Science.gov

Sample records for agnes scott college

  1. Obscured AGN

    NASA Technical Reports Server (NTRS)

    Ptak, Andrew

    2011-01-01

    Many obscured AGN show evidence of significant starburst emission dominating below 2 keV. Therefore wide-field X-ray surveys sensitive enough to luminosities below approximately 10^42 ergs per second will result in detections of galaxies with contributions of both obscured AGN and starburst emission. We will discuss Bayesian approaches to assessing the relative contribution of each component, minimizing survey biases and using the resultant posterior probabilities for the AGN and starburst components to determine their evolution.

  2. Obscured AGN

    NASA Astrophysics Data System (ADS)

    Barger, Amy

    2014-07-01

    Obscured AGN may correspond to a substantial fraction of the supermassive black hole growth rate. I will present new surveys with the SCUBA-2 instrument on the James Clerk Maxwell Telescope of the Chandra Deep Fields and discuss whether we can distinguish obscured AGN in hard X-ray and radio selected samples using submillimeter observations.

  3. Multi-faceted AGN

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys R.; Chen, Yanping; Dai, Yuxiao; Zaw, Ingyin

    2016-08-01

    An interesting question is how frequently an object is an AGN by multiple different criteria — e.g., is simultaneously a narrow-line optical AGN and an X-ray or radio AGN, possibly as a function of luminosities in the various wavebands and perhaps host galaxy type. Answering such questions quantitatively has been difficult up to now because of the lack of a complete, uniformly selected optical AGN catalog. Here we report first results of such an analysis, using the new, all-sky catalog of uniformly selected optical AGNs from Zaw, Chen and Farrar (2016), the Swift-BAT 70-month catalog of X-ray AGN (Baumgartner et al., 2013), and the van Velzen et al. (2012) catalog of radio AGN.

  4. Students Speak With NASA Astronaut Scott Kelly

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  5. ASK Talks with W. Scott Cameron

    NASA Technical Reports Server (NTRS)

    Cameron, W. Scott

    2002-01-01

    This paper presents an interview with Scott Cameron who is the Capital Systems Manager for the Food and Beverage Global Business Unit of Procter and Gamble. He has been managing capital projects and mentoring other project managers for the past 20 years at Procter and Gamble within its Beauty Care, Health Care, Food and Beverage, and Fabric and Home Care Businesses. Scott also has been an Academy Sharing Knowledge (ASK) feature writer since Volume One.

  6. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1AGN-ionized gas, the stellar masses of the host galaxies and their star formation rates. We then investigate the relationships between AGN luminosities, specific star formation rates (sSFR) and outflow strengths W_{90} - the 90% velocity width of the [OIII]λ5007Å line power and a proxy for the AGN-driven outflow speed. Outflow strength W_{90} is independent of sSFR for AGN selected based on their mid-IR luminosity. This is in agreement with previous work that demonstrates that star formation is not sufficient to produce the observed ionized gas outflows which have to be powered by AGN activity. More importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  7. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  8. Optically-selected AGN

    NASA Astrophysics Data System (ADS)

    Richard, Gordon

    2016-08-01

    will discuss the selection and properties of optically-selected AGN as contrasted with other multi-wavelength investigations. While optical surveys are able to identify *more* AGNs than other wavelengths, this size comes with a bias towards brighter, unobscured sources. Although optical surveys are not ideal for probing obscured AGNs, I will discuss how they can guide our search for them. The bias towards unobscured sources in the optical is partially mitigated, however, by an increase in information content for the sources that *are* identified---in the form of physics probed by the combination of optical continuum, absorption, and emission. An example is the ability to estimate the mass of AGNs based on the optical/UV emission lines. I will discuss the range of mass (and accretion rate) probed by the optical in addition to serious biases in the black hole mass scaling relations that corrupt these estimates at high redshift.

  9. The Ornery American: Orson Scott Card

    ERIC Educational Resources Information Center

    Oatman, Eric

    2008-01-01

    This article profiles Orson Scott Card, the winner of this year's Margaret A. Edwards Award for his outstanding contributions to teen literature, specifically for Ender's Game and Ender's Shadow (1999, both Tor), a companion tale. Card, the magician behind both of these best sellers, is one of the nation's most prolific--and contentious--authors.…

  10. Reading, Learning, Teaching N. Scott Momaday

    ERIC Educational Resources Information Center

    Charles, Jim

    2007-01-01

    This book is an introduction to the literature and art of American writer N. Scott Momaday, winner of the 1969 Pulitzer Prize and member of the Kiowa American Indian Tribe. The book describes the impact of Momaday's family, Kiowa heritage, Pueblo cultural experiences, and academic preparation on his worldview, poetry, novels, essays, children's…

  11. Thinking Visually: An Interview with Scott Bennett.

    ERIC Educational Resources Information Center

    Gamble, Harriet

    2002-01-01

    Presents an interview with Scott Bennett, an artist of abstract art and traditional craft. Focuses on issues such as the role of art in his life, how his art has developed over time, and his process of creating his works of art. Includes directions for a glazing project. (CMK)

  12. [Sybil Scott and East Texas Baseball Players.

    ERIC Educational Resources Information Center

    Woodfin, Samantha, Ed.

    1996-01-01

    This issue of "Loblolly Magazine" is dedicated to Sybil Scott, born in 1910 and still going at the age of 85. She shares some interesting tales of what it was like growing up in the '10's and '20's in Texas, including her school years. She remembers, very vividly, her childhood and teenage years in East Texas. Among the many interesting stories…

  13. Reframing Michael Scott: Exploring Inappropriate Workplace Communication

    ERIC Educational Resources Information Center

    Schaefer, Zachary A.

    2010-01-01

    Individuals who work in professional settings interact with others who may exhibit a variety of cultural beliefs and decision-making approaches. Page (2007) argues that cognitive diversity (i.e., how people approach and attempt to solve problems) is a vital asset in effective organizations. Michael Scott, who portrays the inept main character on…

  14. Interview with Scott and Mark Kelly (PART 5)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  15. Interview with Scott and Mark Kelly (PART 2)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  16. Interview with Scott and Mark Kelly (PART 6)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  17. Interview with Scott and Mark Kelly (PART 1)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  18. Interview with Scott and Mark Kelly (PART 3)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  19. Interview with Scott and Mark Kelly (PART 4)

    NASA Video Gallery

    Astronauts and brothers Scott and Mark Kelly are interviewed before their missions. Scott Kelly (left) will be Expedition 26 Commander and Mark will be the STS-134 Commander. The two brothers may m...

  20. Challenging Constitutional Authority: African American Responses to "Scott v. Sandford."

    ERIC Educational Resources Information Center

    McDorman, Todd F.

    1997-01-01

    Demonstrates the importance of extra-legal texts in contextualizing and challenging judicial authority by analyzing Black Abolitionist responses to "Scott v. Sandford" (the "Dred Scott" decision). Concludes that responses to Dred Scott demonstrate how legally excluded classes may persuasively challenge constitutional authority and have…

  1. The Arcadia zinc area, Scott County, Virginia

    USGS Publications Warehouse

    Gladstone, Irvine; Nelson, Vincent E.; Kent, Deane F.

    1945-01-01

    The Arcadia zinc area in the southeastern part of Scott County, Va., about 1 1/2 mile north of the village of Arcadia, Tenn., and in the eastern part of the Indian Springs topographic map area. According to Secrist prospects were opened in 1906 by Mr. Frank Bowman and were worked sporadically until the fall of 1917. A small Joplin type mill was erected in 1948 and 25 tones of concentrates was produced.

  2. Armstrong and Scott with Hatches Open

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong and David R. Scott sit with their spacecraft hatches open while awaiting the arrival of the recovery ship, the USS Leonard F. Mason after the successful completion of their Gemini VIII mission. They are assisted by U.S. Navy divers. The overhead view shows the Gemini 8 spacecraft with the yellow flotation collar attached to stabilize the spacecraft in choppy seas. The green marker dye is highly visible from the air and is used as a locating aid.

  3. SWIFT Observations AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift Burst Alert Telescope (BAT) Active Galactic Nuclei (AGN) survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type.

  4. Scott E. Forbush 1904”1984

    NASA Astrophysics Data System (ADS)

    Pomerantz, Martin A.

    1984-04-01

    Scott E. Forbush, a pioneer in cosmic ray research, was the quintessential geophysicist's geophysicist. Until, on the eve of his 80th birthday, he succumbed to pneumonia, he maintained an abiding interest in the continued reliable operation of the three remaining cosmic ray ionization chambers of the worldwide network that he had set up in the mid 1930s. No one could have predicted, when the first instrument at Cheltenham, Md. commenced operation in 1936, that Forbush was destined to discover most of the important multifarious time variations of cosmic rays that were accessible to his classic detectors

  5. The evolution of early Homo: a reply to Scott.

    PubMed

    Van Arsdale, A P; Wolpoff, M H

    2014-03-01

    Scott presents a welcome reply to our article, "A single lineage in early Pleistocene Homo" (Van Arsdale and Wolpoff ). However, Scott's reply mischaracterizes and fails to directly address the hypothesis of a single lineage that we test. Additionally, the approach taken by Scott fails to replicate the methods used in our analysis. As Scott himself suggests, our null hypothesis of a single evolving lineage in early Homo remains without refutation. Although many evolutionary scenarios might explain the complex pattern of variation present in the early Homo fossil record, the most parsimonious remains that of a single lineage displaying evolutionary change over time. PMID:24372272

  6. Community Attitudes about Economic Impacts of Colleges: A Case Study. AIR 1996 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Stout, Robert J.

    This study examined attitudes of people about benefits of the economic impacts of two local colleges (Palmer College of Chiropractic and Scott Community College) in the metropolitan Quad Cities area of Rock Island County (Illinois) and Scott County (Iowa). The study compared impacts considered important by the community with those estimated by the…

  7. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  8. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  9. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  10. Obscured AGN at High Redshift

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  11. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  12. Starburst or AGN Dominance in Submillimetre-Luminous Candidate AGN?

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Pope, Alexandra; Menéndez-Delmestre, Karín; Alexander, David M.; Dunlop, James

    2010-06-01

    It is widely believed that ultraluminous infrared (IR) galaxies and active galactic nuclei (AGN) activity are triggered by galaxy interactions and merging, with the peak of activity occurring at z~2, where submillimetre galaxies are thousands of times more numerous than local ULIRGs. In this evolutionary picture, submillimetre galaxies (SMGs) would host an AGN, which would eventually grow a black hole (BH) strong enough to blow off all of the gas and dust leaving an optically luminous QSO. To probe this evolutionary sequence we have focussed on the `missing link' sources, which demonstrate both strong starburst (SB) and AGN signatures, in order to determine if the SB is the main power source even in SMGs when we have evidence that an AGN is present from their IRAC colours. The best way to determine if a dominant AGN is present is to look for their signatures in the mid-infrared with the Spitzer IRS, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We present the results of our audit of the energy balance between star-formation and AGN within this special sub-population of SMGs-where the BH has grown appreciably to begin heating the dust emission.

  13. STS-87 Mission Specialist Winston E. Scott suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  14. STS-87 Mission Specialist Scott in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. Scott also performed a spacewalk on the STS-72 mission.

  15. 10. TRUSS DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, Berlin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. TRUSS DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, Berlin Construction Company) Sheet 1 of 2, July 5, 1927 - Bridge No. 475, Spanning Pequabuck River on U.S. Route 6, Farmington, Hartford County, CT

  16. 11. FLOOR SYSTEM DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. FLOOR SYSTEM DETAILS, BRIDGE OVER SCOTT SWAMP (Shop Drawing, Berlin Construction Company) Sheet 2 of 2, July 9, 1927 - Bridge No. 475, Spanning Pequabuck River on U.S. Route 6, Farmington, Hartford County, CT

  17. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  18. Astronauts Armstrong and Scott during photo session outside KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  19. AGN from HeII: AGN host galaxy properties & demographics

    NASA Astrophysics Data System (ADS)

    Baer, Rudolf E.; Schawinski, Kevin; Weigel, Anna

    2016-01-01

    We present an analysis of HeII emitting objects classified as AGN. In a sample of 81'192 galaxies taken from the seventh data release (DR7) of the Sloan Digital Sky Survey in the redshift interval 0.02 < z < 0.05 and with r < 17 AB mag, the Baldwin, Philips & Terlevitsch 1981 method (BPT) identifies 1029 objects as active galactic nuclei. By applying an analysis using HeII λ 4686 emission lines, based on Shirazi & Binchmann 2012, we have identified an additional 283 active galactic nuclei, which were missed by the BPT method. This represents an increase of over 25 %. The characteristics of the HeII selected AGN are different from the AGN found through the PBT; the colour - mass diagram and the colour histogram both show that HeII selected AGN are bluer. This new selection technique can help inform galaxy black hole coevolution scenarios.

  20. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  1. Probing AGN Accretion Physics through AGN Variability: Insights from Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal Pramod

    Active Galactic Nuclei (AGN) exhibit large luminosity variations over the entire electromagnetic spectrum on timescales ranging from hours to years. The variations in luminosity are devoid of any periodic character and appear stochastic. While complex correlations exist between the variability observed in different parts of the electromagnetic spectrum, no frequency band appears to be completely dominant, suggesting that the physical processes producing the variability are exceedingly rich and complex. In the absence of a clear theoretical explanation of the variability, phenomenological models are used to study AGN variability. The stochastic behavior of AGN variability makes formulating such models difficult and connecting them to the underlying physics exceedingly hard. We study AGN light curves serendipitously observed by the NASA Kepler planet-finding mission. Compared to previous ground-based observations, Kepler offers higher precision and a smaller sampling interval resulting in potentially higher quality light curves. Using structure functions, we demonstrate that (1) the simplest statistical model of AGN variability, the damped random walk (DRW), is insufficient to characterize the observed behavior of AGN light curves; and (2) variability begins to occur in AGN on time-scales as short as hours. Of the 20 light curves studied by us, only 3-8 may be consistent with the DRW. The structure functions of the AGN in our sample exhibit complex behavior with pronounced dips on time-scales of 10-100 d suggesting that AGN variability can be very complex and merits further analysis. We examine the accuracy of the Kepler pipeline-generated light curves and find that the publicly available light curves may require re-processing to reduce contamination from field sources. We show that while the re-processing changes the exact PSD power law slopes inferred by us, it is unlikely to change the conclusion of our structure function study-Kepler AGN light curves indicate

  2. College Library Technology and Cooperation Grants Program, Higher Education Act, Title II-D. Final Performance Report.

    ERIC Educational Resources Information Center

    Hanifan, Thomas; Hoogheem, Cynthia L.

    The Eastern Iowa Community College District (EICCD) libraries received a federal College Library Technology and Cooperation grant to provide and link public access catalogs at each college of the district--Clinton Community College, Muscatine Community College, and Scott Community College. That network is named Quad-LINC (Quad Cities Libraries in…

  3. IR properties of AGN and SB

    NASA Astrophysics Data System (ADS)

    Talezade Lari, M. H.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    Through multi-wavelength flux ratios it is possible to detect AGN and Star-burst Galaxies. Techniques of detecting extragalactic objects as well as AGN are studied in different wavelengths (X-Ray, Radio and IR). Specification of AGN as IR and radio sources is discussed. IR catalogues of 2MASS and WISE were used to study the interrelationship between interactions/merging, starburst and AGN phenomena.

  4. APOLLO 9: Dave scott performs Extra Vehicular Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Dave Scott performs Extra Vehicular Activities around the Command Module 'Gumdrop'. From the film documentary 'APOLLO 9: The Duet of Spider & Gumdrop': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) Mission: APOLLO 9: Earth orbital flight with James A. McDivitt, David R. Scott, and Russell Schweickart. First flight of the Lunar Module. Performed rendezvous, docking and E.V.A..Mission Duration 241hrs 0m 54s.

  5. AGN identification: what lies ahead

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Sotiria

    2016-08-01

    Classification has been one the first concerns of modern astronomy, starting from stars sorted in the famous Harvard classification system and promptly followed by the morphological classification of galaxies by none other than Edwin Hubble himself (Hubble 1926). Both classification schema are essentially connected to the physics of the objects reflecting the temperature for stars and e.g. the age of the star population for galaxies. Systematic observations of galaxies have revealed the intriguing class of Active Galactic Nuclei (AGN), objects of tremendous radiation that do not share the same properties of what we now call normal galaxies. Observations have led to the definition of distinct and somewhat arbitrary categories (Seyfert galaxies, quasars, QSO, radio AGN, etc), essentially rediscovering the many faces of the same phenomenon, up until the unification of AGN (Antonucci 1993, Urry and Padovani 1995). Even after the realization that all AGN have the same engine powering their amazing radiation, astronomers are still using and refining the selection criteria within their favorite electromagnetic range in the hope to better understand the impact of the AGN phenomenon in the greater context of galaxy evolution. In the dawn of Big Data astronomy we find ourselves equipped with new tools. I will present the prospects of machine learning methods in better understanding the AGN population. Namely, I will show results from supervised learning algorithms whereby a labeled training set is used to amalgamate decision tree(s) (Fotopoulou et al., 2016) or neural network(s), and unsupervised learning where the algorithm performs clustering analysis of the full dataset in a multidimensional space identifying clusters of objects sharing potentially the same physical properties (Fotopoulou in prep.).

  6. Multiwavelength AGN Surveys and Studies (IAU S304)

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Sanders, David B.

    2014-08-01

    1. Historical surveys: spectral and colorimetric surveys for AGN, surveys for UV-excess galaxies; 2. AGN from IR/submm surveys: 2MASS, IRAS, ISO, AKARI, SCUBA, SST, WISE, Herschel; 3. AGN from radio/mm surveys: NVSS, FIRST, ALMA, Planck, and others; 4. AGN from X-ray/gamma-ray surveys: ROSAT, ASCA, BeppoSAX, Chandra, XMM, INTEGRAL, Fermi, HESS, MAGIC, VERITAS, NuSTAR; 5. Multiwavelength AGN surveys, AGN statistics and cross-correlation of multiwavelength surveys; 6. Unification and other models of AGN, accretion modes, understanding of the structure of nearby AGN from IFUs on VLT and other telescopes; 7. AGN feedback in galaxies and clusters, AGN host galaxies and the AGN environments; 8. Binary AGN and Merging Super-Massive Black Holes; 9. Study of unique AGN, AGN variability and the Phenomena of Activity; 10. Future large projects; Author index.

  7. Narrating Socialization: Linda Scott DeRosier's Memoirs

    ERIC Educational Resources Information Center

    Locklear, Erica Abrams

    2007-01-01

    Linda Scott DeRosier's autobiographical accounts of literacy attainment in "Creeker: A Woman's Journey" and "Songs of Life and Grace" reveal that entrance into a secondary discourse community via literacy can bring both pleasure and pain. Analyzing the identity negotiations DeRosier encounters reveals that although she experiences a sense of loss…

  8. Walter Dill Scott and the Student Personnel Movement

    ERIC Educational Resources Information Center

    Biddix, J. Patrick; Schwartz, Robert A.

    2012-01-01

    Walter Dill Scott (1869-1955), tenth president of Northwestern University and pioneer of industrial psychology, is an essential architect of student personnel work. This study of his accomplishments, drawing on records from the Northwestern University archives, tells a story about the people he influenced and his involvement in codifying what was…

  9. Scott Morgan Johnson Middle School: Personalization Leads to Unlimited Success

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    The well-known lyrics may be "The Eyes of Texas Are Upon You," but at Scott Morgan Johnson Middle School in McKinney, TX, it's definitely the "eye of the tiger" that sets the bar for Tiger PRIDE (perseverance, respect, integrity, determination, and excellence). This article describes how those ideals have been infused…

  10. 76 FR 71042 - Scott S. Reuben: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... the Federal Food, Drug, and Cosmetic Act permanently debarring Scott S. Reuben, M.D. from providing... relating to the regulation of a drug product under the Federal Food, Drug, and Cosmetic Act. Dr. Reuben was..., Drug, and Cosmetic Act (21 U.S.C. 335a(a)(2)(B)) requires debarment of an individual if FDA finds...

  11. WASTE MINIMIZATION OPPORTUNITY ASSESSMENT: SCOTT AIR FORCE BASE

    EPA Science Inventory

    This report describes a waste minimization assessment of three operations at Scott AFB. ircuit board manufacturing, non-destructive wheel inspection, and paint shipping/painting/parts cleaning are the operations addressed in this assessment. he primary focus of the assessment was...

  12. Moving the Education Needle: A Conversation with Scott Hamilton

    ERIC Educational Resources Information Center

    Jacobs, Joanne

    2014-01-01

    Scott Hamilton is the Forrest Gump of education reform, although with a lot more IQ points and fewer chocolates. He worked for Bill Bennett in the U.S. Department of Education and for Benno Schmidt at the Edison Project. He authorized charter schools in Massachusetts, co-founded the KIPP network, quadrupled the size of Teach For America (TFA), and…

  13. Astronauts Armstrong and Scott during photo session outside KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. Both men are wearing full space suits and carring their helmets.

  14. Astronauts Scott and Armstrong undergoe water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  15. Astronauts Scott and Armstrong undergoe water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott (right), pilot of the Gemini 8 prime crew, are suited up for water egress training aboard the NASA Motor Vessel Retriever in the Gulf of Mexico. At left is Dr. Kenneth N. Beers, M.D., Flight Medicine Branch, Center Medical Office.

  16. Theorizing Steampunk in Scott Westerfeld's YA Series Leviathan

    ERIC Educational Resources Information Center

    Mielke, Tammy L.; LaHaie, Jeanne M.

    2015-01-01

    In this article, we offer an explanation of steampunk and theorize the genre and its functions within Scott Westerfeld's YA series Leviathan. In order to do so, we examine the "cogs" of the genre machine and its use of nostalgic longing for a revised past/future to rebel against present day cultural norms. Critics note that steampunk…

  17. Michael Scott: An Individual and the International System

    ERIC Educational Resources Information Center

    Reardon, Betty

    1971-01-01

    This article describes the efforts of Michael Scott in trying to gain dignity and justice for victims of political violence. It indicates that, though limited, there are still nonviolent recourses open to those who will not use the war system. (Author/JB)

  18. "Children of the Sun" by N. Scott Momaday. Cue Sheet.

    ERIC Educational Resources Information Center

    Waterfall, Milde M.

    This performance guide is designed for teachers to use with students before and after a performance of "Children of the Sun," by N. Scott Momaday. The guide, called a "Cuesheet," is in the form of a Director's Notebook--a scrapbook/journal of clippings, memos, lists, illustrations, notes, and other items--to show students how a director finds and…

  19. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)-BH mergers play a major role in spinning up the central SMBHs in these objects.

  20. The Close AGN Reference Survey (CARS)

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Husemann, Bernd; Busch, Gerold; Dierkes, Jens; Eckart, Andreas; Krajnovic, Davor; Scharwaechter, Julia; Tremblay, Grant R.; Urrutia, Tanya

    2015-08-01

    We present the first science results from the Close AGN Reference Survey (CARS). This program is a snapshot survey of 39 local type 1 AGN (0.01 < z <0.06) designed to address the issue of AGN-driven star formation quenching by characterizing the condition for star formation in AGN host galaxies. The primary sample was observed with Multi Unit Spectrscopic Explorer (MUSE), an optical wavelength integral field unit (IFU) with a 1'x1' field of view on the VLT. The optical 3D spectroscopy complements existing sub-mm CO(1-0) data and near-IR imaging to establish a unique dataset combining molecular and stellar masses with star formation rates, gas, stellar kinematics and AGN properties. The primary goals of CARS are to:1) investigate if the star formation efficiency and gas depletion time scales are suppressed as a consequence of AGN feedback; 2) identify AGN-driven outflows and their relation to the molecular gas reservoir of the host galaxy; 3) investigate the the balance of AGN feeding and feedback through the ratio of the gas reservoir to the AGN luminosity; and 4) provide the community with a reference survey of local AGN with a high legacy value. Future work will incorporate near-infrared IFU observations to present a complete spatially resolved picture of the interplay among AGN, star-formation, stellar populations, and the ISM.

  1. Gamma-ray-selected AGN

    NASA Astrophysics Data System (ADS)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  2. Comparing Simulations of AGN Feedback

    NASA Astrophysics Data System (ADS)

    Richardson, Mark L. A.; Scannapieco, Evan; Devriendt, Julien; Slyz, Adrianne; Thacker, Robert J.; Dubois, Yohan; Wurster, James; Silk, Joseph

    2016-07-01

    We perform adaptive mesh refinement (AMR) and smoothed particle hydrodynamics (SPH) cosmological zoom simulations of a region around a forming galaxy cluster, comparing the ability of the methods to handle successively more complex baryonic physics. In the simplest, non-radiative case, the two methods are in good agreement with each other, but the SPH simulations generate central cores with slightly lower entropies and virial shocks at slightly larger radii, consistent with what has been seen in previous studies. The inclusion of radiative cooling, star formation, and stellar feedback leads to much larger differences between the two methods. Most dramatically, at z=5, rapid cooling in the AMR case moves the accretion shock to well within the virial radius, while this shock remains near the virial radius in the SPH case, due to excess heating, coupled with poorer capturing of the shock width. On the other hand, the addition of feedback from active galactic nuclei (AGNs) to the simulations results in much better agreement between the methods. For our AGN model, both simulations display halo gas entropies of 100 keV cm2, similar decrements in the star formation rate, and a drop in the halo baryon content of roughly 30%. This is consistent with the AGN growth being self-regulated, regardless of the numerical method. However, the simulations with AGN feedback continue to differ in aspects that are not self-regulated, such that in SPH a larger volume of gas is impacted by feedback, and the cluster still has a lower entropy central core.

  3. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  4. Cerebrovascular disease associated with Aarskog-Scott syndrome.

    PubMed

    Diluna, Michael L; Amankulor, Nduka M; Johnson, Michele H; Gunel, Murat

    2007-05-01

    Faciogenital dysplasia, also known as Aarskog-Scott syndrome (AAS), is an X-linked dominant congenital disorder characterized by multiple facial, musculoskeletal, dental, neurological and urogenital abnormalities, ocular manifestations, congenital heart defects, low IQ and behavioral problems. Here we describe an unusual presentation of dysplastic carotid artery, basilar artery malformation or occlusion and posterior circulation aneurysm in a 13-year-old male with AAS.

  5. The Study of Relativistic AGN Jets and Experimental Survey of AGN Properties

    NASA Astrophysics Data System (ADS)

    Sabzali, V.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    AGN, their evolution and their relativistic jets were studied on the basis of data from multi-wavelength surveys. NRAO VLA Sky Survey (NVSS) and VLBI were used to study radio jets and radio continuum emission of AGN. A population of AGN will be selected and used in a future optical survey for their jets.

  6. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    NASA Astrophysics Data System (ADS)

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  7. The dust covering factor in AGN

    NASA Astrophysics Data System (ADS)

    Stalevski, Marko

    2016-08-01

    We undertook a critical investigation of a common estimator of the dust covering factor in active galactic nuclei (AGN). The infrared radiation emitted by the obscuring dusty structure ("the dusty torus") is nothing but a reprocessed fraction of the accretion disk emission, so the ratio of their luminosities (L_torus /L_AGN) should correspond to the fraction of the AGN sky obscured by dust. Using state-of-the-art Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. Using this grid of SEDs, we studied the relation between L_torus /L_AGN and the dust covering factor for different parameters of the torus. We found that in case of type 1 AGNs, due to the torus anisotropy, L_torus/L AGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs covering factors are always underestimated. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of these effects for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on L_AGN, with values in the range of approx. 0.6 ‑ 0.7. Our results suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys. We discuss the possible causes of this discrepancy and demonstrate that it is partially due to the presence of a Compton-thick AGN population, which is missed by X-ray surveys, but not by infrared.

  8. SWIFT BAT Survey of AGN

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  9. AGN Winds and Blazar Phenomenology

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2012-01-01

    The launch of {\\em Fermi} produced a significant number of AGN detections to allow statistical treatment of their properties. One of the first such systematics was the "Blazar Divide" in FSRQs and BL Lacs according to their gamma-ray spectral index and luminosity. Further data accumulation indicated this separation to be less clear than thought before. An MHD wind model which can model successfully the Seyfert X-ray absorber properties provides the vestiges of an account of the observed blazar classification. We propose to employ this model to model in detail the broad band blazar spectra and their statistical properties in terms of the physical parameters of these MHD winds.

  10. AGN Zoo and Classifications of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2015-07-01

    We review the variety of Active Galactic Nuclei (AGN) classes (so-called "AGN zoo") and classification schemes of galaxies by activity types based on their optical emission-line spectrum, as well as other parameters and other than optical wavelength ranges. A historical overview of discoveries of various types of active galaxies is given, including Seyfert galaxies, radio galaxies, QSOs, BL Lacertae objects, Starbursts, LINERs, etc. Various kinds of AGN diagnostics are discussed. All known AGN types and subtypes are presented and described to have a homogeneous classification scheme based on the optical emission-line spectra and in many cases, also other parameters. Problems connected with accurate classifications and open questions related to AGN and their classes are discussed and summarized.

  11. Pharmacokinetics of a novel retinoid AGN 190168 and its metabolite AGN 190299 after intravenous administration of AGN 190168 to rats.

    PubMed

    Hsyu, P H; Bowen, B; Tang-Liu, D

    1994-07-01

    The pharmacokinetics of AGN 190168, a novel synthetic retinoid, and its major metabolite, AGN 190299, in rat blood after intravenous administration was investigated. Approximately 4.4 mg kg-1 (high dose) or 0.49 mg kg-1 (low dose) of AGN 190168 was administered to rats via the femoral vein. Blood was collected from the femoral artery at various time points during an 8 h period. Blood concentrations of AGN 190168 and AGN 190299 were determined by a specific and sensitive high-pressure liquid chromatographic (HPLC) method. AGN 190168 was rapidly metabolized in rats. The only detectable drug-related species in the blood was AGN 190299. Therefore, only pharmacokinetics of AGN 190299 were calculated. Elimination of AGN 190299 appeared to be non-linear after administration of the high dose, and linear after administration of the low dose. The maximum elimination rate (Vmax) and the concentration at half of the Vmax (km), as estimated by a Michaelis-Menten one-compartment model, were 7.58 +/- 2.42 micrograms min-1 (mean +/- SD) and 6.10 +/- 1.58 micrograms mL-1, respectively. The value of the area under the blood concentration time curve (AUC) was 9.54 +/- 1.68 micrograms h mL-1 after administration of the high dose and 0.594 +/- 0.095 micrograms h mL-1 after administration of the low dose. The clearance value was 7.79 +/- 1.20 mL min-1 kg-1 after the high dose, statistically significantly different from that after the low dose (p < 0.05), 14.0 +/- 2.2 mL min-1 kg-1. The terminal half-life (t1/2) was 1.25 +/- 0.74 h for the high-dose group and 0.95 +/- 0.16 h for the low-dose group. Study results demonstrate rapid systemic metabolism of AGN 190168 to AGN 190299, non-linear pharmacokinetics of AGN 190299 after the 4.4 mg kg-1 dose, and the lack of difference in disposition profiles between sexes after intravenous administration of AGN 190168 to rats.

  12. APOLLO 15: Commander Scott on those who gave all

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 15: A demonstration of a classic experiment. From the film documentary 'APOLLO 15: 'The mountains of the Moon'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 15: Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley rilleon July 30, 1971;performed EVA with Lunar Roving Vehicle; deployed experiments. P& F Subsattelite spring-launched from SM in lunar orbit. Mission Duration 295 hrs 11 min 53sec

  13. The Scotts Mills, Oregon earthquake on March 25, 1993

    USGS Publications Warehouse

    Wong, Ivan; Hemphill-Haley, Mark; Salah-Mars-Woodward-Clyde, Said

    1993-01-01

    At 5:34 a.m. on March 25, 1993, much of northwestern Oregon and southwestern Washington was shaken by one if the largest historic earthquakes ever observed in the region. The Richter magnitude 5.6 earthquake occurred near the small town of Scotts Mills, 48 km south of Portland, Oregon. The March 25 earthquake was felt over a large part of the Pacific Northwest extending from Seattle, Washington, in the north to the town of Roseburg in southern Oregon. Due in large part to the moderate size of the event and its location in a rural setting, only minor injuries occurred, principally from falling objects and broken glass.

  14. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    SciTech Connect

    Ajello, M.; Alexander, D.M.; Greiner, J.; Madejski, G.M.; Gehrels, N.; Burlon, D.; /Garching, Max Planck Inst., MPE

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thick AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.

  15. Geologic Map of the Scott City 7.5-Minute Quadrangle, Scott and Cape Girardeau Counties, Missouri

    USGS Publications Warehouse

    Harrison, Richard W.; Palmer, James R.; Hoffman, David; Vaughn, James D.; Repetski, John E.; Frederiksen, Norman O.; Forman, Steven L.

    2002-01-01

    The Scott City quadrangle is located at the northern end of the Mississippi embayment (fig. 1). The quadrangle contains parts of three physiographic features: the abandoned channel of the ancestral Mississippi River, the Benton Hills, and the flood plain of the ancestral Ohio River and modern Mississippi River. These features are largely the manifestation of the Quaternary evolution of the Mississippi and Ohio Rivers, the chronology and analysis of which has been discussed by Fisk (1944), Saucier (1968, 1974, 1994), Guccione and others (1990), Madole and others (1991), Autin and others (1991), Porter and Guccione (1994), and Blum and others (1995a,b).

  16. The Secrets of St. Agnes

    ERIC Educational Resources Information Center

    Ross, Janell

    2006-01-01

    This article reveals the disturbing truths uncovered by a retired biology professor about the past practices of a North Carolina hospital. In the 1990s, Irene Clark was a biology professor at St. Augustine's College, a historically Black college in Raleigh, North Carolina. One day, a janitor asked the native Virginian what she knew about the…

  17. Toward a Unified AGN Structure

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  18. New Calif. Community-College Chief Seeks Unity over Autonomy

    ERIC Educational Resources Information Center

    Keller, Josh

    2008-01-01

    This article reports that the incoming chancellor of California's enormous community-college system is facing a crucial choice amid tough times. Jack Scott, a longtime chair of State Senate's committee on education, will take the helm of the California community-college system in January. But in a twist of state politics, his influence over the…

  19. 76 FR 71611 - Notice of Establishment of the Fort Winfield Scott Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Fort Winfield Scott as a new national center focused on service and leadership development. DATES... on the establishment of a new national center (``Center'') focused on service and leadership... dedicated to service and leadership at Fort Scott in the Presidio of San Francisco; (b)...

  20. Astronaut David Scott undergoes water egress training in building 260A

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott, pilot of the Gemini 8 prime crew, undergoes water egress training in a special tank in building 260A at the Manned Spacecraft Center (MSC), Houston, Texas. An MSC swimmer assists in the training exercise. A boilerplate model of a Gemini spacecraft floats in water beside Scott.

  1. Partners in Excellence: Development of the Temple College Clinical Simulation Center

    ERIC Educational Resources Information Center

    Coker, Neil

    2006-01-01

    Temple College (TC) is a comprehensive community college located in Temple, Texas. Temple also is home to Scott & White Hospital, Central Texas Veterans Health Care System, King's Daughters Hospital, and Texas A&M University College of Medicine's clinical campus. In the summer of 2001, TC's health-sciences programs were scattered across three…

  2. The Evolution of Obscuration in AGN

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, M.; Virani, S.

    2006-09-01

    One fundamental ingredient in our understanding of the AGN population is the ratio of obscured to unobscured AGN and whether this ratio depends on other parameters like intrinsic luminosity or redshift. Observationally, deep X-ray surveys found that the obscured AGN fraction depends on luminosity. However, the dependence on redshift is less clear. In this work, we constructed the largest sample to date of AGN selected in hard X-rays, containing a total of 1229 sources, 631 of them obscured, with a high spectroscopic completeness in order to study the possible dependence of the fraction of obscured sources with redshift and/or luminosity. We confirm that this fraction decreases with increasing luminosity as previously reported and found that at the same time it increases with increasing redshift. This is the first time that this evolution is significantly detected using only optical spectroscopy to separate obscured and unobscured AGN. Additionally, we use the spectral shape and intensity of the X-ray background as a separate constraint on the evolution of the obscured AGN fraction finding consistent results. This result can be interpreted as an evolution in the location of the obscuration, from the central parsec-scale region (the torus) at low redshift to kiloparsec scales (the host galaxy) at high redshift, as it is known that most galaxies contained more dust in the past. Using these results, we calculate the integrated bolometric AGN emission finding it to be at most 5% of the total extragalactic light. Hence, while AGN contribute most of the light at X-ray wavelengths, they constitute only a small fraction of the integrated extragalactic light. We thank the support of the Centro de Astrof\\'{\\i}sica FONDAP and from NASA/{\\it INTEGRAL} grant NNG05GM79G.

