample. This is the largest hard X-ray sample with a complete spectroscopic identification. The Spitzer data, combined with good X-ray and optical spectroscopic data, has allowed us to define powerful diagnostic plots to select heavily obscured AGNs and to build up their spectral energy distributions.

  17. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.; Jones, C.; Murray, S. S.; Forman, W. R.; Green, P.; Cool, R. J.; Assef, R. J.; Eisenhardt, P.; Stern, D.; Jannuzi, B. T.; Dey, A.; Brown, M. J. I.; Gonzalez, A. H.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.

  18. Intermediate inclinations of type 2 Coronal-Line Forest AGN

    NASA Astrophysics Data System (ADS)

    Rose, Marvin; Elvis, Martin; Crenshaw, Michael; Glidden, Ana

    2015-07-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe VII], [Fe X] and [Ne V]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6-22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5-30 μm colours become bluer. We show that the [W2-W4] colours for the CLiF AGN (<[W2-W4]> = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (<[W2-W4]> = 5.22 ± 0.01) and type 2 AGN (<[W2-W4]> = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.

  19. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  20. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  1. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  2. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    SciTech Connect

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  3. AGN Triggering in Kpc-scale Separation Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.

    2017-01-01

    As supermassive black holes in galaxy mergers evolve from Mpc to mpc separations, the kpc-scale separations are pivotal for igniting AGN activity. At these separations the galaxy mergers drive central inflows of gas, which can trigger AGN activity in one or both supermassive black holes, in systems known as offset AGN and dual AGN, respectively. Offset and dual AGN are direct tracers of the connection between galaxy mass growth (via galaxy mergers) and supermassive black hole mass growth (via gas accretion). These systems are also the smallest separation supermassive black hole pairs that have been observationally confirmed, offering the last glimpse of supermassive black hole pair dynamics before gravitational wave emission dominates and drives the coalescence of the supermassive black holes. I will present multiwavelength approaches to building catalogs of offset AGN and dual AGN, and show the results of our observing campaigns with HST, Chandra, VLA, and Keck. Finally, I will discuss what our results show about whether galaxy mergers preferentially fuel the most luminous AGN, which supermassive black hole in a merger is more efficient at accreting gas, and where in a merger the AGN fueling occurs.

  4. AGN physics - A Chandra-Swift Census of AGN activity in Compact Groups

    NASA Astrophysics Data System (ADS)

    Tzanavaris, Panayiotis

    2012-09-01

    We present a missing link in the study of AGN activity in compact groups of galaxies. The level of this activity in compact groups remains controversial, but has only been studied with optical and infrared diagnostics. We present the first systematic study of 40 compact group galaxies in 9 groups, combining Chandra and Swift data, and providing the first X-ray/UV view of galactic nuclei in compact groups. Our results provide independent evidence that the level of AGN activity in compact groups is representative of their unique environment, which is distinct to that of rich clusters and the field.

  5. Exploring cell apoptosis and senescence to understand and treat cancer: an interview with Scott Lowe.

    PubMed

    Lowe, Scott; Cifra, Alessandra

    2015-11-01

    Scott W. Lowe is currently principal investigator at the Memorial Sloan-Kettering Cancer Center. After beginning his studies in chemical engineering, he decided to take another path and became fascinated by biochemistry, genetics and molecular biology, which ultimately led to an interest in human disease, particularly cancer. During his PhD at the Massachusetts Institute of Technology (MIT), Scott had the opportunity to benefit from the exceptional mentorship of Earl Ruley, David Housman and Tyler Jacks, and contributed to elucidating how the p53 (TP53) tumor suppressor gene limits oncogenic transformation and modulates the cytotoxic response to conventional chemotherapy. This important work earned him a fellowship from the Cold Spring Harbor Laboratory, which helped to launch his independent career. Scott is now a leading scientist in the cancer field and his work has helped to shed light on mechanisms of cell apoptosis and senescence to better understand and treat cancer. In this interview, he talks about this incredible scientific journey.

  6. AGN Luminosity and Stellar Age: Two Missing Ingredients for AGN Unification as Seen with iPTF Supernovae

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Nyholm, Anders; Karlsson, Torgny; Comerón, Sébastien; Korn, Andreas J.; Sollerman, Jesper; Zackrisson, Erik

    2017-03-01

    Active galactic nuclei (AGNs) are extremely powerful cosmic objects, driven by accretion of hot gas upon super-massive black holes. The zoo of AGN classes is divided into two major groups, with Type-1 AGNs displaying broad Balmer emission lines and Type-2 narrow ones. For a long time it was believed that a Type-2 AGN is a Type-1 AGN viewed through a dusty kiloparsec-sized torus, but an emerging body of observations suggests more than just the viewing angle matters. Here we report significant differences in supernova (SN) counts and classes in the first study to date of SNe near Type-1 and Type-2 AGN host galaxies, using data from the intermediate Palomar Transient Factory, the Sloan Digital Sky Survey Data Release 7, and Galaxy Zoo. We detect many more SNe in Type-2 AGN hosts (size of effect ∼5.1σ) compared to Type-1 hosts, which shows that the two classes of AGN are located inside host galaxies with different properties. In addition, Type-1 and Type-2 AGNs that are dominated by star formation according to Wide-field Infrared Survey Explorer colors {m}W1-{m}W2< 0.5 and are matched in 22 μm absolute magnitude differ by a factor of ten in L[O iii] λ5007 luminosity, suggesting that when residing in similar types of host galaxies Type-1 AGNs are much more luminous. Our results demonstrate two more factors that play an important role in completing the current picture: the age of stellar populations and the AGN luminosity. This has immediate consequences for understanding the many AGN classes and galaxy evolution.

  7. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    NASA Astrophysics Data System (ADS)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  8. Fort Scott Lake Cultural Resource Study. Part 1. Archaeological and Geomorphological Inventory and Evaluation at the Proposed Fort Scott Lake Project, Southeast Kansas

    DTIC Science & Technology

    1989-01-01

    Recently, Environment Consultants, Inc. completed an Historical and Architectural survey of the proposed Fort Scott Lake Project area (Baird et al...overview, the architecture of the houses built during this period is an important diagnostic trait for the different cultural units in eastern Kansas...Osage and Pomme de Terre rivers in western Missouri (Lees et al. 1982; Haynes 1976) indicate a period of bioclimatic stability around 2000 B.P. Of

  9. Astronaut David Scott watching hammer and feather fall to lunar surface

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle. Scott released the hammer from his right hand and the feather from his left at the same instant. This experiment occured toward the end of the third and final lunar surface extravehicular activity.

  10. RSCABS: An R package for performing the Rao-Scott Adjusted Cochran-Armitage trend test By Slices

    EPA Science Inventory

    RSCABS[3] (Rao-Scott adjusted Cochran-Armitage trend test By Slices) is a modification to the Rao-Scott[5] adjusted Cochran-Armitage trend test[1, 2] that allows for testing at each individual severity score often seen in histopathological data. The test was originally developed ...

  11. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  12. AGN Feedback in Clusters of Galaxies

    DTIC Science & Technology

    2010-01-01

    bubbles created by the radio lobes evacuating regions of the ICM vary widely from a few kpc (e.g. Abell 262 [21, 22]) to hundreds of kpc (e.g. MS0735.6...diameters of approximately 200 kpc . The total energy injection required to inflate the cavities and produce the ob- served shocks is 6 × 1061 erg...cluster center, and these are modeled as shocks in [32] based on the earlier 163 ksec dataset. These features are at 31 and 46 kpc from the AGN and the

  13. Obscured AGN With NuSTAR

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea; Bianchi, S.; Matt, G.; Balokovic, M.; Bauer, F. E.; Brandt W. N.; Gandhi, P.; Guainazzi, M.; Harrison, F.; Iwasawa, K.; Nicastro, F.; Puccetti, S.; Ricci, C.; Walton, D. J.; Stern, D.

    2016-10-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first orbiting telescope to focus high energy X-ray light above 10 keV. Compared to the previous generation of coded mask observatories, this change in technology provides NuSTAR with 10x sharper images and 100x improved sensitivityThe unprecedented spectral quality in the 3-80 keV band has provided unique information about the circumnuclear reflecting environment of AGNI will present and discuss results from the NuSTAR observations of nearby Obscured AGN in its first four years of science.

  14. Clues to the Structure of AGN Through Massive Variability Surveys

    NASA Astrophysics Data System (ADS)

    Lawrence, A.

    2016-06-01

    Variability studies hold information on otherwise unresolvable regions in Active Galactic Nuclei (AGN). Population studies of large samples likewise have been very productive for our understanding of AGN. These two themes are coming together in the idea of systematic variability studies of large samples - with SDSS, PanSTARRS, and soon, LSST. I summarise what we have learned about the optical and UV variability of AGN, and what it tells us about accretion discs and the BLR. The most exciting recent results have focused on rare large-scale outbursts and collapses - Tidal Disruption Events, changing-look AGN, and large amplitude microlensing. All of these promise to give us new insight into AGN physics.

  15. Searching for Compton-thick AGN with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Virani, S. N.; Treister, E.; Urry, C. M.; Maccarone, T.; Bird, T.; Beckmann, V.; Lira, P.; Coppi, P.; Uchiyama, Y.

    2005-12-01

    The 30 keV peak in the X-ray background strongly suggests there should be a large number of highly obscured AGN in the local universe. However, the exact number of these objects remains unknown, even though they could nearly double the space density of supermassive black holes. These Compton-thick AGN can be detected in the hard X-rays with INTEGRAL. As part of the current observing cycle, we were awarded 2 Msec to perform INTEGRAL imaging of the XMM-LSS field in order to find highly obscured AGN in the local Universe. In this paper, we present preliminary results for the ˜1 Ms of IBIS data obtained so far, including new hard X-ray detections of AGN. We also present the 20---200 keV spectra of the brightest AGN including the z<0.1 Seyfert galaxies NGC 788, NGC 1068, and NGC 1142.

  16. Modernity in Two Great American Writers' Vision: Ernest Miller Hemingway and Scott Fitzgerald

    ERIC Educational Resources Information Center

    Keshmiri, Fahimeh; Darzikola, Shahla Sorkhabi

    2016-01-01

    Scott Fitzgerald and Ernest Hemingway, American memorable novelists have had philosophic ideas about modernity. In fact their idea about existential interests of American, and the effects of American system on society, is mirrored in their creative works. All through his early works, Fitzgerald echoes the existential center of his era. Obviously,…

  17. Orson Scott Card's "Ender and Bean": The Exceptional Child as Hero

    ERIC Educational Resources Information Center

    Doyle, Christine

    2004-01-01

    Orson Scott Card's school stories in outer space, "Ender's Game" and "Ender's Shadow," purportedly occur at the same time and tell the "same" story, but from the perspectives of two different child protagonists. Scenes in "Ender's Shadow" even reproduce text from "Ender's Game." Nevertheless, 14 years elapsed between the publications of the two…

  18. Statement of Facts for 1994 City-Wide Mock Trial Competitions. Scott Walker v. Tanya Brewster.

    ERIC Educational Resources Information Center

    National Inst. for Citizen Education in the Law, Washington, DC.

    Prepared by the District of Columbia Street Law Project for its 23rd annual city-wide mock trial competition, this instructional handout provides the material for a mock civil trial over an accidental shooting. Thirteen-year-old T. J. Walker, Scott Walker's son from a previous marriage, visited the home of 5-year-old Jesse Walker with a pistol…

  19. The Pleasures and Lessons of Academic Mythbusting: An Interview with Scott Lilienfeld

    ERIC Educational Resources Information Center

    Zinn, Tracy E.

    2010-01-01

    Scott O. Lilienfeld is a professor of psychology at Emory University, in Atlanta, Georgia. Dr. Lilienfeld is founder and editor of the journal, "Scientific Review of Mental Health Practice," and is past president of the Society for a Science of Clinical Psychology. He has been a member of 11 journal editorial boards, including the…

  20. Q & A with Ed Tech Leaders: Interview with Scott McLeod

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    2014-01-01

    Scott McLeod is recognized as one of the nation's leading experts on K-12 school technology leadership issues. After 14 years as an Educational Leadership professor, Dr. McLeod currently serves as the Director of Innovation for Prairie Lakes Area Education Agency in Iowa. He also is the Founding Director of the UCEA Center for the Advanced Study…

  1. Coretta Scott King Award Winner Javaka Steptoe Stands Tall "In Daddy's Arms."

    ERIC Educational Resources Information Center

    Peck, Jackie; Hendershot, Judy

    1999-01-01

    Offers an interview with artist and author Javaka Steptoe, winner of the Coretta Scott King award for his book "In Daddy's Arms I Am Tall: African Americans Celebrating Fathers." Discusses his background in the arts, the variety of media he uses, how he begins thinking about his illustrations, his work with children's art, and aspects of his work.…

  2. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in prekindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The What Works Clearinghouse (WWC) reviewed 12 studies on…

  3. Astronaut Scott Carpenter recieves call from President on U.S.S. Intrepid

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 (MA-7) mission, talks with President John F. Kennedy via radio-telephone from aboard the carrier U.S.S. Intrepid. Carpenter was recovered by a helicopter and taken to the U.S.S. Intrepid after a 4 hour and 56 minute mission in space.

  4. Astronaut Scott Carpenter in Hanger S crew quarters during suiting activity

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, is seen in Hanger S crew quarters during a preflight suiting activity at Cape Canaveral, Florida. He is assisted in suiting by technician Al Rochford. In this view, Carpenter is fully suited and is having his gloves adjusted.

  5. 78 FR 18633 - Notice of Public Meeting of Fort Scott Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... new national center focused on service and leadership development. SUPPLEMENTARY INFORMATION: The... establishment of a new national center (Center) focused on service and leadership development, with specific... leadership at Fort Scott in the Presidio of San Francisco; (b) providing recommendations related to...

  6. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    SciTech Connect

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.; Environmental Science Division

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  7. A Literary and Linguistic Analysis of Scott O'Dell's "The Captive".

    ERIC Educational Resources Information Center

    Stewig, John Warren

    This paper carefully examines the literary elements Scott O'Dell uses in his children's novel "The Captive," that so successfully engage even a reluctant reader. The paper explores the writer's style and subtle use of detail and foreshadowing. Quoting specific examples, the paper points out O'Dell's imaginative syntax and his ability to…

  8. Feasibility Study for Joint Military-Civilian Use of Scott Air Force Base

    DTIC Science & Technology

    1986-05-01

    package express hubbing operation. Based on the growth of just - in - time manufacturing , tighter inventory management and overseas sourcing,, Scott AB...production line by providing the highly reliable service essential to operate just - in - time manufacturing systems. Operating Requirements: Prefers larger

  9. "I Have a Dream, Too!": The American Dream in Coretta Scott King Award-Winning Books

    ERIC Educational Resources Information Center

    Parsons, Linda T.; Castleman, Michele

    2011-01-01

    The Coretta Scott King (CSK) Award, instituted in 1969 and recognized as an official award by the American Library Association (ALA) in 1982, is conferred annually to an African American author and an illustrator for their outstanding contributions to literature about the Black experience for children and young adults. A partial impetus for the…

  10. Public Schools Energy Conservation Measures, Report Number 1: Scott Elementary School, Warwick, Rhode Island.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Washington, DC.

    This study is the first of a five phase program of the American Association of School Administrators directed toward reducing energy consumption in existing schools. This report summarizes the results of the field investigations, computer simulation and evaluations of the energy conserving opportunities available in the Scott Elementary School in…

  11. James Edward Scott: The Leadership Journey of a Senior-Level African American Student Affairs Officer

    ERIC Educational Resources Information Center

    Willis, Salatha T.

    2013-01-01

    The purpose of this study was to examine, understand, and describe the life, leadership, and influence of Dr. James Edward Scott on higher education and more specifically student affairs; as one of the most well-known and respected African American male chief student affairs officers in the late 20th and early 21st centuries. Using a qualitative…

  12. Commentary: Sight Word Learning with and without Pictures: A Critique of Arlin, Scott, and Webster's Research.

    ERIC Educational Resources Information Center

    Singer, Harry

    1980-01-01

    Critiques an experiment by M. Arlin, M. Scott, and J. Webster (see EJ 206 153) in which their pictures as an aid to learning hypothesis contrasts with the focal attention hypothesis supported by research by H. Singer, S. J. Samuels, and J. Spiroff (see EJ 105 648). (MKM)

  13. Constituents of Psiadia terebinthina A.J. Scott, an endemic Asteraceae from Mauritius.

    PubMed

    Marie, Daniel; Gurib-Fakim, Ameenah; Gray, Alexandre; Waterman, Peter

    2006-11-01

    Kaemferol-3-methyl ether (1), quercetin-3-methyl ether (2), kaemferol-3,7-dimethyl ether (3), 3-caffeoyl quinic acid (4) and 3,4-O-dicaffeoyl quinic acid (5) have been isolated for the first time from the leaves of Psiadia terebinthina A.J. Scott (Asteraceae). The identity of the compounds 1-5 were confirmed by various spectroscopic methods.

  14. Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.

  15. Astronaut Scott J. Horowitz, pilot, looks over tools he may use to perform an Inflight Maintenance

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronaut Scott J. Horowitz, pilot, looks over tools he may use to perform an Inflight Maintenance (IFM) chore on the mid-deck of the Earth-orbiting Space Shuttle Columbia. The glovebox facility is at upper left. Horowitz joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.

  16. Teaching One Way and Testing Another: An Interview with Scott Howell

    ERIC Educational Resources Information Center

    Morrison, James L.; Howell, Scott

    2007-01-01

    Editor-in-Chief James L. Morrison interviews Scott Howell, the co-editor of a three-volume book series entitled "Online Assessment and Measurement" that was published in 2006 by IDEA Group. In discussing his own research, Howell first highlights the value of test blueprints as a valuable tool for ensuring an effective alignment of…

  17. Astronaut David Scott on slope of Hadley Delta during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, mission commander, with tongs and gnomon in hand, studies a boulder on the slope of Hadley Delta during the Apollo 15 lunar surface extravehicular activity. The Lunar Roving Vehicle (LRV) or Rover is in right foreground. View is looking slightly south of west. 'Bennett Hill' is at extreme right. Astronaut James B. Irwin, lunar module pilot, took this photograph.

  18. Astronaut David Scott on slope of Hadley Delta during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, mission commander, performs a task at the Lunar Roving Vehicle parked on the edge of Hadley Rille during the first Apollo 15 lunar surface extravehicular activity (EVA-1). This photograph was taken by Astronaut James B. Irwin, lunar module pilot, from the flank of St. George Crater. The view is looking north along the rille.

  19. A New Way of Thinking about Technology: An Interview with Futurists Joel Barker and Scott Erickson

    ERIC Educational Resources Information Center

    Morrison, James L.; Barker, Joel; Erickson, Scott

    2006-01-01

    Editor-in-chief James Morrison interviews Joel Barker and Scott Erickson, co-authors of the book "Five Regions of the Future: A New Way to Think about Technology". In their book, the authors propose an ecological model that classifies technology according to different clusters or regions, each of which entails its own perspective of technology and…

  20. Raise Test Scores without Selling Your Soul: An Interview with Scott Mandel

    ERIC Educational Resources Information Center

    Curriculum Review, 2006

    2006-01-01

    With his 10th book, Improving Test Scores: A Practical Approach for Teachers and Administrators, Scott Mandel outlines steps educators can take to boost achievement on standardized exams while maintaining the integrity of their day-to-day teaching. Mandel, who holds a Ph.D. in curriculum and instruction from USC, teaches history and English at…

  1. 78 FR 3479 - Notice of Public Meeting of Fort Scott Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... From the Federal Register Online via the Government Publishing Office PRESIDIO TRUST Notice of Public Meeting of Fort Scott Council AGENCY: The Presidio Trust. ACTION: Notice of public meeting of Fort... advise the Presidio Trust (Trust) Executive Director on matters pertaining to the rehabilitation...

  2. On the role of the weather in the deaths of R. F. Scott and his companions.

    PubMed

    Solomon, S; Stearns, C R

    1999-11-09

    Robert Falcon Scott and his companions reached the South Pole in January of 1912, only to die on their return journey at a remote site on the Ross Ice Shelf, about 170 miles from their base camp on the coast. Numerous contributing causes for their deaths have been proposed, but it has been assumed that the cold temperatures they reported encountering on the Ross Ice Shelf, near 82-80 degrees S during their northward trek toward safety, were not unusual. The weather in the region where they perished on their unassisted trek by foot from the Pole remained undocumented for more than half a century, but it has now been monitored by multiple automated weather stations for more than a decade. The data recorded by Scott and his men from late February to March 19, 1912, display daily temperature minima that were on average 10 to 20 degrees F below those obtained in the same region and season since routine modern observations began in 1985. Only 1 year in the available 15 years of measurements from the location where Scott and his men perished displays persistent cold temperatures at this time of year close to those reported in 1912. These remarkably cold temperatures likely contributed substantially to the exhaustion and frostbite Scott and his companions endured, and their deaths were therefore due, at least in part, to the unusual weather conditions they endured during their cold march across the Ross Ice Shelf of Antarctica.

  3. On the role of the weather in the deaths of R. F. Scott and his companions

    PubMed Central

    Solomon, Susan; Stearns, Charles R.

    1999-01-01

    Robert Falcon Scott and his companions reached the South Pole in January of 1912, only to die on their return journey at a remote site on the Ross Ice Shelf, about 170 miles from their base camp on the coast. Numerous contributing causes for their deaths have been proposed, but it has been assumed that the cold temperatures they reported encountering on the Ross Ice Shelf, near 82–80°S during their northward trek toward safety, were not unusual. The weather in the region where they perished on their unassisted trek by foot from the Pole remained undocumented for more than half a century, but it has now been monitored by multiple automated weather stations for more than a decade. The data recorded by Scott and his men from late February to March 19, 1912, display daily temperature minima that were on average 10 to 20°F below those obtained in the same region and season since routine modern observations began in 1985. Only 1 year in the available 15 years of measurements from the location where Scott and his men perished displays persistent cold temperatures at this time of year close to those reported in 1912. These remarkably cold temperatures likely contributed substantially to the exhaustion and frostbite Scott and his companions endured, and their deaths were therefore due, at least in part, to the unusual weather conditions they endured during their cold march across the Ross Ice Shelf of Antarctica. PMID:10557264

  4. Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome*

    PubMed Central

    Solari, Fiorella A.; Mattheij, Nadine J.A.; Burkhart, Julia M.; Swieringa, Frauke; Collins, Peter W.; Cosemans, Judith M.E.M.; Sickmann, Albert; Heemskerk, Johan W.M.; Zahedi, René P.

    2016-01-01

    The Scott syndrome is a very rare and likely underdiagnosed bleeding disorder associated with mutations in the gene encoding anoctamin-6. Platelets from Scott patients are impaired in various Ca2+-dependent responses, including phosphatidylserine exposure, integrin closure, intracellular protein cleavage, and cytoskeleton-dependent morphological changes. Given the central role of anoctamin-6 in the platelet procoagulant response, we used quantitative proteomics to understand the underlying molecular mechanisms and the complex phenotypic changes in Scott platelets compared with control platelets. Therefore, we applied an iTRAQ-based multi-pronged strategy to quantify changes in (1) the global proteome, (2) the phosphoproteome, and (3) proteolytic events between resting and stimulated Scott and control platelets. Our data indicate a limited number of proteins with decreased (70) or increased (64) expression in Scott platelets, among those we confirmed the absence of anoctamin-6 and the strong up-regulation of aquaporin-1 by parallel reaction monitoring. The quantification of 1566 phosphopeptides revealed major differences between Scott and control platelets after stimulation with thrombin/convulxin or ionomycin. In Scott platelets, phosphorylation levels of proteins regulating cytoskeletal or signaling events were increased. Finally, we quantified 1596 N-terminal peptides in activated Scott and control platelets, 180 of which we identified as calpain-regulated, whereas a distinct set of 23 neo-N termini was caspase-regulated. In Scott platelets, calpain-induced cleavage of cytoskeleton-linked and signaling proteins was downregulated, in accordance with an increased phosphorylation state. Thus, multipronged proteomic profiling of Scott platelets provides detailed insight into their protection against detrimental Ca2+-dependent changes that are normally associated with phosphatidylserine exposure. PMID:27535140

  5. A little-known aspect of Arthur Conan Doyle (1859-1930): the call of India and a debt to Walter Scott (1771-1832).

    PubMed

    Gardner, D L; Macnicol, M F; Endicott, P; Rayner, D R T; Geissler, P

    2009-02-01

    This paper recalls the early life of Dr Arthur Conan Doyle when his writing centred briefly on India. The significance of a young female skeleton given to the museum of the Royal College of Surgeons of Edinburgh in 1879 is reviewed. Morphometric and genetic evidence is provided to show that the skeleton originated in the Andaman Islands. It is suggested that Doyle saw it during his undergraduate or early postgraduate years, leading him to introduce an Andaman Islander into his novel The Sign of the Four, published in 1890. Like his inspiring predecessor Walter Scott, Doyle wrote of India but did not visit the country: both authors learned indirectly of the Indian Raj and the Indian Medical Service. Doyle knew of the convict colony established after the Sepoy Mutiny of 1857 at Port Blair, capital of the Andamans, but the reason he chose an Islander to commit murder in London has, until now, remained contentious.

  6. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  7. The Prevalence of Gas Outflows in Type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak; Bae, Hyun-Jin; Son, Donghoon; Karouzos, Marios

    2016-02-01

    To constrain the nature and fraction of the ionized gas outflows in active galactic nuclei (AGNs), we perform a detailed analysis on gas kinematics as manifested by the velocity dispersion and shift of the [{{O}}\\{{III}}] λ5007 emission line, using a large sample of ˜39,000 type 2 AGNs at z < 0.3. First, we confirm a broad correlation between [{{O}} {{III}}] and stellar velocity dispersions, indicating that the bulge gravitational potential plays a main role in determining the [{{O}} {{III}}] kinematics. However, [{{O}} {{III}}] velocity dispersion is on average larger than stellar velocity dispersion by a factor of 1.3-1.4 for AGNs with double Gaussian [{{O}} {{III}}], suggesting that the non-gravitational component, i.e., outflows, is almost comparable to the gravitational component. Second, the increase of the [{{O}} {{III}}] velocity dispersion (after normalized by stellar velocity dispersion) with both AGN luminosity and Eddington ratio suggests that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [{{O}} {{III}}] velocity-velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the majority of luminous AGNs present the non-gravitational kinematics in the [{{O}} {{III}}] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [{{O}} {{III}}] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs.

  8. A UV to mid-IR study of AGN selection

    SciTech Connect

    Chung, Sun Mi; Kochanek, Christopher S.; Assef, Roberto; Brown, Michael J. I.; Stern, Daniel; Jannuzi, Buell T.; Gonzalez, Anthony H.; Hickox, Ryan C.; Moustakas, John

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  9. The jet-disc connection in AGN

    NASA Astrophysics Data System (ADS)

    Sbarrato, T.; Padovani, P.; Ghisellini, G.

    2014-11-01

    We present our latest results on the connection between accretion rate and relativistic jet power in active galactic nuclei (AGN), by using a large sample which includes mostly blazars, but contains also some radio galaxies. The jet power can be traced by γ-ray luminosity in the case of blazars, and radio luminosity for both classes. The accretion-disc luminosity is instead traced by the broad emission lines. Among blazars, we find a correlation between broad line emission and the γ-ray or radio luminosities, suggesting a direct tight connection between jet power and accretion rate. We confirm that the observational differences between blazar subclasses reflect differences in the accretion regime, but with blazars only we cannot properly access the low-accretion regime. By introducing radio galaxies, we succeed in observing the fingerprint of the transition between radiatively efficient and inefficient accretion discs in the jetted AGN family. The transition occurs at the standard critical value Ld/LEdd ˜ 10-2 and it appears smooth. Below this value, the ionizing luminosity emitted by the accretion structure drops significantly.

  10. Extremely efficient Zevatron in rotating AGN magnetospheres

    NASA Astrophysics Data System (ADS)

    Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N.

    2014-12-01

    A novel model of particle acceleration in the magnetospheres of rotating active galactic nuclei (AGN) is constructed. The particle energies may be boosted up to 1021 eV in a two-step mechanism: in the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. In the second stage, the electrostatic energy is transferred to particle kinetic energy via Landau damping made possible by rapid `Langmuir collapse'. The time-scale for parametric pumping of Langmuir waves turns out to be small compared to the kinematic time-scale, indicating high efficiency of the first process. The second process of `Langmuir collapse' - the creation of caverns or low-density regions - also happens rapidly for the characteristic parameters of the AGN magnetosphere. The Langmuir collapse creates appropriate conditions for transferring electric energy to boost up already high particle energies to much higher values. It is further shown that various energy loss mechanism are relatively weak, and do not impose any significant constraints on maximum achievable energies.

  11. Academic Advising and Cognitive Development: Is There a Link?

    ERIC Educational Resources Information Center

    Frost, Susan

    This paper explores the relationship of developmental advising and frequency of faculty-student contact to college students' cognitive growth. The study involved freshmen at two metropolitan Atlanta (Georgia) women's colleges: Agnes Scott College and Brenau College. Brenau freshmen participate in a two-quarter seminar which includes academic…

  12. Mini-Survey on SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. There is a common wisdom that every massive galaxy has a massive black hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low $L_X$ (at all $z$). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of {it optically-selected samples} shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [O{\\sc iii}] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a min-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([O{\\sc iii}]) to check the relation with the $L_X$ observed with Swift.

  13. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  14. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  15. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  16. X-ray-selected AGNs near bright galaxies

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Schneider, Peter; Morris, Simon L.; Gioia, Isabella M.; Maccacaro, Tommaso

    1987-01-01

    Among the numerous low-redshift low-luminosity X-ray sources discovered with the Einstein Observatory, ten AGNs were identified that are projected within three optical diameters of bright (V less than 18) foreground galaxies. These AGNs near galaxies have significantly higher redshifts than the sample as a whole. This discovery is interpreted in terms of gravitational 'microlensing' in which stars in the foreground galaxy have significantly brightened the X-ray emission from these higher redshift AGNs, allowing their detection. It is suggested that microlensing may be responsible for a significant alteration of the inherent QSO luminosity function.

  17. Accretion-ejection models for AGN jets

    NASA Astrophysics Data System (ADS)

    Zanni, C.