  3. Three-variable reversible Gray-Scott model.

    PubMed

    Mahara, Hitoshi; Suematsu, Nobuhiko J; Yamaguchi, Tomohiko; Ohgane, Kunishige; Nishiura, Yasumasa; Shimomura, Masatsugu

    2004-11-01

    Even though the field of nonequilibrium thermodynamics has been popular and its importance has been suggested by Demirel and Sandler [J. Phys. Chem. B 108, 31 (2004)], there are only a few investigations of reaction-diffusion systems from the aspect of thermodynamics. A possible reason is that model equations are complicated and difficult to analyze because the corresponding chemical reactions need to be reversible for thermodynamical calculations. Here, we introduce a simple model for calculation of entropy production rate: a three-variable reversible Gray-Scott model. The rate of entropy production in self-replicating pattern formation is calculated, and the results are compared with those reported based on the Brusselator model in the context of biological cell division. PMID:15527362

  4. Three-variable reversible Gray-Scott model

    NASA Astrophysics Data System (ADS)

    Mahara, Hitoshi; Suematsu, Nobuhiko J.; Yamaguchi, Tomohiko; Ohgane, Kunishige; Nishiura, Yasumasa; Shimomura, Masatsugu

    2004-11-01

    Even though the field of nonequilibrium thermodynamics has been popular and its importance has been suggested by Demirel and Sandler [J. Phys. Chem. B 108, 31 (2004)], there are only a few investigations of reaction-diffusion systems from the aspect of thermodynamics. A possible reason is that model equations are complicated and difficult to analyze because the corresponding chemical reactions need to be reversible for thermodynamical calculations. Here, we introduce a simple model for calculation of entropy production rate: a three-variable reversible Gray-Scott model. The rate of entropy production in self-replicating pattern formation is calculated, and the results are compared with those reported based on the Brusselator model in the context of biological cell division.

  5. STS-90 Pilot Scott Altman is suited up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Pilot Scott Altman is assisted during suit-up activities by Lockheed Suit Technician Valerie McNeil from Johnson Space Center in KSC's Operations and Checkout Building. Altman and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Altman is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body - - the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  6. The Great Kanto earthquake and F. Scott Fitzgerald

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi; Bina, Craig R.

    How many recall the following striking sentence from The Great Gatsby by F. Scott Fitzgerald, which appears on the second page of the novel, where Fitzgerald first introduces Gatsby? “If personality is an unbroken series of successful gestures, then there was something gorgeous about him, some heightened sensitivity to the promises of life, as if he were related to one of those intricate machines that register earthquakes ten thousand miles away.”This line may have failed to focus our attention when we first read the book in our younger days. Now, however, as a Japanese seismologist and an American geophysicist (and student of Japanese culture), we would be greatly remiss for failing to take greater note of this statement. Indeed, as The Great Gatsby was published in 1925, it occurred to us that the earthquake Fitzgerald might have been thinking of was the Great Kanto earthquake, which occurred on September 1, 1923 and devastated the Tokyo metropolitan area.

  7. A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Yi, Sukyoung K.; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Soto, Kurt

    2015-07-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z\\lt 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [O iii] λ 5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles.

  8. First Detections of Compact AGN-triggered Radio Cores in RQ AGNs in the ECDFS

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Maini, A.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-08-01

    The mechanism triggering the radio emission in Radio-Quiet (RQ) Active Galactic Nuclei (AGN), found to be a relevant component of the faint radio population in deep fields, is hotly debated. Most RQ AGNs are unresolved or barely resolved at a few arcsec scale, comparable to the host galaxy size. RQ AGNs have also been found to share many properties with Star Forming Galaxies (SFG). They have similar radio luminosities and similar optical- /infrared-to-radio flux ratios. Their radio luminosity functions show similar evolutionary trends, and their host galaxies have similar colours, optical morphologies and stellar masses. For all these reasons it was concluded that the radio emission in such RQ AGNs is mainly triggered by star formation (SF). However in the local Universe (z<0.5) it is well known that both AGN and SF processes can contribute to the total radio emission in RQ AGNs (see e.g., Seyfert 2 galaxies), and there is growing evidence that composite SF/AGN systems are common at mid to high redshift (z>1-2). We used the Australian Long Baseline Array to observe a number of RQ AGNs in the Extended Chandra Deep Field South (ECDFS), and we detected compact, high-surface-brightness radio cores in some of them. Our pilot study shows that at least some of the sources classified as radio quiet contain an AGN that can contribute significantly (~50% or more) to the total radio emission. This is a first direct evidence of the presence of such AGN-triggered radio emission in RQ AGNs at cosmological redshifts.

  9. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  10. AGN Absorption Linked to Host Galaxies

    NASA Astrophysics Data System (ADS)

    Juneau, Stéphanie

    2014-07-01

    Multiwavelength identification of AGN is crucial not only to obtain a more complete census, but also to learn about the physical state of the nuclear activity (obscuration, efficiency, etc.). A panchromatic strategy plays an especially important role when the host galaxies are star-forming. Selecting far-Infrared galaxies at 0.3AGN tracers in the X-ray, optical spectra, mid-infrared, and radio regimes, we found a twice higher AGN fraction than previous studies, thanks to the combined AGN identification methods and in particular the recent Mass-Excitation (MEx) diagnostic diagram. We furthermore find an intriguing relation between AGN X-ray absorption and the specific star formation rate (sSFR) of the host galaxies, indicating a physical link between X-ray absorption and either the gas fraction or the gas geometry in the hosts. These findings have implications for our current understanding of both the AGN unification model and the nature of the black hole-galaxy connection.

  11. A method for determining AGN accretion phase in field galaxies

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Martinović, Nemanja; Sinha, Manodeep

    2016-09-01

    Recent observations of active galactic nucleus (AGN) activity in massive galaxies (log M*/ M⊙ > 10.4) show the following: (1) at z < 1, AGN-hosting galaxies do not show enhanced merger signatures compared with normal galaxies, (2) also at z < 1, most AGNs are hosted by quiescent galaxies and (3) at z > 1, the percentage of AGNs in star-forming galaxies increases and becomes comparable to the AGN percentage in quiescent galaxies at z ˜ 2. How can major mergers explain AGN activity in massive quiescent galaxies that have no merger features and no star formation to indicate a recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger-triggered AGN activity is consistent with the observations. By distinguishing between `peak' AGNs (recently merger-triggered and hosted by star-forming galaxies) and `faded' AGNs (merger-triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star-forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z < 1, the only AGNs left to be observed are the ones triggered by old mergers that are now in the declining phase of their nuclear activity, hosted by quiescent galaxies. As we go towards higher redshifts, the galaxy merger rate increases and the percentages of `peak' AGNs and `faded' AGNs become comparable.

  12. Spherical accretion and AGN feedback

    NASA Astrophysics Data System (ADS)

    Nulsen, Paul

    2014-06-01

    For a supermassive black hole accreting from a hot, quasi-spherical atmosphere, it is almost inevitable that the fluid approximation fails inside some point within the Bondi radius, but well outside the black hole event horizon. Within the region where the particle mean free paths exceed the radius, the flow must be modeled in terms of the Fokker-Planck equation. In the absence of magnetic fields, it is analogous to the "loss cone" problem for consumption of stars by a black hole. The accretion rate is suppressed well below the Bondi accretion rate and a significant power must be conveyed outward for the flow to proceed. This situation is complicated significantly by the presence of a magnetic field, but I will argue that the main outcomes are similar. I will also argue that the power emerging from such a flow, although generally far too little to suppress cooling on large scales, is an important ingredient of the AGN feedback cycle on scales comparable to the Bondi radius.

  13. Early evolution stage of AGN

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, M.; Labiano, A.; Siemiginowska, A.; Guainazzi, M.; Gawroński, M.

    2015-03-01

    Radio sources are divided into two distinct morphological groups of objects: Fanaroff-Riley type I and type II sources. There is a relatively sharp luminosity boundary between these at low frequency. The nature of the FR division is still an open issue, as are the details of the evolutionary process in which younger and smaller GHz-peaked spectrum (GPS) and compact steep spectrum (CSS) sources become large-scale radio structures. It is still unclear whether FRII objects evolve to become FRIs, or whether a division has already occurred amongst CSS sources and some of these then become FRIs and some FRIIs. We explored evolution scenarios of AGNs using new radio, optical and X-ray data of unstudied so far Low Luminosity Compact (LLC) sources. We suggest that the determining factors of the further evolution of compact radio objects could occur at subgalactic (or even nuclear) scales, or they could be related to the radio jet - interstellar medium (ISM) interactions and evolution. Our studies show that the evolutionary track could be related to the interaction, strength of the radio source and excitation levels of the ionized gas instead of the radio morphology of the young radio source.

  14. Gas phase synthesis and reactivity of Agn+ and Ag(n-1)H+ cluster cations.

    PubMed

    Khairallah, George N; O'Hair, Richard A J

    2005-08-21

    Multi-stage mass spectrometry (MSn) on [(M + Ag - H)x + Ag]+ precursor ions (where M = an amino acid such as glycine or N,N-dimethylglycine) results in the formation of stable silver (Ag3+, Ag5+ and Ag7+) and silver hydride (Ag2H+, Ag4H+ and Ag6H+) cluster cations in the gas phase. Deuterium labelling studies reveal that the source of the hydride can be either from the alpha carbon or from one of the heteroatoms. When M = glycine, the silver cyanide clusters Ag4CN+ and Ag5(H,C,N)+ are also observed. Collision induced dissociation (CID) and DFT calculations were carried out on each of these clusters to shed some light on their possible structures. CID of the Agn+ and Ag(n-1)H+ clusters generally results in the formation of the same Ag(n-2)+ product ions via the loss of Ag2 and AgH respectively. DFT calculations also reveal that the Agn+ and Ag(n-1)H+ clusters have similar structural features and that the Ag(n-1)H+ clusters are only slightly less stable than their all silver counterparts. In addition, Agn+ and Ag(n-1)H+ clusters react with 2-propanol and 2-butylamine via similar pathways, with multiple ligand addition occurring and a coupled deamination-dehydration reaction occurring upon condensation of a third (for Ag2H+) or a fourth (for all other silver clusters) 2-butylamine molecule onto the clusters. Taken together, these results suggest that the Agn+ and Ag(n-1)H+ clusters are structurally related via the replacement of a silver atom with a hydrogen atom. This replacement does not dramatically alter the cluster stability or its unimolecular or bimolecular chemistry with the 2-propanol and 2-butylamine reagents.

  15. The Davydov/Scott model for energy storage and transport in proteins.

    PubMed

    Cruzeiro, Leonor

    2009-02-01

    The current status of the Davydov/Scott model for energy transfer in proteins is reviewed. After a brief introduction to the theoretical framework and to the basic results, the problems of finite temperature dynamics and of the full quantum and mixed quantum-classical approximations are described, as well as recent results obtained within each of these approximations. A short survey of experimental evidence in support of the Davydov/Scott model is made and absorption spectra are calculated that show the same temperature dependence as that measured in crystalline acetanilide. Future applications of the Davydov/Scott model to protein folding and function and to misfolding diseases are outlined. PMID:19669568

  16. The Horizon-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  17. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  18. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  19. The Effective Eddington Limit for AGN

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ranjan

    2008-10-01

    Feedback is an integral component of AGN and galaxy co-evolution. The outward radiation pressure balances the inward gravitational force on the dusty gas in the galaxy bulge at an effective Eddington limit, which is lower than the canonical Eddington limit. We have shown that absorption in AGN in The Swift/BAT 9-month survey is overwhelmingly located below the effective Eddington limit. Here we propose to observe the only three objects from this survey which are at this limit. Other sources near this boundary exhibit warm absorbers and outflows, and searching for evidence of such features in our proposed observations will provide an unprecedented level of detail in understanding sources in which the AGN is in the process of shaping the host galaxy.

  20. AGN Physics in the CTA Era

    NASA Astrophysics Data System (ADS)

    Zech, Andreas; Boisson, Catherine; Sol, Hélène

    With the start of its Preparatory Phase, a new step has been made towards the construction of CTA, the future large Cherenkov Telescope Array of ground-based gamma-ray astronomy. A two-day workshop devoted to "AGN physics in the CTA era" will be held in Toulouse, May 16th-17th 2011, in parallel to a general meeting of the CTA consortium. Combining reviews and contributed talks, the meeting will aim to present the current state of the art and to characterize future observing programmes for the various facets of AGN science at very high energies (VHE). Topics to be discussed include AGN population studies, particle acceleration and VHE emission models, variability studies, multiwavelength approach, EBL connection, VHE extended emission (radiogalaxies, pair haloes, diffuse background), passive black holes, primordial black holes ... Further information, including the full program, can be found on the conference webpage: http://cta.obspm.fr/agnworkshop2011/

  1. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  2. 113. FS (SMOKE) STOREHOUSE (BUILDINGS 101102), PLAN AND ELEVATIONS, FULLER/SCOTT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. FS (SMOKE) STOREHOUSE (BUILDINGS 101-102), PLAN AND ELEVATIONS, FULLER/SCOTT, MARCH 15, 1941. QP ACC 1789. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  3. Scott Tannenbaum on the “Science of Teamwork”: HHP Directorate Innovation Lecture Series

    NASA Video Gallery

    Scott Tannenbaum, Ph.D. is President and Co-Founder of gOE. Under his leadership, gOE has served more than 500 organizations globally across all major industries. Dr. Tannenbaum is a leading expert...

  4. 115. PYROTECHNICS MAGAZINE (BUILDINGS 99100), PLAN AND ELEVATIONS, FULLER/SCOTT, MARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. PYROTECHNICS MAGAZINE (BUILDINGS 99-100), PLAN AND ELEVATIONS, FULLER/SCOTT, MARCH 16, 1941. QP ACC 1793. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  5. FE Features in Highly Obscured AGN

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.

    1999-01-01

    This final report is a summary of the combined study of ASCA (Advanced Satellite for Cosmology and Astrophysics) observations of NGC 7582 with archival ROSAT HRI (High Resolution Imager) and PSPC (Position Sensitive Proportional Counter) data. These observations were important in that they established that X-ray emission in NGC 7582, the most narrow-line of NLXGs (narrow-line X-ray galaxies), is associated with an AGN (Active Galactic Nuclei). Thus implying that all NLXGs are obscured AGN, as has been hypothesized to explain the X-ray spectral background paradox.

  6. Fraternal twins with Aarskog-Scott syndrome due to maternal germline mosaicism.

    PubMed

    Pilozzi-Edmonds, Laura; Maher, Thomas A; Basran, Raveen K; Milunsky, Aubrey; Al-Thihli, Khalid; Braverman, Nancy E; Alfares, Ahmed

    2011-08-01

    Aarskog-Scott syndrome is a rare X-linked recessive disorder with characteristic facial, skeletal, and genital abnormalities. We report on Aarskog-Scott syndrome in male dizygotic twins with an identical de novo mutation in FGD1 that resulted from germline mosaicism in the phenotypically normal mother. This is the first report of inheritance by germline mosaicism for the FGD1 gene. PMID:21739585

  7. Promoting Climate Science in K-12 Education: An Interview With Eugenie Scott

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-06-01

    Over the course of 26 years at the National Center for Science Education (NCSE), Eugenie Scott has worked to defend the teaching of evolution and climate science in public schools by providing resources to teachers, schools, and citizens and by working on legal aspects of these issues at the local, state, and national levels. Scott, who was appointed as executive director of NCSE in 1987, recently announced her intention to retire from that position.

  8. Physics of Gamma Ray Emitting AGN

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Lovell, Jim; Edwards, Philip; Kadler, Matthias; Monitoringteam, Gamma Ray Blazar

    2011-10-01

    TANAMI is a highly productive LBA program addressing fundamental questions about AGN with VLBI observations. As the only dual-frequency VLBI monitoring program covering the southern third of the sky while Fermi is observing, TANAMI, with its associated optical/UV and X-ray components, is indispensable. For many of the most interesting sources in the sky, TANAMI provides the sole means of tracking parsec-scale jet components and associating their ejection epochs with gamma-ray flares. Further, multi-year VLBI observations are the only way to establish jet parameters, such as speeds and Doppler factors, which are essential to the study of AGN physics. We request the continuation of this program that was granted Large Proposal status from October 2009. Further observations are necessary for the multiwavelength correlation, morphological and kinematic studies for which we have set up an excellent baseline and produced interesting results e.g. shown the necessity for multi-zone models for gamma-ray production in AGN. Simultaneous observations across the electromagnetic spectrum hold the key to answering many riddles posed by AGN and the next 5-10 years when Fermi is observing provide a window of opportunity that TANAMI is exploiting.

  9. A Global Picture of AGN Winds

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Fukumura, K.

    2011-01-01

    We present a unified structure for accretion powered sources across their entire luminosity range from accreting galactic black holes to the most luminous quasars, with emphasis on AGN and their phenomenology. Central to this end is the notion of MHD winds launched from the accretion disks that power these objects. This work similar in spirit to that of Elvis of more that a decade ago, provides, on one hand, only the broadest characteristics of these objects, but on the other, also scaling laws that allow one to make contact with objects of different luminosity. The conclusion of this work is that AGN phenomenology can be accounted for in terms of dot(m), the wind mass flux in units of the Eddington value, the observer's inclination angle theta and alpha_OX the logarithmic slope between UV and X-ray flares. However given the well known correlation between alpha(sub ox) and UV Luminosity, we conclude that the AGN structure depends on only two parameters. The small number of model parameters hence suggests that an understanding of the global AGN properties maybe within reach.

  10. Mabel Agnes Elliott, We Hardly Knew You

    ERIC Educational Resources Information Center

    McGonigal, Kathryn; Galliher, John F.

    2008-01-01

    Sociologist Mabel Agnes Elliott was elected the fourth president of the Society for the Study of Social Problems in 1956-1957 and was the first woman to hold this position. She was an anti-war activist, a feminist and a creative and diligent writer. Yet she experienced many challenges. The Federal Bureau of Investigation kept an active file on…

  11. AGN identification and host galaxies properties in the MOSDEF survey

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Coil, Alison L.; MOSDEF Team

    2016-06-01

    We present new results on the identification and host galaxy properties of X-ray, IR and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey, which is obtaining rest-frame optical spectra of ~1,500 galaxies and AGN using the new Keck/MOSFIRE instrument. We find clear selection effects when identifying AGN at different wavelengths, in that optically-selected AGN are more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. There is also a bias against finding AGN at any wavelength in low mass galaxies. We find that optical AGN selection identifies less powerful AGN that may be obscured at other wavelengths. Combining the AGN we identify at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass. Finally, we do not find a significant correlation between either SFR or stellar mass and L[OIII], which argues against the presence of strong AGN feedback.

  12. AGN Identification and Host Galaxy Properties in the MOSDEF Survey

    NASA Astrophysics Data System (ADS)

    Coil, Alison

    2016-08-01

    I will present new results on the identification and host galaxy properties of X-ray, IR, and optically-selected AGN at 1.4 < z < 3.8, using spectroscopic data from the on-going MOSDEF survey. MOSDEF is obtaining rest-frame optical spectra of ~1300 galaxies and AGN using the newly commissioned MOSFIRE instrument on Keck. We find clear selection biases when identifying AGN at different wavelengths, in that AGN at any wavelength are typically found in more massive galaxies, while optically-selected AGN are also more likely to be found in galaxies with low SFR, while IR AGN are typically found in galaxies with higher SFR. We also find that optical and X-ray AGN selection identifies AGN with a wider range of accretion rates than IR AGN selection. By combining AGN samples selected at different wavelengths, we find that AGN host galaxies have similar stellar age and dust content as inactive galaxies of the same stellar mass.

  13. The Horizon-AGN Simulation: Morphological Diversity of Galaxies ,Promoted by AGN Feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations HORIZON-AGN and HORIZON-NOAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  14. What are the galaxies that host MIR-selected AGN?

    NASA Astrophysics Data System (ADS)

    Rosario, David

    2016-08-01

    Infra-red selection techniques, sensitive to dust strongly heated by an AGN, offer a way to identify some of the most obscured accretion events in the Universe. I will describe the results of a comprehensive multi-wavelength study of AGN to z>2 selected using Spitzer/IRAC based methods in the COSMOS field. Armed with AGN-optimised redshifts and stellar masses, we explore the dust emission from the active nucleus and the host galaxy. We demonstrate that IR-selected AGN tend to be found in low mass host galaxies, when compared to other AGN identification methods. The star-formation rates of obscured and unobscured IR-selected AGN are very similar, implying that large-scale obscuration with co-eval star-bursts are not found in a major proportion of heavily obscured AGN.

  15. AGN-host galaxy connection: multiwavelength study

    NASA Astrophysics Data System (ADS)

    Pović, M.; Sánchez-Portal, M.; García, A. M. Pérez; Bongiovanni, A.; Cepa, J.; Cepa

    2013-02-01

    The connection between active galactic nuclei (AGN) and their hosts showed to be important for understanding the formation and evolution of active galaxies. Using X-ray and deep optical data, we study how morphology and colours are related to X-ray properties at redshifts z<=2.0 for a sample of > 300 X-ray detected AGN in the Subaru/XMM-Newton Deep Survey (SXDS; Furusawa et al. 2008) and Groth-Westphal Strip (GWS; Pović et al. 2009) fields. We performed our morphological classification using the galSVM code (Huertas-Company et al. 2008), which is a new method that is particularly suited when dealing with high-redshift sources. To separate objects between X-ray unobscured and obscured, we used X-ray hardness ratio HR(0.5-2 keV/2-4.5 keV). Colour-magnitude diagrams were studied in relationship to redshift, morphology, X-ray obscuration, and X-ray-to-optical flux ratio. Around 50% of X-ray detected AGN at z<=2.0 analysed in this work reside in spheroidal and bulge-dominated galaxies, while at least 18% have disk-dominated hosts. This suggests that different mechanisms may be responsible for triggering the nuclear activity. When analysing populations of X-ray detected AGN in both colour-magnitude (CMD) and colour-stellar mass diagrams (Figure 1), the highest number of sources is found to reside in the green valley at redshifts ~ 0.5-1.5. For the first time we studied CMD of these AGN in relation to morphology and X-ray obscuration, finding that they can reside in both early- and late-type hosts, where both morphological types cover similar ranges of X-ray obscuration (Figure 1). Our findings appear to confirm some previous suggestions that X-ray selected AGN residing in the green valley represent a transitional population (e.g. Nandra et al. 2007, Silverman et al. 2008, Treister et al. 2009), quenching star formation by means of different AGN feedback mechanisms and evolving to red-sequence galaxies. More details on analysis and results presented here can be found in

  16. Decreased specific star formation rates in AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J.

    2015-09-01

    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.

  17. A POWERFUL AGN OUTBURST IN RBS 797

    SciTech Connect

    Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.; Nulsen, P. E. J.; Gitti, M.; Brueggen, M.; Rafferty, D. A.

    2011-05-10

    Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{sup 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.

  18. Staying the Course while Charting New Waters.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2002-01-01

    Describes the capital campaign, business strategies, and facilities program at Agnes Scott College in Atlanta, which are attempting to tap into the school's history to stay competitive in the marketplace. (EV)

  19. AGN flickering on 10-100 kyr timescales

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Kill, Bill; Maksym, Peter; Koss, Michael; Argo, Megan; Urry, Meg; Wong, Ivy; Lintott, Chris

    2016-08-01

    The study of AGN variability on timescales of 10^4-10^5 years is important in order to understand the BH - host galaxy interaction and coevolution. The discovery of "Hanny's Voorwerp" (HV), an extended emission line region associated with the nearby galaxy IC 2497, provided us with a laboratory to study AGN variability over such timescales. HV was illuminated by a strong quasar in IC 2497, but this quasar significantly shut down in the last 200 kyrs. Thanks to its recent shutdown we can now explore the host galaxy unimpeded by the presence of a quasar dominating the observations, while the Voorwerp preserves the echoes of its past activity. Recent studies on the optical properties of hard X-ray selected AGN suggest that AGN may flicker on and off hundreds or thousands times with each burst lasting ~10^5 yrs. Systems similar to IC 2497 and HV, the so-called Voorwerpjes, allow us to constrain the last stages of the AGN lifecycle. On the other hand, we recently suggested that the switch on phase may be observed in the so-called optically elusive AGN. In this talk I will review both observational evidence and results from simulation work which support this picture, and explain how optically elusive AGN and Voorwerpjes galaxies can help us to understand different phases of the AGN lifecycle. Moreover, I will discuss possible implications for AGN feedback, BH - host galaxy coevolution, and the analogy between AGN and X-ray binaries accretion physics.

  20. AGN feedback in galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2016-07-01

    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. Athena will provide (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. I will present new predictions of Athena's ability to measure the energetic impact of powerful jets based on our most recent set of numerical models.

  1. The universal spectrum of AGNs and QSOs

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1985-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon photon absorption of its own radiation are examined. A mechanism is presented which can produce an electron distribution function that can account for the overall spectral distribution of radiation of AGNs and QSOs and the specific slopes observed in the IR to UV and 2-50 keV bands. It is interesting to note that the necessary condition for this mechanism to work (i.e., most of energy injected at e(M sub e)(C sup 2) is realized in the accretion shock model of Kazanas and Ellison. This mechanism involves only one free parameter the compactness of the sources, L/R, whose mean value can also account for the diffuse gamma ray background in terms of AGNs.

  2. AGN feedback in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; Clarke, Tracy E.; Intema, Huib; Fabian, Andrew C.; Taylor, Gregory B.; Blundell, Katherine

    2016-04-01

    Deep Chandra images of the Perseus cluster of galaxies have revealed a succession of cavities created by the jets of the central supermassive black hole, pushing away the X-ray emitting gas and leaving bubbles filled with radio emission. Perseus is one of the rare examples showing buoyantly rising lobes from past radio outbursts, characterized by a steep spectral index and known as ghost cavities. All of these structures trace the complete history of mechanical AGN feedback over the past 500 Myrs. I will present results on new, ultra deep 230-470 MHz JVLA data. This low-frequency view of the Perseus cluster will probe the old radio-emitting electron population and will allow us to build the most detailed map of AGN feedback in a cluster thus far.

  3. The Team Approach to Planning a College Science Building.

    ERIC Educational Resources Information Center

    Yarbrough, David B.

    In considering the team approach to architectural service, emphasis is given to the advantages of many specialists working together to solve complex building problems. An actual use of the team approach is described to illustrate how Caudill, Rowlett and Scott Architects solved the problems in planning a science building for Colorado College. The…

  4. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  5. X-Rays and Infrared Selected AGN

    NASA Astrophysics Data System (ADS)

    Kirhakos, S. D.; Steiner, J. E.

    1990-11-01

    RESUMEN. En la busqueda de nucleos activos galacticos (NAG) oscurecidos, seleccionamos una tnuestra de galaxias ernisoras de rayos S infrarrojos, Ia mayoria de las cuales son vistas de perf ii. La 6ptica de la regi6n nuclear de las galaxias seleccionadas revelan que el 76% de ellas muestran lineas de emisi5n La clasificaci6n de los es- pectros de acuerdo a los anchos y a la intensidad de cocientes de lineas muestran que existen 34 NAG, 34 objetos de tipo de transici6n y 34 galaxias de la regi6n con nucleos de tipo regi6n H II. Entre los NAG, 3 son del tipo Seyfert I y las otras son del tipo 2. Sugerimos que los objetos identificados como NAG de llneas angostas son objetos tipo Seyfert I oscurecidos ABSTRACT. Looking for obscured active galactic nuclei (AGN), we selected a sample of infrarediX-rays emitting galaxies, mos"t of which are seen as edge-on. Optical spectroscopy of the nuclear region of the selected galaxies revealed that 76 % of them show emission l 'nes. Classification of the spectra according to the widths and line intensity ratios shows that there are 34 AGN, 34 transition type objects and 43 nuclear HIl-like region galaxies. Among the AGN, three are Seyfert type 1 and the others are type 2 objects. We suggest that the objects identified as narrow line AGN are obscured Seyfert 1. o'L : GALAXIES-ACTIVE - X-RAY S-GENERAL

  6. Challenges in Finding AGNs in the Low Luminosity Regime

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  7. Physics of Gamma Ray Emitting AGN

    NASA Astrophysics Data System (ADS)

    Ojha, Roopesh; Lovell, Jim; Edwards, Philip; Kadler, Matthias; Monitoringteam, Gamma Ray Blazar

    2012-10-01

    The TANAMI VLBI monitoring program, which was granted Large Proposal status from Oct 2009, was set up to capitalize on a 5-10 year window of opportunity provided by the Fermi gamma-ray telescope. TANAMI and its associated components at other wavebands perform simultaneous observations of AGN across the electromagnetic spectrum. Such observations are key to addressing fundamental questions of AGN physics. TANAMI is the only dual-frequency VLBI monitoring program covering the southern third of the sky while Fermi is observing. As such, it is indispensable for tracking parsec-scale jet components and associating their behaviour with changes at high energies. Jet parameters such as speeds and Doppler factors, that are essential inputs to understanding AGN physics, can only be measured with VLBI observations over many years. We request continuation of TANAMI so that the baseline of unique information on kinematics, morphology and the correlation of changes in both with emission at other wavebands, that we have set up can continue to provide important results and indeed produce its highest impact science as we reach critical number of epochs of data on an increasing fraction of our sample.

  8. AGN Black Hole Masses from Reverberation Mapping

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.

    2004-01-01

    Emission-line variability data on bright AGNs indicates that the central objects in these sources have masses in the million to few-hundred million solar mass range. The time-delayed response of the emission lines to continuum variations can be used to infer the size of the line-emitting region via light travel-time arguments. By combining these sizes with the Doppler widths of the variable part of the emission lines, a virial mass estimate can be obtained. For three especially well-studied sources, NGC 5548, NGC 7469, and 3C 390.3, data on multiple emission lines can be used to test the virial hypothesis. In each of these cases, the response time of the various emission lines is anticorrelated with the line width, with the dependence as expected for gravitationally bound motion of the line-emitting clouds, i.e., that the square of the Doppler line width is inversely proportional to the emission-line time delay. Virial masses based on the Balmer lines have now been measured for about three dozen AGNs. Systematic effects currently limit the accuracy of these masses to a factor of several, but characteristics of the radius-luminosity and mass-luminosity relationships for AGNs are beginning to emerge.

  9. Morphology of AGN in the Central Kiloparsec

    NASA Astrophysics Data System (ADS)

    Martini, Paul

    Hubble Space Telescope observations of the central kiloparsec of AGN have revealed a wealth of structure, particularly nuclear bars and spirals, that are distinct from analogous features in the disks of spiral galaxies. WFPC2 and NICMOS images of a large sample of AGN observed at high spatial resolution make it possible to quantify the frequency and detailed properties of these structures. Nearly all AGN have nuclear spiral dust lanes in the central kiloparsec, while only a small minority contain nuclear bars. If these nuclear dust spirals trace shocks in the circumnuclear, gaseous disks, they may dissipate sufficient angular momentum to fuel the active nucleus. I would like to thank my collaborators in this project---Rick Pogge, John Mulchaey, and Mike Regan---for allowing me to present this work in advance of publication, as well as Johan Knapen for organizing such an interesting meeting. Support for this work was provided by NASA through grant numbers GO-7867 and GO-8597 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    NASA Astrophysics Data System (ADS)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  11. PRIMUS: The Relationship between Star Formation and AGN Accretion

    NASA Astrophysics Data System (ADS)

    Azadi, Mojegan; Aird, James; Coil, Alison L.; Moustakas, John; Mendez, Alexander J.; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun

    2015-06-01

    We study the evidence for a connection between active galactic nuclei (AGNs) fueling and star formation by investigating the relationship between the X-ray luminosities of AGNs and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGNs with {10}41\\lt {L}X\\lt {10}44 erg s-1 at 0.2\\lt z\\lt 1.2 in the PRIMUS redshift survey. We find AGNs in galaxies with a wide range of SFR at a given LX. We do not find a significant correlation between SFR and the observed instantaneous LX for star-forming AGN host galaxies. However, there is a weak but significant correlation between the mean LX and SFR of detected AGNs in star-forming galaxies, which likely reflects that LX varies on shorter timescales than SFR. We find no correlation between stellar mass and LX within the AGN population. Within both populations of star-forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star-forming galaxy ˜2-3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGNs, but AGNs are often hosted by quiescent galaxies.

  12. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  13. The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.

  14. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  15. Astronaut David Scott watching hammer and feather fall to lunar surface

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle. Scott released the hammer from his right hand and the feather from his left at the same instant. This experiment occured toward the end of the third and final lunar surface extravehicular activity.

  16. The analysis of the dynamical system arising from Gray — Scott model

    NASA Astrophysics Data System (ADS)

    Krishchenko, A. P.; Kanatnikov, A. N.

    2016-06-01

    The Gray — Scott system used as a model of three-component autocatalytic reaction X + 2Y → Y, Y → Z, demonstrates the complex behavior and was studied in a number of papers. In this work we refine the known results of the bifurcation analysis of the Gray — Scott system and show them by diagram in parameter space. In addition we construct localizing sets for compact invariant sets of the system, i.e. the sets in the phase space containing all compact invariant sets of the system.

  17. Time Series Analysis of the UV Flickering in AGN

    NASA Technical Reports Server (NTRS)

    Robinson, Edward L.

    2003-01-01

    Goals of the Research: Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability.

  18. The merger fraction of radio-loud and radio quiet AGN: clues on the AGN triggering mechanism

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco

    2016-08-01

    Radio-loud AGNs are important objects. They are associated with the most massive black holes and thus with the most massive galaxies, and they are often located in clusters of galaxies. Studying radio galaxies at z>1 not only allows us to get insights on the mechanisms responsible for launching their powerful relativistic jets, but also to better understand important aspects of the formation and evolution of massive galaxies and clusters. I will focus on results obtained from our successful HST snapshot survey of 3CR radio-loud AGN at z>1. Statistical analysis of different samples of carefully selected radio-quiet AGN, radio-loud AGN and non-active galaxies shows strong evidence that galaxy mergers (and possibly black hole mergers) are intimately tied to the triggering mechanism for radio-loud AGN activity. The same may not hold for the radio-quiet AGN class.

  19. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  20. RSCABS: An R package for performing the Rao-Scott Adjusted Cochran-Armitage trend test By Slices

    EPA Science Inventory

    RSCABS[3] (Rao-Scott adjusted Cochran-Armitage trend test By Slices) is a modification to the Rao-Scott[5] adjusted Cochran-Armitage trend test[1, 2] that allows for testing at each individual severity score often seen in histopathological data. The test was originally developed ...

  1. 77 FR 7182 - Scott W. Houghton, M.D.; Decision and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... practitioner who lacks .'' Roy Chi Lung, 74 FR 20346, 20347 (2009); Scott Sandarg, D.M.D., 74 FR 17528, 174529 (2009); John B. Freitas, D.O., 74 FR 17524, 17525 (2009); Roger A. Rodriguez, M.D., 70 FR 33206, 33207 (2005); Stephen J. Graham, M.D., 69 FR 11661 (2004); Dominick A. Ricci, M.D., 58 FR 51104...

  2. A New Way of Thinking about Technology: An Interview with Futurists Joel Barker and Scott Erickson

    ERIC Educational Resources Information Center

    Morrison, James L.; Barker, Joel; Erickson, Scott

    2006-01-01

    Editor-in-chief James Morrison interviews Joel Barker and Scott Erickson, co-authors of the book "Five Regions of the Future: A New Way to Think about Technology". In their book, the authors propose an ecological model that classifies technology according to different clusters or regions, each of which entails its own perspective of technology and…

  3. The Pleasures and Lessons of Academic Mythbusting: An Interview with Scott Lilienfeld

    ERIC Educational Resources Information Center

    Zinn, Tracy E.

    2010-01-01

    Scott O. Lilienfeld is a professor of psychology at Emory University, in Atlanta, Georgia. Dr. Lilienfeld is founder and editor of the journal, "Scientific Review of Mental Health Practice," and is past president of the Society for a Science of Clinical Psychology. He has been a member of 11 journal editorial boards, including the "Journal of…

  4. Coretta Scott King Award Books: Using Great Literature with Children and Young Adults.

    ERIC Educational Resources Information Center

    Stephens, Claire Gatrell

    First presented in 1970, the Coretta Scott King Award has become one of the most prestigious honors bestowed on authors and illustrators of children's literature. This book provides information on the award and award winners, and ideas for using selected award-winning titles in the classroom. The first part of the book "The Award," offers a…

  5. Orson Scott Card's "Ender and Bean": The Exceptional Child as Hero

    ERIC Educational Resources Information Center

    Doyle, Christine

    2004-01-01

    Orson Scott Card's school stories in outer space, "Ender's Game" and "Ender's Shadow," purportedly occur at the same time and tell the "same" story, but from the perspectives of two different child protagonists. Scenes in "Ender's Shadow" even reproduce text from "Ender's Game." Nevertheless, 14 years elapsed between the publications of the two…

  6. Public Schools Energy Conservation Measures, Report Number 1: Scott Elementary School, Warwick, Rhode Island.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Washington, DC.

    This study is the first of a five phase program of the American Association of School Administrators directed toward reducing energy consumption in existing schools. This report summarizes the results of the field investigations, computer simulation and evaluations of the energy conserving opportunities available in the Scott Elementary School in…

  7. Modernity in Two Great American Writers' Vision: Ernest Miller Hemingway and Scott Fitzgerald

    ERIC Educational Resources Information Center

    Keshmiri, Fahimeh; Darzikola, Shahla Sorkhabi

    2016-01-01

    Scott Fitzgerald and Ernest Hemingway, American memorable novelists have had philosophic ideas about modernity. In fact their idea about existential interests of American, and the effects of American system on society, is mirrored in their creative works. All through his early works, Fitzgerald echoes the existential center of his era. Obviously,…

  8. 78 FR 77791 - Dakota, Minnesota & Eastern Railroad Corporation-Abandonment Exemption-in Scott County, Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Dakota, Minnesota & Eastern Railroad Corporation--Abandonment Exemption--in Scott County, Iowa Dakota, Minnesota & Eastern Railroad Corporation d/b/a Canadian Pacific (DM&E)...

  9. Learning from Our Predecessors: The Work of Fred Newton Scott and George Jardine.

    ERIC Educational Resources Information Center

    Gaillet, Lynee Lewis

    An examination of the work of Fred Newton Scott and George Jardine can help composition scholars and teachers put their contributions into perspective and serve as a guide through present and future transitional periods in the field of composition. Following and composition revolution of the mid 20th century, many theories of composition promoted…

  10. Q & A with Ed Tech Leaders: Interview with Scott McLeod

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.

    2014-01-01

    Scott McLeod is recognized as one of the nation's leading experts on K-12 school technology leadership issues. After 14 years as an Educational Leadership professor, Dr. McLeod currently serves as the Director of Innovation for Prairie Lakes Area Education Agency in Iowa. He also is the Founding Director of the UCEA Center for the Advanced Study…

  11. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in prekindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The What Works Clearinghouse (WWC) reviewed 12 studies on "Scott…

  12. "I Have a Dream, Too!": The American Dream in Coretta Scott King Award-Winning Books

    ERIC Educational Resources Information Center

    Parsons, Linda T.; Castleman, Michele

    2011-01-01

    The Coretta Scott King (CSK) Award, instituted in 1969 and recognized as an official award by the American Library Association (ALA) in 1982, is conferred annually to an African American author and an illustrator for their outstanding contributions to literature about the Black experience for children and young adults. A partial impetus for the…

  13. James Edward Scott: The Leadership Journey of a Senior-Level African American Student Affairs Officer

    ERIC Educational Resources Information Center

    Willis, Salatha T.

    2013-01-01

    The purpose of this study was to examine, understand, and describe the life, leadership, and influence of Dr. James Edward Scott on higher education and more specifically student affairs; as one of the most well-known and respected African American male chief student affairs officers in the late 20th and early 21st centuries. Using a qualitative…

  14. The Francis Scott Key School, Locust Point, Baltimore, Maryland. Bulletin, 1920, No. 41

    ERIC Educational Resources Information Center

    Bennett, Charles A.

    1921-01-01

    Some time ago the Commissioner of Education was requested to offer advice in regard to the reorganization of the Francis Scott Key School, to meet more effectively the needs of its children and the adult population of that section, and to suggest plans for a building to be so constructed as to adapt it to the use of the school so reorganized. In…

  15. Hometown Hero: Featuring Scott Whittaker. The Kids on the Block Book Series.

    ERIC Educational Resources Information Center

    Aiello, Barbara; Shulman, Jeffrey

    One of a series of children's books written from the point of view of an elementary grade child with a disability or other problem, the stories emphasize the similarities in childhood experience while providing information specific to the disability. In this book a fifth-grader, Scott, reveals in this diary how he copes with his asthma and the…

  16. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum focuses on…

  17. 75 FR 36608 - Drawbridge Operation Regulation; Atlantic Intracoastal Waterway, (AIWW) Scotts Hill, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... significantly affect sailboats. Increasing travel time between drawbridge openings will increase the number of... Regulations; Atlantic Intracoastal Waterway, (AIWW) Scotts Hill, NC'' in the Federal Register (74 FR 7844-7847... for the bridge to open on signal at any time for commercial and government vessels. FEHAI...

  18. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2006

    2006-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in kindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The curriculum focuses on questioning strategies, problem-solving…

  19. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    SciTech Connect

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.; Environmental Science Division

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  20. Teaching One Way and Testing Another: An Interview with Scott Howell

    ERIC Educational Resources Information Center

    Morrison, James L.; Howell, Scott

    2007-01-01

    Editor-in-Chief James L. Morrison interviews Scott Howell, the co-editor of a three-volume book series entitled "Online Assessment and Measurement" that was published in 2006 by IDEA Group. In discussing his own research, Howell first highlights the value of test blueprints as a valuable tool for ensuring an effective alignment of assessment…

  1. Statement of Facts for 1994 City-Wide Mock Trial Competitions. Scott Walker v. Tanya Brewster.

    ERIC Educational Resources Information Center

    National Inst. for Citizen Education in the Law, Washington, DC.

    Prepared by the District of Columbia Street Law Project for its 23rd annual city-wide mock trial competition, this instructional handout provides the material for a mock civil trial over an accidental shooting. Thirteen-year-old T. J. Walker, Scott Walker's son from a previous marriage, visited the home of 5-year-old Jesse Walker with a pistol…

  2. On the role of the weather in the deaths of R. F. Scott and his companions.

    PubMed

    Solomon, S; Stearns, C R

    1999-11-01

    Robert Falcon Scott and his companions reached the South Pole in January of 1912, only to die on their return journey at a remote site on the Ross Ice Shelf, about 170 miles from their base camp on the coast. Numerous contributing causes for their deaths have been proposed, but it has been assumed that the cold temperatures they reported encountering on the Ross Ice Shelf, near 82-80 degrees S during their northward trek toward safety, were not unusual. The weather in the region where they perished on their unassisted trek by foot from the Pole remained undocumented for more than half a century, but it has now been monitored by multiple automated weather stations for more than a decade. The data recorded by Scott and his men from late February to March 19, 1912, display daily temperature minima that were on average 10 to 20 degrees F below those obtained in the same region and season since routine modern observations began in 1985. Only 1 year in the available 15 years of measurements from the location where Scott and his men perished displays persistent cold temperatures at this time of year close to those reported in 1912. These remarkably cold temperatures likely contributed substantially to the exhaustion and frostbite Scott and his companions endured, and their deaths were therefore due, at least in part, to the unusual weather conditions they endured during their cold march across the Ross Ice Shelf of Antarctica.

  3. Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome*

    PubMed Central

    Solari, Fiorella A.; Mattheij, Nadine J.A.; Burkhart, Julia M.; Swieringa, Frauke; Collins, Peter W.; Cosemans, Judith M.E.M.; Sickmann, Albert; Heemskerk, Johan W.M.; Zahedi, René P.

    2016-01-01

    The Scott syndrome is a very rare and likely underdiagnosed bleeding disorder associated with mutations in the gene encoding anoctamin-6. Platelets from Scott patients are impaired in various Ca2+-dependent responses, including phosphatidylserine exposure, integrin closure, intracellular protein cleavage, and cytoskeleton-dependent morphological changes. Given the central role of anoctamin-6 in the platelet procoagulant response, we used quantitative proteomics to understand the underlying molecular mechanisms and the complex phenotypic changes in Scott platelets compared with control platelets. Therefore, we applied an iTRAQ-based multi-pronged strategy to quantify changes in (1) the global proteome, (2) the phosphoproteome, and (3) proteolytic events between resting and stimulated Scott and control platelets. Our data indicate a limited number of proteins with decreased (70) or increased (64) expression in Scott platelets, among those we confirmed the absence of anoctamin-6 and the strong up-regulation of aquaporin-1 by parallel reaction monitoring. The quantification of 1566 phosphopeptides revealed major differences between Scott and control platelets after stimulation with thrombin/convulxin or ionomycin. In Scott platelets, phosphorylation levels of proteins regulating cytoskeletal or signaling events were increased. Finally, we quantified 1596 N-terminal peptides in activated Scott and control platelets, 180 of which we identified as calpain-regulated, whereas a distinct set of 23 neo-N termini was caspase-regulated. In Scott platelets, calpain-induced cleavage of cytoskeleton-linked and signaling proteins was downregulated, in accordance with an increased phosphorylation state. Thus, multipronged proteomic profiling of Scott platelets provides detailed insight into their protection against detrimental Ca2+-dependent changes that are normally associated with phosphatidylserine exposure. PMID:27535140

  4. A little-known aspect of Arthur Conan Doyle (1859-1930): the call of India and a debt to Walter Scott (1771-1832).

    PubMed

    Gardner, D L; Macnicol, M F; Endicott, P; Rayner, D R T; Geissler, P

    2009-02-01

    This paper recalls the early life of Dr Arthur Conan Doyle when his writing centred briefly on India. The significance of a young female skeleton given to the museum of the Royal College of Surgeons of Edinburgh in 1879 is reviewed. Morphometric and genetic evidence is provided to show that the skeleton originated in the Andaman Islands. It is suggested that Doyle saw it during his undergraduate or early postgraduate years, leading him to introduce an Andaman Islander into his novel The Sign of the Four, published in 1890. Like his inspiring predecessor Walter Scott, Doyle wrote of India but did not visit the country: both authors learned indirectly of the Indian Raj and the Indian Medical Service. Doyle knew of the convict colony established after the Sepoy Mutiny of 1857 at Port Blair, capital of the Andamans, but the reason he chose an Islander to commit murder in London has, until now, remained contentious.

  5. Optical variability of the Kepler AGN

    NASA Astrophysics Data System (ADS)

    Edelson, Rick

    2014-01-01

    Kepler has opened a new era for the study of AGN optical variability, producing light curves with ~0.1% errors (for a ~15th magnitude source), 30 min sampling, >90% duty cycle and durations of years. Thanks to an intensive identification campaign, the number of Seyfert 1s/quasars monitored by Kepler rose from just one (Zw 229-15) in the first year to 37 by the time of May 2013 reaction wheel failure. We measured the optical power spectral density (PSD) functions of these Kepler AGN finding that that on timescales of ~6 hr to 1 month, the PSDs are typically well-fitted with a slop of ~-3, steeper than seen in the X-rays. In a few sources there is also evidence for a flattening at the longest timescales. We also find a broad correlation between rms variability and flux level. These results broadly support the model in which the optical fluctuations are due to vicious instabilities in the accretion disk. I will also present the light curve for W2R1926+42, the only rapidly variable BL Lac object known to be monitored by Kepler. With data covering over a year and sampling rates of 1-30 min, this may be the information-richest AGN light curve ever gathered at any wavelength. The PSD appears to bend from a slope of -2.6 to -1.2 on a ~7 hr timescale, but fits are formally unacceptable. These data indicate that the phenomenon of blazar "microvariability" (sporadic variations on timescales shorter than the ~12 hour window available from the ground) actually results from a combination of rapid, powerful variability interspersed with longer, relatively quiescent periods.

  6. Investigating AGN Variability Using Combined Multi-Quarter Kepler Data

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Nowak, D.; Wiita, P. J.; Wehrle, A. E.; Unwin, S. C.

    2014-01-01

    The study of long and short term variability in active galactic nuclei (AGN) yields deeper insight into the physical nature of their emissions from the accretion disk around, and relativistic jets powered by, a galaxy’s central super-massive black hole. We have now obtained a total of eleven quarters of Kepler data on four radio-loud AGN. Our prior work involved calculating power spectral densities (PSDs) on these data both with and without corrections for various instrumental artifacts. We now focus on combining these data sets into one continuous set for each object which spans approximately 2.5 years at a 30 minute sampling rate with >98% duty cycle. The process of stringing together these data is complicated by the quarterly rolls the Kepler space satellite telescope conducts, which causes each target to fall on a different CCD four times per year. We attempt to overcome this problem with a scaling procedure that maintains the original percentage of variations and scales all eleven quarters to the overall average. We calculate PSDs on these stitched light curves both with and without various end-matching techniques applied to increase the accuracy of the PSDs. The PSDs computed for the stitched light curves allow us to probe a full decade lower in frequency than our previous work and show comparable slopes to the PSDs calculated for individual quarters, suggesting we are linking the quarters appropriately. Our average PSD slopes are consistent with ground based observations of other quasars, falling approximately between -1.6 and -1.9. In addition, we have used original codes to bin and average individual PSDs to reduce the bias introduced on the slope fitting process induced by the uneven population of points in the PSDs. This allows for a more accurate power law fitting and tends to steepen the overall slope by approximately 0.1 in the majority of cases. We note increased flaring in one of our objects on the order of 15%, with our remaining three objects

  7. AGN content of X-ray, IR and radio sources

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.

    2016-09-01

    We have carried out a number of surveys and identification works related to X-ray, IR and radio sources and searched for extragalactic ones. Among them, most interesting are Active Galactic Nuclei (AGN) and Starburst (SB) Galaxies. Some 4500 AGN have been revealed from ROSAT BSC and FSC sources, and many more are hidden ones; those showing evidence of activity but with no emission lines in optical wavelengths. We estimated AGN content of X-ray sources as 52.9%. IR sources contain thousands of SBs, and most important are those having signs of interaction and/or merging. We have carried out optical identifications of IRAS point sources, and 1278 IR galaxies have been revealed, including LIRGs and ULIRGs. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed to estimate AGN content among IR sources as 23.7%. Extragalactic radio sources contain bright galaxies, AGN and SBs. We have studied the border between AGN and normal galaxies by radio/optical flux ratios to establish which objects may be attributed to AGN based on radio properties. Interestingly, absolute majority of objects associated with both X-ray and radio sources are AGN.

  8. Search for the Multiwavelength AGN Properties in Dependence on Environment

    NASA Astrophysics Data System (ADS)

    Vavilova, Iryna; Chesnok, Nadya; Melnyk, Olga

    We present new results on the research of isolated AGNs and quasars which are located in regions with the low density environment. Our sample of AGNs was compiled at the basis of the 2MIG Catalog (2MASS Isolated Galaxies, Karachentseva et al., Bull. SAO RAS, 2010) and Catalog of AGNs by Veron+ 2006. The 2MIG Catalog' galaxies (N=3227) were chosen by Karachentseva's isolation criterion, stellar magnitude Ks= 4,0 -12,0 and angle diameters a¿ 30', effective catalog depth -6000 km/s. Our sample of isolated AGNs contains 48 objects as well as the sample of galaxies by Mrk type (N=40) from 2MIG catalog was compiled separately. We analyze the main physical properties of AGNs from these samples in comparison with environment using the isolation parameter as the distance to neighbors (Vavilova et al., Astron. Nachr., 2009). Additionally, for isolated galaxies of Mrk type we calculated their masses by Eddington limit formula (Chesnok et al., AIP, 2009) as well as we considered the spectral properties of isolated AGNs chosen from SDSS catalogue. Altogether our sample of isolated AGNs is presented by the objects having different manifestory properties in IR, visual, UV, X-ray and radio ranges of the electromagnetic waves that allows us to consider it as the unique laboratory for the AGNs study n dependence on the environment.

  9. The Starburst-AGN Connection under the Multiwavelength Limelight

    NASA Astrophysics Data System (ADS)

    Guainazzi, Matteo

    2011-11-01

    Since the discovery of a tight relation between supermassive black hole masses, the bulge luminosity, and the stellar velocity dispersion in the local universe galaxies, mounting experimental evidence has been collected pointing to a connection between nuclear activity and star formation over a wide range of redshifts. Although a growing number of galaxies from different samples exhibit simultaneous starburst and AGN phenomenology, it is still a matter of debate whether this is the smoking gun of a causal relation between them, and, if so, with which trend. Basic issues in modern astrophysics, such as the evolution of galaxies and supermassive black holes, AGN feeding and feedback to the interstellar and intergalactic medium, as well as the role played by the environment on the star formation history are related to this "Starburst-AGN Connection". This Workshop aims at gathering observational and theoretical astronomers so as to answer the following questions: * The "Starburst-AGN Connection": A causal relation? * "Starburst-AGN Connection" at low and high redshift: any evidence for evolution? * Is there a connection between AGN obscuration and star formation? * In which way are the star formation and AGN phenomena affected by the environment? * Do stars contribute to AGN fueling? Multiwavelength observations in the last decade have given a paramount contribution to improve our understanding in this field. The Workshop will build on this panoptic view, and aims at contributing to the scientific case of future ground-based and space large observatories.

  10. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  11. Clues to the Structure of AGN Through Massive Variability Surveys

    NASA Astrophysics Data System (ADS)

    Lawrence, A.

    2016-06-01

    Variability studies hold information on otherwise unresolvable regions in Active Galactic Nuclei (AGN). Population studies of large samples likewise have been very productive for our understanding of AGN. These two themes are coming together in the idea of systematic variability studies of large samples - with SDSS, PanSTARRS, and soon, LSST. I summarise what we have learned about the optical and UV variability of AGN, and what it tells us about accretion discs and the BLR. The most exciting recent results have focused on rare large-scale outbursts and collapses - Tidal Disruption Events, changing-look AGN, and large amplitude microlensing. All of these promise to give us new insight into AGN physics.

  12. Relativistic Effects on the Observed AGN Luminosity Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Shuang Nan; Zhang, Xiao Ling

    2007-02-01

    Recently, Zhang (2005 ApJ, 618, L79) has proposed a model to account for the well-established effect that the fraction of type-II AGNs is anti-correlated with the observed X-ray luminosity; the model consists of an X-ray emitting accretion disk coaligned to the dusty torus within the standard AGN unification model. In this paper the model is refined by including relativistic effects of the observed X-ray radiation from the vicinity of the supermassive black hole in an AGN. The relativistic corrections improve the combined fitting results of the observed luminosity distribution and the type-II AGN fraction, though the improvement is not significant. The type-II AGN fraction prefers non- or mildly spinning black hole cases, and rules out the extremely spinning case.

  13. Propiedades de los AGNs oscurecidos y no oscurecidos

    NASA Astrophysics Data System (ADS)

    Taormina, M.; Bornancini, C.

    In this work we analyze the properties of obscured and unobscured AGNs selected from the "Multiwavelength Survey by Yale-Chile" (MUSYC). The sample of AGNs was selected base on their mid-infrared colors ([3.6], [4.5], [5.8] y [8.0] μm), from images obtained with the Spitzer Space Telescope. We select obscured and unobscured AGN samples using a simple criterion based on the observed optical to mid-IR color with limits R - [4.5] = 3.04 (AB system) and with redshifts in the range 1 < z < 3. Obscured AGNs are intrinsically optically faint in the R band, suggesting that luminous IR- selected AGNs have significant dust extinction. FULL TEXT IN SPANISH

  14. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  15. A UV to mid-IR study of AGN selection

    SciTech Connect

    Chung, Sun Mi; Kochanek, Christopher S.; Assef, Roberto; Brown, Michael J. I.; Stern, Daniel; Jannuzi, Buell T.; Gonzalez, Anthony H.; Hickox, Ryan C.; Moustakas, John

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  16. The Prevalence of Gas Outflows in Type 2 AGNs

    NASA Astrophysics Data System (ADS)

    Woo, Jong-Hak; Bae, Hyun-Jin; Son, Donghoon; Karouzos, Marios

    2016-02-01

    To constrain the nature and fraction of the ionized gas outflows in active galactic nuclei (AGNs), we perform a detailed analysis on gas kinematics as manifested by the velocity dispersion and shift of the [{{O}}\\{{III}}] λ5007 emission line, using a large sample of ˜39,000 type 2 AGNs at z < 0.3. First, we confirm a broad correlation between [{{O}} {{III}}] and stellar velocity dispersions, indicating that the bulge gravitational potential plays a main role in determining the [{{O}} {{III}}] kinematics. However, [{{O}} {{III}}] velocity dispersion is on average larger than stellar velocity dispersion by a factor of 1.3-1.4 for AGNs with double Gaussian [{{O}} {{III}}], suggesting that the non-gravitational component, i.e., outflows, is almost comparable to the gravitational component. Second, the increase of the [{{O}} {{III}}] velocity dispersion (after normalized by stellar velocity dispersion) with both AGN luminosity and Eddington ratio suggests that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [{{O}} {{III}}] velocity-velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the majority of luminous AGNs present the non-gravitational kinematics in the [{{O}} {{III}}] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [{{O}} {{III}}] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs.

  17. Star Formation Quenching and Identifying AGN in Galaxies

    NASA Astrophysics Data System (ADS)

    Mendez, Alexander; Coil, A. L.; Lotz, J. M.; Aird, J.; Diamond-Stanic, A. M.; Moustakas, J.; Salim, S.; Simard, L.; Blanton, M. R.; Eisenstein, D.; Wong, K. C.; Cool, R. J.; Zhu, G.; PRIMUS; AEGIS

    2014-01-01

    I will discuss two observational projects related to galaxy and active galactic nuclei (AGN) evolution at z < 1. First I will present a statistical study of the morphologies of galaxies in which star formation is being shut down or quenched; this has implications for how red, elliptical galaxies are formed. I will discuss the physical processes behind star formation quenching from the morphological transformations that galaxies undergo during this process. Then I will focus on multi-wavelength AGN selection methods and tie together disparate results in the literature. Several IR-AGN selection methods have been developed using Spitzer/IRAC data in order to supplement traditional X-ray AGN selection; I will characterize the uniqueness and complementarity of these methods as a function of both IR and X-ray depth. I will use data from the PRIsm MUlti-object Survey (PRIMUS) to compare the efficiency of IR and X-ray AGN selection and discuss the properties of the AGN and host galaxy populations of each. Finally, I will briefly mention ongoing work to compare the clustering of observed IR and X-ray AGN samples relative to stellar mass-matched galaxy samples.

  18. The Role of Outburst Shock Heating in AGN Feedback

    NASA Astrophysics Data System (ADS)

    Randall, Scott W.; Nulsen, Paul; Jones, Christine; Forman, William R.

    2016-04-01

    One of the major discoveries of modern X-ray observatories is that central AGN in galaxies, groups, and clusters can regulate cooling in the diffuse X-ray emitting gas. This connection is demonstrated by the presence of large cavities in the diffuse gas, usually filled with radio-emitting plasma, that have been evacuated by jets from the AGN. This AGN feedback has important consequences for star formation, galaxy evolution, super-massive black hole growth, galaxy/black hole scaling relations, cluster scaling relations, and the growth of structure. Although it has generally been found that the kinetic output of central AGN scales with the gas cooling rate and is energetic enough to offset cooling, the details of how and where this energy is transferred to heat the gas are poorly understood. I will discuss the role of weak AGN outburst shocks in heating the diffuse gas, and present some results from a very deep (650 ks) Chandra observation of the galaxy group NGC 5813. With three three pairs of collinear cavities, each pair associated with an elliptical AGN outburst shock, NGC 5813 is uniquely well-suited to studying the outburst history of the AGN and the mean shock heating rate.

  19. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  20. Studying AGN Feedback with Galactic Outflows in Luminous Obscured Quasar

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    2016-01-01

    Feedback from Active galactic nuclei (AGN) has been proposed as an important quenching mechanism to suppress star formation in massive galaxies. We investigate the most direct form of AGN feedback - galactic outflows - in the most luminous obscured AGN (L>10^45 erg/s) from the SDSS sample in the nearby universe (z<0.2). Using ALMA and Magellan observations to target molecular and ionized outflows, we find that luminous AGN can impact the dynamics and phase of the galactic medium, and confirm the complex multi-phase and multi-scaled nature of the feedback phenomenon. In particular, we found that most of these luminous AGN hosts ionized outflows. The outflow size, velocity, and energetics correlate with the AGN luminosity, and can be very extended (r > 10 kpc) and fast (v > 1000 km/s) for the most luminous ones. I end with presenting a new technique to find extended ionized outflows using broadband imaging surveys, and to characterize their occurrence rate, morphology, size distribution, and their dependence on the AGN luminosity. This technique will open a new window for feedback studies in the era of large-scale optical imaging surveys, e.g., HSC and then LSST.

  1. Mini-Survey on SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. There is a common wisdom that every massive galaxy has a massive black hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low $L_X$ (at all $z$). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of {it optically-selected samples} shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [O{\\sc iii}] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a min-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([O{\\sc iii}]) to check the relation with the $L_X$ observed with Swift.

  2. Compton Thick AGN in the XMM-COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Gruppioni, C.; Comastri, A.

    2016-06-01

    I will present results we published in two recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, A≈A 578A 120) on the properties of X-ray selected Compton Thick (CT, NH>10^{24} cm^{-2}) AGN, in the XMM-COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems. We also demonstrated the detectability of even more heavily obscured AGN (NH>10^{25} cm^{-2}), thanks to a truly multi-wavelength approach in the same field, and to the unrivaled XMM sensitivity. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line. The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.

  3. Structure Function Analysis of AGN Variability using Kepler

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2014-06-01

    We study the variability properties of AGN light-curves observed by the Kepler satellite. AGN optical fluxes are known to exhibit stochastic variations on time-scales of hours, days, months and years. Previous efforts to characterize the stochastic nature of this variability have been hampered by the lack of high-precision space-based measurements of AGN fluxes with regular cadence. Kepler provides light-curves with a S/N ratio of 10-5 for 87 AGN observed over a period of ~ 3 years with a cadence of once every 30 minutes allowing for a detailed examination of the variability process. We probe AGN variability using the Structure Functions of the light-curves of the Kepler AGN. Monte-Carlo simulations of the structure function are used to fit the observed light-curve to models for the Power Spectral Density. We test various models for the form of the PSD including the damped random walk and the powered exponential models. We show that on the shorter time-scales probed by Kepler data, the damped random walk model fails to adequately characterize AGN variability. We find that the PSD may be better modelled by combination of a steep power law of the form 1/f3 on shorter time-scales, and a more shallow power law of the form 1/f2 on the longer time-scales traditionally probed by ground-based variability studies.

  4. Radio AGN in the local universe: unification, triggering and evolution

    NASA Astrophysics Data System (ADS)

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  5. DISENTANGLING AGN AND STAR FORMATION IN SOFT X-RAYS

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-10-20

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L{sub x,AGN} and L{sub x,SF}) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L{sub x,AGN} and L{sub x,SF} from Monte Carlo simulations. These simulated luminosities agree with L{sub x,AGN} and L{sub x,SF} derived from Chandra imaging analysis within a 3{sigma} confidence level. Using the infrared [Ne II]12.8 {mu}m and [O IV]26 {mu}m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L{sub x,SF} and L{sub x,AGN} at the 3{sigma} level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  6. Disentangling AGN and Star Formation in Soft X-Rays

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.

    2012-01-01

    We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.

  7. Supernovae and AGN Driven Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Nath, Biman B.

    2013-01-01

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v_\\star ˜ (\\dot{E} / 2 \\dot{M})^{1/2} describes the effect of starburst activity, with \\dot{E} and \\dot{M} as energy and mass injection rate in a central region of radius R; (2) v • ~ (GM •/2R)1/2 for the effect of a central black hole of mass M • on gas at distance R; and (3) v_{s} =(GM_h / 2 {C}r_s)^{1/2}, which is closely related to the circular speed (vc ) for an NFW halo, where rs is the halo scale radius and {C} is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v 2 sstarf + 6(Γ - 1)v • 2 - 4v 2 s )1/2, where Γ is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 1011.5 M ⊙ <= Mh <= 1012.5 M ⊙ galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is ~400-1000 km s-1, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds >~ 1000 km s-1. We also find that the ratio [2v 2 sstarf - (1 - Γ)v • 2]/v 2 c dictates the amount of gas lost through winds. Used in conjunction with an appropriate relation between M • and Mh and an appropriate opacity of dust grains in infrared (K band), this ratio has the attractive property of being minimum at a certain halo

  8. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  9. Blood and the Revenant in Walter Scott's The Fair Maid of Perth.

    PubMed

    Inglis, Katherine

    2014-01-01

    In Sir Walter Scott's The Fair Maid of Perth; or St Valentine's Day (1828), the resuscitated subject is referred to as a revenant, a term that Scott borrowed from Henry Thomson's Blackwoodian tale 'Le Revenant' (1827), meaning 'dead-alive'. Taking its cue from the sanguinary subtext of The Fair Maid of Perth, which is fascinated with the shedding of blood and transfusion of fluids, this chapter reads the Scottish revenant as a literary reflection on the extraordinary promise of blood transfusion in the 1820s: that death could be understood as a process, rather than an absolute state, and that medical intervention could restore life to those on the brink of death and even to the recently deceased.

  10. Blood and the Revenant in Walter Scott's The Fair Maid of Perth.

    PubMed

    Inglis, Katherine

    2014-01-01

    In Sir Walter Scott's The Fair Maid of Perth; or St Valentine's Day (1828), the resuscitated subject is referred to as a revenant, a term that Scott borrowed from Henry Thomson's Blackwoodian tale 'Le Revenant' (1827), meaning 'dead-alive'. Taking its cue from the sanguinary subtext of The Fair Maid of Perth, which is fascinated with the shedding of blood and transfusion of fluids, this chapter reads the Scottish revenant as a literary reflection on the extraordinary promise of blood transfusion in the 1820s: that death could be understood as a process, rather than an absolute state, and that medical intervention could restore life to those on the brink of death and even to the recently deceased. PMID:27132355

  11. The role of scurvy in Scott's return from the South Pole.

    PubMed

    Butler, A R

    2013-01-01

    Scurvy, caused by lack of vitamin C, was a major problem for polar explorers. It may have contributed to the general ill-health of the members of Scott's polar party in 1912 but their deaths are more likely to have been caused by a combination of frostbite, malnutrition and hypothermia. Some have argued that Oates's war wound in particular suffered dehiscence caused by a lack of vitamin C, but there is little evidence to support this. At the time, many doctors in Britain overlooked the results of the experiments by Axel Holst and Theodor Frølich which showed the effects of nutritional deficiencies and continued to accept the view, championed by Sir Almroth Wright, that polar scurvy was due to ptomaine poisoning from tainted pemmican. Because of this, any advice given to Scott during his preparations would probably not have helped him minimise the effect of scurvy on the members of his party. PMID:23734365

  12. The role of scurvy in Scott's return from the South Pole.

    PubMed

    Butler, A R

    2013-01-01

    Scurvy, caused by lack of vitamin C, was a major problem for polar explorers. It may have contributed to the general ill-health of the members of Scott's polar party in 1912 but their deaths are more likely to have been caused by a combination of frostbite, malnutrition and hypothermia. Some have argued that Oates's war wound in particular suffered dehiscence caused by a lack of vitamin C, but there is little evidence to support this. At the time, many doctors in Britain overlooked the results of the experiments by Axel Holst and Theodor Frølich which showed the effects of nutritional deficiencies and continued to accept the view, championed by Sir Almroth Wright, that polar scurvy was due to ptomaine poisoning from tainted pemmican. Because of this, any advice given to Scott during his preparations would probably not have helped him minimise the effect of scurvy on the members of his party.

  13. Multiwavelength Studies of X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Paronyan, G. M.; Mickaelian, A. M.; Abrahamyan, H. V.

    2016-06-01

    We present multiwavelength studies of the AGN and galaxy samples of the HRC/BHRC Joint Catalogue, optical identifications of ROSAT BSC and FSC sources. The extragalactic sample contains 4253 candidate AGN and 492 galaxies without a sign of activity. Multiwavelength data were retrieved from γ-ray to radio providing 62 photometric points in the range 100 GeV - 151 MHz. Color-color diagrams were built to investigate the nature of these objects. Activity types were taken from the SDSS DR12 spectroscopic database, as well as NED and HyperLEDA. So far, 451 objects remain as AGN candidates to be confirmed by spectroscopic observations.

  14. Surviving Rescue: A Feminist Reading of Scott O'Dell's "Island of the Blue Dolphins"

    ERIC Educational Resources Information Center

    Baecker, Diann L.

    2007-01-01

    Scott O'Dell's "Island of the Blue Dolphins" tells the archetypal story of the young, virgin, orphan girl who is vulnerable to either debauchery or rescue. That such a girl must succumb to either one or the other is a necessary element of the archetype. In O'Dell's work--one intended, after all, for children--the heroine is rescued by a…

  15. Astronauts David Scott looks at sample referred to as 'genesis rock'

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts David R. Scott, right, commander of the Apollo 15 mission, gets a close look at the sample referred to as the 'genesis rock' in the Non-Sterile Nitrogen Processing Line (NNPL) in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). Scientist-Astronaut Joseph P. Allen, left, an Apollo 15 spacecraft communicator, looks on. The white-colored rock has been given the permanent identification number of 15415.

  16. X-ray AGN in the XMM-LSS galaxy clusters: no evidence of AGN suppression

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Plionis, M.; Melnyk, O.; Elyiv, A.; Georgantopoulos, I.; Clerc, N.; Surdej, J.; Chiappetti, L.; Pierre, M.

    2014-07-01

    We present a study of the overdensity of X-ray-selected active galactic nuclei (AGN) in 33 galaxy clusters in the XMM-LSS field (The XMM-Newton Large Scale Structure Survey), up to redshift z = 1.05 and further divided into a lower (0.14 ≤ z ≤ 0.35) and a higher redshift (0.43 ≤ z ≤ 1.05) subsample. Previous studies have shown that the presence of X-ray-selected AGN in rich galaxy clusters is suppressed, since their number is significantly lower than what is expected from the high galaxy overdensities in the area. In the current study we have investigated the occurrence of X-ray-selected AGN in low (⟨ Lx,bol ⟩ = 2.7 × 1043 erg/s) and moderate (⟨ Lx,bol ⟩ = 2.4 × 1044 erg/s) X-ray luminosity galaxy clusters in an attempt to trace back the relation between high-density environments and nuclear activity. Owing to the wide contiguous XMM-LSS survey area, we were able to extend the study to the cluster outskirts. We therefore determined the projected overdensity of X-ray point-like sources around each cluster out to 6r500 radius, within δr500 = 1 annulus, with respect to the field expectations based on the X-ray source log N - log S of the XMM-LSS field. To provide robust statistical results we also conducted a consistent stacking analysis separately for the two z ranges. We investigated whether the observed X-ray overdensities are to be expected thanks to the obvious enhancement of galaxy numbers in the cluster environment by also estimating the corresponding optical galaxy overdensities, and we assessed the possible enhancement or suppression of AGN activity in clusters. We find a positive X-ray projected overdensity in both redshift ranges at the first radial bins, which however has the same amplitude as that of optical galaxies. Therefore, no suppression (or enhancement) of X-ray AGN activity with respect to the field is found, in sharp contrast to previous results based on rich galaxy clusters, implying that the mechanisms responsible for the

  17. AGN-selected clusters as revealed by weak lensing

    NASA Technical Reports Server (NTRS)

    Wold, M.; Lacy, M.; Dahle, H.; Lilje, P. B.; Ridgway, S. E.