    2008-10-01

    It is likely that jets from Active Galactic Nuclei derive their energy from accretion onto the central black hole. It is actually possible to fuel the jets by extracting energy and angular momentum from the accretion disk and/or the rotating black hole via the action of large-scale magnetic fields. In this talk I will first present results of analytical and numerical models of the launching process of jets from magnetized accretion disks: I will show that, although a sizeable fraction of the accretion power goes into the jets, these outflows are presumably only mildly relativistic. In the second place, I will therefore suggest that the strongly relativistic components observed at the VLBI scales are accelerated in the innermost parts of the AGNs by Blandford-Znajek and/or Compton-rocket processes. Nonetheless, the non-relativistic disk-wind is needed to collimate the relativistic component and to reproduce the total power of extragalactic jets.

  18. AGN warm absorption with the ATHENA

    NASA Astrophysics Data System (ADS)

    Różańska, Agata; Gronkiewicz, Dominik; Hryniewicz, Krzysztof; Adhikari, Tek Prasad; Rataj, Mirosław; Skup, Konrad

    2016-06-01

    X-ray astronomy requires satellites to make progress in searching the distribution of hot matter in the Universe. Approximately 15 years period of time is needed for full construction of the flight instrument from the mission concept up to the launch. A new generation X-ray telescope ATHENA (the Advanced Telescope for High Energy Astrophysics) was approved by European Space Agency as a large mission with a launch foreseen in 2028. In this paper we show how microcalorimeter on the board of ATHENA will help us to study warm absorption observed in active galactic nuclei (AGN). We show that future observations will allow us to identify hundreds of lines from highly ionized elements and to measure Galactic warm absorption with very high precision.

  19. Neutrino radiation of the AGN black holes

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.; Shidhani, S.; Sargsyan, L.

    2007-07-01

    In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1ṡ106 ÷4.2ṡ109) M ⊙ give the values of PRTs varying in the range of about T BH ≃(4.3ṡ105 ÷5.6ṡ1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (˜13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.

  20. Blood and the Revenant in Walter Scott's The Fair Maid of Perth.

    PubMed

    Inglis, Katherine

    2014-01-01

    In Sir Walter Scott's The Fair Maid of Perth; or St Valentine's Day (1828), the resuscitated subject is referred to as a revenant, a term that Scott borrowed from Henry Thomson's Blackwoodian tale 'Le Revenant' (1827), meaning 'dead-alive'. Taking its cue from the sanguinary subtext of The Fair Maid of Perth, which is fascinated with the shedding of blood and transfusion of fluids, this chapter reads the Scottish revenant as a literary reflection on the extraordinary promise of blood transfusion in the 1820s: that death could be understood as a process, rather than an absolute state, and that medical intervention could restore life to those on the brink of death and even to the recently deceased.

  1. The role of scurvy in Scott's return from the South Pole.

    PubMed

    Butler, A R

    2013-01-01

    Scurvy, caused by lack of vitamin C, was a major problem for polar explorers. It may have contributed to the general ill-health of the members of Scott's polar party in 1912 but their deaths are more likely to have been caused by a combination of frostbite, malnutrition and hypothermia. Some have argued that Oates's war wound in particular suffered dehiscence caused by a lack of vitamin C, but there is little evidence to support this. At the time, many doctors in Britain overlooked the results of the experiments by Axel Holst and Theodor Frølich which showed the effects of nutritional deficiencies and continued to accept the view, championed by Sir Almroth Wright, that polar scurvy was due to ptomaine poisoning from tainted pemmican. Because of this, any advice given to Scott during his preparations would probably not have helped him minimise the effect of scurvy on the members of his party.

  2. The Role of Star Formation and AGN in Dust Heating of z=0.3-2.8 Galaxies - II. Informing IR AGN Fraction Estimates through Simulations

    NASA Astrophysics Data System (ADS)

    Roebuck, Eric; Sajina, Anna; Hayward, Christopher C.; Pope, Alexandra; Kirkpatrick, Allison; Hernquist, Lars; Yan, Lin

    2016-12-01

    A key question in extragalactic studies is the determination of the relative roles of stars and active galactic nuclei (AGNs) in powering dusty galaxies at z ˜ 1-3 where the bulk of star formation and AGN activity took place. In Paper I, we present a sample of 336 24 μm selected (Ultra)Luminous Infrared Galaxies, (U)LIRGs, at z˜ 0.3-2.8, where we focus on determining the AGN contribution to the IR luminosity. Here, we use hydrodynamic simulations with dust radiative transfer of isolated and merging galaxies to investigate how well the simulations reproduce our empirical IR AGN fraction estimates and determine how IR AGN fractions relate to the UV-mm AGN fraction. We find that: (1) IR AGN fraction estimates based on simulations are in qualitative agreement with the empirical values when host reprocessing of the AGN light is considered; (2) for star-forming galaxy (SFG)-AGN composites our empirical methods may be underestimating the role of AGN, as our simulations imply \\gt 50 % AGN fractions, ˜ 3× higher than previous estimates; (3) 6% of our empirically classified SFGs have AGN fractions ≳50%. While this is a small percentage of SFGs, if confirmed it would imply that the true number density of AGNs may be underestimated; (4) this comparison depends on the adopted AGN template—those that neglect the contribution of warm dust lower the empirical fractions by up to two times; and (5) the IR AGN fraction is only a good proxy for the intrinsic UV-mm AGN fraction when the extinction is high ({A}V≳ 1 or up to and including coalescence in a merger).

  3. Winfield Scott’s Mexico City Operation: The Genesis of American Operational Art

    DTIC Science & Technology

    1989-05-12

    battle."(11) "No particular echelon of command Is solely or uniquely concerned with operational art...."(12) "Operational art requires broad vision ...distributed tree maneuver - The continuous front - The distributed battlefield - The exercise of field command by officers of operational vision ."(17...is the true original practioneer o: American operational art? 6 Lieutenant General Winfield Scott Operational art requires a general of vision . In the

  4. Environmental Assessment of Installation Development at Scott Air Force Base, Illinois

    DTIC Science & Technology

    2012-08-01

    material into waters of the United States , including wetlands. Scott AFB would be required to obtain a Section 404 Standard E-2 Individual Permit or...tons per year TSCA Toxic Substances Control Act TNT trinitrotoluene U.S.C. United States Code UFC Unified Facilities Criteria US TRANSCOM U.S...Measures for Wetlands and other Waters of the United States F. Noise Evaluation for Project C1 G. Documentation on NRHP Eligibility Evaluations

  5. Simulated peak flows and water-surface profiles for Scott Creek near Sylva, North Carolina

    USGS Publications Warehouse

    Pope, B.F.

    1996-01-01

    Peak flows were simulated for Scott Creek, just upstream from Sylva, in Jackson County, North Carolina, in order to provide Jackson County officials with information that can be used to improve preparation for and response to flash floods along the reach of Scott Creek that flows through Sylva. A U.S. Geological Survey rainfall-runoff model was calibrated using observed rainfall and streamflow data collected from March 1994 through September 1995. Standard errors for calibration were 34 percent for runoff volumes and 21 percent for peak flows. The calibrated model was used to simulate peak flows resulting from syn- thetic rainfall amounts of 1.0, 2.5, 5.0, and 7.5 inches in 24-hour periods. For each rainfall amount, peak flows were simulated under low-, moderate-, and high-antecedent soil-moisture conditions, represented by selected 3-month periods of daily rainfall and evaporation record from nearby climatic-data measuring stations. Simulated peak flows ranged from 89 to 10,100 cubic feet per second. Profiles of water-surface elevations for selected observed and simu- lated peak flows were computed for the reach of Scott Creek that flows through Sylva, North Carolina. The profiles were computed using the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles computer program and channel cross-section data collected by the Tennessee Valley Authority. The stage-discharge relation for Scott Creek at the simulation site has changed since the collection of the cross-section data. These changes, however, are such that the water-surface profiles presented in this report likely overestimate the true water-surface elevations at the simulation site for a given peak flow

  6. Astronaut Scott Carpenter in Hanger S crew quarters during suiting exercise

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, is seen in Hanger S crew quarters during a suiting exercise. He is assisted in suiting by technician Al Rochford. In this view, Carpenter is fully suited and is having his gloves adjusted (24622); Carpenter is seated in a mock-up of his pilot's seat while fully suited (24623); Carpenter, minus his helmet, smiles at camera as Rochford adjusts his suit (24624).

  7. Surviving Rescue: A Feminist Reading of Scott O'Dell's "Island of the Blue Dolphins"

    ERIC Educational Resources Information Center

    Baecker, Diann L.

    2007-01-01

    Scott O'Dell's "Island of the Blue Dolphins" tells the archetypal story of the young, virgin, orphan girl who is vulnerable to either debauchery or rescue. That such a girl must succumb to either one or the other is a necessary element of the archetype. In O'Dell's work--one intended, after all, for children--the heroine is rescued by a…

  8. AGN STORM: A Leap Forward In Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Dalla Bontà, Elena; AGN STORM Team

    2016-10-01

    Reverberation mapping is a tomographic technique that can be used to determine the structure and kinematics of the broad- line emitting region at the center of active galactic nuclei. By-products of these investigations are the masses of the central black holes and information about the structure of the accretion disk. I will show some of the most recent results from the AGN Space Telescope and Optical Reverberation Mapping (AGN STORM) project, which was built around 180 daily observations of the bright Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope. AGN STORM included observations made with Swift, XMM, and several ground-based telescopes, including the 1.22-m telescope at Asiago Observatory. Elena Dalla Bonta` on behalf of the AGN STORM Team.

  9. AGN-selected clusters as revealed by weak lensing

    NASA Technical Reports Server (NTRS)

    Wold, M.; Lacy, M.; Dahle, H.; Lilje, P. B.; Ridgway, S. E.

    2002-01-01

    We discuss the results in light of the cooling flow and the merger/interaction scenarios for triggering and fuelling AGN in clusters, but find that the data do not point unambiguously to neither of the two.

  10. Multiwavelength Number Counts of AGN in the GOODS Fields

    NASA Astrophysics Data System (ADS)

    Urry, C. M.; Treister, E.; Chatzichristou, E. T.; Van Duyne, J.; Bauer, F. E.; Alexander, D. M.; Koekemoer, A. M.; Moustakas, L. A.; Brandt, W. N.; Grogin, N. A.; Bergeron, J.; Stern, D.; Chary, R.-R.; Conselice, C. J.; Cristiani, S.

    2004-05-01

    We model the X-ray, optical, and far-infrared flux distributions of AGN in the GOODS fields, starting from hard X-ray luminosity functions and spectral energy distributions appropriate to the unified scheme for AGN. The deep optical counts measured from HST ACS images can be well explained by a unified scheme that postulates roughly 3 times as many obscured as unobscured AGN. This scenario is consistent with the observed spectroscopic and photometric redshift distributions of the GOODS AGN once selection effects are considered. The previously reported discrepancy between observed spectroscopic redshift distributions and the predictions of population synthesis models for the X-ray background (which include a similarly large number of obscured AGN) is explained by bias against the most heavily obscured AGN in both X-ray surveys and optical spectroscopic samples. We present the model predictions for the number counts of AGN in the Spitzer MIPS 24 micron and IRAC 3.6-8 micron bands. The GOODS Spitzer observations will verify whether large numbers of obscured AGN are indeed present in the early Universe; these will be very bright far-infrared sources, including some, missed by X-ray observations, that look like ultraluminous infrared galaxies. Based on observations obtained with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc, under NASA contract NAS5-26555. This work was supported by NASA grants HST-GO-09425(.01-A,.13-A,.26-A); NSF CAREER award AST 99-83783; NASA contract number 1224666 issued by JPL/Caltech under NASA contract 1407; ASI grant I/R/088/02; and a Royal Society University Research Fellowship.

  11. Broad Band Properties of the BAT Selected AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard; Winter, Lisa; Tueller, jack

    2008-01-01

    We will present the x-ray spectral properties of approximately 150 Burst Alert Telescope (BAT) selected active galactic nuclei (AGN) focusing on the issues of spectral complexity, x-ray absorption and its distribution and that contribution of sources to the x-ray background. If time permits we will also present the nature of the host galaxies of the AGN and their relationship to merger candidates.

  12. Combining Chandra Observations and Near-Infrared Imaging to Search for Dual AGNs Among Double-Peaked [O III] SDSS AGN

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Holden, Bradford; Shields, Gregory A.; Medling, Anne

    2016-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. We studied a sample of double-peaked SDSS [O III] AGNs using Keck 2 Laser Guide Star Adaptive Optics assisted imaging to find that 30% of double-peaked SDSS AGNs have two spatial components within a 3" radius. However, the identity of the companion object is not revealed with imaging; X-ray observations can confirm these galaxy pairs as systems containing two AGNs. We performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs with a possible near-infrared companion 1-3" away. Using our observations and 8 archival observations of additional candidate dual AGNs, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. Additionally, we can compare our near-IR spatially double candidates with 7 double-peaked [O III] SDSS AGNs that are spatially single in our near-IR imaging and have archival Chandra ACIS-S observations. By assessing what fraction of double- peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs

  13. Improved characterization of intranight optical variability of prominent AGN classes

    NASA Astrophysics Data System (ADS)

    Goyal, Arti; Gopal-Krishna, Wiita, Paul J.; Stalin, C. S.; Sagar, Ram

    2013-10-01

    The incidence of intranight optical variability (INOV) is known to differ significantly among different classes of powerful active galactic nuclei (AGN). A number of statistical methods have been employed in the literature for testing the presence of INOV in the light curves, sometimes leading to discordant results. In this paper, we compare the INOV characteristics of six prominent classes of AGN, as evaluated using three commonly used statistical tests, namely the χ2-test, the modified C-test and the F-test, which has recently begun to gain popularity. The AGN classes considered are: radio-quiet quasars, radio-intermediate quasars, lobe-dominated quasars, low optical polarization core-dominated quasars, high optical polarization core-dominated quasars and TeV blazars. Our analysis is based on a large body of AGN monitoring data, involving 262 sessions of intranight monitoring of a total 77 AGN, using 1-2 m class optical telescopes located in India. In order to compare the usefulness of the statistical tests, we have also subjected them to a `sanity check' by comparing the number of false positives yielded by each test with the corresponding statistical prediction. The present analysis is intended to serve as a benchmark for future INOV studies of AGN of different classes.

  14. Mini-Survey Of SDSS of [OIII] AGN With Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.; George, I. M.; Hill, J.; Padgett, C. A.; Mushotzky, R. F.

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work (e.g. Ferrarese and Merritt 2000) strongly suggests every massive galaxy has a central black hole. However, most of these objects either are not radiating or have been very difficult to detect. We are now in the era of large surveys, and the luminosity function (LF) of AGN has been estimated in various ways. In the X-ray band, Chandra and XMM surveys (e.g., Barger et al. 2005; Hasinger, et al. 2005) have revealed that the LF of Hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(x) (at al z). This is seen for all types of AGN, but is stronger for the broad-line objects (e.g., Steffen et al. 2004). In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects (Hao et al. 2005). If, as been suggested, hard X-ray and optical emission line can both be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  15. Lyman continuum leaking AGN in the SSA22 field

    NASA Astrophysics Data System (ADS)

    Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.

    2017-02-01

    Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.

  16. YOUNG AGN OUTBURST RUNNING OVER OLDER X-RAY CAVITIES

    SciTech Connect

    Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.; Forman, William R.; Randall, Scott; Jones, Christine; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher P.; Baum, Stefi A.; Noell-Storr, Jacob

    2014-02-20

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  17. Young AGN Outburst Running over Older X-Ray Cavities

    NASA Astrophysics Data System (ADS)

    Bogdan, Akos; van Weeren, Reinout Johannes; Kraft, Ralph; Forman, William; Scott, Randall; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher; Baum, Stefi; Noell-Storr, Jacob; Jones, Christine

    2015-08-01

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193 -- a nearby lenticular galaxy in a group -- based on X-ray and radio observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced about 78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  18. Unwrapping the X-ray Spectra of AGN

    NASA Astrophysics Data System (ADS)

    Reynolds, C.

    2015-07-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around the spinning supermassive black hole with a compact, probably pair-regulated, X-ray corona. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds (and sometimes jets) are seen and can dominate the source energetics. As I shall review in this talk, each of these components imprints its own characteristic signature into the (time-variable) X-ray spectrum of the AGN. I shall then touch upon a few contemporary topics : (i) the use of new spectral timing techniques for aiding in the decomposition of the spectrum and for probing the geometry of the AGN central engine, (ii) the determination of supermassive black hole spin, (iii) direct confirmation of quasar-mode feedback in some luminous systems. The prospect of AGN observations with Astro-H will be discussed.

  19. Properties and evolution of radio-AGN hosts since z~4

    NASA Astrophysics Data System (ADS)

    Delvecchio, Ivan

    2016-08-01

    We analyse the multi-wavelength properties of about 6200 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively-efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<2, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples.

  20. Properties And Evolution Of Radio-AGN Hosts Since z ~ 4

    NASA Astrophysics Data System (ADS)

    Delvecchio, Ivan; Smolčić, V.; Zamorani, G.; Del P. Lagos, C.; Berta, S.; Delhaize, J.; Baran, N.; Alexander, D.; Rosario, D.; et al.

    2016-10-01

    We analyse the multi-wavelength properties of about 7500 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively- efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<1.5, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples.

  1. Hiding in plain sight - recovering clusters of galaxies with the strongest AGN in their cores

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Ebeling, H.; Burgett, W. S.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2017-03-01

    A key challenge in understanding the feedback mechanism of active galactic nucleus (AGN) in Brightest Cluster Galaxies (BCGs) is the inherent rarity of catching an AGN during its strong outburst phase. This is exacerbated by the ambiguity of differentiating between AGN and clusters in X-ray observations. If there is evidence for an AGN then the X-ray emission is commonly assumed to be dominated by the AGN emission, introducing a selection effect against the detection of AGN in BCGs. In order to recover these 'missing' clusters, we systematically investigate the colour-magnitude relation around some ∼3500 ROSAT All-Sky Survey selected AGN, looking for signs of a cluster red sequence. Amongst our 22 candidate systems, we independently rediscover several confirmed systems, where a strong AGN resides in a central galaxy. We compare the X-ray luminosity to red sequence richness distribution of our AGN candidate systems with that of a similarly selected comparison sample of ∼1000 confirmed clusters and identify seven 'best' candidates (all of which are BL Lac objects), where the X-ray flux is likely to be a comparable mix between cluster and AGN emission. We confirm that the colours of the red sequence are consistent with the redshift of the AGN, that the colours of the AGN host galaxy are consistent with AGN, and, by comparing their luminosities with those from our comparison clusters, confirm that the AGN hosts are consistent with BCGs.

  2. SUPERNOVAE AND AGN DRIVEN GALACTIC OUTFLOWS

    SciTech Connect

    Sharma, Mahavir; Nath, Biman B. E-mail: biman@rri.res.in

    2013-01-20

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v{sub *}{approx}( E-dot / 2 M-dot ){sup 1/2} describes the effect of starburst activity, with E-dot and M-dot as energy and mass injection rate in a central region of radius R; (2) v {sub .} {approx} (GM {sub .}/2R){sup 1/2} for the effect of a central black hole of mass M {sub .} on gas at distance R; and (3) v{sub s}=(GM{sub h} / 2Cr{sub s}){sup 1/2}, which is closely related to the circular speed (v{sub c} ) for an NFW halo, where r{sub s} is the halo scale radius and C is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v {sup 2} {sub *} + 6({Gamma} - 1)v {sub .} {sup 2} - 4v {sup 2} {sub s}){sup 1/2}, where {Gamma} is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 10{sup 11.5} M {sub Sun} {<=} M{sub h} {<=} 10{sup 12.5} M {sub Sun} galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is {approx}400-1000 km s{sup -1}, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds {approx}> 1000 km s{sup -1}. We also find that the ratio [2v {sup 2} {sub *} - (1 - {Gamma})v {sub .} {sup 2}]/v {sup 2} {sub c} dictates the amount of gas lost through winds. Used in conjunction with

  3. Adult Re-Entry Students: Experiences Preceding Entry into a Rural Appalachian Community College

    ERIC Educational Resources Information Center

    Genco, Jessica T.

    2007-01-01

    Mountain Empire Community College (MECC)'s service region covers the extreme southwestern corner of Virginia and includes four counties and one city: Dickenson, Lee, Scott, and Wise Counties, and the city of Norton. With a service region population of 93,000 residents, MECC currently serves over 5,000 students annually (Mountain Empire Community…

  4. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  5. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  6. Spectropolarimetry of AGN, and `Women &\\ Science'

    NASA Astrophysics Data System (ADS)

    Kay, L.

    1999-12-01

    I have been using optical spectropolarimetry to investigate the nature of AGN. For the CAREER project, I have worked with A. M. Magalhães of the IAG in Brazil to use a visiting polarimetry module with the RC Spectrograph at CTIO, as well as conduct observations at Lick. Projects include observations of broad--line radio galaxies with double--peaked emission line profiles suggestive of accretion disks, and observations of a sample of X-ray selected narrow--line Seyfert 1 galaxies. Another project involves optical and X-ray observations of a complete sample of nearby Seyfert 2 galaxies in order to investigate the frequency of obscured broad--line regions and to determine their contribution to the X-ray background. In addition to involving undergraduate students in research, my educational efforts have focused on getting science into our Women's Studies program. I teach a course on the history and sociology of women in science, co-teach a course on feminist science studies, helped to create a course on women's health, organized a faculty seminar on gender and science issues, and lead a project at Barnard on gender and scientific literacy. I gratefully acknowledge support from NSF CAREER grant AST-9501835, as well as support from NSF International Research Fellowship INT-9423970, and from NSF grant EHR-9555808 to the AAC&U for the Gender and Scientific Literacy project.

  7. Optically faint radio sources: reborn AGN?

    NASA Astrophysics Data System (ADS)

    Filho, M. E.; Brinchmann, J.; Lobo, C.; Antón, S.

    2011-12-01

    We present our discovery of several relatively strong radio sources in the field-of-view of SDSS galaxy clusters that have no optical counterparts down to the magnitude limits of the SDSS. The optically faint radio sources appear as double-lobed or core-jet objects in the FIRST radio images and have projected angular sizes ranging from 0.5 to 1.0 arcmin. We followed-up these sources with near-infrared imaging using the wide-field imager HAWK-I on the VLT. We detected Ks-band emitting regions, about 1.5 arcsec in size and coincident with the centers of the radio structures, in all sources, with magnitudes in the range 17-20 mag. We used spectral modelling to characterize the sample sources. In general, the radio properties are similar to those observed in 3CRR sources but the optical-radio slopes are consistent with those of moderate to high redshift (z < 4) gigahertz-peaked spectrum sources. Our results suggest that these unusual objects are galaxies whose black hole has been recently re-ignited but that retain large-scale radio structures, which are signatures of previous AGN activity.

  8. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  9. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  10. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  11. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    NASA Astrophysics Data System (ADS)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  12. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Leon-Tavares, Jonathan; Chavushyan, Vahram H.

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  13. Interferometric IR observations: a diversity of dusty AGN tori

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard

    Interferometric observations in the infrared have resolved dusty structures on parsec and sub-parsec scales in more than two dozen AGNs by now -- a giant leap when considering that the first infrared interferometric observation of an extragalactic object is only about 10 years old. Since then, studies have confirmed the existence of dust in AGNs at its sublimation radius and have clearly dismissed models of very extended tori. Individual, well studied sources have been instrumental to reveal the complexity of these parsec-scale structures and statistical studies have shown a perplexing diversity in the population as a whole. Surprisingly, the diversity does not seem to follow the expected bimodality between optical type 1 and type 2 AGNs -- which are thought to be just face-on and edge-on tori. This central premise of viewing-angle dependent unified models is challenged if not dismissed by interferometric observations. The next step in understanding the AGN phenomenon -- beyond unification aspects -- is now to combine multi-scale observations with multi-scale simulations to constrain the physical processes driving the feeding and feedback of AGNs.

  14. Mini-Survey of SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelina, Lorella; George, Ian

    2007-01-01

    There is a common wisdom that every massive galaxy has a massive block hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low Lx (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of (optically-selected samples) shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [OIII] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a mini-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([OIII]) to check the relation with the Lx observed with Swift.

  15. Inverse Compton X-ray signature of AGN feedback

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei

    2013-12-01

    Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.

  16. Analyses of the Variability Asymmetry of Kepler AGNs

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Yang; Wang, Jun-Xian

    2015-05-01

    The high-quality light curves from the Kepler space telescope make it possible to analyze the optical variability of active galactic nuclei (AGNs) with unprecedented time resolution. Studying the asymmetry in variations could provide independent constraints on physical models for AGN variability. In this paper, we use Kepler observations of 19 sources to perform analyses of the variability asymmetry of AGNs. We apply smoothing correction to light curves to deduct their bias toward high-frequency variability asymmetry caused by long-term variations that have been poorly sampled due to the limited length of light curves. A parameter β based on structure functions is introduced to quantitively describe the asymmetry and its uncertainty is measured using extensive Monte Carlo simulations. Individual sources show no evidence of asymmetry at timescales of 1˜ 20 days and there is no general trend toward positive or negative asymmetry over the whole sample. Stacking the data from all 19 AGNs, we derive an averaged \\bar{β } of 0.00 ± 0.03 and -0.02 ± 0.04 over timescales of 1 ˜ 5 days and 5 ˜ 20 days, respectively, which are statistically consistent with zero. Quasars and Seyfert galaxies show similar asymmetry parameters. Our results indicate that short-term optical variations in AGNs are highly symmetric.

  17. Mid-infrared Flux Variability in an Awakening AGN

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry

    We propose FORCAST spectroscopic observations between 8 um to 40 um near the nucleus of NGC 660. NGC 660 underwent an AGN outburst 6 years ago, which is an ideal case for studying AGN astrophysics in a rather quiecent system. However, this rare event has not yet been monitored. Our immidiate goal is to verify the MIR spectroscipic variabilitiy in NGC 660, and to study the AGN effects on dust destruction and ISM. We will compare the FORCAST spectra with the Spitzer IRS spectra (taken before the AGN outburst), including dust continuum, PAH emission, and high- and low-ionization emission lines. FORCAST's slit width is a close match to the IRS slit width, allowing a direct comparison of the spectra between FORCAST and IRS. Our single-slit Subaru COMICS spectrum taken after the outburst shows significantly weakened PAH emission and dust continuum, suggesting dust destruction. However, it is difficult to draw robust intepretations due to systematic uncertainties in the Subaru data. If dust destruction is confirmed in the post-outburst FORCAST observaitons, we will evaluate the energy budget using the MIR line ratio diagnostics, with archival X-ray and radio data. We will then propose cadence observations of MGC 660's nucleus to monitor the MIR flux variability, and employ the reverberation mapping technique to study NGC 660's AGN.

  18. Astronauts Scott and Irwin join geologists in looking at Apollo 15 samples

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts David R. Scott, left, and James B. Irwin, right, join Manned Spacecraft Center (MSC) geologists in looking at some of the first Apollo 15 samples to be opened in the Non-Sterile Nitrogen Processing Line (NNPL) in the Manned Spacecraft Center's Lunar Receiving Laboratory (LRL). Holding the microphone and making recorded tapes of the two Apollo 15 crewmen's comments is Dr. Gary Lofgren. Partially obscured, near center of photo is Dr. William Phinney, and to his left is Dr. James L. Head.

  19. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  20. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed U.S. flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module 'Falcon' is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by Astronaut James B. Irwin, Lunar Module pilot.

  1. Naval War College Review. Volume 68, Number 2, Spring 2015

    DTIC Science & Technology

    2015-01-01

    usnwc.edu Newport Papers, Books associateeditor@usnwc.edu Essays and Book Reviews 401.841.6584 bookreviews@usnwc.edu Other Naval War College Offices...Wanted: U.S. Navy Mine Warfare Champion 116 Scott C. Truver Review Essays ...navies are to fight effectively in this medium in the future � What he offers is a “theory” of littoral warfare that can serve as a foundation for

  2. Circular Polarization in AGNs: Polarity and Spectra

    NASA Astrophysics Data System (ADS)

    Aller, M. F.; Aller, H. D.; Plotkin, R. M.

    2005-12-01

    Circular polarization (Stokes V) observations potentially provide information on the nature and origin of the underlying magnetic fields in AGNs. We have been systematically monitoring a group of sources with detectable circular polarization (V>0.1 percent, a level set by the instrumental polarization of our system) in all 4 Stokes parameters at 8.0 and 4.8 GHz since 2000, and also at 14.5 GHz since November 2003, with the University of Michigan prime focus paraboloid antenna. These data are compared with historical observations obtained with the same instrument at 8.0 and 4.8 GHz extending back to 1978. Specific goals are to study the temporal spectral behavior of Stokes V and its relation to variability in total flux and linear polarization, and to investigate the question of polarity stability on decade-long time scales using data obtained with the same instrumentation and at the same frequencies. The data are consistent with linear-to-circular mode conversion in partially opaque regions of the source. We find examples of polarity changes with time at one or more frequencies associated with outbursts in total flux and linear polarization, and polarity differences within the 3 frequencies at a single epoch in one case, 3C 279. Such behavior argues against the notion that the sign of Stokes V is a simple tracer of the net flow of magnetic energy from the central engine to the jet or an indicator of the direction of rotation of the spinning central black hole/accretion disk via the winding up of the initial seed magnetic field. This work was supported in part by NSF grant AST-0307629 and by funds from the University of Michigan.

  3. Agnes Pockels: Life, Letters and Papers

    NASA Astrophysics Data System (ADS)

    Helm, Christiane A.

    2004-03-01

    Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).

  4. AGN variability in the radio band

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2016-08-01

    Variability is an important and defining characteristic of AGN, that along with their broadband spectral energy distribution make their study interesting and challenging. A complete understanding of the physics of these objects requires monitoring observations over the whole electromagnetic spectrum, and includes studying their properties at a given band and also the relationship between multiple wavelengths. Here we present the main results obtained so far with the ongoing OVRO 40m blazar monitoring program at 15 GHz with twice a week cadence. This program started in mid-2007 and is currently monitoring about 1800 blazars, including most of the bright blazars north of declination -20 degrees. These results include: characterization of the variability in the radio band; its relationship with optical and gamma-ray properties; and its relationship to gamma-ray emission as observed with Fermi-LAT, which can provide constrains on the location of the gamma-ray emission region. We will also discuss our ongoing work on the characterization of radio variability using the power spectral density. For this, we are using 8 years of OVRO 40m data for ~1200 sources, and also F-GAMMA monitoring data taken with the Effelsberg 100m telescope for 60 sources with about monthly cadence monitoring data at 8 frequencies between 2.6 and 43.0 GHz. These studies will provide an improved understanding of blazar variability, a better basis to evaluate the statistics of correlated variability between different emission bands, and a long and consistent record of radio observations to be used in gamma-ray and multi-wavelength investigations.

  5. BAT AGN Spectroscopic Survey - III. An observed link between AGN Eddington ratio and narrow-emission-line ratios

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T.; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2017-01-01

    We investigate the observed relationship between black hole mass (MBH), bolometric luminosity (Lbol) and Eddington ratio (λEdd) with optical emission-line ratios ([N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, [O I] λ6300/Hα, [O III] λ5007/Hβ, [Ne III] λ3869/Hβ and He II λ4686/Hβ) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] λ6583/Hα ratio exhibits a significant correlation with λEdd (RPear = -0.44, p-value = 3 × 10-13, σ = 0.28 dex), and the correlation is not solely driven by MBH or Lbol. The observed correlation between [N II] λ6583/Hα ratio and MBH is stronger than the correlation with Lbol, but both are weaker than the λEdd correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] λ6583/Hα is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd and thus MBH from the measured Lbol, even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  6. Time-Dependent Photoionization of Gas Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Elhoussieny, Ehab E.; Bautista, M.; Garcia, J.; Kallman, T. R.

    2013-01-01

    Gas outflows are fundamental components of Active Galactic Nuclei (AGN) activity. Time-variability of ionizing radiation, which is characteristic of AGN in various different time scales, may produce non-equilibrium photoionization conditions over a significant fraction of the flow and yields supersonically moving cooling/heating fronts. These fast fronts create pressure imbalances that can only be resolved by fragmentation of the flow and acceleration of such fragments. This mechanism can explain the kinematic structure of low ionization BAL systems (FeLoBAL). This mechanism may also have significant effects on other types of outflows given the wide range of variability time scales in AGN. We will study these effects in detail by constructing time-dependent photoionization models of the outflows and incorporating these models into radiative-hydrodynamic simulations.

  7. Disentangling AGN-Host Galaxy Interactions with Chandra

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2014-11-01

    The circum-nuclear region in active galaxies is often complex with presence of high excitation gas, collimated radio outflow, and star forming regions, besides the active central supermassive black hole. In Chandra studies of a number of archetypal Seyfert galaxies to investigate AGN-host galaxy interaction, we were able to evaluate the mass outflow rate and shock heating by radio jet. For galaxies in the throes of a violent merging event such as NGC6240, we were able to resolve 70MK hot gas surrounding the double nuclei and discovered a large scale soft X-ray halo. The unique resolving power of Chandra also enables more discovery of such dual AGN systems and signs of past AGN outburst activities.

  8. Quenching histories of galaxies and the role of AGN feedback

    NASA Astrophysics Data System (ADS)

    Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team

    2016-01-01

    Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ < 1 Gyr) drop in their star formation rate. With this result we therefore present the first statistically supported observational evidence that AGN feedback is an important mechanism for the cessation of star formation in this population of galaxies. The diversity of this new method also highlights that such rapid quenching histories cannot account fully for all the quenching across the current AGN host population. We demonstrate that slower (τ > 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.

  9. AGN Survey to characterize the clumpy torus using FORCAST

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, Enrique

    2015-10-01

    A geometrically and optically thick torus of gas and dust obscures the black hole and accretion disk in active galactic nuclei (AGN) in some lines of sight. One of the most important question that still remain uncertain is: How do the properties, such as torus geometry and distribution of clumps, of the torus depend on the AGN luminosity and/or activity class? Infrared (IR) observations are essential to these investigations as the torus intercepts and re-radiates (peaking within 30-40 um) a substantial amount of flux from the central engine. Near-IR (NIR) and mid-IR (MIR) observations from the ground have been key to advance our knowledge in this field. However, the atmosphere is opaque to the 30-40 um range and observations are impossible from ground-based telescopes. FORCAST presents a unique opportunity to explore AGN, providing the best angular resolution observations within the 30-40 um range for the current suite of instruments. From our analysis using Cycle 2 observations, we found that FORCAST provides the largest constraining power of the clumpy torus models in the suggested wavelength range. We therefore request an AGN Survey using FORCAST of snapshot imaging observations of a flux-limited (>500 mJy at 37.1 um) sample of 23 Seyfert galaxies with existing high-angular resolution MIR spectra observed on 8-m class telescopes. Using the FORCAST data requested here in combination with already acquired NIR and MIR data, we will have an unprecedentedly homogeneous AGN sample of IR (1-40 um) SED at the largest spatial-resolution, which yield to a better knowledge of the torus structure in the AGN unified model.

  10. The most obscured AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Cappelluti, N.; Comastri, A.; Gilli, R.; Gruppioni, C.; Mignoli, M.; Pozzi, F.; Vietri, G.; Vignali, C.; Zamorani, G.

    2015-06-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH ≳ 1024 cm-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 1024 cm-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH ≳ 1025 cm-2), intrinsically luminous (L2-10 > 1044 erg s-1) AGN at z = 0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6 μm luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a ≳1025 cm-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (LBol/LEdd = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z ~ 2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.

  11. Changes in concentration of contaminants in Scott Creek, Western North Carolina

    NASA Astrophysics Data System (ADS)

    Allmendinger, N. E.; Clapp, R. B.

    2004-12-01

    Scott Creek is a 4th-order gravel-bedded stream in the Little Tennessee watershed in a mountainous region of Western North Carolina. The region is highly dependent on this river for water contact sports and input for a paper mill. Recently, water sample have shown high levels of fecal coliform in spite of efforts to fix a broken sewer pipeline and eliminate straight-piping. Our objective is to assess the current quality of the water, and to devise methods for future monitoring and prediction of contaminant concentration in the river. During a 5-day period in July 2004, we monitored the stage and velocity of the river as well as the concentration of nitrates, reactive phosphorous and fecal coliform in the water. Our results suggest that the nutrients and the bacteria counts vary in phase with the river discharge. Our analysis of the data leads us to conclude that both discharge and E. coli concentration are related to precipitation. The relationship between river stage and precipitation is complex, requiring a "multiple" regression equation which plots Q as a function of the previous 3 days of rainfall. The relationship between E. coli concentration and precipitation is much simpler, showing that the abundance of bacteria varies directly with daily rainfall. We infer from our data that it is unlikely that E. coli in Scott's Creek has a "point" source, suggesting that the bacterial contamination is related to undetected straight pipes and not to a steady sewer failure.

  12. The NuSTAR view of radio-quiet AGN

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea

    AUTHORS: A. Marinucci and the NuSTAR Team ABSTRACT: The Nuclear Spectroscopic Telescope Array (NuSTAR), thanks to its improved sensitivity in hard X-rays with respect to coded aperture observatories, is providing new and exciting results on radio-quiet AGN. In this talk I will present results from the NuSTAR AGN Physics program after the first two years of science operations. In particular, measurements of the black hole spin and coronal temperature in nearby sources will be discussed.

  13. The MOSDEF Survey: AGN Multi-wavelength Identification, Selection Biases, and Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; Aird, James; Reddy, Naveen; Shapley, Alice; Freeman, William R.; Kriek, Mariska; Leung, Gene C. K.; Mobasher, Bahram; Price, Sedona H.; Sanders, Ryan L.; Shivaei, Irene; Siana, Brian

    2017-01-01

    We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on the identification, selection biases, and host galaxy properties of 55 X-ray, IR, and optically selected active galactic nuclei (AGNs) at 1.4< z< 3.8. We obtain rest-frame optical spectra of galaxies and AGNs and use the BPT diagram to identify optical AGNs. We examine the uniqueness and overlap of the AGNs identified at different wavelengths. There is a strong bias against identifying AGNs at any wavelength in low-mass galaxies, and an additional bias against identifying IR AGNs in the most massive galaxies. AGN hosts span a wide range of star formation rates (SFRs), similar to inactive galaxies once stellar mass selection effects are accounted for. However, we find (at ∼2–3σ significance) that IR AGNs are in less dusty galaxies with relatively higher SFR and optical AGNs in dusty galaxies with relatively lower SFR. X-ray AGN selection does not display a bias with host galaxy SFR. These results are consistent with those from larger studies at lower redshifts. Within star-forming galaxies, once selection biases are accounted for, we find AGNs in galaxies with similar physical properties as inactive galaxies, with no evidence for AGN activity in particular types of galaxies. This is consistent with AGNs being fueled stochastically in any star-forming host galaxy. We do not detect a significant correlation between SFR and AGN luminosity for individual AGN hosts, which may indicate the timescale difference between the growth of galaxies and their supermassive black holes.

  14. A Method of Identifying AGNs Based on Emission-Line Excess and the Nature of Low-Luminosity AGNs in the Sloan Digital Sky Survey. II. The Nature of Low-Luminosity AGNs

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki

    2012-04-01

    We have developed a new method of identifying active galactic nuclei (AGNs) and studied the nature of low-luminosity AGNs in the Sloan Digital Sky Survey. This is the latter part of a series of papers in which we consider correlations between the AGN activities and the host-galaxy properties. Based on a sample of AGNs identified by a new method developed in the former part (2012, PASJ, 64, 36), we found that AGNs typically show extinction of τV = 1.2, and exhibit a wide range of ionization levels. The finding of ionization levels motivated us to use [O II] + [O III] as an indicator of AGN power. We found that AGNs are preferentially located in massive, red, early-type galaxies. Taking into account a selection bias of the Oxygen-excess method, we showed that strong AGNs are located in active star-forming galaxies, and that rapidly growing super-massive black holes are located in rapidly growing galaxies, which clearly shows the coevolution of super-massive black holes and their host galaxies. This is a surprising phenomenon, given that the growths of black holes and host galaxies occur on their respective physical scales which are very different. Interestingly, the AGN power does not strongly correlate with the host-galaxy mass. It seems that the mass works as a ``switch'' for activating AGNs. The absence of AGNs in low-mass galaxies might be due to the absence of super-massive black holes there, but a dedicated observation of the nuclear region of nearby low-mass galaxies would be necessary to obtain a deeper insight into it.

  15. 2009 New England American College of Sports Medicine Conference

    DTIC Science & Technology

    2010-01-01

    20- 12:30 Keynote Lecture ( Ballroom A): Daniel Lieberman Human Evolution and Human Health 12:30- 1:30 LUNCH (Student Luncheon - Ballrooms D & E...Ned Debold 4:40-5:20 5:30- 7:30 President’s Reception and College Bowl (Sponsored in part by: ) ( Ballrooms D & E) Sponsored in part by...30 Knuttgen Keynote Lecture ( Ballroom A): Scott Powers Mechanisms of Disuse Muscle Atrophy Sponsored in Part by Springfield College 12:30- 1:30

  16. Uncovering East Antarctic Bedrock using detrital zircon geochronology and pebble lithologies from Mount Howe, Scott Glacier

    NASA Astrophysics Data System (ADS)

    Dits, T.; Licht, K.; Bader, N.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2012-12-01

    Till from the flanks of Mount Howe, the southernmost outcrop in the world at the head of the Scott Glacier, Antarctica, offers an exclusive view of East Antarctic bedrock through analysis of detrital zircon geochronology and pebble lithology. With no outcrops upstream of the Mount Howe nunatak, detrital zircons and pebbles incorporated in the supraglacial till place direct new age and lithologic constraints on unmapped, ice covered bedrock in the Scott Glacier catchment. Nine moraine crests were sampled along a 2 km transect from the modern ice edge toward exposed Beacon Supergroup bedrock, where rock weathering increases away from the ice margin. Preliminary cosmogenic ages on boulders on the same crests as the provenance study indicate most of the moraine complex formed over the last 100 ka, but some ridges close to the headwall may be much older. Pebble lithologies across the transect show minimal statistical variation, averaging 60% mafic igneous, 30% metamorphic, and 10% sedimentary lithologies dominantly from the Ferrar and Beacon Supergroups. Observations of faceting and striations on pebble surfaces reveal that up to 40-50% of the pebble fraction of the till was subglacially transported, and a minimum of 15% are exotic lithologies. Nearly 80% of cobbles collected from a non-random survey reveal the presence of several exotic rock types, including vesicular olivine basalt, quartzite, and four different compositions of granite. Guided by backscatter electron imagery of detrital zircons, 385 ages from U-Pb isotopes of detrital zircons from 8 sequential moraine crests were determined by laser ablation-inductively coupled plasma mass spectroscopy (LA-ICPMS). Distinct age populations were identified at 185-190 Ma, 255-270 Ma, 355-365 Ma, 550-580 Ma, and 2740 Ma. Four samples in the middle of the transect all display a similar 1010-1040 Ma peak that is statistically different from the remaining samples. The 185 Ma population differs from the typical East Antarctic

  17. Review of Space VLBI RadioAstron studies of AGN

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid; Kovalev, Yuri

    2016-07-01

    Space VLBI offers an unrivalled resolution in studies of the AGN phenomena. Since 2011, the Russia-led SVLBI mission RadioAstron conducts observations at 92, 18, 6 and 1.3 cm with baselines an order of magnitude longer than the Earth diameter, therefore offering an order of magnitude "sharper" view at the brightest radio sources than achieved with Earth-based VLBI systems. In our presentation we will review the current status of the RadioAstron's scientific programme. Over the first 4.5 years of the in-orbit operations, the mission achieved successful VLBI detections of extragalactic continuum radio sources at all four observing bands. To date, detections on SVLBI baselines have been obtained for more than 150 AGN's at projected baselines up to 350 000 km (about 28 Earth diameters, ED). The highest resolution achieved is 14 microarcscends from 1.3 cm observations. RadioAstron is an international project; it conducts observations with up to 30 Earth-based radio telescopes located on different continents. We will review results of total intensity and polarisation imaging with extreme angular resolution of blazars and nearby active galaxies. We will also discuss typical and maximum brightness temperatures of blazar cores from the AGN Survey obtained with RadioAstron. Physical implications for the AGN jets formation, magnetic field and emission mechanism will be discussed on the basis of the results obtained to date.

  18. The Evolution of the AGN population in the MORGANA model

    NASA Astrophysics Data System (ADS)

    Fontanot, F.; Monaco, P.; Cristiani, S.; Tozzi, P.

    2008-10-01

    We present the results of the MOdel for the Rise of Galaxies aNd Agns (MORGANA), that includes in a self-consistent way the accretion of matter onto Super-Massive Black Holes. We compare MORGANA predictions to the observed evolution of the AGN space density (inferred from optical and X-ray surveys) and we find that that it is possible to reproduce the apparent downsizing of the AGN population in the framework of concordance cosmology. We will show that this result is likely due to the improved treatment of gas cooling and feedback in MORGANA, and in particular to the modeling of the stellar kinetic feedback, arising in star-forming bulges as a consequence of the level of turbolence. On the other hand, the predicted low-mass end of BH-bulge relation is steeper than observed: we discuss this disagreement on the light of the predicted excess of small bulges, which is common to several models of galaxy formation and evolution. Finally we will show that a stronger constrain on the relative importance of the physical processes involved in the build up of the AGN population move from the observed redshift evolution of the BH-Bulge relation.

  19. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  20. Converting the Audience: A Conversation with Agnes Wilcox

    ERIC Educational Resources Information Center

    Becker, Becky

    2006-01-01

    This article presents a conversation with Agnes Wilcox, Executive Director of Prison Performing Arts in St. Louis, Missouri, about Prison Performing Arts. Although the average person might balk at the notion of interacting with prison inmates, finding it intimidating, worrisome, or self-sacrificial, for Wilcox, Prison Performing Arts is a…

  1. X-Ray Selected AGN in A Merging Cluster

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; Norman, D.; Soechting, I.; Coldwell, G.

    2012-01-01

    We investigate the X-ray AGN population and evolution in the merging galaxy cluster DLSCL J0522.2-4820 discovered via weak gravitational lensing shear from the Deep Lens Survey (DLS). Since weak lensing shear is dependent only on mass, it does not introduce the biases that typical cluster selection methods do. This cluster is of particular interest due to both its extended multiple X-ray emission peaks and the large number of X-ray point sources identified in the field. We measured the redshifts of X-ray AGN as well as cluster galaxies in order to investigate the 3-dimensional distribution and possible clustering of AGN in galaxy clusters. Of the 125 objects in our sample, 54 are galaxies in the cluster; the cluster redshift is determined to be z=0.2997±0.0096. This agrees well with a previous value of z=0.296±0.001. We identified several broad line AGN at high redshift including a quasar pair at redshift z=1.8. Currently, we have found no X-ray point sources to be within the cluster. This project was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  2. First Results from the NuSTAR AGN Physics Program

    NASA Astrophysics Data System (ADS)

    Brenneman, Laura; Fuerst, F.; Matt, G.; Walton, D.; Madejski, G. M.; Marinucci, A.; Elvis, M.; Risaliti, G.; Harrison, F.; Stern, D.; Boggs, S.; Christensen, F.; Craig, W. W.; Zhang, W.; NuSTAR Team

    2013-04-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR, launched June 2012) is revolutionizing our knowledge of the physics at work in active galactic nuclei (AGN). With its high collecting area, focusing optics and low background from 3-79 keV, NASA's newest X-ray observatory is providing an unprecedented look at the spectral and timing properties of AGN in this energy range, which have been notoriously difficult to access. NuSTAR has observed several AGN to date simultaneously with XMM-Newton, Suzaku and/or Swift for the purposes of understanding their coronal properties (e.g., plasma temperature, optical depth) and measuring the spins of their supermassive black holes. We present the first results from these observing campaigns, highlighting the spectral and timing analysis of the bright, nearby AGN IC 4329A, NGC 4151, NGC 1365 and MCG--6-30-15. These are the highest signal-to-noise datasets ever obtained across the 0.2-79 keV energy band for these three sources, allowing us to cleanly deconvolve the X-ray continuum, absorption and reflection components in each galaxy for the first time via time-averaged and time-resolved spectroscopy.

  3. Radio-AGN feedback: when the little ones were monsters

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Röttgering, H. J. A.

    2015-06-01

    We present a study of the evolution of the fraction of radio-loud active galactic nuclei (AGN) as a function of their host stellar mass. We make use of two samples of radio galaxies: one in the local Universe, 0.01 < z ≤ 0.3, using a combined SDSS-NVSS (Sloan Digital Sky Survey NRAO Very Large Array Sky Survey) sample and the other at higher redshifts, 0.5 < z ≤ 2, constructed from the VLA-COSMOS_DEEP Radio Survey at 1.4 GHz and a Ks-selected catalogue of the COSMOS/UltraVISTA field. We observe an increase of more than an order of magnitude in the fraction of lower mass galaxies (M* < 1010.75 M⊙) which host radio-loud AGN with radio powers P1.4 GHz > 1024 W Hz-1 at z ˜ 1-2 while the radio-loud fraction for higher mass galaxies (M* > 1011.25 M⊙) remains the same. We argue that this increase is driven largely by the increase in cold or radiative mode accretion with increasing cold gas supply at earlier epochs. The increasing population of low-mass radio-loud AGN can thus explain the upturn in the radio luminosity function at high redshift which is important for understanding the impact of AGN feedback in galaxy evolution.

  4. Feedback from AGN: The Kinetic/Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Melini, Gabriele; La Franca, Fabio; Fiore, Fabrizio

    2010-05-01

    We have measured the probability distribution function of the ratio RX = log L1.4/LX, where L1.4/LX = ν Lν(1.4 GHz)/LX(2-10 keV), between the 1.4 GHz and the unabsorbed 2-10 keV luminosities and its dependence on LX and z. We have used a complete sample of ~1800 hard X-ray selected AGN, observed in the 1.4 GHz band, cross-correlated in order to exclude FR II-type objects, and thus obtain a contemporaneous measure of the radio and X-ray emission. The distribution P(RX|LX,z) is shown in Figure 1. Convolution of the distribution P(RX|LX,z) with the 2-10 keV X-ray AGN luminosity function from La Franca et al. (2005) and the relations between radio power and kinetic energy from Best et al. (2006) and Willott et al. (1999) allows us to derive the AGN kinetic power and its evolution. As shown in Figure 1, our results are in good agreement with the predictions of the most recent models of galaxy formation and evolution (e.g., Croton et al. 2006), where AGN radio feedback is required to quench the star formation.

  5. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  6. Unveiling the physics of AGN through X-ray variability

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; González-Martín, O.; Masegosa, J.; Márquez, I.

    2017-03-01

    Although variability is a general property characterizing active galactic nuclei (AGN), it is not well established whether the changes occur in the same way in every nuclei. The main purpose of this work is to study the X-ray variability pattern(s) in AGN selected at optical wavelengths in a large sample, including low ionization nuclear emission line regions (LINERs) and type 1.8, 1.9, and 2 Seyferts, using the public archives in Chandra and/or XMM–Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations; the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Variations at X-rays in timescales of months/years are very common in all AGN families but short term variations are only found in type 1.8 and 1.9 Seyferts. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power. Other variability patterns cannot be discarded in a few cases. We discuss the geometry and physics of AGN through the X-ray variability analysis.

  7. A radio view of high-energy emitting AGNs

    NASA Astrophysics Data System (ADS)

    Schulz, Robert Frank

    2016-07-01

    Active galactic nuclei (AGNs) are among the most energetic objects in the Universe. These galaxies that are dominated in part or even throughout the electromagnetic spectrum by emission from their central, compact region. AGNs are extensively studied by multi-wavelength observations. In the standard picture, the main driver of an AGN is a supermassive black hole (SMBH) in its centre that is surrounded by an accretion disk. Perpendicular to the disk, in the vicinity of highly magnetized SMBH relativistic outflows of plasma, so-called jets, can form on either side that can reach far beyond the host galaxy. Only about 10% of all AGNs are dominated by emission from these jets due to relativistic beaming effects and these so-called blazars dominate the extragalactic gamma-ray sky. It is commonly accepted that the low-energy emission (radio to UV/X-ray) is due to synchrotron emission from the jet. The high-energy emission is considered to stem from inverse-Compton scattering of photons on the jet particles, but different sources for these photons are discussed (internal or external to the AGN) and other models for the high-energy emission have also been proposed. The nature of the high-energy emission is strongly linked to the location of the emission region in the jet which requires a detailed understanding of the formation and evolution of jets. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-pc scales, close to their formation region. In this thesis, I focus on the properties of three different AGNs, IC 310, PKS2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large monitoring programmes MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) and

  8. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  9. Incidence of WISE-Selected Obscured AGNs in Major Mergers and Interactions from the SDSS

    NASA Astrophysics Data System (ADS)

    Weston, Madalyn; McIntosh, Daniel H.; Brodwin, Mark; Mann, Justin; Cooper, Andrew; McConnell, Adam; Nielson, Jennifer L.

    2017-01-01

    We use the Wide-field Infrared Survey Explorer (WISE) and the Sloan Digital Sky Survey (SDSS) to confirm a connection between dust-obscured active galactic nuclei (AGNs) and galaxy merging. Using a new, volume-limited (z≤0.08) catalog of visually-selected major mergers and galaxy-galaxy interactions from the SDSS, with stellar masses above 2×10^10 M⊙, we find that major mergers (interactions) are 5--17 (3--5) times more likely to have red [3.4]-[4.6] colors associated with dust-obscured or `dusty' AGNs, compared to non-merging galaxies with similar masses. Using published fiber spectral diagnostics, we map the [3.4]-[4.6] versus [4.6]-[12] colors of different emission-line galaxies and find one-quarter of Seyferts have colors indicative of a dusty AGN. We find that AGNs are five times more likely to be obscured when hosted by a merging galaxy, half of AGNs hosted by a merger are dusty, and we find no enhanced frequency of optical AGNs in merging over non-merging galaxies. We conclude that undetected AGNs missed at shorter wavelengths are at the heart of the ongoing AGN-merger connection debate. The vast majority of mergers hosting dusty AGNs are star-forming and located at the centers of Mhalo<10^13 M⊙ groups. Assuming plausibly short duration dusty-AGN phases, we speculate that a large fraction of gas-rich mergers experience a brief obscured AGN phase, in agreement with the strong connection between central star formation and black hole growth seen in merger simulations. We will use the WISE-selected AGNs (and AGNs selected by other methods) to perform SED analysis of mergers and interactions and dissect the SEDs to disentangle AGN and SF activity.

  10. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  11. Fraction of the X-ray selected AGNs with optical emission lines in galaxy groups

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Qirong; Bian, Weihao; Chen, Xi; Yan, Pengfei

    2017-04-01

    Compared with numerous X-ray dominant active galactic nuclei (AGNs) without emission-line signatures in their optical spectra, the X-ray selected AGNs with optical emission lines are probably still in the high-accretion phase of black hole growth. This paper presents an investigation on the fraction of these X-ray detected AGNs with optical emission-line spectra in 198 galaxy groups at z<1 in a rest frame 0.1-2.4 keV luminosity range 41.3 < log(LX/erg s^{-1}) < 44.1 within the Cosmological Evolution Survey (COSMOS) field, as well as its variations with redshift and group richness. For various selection criteria of member galaxies, the numbers of galaxies and the AGNs with optical emission lines in each galaxy group are obtained. It is found that, in total 198 X-ray groups, there are 27 AGNs detected in 26 groups. AGN fraction is on average less than 4.6 (±1.2)% for individual groups hosting at least one AGN. The corrected overall AGN fraction for whole group sample is less than 0.98 (±0.11) %. The normalized locations of group AGNs show that 15 AGNs are found to be located in group centers, including all 6 low-luminosity group AGNs (L_{ 0.5-2 keV} < 10^{42.5} erg s^{-1}). A week rising tendency with z are found: overall AGN fraction is 0.30-0.43% for the groups at z<0.5, and 0.55-0.64% at 0.5 < z < 1.0. For the X-ray groups at z>0.5, most member AGNs are X-ray bright, optically dull, which results in a lower AGN fractions at higher redshifts. The AGN fraction in isolated fields also exhibits a rising trend with redshift, and the slope is consistent with that in groups. The environment of galaxy groups seems to make no difference in detection probability of the AGNs with emission lines. Additionally, a larger AGN fractions are found in poorer groups, which implies that the AGNs in poor groups might still be in the high-accretion phase, whereas the AGN population in rich clusters is mostly in the low-accretion, X-ray dominant phase.

  12. A Response to Scott's Concerns about the Relevance of Environmental Education Research: Applying Social-Ecological Systems Thinking and Consilience to Defining Research Goals

    ERIC Educational Resources Information Center

    Krasny, Marianne E.

    2009-01-01

    In William Scott's plenary address at the World Environmental Education Conference, he expressed concerns about the relevance of environmental education research in a world facing global environmental and demographic change. In responding to Scott's concerns, I argue that addressing challenges related to development and the environment requires…

  13. Modeling the reverberation of optical polarization in AGN

    NASA Astrophysics Data System (ADS)

    Rojas Lobos, P. A.; Goosmann, R.; Marin, F.

    2016-12-01

    According to the standard paradigm, the strong and compact luminosity of active galactic nuclei (AGN) is due to multi-temperature black body emission originating from an accretion disk formed around a supermassive black hole. This central engine is thought to be surrounded by a dusty region along the equatorial plane and by ionized winds along the poles. The innermost regions cannot yet be resolved neither in the optical nor in the infrared and it is fair to say that we still lack a satisfactory understanding of the physical processes, geometry and composition of the central (sub-parsec) components of AGN. Like spectral or polarimetric observations, the reverberation data needs to be modeled in order to infer constraints on the AGN geometry (such as the inner radius or the half-opening angle of the dusty torus). In this research note, we present preliminary modeling results using a time-dependent Monte Carlo method to solve the radiative transfer in a simplified AGN set up. We investigate different model configurations using both polarization and time lags and find a high dependency on the geometry to the time-lag response. For all models there is a clear distinction between edge-on or face-on viewing angles for fluxes and time lags, the later showing a higher wavelength-dependence than the former. Time lags, polarization and fluxes point toward a clear dichotomy between the different inclinations of AGN, a method that could help us to determine the true orientation of the nucleus in Seyfert galaxies.

  14. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome.

    PubMed

    van Geffen, Johanna P; Swieringa, Frauke; Heemskerk, Johan W M

    2016-05-01

    Platelets play key roles in thrombosis and hemostasis by forming aggregates and providing a procoagulant surface, at which thrombin is generated and fibrin fibers are formed. Here we present an overview of the different mechanisms how platelets orchestrate coagulation processes in thrombus formation in thrombosis and hemostasis. Parts of these are via Ca(2+)-dependent activation responses, leading to phosphatidylserine exposure; swelling to form balloons with increased binding of coagulation factors; and calpain-mediated integrin αIIbβ3 cleavage and inactivation. Other mechanisms are secretion of (anti) coagulation factors, and αIIbβ3-mediated thrombus retraction, and clot retraction. In a thrombus, coagulation factors are found at both platelets and fibrin fibers. Many of the procoagulant platelet activities are altered in the Scott syndrome.

  15. California State Waters map series—Offshore of Scott Creek, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-11-16

    Seafloor habitats in the Offshore of Scott Creek map area, which lie within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deeper water. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  16. Identification of novel mutations in Mexican patients with Aarskog–Scott syndrome

    PubMed Central

    Pérez-Coria, Mariana; Lugo-Trampe, José J; Zamudio-Osuna, Michell; Rodríguez-Sánchez, Iram P; Lugo-Trampe, Angel; de la Fuente-Cortez, Beatriz; Campos-Acevedo, Luis D; Martínez-de-Villarreal, Laura E

    2015-01-01

    Aarskog–Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS. PMID:26029706

  17. Parameter estimation and model selection for Neyman-Scott point processes.

    PubMed

    Tanaka, Ushio; Ogata, Yosihiko; Stoyan, Dietrich

    2008-02-01

    This paper proposes an approximative method for maximum likelihood estimation of parameters of Neyman-Scott and similar point processes. It is based on the point pattern resulting from forming all difference points of pairs of points in the window of observation. The intensity function of this constructed point process can be expressed in terms of second-order characteristics of the original process. This opens the way to parameter estimation, if the difference pattern is treated as a non-homogeneous Poisson process. The computational feasibility and accuracy of this approach is examined by means of simulated data. Furthermore, the method is applied to two biological data sets. For these data, various cluster process models are considered and compared with respect to their goodness-of-fit.