    2002-01-01

    We discuss the results in light of the cooling flow and the merger/interaction scenarios for triggering and fuelling AGN in clusters, but find that the data do not point unambiguously to neither of the two.

  18. Broad Band Properties of the BAT Selected AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard; Winter, Lisa; Tueller, jack

    2008-01-01

    We will present the x-ray spectral properties of approximately 150 Burst Alert Telescope (BAT) selected active galactic nuclei (AGN) focusing on the issues of spectral complexity, x-ray absorption and its distribution and that contribution of sources to the x-ray background. If time permits we will also present the nature of the host galaxies of the AGN and their relationship to merger candidates.

  19. The bulge-disc decomposition of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; Mortlock, A.; Kocevski, D. D.; McGrath, E. J.; Rosario, D. J.

    2016-05-01

    We present the results from a study of the morphologies of moderate luminosity X-ray-selected active galactic nuclei (AGN) host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multiwavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sérsic and multiple Sérsic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sérsic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are indistinguishable from the general galaxy population except that beyond z ≃ 1.5 they have significantly higher bulge fractions. Even including nuclear sources in our modelling, the probability of this result arising by chance is ˜1 × 10-5, alleviating concerns that previous, purely single Sérsic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This data set also allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity. Our analysis of the bulge and disc fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.

  20. On the physical origin of AGN outflow driving mechanisms

    NASA Astrophysics Data System (ADS)

    Ishibashi, Wako

    2016-07-01

    Super-massive black holes in active galactic nuclei (AGN) respond to the accretion process by feeding back energy and momentum into the surrounding environment. Galaxy-scale outflows are thought to provide the physical link connecting the small scales of the central black hole to the large scales of the host galaxy. Such powerful outflows are now starting to be commonly observed, and have been considered as a proof of AGN feedback in action. However, the physical origin of the mechanism driving the observed outflows is still unclear, and whether it is due to energy-driving or radiation-driving is a source of much debate in the literature. We consider AGN feedback driven by radiation pressure on dust, and show that AGN radiative feedback is capable of driving powerful outflows on galactic scales. In particular, we can obtain outflowing shells with high velocity and large momentum flux, by properly taking into account the effects of radiation trapping. Alternatively, the observed outflow characteristics may be significantly biased by AGN variability. I will discuss the resulting implications in the global context of black hole accretion-AGN feedback coupling.

  1. YOUNG AGN OUTBURST RUNNING OVER OLDER X-RAY CAVITIES

    SciTech Connect

    Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.; Forman, William R.; Randall, Scott; Jones, Christine; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher P.; Baum, Stefi A.; Noell-Storr, Jacob

    2014-02-20

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  2. Young AGN Outburst Running over Older X-Ray Cavities

    NASA Astrophysics Data System (ADS)

    Bogdan, Akos; van Weeren, Reinout Johannes; Kraft, Ralph; Forman, William; Scott, Randall; Giacintucci, Simona; Churazov, Eugene; O'Dea, Christopher; Baum, Stefi; Noell-Storr, Jacob; Jones, Christine

    2015-08-01

    Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193 -- a nearby lenticular galaxy in a group -- based on X-ray and radio observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced about 78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.

  3. Mini-Survey Of SDSS of [OIII] AGN With Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.; George, I. M.; Hill, J.; Padgett, C. A.; Mushotzky, R. F.

    2008-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work (e.g. Ferrarese and Merritt 2000) strongly suggests every massive galaxy has a central black hole. However, most of these objects either are not radiating or have been very difficult to detect. We are now in the era of large surveys, and the luminosity function (LF) of AGN has been estimated in various ways. In the X-ray band, Chandra and XMM surveys (e.g., Barger et al. 2005; Hasinger, et al. 2005) have revealed that the LF of Hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(x) (at al z). This is seen for all types of AGN, but is stronger for the broad-line objects (e.g., Steffen et al. 2004). In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects (Hao et al. 2005). If, as been suggested, hard X-ray and optical emission line can both be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  4. Adult Re-Entry Students: Experiences Preceding Entry into a Rural Appalachian Community College

    ERIC Educational Resources Information Center

    Genco, Jessica T.

    2007-01-01

    Mountain Empire Community College (MECC)'s service region covers the extreme southwestern corner of Virginia and includes four counties and one city: Dickenson, Lee, Scott, and Wise Counties, and the city of Norton. With a service region population of 93,000 residents, MECC currently serves over 5,000 students annually (Mountain Empire Community…

  5. Properties and evolution of radio-AGN hosts since z~4

    NASA Astrophysics Data System (ADS)

    Delvecchio, Ivan

    2016-08-01

    We analyse the multi-wavelength properties of about 6200 radio (3-GHz) selected sources in the COSMOS field to investigate the impact of AGN activity on the integrated properties of their hosts. Two main classes of AGN are identified: radiatively-efficient AGN, by combining X-ray, mid-IR diagnostics and SED decomposition, and radiatively-inefficient AGN, that show up only in radio. Interestingly, we find significantly distinct galaxy properties for the two AGN classes, as a function of redshift. At z<2, radiatively-inefficient AGN are typically found in more massive and less star-forming galaxies than radiatively-efficient AGN, while at higher redshift we observe a possible reversal of their stellar mass distributions. We interpret these trends in the context of the anti-hierarchical growth of AGN host galaxies, with a particular focus on the role of AGN feedback over cosmic time in radio-selected samples.

  6. Mini Survey of SDSS [OIII] AGN with Swift: Testing the Hypothesis that L(sub [OIII]) Traces AGN Luminosity

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The number of AGN and their luminosity distribution are crucial parameters for our understanding of the AGN phenomenon. Recent work strongly suggests every massive galaxy has a central black hole. However most of these objects either are not radiating or have been very difficult to detect We are now in the era of large surveys, and the luminosity function (LF] of AGN has been estimated in various ways. In the X-ray band. Chandra and XMM surveys have revealed that the LF of hard X-ray selected AGN shows a strong luminosity-dependent evolution with a dramatic break towards low L(sub x) (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of optically-selected samples shows no such break and no differences between narrow and broad-line objects. If as been suggested, hard X ray and optical emission line can both can be fair indicators of AGN activity, it is important to first understand how reliable these characteristics are if we hope to understand the apparent discrepancy in the LFs.

  7. UNDERSTANDING THE AGN-HOST CONNECTION IN BROAD Mg II EMISSION-SELECTED AGN-HOST HYBRID QUASARS

    SciTech Connect

    Wang, J.; Wei, J. Y.

    2009-05-01

    We study the issue of active galactic nucleus (AGN)-host connection in intermediate-z (1.2>z > 0.4) galaxies with hybrid spectra (hybrid QSOs for short). The observed spectra redward of the Balmer limit are dominated by starlight, and the spectra at the blue end by both an AGN continuum and an Mg II broad emission line. This unique property allows us to examine both an AGN and its host galaxy in an individual galaxy simultaneously. First, 15 hybrid QSOs are selected from the Sloan Digital Sky Survey (SDSS) Data Release 6. The spectra are then analyzed in detail for three objects: SDSS J162446.49+461946.7, SDSS J102633.32+103443.8, and SDSS J090036.44+381353.0. Our spectral analysis shows that the current star formation activities are strongly suppressed, and that the latest burst ages range from {approx}400 Myr to 1 Gyr. Based on the Mg II black hole masses, the three hybrid QSOs are consistent with the D{sub n} (4000) - L/L {sub Edd} sequence that was previously established in local AGNs. The three hybrid QSOs are located in the middle range of the sequence, which implies that the hybrid QSOs are at the transition stage not only from young to old AGNs, but also from a host-dominated phase to an AGN-dominated phase.

  8. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  9. OT1_rmushotz_1: Determining the Bolometric Luminosity of AGN

    NASA Astrophysics Data System (ADS)

    Mushotzky, R.

    2010-07-01

    Determining the bolometric luminosities of AGN is key to understanding their evolution. Uncertainties in the total radiation from AGN translate into uncertainties in their lifetimes, Eddington ratios, mass accretion rates, the form of their radiation, and the predicted black hole spin. However, we still have major problems in measuring this critical quantity. AGN and their host galaxies emit a large fraction of their light in the MIR to FIR, but the origin of this radiation and the connection to the AGN are not well understood. It is not clear whether this radiation is associated with the AGN or with star formation in the galaxy. We propose to use Herschel's unique capabilities to establish the properties of the Swift-BAT all sky sample of local AGN selected at 15-195 keV. We will measure the MIR to FIR (65-500 microns) properties of a complete low-redshift sample (309 objects at z<0.05). The Swift-BAT survey is the least biased all sky survey for AGN with respect to host galaxy properties and obscuration in the line-of-sight, and thus it is superior to optical, IR, or radio surveys for understanding the the nuclear component of the MIR to FIR radiation from active galaxies. The low redshift of our sample, the uniformity of selection, and the large amount of parallel data which have already been obtained (Spitzer, optical, and X-ray spectra, and optical and UV imaging) will allow the most precise determination of the physical origin (AGN versus star formation) of the light. The low redshifts allow the best possible angular resolution for spatially separating star-formation and nuclear components, while only requiring short Herschel exposures. The Herschel BAT survey will provide a comprehensive database for determining the bolometric light of AGN and will be an invaluable reference sample for analyzing higher redshift AGN. It will be a powerful resource for many years to come. We will make it available in a comprehensive and accessible form as rapidly as possible.

  10. Multi-Wavelength AGN from Ground and Space, from Far-IR to High-Energy

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2014-07-01

    I will discuss multi-wavelength AGN studies, with a focus on mid-IR and radio selected obscured AGN. Obscured AGN, which are robustly identified across the full sky by WISE, are the dominant AGN population. I will discuss several aspects of the mid-IR obscured AGN population, ranging from detailed studies of extreme sources, the so-called WISE ultraluminous `hot dust-obscured galaxy' or `hot DOG' sample, as well as more general studies comparing obscured and unobscured AGN identified in wide-area surveys.

  11. Spectropolarimetry of AGN, and `Women &\\ Science'

    NASA Astrophysics Data System (ADS)

    Kay, L.

    1999-12-01

    I have been using optical spectropolarimetry to investigate the nature of AGN. For the CAREER project, I have worked with A. M. Magalhães of the IAG in Brazil to use a visiting polarimetry module with the RC Spectrograph at CTIO, as well as conduct observations at Lick. Projects include observations of broad--line radio galaxies with double--peaked emission line profiles suggestive of accretion disks, and observations of a sample of X-ray selected narrow--line Seyfert 1 galaxies. Another project involves optical and X-ray observations of a complete sample of nearby Seyfert 2 galaxies in order to investigate the frequency of obscured broad--line regions and to determine their contribution to the X-ray background. In addition to involving undergraduate students in research, my educational efforts have focused on getting science into our Women's Studies program. I teach a course on the history and sociology of women in science, co-teach a course on feminist science studies, helped to create a course on women's health, organized a faculty seminar on gender and science issues, and lead a project at Barnard on gender and scientific literacy. I gratefully acknowledge support from NSF CAREER grant AST-9501835, as well as support from NSF International Research Fellowship INT-9423970, and from NSF grant EHR-9555808 to the AAC&U for the Gender and Scientific Literacy project.

  12. Radio-Loud AGN: The Suzaku View

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2009-01-01

    We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.

  13. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  14. SED and Emission Line Properties of Red 2MASS AGN

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Joanna; Wilkes, Belinda J.; Schmidt, Gary; Ghosh, Himel

    2009-09-01

    Radio and far-IR surveys, and modeling of the cosmic X-ray background suggest that a large population of obscured AGN has been missed by traditional, optical surveys. The Two Micron All-Sky Survey (2MASS) has revealed a large population (surface density comparable to that of optically selected AGN with Ks<14.5mag) of mostly nearby (median z=0.25), red, moderately obscured AGN, among which 75% are previously unidentified emission-line AGN, with 85% showing broad emission lines. We present the SED and emission line properties of 44 such red (J-Ks>2) 2MASS AGN observed with Chandra. They lie at z<0.37, span a full range of spectral types (Type 1, intermediate, Type 2),Ks-to-X-ray slopes, and polarization (<13%). Their IR-to-X-ray spectral energy distributions (SEDs) are red in the near-IR/opt/UV showing little or no blue bump. The optical colors are affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The levels of obscuration obtained from optical, X-rays, and far-IR imply N_H AGN light. PCA analysis of the IR-X-ray SED and emission line properties shows that, while obscuration/inclination is important, the dominant cause of variance in the sample (eigenvector 1) is the L/L_{edd} ratio (perhaps because the red near-IR selection limits the range of inclination/obscuration values in our sample). This analysis also distinguishes two sources of obscuration: the host galaxy and circumnuclear absorption.

  15. Using AGN to Observe the Growth of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Murray, S.; Jones, C.; Forman, W.; Kenter, A.; Vihklinin, A.; Markevitch, M.; Brand, K.; Jannuzi, B.; Kochanek, C.; Eisenstein, D.

    We present X-ray and optical observations of the contiguous 9 3 sq deg XBootes survey made with the ACIS instrument on Chandra The X-ray survey consists of 126 5ksec pointings that achieve a sensitivity of about 4 times10 -15 erg cm -2 s -1 in the 0 5--7 keV band At this sensitivity limit we detect 4642 X-ray sources As part of the AGES galaxy survey in the Bootes region Kochanek et al 2005 we have obtained 1800 redshifts of the X-ray selected objects most of which are AGN yielding a density of sim150 AGN per square degree The mean AGN redshift is 1 3 with the distribution extending to z 4 We have analyzed the spatial distribution of the X-ray selected AGN and compared this to the distribution of the sim20000 AGES galaxies To z sim0 7 the limit of galaxy sample the galaxies and AGN both trace the same structures and show the same web of voids and filaments At larger redshifts the X-ray AGN continue to show the characteristic structure of voids and filaments Quantitatively we computed the spatial 2-point correlation function for the X-ray selected AGN and find that the correlation length r 0 simeq6 4 h -1 Mpc and the exponent gamma simeq-1 7 of the correlation function are similar to the canonical values derived for galaxies In addition we have compared the correlation function in several redshift intervals and find that the correlation length is approximately constant to z sim1 5

  16. AGN coronal emission models - I. The predicted radio emission

    NASA Astrophysics Data System (ADS)

    Raginski, I.; Laor, Ari

    2016-06-01

    Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.

  17. Calibration and Groundwater Management Scenario Analysis with the Scott Valley Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Tolley, D. G.; Foglia, L.; Neumann, J.; Harter, T.

    2014-12-01

    Late summer streamflow for the Scott River in northern California has decreased approximately 50% since the mid 1960's, resulting in increased water temperatures and disconnection of certain portions of the stream which negatively impacts aquatic habitat of fish species such as coho and fall-run Chinook salmon. In collaboration with local stakeholders, the Scott Valley Integrated Hydrologic Model has been developed, which combines a water budget model and a groundwater-surface water model (MODLFOW) of the 200 km2 basin. The goal of the integrated model is to better understand the hydrologic system of the valley and explore effects of different groundwater management scenarios on late summer streamflow. The groundwater model has a quarter-hectare resolution with aggregated monthly stress periods over a 21 year period (1990-2011). The Scott River is represented using either the river (RIV) or streamflow routing (SFR) package. UCODE was used for sensitivity analysis and calibration using head observations for 52 wells in the basin and gain/loss observations for two sections of the river. Of 32 model parameters (hydraulic conductivity, specific storage, riverbed conductance and mountain recharge), 13 were found significantly sensitive to observations. Results from the calibration show excellent agreement between modeled and observed heads and to seasonal and interannual variations in streamflow. The calibrated model was used to evaluate several management scenarios: 1) alternative water budget which takes into account measured irrigation rates in the valley, 2) in-lieu recharge where surface-water instead of groundwater is used to irrigate fields near the river while streamflow is sufficiently high, and 3) managed recharge on agricultural fields in gulches on the eastern side of the valley in the winter months. Preliminary results indicate that alternative water management scenarios (in-lieu and managed recharge) significantly increase late summer streamflow by keeping

  18. California State Waters map series—Offshore of Scott Creek, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-11-16

    The Offshore of Scott Creek map area lies within the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, abou

  19. Quantum entanglement between amide-I and amide-site in Davydov-Scott model

    NASA Astrophysics Data System (ADS)

    Liang, Xian-Ting; Fan, Heng

    2014-01-01

    In this paper, we firstly derive non-Markovian operator Langevin equations of the Davydov monomer in its environment. Next, we replace the equations with the c-number quantum general Langevin equations (QGLEs) by calculating statistical and quantum averages of the operator Langevin equations. Then, by using the c-number QGLEs we investigate the evolutions of the subsystems amide-I and amide-site. The evolution of a parameter θ describing quantum entanglement of the coupling subsystems with continuous variable Hamiltonian has also been investigated. It is shown that there is certain entanglement between the amide-I and amide-site in the Davydov-Scott monomer.

  20. Detecting AGNs using multi-filter imaging data

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoyi

    2012-05-01

    The purpose of this research project was to develop and test a technique to detect active galactic nuclei, AGNs, using high quality, multi-filter imaging data alone. In order to perform a physically meaningful aperture photometric measurement, we have adapted an image manipulation method - shapelets. shapelets can remove the Point Spread Function (PSF) from an image without the traditional deconvolution in Fourier space. It can therefore be used to adjust the image PSF, i.e., to sharpen the PSF and to make each filter's PSF have the same full width at half maximum (FWHM). shapelets is realized by an IDL based package SHAPELETS, originally designed for studying weak gravitational lensing, and adjusted to suit our application. The primary data we used were selected from the CFHT Legacy Survey Wide Survey field W4. The sample included 6670 galaxies, with u magnitudes ≤ +22 mag, and inclinations ≤ 60°. We applied shapelets to each galaxy for each filter. The result was a shapelets reconstructed image with a 2-D Gaussian PSF with FWHM=3 pixels. We then made relevant photometric measurements on the reconstructed image. In order to calculate distance-dependent parameters such as the galaxy luminosity, we estimated the photometric redshift using an artificial neural network (ANN) with a root mean square (RMS) of 0.025. We designed another neural net to classify the galaxy morphological type based on its photometric properties. The classification was based on Nair and Abraham (2010), and has an accuracy < 2T types. Because galaxy colours alone cannot be used to distinguish AGNs from "normal" galaxies, we also designed a neural net to separate AGN, "normal" , and starforming/starburst galaxies. The accuracy of this classification technique is about 75%. Because our method relies largely on the spatial resolution of the data, we limited our analysis to z ≤ 0.1. The sample contained 1570 galaxies, and we detected 178 AGNs (11.3%), 176 "normal" (11.2%), and 1216

  1. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Leon-Tavares, Jonathan; Chavushyan, Vahram H.

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  2. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Swinbank, A. M.

    2014-07-01

    We present integral field unit observations covering the [O III]λλ4959, 5007 and Hβ emission lines of 16 z < 0.2 type 2 active galactic nuclei (AGN). Our targets are selected from a well-constrained parent sample of ≈24 000 AGN so that we can place our observations into the context of the overall AGN population. Our targets are radio quiet with star formation rates (SFRs; ≲[10-100] M⊙ yr-1) that are consistent with normal star-forming galaxies. We decouple the kinematics of galaxy dynamics and mergers from outflows. We find high-velocity ionized gas (velocity widths ≈600-1500 km s-1; maximum velocities ≤1700 km s-1) with observed spatial extents of ≳(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z < 0.2, luminous (i.e. L[O III] > 1041.7 erg s-1) type 2 AGN and that ionized outflows are not only common but also in ≥70 per cent (3σ confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultraluminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ≈10 times the SFRs), kinetic energies (≈0.5-10 per cent of LAGN) and momentum rates (typically ≳10-20 × LAGN/c) consistent with theoretical models that predict AGN-driven outflows play a significant role in shaping the evolution of galaxies.

  3. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  4. Inverse Compton X-ray signature of AGN feedback

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei

    2013-12-01

    Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.

  5. Mini-Survey of SDSS OIII AGN with Swift

    NASA Technical Reports Server (NTRS)

    Angelina, Lorella; George, Ian

    2007-01-01

    There is a common wisdom that every massive galaxy has a massive block hole. However, most of these objects either are not radiating or until recently have been very difficult to detect. The Sloan Digital Sky Survey (SDSS) data, based on the [OIII] line indicate that perhaps up to 20% of all galaxies may be classified as AGN a surprising result that must be checked with independent data. X-ray surveys have revealed that hard X-ray selected AGN show a strong luminosity dependent evolution and their luminosity function (LF) shows a dramatic break towards low Lx (at all z). This is seen for all types of AGN, but is stronger for the broad-line objects. In sharp contrast, the local LF of (optically-selected samples) shows no such break and no differences between narrow and broad-line objects. Assuming both hard X-ray and [OIII] emission are fair indicators of AGN activity, it is important to understand this discrepancy. We present here the results of a mini-survey done with Swift on a selected sample of SDSS selected AGN. The objects have been sampled at different L([OIII]) to check the relation with the Lx observed with Swift.

  6. A Meeting on the AGN/Galaxy Connection

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1999-01-01

    This grant was used for travel support of several junior astronomers to attend the meeting "The Actice Galactic Nuclei (AGN)/Normal Galaxy Connection", Session El.2 of the 32nd COSPAR Assembly held in Nagoya, Japan, 12-19 July 1998. This meeting included the contributions from both theoretical and observational astronomers to the following fundamental questions: What causes the activity in galaxies? What is the difference between normal and active galaxies? Which processes are responsible for fueling the AGN? Do all galaxies have central Black Holes? What is the difference between low and high luminosity AGN? The observational papers discussed themes like: the detection of the black hole at the nucleus of our Galaxy, as well as in other galaxies; results from surveys of AGN in local galaxies, the source of their activity and their cold gas content; the observations of quasar host galaxies; the properties of Ultraluminous Infrared Galaxies. These papers used data from ground based observatories and several space missions (e.g. ASCA, ROSAT, HST, ISO) in wavebands from radio through gamma-rays. The theoretical papers discussed issues like: mechanisms to fuel the AGN; the physics of the accretion process; the formation of black-holes, quasars and their jets.

  7. The Overdue Discovery of Quasars and AGN

    NASA Astrophysics Data System (ADS)

    Kellermann, Ken I.

    2012-09-01

    The extragalactic nature of quasars as a major new component of the Universe was not recognized until 1963 when Maarten Schmidt somewhat accidentally measured the spectrum of 3C 273 and recognized that the relatively simple hydrogen line Balmer series spectrum implied a redshift of 0.16. Curiously, 3C 48 and other very compact radio sources had been previously identified with ``quasi-stellar'' objects several years earlier. Even though the redshift of 3C48 was measured as early as 1960 as 0.37, it was rejected due to apparent spectroscopic technicalities and preconceived ideas about what appeared to be an unrealistically high luminosity. The strong radio source known as 3C 273 was first catalogued in 1959 and the now recognized magnitude 13 optical counterpart was known at least as early as 1887. Although, since 1960, much fainter optical counterparts were being routinely identified using accurate radio interferometer positions, interestingly, 3C273 eluded identification until a series of lunar occultations by Hazard et al. in 1962 were used to determine the position and morphology of the radio source. Acceptance of the cosmological nature of quasars and the implied excessive radio and optical luminosity was not universal, and claims for a more local population continued for at least several decades, confused perhaps by the recognition of the much larger class of radio quiet quasi stellar objects and active galactic nuclei (AGN), the uncertain connection with previously known Seyfert and other compact galaxies, as well as attempts to classify quasars into numerous sub-categories based on their observed optical, radio, IR and high energy properties.

  8. Agnes Pockels: Life, Letters and Papers

    NASA Astrophysics Data System (ADS)

    Helm, Christiane A.

    2004-03-01

    Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).

  9. AGN variability in the radio band

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter

    2016-08-01

    Variability is an important and defining characteristic of AGN, that along with their broadband spectral energy distribution make their study interesting and challenging. A complete understanding of the physics of these objects requires monitoring observations over the whole electromagnetic spectrum, and includes studying their properties at a given band and also the relationship between multiple wavelengths. Here we present the main results obtained so far with the ongoing OVRO 40m blazar monitoring program at 15 GHz with twice a week cadence. This program started in mid-2007 and is currently monitoring about 1800 blazars, including most of the bright blazars north of declination -20 degrees. These results include: characterization of the variability in the radio band; its relationship with optical and gamma-ray properties; and its relationship to gamma-ray emission as observed with Fermi-LAT, which can provide constrains on the location of the gamma-ray emission region. We will also discuss our ongoing work on the characterization of radio variability using the power spectral density. For this, we are using 8 years of OVRO 40m data for ~1200 sources, and also F-GAMMA monitoring data taken with the Effelsberg 100m telescope for 60 sources with about monthly cadence monitoring data at 8 frequencies between 2.6 and 43.0 GHz. These studies will provide an improved understanding of blazar variability, a better basis to evaluate the statistics of correlated variability between different emission bands, and a long and consistent record of radio observations to be used in gamma-ray and multi-wavelength investigations.

  10. AGN feedback and jet-induced star formation

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.

    2015-12-01

    We studied the impact of the AGN in radio galaxies on star formation along the radio jet. Our main goal was to determine whether star formation is more efficient in the shocked region along the jet. A first large scale work based on IRAM-30m CO observations of 3C 285 and Minkowski's Object has shown the star-forming spots located a few tens of kpc along the radio jet appears to form stars at least as efficiently as typical spiral galaxies or even boosted. This result supports the AGN positive feedback scenario. On the opposite, a small scale multi-wavelength analysis of the northern filaments of Centaurus A tends to quench star formation in the filaments, maybe due to the AGN negative feedback.

  11. The predominance of dust in the polar region of AGN

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian; Gandhi, Poshak

    2016-08-01

    Recent mid-infrared (MIR) interferometric observations showed in few AGN that the bulk of the infrared emission originates from the polar region above the putative torus, where only little dust should be present. Our investigation of 149 Seyferts with high angular resolution MIR images from, e.g., VLT/VISIR shows that significant polar dust emission is probably very common in AGN. The relative amount of resolved MIR emission is at least 40 per cent and scales with the narrow emission line fluxes implying a strong connection between the extended continuum and line emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGN. We will discuss some of the resulting implications and give prospects for future instruments to further test this scenario.

  12. The contribution of AGNs to the X-ray background.

    NASA Astrophysics Data System (ADS)

    Comastri, A.; Setti, G.; Zamorani, G.; Hasinger, G.

    1995-04-01

    We report the results of a detailed analysis of the contribution of various classes of AGNs (Seyfert galaxies and quasars) to the extragalactic X-ray background (XRB). The model is based on the unification schemes of AGNs, on their related X-ray spectral properties in the light of recent observational results and on the X-ray luminosity function derived by Boyle et al. (1993). The integrated emission from AGNs, when folded with an appropriate cosmological evolution law, can provide a good fit to the XRB over a wide energy range, from several to ~100keV, while it contributes only about 74% of the ROSAT soft XRB. The baseline model predictions have been checked against all available observational constraints from both hard and soft X-ray surveys (counts, redshift distributions and average X-ray source spectral properties).

  13. Compton thick AGN in the XMM-COSMOS survey

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Ranalli, P.; Georgantopoulos, I.; Georgakakis, A.; Delvecchio, I.; Akylas, T.; Berta, S.; Bongiorno, A.; Brusa, M.; Cappelluti, N.; Civano, F.; Comastri, A.; Gilli, R.; Gruppioni, C.; Hasinger, G.; Iwasawa, K.; Koekemoer, A.; Lusso, E.; Marchesi, S.; Mainieri, V.; Merloni, A.; Mignoli, M.; Piconcelli, E.; Pozzi, F.; Rosario, D. J.; Salvato, M.; Silverman, J.; Trakhtenbrot, B.; Vignali, C.; Zamorani, G.

    2015-01-01

    Heavily obscured, Compton thick (CT, NH> 1024 cm-2) active galactic nuclei (AGN) may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background at its peak. However, unambiguously identifying CT AGN beyond the local Universe is a challenging task even in the deepest X-ray surveys, and given the expected low spatial density of these sources in the 2-10 keV band, large area surveys are needed to collect sizable samples. Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3 × 1023 cm-2) at bright X-ray fluxes (F2-10 ≳ 10-14 erg s-1 cm-2) in the 2 deg2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the shallow XMM-Newton data, the presence of bona fide CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample comprises ten CT AGN (six of them also have a detected Fe Kα line with EW ~ 1 keV), spanning a wide range of redshifts (z ~ 0.1-2.5) and luminosity (L2-10 ~ 1043.5-1045 erg s-1) and is complemented by 29 heavily obscured AGN spanning the same redshift and luminosity range. We collected the rich multi-wavelength information available for all these sources, in order to study the distribution of super massive black hole and host properties, such as black hole mass (MBH), Eddington ratio (λEdd), stellar mass (M∗), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller MBH and higher λEdd with respect to unobscured sources, while a weaker evolution in M∗ is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshifts. We also present and briefly discuss optical spectra, broadband spectral energy distribution (SED) and morphology for the sample of ten CT AGN. Both

  14. The central parsecs of AGN across the electromagnetic spectrum

    NASA Astrophysics Data System (ADS)

    Prieto, Almudena

    2016-08-01

    High angular resolution observations across the electromagnetic spectrum of the nearest AGN are providing a view of the nuclear region rather different from- and somewhat simpler than-the one envisaged by the canonical AGN Unification Schemes. I will review the challenges that parsec-scale observations in the IR when combined with comparable physical scales in radio, millimetre, optical, UV and X-ray of some of the nearest AGN are revealing about the nature of the nuclear emission, the transition from the most luminous to the feeble ones, and their accretion power. I will discuss how these observations challenge the requirement of a torus and question one of its fundamental attributes which is the collimation of the nuclear radiation.

  15. Feedback Mechanisms of Starbursts and AGNs through Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Matsushita, S.; Krips, M.; Lim, J.; Muller, S.; Tsai, A.-L.

    2013-10-01

    Our deep molecular line images of nearby starburst galaxies and AGNs exhibit molecular outflows in most galaxies, and have revealed that the molecular outflows co-exist with outflows or jets seen in other wavelengths. In case of starbursts, X-ray outflows have higher energy and pressure than those of molecular outflows, suggesting that plasma outflows are blowing the molecular gas away from starburst regions, which suggests a strong negative feedback. On the other hand, current starburst regions in M82 can be seen at the inner edge of an expanding molecular bubble, suggesting a positive feedback. In case of AGNs, jets seem to entrain the surrounding molecular gas away from the AGNs, suggesting a negative feedback.

  16. AGN Survey to characterize the clumpy torus using FORCAST

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, Enrique

    2015-10-01

    A geometrically and optically thick torus of gas and dust obscures the black hole and accretion disk in active galactic nuclei (AGN) in some lines of sight. One of the most important question that still remain uncertain is: How do the properties, such as torus geometry and distribution of clumps, of the torus depend on the AGN luminosity and/or activity class? Infrared (IR) observations are essential to these investigations as the torus intercepts and re-radiates (peaking within 30-40 um) a substantial amount of flux from the central engine. Near-IR (NIR) and mid-IR (MIR) observations from the ground have been key to advance our knowledge in this field. However, the atmosphere is opaque to the 30-40 um range and observations are impossible from ground-based telescopes. FORCAST presents a unique opportunity to explore AGN, providing the best angular resolution observations within the 30-40 um range for the current suite of instruments. From our analysis using Cycle 2 observations, we found that FORCAST provides the largest constraining power of the clumpy torus models in the suggested wavelength range. We therefore request an AGN Survey using FORCAST of snapshot imaging observations of a flux-limited (>500 mJy at 37.1 um) sample of 23 Seyfert galaxies with existing high-angular resolution MIR spectra observed on 8-m class telescopes. Using the FORCAST data requested here in combination with already acquired NIR and MIR data, we will have an unprecedentedly homogeneous AGN sample of IR (1-40 um) SED at the largest spatial-resolution, which yield to a better knowledge of the torus structure in the AGN unified model.

  17. Quenching histories of galaxies and the role of AGN feedback

    NASA Astrophysics Data System (ADS)

    Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team

    2016-01-01

    Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ < 1 Gyr) drop in their star formation rate. With this result we therefore present the first statistically supported observational evidence that AGN feedback is an important mechanism for the cessation of star formation in this population of galaxies. The diversity of this new method also highlights that such rapid quenching histories cannot account fully for all the quenching across the current AGN host population. We demonstrate that slower (τ > 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.

  18. The most obscured AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Cappelluti, N.; Comastri, A.; Gilli, R.; Gruppioni, C.; Mignoli, M.; Pozzi, F.; Vietri, G.; Vignali, C.; Zamorani, G.

    2015-06-01

    Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH ≳ 1024 cm-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 1024 cm-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH ≳ 1025 cm-2), intrinsically luminous (L2-10 > 1044 erg s-1) AGN at z = 0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6 μm luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a ≳1025 cm-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (LBol/LEdd = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z ~ 2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.

  19. Tracing outflows in the AGN forbidden region with SINFONI

    NASA Astrophysics Data System (ADS)

    Kakkad, D.; Mainieri, V.; Padovani, P.; Cresci, G.; Husemann, B.; Carniani, S.; Brusa, M.; Lamastra, A.; Lanzuisi, G.; Piconcelli, E.; Schramm, M.

    2016-08-01

    Context. Active galactic nucleus (AGN) driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were at their maximum. Radiatively driven outflows are therefore believed to be common during this epoch. Aims: We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially resolved kinematics of the [O iii] λ5007 line in two targets which reveal the morphology and spatial extension of the outflows. Methods: We present SINFONI observations in the J band and the H + K band of five AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km s-1) and kiloparsec scale extended ionized outflows in at least three of our targets, using [O iii] λ5007 line kinematics tracing the AGN narrow line region. We estimate the total mass of the outflow, the mass outflow rate, and the kinetic power of the outflows based on theoretical models and report on the uncertainties associated with them. Results: We find mass outflow rates of ~1-10 M⊙/yr for the sample presented in this paper. Based on the high star formation rates of the host galaxies, the observed outflow kinetic power, and the expected power due to the AGN, we infer that both star formation and AGN radiation could be the dominant source for the outflows. The outflow models suffer from large uncertainties, hence we call for further detailed observations for an accurate determination of the outflow properties to confirm the exact source of these outflows.

  20. The INTEGRAL/IBIS AGN catalogue: an update

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Landi, R.; Molina, M.; Bassani, L.; Bazzano, A.; Bird, A. J.; Ubertini, P.

    2016-07-01

    In the most recent IBIS survey based on observations performed during the first 1000 orbits of INTEGRAL, are listed 363 high-energy emitters firmly associated with AGN, 107 of which are reported here for the first time. We have used X-ray data to image the IBIS 90 per cent error circle of all the AGN in the sample of 107, in order to obtain the correct X-ray counterparts, locate them with arcsec accuracy and therefore pinpoint the correct optical counterparts. This procedure has led to the optical and spectral characterization of the entire sample. This new set consists of 34 broad line or type 1 AGN, 47 narrow line or type 2 AGN, 18 blazars and 8 sources of unknown class. These eight sources have been associated with AGN from their positional coincidence with 2MASX/Radio/X-ray sources. Seven high-energy emitters have been included since they are considered to be good AGN candidates. Spectral analysis has been already performed on 55 objects and the results from the most recent and/or best statistical measurements have been collected. For the remaining 52 sources, we report the spectral analysis for the first time in this work. We have been able to obtain the full X-ray coverage of the sample making use of data from Swift/XRT, XMM-Newton and NuSTAR. In addition to the spectral characterization of the entire sample, this analysis has enabled us to identify peculiar sources and by comparing different data sets, highlight flux variability in the 2-10 keV and 20-40 keV bands.