  18. The Readability Levels of the 1981 Scott, Foresman and Co. Basal Texts and Their Comparison with the 1978 Edition.

    ERIC Educational Resources Information Center

    Ackerman, Bonnie

    Fry's Readability Graph was used to determine the readability levels of the 1981 Scott, Foresman and Co. basal textbook series for grades one through six. The readability levels were then compared to those established for the 1978 edition. In the 1981 edition, all stories were handscored. Poems, skill lessons, and plays were not examined in order…

  19. 74 FR 16384 - Myers, Max J.; Perkins, Jr., Melvin H.; Brockman, Carla D.; Forbes, Scott H.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-04-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Myers, Max J.; Perkins, Jr., Melvin H.; Brockman, Carla D.; Forbes, Scott H.; Notice of Filing April 3, 2009. Take notice that on April 1, 2009, the above applicants, submitted...

  20. 76 FR 19187 - City of Davenport, Iowa-Construction and Operation Exemption-in Scott County, Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board City of Davenport, Iowa--Construction and Operation Exemption--in Scott County, Iowa By petition filed on July 21, 2009, the City of Davenport, Iowa (the City) seeks...

  1. A Brief Historical Introduction to Solitons and the Inverse Scattering Transform--A Vision of Scott Russell

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2007-01-01

    This paper deals with a brief introduction to major remarkable discoveries of the "soliton" and the "inverse scattering transform" in the 1960s. The discovery of the soliton (or the solitary waves) began with the famous physical experiments of the Scottish Engineer and Naval Architect John Scott Russell in the Glasgow-Edinburgh…

  2. Genome Sequence of Listeria monocytogenes Scott A, a Clinical Isolate from a Food-Borne Listeriosis Outbreak▿

    PubMed Central

    Briers, Yves; Klumpp, Jochen; Schuppler, Markus; Loessner, Martin J.

    2011-01-01

    Listeria monocytogenes is an opportunistic food-borne pathogen and the causative agent of listeriosis in animals and humans. We present the genome sequence of Listeria monocytogenes Scott A, a widely distributed and frequently used serovar 4b clinical isolate from the 1983 listeriosis outbreak in Massachusetts. PMID:21685277

  3. An Unintentional System of Gaps: A Phenomenological Reading of Scott O'Dell's "Island of the Blue Dolphins."

    ERIC Educational Resources Information Center

    Tarr, C. Anita

    1997-01-01

    Argues that, in "Island of the Blue Dolphins," Scott O'Dell offers a skeleton main character (Karana). Contends that O'Dell has sketched Karana as a stereotype and that readers complete her characterization, filling out the skeleton by perpetuating the stereotypes. Points out this trading of stereotype for true character development in…

  4. An Author as a Counter-Storyteller: Applying Critical Race Theory to a "Coretta Scott King Award Book"

    ERIC Educational Resources Information Center

    Brooks, Wanda

    2009-01-01

    This article analyzes the 2002 Coretta Scott King Award book by Mildred Taylor entitled "The Land". The novel and its author are situated within a tradition of historical fiction written by and about African Americans. I then offer an analysis that utilizes Critical Race Theory as an interpretive tool for examining the ways Taylor embeds meanings…

  5. 100 years since Scott reached the pole: a century of learning about the physiological demands of Antarctica.

    PubMed

    Halsey, Lewis G; Stroud, Mike A

    2012-04-01

    The 1910-1913 Terra Nova Expedition to the Antarctic, led by Captain Robert Falcon Scott, was a venture of science and discovery. It is also a well-known story of heroism and tragedy since his quest to reach the South Pole and conduct research en route, while successful was also fateful. Although Scott and his four companions hauled their sledges to the Pole, they died on their return journey either directly or indirectly from the extreme physiological stresses they experienced. One hundred years on, our understanding of such stresses caused by Antarctic extremes and how the body reacts to severe exercise, malnutrition, hypothermia, high altitude, and sleep deprivation has greatly advanced. On the centenary of Scott's expedition to the bottom of the Earth, there is still controversy surrounding whether the deaths of those five men could have, or should have, been avoided. This paper reviews present-day knowledge related to the physiology of sustained man-hauling in Antarctica and contrasts this with the comparative ignorance about these issues around the turn of the 20th century. It closes by considering whether, with modern understanding about the effects of such a scenario on the human condition, Scott could have prepared and managed his team differently and so survived the epic 1,600-mile journey. The conclusion is that by carrying rations with a different composition of macromolecules, enabling greater calorific intake at similar overall weight, Scott might have secured the lives of some of the party, and it is also possible that enhanced levels of vitamin C in his rations, albeit difficult to achieve in 1911, could have significantly improved their survival chances. Nevertheless, even with today's knowledge, a repeat attempt at his expedition would by no means be bound to succeed.

  6. AGN feedback in the nucleus of M 51

    NASA Astrophysics Data System (ADS)

    Querejeta, M.; Schinnerer, E.; García-Burillo, S.; Bigiel, F.; Blanc, G. A.; Colombo, D.; Hughes, A.; Kreckel, K.; Leroy, A. K.; Meidt, S. E.; Meier, D. S.; Pety, J.; Sliwa, K.

    2016-10-01

    AGN feedback is invoked as one of the most relevant mechanisms that shape the evolution of galaxies. Our goal is to understand the interplay between AGN feedback and the interstellar medium in M 51, a nearby spiral galaxy with a modest AGN and a kpc-scale radio jet expanding through the disc of the galaxy. For this purpose, we combine molecular gas observations in the CO(1-0) and HCN(1-0) lines from the Plateau de Bure interferometer with archival radio, X-ray, and optical data. We show that there is a significant scarcity of CO emission in the ionisation cone, while molecular gas emission tends to accumulate towards the edges of the cone. The distribution and kinematics of CO and HCN line emission reveal AGN feedback effects out to r ~ 500 pc, covering the whole extent of the radio jet, with complex kinematics in the molecular gas which displays strong local variations. We propose that this is the result of the almost coplanar jet pushing on molecular gas in different directions as it expands; the effects are more pronounced in HCN than in CO emission, probably as the result of radiative shocks. Following previous interpretation of the redshifted molecular line in the central 5'' as caused by a molecular outflow, we estimate the outflow rates to be ṀH2 ~ 0.9 M⊙/ yr and Ṁdense ~ 0.6 M⊙/ yr, which are comparable to the molecular inflow rates (~1 M⊙/ yr); gas inflow and AGN feedback could be mutually regulated processes. The agreement with findings in other nearby radio galaxies suggests that this is not an isolated case, and is probably the paradigm of AGN feedback through radio jets, at least for galaxies hosting low-luminosity active nuclei. The reduced HCN(1-0) datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A118

  7. Do some AGN lack X-ray emission?

    NASA Astrophysics Data System (ADS)

    Simmonds, C.; Bauer, F. E.; Thuan, T. X.; Izotov, Y. I.; Stern, D.; Harrison, F. A.

    2016-12-01

    Context. Intermediate-mass black holes (IMBHs) are thought to be the seeds of early supermassive black holes (SMBHs). While ≳100 IMBH and small SMBH candidates have been identified in recent years, few have been robustly confirmed to date, leaving their number density in considerable doubt. Placing firmer constraints both on the methods used to identify and confirm IMBHs/SMBHs, as well as characterizing the range of host environments that IMBHs/SMBHs likely inhabit is therefore of considerable interest and importance. Additionally, finding significant numbers of IMBHs in metal-poor systems would be particularly intriguing, since such systems may represent local analogs of primordial galaxies, and therefore could provide clues of early accretion processes. Aims: Here we study in detail several candidate active galactic nuclei (AGN) found in metal-poor hosts. Methods: We utilize new X-ray and optical observations to characterize these metal-poor AGN candidates and compare them against known AGN luminosity relations and well-characterized IMBH/SMBH samples. Results: Despite having clear broad optical emission lines that are long-lived (≳10-13 yr), these candidate AGN appear to lack associated strong X-ray and hard UV emission, lying at least 1-2 dex off the known AGN correlations. If they are IMBHs/SMBHs, our constraints imply that they either are not actively accreting, their accretion disks are fully obscured along our line-of-sight, or their accretion disks are not producing characteristic high energy emission. Alternatively, if they are not AGN, then their luminous broad emission lines imply production by extreme stellar processes. The latter would have profound implications on the applicability of broad lines for mass estimates of massive black holes. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A64

  8. Constraining the properties of AGN host galaxies with spectral energy distribution modelling

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Charmandaris, V.; Georgakakis, A.; Bernhard, E.; Mitchell, P. D.; Buat, V.; Elbaz, D.; LeFloc'h, E.; Lacey, C. G.; Magdis, G. E.; Xilouris, M.

    2015-04-01

    Detailed studies of the spectral energy distribution (SED) of normal galaxies have increasingly been used to understand the physical mechanism dominating their integrated emission, mainly owing to the availability of high quality multi-wavelength data from the UV to the far-infrared (FIR). However, systems hosting dust-enshrouded nuclear starbursts and/or an accreting supermassive black hole (an active galactic nucleus or AGN) are especially challenging to study. This is due to the complex interplay between the heating by massive stars and the AGN, the absorption and emission of radiation from dust, as well as the presence of the underlying old stellar population. We used the latest release of CIGALE, a fast state-of-the-art galaxy SED-fitting model relying on energy balance, to study the influence of an AGN in a self consistent manner in estimating both the star formation rate (SFR) and stellar mass in galaxies, as well as to calculate the contribution of the AGN to the power output of the host. Using the semi-analytical galaxy formation model galform, we created a suite of mock galaxy SEDs using realistic star formation histories (SFH). We also added an AGN of Type-1, Type-2, or intermediate-type whose contribution to the bolometric luminosity can be variable. We performed an SED-fitting of these catalogues with CIGALE, assuming three different SFHs: a single-exponentially-decreasing (1τ-dec), a double-exponentially-decreasing (2τ-dec), and a delayed SFH. Constraining the overall contribution of an AGN to the total infrared luminosity (fracAGN) is very challenging for fracAGN< 20%, with uncertainties of ~5-30% for higher fractions depending on the AGN type, while FIR and sub-mm are essential. The AGN power has an impact on the estimation of M∗ in Type-1 and intermediate-type AGNs but has no effect on galaxies hosting Type-2 AGNs. We find that in the absence of AGN emission, the best estimates of M∗ are obtained using the 2τ-dec model but at the expense of

  9. THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNs AND AGN OUTFLOWS

    SciTech Connect

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-10

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18.

  10. The first experiment of accretion disc tomography in AGNs

    NASA Astrophysics Data System (ADS)

    Risaliti, Guido

    2011-10-01

    We propose four one-orbit observations of the AGN in NGC~1365, with the main aim of measuring the spectral variations during an eclipse. This source showed extraordinary variability in the past observations, indicating a high probability of catching an eclipse by a Compton-thick cloud in the proposed observation time. The differences in the shape of the iron broad emission line at different phases of the eclipse would be a decisive proof of the relativistic effects on this line due to the strong gravity and fast orbital motion of the inner part of the accretion disc. In addition to this unique experiment, the spectral complexity of NGC~1365 (with the highest S/N detection of iron absorption lines in AGNs) makes it the ideal target for a deep ``legacy'' observation.

  11. NGC 741: Mergers and AGN feedback at the group scale

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan

    2014-09-01

    While AGN and mergers are thought to play important roles in group and cluster evolution, their effects in galaxy groups are poorly understood. We propose to observe the NGC 741 group, which hosts both an old central radio galaxy, and a spectacular infalling head-tail source. Strongly-bent jets, a 100kpc radio trail and intriguing narrow X-ray filaments suggest that NGC 742 is moving trans-sonically, undergoing stripping and shock heating. NGC 741 possesses both an old, faint radio lobe and an X-ray cavity, whose inflating plasma may have unusual properties. We request Chandra and XMM observations of the group with the goal of examining the roles of the central AGN and infalling galaxy in heating the intra-group medium, and determining the origin of the intriguing X-ray filaments.

  12. Announcment: Conference on Obscured AGN Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Current deep surveys, notably in X-rays and the mid-IR, are making it possible to carry out a census of essentially all the luminous AGN in the Universe. By pene-trating the obscuration that, in Type 2 sources, hides the nuclear regions in the UV to the near-IR spectrum, these new surveys are finding the radio quiet coun-terparts of the powerful radio galaxies.

  13. The international AGN watch: A multiwavelength monitoring consortium

    NASA Technical Reports Server (NTRS)

    Alloin, D.; Clavel, J.; Peterson, B. M.; Reichert, G. A.; Stirpe, G. M.

    1994-01-01

    The International AGN Watch, an informal consortium of over 100 astronomers, was established to coordinate multiwavelength monitoring of a limited number of active galactic nuclei and thus obtain comprehensive continuum and emission-line variability data with unprecedented temporal and wavelength coverage. We summarize the principal scientific results from two completed space-based and ground-based campaigns on the Seyfert galaxies NGC 5548 and NGC 3783. We describe a project in progress and outline our future plans.

  14. The AGN Population and the Cosmic X-ray Background

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, C. Meg; Schawinski, Kevin

    2015-08-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (Lx~1044 erg/s) sources (Seyfert-type AGN), at z~0.5-1 and in heavily obscured but Compton-thin, NH~1023 cm-2, systems.However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. Using a combination of X-ray stacking and multi wavelength selection techniques we constrain the amount of black hole accretion as a function of cosmic history, from z~0 to z~6. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations.We finally investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~0 to z~3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth.

  15. Triggering star formation by both radiative and mechanical AGN feedback

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gan, Zhao-Ming; Xie, Fu-Guo

    2013-08-01

    We perform two dimensional hydrodynamic numerical simulations to study the positive active galactic nucleus (AGN) feedback which triggers, rather than suppresses, star formation. Recently, it was shown by Nayakshin et al. and Ishibashi et al. that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure, respectively. Mass outflow is ubiquitous in this astrophysical context, and radiation pressure is also important if the AGN is luminous. For the first time in this subject, we incorporate both mass outflow feedback and radiative feedback into our model. Consequently, the ISM is shocked into shells by the AGN feedback, and these shells soon fragment into clumps and filaments because of Rayleigh-Taylor and thermal instabilities. We have two major findings: (1) the star formation rate can indeed be very large in the clumps and filaments. However, the resultant star formation rate density is too large compared with previous works, which is mainly because we ignore the fact that most of the stars that are formed would be disrupted when they move away from the galactic center. (2) Although radiation pressure feedback has a limited effect, when mass outflow feedback is also included, they reinforce each other. Specifically, in the gas-poor case, mass outflow is always the dominant contributor to feedback.

  16. Compton Reflection in AGN with Simbol-X

    NASA Astrophysics Data System (ADS)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  17. Astrometric Evidence for a Population of Dislodged AGNs

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri V.; Frouard, Julien; Berghea, Ciprian T.; Rest, Armin; Chambers, Kenneth C.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.

    2017-02-01

    We investigate a sample of 2293 ICRF2 extragalactic radio-loud sources with accurate positions determined by VLBI, mostly active galactic nuclei (AGNs) and quasars, which are cross-matched with optical sources in the first Gaia release (Gaia DR1). The distribution of offsets between the VLBI sources and their optical counterparts is strongly non-Gaussian, with powerful wings extending beyond 1 arcsec. Limiting our analysis to only high-confidence difference detections, we find (and publish) a list of 188 objects with normalized variances above 12 and offsets below 1 arcsec. Pan-STARRS stacked and monochromatic images resolve some of these sources, indicating the presence of double sources, confusion sources, or pronounced extended structures. Some 89 high-quality objects, however, do not show any perturbations and appear to be star-like single sources, yet they are displaced by multiples of the expected error from the radio-loud AGN. We conclude that a fraction of luminous AGNs (more than 4%) can be physically dislodged from the optical centers of their parent galaxies.

  18. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  19. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    SciTech Connect

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Ramos, A. Asensio; Almeida, C. Ramos; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  20. VizieR Online Data Catalog: AGN from the RASS (Bade+, 1995)

    NASA Astrophysics Data System (ADS)

    Bade, N.; Fink, H. H.; Engels, D.; Voges, W.; Hagen, H.-J.; Wisotzki, L.; Reimers, D.

    1995-02-01

    This paper presents long slit CCD spectroscopy and X-ray data of 283 AGN detected in the ROSAT-All Sky Survey (RASS). Basis of the sample is the pre-identification of 4651 RASS sources on 134 sky fields (covering in total ~3500sq.deg.). The 283 presented AGN were selected from 1253 AGN candidates resulting from the pre-identification work. (3 data files).

  1. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2016-04-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of AGN evolution stretching back to z˜5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function - all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is demonstrated at z ≈0 and 0.9, and clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z. The results support the idea that there are at least two different modes of AGN triggering: one, at high luminosity, that only occurs in high mass, highly biased haloes, and one that can occur over a wide range of halo masses and leads to luminosities that are correlated with halo mass. This latter mode dominates at z<0.9. The CLFs for Type 2 and Type 1 AGNs are also constrained at z ≈0, and we find evidence that unobscured quasars are more likely to be found in higher mass halos than obscured quasars. Thus, the AGN unification model seems to fail at quasar luminosities.

  2. VizieR Online Data Catalog: Gamma-ray AGN type determination (Hassan+, 2013)

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Mirabal, N.; Contreras, J. L.; Oya, I.

    2013-11-01

    In this paper, we employ Support Vector Machines (SVMs) and Random Forest (RF) that embody two of the most robust supervised learning algorithms available today. We are interested in building classifiers that can distinguish between two AGN classes: BL Lacs and FSRQs. In the 2FGL, there is a total set of 1074 identified/associated AGN objects with the following labels: 'bzb' (BL Lacs), 'bzq' (FSRQs), 'agn' (other non-blazar AGN) and 'agu' (active galaxies of uncertain type). From this global set, we group the identified/associated blazars ('bzb' and 'bzq' labels) as the training/testing set of our algorithms. (2 data files).

  3. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  4. Investigating the host galaxies of luminous AGN in the local universe with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Husemann, Bernd; Close AGN Reference Survey; SAMI Galaxy Survey

    2017-01-01

    This thesis investigates how galaxies and their super massive black holes coevolve. We use integral field spectroscopy to search for evidence of AGN feedback and triggering. We demonstrate that outflows are ubiquitous among luminous local type 2 AGN using observations from the AAT's SPIRAL instrument. Using multiple component Gaussian emission line decomposition we are able to disentangle the kinematic and ionisation properties of these winds. This allows us to argue that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. We search for evidence of AGN triggering using data from The Close AGN Reference Survey (CARS). CARS aims to provide a detailed multi-wavelength view of 40 nearby (0.01 < z < 0.06) unobscured AGN to study the link between AGN and their host galaxies. The primary CARS observations come from the MUSE integral field unit on the VLT, and complementary multi-wavelength observations have been approved from SOFIA, Chandra, VLA, HST, and others. We compare the stellar kinematics of active galaxies from CARS to similar inactive galaxies. We then use kinemetry to estimate the degree of dynamical disturbance, to determine whether active nuclei are preferentially hosted in dynamically disturbed or merging systems. Finally, we highlight the discovery of an AGN that has changed spectral type not once, but twice. So called ‘changing look’ AGN are an uncommon phenomenon, but twice changed AGN are much rarer. This AGN first transitioned from a narrow line AGN (type 2) to a broad line AGN (type 1) in the 1980s. It was recently observed as part of CARS. Examination of the MUSE data for this particular source showed that it no longer had the spectral features typical of a type 1 AGN. The continuum emission from the accretion disk was no longer visible and the broad lines were dramatically diminished. In this talk we describe the possible reasons for this change, supported by analysis of multi-epoch optical photometry and

  5. Three years of Swift/BAT Survey of AGN: Reconciling Theory and Observations?

    SciTech Connect

    Burlon, D.; Ajello, M.; Greiner, J.; Comastri, A.; Merloni, A.; Gehrels, N.; /NASA, Goddard

    2011-02-07

    It is well accepted that unabsorbed as well as absorbed AGN are needed to explain the nature and the shape of the Cosmic X-ray background, even if the fraction of highly absorbed objects (dubbed Compton-thick sources) substantially still escapes detection. We derive and analyze the absorption distribution using a complete sample of AGN detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGN represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGN is 20{sub -6}{sup +9}%. We proved for the first time (also in the BAT band) that the anti-correlation of the fraction of absorbed AGN and luminosity it tightly connected to the different behavior of the luminosity functions (XLFs) of absorbed and unabsorbed AGN. This points towards a difference between the two subsamples of objects with absorbed AGN being, on average, intrinsically less luminous than unobscured ones. Moreover the XLFs show that the fraction of obscured AGN might also decrease at very low luminosity. This can be successfully interpreted in the framework of a disk cloud outflow scenario as the disappearance of the obscuring region below a critical luminosity. Our results are discussed in the framework of population synthesis models and the origin of the Cosmic X-ray Background.

  6. Photometric AGN reverberation mapping - an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities

    NASA Astrophysics Data System (ADS)

    Haas, M.; Chini, R.; Ramolla, M.; Pozo Nuñez, F.; Westhues, C.; Watermann, R.; Hoffmeister, V.; Murphy, M.

    2011-11-01

    Photometric reverberation mapping employs a wide band pass to measure the AGN continuum variations and a suitable narrow band to trace the echo of an emission line in the broad line region (BLR). The narrow band catches both the emission line and the underlying continuum, and one needs to extract the pure emission line light curve. We performed a test on two local AGNs, PG0003+199 and Ark120, by observing well-sampled broad- (B, V) and narrow-band light curves with the robotic 15 cm telescope VYSOS-6 on Cerro Armazones, Chile. We find that, as long as the emission line contributes 50% to the band pass, the pure emission line light curve can be reconstructed from photometric monitoring data so that the time lag τ can be measured. For both objects the lags are consistent with spectroscopic reverberation results. We calculated virial black hole masses in agreement with literature values, by combining the BLR size RBLR (τ) from photometric monitoring with the velocity dispersion of a single contemporaneous spectrum. Applying the flux variation gradient method, we estimate the host galaxy contribution in the apertures used and the host-subtracted restframe 5100 Å luminosity LAGN. Our LAGN differs significantly from previous estimates, placing both sources ~50% closer to the RBLR - LAGN relation. This suggests that the scatter in the current RBLR - LAGN relation is largely caused by uncertainties in RBLR due to undersampled light curves and by uncertainties in the host-subtracted AGN luminosities inferred so far. If the scatter can be reduced, then two quasar samples matching in RBLR should also match in intrinsic LAGN, independent of redshift, thus offering the prospect of probing cosmological models. Photometric reverberation mapping opens the door to efficiently measuring hundreds of BLR sizes and host-subtracted AGN luminosities even with small telescopes, but also routinely with upcoming large survey telescopes like the LSST.

  7. Fifty-year Amundsen-Scott South Pole station surface climatology

    NASA Astrophysics Data System (ADS)

    Lazzara, Matthew A.; Keller, Linda M.; Markle, Timothy; Gallagher, John

    2012-11-01

    Fifty-four years of Amundsen-Scott South Pole Station meteorological data have been analyzed to develop a comprehensive climatology from the station's meteorological observations. In reaching the goal of a full climatological analysis, a meteorological station history was required and a full quality control review of the data was conducted. Analysis of the general fifty-year climate is presented for temperature, pressure, wind speed and wind direction along with averages (means), extremes and records, daily ranges, trends and discontinuities. Additional investigations include how often the temperature reaches - 100 °F and changes in the flying season as seen via acceptable temperatures. The analysis found slight decreases in the temperature and pressure over the 1957-2010 time period that are not statistically significant. The wind speed, however, does show a significant downward trend of 0.28 m s- 1 decade- 1 over the same period. The seasonal time series of temperature and pressure illustrate how longer term oscillations are superimposed on shorter-term fluctuations. The seasonal mean wind speed over the 54 year period shows a consistent pattern of decreasing speed for all seasons. In contrast to the mean wind speeds, the maximum wind speeds are increasing for the summer and transition seasons, and the increases are statistically significant. Finally, for the period 1983-2010, the average annual snow accumulation is decreasing at a statistically significant downward rate of - 2.9 mm year- 1.

  8. Observations of chlorine monoxide over Scott Base, Antarctica, during the ozone hole, 1996-2005

    USGS Publications Warehouse

    Connor, Brian; Solomon, Philip; Barrett, James; Mooney, Thomas; Parrish, Alan

    2007-01-01

    We report observations of chlorine monoxide, ClO, in the lower stratosphere, made from Scott Base (77.85º S, 166.77º E) in springtime during each year, 1996-2005. The ClO amounts in the atmosphere are retrieved from remote measurements of microwave emission spectra. ClO column densities of up to about 2.5 × 1015 cm-2 are recorded during September, when chlorine is present in chemically active forms due to reactions on the surface of Polar Stratospheric Cloud (PSC) particles. Maximum mixing ratios of ClO are approximately 2 ppbv. The annual average of ClO column density during the activation period is anticorrelated with similar averages of ozone column measured at nearby Arrival Heights, with correlation coefficient of –0.81, and with averages of ozone mass integrated over the entire polar region, with similar correlation coefficients. There was a substantial decrease in ClO amounts during 2002-2004. There has been no systematic change in the timing of chlorine deactivation attributable to secular change in the Antarctic vortex

  9. Methods on handling missing rainfall data with Neyman-Scott rectangular pulse modeling

    NASA Astrophysics Data System (ADS)

    Yendra, Rado; Jemain, Abdul Aziz; Zahari, Marina; Wan Zin, Wan Zawiah

    2013-04-01

    Rainfall data from rain-gauge stations suffers the risk of being missing due to factors such as human negligence, faulty equipment and disasters. In this paper, complete monthly rainfall data from 1985 to 1992 in Payakangsar station is used as the base data to determine the appropriate method for handling missing data. A portion of this complete data is then omitted at random by as much as 5%, 10% and 15% of the total number of data. Three methods of missing data replacement are considered that is, replacement of the missing data with zero (NR), single imputation (SI) and multiple imputation (MI) methods. The Neyman-Scott Rectangular Pulse (NSRP) rainfall stochastic model is then fitted to the resulting data from these three methods. Data from the month of October and November are selected for further analysis as these two months represent the months with highest rainfall amount received. To assess the performance of these three methods, a goodness-of-fit test based on the mean absolute error is applied. Results from the goodness-of-fit test indicate that NR method is the best for each case of missing data in the month of October, and also for the 5% case in November. On the other hand, method of imputation with 4 stages (MI) is superior for cases of 10% and 15% in November.

  10. Review of behavioral health integration in primary care at Baylor Scott and White Healthcare, Central Region

    PubMed Central

    Fluet, Norman R.; Reis, Michael D.; Stern, Charles H.; Thompson, Alexander W.; Jolly, Gillian A.

    2016-01-01

    The integration of behavioral health services in primary care has been referred to in many ways, but ultimately refers to common structures and processes. Behavioral health is integrated into primary care because it increases the effectiveness and efficiency of providing care and reduces costs in the care of primary care patients. Reimbursement is one factor, if not the main factor, that determines the level of integration that can be achieved. The federal health reform agenda supports changes that will eventually permit behavioral health to be fully integrated and will allow the health of the population to be the primary target of intervention. In an effort to develop more integrated services at Baylor Scott and White Healthcare, models of integration are reviewed and the advantages and disadvantages of each model are discussed. Recommendations to increase integration include adopting a disease management model with care management, planned guideline-based stepped care, follow-up, and treatment monitoring. Population-based interventions can be completed at the pace of the development of alternative reimbursement methods. The program should be based upon patient-centered medical home standards, and research is needed throughout the program development process. PMID:27034543

  11. STS-103 Pilot Scott Kelly and MS John Grunsfeld try on oxygen masks

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  12. Environmental Assessment of the Beddown of C-9C and C-40C Aircraft at Scott AFB, Illinois

    DTIC Science & Technology

    2005-08-01

    information if it does not display a currently valid OMB control number. 1. REPORT DATE AUG 2005 2. REPORT TYPE 3 . DATES COVERED 00-00-2005 to 00-00...within the legal authority of USAF. 3 ENVIRONMENTAL ASSESSMENT OF THE BEDDOWN OF C-9C AND C-40C AIRCRAFT AT SCOTT AFB, ILLINOIS...1-1 1.3 Summary of Key Environmental Compliance Requirements ................................................1- 3 1.3.1 National

  13. The McAndrews Leadership Lecture: February 2015, by Dr Scott Haldeman. Challenges of the Past, Challenges of the Present

    PubMed Central

    Haldeman, Scott; McAndrews, George P.; Goertz, Christine; Sportelli, Louis; Hamm, Anthony W.; Johnson, Claire

    2015-01-01

    The McAndrews Leadership Lecture was developed by the American Chiropractic Association to honor the legacy of Jerome F. McAndrews, DC, and George P. McAndrews, JD, and their contributions to the chiropractic profession. This article is a transcription of the presentation made by Dr Scott Haldeman on February 28, 2015, in Washington, DC, at the National Chiropractic Leadership Conference. PMID:26770177

  14. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    NASA Astrophysics Data System (ADS)

    Ballantyne, David R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z~5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z≈0 and 0.9 using the limited data that is currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z≈0.9 quasars may be commonly hosted by haloes with Mh ~ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGNs of different luminosities in cosmological simulations.

  15. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.

    2016-06-01

    We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.

  16. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS

    NASA Astrophysics Data System (ADS)

    Weston, Madalyn E.; McIntosh, Daniel H.; Brodwin, Mark; Mann, Justin; Cooper, Andrew; McConnell, Adam; Nielsen, Jennifer L.

    2017-02-01

    We use the Wide-field Infrared Survey Explorer (WISE) and the Sloan Digital Sky Survey (SDSS) to confirm a connection between dust-obscured active galactic nuclei (AGNs) and galaxy merging. Using a new, volume-limited (z ≤ 0.08) catalogue of visually selected major mergers and galaxy-galaxy interactions from the SDSS, with stellar masses above 2 × 1010 M⊙, we find that major mergers (interactions) are 5-17 (3-5) times more likely to have red [3.4] - [4.6] colours associated with dust-obscured or `dusty' AGNs, compared to non-merging galaxies with similar masses. Using published fibre spectral diagnostics, we map the [3.4] - [4.6] versus [4.6] - [12] colours of different emission-line galaxies and find that one-quarter of Seyferts have colours indicative of a dusty AGN. We find that AGNs are five times more likely to be obscured when hosted by a merging galaxy, half of AGNs hosted by a merger are dusty, and we find no enhanced frequency of optical AGNs in merging over non-merging galaxies. We conclude that undetected AGNs missed at shorter wavelengths are at the heart of the ongoing AGN-merger connection debate. The vast majority of mergers hosting dusty AGNs are star forming and located at the centres of Mhalo < 1013 M⊙ groups. Assuming plausibly short-duration dusty-AGN phases, we speculate that a large fraction of gas-rich mergers experience a brief obscured AGN phase, in agreement with the strong connection between central star formation and black hole growth seen in merger simulations.

  17. The Transantarctic Mountains between South Pole and Scott Glacier area: a geophysical perspective

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Bell, R. E.; Buck, W.

    2005-12-01

    The Transantarctic Mountains and associated West Antarctic rift system are among the most enigmatic tectonic regions on Earth and many aspects of their formation remain controversial or little understood. The difficulty to resolve the controversies is mainly related to a gap in the onland geologic record of the uplift and exhumation history between the extrusion of the Jurassic Kirkpatrik Basalts (~180 Ma) and the Eocene glacial sediments (~34 Ma) in the Ross Embayment. Furthermore, the geologic footprint of the mountains inland of the Transantarctic Mountains has not yet been sampled because of the ice cover and geophysical data coverage is sparse. In order to better constrain the tectonic and geologic framework aerogeophysical remote sensing of the hinterland is a crucial step forward. The aerogeophysical data set presented here is part of a project to study variations in crustal architecture along the Transantarctic Mountains along two aerogeophysical transects. The aeromagnetic anomaly field is generally very smooth. Over the Transantarctic Mountains, the anomaly field shows several small (tens of kilometers) positive amplitudes that can be correlated with known rock outcrops of Granite Harbour Intrusives. Source depth estimates, using multiple-source Werner deconvolution, indicate shallow sources for the Granite Habour Intrusives. The typical pattern of short-wavelength and high amplitude anomalies caused by the Jurassic Ferrar doleritic dykes and sills along the TAM is absent. A comparision with an aeromagnetic transect in Southern Victoria Land shows that there are no or little Ferrar rocks in the Scott Glacier area. We have also mapped several geologic contacts, often fault related, by multiple-source Werner deconvolution of the magnetic data. We used gravity data to constrain the crustal thickness variations along a transect parallel to 150 °W.

  18. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods.

    PubMed Central

    Hughey, V L; Wilger, P A; Johnson, E A

    1989-01-01

    Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2494938

  19. On the relation between X-ray absorption and optical extinction in AGN

    NASA Astrophysics Data System (ADS)

    Ordovás-Pascual, I.; Mateos, S.; Carrera, F. J.; Wiersema, K.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.; Moretti, A.; Ballo, L.

    2017-03-01

    According to the Unified Model of Active Galactic Nuclei (AGN), an X-ray unabsorbed AGN should appear as unobscured in the optical band (the so called type-1 AGN). However, there is an important fraction (10–30%) of AGN whose optical and X-ray classifications do not match. To provide insight into the origin of such apparent discrepancies, we have conducted two types of analysis: 1) a detailed study of the UV-to-near-IR emission of two X-ray low absorbed AGN with high optical extinction drawn from the Bright Ultra-Hard XMM-Newton Survey (BUXS); 2) a statistical analysis of the optical obscuration and X-ray absorption properties of 159 type-1 AGN drawn from BUXS to determine the distribution of dust-to-gas ratios in AGN over a broad range of luminosities and redshifts. We have determined the impact of contamination from the AGN hosts in their optical classification (detection or lack of detection of rest-frame UV-optical broad emission lines). This is an on-going project, but our preliminary results, reported below, are very promising.

  20. Hard X-ray Spectroscopy of Obscured AGN with NuSTAR

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR Extragalactic Surveys Team

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the hard X-ray band, up to 79 keV, with unprecedented spatial resolution and sensitivity. As a part of its extragalactic program, NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT), selecting even the most obscured local AGN. I will highlight some of the results based on broadband X-ray spectroscopy of individual targets and present my work on the large representative sample of more than a hundred nearby obscured AGN, which constitutes the largest available atlas of hard X-ray spectra of obscured AGN to date. The high quality of the data allows us to probe the details of AGN structures such as the X-ray-emitting corona and the toroidal obscurer in the under-explored spectral window above 10 keV. I will present both phenomenological results important for synthesis models of the cosmic X-ray background, and a novel approach for constraining the geometry of the gas surrounding the supermassive black hole (including the accretion disk, the broad-line region, and the torus) from the hard X-ray band. Finally, I will discuss how what we learned from this survey of local AGN relates to deeper high-redshift X-ray surveys and AGN structure probes at other wavelengths.

  1. Unravelling the Complex Structure of AGN-driven Outflows. II. Photoionization and Energetics

    NASA Astrophysics Data System (ADS)

    Karouzos, Marios; Woo, Jong-Hak; Bae, Hyun-Jin

    2016-12-01

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local (z < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  2. Submillimetre observations of WISE-selected high-redshift, luminous AGN and their surrounding overdense environments

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.

    2016-08-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 10 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and 30 that have also been detected by the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs). Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 3-5, but no sign of radial clustering centred at our primary objects. The WISE-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets have total IR luminosities ≥1013 L⊙, with known redshifts of 20 targets between z ˜ 0.44-4.6.

  3. A Search for AGN Intra-Day Variability with KVN

    NASA Astrophysics Data System (ADS)

    Lee, Taeseok; Trippe, Sascha; Oh, Junghwan; Byun, Do-Young; Sohn, Bong-Won; Lee, Sang-Sung

    2015-10-01

    Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible existence of a shortest characteristic time scale of activity and the shape of the high frequency end of AGN power spectra, still exists. We present the results of AGN single-dish fast photometry performed with the Korean VLBI Network (KVN). Observations were done in a "anti-correlated" mode using two antennas, with always at least one antenna pointing at the target. This results in an effective time resolution of less than three minutes. We used all four KVN frequencies, 22, 43, 86, and 129 GHz, in order to trace spectral variability, if any. We were able to derive high-quality light curves for 3C 111, 3C 454.3, and BL Lacertae at 22 and 43 GHz, and for 3C 279 at 86 GHz, between May 2012 and April 2013. We performed a detailed statistical analysis in order to assess the levels of variability and the corresponding upper limits. We found upper limits on flux variability ranging from ∼1.6% to ∼7.6%. The upper limits on the derived brightness temperatures exceed the inverse Compton limit by three to six orders of magnitude. From our results, plus comparison with data obtained by the University of Michigan Radio Astronomy Observatory, we conclude that we have not detected source-intrinsic variability which would have to occur at sub-per cent levels.

  4. Relativistic HD and MHD modelling for AGN jets

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  5. The view of AGN-host alignment via reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Parker, Michael L.; Reynolds, Christopher S.; Fabian, Andrew C.; Lohfink, Anne M.

    2016-04-01

    The fuelling of active galactic nuclei (AGN) - via material propagated through the galactic disc or via minor mergers - is expected to leave an imprint on the alignment of the sub-pc disc relative to the host galaxy's stellar disc. Determining the inclination of the inner disc usually relies on the launching angle of the jet; here instead we use the inclination derived from reflection fits to a sample of AGN. We determine the distorting effect of unmodelled Fe XXV/XXVI features and, via extensive simulations, determine the difference in disc inclination resulting from the use of RELXILL compared to REFLIONX. We compare inner disc inclinations to those for the host galaxy stellar disc derived from the Hubble formula and, via Monte Carlo simulations, find a strong lack of a correlation (at ≫5σ) implying either widespread feeding via mergers if we assume the sample to be homogeneous, or that radiative disc warps are distorting our view of the emission. However, we find that by removing a small (˜1/5) subset of AGN, the remaining sample is consistent with random sampling of an underlying 1:1 correlation (at the 3σ level). A heterogenous sample would likely imply that our view is not dominated by radiative disc warps but instead by different feeding mechanisms with the majority consistent with coplanar accretion (although this may be the result of selection bias), whilst a smaller but not insignificant fraction may have been fuelled by minor mergers in the recent history of the host galaxy.

  6. The AGN Jet Model of the Fermi Bubbles

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2017-01-01

    The nature and origin of the Fermi bubbles detected in the inner Galaxy remain elusive. In this paper, we briefly discuss some recent theoretical and observational developments, with a focus on the AGN jet model. Analogous to radio lobes observed in massive galaxies, the Fermi bubbles could be naturally produced by a pair of opposing jets emanating nearly along the Galaxy's rotation axis from the Galactic center. Our two-fluid hydrodynamic simulations reproduce quite well the bubble location and shape, and interface instabilities at the bubble surface could be effectively suppressed by shear viscosity. We briefly comment on some potential issues related to our model, which may lead to future progress.

  7. Characterizing X-ray Variability Processes in AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2006-07-01

    We comment on searches for characteristic X-ray variability time- scales in the red-noise light curves of Active Galactic Nuclei (AGN). Methods for identification of such features and determining their statistical significance are discussed. Pros and cons of two common tools, the power spectral density function (PSD) and the structure function (SF), are reviewed. Caveats associated with identification of quasi-periodic oscillations (QPOs) in the presence of red-noise variability are also discussed. A central point of this paper is to make all readers aware that there already exist good references out there for determining the statistical significance of claims of characteristic variability time scales.

  8. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  9. Optically Elusive AGN in the 3XMM Catalog and the Chandra-COSMOS field

    NASA Astrophysics Data System (ADS)

    Pons, Estelle; Watson, Mike; Elvis, Martin; Civano, Francesca M.

    2015-01-01

    'Optically elusive AGN' are powerful X-ray sources (LHX > 1042 erg/s), but are not detected as AGN in the optical. Pons and Watson (2014) showed that in XMM these AGNs are a mix of Narrow Line Seyfert 1s, True Seyfert 2's and weak Seyfert 2s. The nature of these objects, coming from the cross-match of 3XMM with the SDSS-DR9 spectroscopic catalog, has been investigated through a detailed analysis of their IR/optical and X-ray properties. The fainter Chandra-COSMOS field should be rich in optically elusive AGNs as ¾ of the AGNs there are narrow-lined. There are ~850 Chandra-COSMOS galaxy spectra, mainly from five different telescopes (SDSS, Magellan, MMT, VLT and Keck). To find optically elusive objects, we investigate the optical classification using emission line diagnostic diagrams. For low redshift galaxies (z~<0.7) the standard BPT diagram ([OIII

  10. A complete hard X-ray selected sample of local, luminous AGNs

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard; Davies, Ric; Lin, Ming-yi; Orban de Xivry, Gilles; Rosario, David

    2016-08-01

    Choosing a very well defined sample is essential for studying the AGN phenomenon. Only the most luminous AGNs can be expected to require a coherent feeding mechanism to sustain their activity and since host galaxy properties and AGN activity are essentially uncorrelated, nuclear scales must be resolved in order to shed light on the feeding mechanisms of AGNs. For these reasons we are compiling a sample of the most powerful, local AGNs. In this talk we present our on-going programme to observe a complete volume limited sample of nearby active galaxies selected by their 14-195 keV luminosity, and outline its rationale for studying the mechanisms regulating gas inflow and outflow.

  11. Type-II AGN population from the zCOSMOS survey

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Mignoli, M.; Zamorani, G.; Zcosmos Team

    2008-10-01

    I'll present the first results on the type-II AGN population isolated from the zCOSMOS bright sample which consists of 10k sources, purely magnitude selected at I=22.5. The selected type-II AGN sample consists of about 200 AGN, selected using the diagnostic diagrams up to redshift ~1.0. I'll present the properties of this sample (i.e. SED and morphology) and some preliminary results on the evolution of type-II AGN, as well as on the evolution of their fraction with respect to the total AGN population (Type-I + Type-II), as a function of both luminosity and redshift.

  12. PRIMUS: The Dependence of AGN Accretion on Host Stellar Mass and Color

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison L.; Moustakas, John; Blanton, Michael R.; Burles, Scott M.; Cool, Richard J.; Eisenstein, Daniel J.; Smith, M. Stephen M.; Wong, Kenneth C.; Zhu, Guangtun

    2012-02-01

    We present evidence that the incidence of active galactic nuclei (AGNs) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS, and ELAIS-S1) with redshifts from the Prism Multi-object Survey to identify 242 AGNs with L 2-10 keV = 1042-44 erg s-1 within a parent sample of ~25,000 galaxies at 0.2 < z < 1.0 over ~3.4 deg2 and to i ~ 23. We find that although the fraction of galaxies hosting an AGN at fixed X-ray luminosity rises strongly with stellar mass, the distribution of X-ray luminosities is independent of mass. Furthermore, we show that the probability that a galaxy will host an AGN can be defined by a universal Eddington ratio distribution that is independent of the host galaxy stellar mass and has a power-law shape with slope -0.65. These results demonstrate that AGNs are prevalent at all stellar masses in the range 9.5 and that the same physical processes regulate AGN activity in all galaxies in this stellar mass range. While a higher AGN fraction may be observed in massive galaxies, this is a selection effect related to the underlying Eddington ratio distribution. We also find that the AGN fraction drops rapidly between z ~ 1 and the present day and is moderately enhanced (factor ~2) in galaxies with blue or green optical colors. Consequently, while AGN activity and star formation appear to be globally correlated, we do not find evidence that the presence of an AGN is related to the quenching of star formation or the color transformation of galaxies.

  13. A Herschel Study of 24 μμm-Selected AGNs and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Pereira, M. J.; Haines, C. P.; Smith, G. P.

    2015-08-01

    We present a sample of 290 24 μm-selected active galactic nuclei (AGNs) mostly at z ˜ 0.3-2.5, within 5.2 {{deg}}2 distributed as 25\\prime × 25\\prime fields around each of 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is nearly complete to 1 mJy at 24 μm, and has a rich multiwavelength set of ancillary data; 162 are detected by Herschel. We use spectral templates for AGNs, stellar populations, and infrared (IR) emission by star-forming galaxies to decompose the spectral energy distributions (SEDs) of these AGNs and their host galaxies, and estimate their star formation rates, AGN luminosities, and host galaxy stellar masses. The set of templates is relatively simple: a standard Type-1 quasar template; another for the photospheric output of the stellar population; and a far-infrared star-forming template. For the Type-2 AGN SEDs, we substitute templates including internal obscuration, and some Type-1 objects require a warm component (T≳ 50 K). The individually Herschel-detected Type-1 AGNs and a subset of 17 Type-2 AGNs typically have luminosities \\gt {10}45 {ergs} {{{s}}}-1, and supermassive black holes of ˜ 3× {10}8 {M}⊙ emitting at ˜10% of the Eddington rate. We find them in about twice the numbers of AGNs identified in SDSS data in the same fields, i.e., they represent typical high-luminosity AGNs, not an IR-selected minority. These AGNs and their host galaxies are studied further in an accompanying paper.

  14. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    SciTech Connect

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M.; Moustakas, John; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu Guangtun

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  15. 'Harder when Brighter' Spectral Variability in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Connolly, S.; McHardy, I.; Skipper, C.; Dwelly, T.

    2015-07-01

    We present X-ray spectral variability of four low accretion rate AGN - M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the `softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely main source of spectral variability is found to be luminosity-dependent changes in the photon index of the power law component. An anticorrelation between the photon index and the count rate is found in all of the sources. The anticorrelation is likely to be caused by accretion via a radiatively-inefficient accretion flow, expected in low-Eddington ratio systems such as these, and/or due to the presence of a jet. This behaviour is similar to that seen in the `hard state' of X-ray binaries, implying that these LLAGN are in a similar state.

  16. The faint radio AGN population in the spotlight

    NASA Astrophysics Data System (ADS)

    Herrera Ruiz, Noelia; Middelberg, Enno

    2016-08-01

    To determine the AGN component in the faint radio population is fundamental in galaxy evolution studies. A relatively easy and direct way to determine which galaxies do have a radio-active AGN is a detection using the Very Long Baseline Interferometry (VLBI) technique. The goal of this project is to study with statistically relevant numbers the faint radio source population using VLBI observations. To achieve this goal, the project is divided into two parts. In the first part, we have observed ~3000 radio sources in the COSMOS extragalactic field with the Very Long Baseline Array (VLBA) at 1.4GHz. We have detected 468 sources. In the second part, we have observed ~200 radio sources in the COSMOS field with extremely high sensitivity using the VLBA together with the Green Bank Telescope (GBT) at 1.4GHz, to explore an even fainter population in the flux density regime of tens of uJy. We are currently calibrating this data. In this overview I will present the survey design, observations, and calibration, along with some first results.

  17. Simulations of the OzDES AGN reverberation mapping project

    SciTech Connect

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; Banerji, Manda; McMahon, Richard; Sharp, Rob; Lidman, C.

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrain the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.

  18. XMM-Newton, powerful AGN winds and galaxy feedback

    NASA Astrophysics Data System (ADS)

    Pounds, K.; King, A.

    2016-06-01

    The discovery that ultra-fast ionized winds - sufficiently powerful to disrupt growth of the host galaxy - are a common feature of luminous AGN is major scientific breakthrough led by XMM-Newton. An extended observation in 2014 of the prototype UFO, PG1211+143, has revealed an unusually complex outflow, with distinct and persisting velocities detected in both hard and soft X-ray spectra. While the general properties of UFOs are consistent with being launched - at the local escape velocity - from the inner disc where the accretion rate is modestly super-Eddington (King and Pounds, Ann Rev Astron Astro- phys 2015), these more complex flows have raised questions about the outflow geometry and the importance of shocks and enhanced cooling. XMM-Newton seems likely to remain the best Observatory to study UFOs prior to Athena, and further extended observations, of PG1211+143 and other bright AGN, have the exciting potential to establish the typical wind dynamics, while providing new insights on the accretion geometry and continuum source structure. An emphasis on such large, coordinated observing programmes with XMM-Newton over the next decade will continue the successful philosophy pioneered by EXOSAT, while helping to inform the optimum planning for Athena

  19. AGN-Induced Cavities in NGC 1399 And NGC 4649

    SciTech Connect

    Shurkin, K.; Dunn, R.J.H.; Gentile, G.; Taylor, G.B.; Allen, S.W.; /KIPAC, Menlo Park

    2007-11-14

    We present an analysis of archival Chandra and VLA observations of the E0 galaxy NGC1399 and the E2 galaxy NGC4649 in which we investigate cavities in the surrounding X-ray emitting medium caused by the central AGN. We calculate the jet power required for the AGN to evacuate these cavities and find values of {approx} 8x10{sup 41} erg s-1 and {approx} 14x10{sup 41} erg s{sup -1} for the lobes of NGC1399 and {approx} 7x10{sup 41} erg s{sup -1} and {approx} 6x1041 erg s{sup -1} for those of NGC4649. We also calculate the k/f values for each cavity, where k is the ratio of the total particle energy to that of electrons radiating in the range of 10 MHz to 10 GHz, and f is the volume filling factor of the plasma in the cavity. We find that the values of k/f for the lobes of NGC1399 are {approx} 93 and {approx} 190, and those of the lobes of NGC4649 are {approx} 15000 and {approx} 12000. We conclude that the assumed spectrum describes the electron distribution in the lobes of NGC1399 reasonably well, and that there are few entrained particles. For NGC4649, either there are many entrained particles or the model spectrum does not accurately describe the population of electrons.

  20. An AGN Identification for 3EG J2006-2321

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.; Halpern, J. P.; Magalhaes, A. M.; Thompson, D. J.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present a multiwavelength analysis of the high-energy gamma-ray source 3EG J2006-2321 (l = 18 deg.82, b = -26 deg.26). The flux of this source above 100 MeV is shown to be variable on time scales of days and months. Optical observations and careful examination of archived radio data indicate that its most probable identification is with PMN J2005-2310, a flat-spectrum radio quasar with a 5GHz flux density of 260 mJy. Study of the V = 19.3 optical counterpart indicates a redshift of 0.833 and variable linear polarization. No X-ray source has been detected near the position of PMN J2005-2310, but an X-ray upper limit is derived from ROSAT data. This upper limit provides for a spectral energy distribution with global characteristics similar to those of known gamma-ray blazars. Taken together, these data indicate that 3EG J2006-2321, listed as unidentified in the 3rd EGRET Catalog, is a member of the blazar class of AGN. The 5-GHz radio flux density of this blazar is the lowest of the 68 EGRET-detected AGN. The fact that EGRET has detected such a source has implications for unidentified EGRET sources, particularly those at high latitudes (absolute value of b greater than 30 deg), many of which may be blazars.

  1. College Readiness

    ERIC Educational Resources Information Center

    Chapa, Marisa; Galvan-De Leon, Vanessa; Solis, Judith; Mundy, Marie-Anne

    2014-01-01

    During the 79th Texas Legislature, the bill "Advancement of College Readiness in Curriculum" was passed (THECB). As a response to this, high schools and colleges have combined forming an early college high school. The result of this union was a program that condensed the time it took to complete both the high school diploma and up to two…

  2. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. I. Very Large Array Detections of Dual AGNs and AGN Outflows

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-01

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18. Based on observations at the NRAO Karl G. Jansky VLA (program 12A-103).

  3. Analysis of Background Seismic Noise Recorded at the Amundsen-Scott South Pole Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Aster, R.; Beaudoin, B. C.; Butler, R.

    2006-12-01

    A small array of high frequency seismometers was recently placed around the Amundsen-Scott South Pole Station in order to characterize seismic noise generated by the station during operations. This week long experiment, titled, "South Pole Analysis of Machines" or SPAM was conducted in January of 2006 using equipment provided by IRIS PASSCAL to sample the high frequency noise sources generated at the NSF's research base. These data will be correlated to those observed at the ultra quiet GSN seismic station (QSPA) located 5 miles from the base. The purpose of the experiment is to show that although the QSPA sensors are 5 miles away and nearly 1000 feet deep in the ice, there is still a risk of contamination of the signals by cultural noise from the South Pole research base. A Quiet Sector was established around the QSPA station in order to minimize vibrational noise sources, but there is interest in moving some experiments out into the Quiet Sector. Characterizing the noise sources will help us determine the potential reduction in data quality expected at the QSPA station as experiments move closer to the site. Sensors were placed next to the power generators, aircraft taxiway, large antenna towers, as well as at the base of the new station itself. Sensors were also placed between the research base and the QSPA station to get an idea of the propagation of the noise toward the QSPA station. Several high frequency noise sources are clearly seen on all array elements with a number of very clear spectral lines above 1 Hz. These are primarily associated with snow moving tractors and power generators. Smaller signals are seen that may be related to wind loading on the new South Pole elevated station along with harmonics that appear to be correlated with large air handling equipment in the station. Also evident are air operations with landings, takeoffs, taxi and idling C-130's evident. Although greatly attenuated, almost all of these signals are observed at the QSPA

  4. The ``entropy floor'' is porous - remarks on the coexistence of star formation and kinetic AGN feedback

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.

    2014-07-01

    We discuss the morphology of star forming clouds and filaments in the central (<~ 50 kpc) regions of 16 low redshift (z<0.3) cool core brightest cluster galaxies (BCGs). The sample spans decades-wide ranges of X-ray mass deposition and star formation rates as well as active galactic nucleus (AGN) mechanical power, encompassing both high and low extremes of the supposed intracluster medium (ICM) cooling and AGN heating feedback cycle. Amid evidence that the gas fueling both star formation and AGN activity has condensed from the hot atmosphere, we present new and archival Hubble Space Telescope (HST) images of far ultraviolet (FUV) continuum emission directly associated with young stars, acting as a calorimeter for the degree to which the suppression of star formation by AGN mechanical feedback may be spatially or temporally inefficient. We discuss evidence for temporal and possibly cyclical variation in star formation rate, wherein elevated cooling episodes are permitted when AGN feedback is in a low-power state, and vice-versa. Several sources exhibit strong morphological evidence that low levels of star formation can survive and may indeed be triggered by the passage of a propagating radio source. We conclude by discussing the apparent coexistence of feedback and star formation. If AGN mechanical power does establish an ``entropy floor'', this floor must be porous, or raise and lower as the AGN varies in power.

  5. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  6. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  7. Towards an understanding of the Radio-mode AGN Feedback at higher redshifts

    NASA Astrophysics Data System (ADS)

    Bîrzan, Laura

    2015-08-01

    Direct evidence for feedback by active galactic nuclei (AGN) on the intra-cluster medium (ICM) of nearby groups and clusters has been provided by Chandra X-ray images. They show that the radio lobes emitted by the AGN create cavities in the hot cluster atmosphere, whichaffects the cooling gas that leads to star formation and galaxy growth and allow a direct measurement of the bulk of the AGN's power. Consequently, AGN feedback is now recognized as a necessary ingredient for galaxy formation models to prevent overcooling in massive halos. It is therefore important to study AGN feedback at redshifts where clusters are known to form (z ~ 1) and AGN feedback is predicted to regulate star formation in the most massive galaxies. Together with radio data, the cavities allow us to derive scaling relations that can be used to estimate the AGN feedback power using only radio data. I will review the importance of such relations for extending current studies of feedback with new and upcoming radio telescopes such as LOFAR and SKA, and I will present preliminary results from deep low-frequency LOFAR observations of the NEP field to understand if the local cooling-to-heating balance and the corresponding scaling relations (between jet power and radio luminosity) hold at these redshifts (z > 0.5).

  8. Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Groves, Brent; Kewley, Lisa J.; Dopita, Michael A.; Hampton, Elise J.; Shastri, Prajval; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-10-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.

  9. AGN Clustering in the Local Universe: An Unbiased Picture from Swift-BAT

    SciTech Connect

    Cappelluti, N.; Ajello, M.; Burlon, D.; Krumpe, M.; Miyaji, T.; Bonoli, S.; Greiner, J.; /Garching, Max Planck Inst., MPE

    2011-08-11

    We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-correlation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r{sub 0} = 5.56{sup +0.49}{sub -0.43} Mpc/h and a slope {gamma} = 1.64{sup -0.08}{sub -0.07}. We also measured the auto-correlation function of Tyep I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are {approx} log(M{sub DMH) {approx} 12-14 h{sup -1}M/M{sub {circle_dot}} which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime {tau}{sub AGN} {approx}0.7 Gyr, it is powered by SMBH with mass M{sub BH} {approx}1-10x10{sup 8} M{sub {circle_dot}} and accreting with very low efficiency, log({epsilon}){approx}-2.0>. We also conclude that local AGN galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10{sup 10} h{sup -1}M{sub {circle_dot}}. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement.

  10. Submillimetre observations of WISE/radio-selected AGN and their environments

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.; Blain, Andrew W.; Lonsdale, Carol; Condon, James; Farrah, Duncan; Stern, Daniel; Tsai, Chao-Wei; Assef, Roberto J.; Bridge, Carrie; Kimball, Amy; Lacy, Mark; Eisenhardt, Peter; Wu, Jingwen; Jarrett, Tom

    2015-04-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 30 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected jointly by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs) and compact radio counterparts. Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. These galaxies appear to be consistent with a later AGN-dominated phase of merging galaxies, while hot, dust-obscured galaxies are an earlier starburst-dominated phase. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 5, but no sign of radial clustering centred at our primary objects. The WISE/radio-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE/radio-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets are not detected, only four targets are detected at SCUBA-2 850 μm, and have total IR luminosities ≥1013 L⊙, if their redshifts are consistent with the subset of the 10 SCUBA-2 undetected targets with known redshifts, z ˜ 0.44-2.86.

  11. X-ray selected AGN in groups at redshifts z ~ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Gerke, Brian F.; Nandra, K.; Laird, E. S.; Coil, A. L.; Cooper, M. C.; Newman, J. A.

    2008-11-01

    We explore the role of the group environment in the evolution of active galactic nuclei (AGN) at the redshift interval 0.7 < z < 1.4, by combining deep Chandra observations with extensive optical spectroscopy from the All-wavelength Extended Groth strip International Survey (AEGIS). The sample consists of 3902 optical sources and 71 X-ray AGN. Compared to the overall optically selected galaxy population, X-ray AGN are more frequently found in groups at the 99 per cent confidence level. This is partly because AGN are hosted by red luminous galaxies, which are known to reside, on average, in dense environments. Relative to these sources, the excess of X-ray AGN in groups is significant at the 91 per cent level only. Restricting the sample to 0.7 < z < 0.9 and MB < -20mag in order to control systematics, we find that X-ray AGN represent (4.7 +/- 1.6) and (4.5 +/- 1.0) per cent of the optical galaxy population in groups and in the field, respectively. These numbers are consistent with the AGN fraction in low-redshift clusters, groups and the field. The above results, although affected by small number statistics, suggest that X-ray AGN are spread over a range of environments, from groups to the field, once the properties of their hosts (e.g. colour, luminosity) are accounted for. There is also tentative evidence, significant at the 98 per cent level, that the field produces more X-ray luminous AGN compared to groups, extending similar results at low redshift to z ~ 1. This trend may be because of either cold gas availability or the nature of the interactions occurring in the denser group environment (i.e. prolonged tidal encounters).

  12. Host galaxies of luminous z ∼ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities

    NASA Astrophysics Data System (ADS)

    Villforth, C.; Hamilton, T.; Pawlik, M. M.; Hewlett, T.; Rowlands, K.; Herbst, H.; Shankar, F.; Fontana, A.; Hamann, F.; Koekemoer, A.; Pforr, J.; Trump, J.; Wuyts, S.

    2017-04-01

    Galaxy interactions are thought to be one of the main triggers of active galactic nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log(Lbol [erg s-1]) > 45) at z ∼ 0.6 using Hubble Space Telescope Wide Field Camera 3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25 per cent of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is ≤20 per cent. While major mergers might increase the incidence of luminous AGN, they are not the prevalent triggering mechanism in the population of unobscured AGN.

  13. TORUS2015: The AGN unification scheme after 30 years

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Hoenig, S. F.