  1. On the electron-positron cascade in AGN central engines

    NASA Astrophysics Data System (ADS)

    Ford, Alex; Keenan, Brett; Medvedev, Mikhail

    2016-03-01

    Processes around spinning supermassive black holes (BH) in active galactic nuclei (AGN) are believed to determine how relativistic jets are launched and how the BH energy is extracted. The key ``ingredient'' is the origin of plasma in BH magnetospheres. In order to explore the process of the electron-positron plasma production, we developed a numerical code which models a one-dimensional (along a magnetic field line) dynamics of the cascade. Our simulations show that plasma production is controlled by the spectrum of the ambient photon field, the B-field strength, the BH spin and mass. Implications of our results to the Galactic Center and AGNs are discussed.

  2. Viscous time lags between starburst and AGN activity

    NASA Astrophysics Data System (ADS)

    Blank, Marvin; Duschl, Wolfgang J.

    2016-10-01

    There is strong observational evidence indicating a time lag of order of some 100 Myr between the onset of starburst and AGN activity in galaxies. Dynamical time lags have been invoked to explain this. We extend this approach by introducing a viscous time lag the gas additionally needs to flow through the AGN's accretion disc before it reaches the central black hole. Our calculations reproduce the observed time lags and are in accordance with the observed correlation between black hole mass and stellar velocity dispersion.

  3. STS-87 Mission Specialists Scott and Doi with EVA coordinator Laws participate in the CEIT for their

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center, at left. Next to Laws is Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, who is looking on as Mission Specialist Winston Scott gets a hands-on look at some of the equipment. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  4. Is AGN feedback necessary to form red elliptical galaxies?

    NASA Astrophysics Data System (ADS)

    Khalatyan, A.; Cattaneo, A.; Schramm, M.; Gottlöber, S.; Steinmetz, M.; Wisotzki, L.

    2008-06-01

    We have used the smoothed particle hydrodynamics (SPH) code GADGET-2 to simulate the formation of an elliptical galaxy in a group-size cosmological dark matter halo with mass Mhalo ~= 3 × 1012h-1Msolar at z = 0. The use of a stellar population synthesis model has allowed us to compute magnitudes, colours and surface brightness profiles. We have included a model to follow the growth of a central black hole and we have compared the results of simulations with and without feedback from active galactic nuclei (AGN). We have studied the interplay between cold gas accretion and merging in the development of galactic morphologies, the link between colour and morphology evolution, the effect of AGN feedback on the photometry of early-type galaxies, the redshift evolution in the properties of quasar hosts, and the impact of AGN winds on the chemical enrichment of the intergalactic medium (IGM). We have found that the early phases of galaxy formation are driven by the accretion of cold filamentary flows, which form a disc galaxy at the centre of the dark matter halo. Disc star formation rates in this mode of galaxy growth are about as high as the peak star formation rates attained at a later epoch in galaxy mergers. When the dark matter halo is sufficiently massive to support the propagation of a stable shock, the gas in the filaments is heated to the virial temperature, cold accretion is shut down, and the star formation rate begins to decline. Mergers transform the spiral galaxy into an elliptical one, but they also reactivate star formation by bringing gas into the galaxy. Without a mechanism that removes gas from the merger remnants, the galaxy ends up with blue colours, which are atypical for its elliptical morphology. We have demonstrated that AGN feedback can solve this problem even with a fairly low heating efficiency. Our simulations support a picture where AGN feedback is important for quenching star formation in the remnant of wet mergers and for moving them to

  5. Mapping the radial structure of AGN tori

    NASA Astrophysics Data System (ADS)

    Kishimoto, M.; Hönig, S. F.; Antonucci, R.; Millour, F.; Tristram, K. R. W.; Weigelt, G.

    2011-12-01

    We present mid-IR interferometric observations of six type 1 AGNs at multiple baseline lengths ranging from 27 m to 130 m, reaching high angular resolutions up to λ/B ~ 0.02 arcsec. For two of the targets, we have simultaneous near-IR interferometric measurements as well, taken within a week. We find that all the objects are partially resolved at long baselines in these IR wavelengths. The multiple-baseline data directly probe the radial distribution of the material on sub-pc scales. We show that for our sample, which is small but spans over ~2.5 orders of magnitudes in the UV/optical luminosity L of the central engine, the radial distribution clearly and systematically changes with luminosity. The brightness distribution at a given mid-IR wavelength seems to be rather well described by a power law, which makes a simple Gaussian or ring size estimation quite inadequate. In this case, a half-light radius R1/2 can be used as a representative size. We show that the higher luminosity objects become more compact in normalized half-light radii R1/2/Rin in the mid-IR, where Rin is the dust sublimation radius empirically given by the L1/2 fit of the near-IR reverberation radii. This means that, contrary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proportional to L1/2, but increases with L much more slowly. With our current datasets, we find that R1/2 ∝ L0.21 ± 0.05 at 8.5 μm, and R1/2 nearly constant at 13 μm. The derived size information also seems to correlate with the properties of the total flux spectrum, in particular the smaller R1/2/Rin objects having bluer mid-IR spectral shape. We use a power-law temperature/density gradient model as a reference, and infer that the radial surface density distribution of the heated dust grains at a radius r changes from a steep ~r-1 structure in high luminosity objects to a shallower ~r0 structure in those of lower luminosity. The inward dust temperature distribution does not seem to smoothly

  6. Uncovering East Antarctic Bedrock using detrital zircon geochronology and pebble lithologies from Mount Howe, Scott Glacier

    NASA Astrophysics Data System (ADS)

    Dits, T.; Licht, K.; Bader, N.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2012-12-01

    Till from the flanks of Mount Howe, the southernmost outcrop in the world at the head of the Scott Glacier, Antarctica, offers an exclusive view of East Antarctic bedrock through analysis of detrital zircon geochronology and pebble lithology. With no outcrops upstream of the Mount Howe nunatak, detrital zircons and pebbles incorporated in the supraglacial till place direct new age and lithologic constraints on unmapped, ice covered bedrock in the Scott Glacier catchment. Nine moraine crests were sampled along a 2 km transect from the modern ice edge toward exposed Beacon Supergroup bedrock, where rock weathering increases away from the ice margin. Preliminary cosmogenic ages on boulders on the same crests as the provenance study indicate most of the moraine complex formed over the last 100 ka, but some ridges close to the headwall may be much older. Pebble lithologies across the transect show minimal statistical variation, averaging 60% mafic igneous, 30% metamorphic, and 10% sedimentary lithologies dominantly from the Ferrar and Beacon Supergroups. Observations of faceting and striations on pebble surfaces reveal that up to 40-50% of the pebble fraction of the till was subglacially transported, and a minimum of 15% are exotic lithologies. Nearly 80% of cobbles collected from a non-random survey reveal the presence of several exotic rock types, including vesicular olivine basalt, quartzite, and four different compositions of granite. Guided by backscatter electron imagery of detrital zircons, 385 ages from U-Pb isotopes of detrital zircons from 8 sequential moraine crests were determined by laser ablation-inductively coupled plasma mass spectroscopy (LA-ICPMS). Distinct age populations were identified at 185-190 Ma, 255-270 Ma, 355-365 Ma, 550-580 Ma, and 2740 Ma. Four samples in the middle of the transect all display a similar 1010-1040 Ma peak that is statistically different from the remaining samples. The 185 Ma population differs from the typical East Antarctic

  7. A Response to Scott's Concerns about the Relevance of Environmental Education Research: Applying Social-Ecological Systems Thinking and Consilience to Defining Research Goals

    ERIC Educational Resources Information Center

    Krasny, Marianne E.

    2009-01-01

    In William Scott's plenary address at the World Environmental Education Conference, he expressed concerns about the relevance of environmental education research in a world facing global environmental and demographic change. In responding to Scott's concerns, I argue that addressing challenges related to development and the environment requires…

  8. Scott Wallace on the National Alliance for Health Information Technology. Interview by Deborah Mears.

    PubMed

    Wallace, Scott

    2004-01-01

    The National Alliance for Health Information Technology (NAHIT) appointed Scott Wallace as its first president and CEO in 2003. NAHIT is an organization of 90 Leading healthcare associations, suppliers, vendors, hospitals, and healthcare systems committed tothe development of voluntary standards for health information technoLogy. Wallace previously was the principal owner of Great kes Capital, a financiaL, commerciaL, and business development consulting firm with a major focus in technology. Prior to starting Great Lakes, Wallace led several technoLogy-based companies. He served as president and CEO of PowerClip Co., a wireless products mpany; president and CEO of Eichrom Industries, an advanced materials and specialty chemical company; and vice president and general counsel for GCI, a venture capital fund. Wallace earned a juris doctorate from the University of Chicago Law School, a master's degree in business administration from the University of Chicago Graduate School of Business, anda bachelor's degree in economics from Duke University.

  9. California State Waters map series—Offshore of Scott Creek, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-11-16

    Seafloor habitats in the Offshore of Scott Creek map area, which lie within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deeper water. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  10. Test of Lorentz Invariance at the Amundsen - Scott South Pole Station

    NASA Astrophysics Data System (ADS)

    Smiciklas, Marc; Vernaza, Andrew; Romalis, Michael

    2013-05-01

    Tests of Lorentz and CPT symmetry provide one of the few ways to experimentally access Planck-scale physics. Currently the most sensitive Lorentz symmetry tests for fermions are performed with atomic spin co-magnetometers. Earth rotation represents a large background for such experiments due to gyroscopic spin interaction. To improve the limits on vector and tensor Lorentz-violating interactions we have installed a 21Ne-Rb co-magnetometer at the Amundsen - Scott South Pole Station. The experiment is mounted on a precision air-bearing rotating platform aligned to the local vertical to eliminate most Earth-bound sources of systematic errors. We plan to collect data over the austral winter. We will describe the experience of operating the experiment at the South Pole and present the latest results. Supported by NSF ANT-1142032.

  11. FPGA-based adaptive backstepping fuzzy control for a micro-positioning Scott-Russell mechanism

    NASA Astrophysics Data System (ADS)

    Fung, Rong-Fong; Weng, Ming-Hong; Kung, Ying-Shieh

    2009-11-01

    This paper utilizes the field programmable gate array (FPGA) and Nios II embedded processor technologies to design a controller IC for a micro-positioning Scott-Russell (SR) mechanism, which is driven by a piezoelectric actuator (PA) and its hysteresis phenomenon is described by Bouc-Wen hysteresis model. For the controller design, the adaptive backstepping fuzzy control (ABFC) method is developed to compensate the PA's hysteresis and achieve the motion tracking control. The fuzzy logic method (FLM) is utilized to find the best adaptation gain of the adaptation law and control gain of the stabilization controls. This ABFC controller method can improve the transient and asymptotic tracking performances, and make the SR mechanism keep good working performance when external disturbances is added in the control system. Finally, we successfully apply the system-on-a-programmable-chip (SoPC) technologies to develop the motion controller IC, and achieve the advantages of reduced space, high performance and low cost.

  12. Scott river riparian woodland revegetation demonstration project, FY 1994. Final report

    SciTech Connect

    Jopson, T.M.

    1995-04-01

    The purpose of this project was to demonstrate techniques that could lead to the successful restoration of riparian woodland along the Scott River and elsewhere at a reasonable cost. Three sites were selected for the projects on the basis of need for restoration (i.e. the lack of vegetation), the applicability of the site as a demonstration area (how typical of other areas it was), exclusionary fencing, and the willingness of the landowner to participate. Three woody plant species, black cottonwood (Populus nigra), willow (Salix sp.) and Ponderosa pine (Pinus ponderosa) were chosen for planting on the site. These species were known to occur naturally in the riparian zone of the river, were relatively easy to grow in the available time, would produce a variety of habitats when mature, and would grow tall enough to provide shade for the water.

  13. Stellar population model dependence in optical AGN identification

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zaw, Ingyin; Farrar, Glennys

    2016-08-01

    The choice of stellar templates plays an important role in optical spectroscopic AGN classification, because the host galaxy contribution must be accurately subtracted in order to isolate the true contribution of the AGN. Up to now, simple stellar population models such as BC03, have been used as templates in doing the stellar component analysis. As more stellar population models become available, systematic study of the impact of the stellar population modeling becomes possible. This is important not only for finding the best template but also for understanding the merits and limitations of the templates. We analyzed the SDSS DR8 spectra, using different empirical, theoretical, and mixed stellar population models. We found that some templates lead to systematic biases in the identification of AGN candidates. We investigated the effects of the range of age,metallicity, and the total wavelength used in full-spectrum fitting. We found that the completeness of parameter space in the template model plays a vital role in classifying AGN candidates; the wavelength range used to analyze the spectra also affects the result but in a relative minor way. Empirical stellar models can be expected to yield the most reliable estimate of the absorption features in the host galaxies, since there will be less model dependence (e.g., on opacity assumption, line profile representation).

  14. Disc outflows and high-luminosity true type 2 AGN

    NASA Astrophysics Data System (ADS)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  15. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  16. Review of Space VLBI RadioAstron studies of AGN

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid; Kovalev, Yuri

    2016-07-01

    Space VLBI offers an unrivalled resolution in studies of the AGN phenomena. Since 2011, the Russia-led SVLBI mission RadioAstron conducts observations at 92, 18, 6 and 1.3 cm with baselines an order of magnitude longer than the Earth diameter, therefore offering an order of magnitude "sharper" view at the brightest radio sources than achieved with Earth-based VLBI systems. In our presentation we will review the current status of the RadioAstron's scientific programme. Over the first 4.5 years of the in-orbit operations, the mission achieved successful VLBI detections of extragalactic continuum radio sources at all four observing bands. To date, detections on SVLBI baselines have been obtained for more than 150 AGN's at projected baselines up to 350 000 km (about 28 Earth diameters, ED). The highest resolution achieved is 14 microarcscends from 1.3 cm observations. RadioAstron is an international project; it conducts observations with up to 30 Earth-based radio telescopes located on different continents. We will review results of total intensity and polarisation imaging with extreme angular resolution of blazars and nearby active galaxies. We will also discuss typical and maximum brightness temperatures of blazar cores from the AGN Survey obtained with RadioAstron. Physical implications for the AGN jets formation, magnetic field and emission mechanism will be discussed on the basis of the results obtained to date.

  17. Feedback from AGN: The Kinetic/Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Melini, Gabriele; La Franca, Fabio; Fiore, Fabrizio

    2010-05-01

    We have measured the probability distribution function of the ratio RX = log L1.4/LX, where L1.4/LX = ν Lν(1.4 GHz)/LX(2-10 keV), between the 1.4 GHz and the unabsorbed 2-10 keV luminosities and its dependence on LX and z. We have used a complete sample of ~1800 hard X-ray selected AGN, observed in the 1.4 GHz band, cross-correlated in order to exclude FR II-type objects, and thus obtain a contemporaneous measure of the radio and X-ray emission. The distribution P(RX|LX,z) is shown in Figure 1. Convolution of the distribution P(RX|LX,z) with the 2-10 keV X-ray AGN luminosity function from La Franca et al. (2005) and the relations between radio power and kinetic energy from Best et al. (2006) and Willott et al. (1999) allows us to derive the AGN kinetic power and its evolution. As shown in Figure 1, our results are in good agreement with the predictions of the most recent models of galaxy formation and evolution (e.g., Croton et al. 2006), where AGN radio feedback is required to quench the star formation.

  18. Converting the Audience: A Conversation with Agnes Wilcox

    ERIC Educational Resources Information Center

    Becker, Becky

    2006-01-01

    This article presents a conversation with Agnes Wilcox, Executive Director of Prison Performing Arts in St. Louis, Missouri, about Prison Performing Arts. Although the average person might balk at the notion of interacting with prison inmates, finding it intimidating, worrisome, or self-sacrificial, for Wilcox, Prison Performing Arts is a…

  19. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  20. The search for red AGN with 2MASS

    NASA Technical Reports Server (NTRS)

    Cutri, R. M.; Nelson, B. O.; Kirkpatrick, J. D.; Huchra, J. P.; Smith, P. S.

    2001-01-01

    We present the results of a simple, highly efficient 2MASS color-based survey that has already discovered 140 previously unknown red AGN and QSOs. These objects are near-infrared-bright and relatively nearby; the media redshift of the sample is z=0.25, and all but two have z<0.7.

  1. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    PubMed

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  2. Time Series Analysis of the UV Flickering in AGN

    NASA Technical Reports Server (NTRS)

    Robinson, Edward L.; Welsh, William F.

    2001-01-01

    Many active galactic nuclei (AGN) exhibit large-amplitude luminosity fluctuations on short timescales. The fluctuations lead to a profound conclusion: The size of the emitting region is remarkably small. This observational fact is one of the pillars supporting the AGN paradigm: Prodigious amounts of gravitational potential energy are liberated in an accretion disk around a supermassive black hole. The goals of the research were to extract from the IUE Archive the very best observational characterizations of AGN flickering, and to use these to test and develop models for AGN variability. We hoped to answer these specific questions: 1) What does the intrinsic flickering continuum spectrum look like? 2) What do the intrinsic flickering emission-line profiles look like? 3) What is the power spectrum of the flickering? 4) What is the wavelength dependence of the power spectrum? 5) Is the flickering spectrum timescale dependent? and 6) What do the high-order cross correlation functions look like? A short summary of the papers produced by this research is presented.

  3. The Role of Environment in Fueling Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Hicks, Erin Kathleen Strobel

    2015-08-01

    We consider the role of environment in fueling of Seyfert AGN through a combined analysis of Hubble Space Telescope images and integral field spectroscopy of the ISM in a sample of local AGN. Using visible and near-infrared Hubble Space Telescope images and color maps of over a 100 galaxies we determine the distribution of the cold ISM, as traced by dust. We also measure the two-dimensional distribution and kinematics of the molecular gas, traced by H2 1-0 S(1) emission at 2.12 μm, down to scales of tens of parsecs using OSIRIS at Keck and SINFONI on VLT for a subset of approximately 20 of these galaxies. Informed by these kinematic measurements of the ISM we classify the nuclear dust morphologies of the full sample of galaxies and interpret the significance of these morphologies in terms of inflow. Our relatively small precursor sample (Hicks et al. 2009, Davies et al. 2014) hinted at a connection between the host galaxy environment and the primary mechanism driving gas inward such that fueling of AGN in isolated galaxies occurs primarily via secular processes (e.g. nuclear spirals) and galaxies in groups of 10-15 members via accretion of external gas. Using our expanded sample that now has the ability to reveal statistically significant trends we explore the potential influence of the galaxy environment on the fueling of Seyfert AGN.

  4. A degeneracy in DRW modelling of AGN light curves

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-07-01

    Individual light curves of active galactic nuclei (AGNs) are nowadays successfully modelled with the damped random walk (DRW) stochastic process, characterized by the power exponential covariance matrix of the signal, with the power β = 1. By Monte Carlo simulation means, we generate mock AGN light curves described by non-DRW stochastic processes (0.5 ≤ β ≤ 1.5 and β ≠ 1) and show they can be successfully and well modelled as a single DRW process, obtaining comparable goodness of fits. A good DRW fit, in fact, may not mean that DRW is the true underlying process leading to variability and it cannot be used as a proof for it. When comparing the input (non-DRW) and measured (DRW) process parameters, the recovered time-scale (amplitude) increases (decreases) with the increasing input β. In practice, this means that the recovered DRW parameters may lead to biased (or even non-existing) correlations of the variability and physical parameters of AGNs if the true AGN variability is caused by non-DRW stochastic processes. The proper way of identifying the processes leading to variability are model-independent structure functions and/or power spectral densities and then using such information on the covariance matrix of the signal in light-curve modelling.

  5. Radio-AGN feedback: when the little ones were monsters

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Röttgering, H. J. A.

    2015-06-01

    We present a study of the evolution of the fraction of radio-loud active galactic nuclei (AGN) as a function of their host stellar mass. We make use of two samples of radio galaxies: one in the local Universe, 0.01 < z ≤ 0.3, using a combined SDSS-NVSS (Sloan Digital Sky Survey NRAO Very Large Array Sky Survey) sample and the other at higher redshifts, 0.5 < z ≤ 2, constructed from the VLA-COSMOS_DEEP Radio Survey at 1.4 GHz and a Ks-selected catalogue of the COSMOS/UltraVISTA field. We observe an increase of more than an order of magnitude in the fraction of lower mass galaxies (M* < 1010.75 M⊙) which host radio-loud AGN with radio powers P1.4 GHz > 1024 W Hz-1 at z ˜ 1-2 while the radio-loud fraction for higher mass galaxies (M* > 1011.25 M⊙) remains the same. We argue that this increase is driven largely by the increase in cold or radiative mode accretion with increasing cold gas supply at earlier epochs. The increasing population of low-mass radio-loud AGN can thus explain the upturn in the radio luminosity function at high redshift which is important for understanding the impact of AGN feedback in galaxy evolution.

  6. The star formation and AGN luminosity relation: predictions from a semi-analytical model

    NASA Astrophysics Data System (ADS)

    Gutcke, Thales A.; Fanidakis, Nikos; Macciò, Andrea V.; Lacey, Cedric

    2015-08-01

    In a universe where active galactic nucleus (AGN) feedback regulates star formation in massive galaxies, a strong correlation between these two quantities is expected. If the gas causing star formation is also responsible for feeding the central black hole, then a positive correlation is expected. If powerful AGNs are responsible for the star formation quenching, then a negative correlation is expected. Observations so far have mainly found a mild correlation or no correlation at all [i.e. a flat relation between star formation rate (SFR) and AGN luminosity], raising questions about the whole paradigm of `AGN feedback'. In this paper, we report the predictions of the GALFORM semi-analytical model, which has a very strong coupling between AGN activity and quenching of star formation. The predicted SFR-AGN luminosity correlation appears negative in the low AGN luminosity regime, where AGN feedback acts, but becomes strongly positive in the regime of the brightest AGN. Our predictions reproduce reasonably well recent observations by Rosario et al., yet there is some discrepancy in the normalization of the correlation at low luminosities and high redshifts. Though this regime could be strongly influenced by observational biases, we argue that the disagreement could be ascribed to the fact that GALFORM neglects AGN variability effects. Interestingly, the galaxies that dominate the regime where the observations imply a weak correlation are massive early-type galaxies that are subject to AGN feedback. Nevertheless, these galaxies retain high enough molecular hydrogen contents to maintain relatively high SFRs and strong infrared emission.

  7. A radio view of high-energy emitting AGNs

    NASA Astrophysics Data System (ADS)

    Schulz, Robert Frank

    2016-07-01

    Active galactic nuclei (AGNs) are among the most energetic objects in the Universe. These galaxies that are dominated in part or even throughout the electromagnetic spectrum by emission from their central, compact region. AGNs are extensively studied by multi-wavelength observations. In the standard picture, the main driver of an AGN is a supermassive black hole (SMBH) in its centre that is surrounded by an accretion disk. Perpendicular to the disk, in the vicinity of highly magnetized SMBH relativistic outflows of plasma, so-called jets, can form on either side that can reach far beyond the host galaxy. Only about 10% of all AGNs are dominated by emission from these jets due to relativistic beaming effects and these so-called blazars dominate the extragalactic gamma-ray sky. It is commonly accepted that the low-energy emission (radio to UV/X-ray) is due to synchrotron emission from the jet. The high-energy emission is considered to stem from inverse-Compton scattering of photons on the jet particles, but different sources for these photons are discussed (internal or external to the AGN) and other models for the high-energy emission have also been proposed. The nature of the high-energy emission is strongly linked to the location of the emission region in the jet which requires a detailed understanding of the formation and evolution of jets. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-pc scales, close to their formation region. In this thesis, I focus on the properties of three different AGNs, IC 310, PKS2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large monitoring programmes MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) and

  8. Type 1 AGN at low z- I. Emission properties

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Laor, Ari

    2012-06-01

    We analyse the emission properties of a new sample of 3579 type 1 AGN, selected from Sloan Digital Sky Survey (SDSS) Data Release 7 based on the detection of broad Hα emission. The sample extends over a broad Hα luminosity LbHα of ? and a broad Hα full width at half-maximum (FWHM) of ?, which covers the range of black hole mass 106 < MBH/M⊙ < 109.5 and luminosity in Eddington units 10-3 < L/LEdd < 1. We combine ROSAT, GALEX and 2MASS observations to form the spectral energy distribution (SED) from 2.2 ?m to 2 keV. We find the following. (1) The distribution of the Hα FWHM values is independent of luminosity. (2) The observed mean optical-ultraviolet (optical-UV) SED is well matched by a fixed-shape SED of luminous quasars, which scales linearly with LbHα, and a host galaxy contribution. (3) The host galaxy r-band (fibre) luminosity function follows well the luminosity function of inactive non-emission-line galaxies (NEGs), consistent with a fixed fraction of ˜3 per cent of NEGs hosting an AGN, regardless of the host luminosity. (4) The hosts of lower luminosity AGN have a mean z-band luminosity and u-z colour which are identical to NEGs with the same redshift distribution. With increasing LbHα the AGN hosts become bluer and less luminous than NEGs. The implied increasing star formation rate with LbHα is consistent with the relation for SDSS type 2 AGN of similar bolometric luminosity. (5) The optical-UV SED of the more luminous AGN shows a small dispersion, consistent with dust reddening of a blue SED, as expected for thermal thin accretion disc emission. (6) There is a rather tight relation between ? and LbHα, which provides a useful probe for unobscured (true) type 2 AGN. (7) The primary parameter that drives the X-ray to UV emission ratio is luminosity, rather than MBH or L/LEdd.

  9. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  10. An Author as a Counter-Storyteller: Applying Critical Race Theory to a "Coretta Scott King Award Book"

    ERIC Educational Resources Information Center

    Brooks, Wanda

    2009-01-01

    This article analyzes the 2002 Coretta Scott King Award book by Mildred Taylor entitled "The Land". The novel and its author are situated within a tradition of historical fiction written by and about African Americans. I then offer an analysis that utilizes Critical Race Theory as an interpretive tool for examining the ways Taylor embeds meanings…

  11. The McAndrews Leadership Lecture: February 2015, by Dr Scott Haldeman. Challenges of the Past, Challenges of the Present.

    PubMed

    Haldeman, Scott; McAndrews, George P; Goertz, Christine; Sportelli, Louis; Hamm, Anthony W; Johnson, Claire

    2015-12-01

    The McAndrews Leadership Lecture was developed by the American Chiropractic Association to honor the legacy of Jerome F. McAndrews, DC, and George P. McAndrews, JD, and their contributions to the chiropractic profession. This article is a transcription of the presentation made by Dr Scott Haldeman on February 28, 2015, in Washington, DC, at the National Chiropractic Leadership Conference.

  12. Genome Sequence of Listeria monocytogenes Scott A, a Clinical Isolate from a Food-Borne Listeriosis Outbreak▿

    PubMed Central

    Briers, Yves; Klumpp, Jochen; Schuppler, Markus; Loessner, Martin J.

    2011-01-01

    Listeria monocytogenes is an opportunistic food-borne pathogen and the causative agent of listeriosis in animals and humans. We present the genome sequence of Listeria monocytogenes Scott A, a widely distributed and frequently used serovar 4b clinical isolate from the 1983 listeriosis outbreak in Massachusetts. PMID:21685277

  13. A Brief Historical Introduction to Solitons and the Inverse Scattering Transform--A Vision of Scott Russell

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2007-01-01

    This paper deals with a brief introduction to major remarkable discoveries of the "soliton" and the "inverse scattering transform" in the 1960s. The discovery of the soliton (or the solitary waves) began with the famous physical experiments of the Scottish Engineer and Naval Architect John Scott Russell in the Glasgow-Edinburgh Canal in 1834. The…

  14. An Unintentional System of Gaps: A Phenomenological Reading of Scott O'Dell's "Island of the Blue Dolphins."

    ERIC Educational Resources Information Center

    Tarr, C. Anita

    1997-01-01

    Argues that, in "Island of the Blue Dolphins," Scott O'Dell offers a skeleton main character (Karana). Contends that O'Dell has sketched Karana as a stereotype and that readers complete her characterization, filling out the skeleton by perpetuating the stereotypes. Points out this trading of stereotype for true character development in his other…

  15. Comparative Effectiveness of "Scott Foresman Science": A Report of a Randomized Experiment in Federal Way Public Schools. Research Report

    ERIC Educational Resources Information Center

    Miller, Gloria I.; Jaciw, Andrew; Wei, Xin

    2007-01-01

    Pearson Education contracted with Empirical Education Inc. to conduct five randomized experiments to determine the effectiveness of its "Scott Foresman Science" ("SFScience") curriculum and associated materials. This report addresses the experiment in Federal Way Public Schools in Washington State. The primary purpose of this research is to…

  16. An Analysis of Two Beginning Reading Programs: Scott Foresman's "Reading Unlimited" and Pittsburgh LRDC's "New Primary Grades Reading Systems."

    ERIC Educational Resources Information Center

    Popp, Helen Mitchell

    The two reading programs discussed in this paper, "Reading Unlimited" (RU) published by Scott Foresman and "New Primary Grades Reading Systems" (RS) by the University of Pittsburgh Learning Research and Development Center, provide maximal contrasts in materials and teaching strategies. The instructional strategies in RU are analytic and inductive,…

  17. The Readability Levels of the 1981 Scott, Foresman and Co. Basal Texts and Their Comparison with the 1978 Edition.

    ERIC Educational Resources Information Center

    Ackerman, Bonnie

    Fry's Readability Graph was used to determine the readability levels of the 1981 Scott, Foresman and Co. basal textbook series for grades one through six. The readability levels were then compared to those established for the 1978 edition. In the 1981 edition, all stories were handscored. Poems, skill lessons, and plays were not examined in order…

  18. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  19. Host Galaxy Properties of BAT Hard X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa

    2010-07-01

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of 246 AGN unaffected by galactic or circumnuclear absorption [1]. Most of the sources in the survey are bright, Seyfert like AGN's with median redshift of 0.03. Of the AGN, 43% are obscured, type II AGN. We obtained 17 nights of imaging of 90 host galaxies of these AGN in 2008 at the Kitt Peak 2.1 m telescope in the SDSS ugriz filters. For the broad line sources we subtracted the AGN contribution using GALFIT. By comparing our sample of AGN to inactive galaxies in the SDSS, we find that AGN are found in the most massive galaxies and are bluer in color than inactive galaxies of comparable stellar mass. We also find a correlation between the point source optical light and hard X-ray luminosity.

  20. Tyramine antagonistic properties of AGN 1135, an irreversible inhibitor of monoamine oxidase type B.

    PubMed

    Finberg, J P; Tenne, M; Youdim, M B

    1981-05-01

    1 The effects of the irreversible monoamine oxidase (MAO) inhibitors, AGN 1133, AGN 1135 and (-)-deprenyl, on tyramine and noradrenaline responses and uptake of [3H]-metaraminol were investigated in the isolated vas deferens of the rat. Uptake of [3H]-metaraminol and [3H]-octopamine was compared in mouse vas deferens. The modification of tyramine and noradrenaline-induced pressor responses by AGN 1133 and AGN 1135 was examined in anaesthetized rats and cats. 2 AGN 1133 (7.5 x 10(-6)M) greatly potentiated responses to tyramine in the rat isolated vas deferens. Both AGN 1135 and (-)-deprenyl inhibited tyramine responses selectively at concentrations above 10(-5)M (which caused almost complete inhibition of MAO types A and B) but tyramine responses were potentiated on washing out the inhibitors. 3 AGN 1135 (10(-4)M) and (-)-deprenyl (10-5)M) inhibited [3H]-metaraminol uptake by about 20% in rat and mouse vas deferens; neither inhibitor affected [3H]-octopamine uptake in mouse vas deferens. Desmethylimipramine (10(-6)M) inhibited amine uptake by more than 70%. 4 AGN 1133 (1.5 mg/kg) potentiated pressor responses to tyramine in rats and cats whereas AGN 1135 (1.5 mg/kg) did not. 5 AGN 1135 possesses tyramine antagonistic activity which is qualitatively similar to that of (-)-deprenyl but which cannot satisfactorily be explained by inhibition of neuronal or granula amine uptake.

  1. AGN feedback in the nucleus of M 51

    NASA Astrophysics Data System (ADS)

    Querejeta, M.; Schinnerer, E.; García-Burillo, S.; Bigiel, F.; Blanc, G. A.; Colombo, D.; Hughes, A.; Kreckel, K.; Leroy, A. K.; Meidt, S. E.; Meier, D. S.; Pety, J.; Sliwa, K.

    2016-10-01

    AGN feedback is invoked as one of the most relevant mechanisms that shape the evolution of galaxies. Our goal is to understand the interplay between AGN feedback and the interstellar medium in M 51, a nearby spiral galaxy with a modest AGN and a kpc-scale radio jet expanding through the disc of the galaxy. For this purpose, we combine molecular gas observations in the CO(1-0) and HCN(1-0) lines from the Plateau de Bure interferometer with archival radio, X-ray, and optical data. We show that there is a significant scarcity of CO emission in the ionisation cone, while molecular gas emission tends to accumulate towards the edges of the cone. The distribution and kinematics of CO and HCN line emission reveal AGN feedback effects out to r ~ 500 pc, covering the whole extent of the radio jet, with complex kinematics in the molecular gas which displays strong local variations. We propose that this is the result of the almost coplanar jet pushing on molecular gas in different directions as it expands; the effects are more pronounced in HCN than in CO emission, probably as the result of radiative shocks. Following previous interpretation of the redshifted molecular line in the central 5'' as caused by a molecular outflow, we estimate the outflow rates to be ṀH2 ~ 0.9 M⊙/ yr and Ṁdense ~ 0.6 M⊙/ yr, which are comparable to the molecular inflow rates (~1 M⊙/ yr); gas inflow and AGN feedback could be mutually regulated processes. The agreement with findings in other nearby radio galaxies suggests that this is not an isolated case, and is probably the paradigm of AGN feedback through radio jets, at least for galaxies hosting low-luminosity active nuclei. The reduced HCN(1-0) datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A118

  2. Studies on the presence and spatial distribution of anthropogenic pollutants in the glacial basin of Scott Glacier in the face of climate change (Fiord Bellsund, Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Lehmann, Sara; Kociuba, Waldemar; Franczak, Łukasz; Gajek, Grzegorz; Łeczyński, Leszek; Kozak, Katarzyna; Szopińska, Małgorzata; Ruman, Marek; Polkowska, Żaneta

    2014-10-01

    The study area covered the NW part of the Wedel Jarlsberg Land (SW part of the Svalbard Archipelago). The primary study object was the catchment of the Scott Glacier in the vicinity of the Research Station of of Maria Curie-Skłodowska University in Lublin - Calypsobyen. The Scott River catchment (of glacial hydrological regime) has an area of approximately 10 km2, 40% of which is occupied by the valley Scott Glacier in the phase of strong recession. The present study concerns the determination of physical and chemical parameters (pH, conductivity, TOC) and concentrations of pollutants (phenols, aldehydes).

  3. THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNs AND AGN OUTFLOWS

    SciTech Connect

    Müller-Sánchez, F.; Comerford, J. M.; Nevin, R.; Barrows, R. S.; Cooper, M. C.; Greene, J. E.

    2015-11-10

    We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18.

  4. Quenching Star Formation: Can AGN Do the Trick?

    NASA Astrophysics Data System (ADS)

    Gabor, Jared M.; Davé, Romeel

    2009-12-01

    We post-process galaxy star formation histories in cosmological hydrodynamics simulations to test quenching mechanisms associated with AGN. By comparing simulation results to color-magnitude diagrams and luminosity functions of SDSS galaxies, we examine whether ``quasar mode'' or ``radio mode'' AGN feedback can yield a realistic red sequence. Both cases yield red sequences distinct from the blue cloud, decent matches to the luminosity function, and galaxies that are too blue by about 0.1 magnitudes in g-r. Our merger-based prescription for quasar mode feedback, however, yields a red sequence build-up inconsistent with observations: the luminosity function lacks a characteristic knee, and the brightest galaxies include a small number of young stars.

  5. The Multiwavelength AGN Population and the X-ray Background

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, Claudia M.; Schawinski, Kevin; Simmons, Brooke D.; Natarajan, Priyamvada; Volonteri, Marta

    2014-07-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (L X ~ 1044 erg/s) sources (Seyfert-type AGN), at z~ 0.5-1 and in heavily obscured but Compton-thin, NH ~ 1023cm-2, systems. However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We further investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~ 0 to z~ 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth. Finally, we constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. We estimate an accreted mass density <1000 M⊙Mpc-3 at z~ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations.

  6. The AGN Population and the Cosmic X-ray Background

    NASA Astrophysics Data System (ADS)

    Treister, Ezequiel; Urry, C. Meg; Schawinski, Kevin

    2015-08-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (Lx~1044 erg/s) sources (Seyfert-type AGN), at z~0.5-1 and in heavily obscured but Compton-thin, NH~1023 cm-2, systems.However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. Using a combination of X-ray stacking and multi wavelength selection techniques we constrain the amount of black hole accretion as a function of cosmic history, from z~0 to z~6. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations.We finally investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~0 to z~3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth.

  7. Observational aspects of AGN jets at high energy

    NASA Astrophysics Data System (ADS)

    Kataoka, Jun

    2015-03-01

    For the last two decades, significant and dramatic progress has been made in understanding astrophysical jet sources, particularly in the X-ray and gamma-ray energy bands. For example, the Chandra X-ray observatory reveals a number of AGN jets extending from kpc to Mpc scales. More recently, the Fermi Gamma-ray Space Telescopes launched in 2008 started monitoring the gamma-ray sky with excellent sensitivity of about ten times greater than that of EGRET onboard CGRO, and has detected more than 2,000 sources (mostly AGNs) as of 2014. Moreover, Fermi-LAT has discovered gamma-ray emissions not only from blazars but from a dozen radio galaxies not previously known to emit gamma-rays. Closer to home, the Fermi-bubbles were discovered to extend 50 degrees above and below the Galactic center. These large scale diffuse gamma-ray structures are similar in structure to AGN lobes such as those seen in Cen A and provide evidence for past activity in our Galactic center. In this review, I will first summarize recent highlights of large scale jets in radio galaxies, specifically resolved by the Chandra X-ray observatory. Next I will move on to the gamma-ray sky to present some highlights from Fermi-LAT observations of ``misaligned'' blazars, namely radio galaxies. I will discuss a unification scheme connecting blazars and misaligned radio galaxies. In the last part, I will also briefly comment on recent multiband observations of the Fermi-bubble and possible impacts on the AGN jet physics in the near future.

  8. Why and when is internally driven AGN feedback energetically favoured?

    NASA Astrophysics Data System (ADS)

    Pope, Edward C. D.

    2012-11-01

    Active galactic nucleus (AGN) outflows are the heat given up when gas in a galaxy evolves towards thermodynamic equilibrium. Indeed, while AGN feedback regulates the growth of massive galaxies, its origin can be understood as the spontaneous thermodynamic process which ensures that the (Gibbs) free energy of the system always decreases, enabling the galaxy to reach a more energetically favourable state. In particular, it is shown that feedback heating processes will be favoured whenever the hot atmosphere of a galaxy would effectively gain energy as a result of cooling. For example, as the hot atmosphere of a galaxy cools and contracts, the work done by gravity will be thermalized, with a fraction of the gas also being captured by stars and the supermassive black hole at the centre of the galaxy. If this gain of energy exceeds the loss of energy that occurs when cooling gas drops out of the atmosphere, the Gibbs free energy of the system would increase overall. Since this is energetically unfavourable, feedback heating is initiated which acts to reduce the net cooling rate of the atmosphere, thereby preventing any build-up of energy. The Gibbs free energy can also decrease in the absence of feedback heating, but only if the loss of energy due to mass dropping out of the atmosphere exceeds the gains of energy described above. Therefore, to ensure that the Gibbs free energy always decreases, a galaxy will necessarily flip between these two states, experiencing episodes of heating and cooling. Due to the close long-term balance between heating and cooling, the gas in a galaxy will evolve quasistatically towards thermodynamic equilibrium, which has the observable appearance of galaxy growth being regulated by AGN feedback. The same mechanism also provides an explanation for why strong AGN feedback occurs more frequently in cool-core galaxy clusters than in non-cool-core clusters.

  9. HST Imaging of Giant Ionized Clouds Around Fading AGN

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Maksym, W. P.; Bennert, V.; Schawinski, K.; Lintott, C. J.; Chojnowski, D.

    2013-01-01

    We present HST images in [O III], Hα, and adjacent continuum bands, for 7 AGN surrounding by photoionized clouds extending 10-35 kpc from the nuclei, whose energy budgets suggest substantial fading over timescales 30,000-100,000 years. These targets were found as a result of the efforts of nearly 200 Galaxy Zoo volunteers in both targeted and serendipitous searches, aimed at finding objects similar to Hanny's Voorwerp near IC 2497. The images reveal a fascinating variety of emission-line structures. Sub-kpc loops near the nuclei are frequent. A larger 5-kpc ring of emission appears near one AGN, not obviously connected to the gas near the nucleus. In NGC 5972, two systems of gas and dust appear, in a pattern suggesting that they result from a merger; there is a gap in line emission around the nucleus which would fit with a rapid cutoff in ionizing luminosity. Some of these clouds have their emission concentrated in very narrow filaments kiloparsecs in length, which might suggest a role for extensive magnetic fields. As in Hanny's Voorwerp, we see little spatial correlation between ionization parameter and Hα surface brightness, indicating that there is substantial density structure on yet-unresolved scales. The two AGN with large double radio sources show extended line emission perpendicular to the radio axis, violating a common pattern, as if the AGN axis had recently and rapidly precessed by ~90 degrees. This, plus the common signs of recent interaction in the hosts, informs our speculations on what might drive a rapid switch in the mode of energy output from accretion into the black holes in these objects, from radiative to kinetic, including the possibility that a special epoch near the merger of a binary black hole might be involved. This work has been supported by NASA through STSCI grant GO-12525.01.

  10. Very high energy gamma ray observations of southern hemisphere AGNs

    NASA Astrophysics Data System (ADS)

    Chadwick, P. M.; Lyons, K.; McComb, T. J. L.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Shaw, S. E.; Turver, K. E.

    2001-12-01

    A range of AGNs visible from the Southern hemisphere has been observed with the University of Durham Mark 6 very high energy gamma ray telescope. Results of observations of 1ES 0323+022, PKS 0829+046, 1ES 1101-232, Cen A, PKS 1514-24, RKJ 10578-275, 1ES 2316-423, PKS 2005-489 and PKS 0548-322 are presented. .

  11. IRAS observations of AGN candidates at low flux levels

    NASA Technical Reports Server (NTRS)

    Degrijp, Marinus H. K.; Keel, William C.; Miley, George K.

    1987-01-01

    IRAS additional observations were used to obtain a sample of point sources at much fainter flux levels than hitherto available through the IRAS Point Source Catalogue. This sample is being used to compile an incomplete but representative catalogue of faint IRAS candidate Active Galactic Nuclei (AGNs) and to study the evolution of the infrared bright galaxies. Ground based follow up observations (optical spectroscopy) are mainly hampered by identification confusion.

  12. Cadenced IRAC Monitoring of Infrared-Variable AGNs, Part II

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew; Fouesneau, Morgan; Hora, Joseph; Krick, Jessica; Smith, Howard; Surace, Jason

    2008-03-01

    We have analyzed IRAC imaging data from all 97 Spitzer visits to a very well-studied field, the IRAC Dark Calibration Field (IRAC-CF) near the north ecliptic pole. With this extensive dataset we have already identified a unique sample of 30 IR-variable galaxies which we are now working to characterize with respect to variability amplitudes and timescales, panchromatic SEDs, and host morphologies, among other quantities. Unfortunately, the continual change in spacecraft roll angle means that our sources are typically observed for at most six months at a time by each IRAC FOV in succession -- in other words, the visibility windows are exactly out of phase. Thus the existing data, despite the fact that they extend over more than four years, present large, unavoidable gaps that frustrate the time-delay analysis we wish to perform on exactly the timescales known to be common in active galaxies. This has only changed beginning in 2007 July: since that time cadenced IRAC observations have been carried out in synchrony with the IRAC-CF dark-calibration observations as part of our approved Cycle-4 program (PID 40553). Here we are proposing to continue this successful AGN monitoring campaign until the end of the cryogenic mission. The resulting timelines (covering 1500 days thus far and expected to run ultimately to some 2200+ days), will be a unique legacy of the Spitzer mission. This dataset, especially for the sizable, unbiased AGN sample we now have, holds unique promise for measuring the colors and temperatures of IR-varying AGN, and will have much to say about the underlying physical models of the infrared AGN emission. Accordingly we ask for just 8 h to gather IRAC photometry in the temporal gaps that would otherwise accrue in Cycle 5.

  13. Type 1 AGN at low z. I. Emission properties

    NASA Astrophysics Data System (ADS)

    Stern, J.; Laor, A.

    2012-07-01

    We analyze the emission properties of a new sample of 3 596 type 1 AGN, selected from the SDSS DR7 based on the detection of broad Hα emission. The sample extends over a broad Hα luminosity LbHα of 1040-1044 erg s-1 and a broad Hα FWHM of 1 000-25 000 km s-1, which covers the range of black hole mass 106 < MBH/Modot < 109.5 and luminosity in Eddington units 10-3 < L/LEdd < 1. We combine ROSAT, GALEX and 2MASS observations to form the SED from 2.2 μm to 2 keV. We find the following: 1. The distribution of the Hα FWHM values is independent of luminosity. 2. The observed mean optical-UV SED is well matched by a fixed shape SED of luminous quasars, which scales linearly with LbHα, and a host galaxy contribution. 3. The host galaxy r-band (fibre) luminosity function follows well the luminosity function of inactive non-emission line galaxies (NEG), consistent with a fixed fraction of ~ 3% of NEG hosting an AGN, regardless of the host luminosity. 4. The optical-UV SED of the more luminous AGN shows a small dispersion, consistent with dust reddening of a blue SED, as expected for thermal thin accretion disc emission. 5. There is a rather tight relation of νLν(2 keV) and LbHα, which provides a useful probe for unobscured (true) type 2 AGN.

  14. Broadband, radio spectro-polarimetric observations of radiative-mode and jet-mode AGN

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Shane P.; Purcell, C. R.; Farnes, J. S.; Sun, X. H.; Anderson, C. S.; Gaensler, B. M.

    2016-08-01

    Observations of polarised synchrotron emission from radio-loud AGN, along with the associated Faraday rotation, provides a highly sensitive probe of magneto-ionic material in AGN environments. Here we present the results from our investigation of the environments of two broad classes of radio-loud AGN (radiative-mode & jet mode) using broadband radio spectro-polarimetry, from 1 to 10 GHz. By spectrally resolving the spatial unresolved polarised emission, we directly probe the different magneto-ionic environments of radiative-mode and jet-mode AGN. We also present results for the dependence of the polarisation and Faraday rotation properties of the two AGN types based on the number of polarised emission components, the spectral index, and the intrinsic magnetic field structure. Finally, we outline the prospects for future Faraday rotation studies of radio-loud AGN with the Australian SKA Pathfinder telescope, and present some preliminary results from the early science observations.

  15. Triggering star formation by both radiative and mechanical AGN feedback

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gan, Zhao-Ming; Xie, Fu-Guo

    2013-08-01

    We perform two dimensional hydrodynamic numerical simulations to study the positive active galactic nucleus (AGN) feedback which triggers, rather than suppresses, star formation. Recently, it was shown by Nayakshin et al. and Ishibashi et al. that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure, respectively. Mass outflow is ubiquitous in this astrophysical context, and radiation pressure is also important if the AGN is luminous. For the first time in this subject, we incorporate both mass outflow feedback and radiative feedback into our model. Consequently, the ISM is shocked into shells by the AGN feedback, and these shells soon fragment into clumps and filaments because of Rayleigh-Taylor and thermal instabilities. We have two major findings: (1) the star formation rate can indeed be very large in the clumps and filaments. However, the resultant star formation rate density is too large compared with previous works, which is mainly because we ignore the fact that most of the stars that are formed would be disrupted when they move away from the galactic center. (2) Although radiation pressure feedback has a limited effect, when mass outflow feedback is also included, they reinforce each other. Specifically, in the gas-poor case, mass outflow is always the dominant contributor to feedback.

  16. ALMA and SINFONI high redshift observations to test AGN feedback

    NASA Astrophysics Data System (ADS)

    Kakkad, D.; Mainieri, V.; Padovani, P.; Cresci, G.; Husemann, B.; Carniani, S.; Brusa, M.; Lamastra, A.; Lanzuisi, G.; Feruglio, C.; Piconcelli, E.; Schramm, M.

    2016-08-01

    The epoch between redshift of 1-3 has become the prime focus of many galaxy evolutionary studies as the accretion rates of super massive black holes at the galactic center and the star formation rates of their hosts peaked around this period, pointing to their co-evolution throughout cosmic history. We will present two different approaches to study the impact of high redshift AGN (z~1.5) on the host galaxy: a) CO(2-1) observations from ALMA in a sample of "main sequence" AGNs to compare the star formation efficiency and gas fractions in active and inactive galaxies. b) SINFONI-IFU observations of a representative sample of high redshift quasars for which we observe intermediate to high velocity outflows using [OIII]5007 line diagnostics. These outflows are extended up-to kiloparsec scales and have an asymmetric geometry. With these approaches, one is able to test the effect of AGN feedback on the molecular as well as the ionized gas content.

  17. Cosmic Ray Generation by Massive Binary Black Hole in AGN

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav I.

    A model of nonstationary giant bow shocks produced by a supersonic orbital motion of a gravitationally bound massive binary black hole in the dense and highly inhomegeneous environment of the central Broad line Region (BLR) of AGN is proposed. The environment necessary for shocks generation is provided by numerous short-living clouds of dense plasma which are continuously reproduced by destructive collissions of fast moving stars in a very compact central stellar cluster of AGN. Some part of the gravitational energy of supersonically orbiting massive binary black hole transforms into the shock wave and then into the broad -range electromagnetic radiation up to the high -energy gamma radiation and the energetic cosmic ray particles. The orbit of a binary is evolutionary contracting due to a frictional drag in a dense plasma until the gravitational radiation becomes more influential. The model provide also the suitable conditions for the acceleration of cosmic ray protons up to the ultra-high energies under the realistic parameters of a massive binary black hole and the BLR in AGN.

  18. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  19. STS-103 Pilot Scott Kelly and MS John Grunsfeld try on oxygen masks

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  20. A model realizing the Harrison-Perkins-Scott lepton mixing matrix

    NASA Astrophysics Data System (ADS)

    Grimus, Walter; Lavoura, Luís

    2006-01-01

    We present a supersymmetric model in which the lepton mixing matrix U obeys, at the seesaw scale, the Harrison-Perkins-Scott Ansatz — vanishing Ue3, maximal atmospheric neutrino mixing, and sin 2θodot = 1/3 (θodot is the solar mixing angle). The model features a permutation symmetry S3 among the three lepton multiplets of each type — left-handed doublets, right-handed charged leptons, and right-handed neutrinos — and among three Higgs doublets and three zero-hypercharge scalar singlets; a fourth right-handed neutrino, a fourth Higgs doublet, and a fourth scalar singlet are invariant under S3. In addition, the model has seven Bbb Z2 symmetries, out of which six do not commute with S3. Supersymmetry is needed in order to eliminate some quartic terms from the scalar potential, quartic terms which would make impossible to obtain the required vacuum expectation values of the three Higgs doublets and three scalar singlets. The Yukawa couplings to the charged leptons are flavour diagonal, so that flavour-changing neutral Yukawa interactions only arise at loop level.

  1. F-100A with nose through hangar wall following Scott Crossfield's emergency landing

    NASA Technical Reports Server (NTRS)

    1954-01-01

    A NACA High-Speed Flight Station hangar wall meets the nose of a North American F-100A Super Sabre airplane on 8 September 1954. On the first NACA research flight of airplane #52-5778, pilot Scott Crossfield had to make a powerless 'deadstick' landing following an engine fire warning. This was something North American's own test pilots doubted could be done, for the early F-100 lacked flaps and landed 'hot as hell.' Crossfield followed up the flawless approach and landing by coasting off the lakebed, up the ramp, and then through the front door of the NACA hangar, frantically trying to stop the F-100A, which had used up its emergency brake power. Crossfield missed the NACA X fleet, but crunched the nose of the aircraft through the hangar's side wall. It is reported that Chuck Yeager then proclaimed that while the sonic wall had been his, the hangar wall was Crossfield's! The hangar wall and the F-100A were repaired, and the airplane flew again.

  2. Observations of chlorine monoxide over Scott Base, Antarctica, during the ozone hole, 1996-2005

    USGS Publications Warehouse

    Connor, Brian; Solomon, Philip; Barrett, James; Mooney, Thomas; Parrish, Alan

    2007-01-01

    We report observations of chlorine monoxide, ClO, in the lower stratosphere, made from Scott Base (77.85º S, 166.77º E) in springtime during each year, 1996-2005. The ClO amounts in the atmosphere are retrieved from remote measurements of microwave emission spectra. ClO column densities of up to about 2.5 × 1015 cm-2 are recorded during September, when chlorine is present in chemically active forms due to reactions on the surface of Polar Stratospheric Cloud (PSC) particles. Maximum mixing ratios of ClO are approximately 2 ppbv. The annual average of ClO column density during the activation period is anticorrelated with similar averages of ozone column measured at nearby Arrival Heights, with correlation coefficient of –0.81, and with averages of ozone mass integrated over the entire polar region, with similar correlation coefficients. There was a substantial decrease in ClO amounts during 2002-2004. There has been no systematic change in the timing of chlorine deactivation attributable to secular change in the Antarctic vortex

  3. No Absolutism Here: Harm Predicts Moral Judgment 30× Better Than Disgust-Commentary on Scott, Inbar, & Rozin (2016).

    PubMed

    Gray, Kurt; Schein, Chelsea

    2016-05-01

    Moral absolutism is the idea that people's moral judgments are insensitive to considerations of harm. Scott, Inbar, and Rozin (2016, this issue) claim that most moral opponents to genetically modified organisms are absolutely opposed-motivated by disgust and not harm. Yet there is no evidence for moral absolutism in their data. Perceived risk/harm is the most significant predictor of moral judgments for "absolutists," accounting for 30 times more variance than disgust. Reanalyses suggest that disgust is not even a significant predictor of the moral judgments of absolutists once accounting for perceived harm and anger. Instead of revealing actual moral absolutism, Scott et al. find only empty absolutism: hypothetical, forecasted, self-reported moral absolutism. Strikingly, the moral judgments of so-called absolutists are somewhat more sensitive to consequentialist concerns than those of nonabsolutists. Mediation reanalyses reveal that moral judgments are most proximally predicted by harm and not disgust, consistent with dyadic morality.

  4. No Absolutism Here: Harm Predicts Moral Judgment 30× Better Than Disgust-Commentary on Scott, Inbar, & Rozin (2016).

    PubMed

    Gray, Kurt; Schein, Chelsea

    2016-05-01

    Moral absolutism is the idea that people's moral judgments are insensitive to considerations of harm. Scott, Inbar, and Rozin (2016, this issue) claim that most moral opponents to genetically modified organisms are absolutely opposed-motivated by disgust and not harm. Yet there is no evidence for moral absolutism in their data. Perceived risk/harm is the most significant predictor of moral judgments for "absolutists," accounting for 30 times more variance than disgust. Reanalyses suggest that disgust is not even a significant predictor of the moral judgments of absolutists once accounting for perceived harm and anger. Instead of revealing actual moral absolutism, Scott et al. find only empty absolutism: hypothetical, forecasted, self-reported moral absolutism. Strikingly, the moral judgments of so-called absolutists are somewhat more sensitive to consequentialist concerns than those of nonabsolutists. Mediation reanalyses reveal that moral judgments are most proximally predicted by harm and not disgust, consistent with dyadic morality. PMID:27217244

  5. Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B.

    PubMed

    Heikkila, R E; Duvoisin, R C; Finberg, J P; Youdim, M B

    1985-10-22

    Two selective and potent inhibitors of monoamine oxidase (MAO) type B, namely AGN-1133 (N-methyl-N-propynyl-1-indanamine) and AGN-1135 (N-propynyl-1-indanamine), given to mice prior to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) protected against the neurotoxic effects of MPTP. For example, mice treated with these agents prior to MPTP, did not exhibit the decrement in the neostriatal content of dopamine and its metabolites normally seen after MPTP administration. These data lend further support to the concept that the oxidation of MPTP by MAO-B to its corresponding pyridinium analog, 1-methyl-4-phenyl-pyridinium (MPP+) is an important feature of the neurotoxic process.

  6. The McAndrews Leadership Lecture: February 2015, by Dr Scott Haldeman. Challenges of the Past, Challenges of the Present

    PubMed Central

    Haldeman, Scott; McAndrews, George P.; Goertz, Christine; Sportelli, Louis; Hamm, Anthony W.; Johnson, Claire

    2015-01-01

    The McAndrews Leadership Lecture was developed by the American Chiropractic Association to honor the legacy of Jerome F. McAndrews, DC, and George P. McAndrews, JD, and their contributions to the chiropractic profession. This article is a transcription of the presentation made by Dr Scott Haldeman on February 28, 2015, in Washington, DC, at the National Chiropractic Leadership Conference. PMID:26770177

  7. Putting evo-devo into focus. An interview with Scott F. Gilbert. Interview by Alexander T. Mikhailov.

    PubMed

    Gilbert, Scott F

    2005-01-01

    This article announces Dr. Scott F. Gilbert as the winner of the Alexander Kowavelsky international prize (2004) and briefly reviews his achievements in developmental biology and evo-devo. Dr. Gilbert replies to the interviewer's questions concerning his personal interest in evo-devo and current controversies within the field. His thoughts and comments represent a unique blend of research talents and skills, curiosity and creativity.

  8. Cycling of the powerful AGN in MS 0735.6+7421 and the duty cycle of radio AGN in clusters

    NASA Astrophysics Data System (ADS)

    Vantyghem, A. N.; McNamara, B. R.; Russell, H. R.; Main, R. A.; Nulsen, P. E. J.; Wise, M. W.; Hoekstra, H.; Gitti, M.

    2014-08-01

    We present an analysis of deep Chandra X-ray observations of the galaxy cluster MS 0735.6+7421, which hosts the most energetic radio active galactic nucleus (AGN) known. Our analysis has revealed two cavities in its hot atmosphere with diameters of 200-240 kpc. The total cavity enthalpy, mean age, and mean jet power are 9 × 1061 erg, 1.6 × 108 yr, and 1.7 × 1046 erg s-1, respectively. The cavities are surrounded by nearly continuous temperature and surface brightness discontinuities associated with an elliptical shock front of Mach number 1.26 (1.17-1.30) and age of 1.1 × 108 yr. The shock has injected at least 4 × 1061 erg into the hot atmosphere at a rate of 1.1 × 1046 erg s-1. A second pair of cavities and possibly a second shock front are located along the radio jets, indicating that the AGN power has declined by a factor of 30 over the past 100 Myr. The multiphase atmosphere surrounding the central galaxy is cooling at a rate of 40 M⊙yr-1, but does not fuel star formation at an appreciable rate. In addition to heating, entrainment in the radio jet may be depleting the nucleus of fuel and preventing gas from condensing out of the intracluster medium. Finally, we examine the mean time intervals between AGN outbursts in systems with multiple generations of X-ray cavities. We find that, like MS0735, their AGN rejuvenate on a time-scale that is approximately 1/3 of their mean central cooling time-scales, indicating that jet heating is outpacing cooling in these systems.

  9. VizieR Online Data Catalog: Gamma-ray AGN type determination (Hassan+, 2013)

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Mirabal, N.; Contreras, J. L.; Oya, I.

    2013-11-01

    In this paper, we employ Support Vector Machines (SVMs) and Random Forest (RF) that embody two of the most robust supervised learning algorithms available today. We are interested in building classifiers that can distinguish between two AGN classes: BL Lacs and FSRQs. In the 2FGL, there is a total set of 1074 identified/associated AGN objects with the following labels: 'bzb' (BL Lacs), 'bzq' (FSRQs), 'agn' (other non-blazar AGN) and 'agu' (active galaxies of uncertain type). From this global set, we group the identified/associated blazars ('bzb' and 'bzq' labels) as the training/testing set of our algorithms. (2 data files).

  10. The sharpest view of the local AGN population at mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Asmus, Daniel; Hönig, Sebastian F.; Gandhi, Poshak; Smette, Alain; Duschl, Wolfgang J.

    2014-07-01

    We present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR-X-ray luminosity correlation for AGN.

  11. Possible evidence of destroying small PAH particles by radiation from AGNs

    NASA Astrophysics Data System (ADS)

    Feng, Qi-Chen; Wang, Jing; Wei, Jian-Yan

    2015-02-01

    The issue of destroying small polycyclic aromatic hydrocarbon (PAH) particles by radiation from AGNs is examined through optical narrow-emission line ratios of a sample of type II AGNs. We find that narrow-line ratios [OI]λ6300/Hα and [SII]λ6716, λ6731/Hα have prominent correlations with the PAH 11.3/7.7 ratio in our selected sample of AGNs. Because of the marginal (and in some cases no) dependence of the PAH ratio on the gas metallicity, a possible explanation for the correlations is the destruction of small PAH particles by the hard ionizing field associated with the AGNs.

  12. Three years of Swift/BAT Survey of AGN: Reconciling Theory and Observations?

    SciTech Connect

    Burlon, D.; Ajello, M.; Greiner, J.; Comastri, A.; Merloni, A.; Gehrels, N.; /NASA, Goddard

    2011-02-07

    It is well accepted that unabsorbed as well as absorbed AGN are needed to explain the nature and the shape of the Cosmic X-ray background, even if the fraction of highly absorbed objects (dubbed Compton-thick sources) substantially still escapes detection. We derive and analyze the absorption distribution using a complete sample of AGN detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGN represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGN is 20{sub -6}{sup +9}%. We proved for the first time (also in the BAT band) that the anti-correlation of the fraction of absorbed AGN and luminosity it tightly connected to the different behavior of the luminosity functions (XLFs) of absorbed and unabsorbed AGN. This points towards a difference between the two subsamples of objects with absorbed AGN being, on average, intrinsically less luminous than unobscured ones. Moreover the XLFs show that the fraction of obscured AGN might also decrease at very low luminosity. This can be successfully interpreted in the framework of a disk cloud outflow scenario as the disappearance of the obscuring region below a critical luminosity. Our results are discussed in the framework of population synthesis models and the origin of the Cosmic X-ray Background.

  13. AGN Feedback in Overdense Environments at z=2.23

    NASA Astrophysics Data System (ADS)

    Lucy, Adrian B.; Lehmer, B.; Alexander, D. M.; Best, P.; Geach, J.; Harrison, C. M.; Hornschemeier, A. E.; Matsuda, Y.; Mullaney, J.; Smail, I.; Sobral, D.

    2013-01-01

    We present results from a ≈100 ks Chandra observation of the 2QZ Cluster 1004+00 galaxy overdensity at z=2.23. This 2QZ Clus structure was first identified as an overdensity of four optically-selected quasars; that sample was subsequently found to overlap with an overdensity of 22 Hα-emitting galaxies (HAEs) identified through narrow and broad band near-infrared imaging by Matsuda et al. (2011). In addition to the preselected quasars in 2QZ Clus, our Chandra observation reveals that a further three HAEs are X-ray sources, all characterized by X-ray luminosities and spectral slopes consistent with unobscured active galactic nuclei (AGN). In total, we find that ≈30% of HAEs in our observed region of 2QZ Clus are AGN. This AGN fraction is high compared to AGN fractions among HAEs in the Chandra-COSMOS field (C-COSMOS), and if this enhancement is purely a result of the quasar selection bias of our sample, we estimate that such activity is rare at this redshift. Hα is a tracer of star formation, so 2QZ Clus is well suited to the investigation of the coeval growth of supermassive black holes and their host galaxies in the precursors to rich local clusters. Moreover, we have an ideal control sample in C-COSMOS; this survey contains a large sample of HAEs classified identically using infrared imaging, but without any selection of quasars. We calculate AGN fraction as a function of galaxy overdensity in C-COSMOS, and perform stacking analyses of Chandra and 250μ Herschel SPIRE data to obtain mean black hole accretion rates dMBH/dt and star formation rates SFR. Preliminary results indicate that dMBH/dt and its ratio to SFR are significantly elevated in 2QZ Clus compared to similarly overdense regions of C-COSMOS. We discuss these relations in the context of theoretical models describing the emergence of the MBH/Mgal relation of the local Universe.

  14. Cosmological evolution of compact AGN at 15 GHz

    NASA Astrophysics Data System (ADS)

    Arshakian, T. G.; Ros, E.; Zensus, J. A.

    2006-11-01

    Aims. We study the uniformity of the distribution of compact flat-spectrum active galactic nuclei (AGN) on the sky and the evolution of their relativistic jets with cosmic epoch. Methods: .A complete sample of compact extragalactic radio sources at 2 cm (15 GHz) was recently compiled to conduct the MOJAVE (Monitoring Of Jets in AGN with VLBA Experiments) program (Lister & Homan 2005, AJ, 130, 1389). The MOJAVE sample comprises 133 radio-loud flat-spectrum AGN with compact relativistic outflows detected at parsec scales. We use a two-point angular correlation function to test the isotropy of the distribution of radio sources on the sky. The generalized and banded versions of V/V_max statistic are used to investigate the cosmological evolution of compact AGN. Results: .The survey sources are distributed uniformly on the sky. The source counts of compact AGN shows that the MOJAVE sample represents a flux-limited complete sample. Analysis of the population of flat-spectrum quasars of the sample reveals that the pc-scale jets of quasars have intrinsic luminosities in the range between 1024 W Hz-1 and 1027 {W Hz-1} and Lorentz factors distributed between 3⪉γ ⪉30. We find that the apparent speed (or Lorentz factor) of jets evolves with redshift, increasing from z˜0 to z˜1 and then falling at higher redshifts (z˜2.5) by a factor of 2.5. The evolution of apparent speeds does not affect significantly the evolution of the beamed luminosity function of quasars, which is most likely to be dependent on the evolution of radio luminosity. Furthermore, the beamed radio luminosity function suggests that the intrinsic luminosity function of quasars has a double power-law form: it is flat at low luminosities and steep at high luminosities. There is a positive evolution of quasars at low redshifts (z<0.5) and strong negative evolution at redshifts >1.7 with space density decline up to z˜2.5. This implies that the powerful jets were more populous at redshifts between 0.5 and 1

  15. Highly variable AGN from the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Strotjohann, N. L.; Saxton, R. D.; Starling, R. L. C.; Esquej, P.; Read, A. M.; Evans, P. A.; Miniutti, G.

    2016-07-01

    Aims: We investigate the properties of a variability-selected complete sample of active galactic nuclei (AGN) in order to identify the mechanisms which cause large amplitude X-ray variability on timescales of years. Methods: A complete sample of 24 sources was constructed, from AGN which changed their soft X-ray luminosity by more than one order of magnitude over 5-20 years between ROSAT observations and the XMM-Newton slew survey. Follow-up observations were obtained with the Swift satellite. We analysed the spectra of these AGN at the Swift and XMM observation epochs, where six sources had continued to display extreme variability. Multiwavelength data are used to calculate black hole masses and the relative X-ray brightness αOX. Results: After removal of two probable spurious sources, we find that the sample has global properties which differ little from a non-varying control sample drawn from the wider XMM-slew/ROSAT/Veron sample of all secure AGN detections. A wide range of AGN types are represented in the varying sample. The black hole mass distributions for the varying and non-varying sample are not significantly different. This suggests that long timescale variability is not strongly affected by black hole mass. There is marginal evidence that the variable sources have a lower redshift (2σ) and X-ray luminosity (1.7σ). Apart from two radio-loud sources, the sample sources have normal optical-X-ray ratios (αOX) when at their peak but are X-ray weak during their lowest flux measurements. Conclusions: Drawing on our results and other studies, we are able to identify a variety of variability mechanisms at play: tidal disruption events, jet activity, changes in absorption, thermal emission from the inner accretion disc, and variable accretion disc reflection. Little evidence for strong absorption is seen in the majority of the sample and single-component absorption can be excluded as the mechanism for most sources.

  16. AGN Spectral Energy Distribution of GLAST Telescope Network Program Object 4C 29.45

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Stefaniak, L.; Rapp, S.; Hinckley, B.; Lacy, M.

    2006-06-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2006 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the GLAST Telescope Network (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project observed one of these objects, 4C 29.45, with the Spitzer MIPS and the IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and small college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. We have used this data to construct the Spectral Energy Distribution (SED) of 4C 29.45. We compare these data to models of the dust emission from the torus, sychrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength.

  17. Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Lamastra, A.; Menci, N.; Bongiorno, A.; Fiore, F.

    2015-04-01

    Using an advanced semi-analytical model (SAM) for galaxy formation, we investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where galaxy mergers and fly-by events (interactions, IT) are responsible for producing a sudden destabilization of large quantities of gas, causing the mass inflow onto the central supermassive black hole. The effects of including IT and DI modes in our SAM were studied and compared with observations separately to single out the regimes in which they might be responsible for triggering AGN activity. We obtained the following results: i) the predictions of our model concerning the stellar mass functions of AGN hosts point out that both DI and IT modes are able to account for the observed abundance of AGN host galaxies with M∗ ≲ 1011M⊙; for more massive hosts, the DI scenario predicts a much lower space density than the IT model in every redshift bin, lying below the observational estimates for redshift z > 0.8. ii) The analysis of the colour-magnitude diagram of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively distinguish between DI and IT mode, since DIs are expected to yield AGN host galaxy colours skewed towards bluer colours, while in the IT scenario the majority of hosts are expected to reside in the red sequence. iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies. The lack of DI AGN in passive hosts is rather insensitive to changes in the model describing the DI mass inflow, and it is mainly caused by the criterion for the onset of disk instabilities included in our SAM. iv) The two modes are characterized by a different duration of the AGN phase, with DIs

  18. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.

    2016-06-01

    We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.

  19. Characterization of a spontaneous, pressure-tolerant Listeria monocytogenes Scott A ctsR deletion mutant.

    PubMed

    Joerger, Rolf D; Chen, Haiqiang; Kniel, Kalmia E

    2006-01-01

    A spontaneous, pressure-tolerant mutant of Listeria monocytogenes Scott A, designated 2-1, was isolated after several rounds of pressure treatments at 500 MPa for 10 min. Mutant 2-1 was almost 100,000-fold more resistant than the wild type to a pressure of 350 MPa, and about 100-fold more resistant to 450 MPa when pressurized in growth medium. Approximately ten times more mutant cells than wild-type cells survived a 20-min exposure to 55 degrees C, and the mutant appears also to be more resistant to 0.2% H(2)O(2), although the difference could not be confirmed statistically. About 10 times more wild-type than mutant cells survived exposure to growth medium adjusted to pH 2.5 with HCl. The mutant is about 16-fold more sensitive to nisin than the wild type. Mutant 2-1 is non-motile, produces hemolytic activity, is able to grow in fetal calf serum as well as the wild type, and exhibits a lower level of invasiveness of human ileocecal adenocarcinoma cells than the wild type. The mutation in strain 2-1 is a deletion in the ctsR gene that results in the predicted production of truncated CtsR of 20 amino acids compared to a CtsR of 152 amino acids in the wild type. With the exception of its response to pH and possibly also to H(2)O(2), mutant 2-1 shares most of the phenotypes of the previously described ctsR mutant, AK01. The isolation of another spontaneous, pressure-resistant ctsR mutant confirms the central role of this regulatory gene in pressure tolerance of L. monocytogenes. Although such mutants appear of lesser concern to human health then the wild type, current detection methods for Listeria monocytogenes are not able to distinguish between these mutants and wildtype cells. PMID:16761946

  20. Revisiting Stochastic Variability of AGNs with Structure Functions

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-08-01

    Discrepancies between reported structure function (SF) slopes and their overall flatness as compared to the expectations from the damped random walk (DRW) model, which generally well describes the variability of active galactic nuclei (AGNs), have triggered us to study this problem in detail. We review common AGN variability observables and identify their most common problems. Equipped with this knowledge, we study ˜9000 r-band AGN light curves from Stripe 82 of the Sloan Digital Sky Survey, using SFs described by stochastic processes with the power exponential covariance matrix of the signal. We model the “subensemble” SFs in the redshift-absolute magnitude bins with the full SF equation (including the turnover and the noise part) and a single power law (SPL; in the “red noise regime” after subtracting the noise term). The distribution of full-equation SF (SPL) slopes peaks at γ =0.55+/- 0.08 (0.52 ± 0.06) and is consistent with the DRW model. There is a hint of a weak correlation of γ with the luminosity and a lack of correlation with the black hole mass. The typical decorrelation timescale in the optical is τ =0.97+/- 0.46 year. The SF amplitude at one year obtained from the SPL fitting is {{SF}}0=0.22+/- 0.06 mag and is overestimated because the SF is already at the turnover part, so the true value is {{SF}}0=0.20+/- 0.06 mag. The asymptotic variability is {{SF}}∞ =0.25+/- 0.06 mag. It is strongly anticorrelated with both the luminosity and the Eddington ratio and is correlated with the black hole mass. The reliability of these results is fortified with Monte Carlo simulations.