    2015-09-01

    The torus paradigm has proved to be remarkably successful at unifying the observed zoo of active galaxy (AGN) classes, despite having many manifest holes. The field is still data-driven with novel observational results at multiple wavelengths emerging rapidly. We are only now beginning to map out the structure of dusty gas feeding and obscuring AGN, and to model its evolution in galaxy growth. But these have also brought out several apparently contradictory results which must hold the key to future progress. As we celebrate 30 years of the paradigm, this is the perfect time to draw together our current knowledge and reassess the state of the field. This will be an international workshop at the University of Southampton, UK, with the objective of laying out the major challenges to the field and paving future research directions. Our hope is to facilitate plenty of informal discussions between multiwavelength observers and theorists, addressing some key issues: * What is the main driver in the unification scheme? What are the roles of orientation, mass accretion rate and feedback? * What is the nature and structure of gas and dust in the torus? Do we have a self-consistent picture across multiple wavelengths? * How critical is the role of the torus as an interface between small nuclear scales and large galactic scales? Does galaxy evolution necessarily require tori? * How close are we to self-consistently simulating nuclear activity including AGN feeding and nuclear star-formation? Workshop Rationale The three themes of accretion, orientation, and evolution will be covered through invited and solicited contributions. Different to other conferences, we are building each session around some key papers that have shaped the field or those with great future potential to do so. We specifically pit competing ideas against each other to help painting a realistic picture of the state-of-the-art. Each session will end with discussion rounds delving into important future

  14. The host galaxies of ultra hard X-ray selected AGN

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.

    One of the great mysteries surrounding active galactic nuclei (AGN) is their triggering mechanism. Since the discovery that almost all massive galaxies host nuclear supermassive black holes, it has become clear that a trigger mechanism is required to 'turn on' and continue to fuel the central black hole. While it is established that accretion processes are responsible for the energy emitted, the source of the accreting material is still controversial. Furthermore, the energy input from phases of black hole growth is thought to be a key regulator in the formation of galaxies and the establishment of various scaling relations. Theorists often invoke galaxy mergers as the violent mechanism to drive gas into the central regions and ignite luminous quasars, but among more common moderate luminosity AGN, there has been great controversy whether secular processes or mergers dominate AGN fueling. A survey in the ultra hard X-ray band (14--195 keV) is an important new way to answer the fundamental question of AGN fueling. This method is independent of selection effects such as dust extinction and obscuration that plague surveys at other wavelengths because of the ability of the primary continuum to easily pass through large columns of obscuring gas and dust (<10 24 cm-2). In this PhD, we have assembled the largest sample of ultra hard X-ray selected AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift BAT sample. We find that these AGN show much higher rates of both mergers and massive spirals suggesting both mergers and accretion of cold gas in late type systems are important in AGN fueling. We also find that the most common AGN survey technique, optical line diagnostics, is heavily biased against finding AGN in mergers or spirals. Finally, in agreement with the merger driven AGN link, we find that dual AGN systems may be more common than current observation suggest since some of them are only detected using high

  15. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1AGN suggests that the merger of a binary black hole can take longer than 1 Gyr. All AGNs hosted by merging galaxies have companions at distances ⩽150 kpc. The NLRs have large sizes (10 kpc < r < 100 kpc) and consist of compact clumps with considerable relative velocities between components (∼200–650 km s{sup −1}). We detect broad, predominantly blue, wings with velocities up to ∼1500 km s{sup −1} in [OIII], indicative of powerful outflows. The outflows are compact (<5 kpc) and co-spatial with nuclear regions showing considerable reddening, consistent with enhanced star formation. One source shows an offset between gas and stellar kinematics, consistent with either a bipolar flow or a counter-rotating gas disk. In all other sources, the ionized gas

  16. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  17. Preselecting AGN candidates from multi-wavelength data by ADTree

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia; Zheng, Hongwen; Zhao, Yongheng

    2005-03-01

    With the information era in astronomy coming, this "data avalanche" may provide many answers to important problems in contemporary astrophysics. The most important problem is sifting through massive amounts of data to mine knowledge. In this paper, we positionally cross-identify multi-wavelength data from optical, near-infrared, and x-ray bands, and then employ alternating decision trees (adtree) to quickly and robustly separate AGN candidates to a high degree of accuracy. We emphasise the application of the method due to the development of large survey projects and the establishment of the virtual observatory, and conclude that the application of data mining algorithms in astronomy is of great importance to discover new knowledge impossible to obtain before, and promote the development of astronomy.

  18. Au13-nAgn clusters: a remarkably simple trend.

    PubMed

    Munoz, Francisco; Varas, Alejandro; Rogan, José; Valdivia, Juan Alejandro; Kiwi, Miguel

    2015-11-11

    The planar to three dimensional transition of Au13-nAgn clusters is investigated. To do so the low lying energy configurations for all possible concentrations (n values) are evaluated. Many thousands of possible conformations are examined. They are generated using the procedure developed by Rogan et al. in combination with the semi-empirical Gupta potential. A large fraction of these (the low lying energy ones) are minimized by means of Density Functional Theory (DFT) calculations. We employ the Tao, Perdew, Staroverov, and Scuseria (TPSS) meta-GGA functional and the Perdew, Burke and Ernzerhof (PBE) GGA functional, and compare their results. The effect of spin-orbit coupling is studied as well as the s-d hybridization. As usual in this context the results are functional-dependent. However, both functionals lead to agreement as far as trends are concerned, yielding just two relevant motifs, but their results differ quantitatively.

  19. Relativistic Effects on Reflection X-ray Spectra of AGN

    SciTech Connect

    Lee, Khee-Gan; Fuerst, Steven V.; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  20. Cloudy Skies over AGN: Observations with Simbol-X

    NASA Astrophysics Data System (ADS)

    Salvati, M.; Risaliti, G.

    2009-05-01

    Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.

  1. Synergy Between Observations of AGN with GLAST and MAXI

    SciTech Connect

    Madejski, Grzegorz

    2002-03-25

    In five years' time we will witness the launch of two important missions developed to observe celestial sources in the high energy regime: GLAST, sensitive in the high energy {gamma}-ray band, and MAXI, the all-sky X-ray monitor. Simultaneous monitoring observations by the two instruments will be particularly valuable for variable sources, allowing cross-correlations of time series between the two bands. We present the anticipated results from such observations of active galaxies, and in particular, of the jet-dominated sub-class of AGN known as blazars. We discuss the constraints on the structure and emission processes--and in particular, on the internal shock models currently invoked to explain the particle acceleration processes in blazars--that can be derived with simultaneous {gamma}-ray and X-ray data.

  2. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect

    1995-05-01

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  3. X-15 #2 on lakebed after a hard landing by pilot Scott Crossfield

    NASA Technical Reports Server (NTRS)

    1959-01-01

    A series of ground and in-flight accidents occurred during the X-15's contractor program, fortunately without injuries or even greatly delaying the program. On 5 November 1959 a small engine fire -- always extremely hazardous in a volatile rocket airplane -- forced pilot Scott Crossfield to make an emergency landing on Rosamond Dry Lake. The X-15, not designed to land with fuel, came down with a heavy load of propellants and broke its back, grounding this particular X-15, ship #2 (56-6671), for three months. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52

  4. Downscaling transient climate change using a Neyman-Scott Rectangular Pulses stochastic rainfall model

    NASA Astrophysics Data System (ADS)

    Burton, A.; Fowler, H. J.; Blenkinsop, S.; Kilsby, C. G.

    2010-02-01

    SummaryThe future management of hydrological systems must be informed by climate change projections at relevant time horizons and at appropriate spatial scales. Furthermore, the robustness of such management decisions is dependent on both the uncertainty inherent in future climate change scenarios and the natural climate system. Addressing these needs, we present a new transient rainfall simulation methodology which combines dynamical and statistical downscaling techniques to produce transient (i.e. temporally non-stationary) climate change scenarios. This is used to generate a transient multi-model ensemble of simulated point-scale rainfall time series for 1997-2085 for the polluted Brévilles spring in Northern France. The recovery of this previously potable source may be affected by climatic changes and variability over the next few decades. The provision of locally-relevant transient climate change scenarios for use as input to hydrological models of both water quality and quantity will ultimately provide a valuable resource for planning and decision making. Observed rainfall from 1988-2006 was characterised in terms of a set of statistics for each calendar month: the daily mean, variance, probability dry, lag-1 autocorrelation and skew, and the monthly variance. The Neyman-Scott Rectangular Pulses (NSRP) stochastic rainfall model was fitted to these observed statistics and correctly simulated both monthly statistics and extreme rainfall properties. Multiplicative change factors which quantify the change in each statistic between the periods 1961-1990 and 2071-2100 were estimated for each month and for each of 13 Regional Climate Models (RCMs) from the PRUDENCE ensemble. To produce transient climate change scenarios, pattern scaling factors were estimated and interpolated from four time-slice integrations of two General Circulation Models which condition the RCMs, ECHAM4/OPYC and HadCM3. Applying both factors to the observed statistics provided projected

  5. Coordinated UV and X-ray Observations of AGN Outflows

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.

    2017-01-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN. Typically the mass flux and kinetic energy are dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Multiple coordinated observations have also revealed a new class of UV and X-ray absorbers. They typically show transient, heavy X-ray obscuration in the low-energy spectrum characterized by high column densities of mildly ionized gas. These X-ray obscuration events are accompanied by the appearance of broad, fast, blue-shifted UV absorption lines of moderate ionization, comparable to the X-ray absorbing gas. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The high outflow velocities, variability timescales of a day or less in the X-ray, and the broad widths suggest an origin in a wind from the accretion disk. This low-ionization component may represent the shielding gas necessary to facilitate disk winds driven by radiative acceleration in UV absorption lines.

  6. The host galaxies of AGN with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3AGN) with powerful relativistic jets (L1.4GHz >10^27 WHz^-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4GHz = 10^23.7 - 10^28.3WHz^-1, allowing us to divide our sample into high-excitation (quasar-mode; HERGs) and low-excitation (radio-mode; LERGs) radio galaxies. The host galaxies of our sample are bright and seem to follow the Kormendy relation. Nuclear emission (dominated by non-thermal mechanisms) and host-galaxy magnitudes show a slightly negative weak trend for LERGs. On the other hand, the m_bulge -m_nuc relation is statistically significant for HERGs. Although it may be affected by selection effects, this correlation suggests a close coupling between the relativistic jets and their host galaxy. Our findings are consistent with the excitation state (LERG/HERG) scenario. In this view, LERGs emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and HERGs are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  7. Do the Kepler AGN light curves need reprocessing?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.; Williams, Joshua; Carini, Michael T.

    2015-10-01

    We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST data base with a reprocessed light curve constructed from raw pixel data. We use the first-order structure function, SF(δt), to fit both light curves to the damped power-law PSD (power spectral density) of Kasliwal et al. On short time-scales, we find a steeper log PSD slope (γ = 2.90 to within 10 per cent) for the reprocessed light curve as compared to the light curve found on MAST (γ = 2.65 to within 10 per cent) - both inconsistent with a damped random walk (DRW) which requires γ = 2. The log PSD slope inferred for the reprocessed light curve is consistent with previous results that study the same reprocessed light curve. The turnover time-scale is almost identical for both light curves (27.1 and 27.5 d for the reprocessed and MAST data base light curves). Based on the obvious visual difference between the two versions of the light curve and on the PSD model fits, we conclude that there remain significant levels of spacecraft-induced effects in the standard pipeline reduction of the Kepler data. Reprocessing the light curves will change the model inferenced from the data but is unlikely to change the overall scientific conclusions reached by Kasliwal et al. - not all AGN light curves are consistent with the DRW.

  8. Simulations of the OzDES AGN reverberation mapping project

    DOE PAGES

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; ...

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrainmore » the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.« less

  9. Searching for Short Term Variable Active Galactic Nuclei: A Vital Step Towards Using AGN as Standard Candles

    NASA Astrophysics Data System (ADS)

    Kilts, Kelly; Gorjian, Varoujan; Rutherford, Thomas; Kohrs, Russell; Urbanowski, Vincent; Bellusci, Nina; Horton, Savannah; Jones, Dana; Jones, Kaytlyn; Pawelski, Peter; Tranum, Haley; Zhang, Emily

    2017-01-01

    Current models for accretion disk sizes of active galactic nuclei (AGN) do not match the limited observational data available, so there is an active need from the modeling community for many more accretion disk/dusty torus reverberation mapping campaigns with which to better calibrate models. Since short term variable AGN can be more easily monitored for reverberation mapping than long term variable AGN, they can begin to provide data more quickly. This project looked for short term variable AGN in the Young Stellar Object Variability (YSOVAR) survey conducted using the Spitzer Space Telescope. The YSOVAR survey targeted 12 nearby star forming regions for repeated observations. Potential AGN from the YSOVAR data were first selected by color ([3.6] - [4.5] > 0.4) and then by magnitude (m < 14) based on previous Spitzer surveys of known AGN. Since AGN share some similar color characteristics with young stars, images of each YSOVAR region were viewed to remove potential objects near concentrations of known young stellar objects since these were likely also YSOs. The spectral energy distribution (SED) for each remaining potential AGN was then examined for AGN like characteristics. Several potential short term variable AGN were found.

  10. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGES

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; ...

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  11. Merger-driven Fueling of Active Galactic Nuclei: Six Dual and Offset AGNs Discovered with Chandra and Hubble Space Telescope Observations

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-01

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at z\\lt 0.34, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation Δ x=2.2 kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations Δ x\\lt 10 kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O iii] λ5007 luminosity, on average. This could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  12. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    SciTech Connect

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at $z\\lt 0.34$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation ${\\rm \\Delta }x=2.2$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations ${\\rm \\Delta }x\\lt 10$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  13. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  14. Testing different AGN tracers on a local sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pozzi, F.

    2016-08-01

    I will present our new study on a local sample of Seyfert galaxies selected at 12 micron. This sample, given its plenty of information, both photometric and spectroscopic, is a perfect sample to compare, from a statistical point of view, different AGN selection criteria, and AGN derived intrinsic properties. In detail, I will compare AGN activity derived from SED-fitting technique, X-ray luminosity and AGN activity traced by high excitation IR lines, like [NeV] and [OIV]. Moreover, for one particular obscured X-ray Compton-thick source, thanks also to the availability of ALMA data, I will derive a self-consistent overview of the physics behind the emission in different bands,by taking advantage of the photoionization code CLOUDY.

  15. Downstream Effects of the Levee Overtopping at Wilkes-Barre, Pennsylvania During Tropical Storm Agnes.

    DTIC Science & Technology

    1973-04-01

    Davis, March 1973 36. Evaluation of Drought Effects at Lake Atitlan, Arlen D. Feldman 37. Downstream Effects of the Levee Overtopping at Wilkes-Barre, Pa., During Tropical Storm Agnes, Arlen D. Feldman, April 1973

  16. Characterizing the redshifts and luminosities of WISE selected obscured AGN using SALT optical spectra.

    NASA Astrophysics Data System (ADS)

    Hviding, Raphael E.; Hickox, Ryan C.; Hainline, Kevin N.; Carroll, Christopher M.; DiPompeo, Mike A.; Jones, Mackenzie L.

    2016-08-01

    We present the results of several optical spectroscopic surveys covering over 100 candidate luminous obscured active galactic nuclei (AGN) identified by their mid-infrared emission detected with the Wide-Field Infrared Survey Explorer (WISE). These galaxies were selected based on red WISE colors and galaxy-like optical emission, and were studied using long-slit optical spectroscopy with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT). Our spectra were analyzed to obtain redshifts and emission line flux ratios for each galaxy. These results verify that WISE is an effective section method for luminous obscured AGN, allow for the characterization of redshifts and luminosities of the WISE color selected obscured AGN population, and could potentially contribute to large statistical studies of obscured AGN distributions in the future.

  17. Prospects for AGN Science using the ART-XC on the SRG Mission

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Elsner, Ronald F.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Ramsey, Brian D.; Bonamente, Massimiliano

    2012-01-01

    The enhanced hard X-ray sensitivity provided by the Astronomical Roentgen Telescope to the Spectrum Roentgen Gamma mission facilitates the detection of heavily obscured and other hard-spectrum cosmic X-ray sources. The SRG all-sky survey will obtain large, statistically-well-defined samples of active galactic nuclei (AGN) including a significant population of local heavily-obscured AGN. In anticipation of the SRG all-sky survey, we investigate the prospects for refining the bright end of the AGN luminosity function and determination of the local black hole mass function and comparing the spatial distribution of AGN with large-scale structure defined by galaxy clusters and groups. Particular emphasis is placed on studies of the deep survey Ecliptic Pole regions.

  18. Starburst and AGN Indicators in Optically Faint X-ray Sources in the Cosmic Evolution Survey

    NASA Astrophysics Data System (ADS)

    Robins, Derek; Elvis, M.; Civano, F.

    2011-01-01

    A sample of 55 faint, X-ray selected objects were chosen for analysis from the COSMOS survey with high quality Keck DEIMOS data. The average redshift of the sample was 1.36, consistent with the average redshift of type 1 AGN in COSMOS of 1.4. Emission lines, NeV - an indicator of AGN luminosity - and OII - an indicator of star formation rate, were measured for a subset of 34 objects. Line properties for these objects were measured. The combination of the two lines is evidence for significant star formation in these obscured AGN. Differences between OII and NeV redshifts were measured carefully. Significant differences between OII and NeV redshifts were found in 10-14 objects, implying OII outflows. The results are consistent with current models of galaxy evolution that invoke an interplay between AGN activity and star formation.

  19. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity

  20. From Nearby Low Luminosity AGN to High Redshift Radio Galaxies: Science Interests with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Lal, D. V.; Singh, V.; Bagchi, J.; Ishwara Chandra, C. H.; Hota, A.; Konar, C.; Wadadekar, Y.; Shastri, P.; Das, M.; Baliyan, K.; Nath, B. B.; Pandey-Pommier, M.

    2016-12-01

    We present detailed science cases that a large fraction of the Indian AGN community is interested in pursuing with the upcoming Square Kilometre Array (SKA). These interests range from understanding low luminosity active galactic nuclei in the nearby Universe to powerful radio galaxies at high redshifts. Important unresolved science questions in AGN physics are discussed. Ongoing low-frequency surveys with the SKA pathfinder telescope GMRT, are highlighted.

  1. How accurate is [CII] tracing star formation in nearby luminous AGN?

    NASA Astrophysics Data System (ADS)

    Husemann, Bernd

    We propose [CII] line mapping with FIFI-LS to complete observations for 4 nearby luminous AGN as part of our Close AGN Reference Survey (CARS) unobserved in Cycle 4. Our aim is to create a spatially-resolved multi-wavelength dataset to understand whether and how AGN can control star formation in their hosts. We already obtained wide-field optical IFU spectroscopy with MUSE to disentangle emission from HII regions and photoionized gas by the AGN across the galaxies. Currently, there is a high pressure to understand the impact of AGN especially at the peak of cosmic star formation beyond z>2 where measuring the SF is diffcult. The [CII] line at 158microns has become an important diagnostic for SF in high-redshift galaxies with the advent of ALMA. However, the line can be excited by various mechanisms in a multi-phase ISM. In particular the hard radiation field of AGN is a major concern which can only be quantified in nearby galaxies. FIFI-LS aboard SOFIA is currently the only way to perform follow-up observations of FIR emission lines. By uniquily combining MUSE and FIFI-LS we will be able to 1. test if the empirical [CII]-SFR scaling relation hold for luminous nearby AGN, 2. quantifiy any deviation as a function of AGN luminosity, 3. test if the [CII] line kinematics are strongly affected by outflows or trace solely the kinematics of the cold gas disc. Those observations for nearby galaxies with FIFI-LS are crucially needed to establish a reference frame for interpreting high-redshift observation with ALMA at similar physical resolution.

  2. How accurate is [CII] tracing star formation in nearby luminous AGN?

    NASA Astrophysics Data System (ADS)

    Husemann, Bernd

    2015-10-01

    We propose [CII] line mapping with FIFI-LS for a sample of 8 nearby luminous AGN as part of our Close AGN Reference Survey (CARS). Our aim is to create a spatially-resolved multi-wavelength dataset to understand whether and how AGN can control star formation in their hosts. We already obtained wide-field optical IFU spectroscopy with MUSE to disentangle emission from HII regions and photoionized gas by the AGN across the galaxies. Currently, there is a high pressure to understand the impact of AGN especially at the peak of cosmic star formation beyond z>2 where measuring the SF is diffcult. The [CII] line at 158microns has become an important diagnostic for SF in high-redshift galaxies with the advent of ALMA. However, the line can be excited by various mechanisms in a multi-phase ISM. In particular the hard radiation field of AGN is a major concern which can only be quantified in nearby galaxies. FIFI-LS aboard SOFIA is currently the only way to perform follow-up observations of FIR emission lines. By uniquily combining MUSE and FIFI-LS we will be able to 1. test if the empirical [CII]-SFR scaling relation hold for luminous nearby AGN, 2. quantifiy any deviation as a function of AGN luminosity, 3. test if the [CII] line kinematics are strongly affected by outflows or trace solely the kinematics of the cold gas disc. Those observations for nearby galaxies with FIFI-LS are crucially needed to establish a reference frame for interpreting high-redshift observation with ALMA at similar physical resolution.

  3. Results from the NuSTAR Survey of Swift/BAT AGN

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona

    2015-08-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the spectral window above 10 keV with unprecedented spatial resolution and two orders of magnitude better sensitivity than any other instrument operating in that energy range. As a part of its long-term extragalactic program NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT). We present results based on 15-25 ks observations of ~150 Swift/BAT AGN surveyed in the first 2.5 years of NuSTAR operation. This sample forms an atlas of the highest quality hard X-ray spectra available to date for a large number of AGN. Assuming a range of hard X-ray spectral models, phenomenological as well as physically motivated, we constrain the main spectral parameters for each source individually and test the applicability of the models on a large sample for the first time. This analysis allows us to determine distributions of the main spectral parameters (spectral index, high-energy cut-off, absorption column, reflection strength, iron line equivalent width) in a well-defined population of nearby AGN. We find that approximately 70% of obscured AGN spectra can be well modeled in terms of simple models used in the literature, while the rest requires careful consideration of more advanced models. We will discuss the implications for the local AGN population, the effects on interpretation of high-redshift AGN observations, and the limitations of the current results.

  4. Ultra-fast outflows (aka UFOs) in AGNs and their relevance for feedback

    NASA Astrophysics Data System (ADS)

    Cappi, Massimo; Tombesi, F.; Giustini, M.; Dadina, M.; Braito, V.; Kaastra, J.; Reeves, J.; Chartas, G.; Gaspari, M.; Vignali, C.; Gofford, J.; Lanzuisi, G.

    2012-09-01

    During the last decade, several observational evidences have been accumulated for the existence of massive, high velocity winds/outflows (aka UFOs) in nearby AGNs and, possibly, distant quasars. I will review here such evidences, present some of the latest results in this field, and discuss the relevance of UFOs for both understanding the physics of accretion/ejection flows on supermassive black holes, and for quantifying the amount of AGN feedback.

  5. AGNfitter: A Bayesian MCMC Approach to Fitting Spectral Energy Distributions of AGNs

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph F.; Hogg, David W.

    2016-12-01

    We present AGNfitter, a publicly available open-source algorithm implementing a fully Bayesian Markov Chain Monte Carlo method to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) from the sub-millimeter to the UV, allowing one to robustly disentangle the physical processes responsible for their emission. AGNfitter makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the nuclear and host galaxy emission simultaneously. The model consists of four physical emission components: an accretion disk, a torus of AGN heated dust, stellar populations, and cold dust in star-forming regions. AGNfitter determines the posterior distributions of numerous parameters that govern the physics of AGNs with a fully Bayesian treatment of errors and parameter degeneracies, allowing one to infer integrated luminosities, dust attenuation parameters, stellar masses, and star-formation rates. We tested AGNfitter’s performance on real data by fitting the SEDs of a sample of 714 X-ray selected AGNs from the XMM-COSMOS survey, spectroscopically classified as Type1 (unobscured) and Type2 (obscured) AGNs by their optical-UV emission lines. We find that two independent model parameters, namely the reddening of the accretion disk and the column density of the dusty torus, are good proxies for AGN obscuration, allowing us to develop a strategy for classifying AGNs as Type1 or Type2, based solely on an SED-fitting analysis. Our classification scheme is in excellent agreement with the spectroscopic classification, giving a completeness fraction of ˜ 86 % and ˜ 70 % , and an efficiency of ˜ 80 % and ˜ 77 % , for Type1 and Type2 AGNs, respectively.

  6. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than -50 km s-1 and/or blueshifted wings with 84% velocities less than -300 km s-1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s-1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Angular Broadening of Intraday Variable AGNs II. Interstellar and Intergalactic Scattering

    DTIC Science & Technology

    2008-01-01

    scattering from any possible intergalactic contribution, we have searched for pulsars within 1 of theAGNs in our sample.We find no pulsars this close to any...of our sources.Given the relatively low density of pulsars on the sky, a significantly larger sample of AGNs would be required in order to make such a...in pulsar dynamic spectra (Hill et al. 2005). We can also use the difference between the scintillating and nonscintillating sources to set

  8. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  9. Differences in Halo-scale Environments between Type 1 and Type 2 AGNs at Low Redshift

    NASA Astrophysics Data System (ADS)

    Jiang, Ning; Wang, Huiyuan; Mo, Houjun; Dong, Xiao-Bo; Wang, Tinggui; Zhou, Hongyan

    2016-12-01

    Using low-redshift (z\\lt 0.09) samples of active galactic nuclei (AGNs), normal galaxies and groups of galaxies selected from the Sloan Digital Sky Survey, we study the environments of Type 1 and Type 2 AGNs, both on small and large scales. Comparisons are made for galaxy samples matched in redshift, r-band luminosity, [O iii] luminosity, and also the position in groups (central or satellite). We find that Type 2 AGNs and normal galaxies reside in similar environments. Type 1 and Type 2 AGNs have similar clustering properties on large scales (≳ 1 {h}-1 {Mpc}), but at scales smaller than 100 {h}-1 {kpc}, Type 2s have significantly more neighbors than Type 1s (3.09 ± 0.69 times more for central AGNs at ≲ 30 {h}-1 {kpc}). These results suggest that Type 1 and Type 2 AGNs are hosted by halos of similar masses, as can also be seen directly from the mass distributions of their host groups (˜ {10}12 {h}-1 {M}⊙ for centrals and ˜ {10}13 {h}-1 {M}⊙ for satellites). Type 2s have significantly more satellites around them, and the distribution of their satellites is also more centrally concentrated. The host galaxies of both types of AGNs have similar optical properties, but their infrared colors are significantly different. Our results suggest that the simple unified model based solely on torus orientation is not sufficient, but that galaxy interactions in dark matter halos must have played an important role in the formation of the dust structure, which obscures AGNs.

  10. Star formation in AGNs at the hundred parsec scale using MIR high-resolution images

    NASA Astrophysics Data System (ADS)

    Ruschel-Dutra, Daniel; Rodríguez Espinosa, José Miguel; González Martín, Omaira; Pastoriza, Miriani; Riffel, Rogério

    2017-04-01

    It has been well established in the past decades that the central black hole masses of galaxies correlate with dynamical properties of their harbouring bulges. This notion begs the question of whether there are causal connections between the active galactic nucleus (AGN) and its immediate vicinity in the host galaxy. In this paper, we analyse the presence of circumnuclear star formation in a sample of 15 AGN using mid-infrared observations. The data consist of a set of 11.3 μm polycyclic aromatic hydrocarbon emission and reference continuum images, taken with ground-based telescopes, with sub-arcsecond resolution. By comparing our star formation estimates with AGN accretion rates, derived from X-ray luminosities, we investigate the validity of theoretical predictions for the AGN-starburst connection. Our main results are: (i) circumnuclear star formation is found, at distances as low as tens of parsecs from the nucleus, in nearly half of our sample (7/15); (ii) star formation luminosities are correlated with the bolometric luminosity of the AGN (LAGN) only for objects with LAGN ≥ 1042 erg s-1; (iii) low-luminosity AGNs (LAGN < 1042 erg s-1) seem to have starburst luminosities far greater than their bolometric luminosities.

  11. Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys

    NASA Astrophysics Data System (ADS)

    Ricci, Federica; Marchesi, Stefano; Shankar, Francesco; La Franca, Fabio; Civano, Francesca

    2017-02-01

    The cosmological process of hydrogen (H I) reionization in the intergalactic medium is thought to be driven by UV photons emitted by star-forming galaxies and ionizing active galactic nuclei (AGN). The contribution of quasars (QSOs) to H I reionization at z > 4 has been traditionally believed to be quite modest. However, this view has been recently challenged by new estimates of a higher faint-end UV luminosity function (LF). To set firmer constraints on the emissivity of AGN at z < 6, we here make use of complete X-ray-selected samples including deep Chandra and new Cosmic Evolution Survey data, capable to efficiently measure the 1 Ryd comoving AGN emissivity up to z ∼ 5-6 and down to 5 mag fainter than probed by current optical surveys, without any luminosity extrapolation. We find good agreement between the logNH ≲ 21-22 cm-2 X-ray LF and the optically selected QSO LF at all redshifts for M1450 ≤ -23. The full range of the logNH ≲ 21-22 cm-2 LF (M1450 ≤ -17) was then used to quantify the contribution of AGN to the critical value of photon budget needed to keep the Universe ionized. We find that the contribution of ionizing AGN at z = 6 is as small as 1-7 per cent, and very unlikely to be greater than 30 per cent, thus excluding an AGN-dominated reionization scenario.

  12. Dusting off the star formation history of AGN hosts with SHARDS

    NASA Astrophysics Data System (ADS)

    Hernán-Caballero, Antonio

    2015-03-01

    Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.

  13. ISO Key Project: Exploring the Full Range of Quasar/AGN Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, B.

    2001-01-01

    The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultra-violet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution, remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.

  14. Role of feedback in AGN-host coevolution: A study from partially obscured active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2015-05-01

    Partially obscured AGNs within a redshift range z = 0.011 ∼ 0.256 are used to re-study the role of feedback in the AGN-host coevolution issue in terms of their [OIII] λ 5007 emission line profile. The spectra of these objects enable us to determine the AGN's accretion properties directly from their broad H α emission. This is essential for getting rid of the "circular reasoning" in our previous study of narrow emission-line galaxies, in which the [OIII] emission line was used not only as a proxy of AGN's bolometric luminosity, but also as a diagnostic of outflow. In addition, the measurement of Dn (4000) index is improved by removing an underlying AGN's continuum according to the corresponding broad H α emission. With these improvements, we confirm and reinforce the correlation between L /LEdd and stellar population age. More important is that this correlation is found to be related to both [OIII] line blue asymmetry and bulk blueshift velocity, which suggests a linkage between SMBH growth and host star formation through the feedback process. The current sample of partially obscured AGNs shows that the composite galaxies have younger host stellar population, higher Eddington ratio, less significant [OIII] blue wing and smaller bulk [OIII] line shift than do the Seyfert galaxies.

  15. The small observed scale of AGN-driven outflows, and inside-out disc quenching

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2016-11-01

    Observations of massive outflows with detectable central active galactic nuclei (AGN) typically find them within radii ≲10 kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of the order of the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity, the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant-shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas-rich galaxies, these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas-rich discs, with gas-to-baryon fraction <0.2, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalization of the Kennicutt-Schmidt law. The star formation enhancement is probably stronger in the outskirts of galaxy discs, so coasting outflows might be detected by their effects upon the disc even after the driving AGN has shut off. We compare our results to the recent inference of inside-out quenching of star formation in galaxy discs.

  16. The impact of AGN feedback and baryonic cooling on galaxy clusters as gravitational lenses

    NASA Astrophysics Data System (ADS)

    Mead, James M. G.; King, Lindsay J.; Sijacki, Debora; Leonard, Adrienne; Puchwein, Ewald; McCarthy, Ian G.

    2010-07-01

    We investigate the impact of active galactic nucleus (AGN) feedback on the gravitational lensing properties of a sample of galaxy clusters with masses in the range 1014-1015 Msolar, using state-of-the-art simulations. Adopting a ray-tracing algorithm, we compute the cross-section of giant arcs from clusters simulated with dark matter (DM) only physics, DM plus gas with cooling and star formation (CSF) and DM plus gas with cooling, star formation and AGN feedback (CSFBH). Once AGN feedback is included, baryonic physics boosts the strong-lensing cross-section by much less than previously estimated using clusters simulated with only CSF. For a cluster with a virial mass of 7.4 × 1014 Msolar, inclusion of baryonic physics without feedback can boost the cross-section by as much as a factor of 3, in agreement with previous studies, whereas once AGN feedback is included this maximal figure falls to a factor of 2 at most. Typically, clusters simulated with DM and CSFBH physics have similar cross-sections for the production of giant arcs. We also investigate how baryonic physics affects the weak-lensing properties of the simulated clusters by fitting NFW profiles to synthetic weak-lensing data sets using a Markov Chain Monte Carlo approach, and by performing non-parametric mass reconstructions. Without the inclusion of AGN feedback, measured concentration parameters can be much larger than those obtained with AGN feedback, which are similar to the DM-only case.

  17. The detection of Fermi AGN above 100 GeV using clustering analysis

    NASA Astrophysics Data System (ADS)

    Armstrong, Thomas; Brown, Anthony M.; Chadwick, Paula M.; Nolan, S. J.

    2015-09-01

    The density-based clustering algorithm DBSCAN has been applied to the Fermi Large Area Telescope (LAT) data set of Eγ ≥ 100 GeV events with |b| > 10°, in order to search for new very high energy (VHE) γ-ray sources. The clustering analysis returned 49 clusters, of which 21 correspond to already known VHE-emitting active galactic nuclei (AGN) within the TeVCat catalogue and a further 11 were found to be significant in a full Fermi analysis. Of these, two are previously detected Fermi VHE AGN, and nine represent new VHE sources consisting of six BL Lac objects, one blazar of unknown type and two unassociated sources. Comparing these, along with the VHE AGN RBS 0679 and RBS 0970 previously detected with Fermi-LAT, to the current populations of AGN detected with ground-based instruments and Fermi suggests that the VHE-emitting AGN discovered in this study are very similar to the TeVCat AGN and therefore further observations with ground-based imaging atmospheric Cherenkov telescopes are recommended.

  18. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  19. Responding to the Needs of Historically Black Colleges and Universities in the 21st Century. Hearing before the Subcommittee on 21st Century Competitiveness and the Subcommittee on Select Education of the Committee on Education and the Workforce. House of Representatives, One Hundred Seventh Congress, Second Session (September 19, 2002).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and the Workforce.

    This hearing on the needs of historically black colleges and universities is the fourth in a series that explores the issues faced by these minority-serving institutions and the opportunities they have afforded black students over the years. Following opening statements by Representative Howard P. McKeon, Representative Robert C. Scott, and…

  20. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  1. Electoral College.

    ERIC Educational Resources Information Center

    Goldstein, Joel K.

    1996-01-01

    Examines one of the least understood institutions of U.S. politics, the Electoral College. Discusses the historical circumstances resulting in its creation as well as the current structure and membership. Provides arguments for and against continuation of the Electoral College. (MJP)

  2. Navigating College

    ERIC Educational Resources Information Center

    Arum, Richard

    2016-01-01

    Students moving from high school to college in the United States typically confront a bewildering set of largely unstructured options. In the absence of clear signals about how to get the most out of college, they often choose pathways that involve limited academic rigor and engagement. In this article, Richard Arum describes a study that followed…

  3. The Emission Line AGN Census: Biases of Line Ratio Selection, and Uniform Black Hole Accretion Regardless of Galaxy Mass

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Zeimann, Gregory; Juneau, Stephanie; Sun, Mouyuan; Luck, Cuyler

    2015-01-01

    Optical emission line ratios offer a powerful tool to reveal accretion onto supermassive black holes, with the ability to find both unobscured and obscured active galactic nuclei (AGNs) in extraordinarily large galaxy samples (like the SDSS). I will demonstrate, however, that classic line ratio selection techniques significantly underestimate the AGN fraction by a factor of >10 in low-mass and star-forming galaxies. Previous conclusions that AGNs require massive green-valley hosts are purely a result of this "star formation dilution" bias. Careful treatment of the biases reveals that AGN accretion is uniform across star-forming galaxies of any stellar mass, similar to the results of bias-corrected X-ray AGN studies. This has dramatic implications for AGN feedback in dwarf galaxies and constraints on the black hole seed population.

  4. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    SciTech Connect

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.

  5. Mid-Infrared Spectroscopy of the Brightest Type 2 AGN in the SDSS

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy; Armus, Lee; Martins, Lucimara; Tremonti, Christy

    2006-05-01

    We propose to use the IRS on Spitzer to observe a complete and well-defined sample of the 20 brightest Type 2 (obscured) Active Galactic Nuclei (AGN) in the Sloan Digital Sky Survey (SDSS). They are selected from a sample of over 100,000 SDSS AGN on the basis of the flux in the [OIII]5007 emission-line. The full SDSS sample has been used to study the properties of local AGN and their host galaxies with unmatched statistical precision. The results imply that there is on-going co-evolution of black holes and galaxy bulges in the present universe (albeit at lower mass scales than in the past). Given the sensitivity of optical observations to even modest amounts of dust extinction, it is imperative to determine whether mid-IR and optical observations of these objects are consistent. The general goal of the proposal is to produce a set of high-quality mid-IR spectra for a complete sample of the brightest SDSS Type 2 AGN. The specific goals are: 1) To compare measurements of the AGN luminosity derived from the high-ionization mid-IR emission-lines to those derived from similar optical emission-lines. 2) To compare estimates of the relative energetic significance of black hole accretion and star formation in AGN host galaxies derived from optical data to those derived from mid-IR spectroscopy. These two goals address the following two questions: 1) How well can the luminosity of Type 2 SDSS AGN be estimated from optical spectra alone? 2) Can the coupled growth of black holes and galaxy bulges in the low-z universe be adequately quantified from optical data alone? Using the IRS to observe a complete sub-set of the 100,000 Type 2 SDSS AGN is essential to understand the degree to which the SDSS data provide a fair picture of the low-redshift AGN phenomenon. These data will beautifully complement existing IRS surveys of IR-selected AGN.

  6. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  7. Theoretical and Observational Studies of the Central Engines of AGN

    NASA Technical Reports Server (NTRS)

    Sivron, Ran

    1995-01-01

    In Active Galactic Nuclei (AGN) the luminosity is so intense that the effect of radiation pressure on a particle may exceed the gravitational attraction. It was shown that when such luminosities are reached, relatively cold (not completely ionized) thermal matter clouds may form in the central engines of AGN, where most of the luminosity originates. We show that the spectrum of emission from cold clouds embedded in hot relativistic matter is similar to the observed spectrum. We also show that within the hot relativistic matter, cold matter moves faster than the speed of sound or the Alfven speed, and shocks form. The shocks provide a mechanism by which a localized perturbation can propagate throughout the central engine. The shocked matter can emit the observed luminosity, and can explain the flux and spectral variability. It may also provide an efficient mechanism for the outward transfer of angular momentum and provide the outward flow of winds. With observations from X-ray satellites, emission features from the cold and hot matter may be revealed. Our analysis of X-ray data from the Seyfert 1 galaxy MCG - 6-30-15 over five years using detectors on the Ginga and Rosat satellites, revealed some interesting variable features. A source with hot matter emits non-thermal radiation which is Compton reflected from cold matter and then absorbed by warm (partially ionized) absorbing matter in the first model, which can be fit to the data if both the cold and warm absorbers are near the central engine. An alternative model in which the emission from the hot matter is partially covered by very warm matter (in which all elements except Iron are mostly ionized) is also successful. In this model the cold and warm matter may be at distances of up to 100 times the size of the central engine, well within the region where broad optical lines are produced. The flux variability is more naturally explained by the second model. Our results support the existence of cold matter in, or

  8. Spatially explicit neutral models for population genetics and community ecology: Extensions of the Neyman-Scott clustering process.

    PubMed

    Shimatani, Ichiro K

    2010-02-01

    Spatially explicit models relating to plant populations have developed little since Felsenstein (1975) pointed out that if limited seed dispersal causes clustering of individuals, such models cannot reach an equilibrium. This paper aims to resolve this issue by modifying the Neyman-Scott cluster point process. The new point processes are dynamic models with random immigration, and the continuous increase in the clustering of individuals stops at some level. Hence, an equilibrium state is achieved, and new individual-based spatially explicit neutral coalescent models are established. By fitting the spatial structure at equilibrium to individual spatial distribution data, we can indirectly estimate seed dispersal and effective population density. These estimates are improved when genetic data are available, and become even more sophisticated if spatial distribution and genetic data pertaining to the offspring are also available.

  9. The 25 March 1993 Scotts Mills, Oregon, earthquake and aftershock sequence: Spatial distribution, focal mechanisms, and the mount angel fault

    USGS Publications Warehouse

    Thomas, G.C.; Crosson, R.S.; Carver, D.L.; Yelin, T.S.

    1996-01-01

    The 25 March 1993 ML = 5.7 crustal earthquake near Scotts Mills, Oregon, was the largest earthquake to occur in the Pacific Northwest in over a decade. The mainshock was located at 45.033?? N, 122.586?? W and at a depth of about 15.1 km, based on arrival time data from the short-period Pacific Northwest Seismograph Network. Beginning about 12 h after the mainshock, investigators from the U.S. Geological Survey deployed 22 digital seismographs to record aftershocks. Using data from the temporary and permanent stations, we analyzed a subset of 50 after-shocks with quality locations. Hypocenters of these aftershocks lie on a northwesttrending steeply dipping plane (strike 290 ?? 10??, dipping 60 ?? 5?? to the north-northeast), in agreement with the preferred slip plane of the mainshock focal mechanism solution (strike 294??, dipping 58?? to the north-northeast). The planar structure defined by the aftershock locations may be a southeast continuation of the Mount Angel Fault, a reverse fault identified from both surface and subsurface evidence. The mapped southeast extent of the Mount Angel Fault is located less than 10 km west of the Scotts Mills epicentral region. In addition, the mainshock focal mechanism solution, with a combination of reverse motion and right-lateral strike slip, has a geometry and sense of motion consistent with the Mount Angel Fault. While aftershock focal mechanisms are varied, P axes are consistently oriented in a subhorizontal north-south direction. This earthquake sequence, together with the geological and geophysical evidence for the Mount Angel Fault, suggests a significant crustal earthquake hazard for this region of northwest Oregon.

  10. Geologic map of the Scotts Mills, Silverton, and Stayton Northeast 7.5 minute quadrangles, Northwest Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry; Beeson, Marvin; Wheeler, Karen L.

    1999-01-01

    The Scotts Mills, Silverton, and Stayton NE 7.5 minute quadrangles are situated along the eastern margin of the Willamette Valley and adjacent lower foothills (Waldo and Silverton Hills) of the Cascade Range (Fig. 1). The terrain within this area is of low to moderate relief, ranging from 100 to more than 1000 ft above sea level. This area is largely rural, with most of the valley floor and low-relief foothills under cultivation. In the last decade, the rural areas outside the boundaries of established towns have experienced significant growth in new homes built and the expansion of housing subdivisions. This growth has placed an increased demand on existing geologic resources (e.g., groundwater, sand and gravel, crushed stone) and the need to better understand potential geologic hazards within this region. Previous geologic mapping by Piper (1942), Peck and others (1964), Newton (1969), Hampton (1972), Miller and Orr (1984), Orr and Miller (1984), and Miller and Orr (1986, 1988) established and refined the general stratigraphic framework of this region. This mapping identified few faults or folds; earlier investigators were hindered by the lack of reliably identifiable marker horizons within the stratigraphic section. Werner (1991), using available seismic profile lines and well data in the Willamette Valley to locate the top of the Columbia River Basalt Group, was able to identify and map faults within the subsurface. Reconnaissance mapping of the Columbia River Basalt Group (CRBG) units in this region in the early 1980’s indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985, 1989; Beeson and Tolan, 1990). The major emphasis of this investigation was to identify and map CRBG units within the Scotts Mills, Silverton, and Stayton NE quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features.

  11. Impact of AGN and stellar feedback on the gas of a simulated z~2 star-forming galaxy

    NASA Astrophysics Data System (ADS)

    Roos, Orianne; Bournaud, Frédéric; Juneau, Stephanie; Gabor, Jared

    2015-08-01

    With high-resolution simulations of star-forming disk galaxies at high redshift, we study the effects of combined AGN and stellar feedback models on the gas of the host-galaxy. AGN feedback is modeled using a standard thermal recipe of feedback (gas is heated and pushed away) plus a post-processing method to compute AGN ionization. We first consider AGN feedback only and show that, even though the AGN generates powerful outflows, the effects of AGN feedback on star formation is relatively weak on time-scales up to a few 100s of Myrs, even when long-range radiative feedback is accounted for. Furthermore, as the combination of stellar feedback models generates outflows that are more powerful than the sum of the models taken separately, we check whether combined AGN and stellar feedback also couple non-linearly. We then include several stellar feedback sources on top of AGN feedback, such as young stars creating HII regions through radiative pressure and supernovae releasing thermal and kinetic energy in the ISM. We follow their impact on the gas of high-resolution simulations and study the coupling between the different sources of outflows (AGN, young stars, supernovae) , which could produce very fast outflows, with important outflow rates. How do these feedback-driven winds affect the host? What is the amount of expelled gas? What is its density and temperature and what is the consequence for in place and future star formation? Can such outflows change the distribution of existing stars?

  12. An Antifungal Exo-α-1,3-Glucanase (AGN13.1) from the Biocontrol Fungus Trichoderma harzianum

    PubMed Central

    Ait-Lahsen, Hassane; Soler, Andrés; Rey, Manuel; de la Cruz, Jesús; Monte, Enrique; Llobell, Antonio

    2001-01-01

    Trichoderma harzianum secretes α-1,3-glucanases when it is grown on polysaccharides, fungal cell walls, or autoclaved mycelium as a carbon source (simulated antagonistic conditions). We have purified and characterized one of these enzymes, named AGN13.1. The enzyme was monomeric and slightly basic. AGN13.1 was an exo-type α-1,3-glucanase and showed lytic and antifungal activity against fungal plant pathogens. Northern and Western analyses indicated that AGN13.1 is induced by conditions that simulated antagonism. We propose that AGN13.1 contributes to the antagonistic response of T. harzianum. PMID:11722942

  13. A Critique of "An Exploratory Investigation of the Effects of Communication Apprehension in Alternative Systems of Instruction" by Michael Scott, Michael Yates, and Lawrence Wheeless.

    ERIC Educational Resources Information Center

    Daly, John A.

    In this critique, comments and suggestions are offered that might be integrated into future research by Scott, Yates, and Wheeless on the topics of communication apprehension and alternative instructional approaches. These authors suggest, in their paper, that one's level of communication apprehension should be predictive of attitudes held toward,…

  14. The Third Turn toward the Social: Nancy Welch's "Living Room," Tony Scott's "Dangerous Writing," and Rhetoric and Composition's Turn toward Grassroots Political Activism

    ERIC Educational Resources Information Center

    Kinney, Kelly; Girshin, Thomas; Bowlin, Barrett

    2013-01-01

    This review essay examines recent texts by Nancy Welch and Tony Scott, both of which use embodied activism as a starting point for their inquiries. Taken together, these works point to a distinct shift in composition studies' turn toward the social, one that calls on workers both within and outside the academy to actively engage in grassroots…

  15. Assessing Values in Historical Fiction Written for Children: A Content Analysis of the Winners of the Scott O'Dell Historical Fiction Award.

    ERIC Educational Resources Information Center

    Edgington, William D.; Brabham, Edna Greene; Frost, Jami Bice

    1999-01-01

    Considers how teachers engage children in character education and analyzes core values in books winning the Scott O'Dell Historical Fiction Award. Finds that these books are rich sources for examples of core values that are common features of character-education programs. Observes many teachers using short stories and picture books to insert…

  16. Use of a Diagnostic Instrument to Gauge Pupil Growth: W.J. Scott Elementary School, 1972-73. Research and Development Report, Volume 7, Number 13, October, 1973.

    ERIC Educational Resources Information Center

    Willis, Patricia L.; Noe, James

    W. J. Scott Elementary School received local and Federal funds for compensatory programs during the 1972-73 school year. The purpose of this report is to evaluate the compensatory programs as they were implemented in the school and to analyze possible benefits to the general school program in terms of the goals and objectives defined by the…

  17. The Limited Impact of Outflows: Integral-field Spectroscopy of 20 Local AGNs

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Jin; Woo, Jong-Hak; Karouzos, Marios; Gallo, Elena; Flohic, Helene; Shen, Yue; Yoon, Suk-Jin

    2017-03-01

    To investigate active galactic nucleus (AGN) outflows as a tracer of AGN feedback on star formation, we perform integral-field spectroscopy of 20 type 2 AGNs at z < 0.1, which are luminous AGNs with [O iii] luminosity > 10{}41.5 erg s‑1 that exhibit strong outflow signatures in the [O iii] kinematics. By decomposing the emission-line profile, we obtain the maps of the narrow and broad components of the [O iii] and Hα lines, respectively. The broad components in both [O iii] and Hα represent the nongravitational kinematics, that is, gas outflows, while the narrow components, especially in Hα, represent the gravitational kinematics, that is, the rotational disk. By using the integrated spectra within the flux-weighted size of the narrow-line region, we estimate the energetics of the gas outflows. The ionized gas mass is 1.0–38.5 × {10}5{M}ȯ , and the mean mass outflow rate is 4.6 ± 4.3 M ⊙ yr‑1, which is a factor of ∼260 higher than the mean mass accretion rate of 0.02 ± 0.01 {M}ȯ yr‑1. The mean energy injection rate of the sample is 0.8% ± 0.6% of the AGN bolometric luminosity {L}{bol}, while the momentum flux is (5.4 ± 3.6) × {L}{bol}/c on average, except for the two most kinematically energetic AGNs with low {L}{bol}, which are possibly due to the dynamical timescale of the outflows. The estimated outflow energetics are consistent with the theoretical expectations for energy-conserving outflows from AGNs, yet we find no supporting evidence of instantaneous quenching of star formation due to the outflows.

  18. AGN POPULATION IN HICKSON COMPACT GROUPS. I. DATA AND NUCLEAR ACTIVITY CLASSIFICATION

    SciTech Connect

    MartInez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R. E-mail: chony@iaa.es E-mail: rcoziol@astro.ugto.mx

    2010-03-15

    We have conducted a new spectroscopic survey to characterize the nature of nuclear activity in Hickson compact group (HCG) galaxies and establish its frequency. We have obtained new intermediate-resolution optical spectroscopy for 200 member galaxies and corrected for underlying stellar population contamination using galaxy templates. Spectra for 11 additional galaxies have been acquired from the ESO and 6dF public archives, and emission-line ratios have been taken from the literature for 59 more galaxies. Here we present the results of our classification of the nuclear activity for 270 member galaxies, which belong to a well-defined sample of 64 HCGs. We found a large fraction of galaxies, 63%, with emission lines. Using standard diagnostic diagrams, 45% of the emission-line galaxies were classified as pure active galactic nuclei (AGNs), 23% as Transition Objects (TOs), and 32% as star-forming nuclei (SFNs). In the HCGs, the AGN activity appears as the most frequent activity type. Adopting the interpretation that in TOs a low-luminosity AGN coexists with circumnuclear star formation, the fraction of galaxies with an AGN could rise to 42% of the whole sample. The low frequency (20%) of SFNs confirms that there is no star formation enhancement in HCGs. After extinction correction, we found a median AGN H{alpha} luminosity of 7.1 x 10{sup 39} erg s{sup -1}, which implies that AGNs in HCG have a characteristically low luminosity. This result added to the fact that there is an almost complete absence of broad-line AGNs in compact groups (CGs) as found by MartInez et al. and corroborated in this study for HCGs, is consistent with very few gas left in these galaxies. In general, therefore, what may characterize the level of activity in CGs is a severe deficiency of gas.

  19. Tori, Discs, and Winds: The First Ten Years of AGN Interferometry

    NASA Astrophysics Data System (ADS)

    Hönig, Sebastian F.

    Infrared (IR) interferometry has made significant progress over the last 10 years to a level that active galactic nuclei (AGN) are now routine targets for long-baseline interferometers. Almost 50 different objects have been studied today in the near-IR and mid-IR. This allowed for detailed characterisation of the dusty environment of the actively growing black holes. It was possible to show directly that the dust must be arranged in clumps, as had been indirectly inferred from theory and unresolved observations. The dust composition seems to undergo significant evolution from galactic scales to the AGN environment, with the hottest dust close to the sublimation front being dominated by large graphite grains. While the overall distribution of the dusty mass is quite diverse from object to object, indications have been found that the dust distribution may depend on AGN luminosity, with more powerful AGN potentially showing more compact dust structures. Arguably the most exciting discovery was the fact that the bulk of the mid-IR emission in Seyfert galaxies emerges from the polar region of the AGN, which is difficult to reconcile with classical torus models. An alternative model is currently being debated that consists of a dusty disc plus a dusty wind driven by radiation pressure from the central source. This finding has major implications for our understanding of AGN unification and will become a focus of the upcoming generation of instruments at the VLTI. More recently, an application of interferometry to cosmology was proposed to measure precise geometric distances to AGN in the Hubble flow. Further exploration of this method may open up interferometry to a new scientific community.

  20. Are the variability properties of the Kepler AGN light curves consistent with a damped random walk?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-08-01

    We test the consistency of active galactic nuclei (AGN) optical flux variability with the damped random walk (DRW) model. Our sample consists of 20 multiquarter Kepler AGN light curves including both Type 1 and 2 Seyferts, radio-loud and -quiet AGN, quasars, and blazars. Kepler observations of AGN light curves offer a unique insight into the variability properties of AGN light curves because of the very rapid (11.6-28.6 min) and highly uniform rest-frame sampling combined with a photometric precision of 1 part in 105 over a period of 3.5 yr. We categorize the light curves of all 20 objects based on visual similarities and find that the light curves fall into five broad categories. We measure the first-order structure function of these light curves and model the observed light curve with a general broken power-law power spectral density (PSD) characterized by a short-time-scale power-law index γ and turnover time-scale τ. We find that less than half the objects are consistent with a DRW and observe variability on short time-scales (˜2 h). The turnover time-scale τ ranges from ˜10-135 d. Interesting structure function features include pronounced dips on rest-frame time-scales ranging from 10-100 d and varying slopes on different time-scales. The range of observed short-time-scale PSD slopes and the presence of dip and varying slope features suggests that the DRW model may not be appropriate for all AGN. We conclude that AGN variability is a complex phenomenon that requires a more sophisticated statistical treatment.

  1. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    NASA Astrophysics Data System (ADS)

    Lyu, Jianwei; Rieke, G. H.; Shi, Yong

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  2. An infrared and optical analysis of a sample of XBONGs and optically elusive AGNs

    SciTech Connect

    Smith, K. L.; Mushotzky, R. F.; Koss, M. E-mail: richard@astro.umd.edu

    2014-10-20

    We present near-infrared (NIR) spectra of four optically elusive active galactic nuclei (AGNs) and four X-ray bright, optically normal galaxies (XBONGs) from the Swift-BAT survey. With archival observations from the Sloan Digital Sky Survey, the Two Micron All Sky Survey, Spitzer, and the Wide-field Infrared Survey Explorer (WISE), we test a number of AGN indicators in the NIR and mid-infrared; namely, NIR emission line diagnostic ratios, the presence of coronal high-ionization lines, and infrared photometry. Of our eight hard X-ray selected AGNs, we find that optical normalcy has a variety of causes from object to object, and no one explanation applies. Our objects have normal Eddington ratios and so are unlikely to host radiatively inefficient accretion flows. It is unlikely that star formation in the host or starlight dilution is contributing to their failure of optical diagnostics, except perhaps in two cases. The NIR continua are well fit by two blackbodies: one at the stellar temperature, and a hot dust component near the dust sublimation temperature. The XBONGs are more likely to have significant hot dust components, while these components are small relative to starlight in the optically elusive AGN. Some of our sample have NIR line ratios typical of AGNs, but NIR diagnostics are unsuccessful in distinguishing H II regions from AGNs in general. In one object, we discover a hidden broad-line region in the NIR. These results have strong relevance to the origin of optically normal AGNs in deep X-ray surveys.

  3. Obscuring Torus Geometry from the NuSTAR Survey of Swift/BAT AGN

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR

    2016-06-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the spectral window above 10 keV with unprecedented spatial resolution and two orders of magnitude better sensitivity than any other instrument operating in that energy range. As a part of its long-term extragalactic program NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT). I will present spectroscopic results based on NuSTAR and Swift observations of ~150 Swift/BAT AGN surveyed in the first three years of NuSTAR operation. This sample forms an atlas of the highest quality hard X-ray spectra available to date for a large number of AGN, providing unprecedented insight into the variety AGN spectra in the hard X-ray band. In addition to phenomenology, which is an essential ingredient of Cosmic X-ray Background studies, it is possible to use new fitting models to directly probe the geometry of the toroidal obscurer (torus). Its main spectral features lie within the NuSTAR bandpass, making it possible to test the common assumption that a similar Compton-thick torus exists around essentially every Seyfert-type AGN. I will discuss torus geometry constraints based on the X-ray spectra in relation to those from other wavelengths, the effects on interpretation of high-redshift AGN observations, and the limitations of the current results.

  4. The star formation-AGN interplay in merging galaxies: insights from hydrodynamical simulations and observations.

    NASA Astrophysics Data System (ADS)

    Martinez Galarza, Juan R.; Smith, Howard Alan; Weiner, Aaron; Hayward, Christopher C.; Lanz, Lauranne; Zezas, Andreas; Rosenthal, Lee; Ashby, Matthew

    2016-01-01

    Thermal emission from an Active Galactic Nucleus (AGN) can provide a significant contribution to the bolometric luminosity of galaxies, and its effect at infrared wavelengths can mimic the process of star-formation, jeopardizing star formation rate (SFR) diagnostics. It is therefore important to model the AGN emission and to quantify its effect on the estimated SFRs when SED fitting tools are applied. We tackle this problem by studying the dust radiative transfer calculations of hydrodynamically simulated binary galaxy mergers covering a broad range of parameters, including stellar mas ratios, gas contents, AGN luminosity and viewing angles. We apply the energy balance SED fitting codes CHIBURST and CIGALE to the mock SEDs of our simulated merger, and then compare with the results of applying the same codes to the SEDs of observed merging galaxies in the Local Universe. At different stages of the interaction, we compare their derived SFRs and AGN fractions with those predicted by the hydrodynamical simulations, for a broad range of the interaction parameters, but focus on the stages near coalescence, when the AGN contribution exceed 10% of the total luminosity. We show that the contribution to IR luminosity is greatest during and immediately after coalescence, when the two supermassive black holes of the interacting pair merge and undergo and enhanced period of accretion. Under certain conditions, CIGALE succeeds at recovering the SFRs and AGN fractions with higher accuracy than other available codes, such as MAGPHYS, even during these extreme stages. Our results show that using the IR luminosity as a simple surrogate for star formation can significantly overestimate the true SFR by underestimating the contribution from the AGN. Finally, we study the effect of using different parametric star formation histories (SFHs) when fitting the SEDs of galaxies, and show that a delayed SFH is usually a reasonable choice for merging galaxies.

  5. Characterization of the AGN variability in the optical and Near Infrared regimes

    NASA Astrophysics Data System (ADS)

    Sanchez, Paula; Lira, Paulina; Cartier, Regis

    2016-08-01

    Variability is one of the most defining characteristic of Active Galactic Nuclei (AGN), and it is observed in every waveband in which they have been studied. For this reason variability studies are fundamental to understand the extreme physical conditions of accretion disks near supermassive black holes. Several efforts have been done to analyze the variability in the optical range, however, in order to relate the variability and physical properties of AGN, we need well sampled light curves. On the other hand, very little is known about the variability in the infrared range. This waveband gives us information about the dust surrounding the accretion disk at low redshift, and about the accretion disk at high redshift. In this talk, we will present the current status of our QUEST-La Silla AGN variability survey. This is an effort to obtain well sampled optical light curves of AGN in extragalactic fields with unique multiwavelength observations, using the QUEST camera on the ESO-Schmidt telescope.The survey uses a broadband filter, the Q-band, similar to the union of the g and the r filters. In particular, we will present the status of the analysis of the COSMOS, ELAIS-S1 and Stripe82 fields. Besides, we will present our statistical study of the near infrared (NIR) variability of AGN in the COSMOS field, using UltraVISTA data. This dataset give us a huge sample of light curves, making possible to have a global description of the nature of AGNs for different ranges of redshift, and for different levels of obscuration. By using both surveys, we expect to have a better understanding of the difference between type 1 and type 2 AGN.

  6. Retired galaxies: not to be forgotten in the quest of the star formation - AGN connection

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Costa-Duarte, M. V.; Vale Asari, N.; Cid Fernandes, R.; Sodré, L.