  1. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  2. Exploring the Variability Characteristics of the Fermi AGN Sample

    NASA Astrophysics Data System (ADS)

    Shrader, Chris R.; Macomb, Daryl J.

    2015-01-01

    The Fermi Gamma-Ray Space Telescope (Fermi) has cataloged nearly 2000 gamma-ray (>100 MeV) point sources of which more than 1100 are likely AGN (these numbers will likely increase by ~50% in the near future with the forthcoming 3FGL catalog). The AGN are predominantly representative of the radio-loud 'blazar' subclass. The emission from these objects is known to be dominated by relativistic beaming and is almost always variable, often exhibiting high-amplitude flaring. To date there have been numerous studies of individual objects including multi-wavelength campaigns with some including parsec-scale radio jet morphological studies. Collectively, these studies have led to new insight in to our understanding of the blazar phenomena and jet propagation. However, there remains a dearth of statistical information on the variability characteristics of the population in aggregate. What, for example, are the distributions of flare amplitudes, durations, temporal profiles and recurrence histories among the gamma-ray blazar subclasses? In two related contributions we present present some results of our study of a large (~103) set of gamma-ray light curves. In this presentation we consider the brightest subset of our identified AGN flares, comprising initially a few tens of events, and then explore in greater detail their properties such as morphologies and their rise and decay timescales. We include where plausible the associated energy dependencies of these rise and decay profiles. We discuss our results in terms and the possible implications on the scale and location of jet structures associated with the emission sites and the cooling timescales of the electron population producing the gamma rays.

  3. AGN-stimulated cooling of hot gas in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Brighenti, Fabrizio

    2015-04-01

    We study the impact of relatively weak active galactic nucleus (AGN) feedback on the interstellar medium (ISM) of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 104 and ≳ 5 × 107 M⊙, where the latter value is appropriate for group centred, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies tcool/tff ≲ 70, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-centre cold gas vary irregularly with time. The cold ISM velocity field is irregular, initially sharing the (outflowing) turbulent hot gas motion. Typical velocity dispersions of the cold gas lie in the range 100-200 km s-1. Freshly generated cold gas often forms a cold outflow and can appear kinematically misaligned with respect to the stars. We also follow the dust evolution in the hot and cold gas. We find that the internally generated cold ISM has a very low dust content, with representative values of the dust-to-gas ratio of 10-4-10-5. Therefore, this cold gas can escape detection in the traditional dust-absorption maps.

  4. Revisiting Stochastic Variability of AGNs with Structure Functions

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon

    2016-08-01

    Discrepancies between reported structure function (SF) slopes and their overall flatness as compared to the expectations from the damped random walk (DRW) model, which generally well describes the variability of active galactic nuclei (AGNs), have triggered us to study this problem in detail. We review common AGN variability observables and identify their most common problems. Equipped with this knowledge, we study ˜9000 r-band AGN light curves from Stripe 82 of the Sloan Digital Sky Survey, using SFs described by stochastic processes with the power exponential covariance matrix of the signal. We model the “subensemble” SFs in the redshift–absolute magnitude bins with the full SF equation (including the turnover and the noise part) and a single power law (SPL; in the “red noise regime” after subtracting the noise term). The distribution of full-equation SF (SPL) slopes peaks at γ =0.55+/- 0.08 (0.52 ± 0.06) and is consistent with the DRW model. There is a hint of a weak correlation of γ with the luminosity and a lack of correlation with the black hole mass. The typical decorrelation timescale in the optical is τ =0.97+/- 0.46 year. The SF amplitude at one year obtained from the SPL fitting is {{SF}}0=0.22+/- 0.06 mag and is overestimated because the SF is already at the turnover part, so the true value is {{SF}}0=0.20+/- 0.06 mag. The asymptotic variability is {{SF}}∞ =0.25+/- 0.06 mag. It is strongly anticorrelated with both the luminosity and the Eddington ratio and is correlated with the black hole mass. The reliability of these results is fortified with Monte Carlo simulations.

  5. Submillimetre observations of WISE-selected high-redshift, luminous AGN and their surrounding overdense environments

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.

    2016-08-01

    We present JCMT SCUBA-2 850 μm submillimetre (submm) observations of 10 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and 30 that have also been detected by the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs). Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 3-5, but no sign of radial clustering centred at our primary objects. The WISE-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 μm observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets have total IR luminosities ≥1013 L⊙, with known redshifts of 20 targets between z ˜ 0.44-4.6.

  6. On the relation between X-ray absorption and optical extinction in AGN

    NASA Astrophysics Data System (ADS)

    Ordovás-Pascual, Ignacio; Mateos, Silvia; Carrera, Francisco J.; Wiersema, Klaas; Caccianiga, Alessandro; Severgnini, Paola; Della Ceca, Roberto; Ballo, Lucia; Moretti, Alberto

    2016-08-01

    According to the Unified Model of Active Galactic Nuclei (AGN), an X-ray unabsorbed AGN should appear as unobscured in the optical (Type-1) and viceversa (Type-2). However, there is an important fraction (10-30%) of AGN whose optical and X-ray classifications do not match. To provide insight into the origin of such apparent discrepancies, we have conducted two analyses: 1) a detailed study of the UV-to-near-IR emission of two X-ray unabsorbed Type-2 AGN drawn from the Bright Ultra-Hard XMM-Newton Survey (BUXS); 2) a statistical analysis of the optical obscuration and X-ray absorption properties of 159 Type-1 AGN drawn from BUXS to determine the distribution of dust-to-gas ratios in AGN over a broad range of luminosities and redshifts. In our works we have also determined the impact of contamination from the AGN hosts in the optical classification of AGNs. Our studies are already provided very exciting results such as the detection of objects with extreme dust-to-gas ratios, between 300-10000 times below the Galactic dust-to-gas ratio.

  7. Understanding the Effects of Multiscale Groundwater-Surface Water Interactions on Scott River Baseflow and Stream Temperature in Support of Beneficial Salmon Habitat

    NASA Astrophysics Data System (ADS)

    Hines, R.; Harter, T.

    2009-12-01

    The Scott River watershed is one of only a handful of major watersheds in California that include a zone of adjudicated groundwater and that is not managed by a major reservoir. The Scott River is a major tributary in the Klamath River basin, providing habitat for cold water salmon fishery, including the migration, spawning, reproduction, and early development of cold water fish such as coho salmon, Chinook salmon, and steelhead trout. The Scott Valley entertains extensive alfalfa and hay productions that provide the economic base for the agricultural valley. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Summer baseflow in the Scott supports juvenile coho salmon that remain in the Valley until the following winter. Stream temperatures in the Scott River have increased to levels that are not considered sustainable for the native salmon population. Concurrently, late summer/early fall baseflow has decreased, possibly leading to substantial deterioration of habitat conditions. Increased temperature and decreased baseflow are thought to be due in part to groundwater pumping for irrigation and to increased solar radiation from lack of shade by riparian vegetation. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Regional scale surface water - groundwater modeling is employed to investigate the benefits to mid-and late summer baseflow in the Scott River of various conjunctive use management alternatives, including increased spring irrigation recharge and deficit irrigation. Field measurements of stream temperature indicate that

  8. Agnes Mary Clerke and the Rise of Astrophysics

    NASA Astrophysics Data System (ADS)

    Brück, M. T.

    2002-05-01

    Acknowledgements; Introduction; 1. Family background in County Cork; 2. Ireland and Italy; 3. London, the literary scene; 4. The History of Astronomy; 5. A circle of astronomers; 6. A visit to South Africa; 7. The System of the Stars; 8. Social life in scientific circles; 9. Homer, the Herschels and a revised History; 10. The opinion moulder; 11. Popularisation, cryogenics and evolution; 12. Problems in Astrophysics; 13. Women in astronomy in Britain in Agnes Clerke's time; 14. Revised System of the Stars; 15. Cosmogonies, cosmology and Nature's spiritual clues; 16. Last days and retrospect; 17. Epilogue; Notes; Appendix; Bibliography; Index.

  9. Agnes Mary Clerke and the Rise of Astrophysics

    NASA Astrophysics Data System (ADS)

    Brück, M. T.

    2008-03-01

    Acknowledgements; Introduction; 1. Family background in County Cork; 2. Ireland and Italy; 3. London, the literary scene; 4. The History of Astronomy; 5. A circle of astronomers; 6. A visit to South Africa; 7. The System of the Stars; 8. Social life in scientific circles; 9. Homer, the Herschels and a revised History; 10. The opinion moulder; 11. Popularisation, cryogenics and evolution; 12. Problems in Astrophysics; 13. Women in astronomy in Britain in Agnes Clerke's time; 14. Revised System of the Stars; 15. Cosmogonies, cosmology and Nature's spiritual clues; 16. Last days and retrospect; 17. Epilogue; Notes; Appendix; Bibliography; Index.

  10. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  11. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-11-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z < 0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z = 0.25 to z = 0.7 by a factor of ∼6 (from 2/70 to 16/91, or 2.9{sup +3.6}{sub -1.9}% to 18{sup +5}{sub -5}%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ∼3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9{sup +3}{sub -2}% to 29{sub -19}{sup +26}%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.

  12. AGN proximity zone fossils and the delayed recombination of metal lines

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Benjamin D.; Schaye, Joop

    2013-09-01

    We model the time-dependent evolution of metal-enriched intergalactic and circumgalactic gas exposed to the fluctuating radiation field from an active galactic nucleus (AGN). We consider diffuse gas densities (nH = 10-5-10-2.5 cm-3) exposed to the extra-galactic background (EGB) and initially in thermal equilibrium (T ˜ 104-104.5 K). Once the proximate AGN field turns on, additional photo-ionization rapidly ionizes the HI and metals. The enhanced AGN radiation field turns off after a typical AGN lifetime (τAGN = 1-20 Myr) and the field returns to the EGB intensity, but the metals remain out of ionization equilibrium for time scales that can significantly exceed τAGN. We define this phase as the AGN proximity zone `fossil' phase and show that high ionization stages (e.g. OVI, NeVIII, MgX) are in general enhanced, while the abundances of low ions (e.g. CIV, OIV, MgII) are reduced. In contrast, HI re-equilibrates rapidly (≪τAGN) owing to its low neutral fraction at diffuse densities. We demonstrate that metal column densities of intervening gas observed in absorption in quasar sight lines are significantly affected by delayed recombination for a wide range of densities, metallicities, AGN strengths, AGN lifetimes and AGN duty cycles. As an example, we show that a fossil zone model can simultaneously reproduce the observed NeVIII, MgII, HI and other metal columns of the z = 0.927 PG1206+259 absorption system observed by Tripp et al. using a single, T ˜ 104 K phase model. At low redshift even moderate-strength AGN that are off for 90 per cent of the time could significantly enhance the high-ion metal columns in the circum-galactic media of galaxies observed without active AGN. Fossil proximity zones may be particularly important during the quasar era, z ˜ 2-5. Indeed, we demonstrate that at these redshifts a large fraction of the metal-enriched intergalactic medium may consist of out-of-equilibrium fossil zones. AGN proximity zone fossils allow a whole new class

  13. A complete hard X-ray selected sample of local, luminous AGNs

    NASA Astrophysics Data System (ADS)

    Burtscher, Leonard; Davies, Ric; Lin, Ming-yi; Orban de Xivry, Gilles; Rosario, David

    2016-08-01

    Choosing a very well defined sample is essential for studying the AGN phenomenon. Only the most luminous AGNs can be expected to require a coherent feeding mechanism to sustain their activity and since host galaxy properties and AGN activity are essentially uncorrelated, nuclear scales must be resolved in order to shed light on the feeding mechanisms of AGNs. For these reasons we are compiling a sample of the most powerful, local AGNs. In this talk we present our on-going programme to observe a complete volume limited sample of nearby active galaxies selected by their 14-195 keV luminosity, and outline its rationale for studying the mechanisms regulating gas inflow and outflow.

  14. Broad emission lines variability: a window into the heart of AGN

    NASA Astrophysics Data System (ADS)

    Ilic, Dragana; Popovic, Luka C.; Shapovalova, Alla I.; Afanasiev, V. L.; Chavushyan, V. H.; Burenkov, A.; Kollatschny, W.; Kovacevic, A.

    2016-08-01

    The broad emission lines of active galactic nuclei (AGN) are known to vary both in flux and shape, and are often showing very complex line profiles. They can give us invaluable information about the kinematics and geometry of the broad line region (BLR) where these lines are originating from. The BLR is close to the supermassive black hole in AGN and may hold basic information about the formation and fueling of AGN.Here we summarize the results of the line and continuum variability of a sample of broad line AGN, obtained with the long-term optical monitoring campaign performed with telescopes of SAO (Russia), OAGH and OAN-SPM (Mexico), and Calar Alto (Spain). We monitored different type of broad line AGN (double-peaked, radio loud and radio quiet, NLSy1 and a supermassive binary black hole candidate) which show different variability characteristics that can be explained by different physical properties in BLR.

  15. The dependence of X-ray AGN activity on host galaxy properties and environment

    NASA Astrophysics Data System (ADS)

    Tasse, C.; Röttgering, H.; Best, P. N.

    2011-01-01

    There is mounting evidence that active galactic nuclei (AGN) selected through optical emission lines or radio luminosities comprise two distinct AGN populations, whose activity is triggered by different processes. In two previous papers, we studied the host galaxies and environment of radio-loud AGN. In this third paper we study the properties of a sample of Type-2 AGN that were selected on the basis of their [2-10] keV X-ray luminosity. We find that the X-ray luminosity function is in good agreement with previous studies and that the fraction of galaxies hosting an X-ray AGN is a strong function of the stellar mass of the host galaxy. The shape of this fraction-mass relation is similar to the fraction of galaxies that are emission-line AGN, while it differs significantly from the relation observed for radio-selected AGN. The AGN in our sample tend to be located in underdense environments where galaxy mergers and interactions are likely to occur. For all host galaxy masses, the Type-2 AGN display a strong infrared excess at short (~3.5 μm) wavelengths, suggesting the presence of hot dust possibly associated with a hot dusty torus. These results add weight to the belief that the X-ray selection criteria identifies a population of AGN similar to the emission-line selected population but distinct from the radio population at high masses. Appendix A is only available in electronic form at http://www.aanda.org

  16. Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Torrey, Paul; Faucher-Giguère, Claude-André; Quataert, Eliot; Murray, Norman

    2016-05-01

    We study the interaction of feedback from active galactic nuclei (AGN) and a multiphase interstellar medium (ISM), in simulations including explicit stellar feedback, multiphase cooling, accretion-disc winds, and Compton heating. We examine radii ˜0.1-100 pc around a black hole (BH), where the accretion rate on to the BH is determined and where AGN-powered winds and radiation couple to the ISM. We conclude: (1) the BH accretion rate is determined by exchange of angular momentum between gas and stars in gravitational instabilities. This produces accretion rates ˜0.03-1 M⊙ yr-1, sufficient to power luminous AGN. (2) The gas disc in the galactic nucleus undergoes an initial burst of star formation followed by several million years where stellar feedback suppresses the star formation rate (SFR). (3) AGN winds injected at small radii with momentum fluxes ˜LAGN/c couple efficiently to the ISM and have dramatic effects on ISM properties within ˜100 pc. AGN winds suppress the nuclear SFR by factors ˜10-30 and BH accretion rate by factors ˜3-30. They increase the outflow rate from the nucleus by factors ˜10, consistent with observational evidence for galaxy-scale AGN-driven outflows. (4) With AGN feedback, the predicted column density distribution to the BH is consistent with observations. Absent AGN feedback, the BH is isotropically obscured and there are not enough optically thin sightlines to explain type-I AGN. A `torus-like' geometry arises self-consistently as AGN feedback evacuates gas in polar regions.

  17. Analysis of Background Seismic Noise Recorded at the Amundsen-Scott South Pole Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Aster, R.; Beaudoin, B. C.; Butler, R.

    2006-12-01

    A small array of high frequency seismometers was recently placed around the Amundsen-Scott South Pole Station in order to characterize seismic noise generated by the station during operations. This week long experiment, titled, "South Pole Analysis of Machines" or SPAM was conducted in January of 2006 using equipment provided by IRIS PASSCAL to sample the high frequency noise sources generated at the NSF's research base. These data will be correlated to those observed at the ultra quiet GSN seismic station (QSPA) located 5 miles from the base. The purpose of the experiment is to show that although the QSPA sensors are 5 miles away and nearly 1000 feet deep in the ice, there is still a risk of contamination of the signals by cultural noise from the South Pole research base. A Quiet Sector was established around the QSPA station in order to minimize vibrational noise sources, but there is interest in moving some experiments out into the Quiet Sector. Characterizing the noise sources will help us determine the potential reduction in data quality expected at the QSPA station as experiments move closer to the site. Sensors were placed next to the power generators, aircraft taxiway, large antenna towers, as well as at the base of the new station itself. Sensors were also placed between the research base and the QSPA station to get an idea of the propagation of the noise toward the QSPA station. Several high frequency noise sources are clearly seen on all array elements with a number of very clear spectral lines above 1 Hz. These are primarily associated with snow moving tractors and power generators. Smaller signals are seen that may be related to wind loading on the new South Pole elevated station along with harmonics that appear to be correlated with large air handling equipment in the station. Also evident are air operations with landings, takeoffs, taxi and idling C-130's evident. Although greatly attenuated, almost all of these signals are observed at the QSPA

  18. Simulations of the OzDES AGN reverberation mapping project

    SciTech Connect

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; Banerji, Manda; McMahon, Richard; Sharp, Rob; Lidman, C.

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrain the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.

  19. The AGN-driven shock in NGC 4472

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2016-04-01

    Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.

  20. Dramatic long-term X-ray variability in AGNs

    NASA Astrophysics Data System (ADS)

    Moran, Edward C.

    2016-04-01

    Dramatic X-ray and optical variability on ˜ 10 year timescales has been discovered recently in a handful of quasars, which may provide important new insight into the issue of how luminous AGNs are fueled. We have assembled a new sample of extremely variable X-ray sources from archival Einstein and ROSAT data that could increase substantially the number of such objects known. The sources in our sample varied in X-ray flux by at least a factor of 7-8 over a 10-year span, and most exhibited significantly larger variability amplitudes (10 to over 100). We present the details of how our sample was assembled and preliminary results regarding the identifications, properties, and X-ray histories of the objects. Although a heterogeneous population is expected, some sources in the sample are associated with broad-line AGNs, including a radio-quiet quasar at z = 1.3 that decreased in X-ray luminosity by a factor of 40.

  1. 'Harder when Brighter' Spectral Variability in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Connolly, S.; McHardy, I.; Skipper, C.; Dwelly, T.

    2015-07-01

    We present X-ray spectral variability of four low accretion rate AGN - M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the `softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely main source of spectral variability is found to be luminosity-dependent changes in the photon index of the power law component. An anticorrelation between the photon index and the count rate is found in all of the sources. The anticorrelation is likely to be caused by accretion via a radiatively-inefficient accretion flow, expected in low-Eddington ratio systems such as these, and/or due to the presence of a jet. This behaviour is similar to that seen in the `hard state' of X-ray binaries, implying that these LLAGN are in a similar state.

  2. AGN feedback on the ISM of 3C 236

    NASA Astrophysics Data System (ADS)

    Labiano, A.; García-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Tremblay, G.; Neri, R.; Fuente, A.; Morganti, R.; Oosterloo, T.

    2013-03-01

    We have carried out 1mm/3mm continuum and 12CO(2-1) line high resolution observations to identify the footprints of AGN feedback on 3C 236. The CO emission comes from a spatially resolved disk characterized by a regular rotating pattern. Within the limits imposed by the sensitivity and velocity coverage of our data, we do not detect any outflow signatures in the cold molecular gas. Re-inspection of optical and IR spectra, shows the presence of a previously unknown ionized gas outflow. The star-formation efficiency in 3C 236, is consistent with the value measured in normal galaxies, which follow the canonical Kennicutt-Schmidt law. This result, confirmed to hold in other young radio sources examined in this work, is in stark contrast with the factor of 10-50 lower SFE that has been claimed to characterize evolved powerful radio galaxies. The recent reactivation of the AGN in 3C 236 is a likely explanation for the early evolutionary status of its molecular disk.

  3. Correlaciones cruzadas quasar-galaxia y AGN-galaxia

    NASA Astrophysics Data System (ADS)

    Martínez, H. J.; Merchán, M. E.; Valotto, C. A.; García Lambas, D.

    We compute quasar-galaxy and AGN-galaxy cross-correlation functions for samples taken from the Véron-Cetty & Véron (1998) catalog of quasars and active galaxies, using tracer galaxies taken from the Edinburgh/Durham Southern Catalog. The sample of active galaxy targets shows positive correlation at projected separations rp < 6 h-1 ~Mpc consistent with the usual power-law. On the other hand, we do not find a statistically significant positive quasar-galaxy correlation signal except in the range 3 h-1 Mpc < rp < 6 h-1 Mpc where we find similar AGN-galaxy and quasar-galaxy correlation amplitudes. At separations rp<3~h-1 ~Mpc a strong decline of quasar-galaxy correlations is observed, suggesting a significant local influence of quasars in galaxy formation. In an attempt to reproduce the observed cross-correlation between quasars and galaxies, we have performed CDM cosmological hydrodynamical simulations and tested the viability of a scenario based on the model developed by Silk & Rees (1998). In this scheme a fraction of the energy released by quasars is considered to be transferred into the baryonic component of the intergalactic medium in the form of winds. The results of the simulations suggest that the shape of the observed quasar-galaxy cross-correlation function could be understood in a scenario where a substantial amount of energy is transferred to the medium at the redshift of maximum quasar activity.

  4. Prevalence of galaxy-galaxy interactions in AGN hosts

    NASA Astrophysics Data System (ADS)

    Lim, Jeremy; Kuo, Cheng-Yu; Tang, Ya-Wen; Greene, Jenny; Ho, Paul T. P.

    2004-11-01

    Studies in optical starlight have failed to reach a consensus on the importance of either galaxy interactions, bars, or nuclear spirals in triggering luminous active galactic nuclei (AGNs). Here, we present the first systematic imaging study of Seyfert (disk) galaxies in the 21-cm line of neutral atomic hydrogen (HI) gas. HI is the most sensitive and enduring tracer of galaxy interactions, and can reveal tidal features not otherwise visible in optical starlight. Our sample comprises all twenty-eight galaxies in the Véron-Cetty & Véron (1998) catalog with nuclear magnitudes -19 ≥ MB > -23 (including Seyfert, LINER, and HII galaxies) at 0.015 ≤ z ≤ 0.017 in the northern hemisphere, and a matched control sample of twenty-seven inactive galaxies at z≈0.008. We have detected nearly all the galaxies observed, and find a much higher incidence of tidal interactions -- usually not seen in optical starlight -- among the Seyfert galaxies by comparison with the matched control sample. Those Seyferts with uncertain or no clear tidal features show disturbed HI morphologies and/or kinematics, as well as HI companion galaxies, more frequently than the control sample. Our study suggests that the undisturbed optical appearence of active galaxies may be deceptive, and imply that galaxy-galaxy interactions trigger a significant fraction luminous AGNs at low redshifts. The majority of the Seyfert galaxies in our sample appear to be at a relatively early stage of an encounter rather than late in a merger.

  5. Hot Gas and AGN Feedback in Galaxies and Nearby Groups

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Forman, William; Bogdan, Akos; Randall, Scott; Kraft, Ralph; Churazov, Eugene

    2013-07-01

    Massive galaxies harbor a supermassive black hole at their centers. At high redshifts, these galaxies experienced a very active quasar phase, when, as their black holes grew by accretion, they produced enormous amounts of energy. At the present epoch, these black holes still undergo occasional outbursts, although the mode of their energy release is primarily mechanical rather than radiative. The energy from these outbursts can reheat the cooling gas in the galaxy cores and maintain the red and dead nature of the early-type galaxies. These outbursts also can have dramatic effects on the galaxy-scale hot coronae found in the more massive galaxies. We describe research in three areas related to the hot gas around galaxies and their supermassive black holes. First we present examples of galaxies with AGN outbursts that have been studied in detail. Second, we show that X-ray emitting low-luminosity AGN are present in 80% of the galaxies studied. Third, we discuss the first examples of extensive hot gas and dark matter halos in optically faint galaxies.

  6. An AGN Identification for 3EG J2006-2321

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.; Halpern, J. P.; Magalhaes, A. M.; Thompson, D. J.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present a multiwavelength analysis of the high-energy gamma-ray source 3EG J2006-2321 (l = 18 deg.82, b = -26 deg.26). The flux of this source above 100 MeV is shown to be variable on time scales of days and months. Optical observations and careful examination of archived radio data indicate that its most probable identification is with PMN J2005-2310, a flat-spectrum radio quasar with a 5GHz flux density of 260 mJy. Study of the V = 19.3 optical counterpart indicates a redshift of 0.833 and variable linear polarization. No X-ray source has been detected near the position of PMN J2005-2310, but an X-ray upper limit is derived from ROSAT data. This upper limit provides for a spectral energy distribution with global characteristics similar to those of known gamma-ray blazars. Taken together, these data indicate that 3EG J2006-2321, listed as unidentified in the 3rd EGRET Catalog, is a member of the blazar class of AGN. The 5-GHz radio flux density of this blazar is the lowest of the 68 EGRET-detected AGN. The fact that EGRET has detected such a source has implications for unidentified EGRET sources, particularly those at high latitudes (absolute value of b greater than 30 deg), many of which may be blazars.

  7. Dynamics of matter available for accretion in AGN

    NASA Astrophysics Data System (ADS)

    Proga, Daniel

    We propose to study fluid dynamics in the central regions of active galaxies. Several key attributes of AGN, such as infall rates onto the central black hole and the geometry and rates of outward energy and momentum transfer, are determined in their central regions. However, despite many years of intensive studies, how radiation and mass outflows affect the structure of active galaxies remains uncertain, mostly because multi- dimensional geometrical effects and the dynamics of gas and dust are poorly understood. We will construct time-dependent, multi-dimensional radiation hydrodynamical simulations to study, from first principles, the morphology of central galactic flows on scales ranging from subparsec to tens of parsecs. The novel features of our proposed models are: (1) radiative heating and cooling of dust and gas, (2) radiation pressure on dust and gas,
(3) the essential physics of dust sublimation, and (4) radiative transfer. The results of this project will reveal the basic physical properties of flows in AGN with unprecedented accuracy and detail. We will use our models to calculate diagnostics such as line profiles, broad band spectra, and intensity maps. These diagnostics will be compared with observations by both current NASA missions such as HST, Chandra, Spitzer, and Swift and planned missions such as JWST.

  8. Exploring the Variability Characteristics of the Fermi AGN Sample

    NASA Astrophysics Data System (ADS)

    Shrader, Chris R.

    2016-04-01

    The Fermi Gamma-Ray Space Telescope (Fermi) has cataloged over 3000 gamma-ray (>100 MeV) point sources of which ~70% are likely AGN. The AGN are predominantly representative of the radio-loud “blazar” subclass. The emission from these objects is known to be dominated by relativistic beaming and is almost always variable, often exhibiting high-amplitude flaring. To date there have been numerous studies of individual objects including multi-wavelength campaigns with some including parsec-scale radio jet morphological studies. These studies have led to new insight in to our understanding of the blazar phenomena and jet propagation. However, there remains a dearth of statistical information on the variability characteristics of the population in aggregate. What, for example, are the distributions of flare amplitudes, durations, temporal profiles and recurrence histories among the gamma-ray blazar subclasses? We present some results of our study of a large ( ~103) set of gamma-ray light curves. For the brightest subset we explore in greater detail their properties such as morphologies and their rise and decay timescales. We include where plausible the associated energy dependencies of these rise and decay profiles. We discuss our results in terms of the possible implications on the scale and location of jet structures associated with the emission sites and the cooling timescales of the electron population producing the gamma rays.

  9. XMM-Newton, powerful AGN winds and galaxy feedback

    NASA Astrophysics Data System (ADS)

    Pounds, K.; King, A.

    2016-06-01

    The discovery that ultra-fast ionized winds - sufficiently powerful to disrupt growth of the host galaxy - are a common feature of luminous AGN is major scientific breakthrough led by XMM-Newton. An extended observation in 2014 of the prototype UFO, PG1211+143, has revealed an unusually complex outflow, with distinct and persisting velocities detected in both hard and soft X-ray spectra. While the general properties of UFOs are consistent with being launched - at the local escape velocity - from the inner disc where the accretion rate is modestly super-Eddington (King and Pounds, Ann Rev Astron Astro- phys 2015), these more complex flows have raised questions about the outflow geometry and the importance of shocks and enhanced cooling. XMM-Newton seems likely to remain the best Observatory to study UFOs prior to Athena, and further extended observations, of PG1211+143 and other bright AGN, have the exciting potential to establish the typical wind dynamics, while providing new insights on the accretion geometry and continuum source structure. An emphasis on such large, coordinated observing programmes with XMM-Newton over the next decade will continue the successful philosophy pioneered by EXOSAT, while helping to inform the optimum planning for Athena

  10. Dielectric recombination and stability of warm gas in AGN

    SciTech Connect

    Chakravorty, Susmita; Kembhavi, Ajit K.; Elvis, Martin; Ferland, Gary; Badnell, N. R.

    2012-05-25

    High resolution ultraviolet and X-ray spectra show that material outflow occur from the close neighbourhoods of super-massive black holes in active galactic nuclei (AGN). The absorption features seen in the high resolution soft X-ray spectra is attributed to gas which is conventionally termed as the warm absorber (WA) and often the thermal equilibrium (stability) curve is used as a theoretical tool to offer insights into the nature of the WA. The shape of the stability curve is determined by factors like the spectral energy distribution of the ionizing flux and the chemical composition of the absorbing gas. We found that the stability curves obtained under the same set of assumptions for the prevalent physical conditions in the AGN environment, but using recently derived dielectronic recombination rates, give significantly different results from what is predicted with older atomic data. The variations in phase space region of the stability curves corresponding to WAs, lead to different physical predictions. The results obtained with the current dielectronic recombination rate coefficients are more reliable because the WA models along the stability curve have computed, updated coefficient values.

  11. The faint radio AGN population in the spotlight

    NASA Astrophysics Data System (ADS)

    Herrera Ruiz, Noelia; Middelberg, Enno

    2016-08-01

    To determine the AGN component in the faint radio population is fundamental in galaxy evolution studies. A relatively easy and direct way to determine which galaxies do have a radio-active AGN is a detection using the Very Long Baseline Interferometry (VLBI) technique. The goal of this project is to study with statistically relevant numbers the faint radio source population using VLBI observations. To achieve this goal, the project is divided into two parts. In the first part, we have observed ~3000 radio sources in the COSMOS extragalactic field with the Very Long Baseline Array (VLBA) at 1.4GHz. We have detected 468 sources. In the second part, we have observed ~200 radio sources in the COSMOS field with extremely high sensitivity using the VLBA together with the Green Bank Telescope (GBT) at 1.4GHz, to explore an even fainter population in the flux density regime of tens of uJy. We are currently calibrating this data. In this overview I will present the survey design, observations, and calibration, along with some first results.

  12. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    SciTech Connect

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M.; Moustakas, John; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu Guangtun

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  13. College Connection

    ERIC Educational Resources Information Center

    Hewitt, Kimberly Kappler; Scalzo, Mary Jo

    2012-01-01

    This article describes Oakwood City School District's College Connection Study, which is now in its eighth year. The purpose of the study is to help the educators in the district learn how to effectively prepare students for success in the colleges of their choice. Teachers, administrators, and other staff members travel to colleges to conduct…

  14. College Readiness

    ERIC Educational Resources Information Center

    Chapa, Marisa; Galvan-De Leon, Vanessa; Solis, Judith; Mundy, Marie-Anne

    2014-01-01

    During the 79th Texas Legislature, the bill "Advancement of College Readiness in Curriculum" was passed (THECB). As a response to this, high schools and colleges have combined forming an early college high school. The result of this union was a program that condensed the time it took to complete both the high school diploma and up to two…

  15. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 AGN and star formation by combining the galaxy evolution code PÉGASE.3 with an AGN torus model. We find that three components are necessary to reproduce the observed SEDs: an evolved and massive stellar component, a submm bright young starburst, and an AGN torus. We find that powerful radio galaxies form at very high-redshift, but experience episodic and important growth at 1 AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  16. A Model for Type 2 Coronal Line Forest (CLiF) AGNs

    NASA Astrophysics Data System (ADS)

    Glidden, Ana; Rose, Marvin; Elvis, Martin; McDowell, Jonathan

    2016-06-01

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii]λ6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h/r.

  17. A Sub-Arcsecond Mid-Infrared Survey of X-Ray-Selected AGN

    NASA Astrophysics Data System (ADS)

    Levenson, N. A.; Alonso-Herrero, A.; Packham, Chris; Los Piratas AGN Science Team

    2015-08-01

    Detailed studies of local active galactic nuclei (AGN) following X-ray selection yields significant measurements of the physical properties of the AGN and their host galaxies. In turn, the complete analysis of the nearby cases at high spatial resolution---to distinguish multiple physical components---and high signal-to-noise ratio informs broader surveys of more distant examples where such observations are not possible. We apply these methods in the Los Piratas survey, which emphasizes new observations at mid-infrared wavelengths obtained using CanariCam on the 10.4m Gran Telescopio Canarias. We measure intrinsic bolometric luminosity of the roughly 100 AGN in the sample using X-rays, ensuring a span of luminosity over a range of activity level (from low-ionization nuclei through Seyfert galaxies and quasars), optical type, and radio loudness. The mid-infrared observations at resolution of ~0.3arcsec correspond to typical spatial scales of 60 pc for the low-luminosity AGN and Seyferts and 400 pc for other types. We isolate the AGN emission that is reprocessed by dust in the central regions, which we model in a clumpy distribution. We distinguish this emission from the stellar contributions on larger scales. Across types, the AGN-heated dust emission is overall well-correlated with the X-ray flux, but stellar contributions can be significant on larger scales, especially at moderate AGN luminosity.

  18. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  19. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  20. Dust Obscured AGN are Masquerading as Star Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Allison; Pope, Alexandra; Sajina, Anna; Roebuck, Eric

    2016-01-01

    The buildup of stellar and black hole mass peaked during z=1-3, making this a key epoch for understanding how the interplay of star formation and an active galactic nucleus (AGN) drive galaxy evolution. IR luminous galaxies, which are massive and heavily dust obscured (LIR > 1011 Lsun), dominate the stellar growth during this era, and many are harboring a hidden AGN. I have quantified the contribution of AGN heating to the infrared emission of 343 IR luminous galaxies from z=0.5-2.8 using Spitzer mid-IR spectroscopy, available for every source, making this an unprecedented sample. I classify sources as star forming galaxies, AGN, or composites based on the presence of mid-IR continuum emission due to a dusty torus. My findings are: 1) Surprisingly, 60% of IR luminous galaxies show signs of some dust heating emanating from an AGN. I quantify the far-IR emission using deep Herschel imaging and find that the strength of mid-IR AGN emission is tightly correlated with the total contribution of an AGN to LIR, which has important consequences for calculating star formation rates in dusty high redshift galaxies. I demonstrate techniques to remove the contribution of AGN to LIR when mid-IR spectroscopy is available and when only limited photometry is available. 2) The composites are a separate class of galaxy which show a true mix of star formation and AGN activity in their mid- and far-IR emission. Because of dust obscuration, this activity is largely undetected at other wavelengths. This composite population is important for understanding galaxy evolution and makes up at least 30% of the deepest IR selected samples. I underscore the importance of considering composite galaxies separately in studies of star formation and black hole growth at high redshift.