    2015-05-01

    We propose a fresh look at the Main Galaxy Sample of the Sloan Digital Sky Survey by packing the galaxies in stellar mass and redshift bins. We show how important it is to consider the emission-line equivalent widths, in addition to the commonly used emission-line ratios, to properly identify retired galaxies (i.e. galaxies that have stopped forming stars and are ionized by their old stellar populations) and not mistake them for galaxies with low-level nuclear activity. We find that the proportion of star-forming galaxies decreases with decreasing redshift in each mass bin, while that of retired galaxies increases. Galaxies with M⋆ > 1011.5 M⊙ have formed all their stars at redshift larger than 0.4. The population of AGN hosts is never dominant for galaxy masses larger than 1010 M⊙. We warn about the effects of stacking galaxy spectra to discuss galaxy properties. We estimate the lifetimes of active galactic nuclei (AGN) relying entirely on demographic arguments - i.e. without any assumption on the AGN radiative properties. We find upper-limit lifetimes of about 1-5 Gyr for detectable AGN in galaxies with masses between 1010-1012 M⊙. The lifetimes of the AGN-dominated phases are a few 108 yr. Finally, we compare the star formation histories of star-forming, AGN and retired galaxies as obtained by the spectral synthesis code STARLIGHT. Once the AGN is turned on, it inhibits star formation for the next ˜0.1 Gyr in galaxies with masses around 1010 M⊙, ˜ 1 Gyr in galaxies with masses around 1011 M⊙.

  7. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  8. Particle acceleration in rotating and shearing jets from AGN

    NASA Astrophysics Data System (ADS)

    Rieger, F. M.; Mannheim, K.

    2002-12-01

    We model the acceleration of energetic particles due to shear and centrifugal effects in rotating astrophysical jets. The appropriate equation describing the diffusive transport of energetic particles in a collisionless, rotating background flow is derived and analytical steady state solutions are discussed. In particular, by considering velocity profiles from rigid, over flat to Keplerian rotation, the effects of centrifugal and shear acceleration of particles scattered by magnetic inhomogeneities are distinguished. In the case where shear acceleration dominates, it is confirmed that power law particle momentum solutions f(p) ~ p-(3+alpha ) exist, if the mean scattering time tauc ~ palpha is an increasing function of momentum. We show that for a more complex interplay between shear and centrifugal acceleration, the recovered power law momentum spectra might be significantly steeper but flatten with increasing azimuthal velocity due to the increasing centrifugal effects. The possible relevance of shear and centrifugal acceleration for the observed extended emission in AGN is demonstrated for the case of the jet in the quasar 3C273.

  9. Modeling production of e+/--pair plasma in AGNs

    NASA Astrophysics Data System (ADS)

    Ford, Alex; Medvedev, Mikhail V.

    2016-10-01

    Processes around spinning supermassive black holes in active galactic nuclei (AGN) are believed to determine how relativistic jets are launched and how the black hole energy is extracted. The key question in these processes is the origin of plasma in black hole magnetospheres. The only reasonable mechanism is believed to be the electron-position cascade - the multistage process involving seed photons from an accretion disk, which are Compton up-scattered by charges accelerated in a gap region of a force-free magnetosphere with subsequent photon-photon pair production. In order to explore the process of the e+/- plasma production, we developed a numerical code which models the dynamics of the cascade along magnetic field lines. We demonstrate that plasma production is sensitive to the spectrum of the ambient photon and magnetic fields, the black hole mass and spin, and other parameters. We discuss the results and observational predictions. Supported by KU CLAS and DOE Grant ID0000225143 (07/01/16).

  10. Probing relativistic effects in the central engine of AGN

    NASA Astrophysics Data System (ADS)

    Sanfrutos, M.; Miniutti, G.

    2017-03-01

    Active Galactic Nuclei (AGN) are perfect laboratories to check General Relativity (GR) effects by using Broad Line Region (BLR) clouds eclipses to probe the innermost regions of the accretion disk. A new relativistic X–ray spectral model for X–ray eclipses is introduced. First we present the different observables that are involved in X–ray eclipses, including the X–ray emitting regions size, the emissivity index, the cloud's column density, ionization, size and velocity, the black hole spin, and the system's inclination. Then we highlight some theoretical predictions on the observables by using XMM–Newton simulations, finding that absorption varies depending on the photons' energy range, being maximum when the approaching side of the X–ray–emitting region is covered. Finally, we fit our relativistic model to actual XMM–Newton data from a long observation of the NLS1 galaxy SWIFT J2127.4+5654, and compare our results with a previous work, in which we addressed the BLR cloud eclipse from a non–relativistic prespective.

  11. Keck Laser Illuminates AGN in the Distant Universe.

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Wright, S.; Le Mignant, D.; Barczys, M.; Larkin, J.; Max, C.; Koo, D.

    2004-12-01

    The Center for Adaptive Optics Treasury Survey (CATS) aims to combine deep HST images in the optical with deep Keck adaptive optics (AO) data in the near-infrared (NIR) to study distant galaxies, AGN, and supernovae. We recently achieved an important new milestone by securing the first high quality Keck laser guide star (LGS) AO image of faint galaxies. Six galaxies with redshifts ranging from 0.3-1.0 were targeted in one pointing in the GOODS-S field. Two are Chandra sources with complex morphologies suggestive of recent merger activity. Substructures seen in the NIR AO image, including the double nucleus of one Chandra source and multiple tight knots in another, are confirmed in the optical HST images (both about 0.1" FWHM) but are undetected in very deep, ground-based NIR images from ESO with seeing about 0.5" FWHM. We will present results on the stellar populations of the substructures as derived from photometry of the galaxy subcomponents using the NIR AO data and the optical HST data taken with four ACS filters.

  12. High School Observations of AGN Using the GTN

    NASA Astrophysics Data System (ADS)

    McLin, Kevin M.; Jordan, R.; Perkins, A.; Adkins, J.; Cominsky, L.

    2008-03-01

    Students at Deer Valley High School in Antioch, California have undertaken an AGN monitoring program using telescopes of the Global Telescope Network (GTN) and SkyNet. The GTN is a network of small telescopes funded by GLAST to support the science of high energy astrophysics missions, specifically GLAST, Swift and XMM-Newton. It is managed by the NASA E/PO Group at Sonoma State University. SkyNet is a network of small telescopes managed from the University of North Carolina to catch gamma ray burst afterglows. A primary motivator behind both networks is education. In the program outlined here, high school students will schedule, reduce and analyze observations of active galaxies in order to determine if any microflaring activity has occurred. Students will compare their results with previous studies reported in the literature and then report their own results at the Contra Costa County Science and Engineering Fair. This work will give the students direct experience with several aspects of scientific research, including literature searches, data acquisition and analysis, and reporting of results.

  13. A Chandra-Swift View of Point Sources in Hickson Compact Groups: High AGN Fraction but a Dearth of Strong AGNs

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Gallagher, S. C.; Hornschemeier, A. E.; Fedotov, K.; Eracleous, M.; Brandt, W. N.; Desjardins, T. D.; Charlton, J. C.; Gronwall, C.

    2014-01-01

    We present Chandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances of 34-89 Mpc. We perform detailed X-ray point source detection and photometry and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (L(sub x)) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (gamma), hardness ratios, and L(sub X), in the full (0.5-8.0 keV), soft (0.5-2.0 keV), and hard (2.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions. Two-thirds of our galaxies have nuclear X-ray sources with Swift/UVOT counterparts. Two nuclei have L(sub X),0.5-8.0 keV > 10(exp 42) erg s-1, are strong multi-wavelength active galactic nuclei (AGNs), and follow the known alpha OX-?L? (nearUV) correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the 'non-AGN locus' in alpha OX-?L? (nearUV) space, which also hosts other normal galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR (is) less than -20 and L(sub X),0.5-8.0 keV (is) greater than 10(exp 41) erg s-1 is 0.08+0.35 -0.01, somewhat higher than the 5% fraction in galaxy clusters.

  14. Hamilton College.

    ERIC Educational Resources Information Center

    Rudy, Julia

    1989-01-01

    A description of Hamilton College's campus computing environment looks at the planning and management of information technology, computing services, the telephone network, faculty and student computing, and computer applications in the library. (MSE)

  15. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not

  16. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    SciTech Connect

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C.; Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn; Rangel, Cyprian; Laird, Elise S.; Bell, Eric F.; Alexander, David M.; Bournaud, Frederic; Conselice, Christopher J.; Dekel, Avishai; and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  17. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  18. Modeling optical and UV polarization of AGNs. III. From uniform-density to clumpy regions

    NASA Astrophysics Data System (ADS)

    Marin, F.; Goosmann, R. W.; Gaskell, C. M.

    2015-05-01

    Context. A growing body of evidence suggests that some, if not all, scattering regions of active galactic nuclei (AGNs) are clumpy. The inner AGN components cannot be spatially resolved with current instruments and must be studied by numerical simulations of observed spectroscopy and polarization data. Aims: We run radiative transfer models in the optical/UV for a variety of AGN reprocessing regions with different distributions of clumpy scattering media. We obtain geometry-sensitive polarization spectra and images to improve our previous AGN models and their comparison with the observations. Methods: We use the latest public version 1.2 of the Monte Carlo code stokes presented in the first two papers of this series to model AGN reprocessing regions of increasing morphological complexity. We replace previously uniform-density media with up to thousands of constant-density clumps. We couple a continuum source to fragmented equatorial scattering regions, polar outflows, and toroidal obscuring dust regions and investigate a wide range of geometries. We also consider different levels of fragmentation in each scattering region to evaluate the importance of fragmentation for the net polarization of the AGN. Results: In comparison with uniform-density models, equatorial distributions of gas and dust clouds result in grayer spectra and show a decrease in the net polarization percentage at all lines of sight. The resulting polarization position angle depends on the morphology of the clumpy structure, with extended tori favoring parallel polarization while compact tori produce orthogonal polarization position angles. In the case of polar scattering regions, fragmentation increases the net polarization unless the cloud filling factor is small. A complete AGN model constructed from the individual, fragmented regions can produce low polarization percentages (<2%), with a parallel polarization angle for observer inclinations up to 70° for a torus half opening angle of 60°. For

  19. Self-consistent two-phase AGN torus models⋆. SED library for observers

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED

  20. The OPTX Project. IV. How Reliable is [O III] as a Measure of AGN Activity?

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.

    2010-10-01

    We compare optical and hard X-ray identifications of active galactic nuclei (AGNs) using a uniformly selected (above a flux limit of f 2-8 keV = 3.5 × 10-15 erg cm-2 s-1) and highly optically spectroscopically complete (>80% for f 2-8 keV > 10-14 erg cm-2 s-1 and >60% below) 2-8 keV sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N). We find that empirical emission-line ratio diagnostic diagrams misidentify 50% of the X-ray-selected AGNs that can be put on these diagrams as star formers. We confirm that there is a large (two orders of magnitude) dispersion in the ratio of the [O III]λ5007 (hereafter [O III]) to hard X-ray luminosities for the non-broad-line AGNs, even after applying reddening corrections to the [O III] luminosities. We find that the dispersion is similar for the broad-line AGNs, where there is not expected to be much X-ray absorption from an obscuring torus around the AGN nor much obscuration from the galaxy along the line of sight if the AGN is aligned with the galaxy. We postulate that the X-ray-selected AGNs that are misidentified by the diagnostic diagrams have low [O III] luminosities due to the complexity of the structure of the narrow-line region, which causes many ionizing photons from the AGN not to be absorbed. This would mean that the [O III] luminosity can only be used to predict the X-ray luminosity to within a factor of ~3 (1σ). Despite selection effects, we show that the shapes and normalizations of the [O III] and transformed hard X-ray luminosity functions show reasonable agreement, suggesting that the [O III] samples are not finding substantially more AGNs at low redshifts than hard X-ray samples. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial

  1. VizieR Online Data Catalog: Catalog of Type-1 AGNs from SDSS-DR7 (Oh+, 2015)

    NASA Astrophysics Data System (ADS)

    Oh, K.; Yi, S. K.; Schawinski, K.; Koss, M.; Trakhtenbrot, B.; Soto, K.

    2015-08-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z<0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII]λ5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles. (2 data files).

  2. AKARI infrared camera observations of the 3.3 μm PAH feature in Swift/BAT AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Shirahata, Mai; Ichikawa, Kohei; Oyabu, Shinki; Clark, David M.; Imanishi, Masatoshi; Nakagawa, Takao; Ueda, Yoshihiro

    2014-12-01

    We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the nine-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E ≲ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (NH) towards the AGNs. We use the 3.3 μm PAH luminosity (L3.3μm) as a proxy for star-formation activity and hard X-ray luminosity (L14-195 keV) as an indicator of the AGN activity. We search for possible differences in star-formation activity between type 1 (unabsorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper limits of the PAH lines into account utilizing survival analysis methods. The results of our log (L14-195 keV) versus log (L3.3 μm) regression show a positive correlation and the slope for the type 1/unobscured AGNs is steeper than that of type 2/obscured AGNs at a 3 σ level. Our analysis also shows that the circumnuclear star formation is more enhanced in type 2/absorbed AGNs than type 1/unabsorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs, while there is no significant dependence of star-formation activities on the AGN type in the high X-ray luminosities/Eddington ratios.

  3. Theoretical uncertainties due to AGN subgrid models in predictions of galaxy cluster observable properties

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. Karen; Sutter, P. M.; Ricker, Paul M.

    2012-12-01

    Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modelling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter-sensitivity study in a single cluster using several commonly adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (˜20 per cent for Mgas and a factor of ˜2 for LX at R500), whereas TX, YSZ and YX are more robust (˜10-20 per cent at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and TX, which is another reason why YSZ and YX are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-TX and LX-TX relations.

  4. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  5. Cosmological evolution of supermassive black holes and AGN: a synthesis model for accretion and feedback .

    NASA Astrophysics Data System (ADS)

    Merloni, A.

    The growth of supermassive black holes (SMBH) through accretion is accompanied by the release of enormous amounts of energy which can either be radiated away, as happens in quasars, advected into the black hole, or disposed of in kinetic form through powerful jets, as is observed, for example, in radio galaxies. Here, I will present new constraints on the evolution of the SMBH mass function and Eddington ratio distribution, obtained from a study of AGN luminosity functions aimed at accounting for both radiative and kinetic energy output of AGN in a systematic way. First, I discuss how a refined Soltan argument leads to joint constraints on the mass-weighted average spin of SMBH and of the total mass density of high redshift (z˜ 5) and ``wandering'' black holes. Then, I will show how to describe the ``downsizing'' trend observed in the AGN population in terms of cosmological evolution of physical quantities (black hole mass, accretion rate, radiative and kinetic energy output). Finally, the redshift evolution of the AGN kinetic feedback will be briefly discussed and compared with the radiative output of the evolving SMBH population, thus providing a robust physical framework for phenomenological models of AGN feedback within structure formation.

  6. Revealing AGN, young and old stellar populations in HzRGs with PEGASE.3

    NASA Astrophysics Data System (ADS)

    Drouart, Guillaume; De Breuck, Carlos; Vernet, Joël; Volmerange, Brigitte Rocca; Seymour, Nicholas

    2014-07-01

    The HeRGÉ (Herschel Radio Galaxy Evolution) project consists of a sample of 70 radio galaxies in the range 1 < z < 5.2. They benefit from continuous coverage from 3 to 870μm with Spitzer, Herschel and sub-mm ground-based instruments (SCUBA, LABOCA). As a calorimeter, IR is an excellent proxy to estimate the contribution of both AGN and starburst, making of radio galaxies perfect candidates to provide new insights into the relationship between AGN and their host galaxies. The IR SED fitting with empirical templates reveals that radio galaxies are luminous and that their black holes and their host galaxies are not growing simultaneously. Extending the SED to optical/near-IR on a subsample of 12 radio galaxies spanning 1 < z < 4 reveal the necessity of three components to reproduce the observations. Making use of the evolutionary code PEGASE.3 and an AGN torus model, we are able to estimate parameters from the AGN torus, the evolved stellar population and the starburst (SB). They reveal that radio galaxies are massive, evolved, forming the bulk of their mass at very high redshift in a short timescale, but experience episodic, strong SB events, often associated with an AGN activity.

  7. Unifying Black Hole Jets: The Connection between radio-loud AGNs and Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Nemmen, Rodrigo

    2012-07-01

    Radio-loud AGNs and gamma-ray bursts produce powerful relativistic jets and their central engines share the same basic astrophysical ingredients, despite the vastly different mass scales. An outstanding question is how the jet physics scales from GRBs up to AGNs.Using Fermi and Swift observations as well as data obtained with several other observatories, we show that the jets produced by blazars and long-duration GRBs exhibit similar correlations between the kinetic power and apparent gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity end, respectively, of the trend. After carrying out the beaming correction for these two populations, we find evidence that blazars and GRBs follow the same correlation between the intrinsic gamma-ray luminosity and kinetic power. This result implies that jet production and energy dissipation mechanisms are remarkably similar across over 9 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs. Our results indicate that these jets convert their internal energy into radiation with efficiencies exceeding 10%. We will discuss the implications of these results in terms of the properties of the central engines of AGNs and GRBs, in particular the bulk Lorentz factor, jet opening angles and mass accretion rates.

  8. Clustering Of Radio-Selected AGN (And Star-Forming Galaxies) Up To Redshifts z = 3

    NASA Astrophysics Data System (ADS)

    Magliocchetti, Manuela; Popesso, P.; Brusa, M.; Salvato, M.

    2016-10-01

    We present the clustering properties of a complete sample of 957 radio sources detected by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. Based on their radio-luminosity, these objects have been furtherly divided into two populations of 642 AGN and 246 star-forming galaxies. Investigations of their clustering properties return values for the minimum masses of dark matter haloes capable to host at least one of such sources of Mmin=10^13.6 Msun for radio-selected AGN and Mmin=10^13.1 Msun for radio-emitting star-forming galaxies. Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. Our results indicate a larger relative stellar content in the star-forming population with respect to AGN and also clearly show the cosmic process of star-formation build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.

  9. A Hubble Space Telescope Survey of Intrinsic Absorption in Nearby AGN

    NASA Astrophysics Data System (ADS)

    Dashtamirova, Dzhuliya; Dunn, Jay P.; Crenshaw, D. Michael

    2017-01-01

    We present a survey of the intrinsic UV absorption lines in active galactic nuclei (AGN). We limit our study to the ultraviolet spectra of type 1 AGN with a redshift of z < 0.15 as a continuation of the Dunn et al. (2007, 2008) and Crenshaw et al. (1999) studies of smaller samples. We identify approximately 90 AGN fit our redshift specifications in the Mikulski Archive for Space Telescopes (MAST) database with Cosmic Origin Spectrograph (COS) observations. We download and co-add all of the COS spectra. We find that about 80 of these are type 1 AGN. We normalize the COS spectra and identify all of the intrinsic Lyman-alpha, N V, Si IV, and C IV intrinsic absorption features. From these data, we determine the fraction of type 1 AGN with intrinsic absorption in this redshift range and find the global covering factors of the absorbers. We also identify low ionization species as well as excited state lines. A number of objects have multiple epoch COS and/or Space Telescope Imaging Spectrograph (STIS) observations, which we use to investigate the absorption variability.

  10. AGN duty cycle and relic emission in the low frequency sky

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Intema, H.; Heald, G.

    2016-12-01

    Active Galactic Nuclei (AGNs) are amongst the brightest sources in the radio sky that deposit large amount of energy in the interstellar and intergalactic medium (ISM, IGM) via their jets. Recurrent flaring episodes in the AGN jets can terminate at large-scale faint diffuse 'relic' emission around them. These relic emissions are rare and represent the end stage of their life cycle. They show very steep spectrum giving insights of AGN duty cycle, their past activity history and surrounding environment properties. High sensitivity and arcsec scale observations at very low frequencies are needed to detect such rare relic emission and disentangle the details of their morphology. In this paper we highlight the important database provided by low frequency surveys to search for relic radio sources and discuss in particular the relic emission from the AGNs detected in the LOFAR Multi frequency Snapshot Sky Survey (MSSS) and TIFR GMRT Sky Survey (TGSS), both surveys performed with SKA pathfinder telescopes. The radio spectrum from 2 different types of relic radio galaxies (B2 0924+30 and 4C 35.06) are investigated and a correlation between the mean particle age of the relic emission and the central AGN properties is derived.

  11. Photoionization modeling of GRO 1655-40: A scaled down AGN Warm Absrobers!

    NASA Astrophysics Data System (ADS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris R.; Behar, Ehud; Tombesi, Francesco

    2016-04-01

    We present photoinization models of the absorption features Galactic X-ray Binary (XRB) by implementing the MHD accretion disk wind models employed to account for the ionization properties of the AGN Warm Absorbers (WA)(Fukumura et a. 2010). The implementation of the same models rests on the fact that the radial density profiles of these winds, n(r)~1/r, guarantees the correct values of the hydrogen equivalent column NH of the most important ionic species at the correct values of their ionization parameter ξ and velocity v. The similarity of the winds' ionization properties is broken only by the peak frequency of the ionizing SED, which is in the UV in AGN and in X-rays in XRBs. This difference implies that the inner regions of the XRB winds are far more ionized than those of AGN, resulting in much smaller velocities for the same ionic species (e.g. Fe XXV) in XRB (v~1,000 km/s) than in AGN (v~10,000 km/s), in agreement with observation. Estimates of the wind mass flux deduced from our photonization modeling, imply that the latter is much larger than that needed to power the observed X-ray emission, a property that appears to be generic from the Galactic to the AGN black hole mass range suggesting a common underlying structure.

  12. Probing the Black Hole-Galaxy Connection with AGN Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Urry, C. M.; COSMOS Team

    2006-12-01

    There is increasing evidence that galaxies and supermassive black holes form and evolve together, exerting mutual feedback that governs the galaxy dynamics and the black hole mass. During their growth phase, supermassive black holes are readily visible as Active Galactic Nuclei (AGN). The morphologies of AGN host galaxies offer a powerful, direct probe of the AGN-galaxy connection. We are carrying out morphological analysis of large AGN samples from deep multi-wavelength surveys, comparing the results to well-selected samples of inactive galaxies. To interpret the results properly requires understanding the observational bias introduced by the central point source, which can hide compact features and thus influence the extracted AGN host morphological parameters. Therefore, we performed extensive simulations, involving a variety of galaxy types over a range of redshifts. Here we present results of these simulations and describe preliminary work on deep HST ACS images from the COSMOS field. We gratefully acknowledge support from HST grants AR-10689.01-A and GO-09822.09-A, and Yale University.

  13. Probing the Black Hole-Galaxy Connection with AGN Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Urry, C. M.; COSMOS Team

    2007-05-01

    There is increasing evidence that galaxies and supermassive black holes form and evolve together, exerting mutual feedback that governs the galaxy dynamics and the black hole mass. During their growth phase, supermassive black holes are readily visible as Active Galactic Nuclei (AGN). The morphologies of AGN host galaxies offer a powerful, direct probe of the AGN-galaxy connection. We are carrying out morphological analysis of large AGN samples from deep multi-wavelength surveys, comparing the results to well-selected samples of inactive galaxies. To interpret the results properly requires understanding the observational bias introduced by the central point source, which can hide compact features and thus influence the extracted AGN host morphological parameters. Therefore, we performed extensive simulations, involving a variety of galaxy types over a range of redshifts. Here we present results of these simulations and describe preliminary work on deep HST ACS images from the COSMOS field. We gratefully acknowledge support from HST grants AR-10689.01-A and GO-09822.09-A, and Yale University.

  14. AGN-starburst evolutionary connection: a physical interpretation based on radiative feedback

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Fabian, A. C.

    2016-12-01

    Observations point towards a close connection between nuclear starbursts, active galactic nuclei (AGN), and outflow phenomena. An evolutionary sequence, starting from a dust-obscured ultra-luminous infrared galaxy and eventually leading to an unobscured optical quasar, has been proposed and discussed in the literature. AGN feedback is usually invoked to expel the obscuring gas and dust in a blow-out event, but the underlying physical mechanism remains unclear. We consider AGN feedback driven by radiation pressure on dust, which directly acts on the obscuring dusty gas. We obtain that radiative feedback can potentially disrupt dense gas in the infrared-optically thick regime, and that an increase in the dust-to-gas fraction leads to an increase in the effective Eddington ratio. Thus, the more dusty gas is preferentially expelled by radiative feedback, and the central AGN is prone to efficiently remove its own obscuring dust cocoon. Large amounts of dust imply heavy obscuration but also powerful feedback, suggesting a causal link between dust obscuration and blow-out. In this picture, AGN feedback and starburst phenomena are intrinsically coupled through the production of dust in supernova explosions, leading to a natural interpretation of the observed evolutionary path.

  15. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    NASA Astrophysics Data System (ADS)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  16. The Horizon-AGN simulation: evolution of galaxy properties over cosmic time

    NASA Astrophysics Data System (ADS)

    Kaviraj, S.; Laigle, C.; Kimm, T.; Devriendt, J. E. G.; Dubois, Y.; Pichon, C.; Slyz, A.; Chisari, E.; Peirani, S.

    2017-01-01

    We compare the predictions of Horizon-AGN, a hydro-dynamical cosmological simulation that uses an adaptive mesh refinement code, to observational data in the redshift range 0 < z < 6. We study the reproduction, by the simulation, of quantities that trace the aggregate stellar-mass growth of galaxies over cosmic time: luminosity and stellar-mass functions, the star formation main sequence, rest-frame UV-optical-near infrared colours and the cosmic star-formation history. We show that Horizon-AGN, which is not tuned to reproduce the local Universe, produces good overall agreement with these quantities, from the present day to the epoch when the Universe was 5% of its current age. By comparison to Horizon-noAGN, a twin simulation without AGN feedback, we quantify how feedback from black holes is likely to help shape galaxy stellar-mass growth in the redshift range 0 < z < 6, particularly in the most massive galaxies. Our results demonstrate that Horizon-AGN successfully captures the evolutionary trends of observed galaxies over the lifetime of the Universe, making it an excellent tool for studying the processes that drive galaxy evolution and making predictions for the next generation of galaxy surveys.

  17. Linking the radio and X-ray of AGN in cluster cores

    NASA Astrophysics Data System (ADS)

    Edge, Alastair; Sadler, Elaine; Combes, Francoise; Mahony, Elizabeth; Fabian, Andy; Hamer, Stephen; McDonald, Michael; Russell, Helen; Wilman, Richard; Hogan, Michael; Mcnamara, Brian; Hlavacek-larrondo, Julie; Grainge, Keith; Salomé, Philippe

    2013-04-01

    There is a growing body of evidence that there is a balance of cooling and heating in the cores of clusters of galaxies that is regulated by AGN activity in the central galaxy. X-ray observations show that gas cooling is suppressed but mm/sub-mm observations show that there is cold molecular gas that has apparently cooled from the ICM. The AGN activity generated when some of this cold gas reaches the supermassive black hole in the central galaxy goes on to heat the surrounding gas creating an "AGN feedback" cycle. One important element to this puzzle is what the intrinsic power of the AGN is and how it couples to the ICM. We propose to address both of these issues by determining the high frequency spectral properties of a sample of 20 of the brightest systems that are known to show X-ray emission from an active nucleus. These results can be used to determine the intrinsic power of the ensemble of clusters which can be compared to the predicted heating rate required to balance cooling. This comparison will place a strong constraint on the energetics of ICM heating from the AGN.

  18. Cosmology with AGN dust time lags-simulating the new VEILS survey

    NASA Astrophysics Data System (ADS)

    Hönig, S. F.; Watson, D.; Kishimoto, M.; Gandhi, P.; Goad, M.; Horne, K.; Shankar, F.; Banerji, M.; Boulderstone, B.; Jarvis, M.; Smith, M.; Sullivan, M.

    2017-01-01

    The time lag between optical and near-infrared continuum emission in active galactic nuclei (AGN) shows a tight correlation with luminosity and has been proposed as a standardizable candle for cosmology. In this paper, we explore the use of these AGN hot-dust time lags for cosmological model fitting under the constraints of the new VISTA Extragalactic Infrared Legacy Survey (VEILS). This new survey will target a 9 deg2 field observed in J and Ks band with a 14-d cadence and will run for 3 yr. The same area will be covered simultaneously in the optical griz bands by the Dark Energy Survey, providing complementary time-domain optical data. We perform realistic simulations of the survey setup, showing that we expect to recover dust time lags for about 450 objects out of a total of 1350 optical type 1 AGN, spanning a redshift range of 0.1 < z < 1.2. We use the lags recovered from our simulations to calculate precise distance moduli, establish a Hubble diagram, and fit cosmological models. Assuming realistic scatter in the distribution of the dust around the AGN as well as in the normalization of the lag-luminosity relation, we are able to constrain Ω _Λ in ΛCDM with similar accuracy as current supernova samples. We discuss the benefits of combining AGN and supernovae for cosmology and connect the present work to future attempts to reach out to redshifts of z > 4.

  19. Was 49b: An Overmassive AGN in a Merging Dwarf Galaxy?

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan J.; Schmitt, Henrique R.; Blecha, Laura; Rothberg, Barry; Fischer, Jacqueline

    2017-02-01

    We present a combined morphological and X-ray analysis of Was 49, an isolated, dual-AGN system notable for the presence of a dominant AGN, Was 49b, in the disk of the primary galaxy, Was 49a, at a projected radial distance of 8 kpc from the nucleus. Using X-ray data from Chandra, the Nuclear Spectroscopic Telescope Array, and Swift, we find that this AGN has a bolometric luminosity of L bol ∼ 1045 erg s‑1, with a black hole mass of {M}{BH} = {1.3}-0.9+2.9× {10}8 {M}ȯ . Despite the large mass, our analysis of optical data from the Discovery Channel Telescope shows that the supermassive black hole (SMBH) is hosted by a stellar counterpart with a mass of only {5.6}-2.6+4.9× {10}9 {M}ȯ , which makes the SMBH potentially larger than expected from SMBH–galaxy scaling relations, and the stellar counterpart exhibits a morphology that is consistent with dwarf elliptical galaxies. Our analysis of the system in the r and K bands indicates that Was 49 is a minor merger, with the mass ratio of Was 49b to Was 49a between ∼1:7 and ∼1:15. This is in contrast with findings that the most luminous merger-triggered AGNs are found in major mergers and that minor mergers predominantly enhance AGN activity in the primary galaxy.

  20. Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales

    NASA Astrophysics Data System (ADS)

    Tristam, Konrad R. W.

    2016-08-01

    The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.