  1. AGN Clustering in the Local Universe: An Unbiased Picture from Swift-BAT

    SciTech Connect

    Cappelluti, N.; Ajello, M.; Burlon, D.; Krumpe, M.; Miyaji, T.; Bonoli, S.; Greiner, J.; /Garching, Max Planck Inst., MPE

    2011-08-11

    We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-correlation function and detected a signal significant on projected scales lower than 200 Mpc/h. We measured a correlation length of r{sub 0} = 5.56{sup +0.49}{sub -0.43} Mpc/h and a slope {gamma} = 1.64{sup -0.08}{sub -0.07}. We also measured the auto-correlation function of Tyep I and Type II AGN and found higher correlation length for Type I AGN. We have a marginal evidence of luminosity dependent clustering of AGN, as we detected a larger correlation length of luminous AGN than that of low luminosity sources. The corresponding typical host DM halo masses of Swift-BAT are {approx} log(M{sub DMH) {approx} 12-14 h{sup -1}M/M{sub {circle_dot}} which is the typical mass of a galaxy group. We estimated that the local AGN population has a typical lifetime {tau}{sub AGN} {approx}0.7 Gyr, it is powered by SMBH with mass M{sub BH} {approx}1-10x10{sup 8} M{sub {circle_dot}} and accreting with very low efficiency, log({epsilon}){approx}-2.0>. We also conclude that local AGN galaxies are typically red-massive galaxies with stellar mass of the order 2-80x10{sup 10} h{sup -1}M{sub {circle_dot}}. We compared our results with clustering predictions of merger-driven AGN triggering models and found a good agreement.

  2. Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Groves, Brent; Kewley, Lisa J.; Dopita, Michael A.; Hampton, Elise J.; Shastri, Prajval; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-10-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.

  3. The radio luminosity function and redshift evolution of radio-mode and quasar-mode AGN

    NASA Astrophysics Data System (ADS)

    Pracy, Mike

    2016-08-01

    The properties of the AGN population indicate that there are two fundamentally different accretion modes operating. In the quasar-mode, material is accreted onto the supermassive black hole via a small, thin, optically luminous accretion disc. Accretion in this mode is recognisable by emission lines in the optical spectrum. However, there is a population of AGN observable only by their radio emission and without optical emission lines. These radio-mode AGN are likely powered by radiatively inefficient accretion from a hot gas halo. I will describe the cosmic evolution of these two populations via radio luminosity functions. The radio luminosity functions are constructed from a new survey of over 4000 radio galaxies out to z=1, all with confirmed redshifts and their accretion mode classified from their optical spectra. This is 20 times larger than the only other survey used to make such a measurement. The radio-mode AGN population displays no statistically significant evolution in space density out to redshift z=1. In contrast the quasar mode AGN exhibits rapid evolution in space density, increasing by a factor of 8 over the same redshift range. The characteristic break in the radio luminosity function occurs at a significantly higher power for the quasar-mode AGN in comparison to the radio-mode AGN and we demonstrate this is consistent with the two populations representing fundamentally different accretion modes. The radio luminosity function is used to estimate the total amount of mechanical energy available for radio mode feedback as a function of redshift, and is found to be in good agreement with cosmological models and previous measurements. Again, by separating by accretion mode, the previously estimated increase in available mechanical energy per unit volume out to z=1 (approximately a factor of 2) can be attributed to the rapid evolution of the quasar-mode AGN, while for the classical radio-mode AGN the total mechanical energy output remains roughly

  4. TORUS2015: The AGN unification scheme after 30 years

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Hoenig, S. F.

    2015-09-01

    The torus paradigm has proved to be remarkably successful at unifying the observed zoo of active galaxy (AGN) classes, despite having many manifest holes. The field is still data-driven with novel observational results at multiple wavelengths emerging rapidly. We are only now beginning to map out the structure of dusty gas feeding and obscuring AGN, and to model its evolution in galaxy growth. But these have also brought out several apparently contradictory results which must hold the key to future progress. As we celebrate 30 years of the paradigm, this is the perfect time to draw together our current knowledge and reassess the state of the field. This will be an international workshop at the University of Southampton, UK, with the objective of laying out the major challenges to the field and paving future research directions. Our hope is to facilitate plenty of informal discussions between multiwavelength observers and theorists, addressing some key issues: * What is the main driver in the unification scheme? What are the roles of orientation, mass accretion rate and feedback? * What is the nature and structure of gas and dust in the torus? Do we have a self-consistent picture across multiple wavelengths? * How critical is the role of the torus as an interface between small nuclear scales and large galactic scales? Does galaxy evolution necessarily require tori? * How close are we to self-consistently simulating nuclear activity including AGN feeding and nuclear star-formation? Workshop Rationale The three themes of accretion, orientation, and evolution will be covered through invited and solicited contributions. Different to other conferences, we are building each session around some key papers that have shaped the field or those with great future potential to do so. We specifically pit competing ideas against each other to help painting a realistic picture of the state-of-the-art. Each session will end with discussion rounds delving into important future

  5. The Star-Forming Properties of an Ultra-Hard X-ray Selected Sample of AGN

    NASA Astrophysics Data System (ADS)

    Shimizu, Thomas Taro; Mushotzky, Richard; Melendez, Marcio; Koss, Michael

    2015-08-01

    We present results from our Herschel follow-up survey of the Swift/BAT AGN 58 month catalog. Using the PACS and SPIRE instruments, 313 AGN were imaged at 5 far-infrared (FIR) wavelengths (70, 160, 250, 350, and 500 μm) producing the largest and most complete FIR catalog of local AGN. We combine our FIR photometry with archival mid-infrared photometry to form broadband spectral energy distributions (SEDs) that for the first time reach into the sub-millimeter regime. We fit these SEDs with several models to determine the star-forming properties of the host galaxies such as star-formation rate (SFR), IR luminosity, dust temperature, and dust mass and measure their relationship with various AGN properties such as X-ray luminosity, Eddington ratio, black hole mass, and column density. We find a weak dependence of the global SFR on the AGN strength indicating either the AGN has little influence on star formation over the entire galaxy or that the variability of the AGN on short timescales washes away any correlation between star formation and the AGN. Comparing the BAT AGN to a sample of normal star-forming galaxies on the “main sequence”, we find the BAT AGN systematically have decreased levels of specific SFR (sSFR = SFR/stellar mass). This is possibly indirect evidence that the AGN has suppressed star-formation in its host galaxy. Analysis of the FIR images themselves reveals that many of the BAT AGN are compact which leads to increased levels of SFR surface density, high enough for starburst driven winds. Finally, we show the 70 μm luminosity can be heavily contaminated by AGN emission and should not be used as a SFR indicator for AGN host galaxies.

  6. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect

    1995-05-01

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  7. Is There an Obscured AGN in the Normal Galaxy IRASF01063-8034

    NASA Technical Reports Server (NTRS)

    Greenhill, Lincoln J.

    2005-01-01

    The XMM target for this program is ostensibly a "normal" galaxy, but the presence of water maser emission indicated that it may be an obscured AGN. Our primary goal is to test this hypothesis; detection hard X-ray emission and a reflection-dominated spectrum would indicate an AGN is present. Demonstration that the local universe contains obscured AGN is important to constraining models of the hard cosmic X-ray background, as is identification of efficient methods to locate them (e.g., ground-based detection of maser emission at microwave frequencies).

  8. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1AGN suggests that the merger of a binary black hole can take longer than 1 Gyr. All AGNs hosted by merging galaxies have companions at distances ⩽150 kpc. The NLRs have large sizes (10 kpc < r < 100 kpc) and consist of compact clumps with considerable relative velocities between components (∼200–650 km s{sup −1}). We detect broad, predominantly blue, wings with velocities up to ∼1500 km s{sup −1} in [OIII], indicative of powerful outflows. The outflows are compact (<5 kpc) and co-spatial with nuclear regions showing considerable reddening, consistent with enhanced star formation. One source shows an offset between gas and stellar kinematics, consistent with either a bipolar flow or a counter-rotating gas disk. In all other sources, the ionized gas

  9. VizieR Online Data Catalog: RM AGNs accretion rates and BH masses (Du+, 2016)

    NASA Astrophysics Data System (ADS)

    Du, P.; Wang, J.-M.; Hu, C.; Ho, L. C.; Li, Y.-R.; Bai, J.-M.

    2016-05-01

    We select all AGNs with reverberation mapping (RM) data (here only broad Hβ line), which yield robust BH mass estimates needed for our analysis. All RM AGNs before 2013 are summarized by Bentz et al. (2013ApJ...767..149B). Our project to search for super-Eddington accreting massive black holes (SEAMBHs) has monitored about 25 candidates and successfully measured Hβ lags ({tau}Hβ) in 14 AGNs to date (Du et al. 2015, J/ApJ/806/22) and other five objects monitored between 2014 and 2015 (to be submitted). See section 2 for further explanations. (2 data files).

  10. Downscaling transient climate change using a Neyman-Scott Rectangular Pulses stochastic rainfall model

    NASA Astrophysics Data System (ADS)

    Burton, A.; Fowler, H. J.; Blenkinsop, S.; Kilsby, C. G.

    2010-02-01

    SummaryThe future management of hydrological systems must be informed by climate change projections at relevant time horizons and at appropriate spatial scales. Furthermore, the robustness of such management decisions is dependent on both the uncertainty inherent in future climate change scenarios and the natural climate system. Addressing these needs, we present a new transient rainfall simulation methodology which combines dynamical and statistical downscaling techniques to produce transient (i.e. temporally non-stationary) climate change scenarios. This is used to generate a transient multi-model ensemble of simulated point-scale rainfall time series for 1997-2085 for the polluted Brévilles spring in Northern France. The recovery of this previously potable source may be affected by climatic changes and variability over the next few decades. The provision of locally-relevant transient climate change scenarios for use as input to hydrological models of both water quality and quantity will ultimately provide a valuable resource for planning and decision making. Observed rainfall from 1988-2006 was characterised in terms of a set of statistics for each calendar month: the daily mean, variance, probability dry, lag-1 autocorrelation and skew, and the monthly variance. The Neyman-Scott Rectangular Pulses (NSRP) stochastic rainfall model was fitted to these observed statistics and correctly simulated both monthly statistics and extreme rainfall properties. Multiplicative change factors which quantify the change in each statistic between the periods 1961-1990 and 2071-2100 were estimated for each month and for each of 13 Regional Climate Models (RCMs) from the PRUDENCE ensemble. To produce transient climate change scenarios, pattern scaling factors were estimated and interpolated from four time-slice integrations of two General Circulation Models which condition the RCMs, ECHAM4/OPYC and HadCM3. Applying both factors to the observed statistics provided projected

  11. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  12. Jets and Outflows in Radio Galaxies: Implications for AGN Feedback

    NASA Astrophysics Data System (ADS)

    Torresi, Eleonora; Grandi, Paola; Costantini, Elisa; Palumbo, Giorgio G. C.

    One of the main debated astrophysical problems is the role of the AGN feedback in galaxy formation. It is known that massive black holes have a profound effect on the formation and evolution of galaxies, but how black holes and galaxies communicate is still an unsolved problem. For Radio Galaxies, feedback studies have mainly focused on jet/cavity systems in the most massive and X-ray luminous galaxy clusters. The recent high-resolution detection of warm absorbers in some Broad Line Radio Galaxies allow us to investigate the interplay between the nuclear engine and the surrounding medium from a different perspective. We report on the detection of warm absorbers in two Broad Line Radio Galaxies, 3C 382 and 3C 390.3, and discuss the physical and energetic properties of the absorbing gas. Finally, we attempt a comparison between radio-loud and radio-quiet outflows.

  13. Synergy Between Observations of AGN with GLAST and MAXI

    SciTech Connect

    Madejski, Grzegorz

    2002-03-25

    In five years' time we will witness the launch of two important missions developed to observe celestial sources in the high energy regime: GLAST, sensitive in the high energy {gamma}-ray band, and MAXI, the all-sky X-ray monitor. Simultaneous monitoring observations by the two instruments will be particularly valuable for variable sources, allowing cross-correlations of time series between the two bands. We present the anticipated results from such observations of active galaxies, and in particular, of the jet-dominated sub-class of AGN known as blazars. We discuss the constraints on the structure and emission processes--and in particular, on the internal shock models currently invoked to explain the particle acceleration processes in blazars--that can be derived with simultaneous {gamma}-ray and X-ray data.

  14. A Mixture Evolution Scenario of the AGN Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng; Zhou, Ming; Mao, Jirong

    2016-03-01

    We propose a mixture evolution scenario to model the evolution of the radio luminosity function (RLF) of steep-spectrum AGNs (active galactic nuclei), based on a Bayesian method. In this scenario, the shape of the RLF is determined by both the density and luminosity evolution. Our models indicate that the density evolution is positive until a redshift of ∼ 0.9, at which point it becomes negative, while the luminosity evolution is positive to a higher redshift (z∼ 5 for model B and z∼ 3.5 for model C), where it becomes negative. Our mixture evolution model works well, and the modeled RLFs are in good agreement with previous determinations. The mixture evolution scenario can naturally explain the luminosity-dependent evolution of the RLFs.

  15. Relativistic Effects on Reflection X-ray Spectra of AGN

    SciTech Connect

    Lee, Khee-Gan; Fuerst, Steven V.; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  16. AGN Spectral Energy Distributions of GLAST Telescope Network Program Objects

    NASA Astrophysics Data System (ADS)

    Adkins, Jeff; Lacy, Mark; Daou, Doris; Rapp, Steve; Stefaniak, Linda

    2005-03-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the "GLAST Telescope Network" (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project will observe one of these objects with the Spitzer MIPS and the IRAC instruments to determine their Spectral Energy Distribution (SED), which will be compared to a computer model of disk emission in order to determine what component of the SED is due to the disk and what component is due to synchrotron radiation induced by the jets. In addition we will observe our program objects prior to, simultaneously with, and after Spitzer observes them. This gives a direct connection from Spitzer research to student activities in the classroom.

  17. Radio Studies of Galactic Objects, Galaxies and AGNs

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Sun, X. H.; Yang, J.; Wielebinski, R.

    2003-02-01

    The Sino-German Radio Astronomy Conference was held in Xi'an between July 18th and 25th 2002. This conference was also a meeting of radio astronomy in China. The partner group of Max-Plack-Institut for Radioastronomie at National Astronomical Observatories of China took the responsibility for detailed organizations. The conference was focused on "Radio studies of Galactic objects, galaxies and AGNs", with 80 partici- pants plus the 6 helpers. Most radio astronomers in China together with about 30 students enjoyed the fruitful discussions with 9 German senior scientists and 6 famous experts from other countries. In addition, the his- torical sites and culture environments specifically in Xi'an also attracted a dozen companions of delegates.

  18. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  19. Simulations of the OzDES AGN reverberation mapping project

    DOE PAGES

    King, Anthea L.; Martini, Paul; Davis, Tamara M.; Denney, K. D.; Kochanek, C. S.; Peterson, Bradley M.; Skielboe, Andreas; Vestergaard, Marianne; Huff, Eric; Watson, Darach; et al

    2015-08-26

    As part of the Australian spectroscopic dark energy survey (OzDES) we are carrying out a large-scale reverberation mapping study of ~500 quasars over five years in the 30 deg2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8 mag < r < 22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission-line fluxes of individual objects in order to measure black hole masses for a broad range of active galactic nuclei (AGN) and constrainmore » the radius–luminosity (R–L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for ~35–45 % of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag measurement, and objects with lags ≲6 months or ~1 yr are expected to be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the R–L relationship parameters for Hβ, MgIIλ2798, and C IVλ1549. As a result, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission-line flux measurement accuracy will significantly improve the R–L parameter constraints for all broad emission lines.« less

  20. The AGN Content of the Micron all Sky Survey

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.

    2000-01-01

    The Two Micron All Sky Survey (2MASS) began routine operations from its northern facility on Mt. Hopkins, AZ in June of 1997, and from its southern facility on Cerro Tololo, Chile in March of 1998. At each site, highly automated 1.3 m telescopes equipped with identical 3-channel cameras, are systematically imaging the sky in three near infrared wavelength bands, J (1.25 um), H (1.65 um) and K-s (2.17 um). The Survey will ultimately produce an Image Atlas containing nearly two million 512 x 1024 pixel images (1 arcsec/pix) in the three colors, a highly complete and reliable catalog containing approx. 300 million point sources having SNR greater than 10 photometry at J less or = 15.8, H less or = 15.1 and K-s less or = 14.3 mag. and an astrometric accuracy greater than 0.511 RMS, and a catalog of 1-2 million resolved sources, primarily galaxies, having SNR greater than 10 photometric accuracy at J less than or = 15.5, H less than or = 14.8 and K-s less than or = 13.5 mag. The 2MASS Sampler, an introductory set of data, was released to the community in December of 1998 (see http://www.ipac.caltech.edu/2mass/). We review the near IR and optical/IR properties of "conventional" QSOs from UV and optical samples, and estimate the number that will be detected by 2MASS. We also discuss 2MASS's ability to test for for new populations of extremely red AGN that have been missed by UV and Visual surveys, as suggested by from IRAS and radio studies. Results of spectroscopic follow-up of 2MASS-selected new AGN candidates will also be presented.

  1. The host galaxies of AGN with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3AGN) with powerful relativistic jets (L1.4GHz >10^27 WHz^-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4GHz = 10^23.7 - 10^28.3WHz^-1, allowing us to divide our sample into high-excitation (quasar-mode; HERGs) and low-excitation (radio-mode; LERGs) radio galaxies. The host galaxies of our sample are bright and seem to follow the Kormendy relation. Nuclear emission (dominated by non-thermal mechanisms) and host-galaxy magnitudes show a slightly negative weak trend for LERGs. On the other hand, the m_bulge -m_nuc relation is statistically significant for HERGs. Although it may be affected by selection effects, this correlation suggests a close coupling between the relativistic jets and their host galaxy. Our findings are consistent with the excitation state (LERG/HERG) scenario. In this view, LERGs emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and HERGs are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  2. Do the Kepler AGN light curves need reprocessing?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.; Williams, Joshua; Carini, Michael T.

    2015-10-01

    We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST data base with a reprocessed light curve constructed from raw pixel data. We use the first-order structure function, SF(δt), to fit both light curves to the damped power-law PSD (power spectral density) of Kasliwal et al. On short time-scales, we find a steeper log PSD slope (γ = 2.90 to within 10 per cent) for the reprocessed light curve as compared to the light curve found on MAST (γ = 2.65 to within 10 per cent) - both inconsistent with a damped random walk (DRW) which requires γ = 2. The log PSD slope inferred for the reprocessed light curve is consistent with previous results that study the same reprocessed light curve. The turnover time-scale is almost identical for both light curves (27.1 and 27.5 d for the reprocessed and MAST data base light curves). Based on the obvious visual difference between the two versions of the light curve and on the PSD model fits, we conclude that there remain significant levels of spacecraft-induced effects in the standard pipeline reduction of the Kepler data. Reprocessing the light curves will change the model inferenced from the data but is unlikely to change the overall scientific conclusions reached by Kasliwal et al. - not all AGN light curves are consistent with the DRW.

  3. AGN disks and black holes on the weighting scales

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.; Surville, C.; Nakai, N.; Jacq, T.

    2011-06-01

    We exploit our formula for the gravitational potential of finite size, power-law disks to derive a general expression linking the mass of the black hole in active galactic nuclei (AGN), the mass of the surrounding disk, its surface density profile (through the power index s), and the differential rotation law. We find that the global rotation curve v(R) of the disk in centrifugal balance does not obey a power law of the cylindrical radius R (except in the confusing case s = -2 that mimics a Keplerian motion), and discuss the local velocity index. This formula can help to understand how, from position-velocity diagrams, mass is shared between the disk and the black hole. To this purpose, we checked the idea by generating a sample of synthetic data with different levels of Gaussian noise, added in radius. It turns out that, when observations are spread over a large radial domain and exhibit low dispersion (standard deviation σ ≲ 10% typically), the disk properties (mass and s-parameter) and black hole mass can be deduced from a non linear fit of kinematic data plotted on a (R,Rv2)-diagram. For σ ≳ 10%, masses are estimated fairly well from a linear regression (corresponding to the zeroth-order treatment of the formula), but the power index s is no longer accessible. We have applied the model to 7 AGN disks whose rotation has already been probed through water maser emission. For NGC 3393 and UGC 3789, the masses seem well constrained through the linear approach. For IC 1481, the power-law exponent s can even be deduced. Because the model is scale-free, it applies to any kind of star/disk system. Extension to disks around young stars showing deviation from Keplerian motion is thus straightforward.

  4. Prospects for AGN Science using the ART-XC on the SRG Mission

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Elsner, Ronald F.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Ramsey, Brian D.; Bonamente, Massimiliano

    2012-01-01

    The enhanced hard X-ray sensitivity provided by the Astronomical Roentgen Telescope to the Spectrum Roentgen Gamma mission facilitates the detection of heavily obscured and other hard-spectrum cosmic X-ray sources. The SRG all-sky survey will obtain large, statistically-well-defined samples of active galactic nuclei (AGN) including a significant population of local heavily-obscured AGN. In anticipation of the SRG all-sky survey, we investigate the prospects for refining the bright end of the AGN luminosity function and determination of the local black hole mass function and comparing the spatial distribution of AGN with large-scale structure defined by galaxy clusters and groups. Particular emphasis is placed on studies of the deep survey Ecliptic Pole regions.

  5. The Chandra Survey of Outflows in AGN with Resolved Spectroscopy (SOARS)

    NASA Astrophysics Data System (ADS)

    Marshall, Herman; Evans, Daniel

    2012-07-01

    We present results from the Chandra SOARS (Survey Outflows in AGN with Resolved Spectroscopy) program, using spatially resolved Chandra High Energy Transmission Grating spectroscopy of the kpc-scale narrow line regions around some of our nearest AGN, including the Circinus Galaxy, NGC 1068, Mrk 3, and NGC 3393. We use the neutral and photoexcited lines measurable using the HETG Spectrometer to (1) measure the mass and energy imparted by the AGN outflow into its kpc-scale environment; and (2) create a full kinematic map of the galaxy, thereby directly constraining the extent of the outflow. Our results have key implications for the role of galactic-scale outflows in AGN as moderators of galaxy evolution

  6. AGN 190383, a novel phospholipase inhibitor with topical anti-inflammatory activity.

    PubMed

    De Vries, G W; Lee, G; Amdahl, L; Wenzel, M; Garst, M; Wheeler, L A

    1991-09-01

    AGN 190383 is a 5-hydroxy-2(5H)-furanone ring analog of the marine natural product manoalide. When applied topically, AGN 190383 inhibits phorbol ester induced mouse ear edema. It is a potent inhibitor of bee venom phospholipase A2 and blocks the release of arachidonic acid from calcium ionophore A23187 stimulated human neutrophils. AGN 190383 also inhibits both hormone-operated and depolarization-dependent calcium mobilization in GH3 cells, as well as fMLP stimulated increases in free cytosolic calcium in human PMNs. Furthermore, it is also able to block the release of the neutral protease elastase from stimulated neutrophils. The effects of AGN 190383 on arachidonic acid metabolism and leukocyte function may account, in part, for its anti-inflammatory activity in vivo.

  7. Characterizing the redshifts and luminosities of WISE selected obscured AGN using SALT optical spectra.

    NASA Astrophysics Data System (ADS)

    Hviding, Raphael E.; Hickox, Ryan C.; Hainline, Kevin N.; Carroll, Christopher M.; DiPompeo, Mike A.; Jones, Mackenzie L.

    2016-08-01

    We present the results of several optical spectroscopic surveys covering over 100 candidate luminous obscured active galactic nuclei (AGN) identified by their mid-infrared emission detected with the Wide-Field Infrared Survey Explorer (WISE). These galaxies were selected based on red WISE colors and galaxy-like optical emission, and were studied using long-slit optical spectroscopy with the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT). Our spectra were analyzed to obtain redshifts and emission line flux ratios for each galaxy. These results verify that WISE is an effective section method for luminous obscured AGN, allow for the characterization of redshifts and luminosities of the WISE color selected obscured AGN population, and could potentially contribute to large statistical studies of obscured AGN distributions in the future.

  8. Testing different AGN tracers on a local sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Pozzi, F.

    2016-08-01

    I will present our new study on a local sample of Seyfert galaxies selected at 12 micron. This sample, given its plenty of information, both photometric and spectroscopic, is a perfect sample to compare, from a statistical point of view, different AGN selection criteria, and AGN derived intrinsic properties. In detail, I will compare AGN activity derived from SED-fitting technique, X-ray luminosity and AGN activity traced by high excitation IR lines, like [NeV] and [OIV]. Moreover, for one particular obscured X-ray Compton-thick source, thanks also to the availability of ALMA data, I will derive a self-consistent overview of the physics behind the emission in different bands,by taking advantage of the photoionization code CLOUDY.

  9. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    SciTech Connect

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates at $z\\lt 0.34$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation ${\\rm \\Delta }x=2.2$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations ${\\rm \\Delta }x\\lt 10$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.

  10. Merger-driven fueling of active galactic nuclei: Six dual and of AGNs discovered with Chandra and Hubble Space Telescope observations

    DOE PAGES

    Comerford, Julia M.; Pooley, David; Barrows, R. Scott; Greene, Jenny E.; Zakamska, Nadia L.; Madejski, Greg M.; Cooper, Michael C.

    2015-06-19

    Dual active galactic nuclei (AGNs) and offset AGNs are kpc-scale separation supermassive black holes pairs created during galaxy mergers, where both or one of the black holes are AGNs, respectively. These dual and offset AGNs are valuable probes of the link between mergers and AGNs but are challenging to identify. Here we present Chandra/ACIS observations of 12 optically selected dual AGN candidates atmore » $$z\\lt 0.34$$, where we use the X-rays to identify AGNs. We also present Hubble Space Telescope/Wide Field Camera 3 observations of 10 of these candidates, which reveal any stellar bulges accompanying the AGNs. We discover a dual AGN system with separation $${\\rm \\Delta }x=2.2$$ kpc, where the two stellar bulges have coincident [O iii] λ5007 and X-ray sources. This system is an extremely minor merger (460:1) that may include a dwarf galaxy hosting an intermediate mass black hole. We also find six single AGNs, and five systems that are either dual or offset AGNs with separations $${\\rm \\Delta }x\\lt 10$$ kpc. Four of the six dual AGNs and dual/offset AGNs are in ongoing major mergers, and these AGNs are 10 times more luminous, on average, than the single AGNs in our sample. This hints that major mergers may preferentially trigger higher luminosity AGNs. Further, we find that confirmed dual AGNs have hard X-ray luminosities that are half of those of single AGNs at fixed [O III] λ5007 luminosity, on average. Lastly, this could be explained by high densities of gas funneled to galaxy centers during mergers, and emphasizes the need for deeper X-ray observations of dual AGN candidates.« less

  11. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  12. Responding to the Needs of Historically Black Colleges and Universities in the 21st Century. Hearing before the Subcommittee on 21st Century Competitiveness and the Subcommittee on Select Education of the Committee on Education and the Workforce. House of Representatives, One Hundred Seventh Congress, Second Session (September 19, 2002).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and the Workforce.

    This hearing on the needs of historically black colleges and universities is the fourth in a series that explores the issues faced by these minority-serving institutions and the opportunities they have afforded black students over the years. Following opening statements by Representative Howard P. McKeon, Representative Robert C. Scott, and…

  13. A spectroscopic survey of X-ray-selected AGNs in the northern XMM-XXL field

    NASA Astrophysics Data System (ADS)

    Menzel, M.-L.; Merloni, A.; Georgakakis, A.; Salvato, M.; Aubourg, E.; Brandt, W. N.; Brusa, M.; Buchner, J.; Dwelly, T.; Nandra, K.; Pâris, I.; Petitjean, P.; Schwope, A.

    2016-03-01

    This paper presents a survey of X-ray-selected active galactic nuclei (AGNs) with optical spectroscopic follow-up in a ˜ 18 deg2 area of the equatorial XMM-XXL north field. A sample of 8445 point-like X-ray sources detected by XMM-Newton above a limiting flux of F_{0.5-10 keV} > 10^{-15} erg cm^{-2} s^{-1} was matched to optical (Sloan Digital Sky Survey, SDSS) and infrared (IR; WISE) counterparts. We followed up 3042 sources brighter than r = 22.5 mag with the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectrograph. The spectra yielded a reliable redshift measurement for 2578 AGNs in the redshift range z = 0.02-5.0, with 0.5-2 keV luminosities ranging from 1039-1046 erg s- 1. This is currently the largest published spectroscopic sample of X-ray-selected AGNs in a contiguous area. The BOSS spectra of AGN candidates show a distribution of optical line widths which is clearly bimodal, allowing an efficient separation between broad- and narrow-emission line AGNs. The former dominate our sample (70 per cent) due to the relatively bright X-ray flux limit and the optical BOSS magnitude limit. We classify the narrow-emission line objects (22 per cent of the full sample) using standard optical emission line diagnostics: the majority have line ratios indicating the dominant source of ionization is the AGN. A small number (8 per cent of the full sample) exhibit the typical narrow line ratios of star-forming galaxies, or only have absorption lines in their spectra. We term the latter two classes `elusive' AGN, which would not be easy to identify correctly without their X-ray emission. We also compare X-ray (XMM-Newton), optical colour (SDSS) and and IR (WISE) AGN selections in this field. X-ray observations reveal, by far, the largest number of AGN. The overlap between the selections, which is a strong function of the imaging depth in a given band, is also remarkably small. We show using spectral stacking that a large fraction of the X-ray AGNs would not be

  14. The Contribution of Compton-Thick AGN/ULIRGs to the X-Ray Background

    NASA Astrophysics Data System (ADS)

    Nardini, Emanuele

    Accretion onto the supermassive black holes located at the centre of Active Galactic Nuclei(AGN) is one of the most efficient power sources in the Universe, and provides a significant contribution to the energy radiated over cosmic times. The spectral shape of the X-ray background and its progressive resolution strongly suggests that most AGN are heavily obscured by large amounts of dust and gas. Their primary radiation field is reprocessed and re-emitted at longer wavelengths, driving a huge IR luminosity. Ultraluminous Infrared Galaxies (ULIRGs) are the local counterparts of the high-redshift (z < 1 3) IR systems that harbour the bulk of obscured nuclear activity in the early Universe. We have been recently awarded Suzaku observations of two ULIRGs, IRAS 00182 7112 and IRAS 12127 1412, for a total exposure time of 150 ks. Both the sources are known to host an elusive AGN whose intrinsic luminosity is estimated to fall in the quasar range. Although classified as Low-Ionization Nuclear Emission-line Regions in the optical, these ULIRGs sport the typical features of buried AGN in the mid-IR. IRAS 12127 1412 was observed for the first time in the X-rays by our group. Its Chandra spectrum clearly shows the signatures of AGN reflection at 2 10 keV. Similar properties were previously found in IRAS 00182 7112. Our Suzaku observations will allow to pinpont the AGN emission above 10 keV, and will provide fundamental information on the physical and geometrical structure of Compton-thick AGN embedded in a nuclear starburst. These sources are believed to experience the very initial phase of the AGN feedback on the surrounding environment, eventually leading to the formation of powerful optically- bright quasars. Besides this, we stress another remarkable opportunity related to the study of these two ULIRGs. Due to their really unique mid-IR and hard X-ray spectral properties, IRAS 00182 7112 and IRAS 12127 1412 can be considered as representative templates for a significant

  15. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity

  16. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than -50 km s-1 and/or blueshifted wings with 84% velocities less than -300 km s-1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s-1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. Ultra-fast outflows (aka UFOs) in AGNs and their relevance for feedback

    NASA Astrophysics Data System (ADS)

    Cappi, Massimo; Tombesi, F.; Giustini, M.; Dadina, M.; Braito, V.; Kaastra, J.; Reeves, J.; Chartas, G.; Gaspari, M.; Vignali, C.; Gofford, J.; Lanzuisi, G.

    2012-09-01

    During the last decade, several observational evidences have been accumulated for the existence of massive, high velocity winds/outflows (aka UFOs) in nearby AGNs and, possibly, distant quasars. I will review here such evidences, present some of the latest results in this field, and discuss the relevance of UFOs for both understanding the physics of accretion/ejection flows on supermassive black holes, and for quantifying the amount of AGN feedback.

  18. The Search for Molecular Outflows in Local Volume AGNs with Herschel-PACS

    NASA Astrophysics Data System (ADS)

    Stone, M.; Veilleux, S.; Meléndez, M.; Sturm, E.; Graciá-Carpio, J.; González-Alfonso, E.

    2016-08-01

    We present the results from a systematic search for galactic-scale, molecular (OH 119 μm) outflows in a sample of 52 Local Volume (d\\lt 50 Mpc) Burst Alert Telescope detected active galactic nuclei (BAT AGNs) with Herschel-PACS. We combine the results from our analysis of the BAT AGNs with the published Herschel/PACS data of 43 nearby (z\\lt 0.3) galaxy mergers, mostly ultra-luminous infrared galaxies (ULIRGs) and QSOs. The objects in our sample of BAT AGNs have, on average, ˜ 10{--}100 times lower AGN luminosities, star formation rates, and stellar masses than those of the ULIRG and QSO samples. OH 119 μm is detected in 42 of our BAT AGN targets. Evidence for molecular outflows (i.e., OH absorption profiles with median velocities more blueshifted than ‑50 km s‑1 and/or blueshifted wings with 84% velocities less than ‑300 km s‑1) is seen in only four BAT AGNs (NGC 7479 is the most convincing case). Evidence for molecular inflows (i.e., OH absorption profiles with median velocities more redshifted than 50 km s‑1) is seen in seven objects, although an inverted P-Cygni profile is detected unambiguously in only one object (Circinus). Our data show that both the starburst and AGN contribute to driving OH outflows, but the fastest OH winds require AGNs with quasar-like luminosities. We also confirm that the total absorption strength of OH 119 μm is a good proxy for dust optical depth as it correlates strongly with the 9.7 μm silicate absorption feature, a measure of obscuration originating in both the nuclear torus and host galaxy disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  20. Hard X-ray spectral properties of distant AGN in the NuSTAR surveys

    NASA Astrophysics Data System (ADS)

    Del Moro, Agnese

    2016-08-01

    I will present a study on the average broad X-ray band (~0.5-30 keV) spectral properties of the NuSTAR sources detected in the ECDF-S, EGS and COSMOS fields. Constructing the rest-frame composite spectra of AGN in different hydrogen column density (NH) and 10-40 keV luminosity bins, using Chandra and NuSTAR data, we investigate the typical spectral parameters of the AGN population, such as the photon index, NH, strength of the iron emission line (~6.4 keV) and of the Compton reflection at ~20-30 keV. Placing constraints on the reflection fraction (R) is of particular importance for the synthesis models of the cosmic X-ray background (CXB), as this parameter is strongly linked with the fraction of Compton-thick AGN needed to fit the CXB spectrum. Thanks to its sensitivity at ~20-30 keV, NuSTAR allows for the first time, to directly place such constraints for non-local AGN. We find typical reflection fractions of R~1-1.5, consistent the AGN in the local Universe, with a tentative evidence for the most obscured AGN to have, on average, stronger Compton reflection compared to unobscured AGN. Moreover, contrary to previous works, we do not find significant evidence for a decrease of the reflection strength with luminosity for typical Γ=1.8-1.9. Our results support CXB models that require a relatively small fraction of CT AGN, of the order of ~10-15%.

  1. Cooling, AGN Feedback, and Star Formation in Simulated Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.; Ruszkowski, Mateusz; Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan

    2015-10-01

    Numerical simulations of active galactic nuclei (AGNs) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation, and stellar feedback, focusing on the interplay between cooling, AGN heating, and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the intracluster medium (ICM) and reduces its cooling rate. Within 1–2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations of cool-core clusters. ICM cooling is dynamically balanced by AGN heating, and a cool-core appearance is preserved. The minimum cooling time to free-fall time ratio typically varies between a few and ≳ 20. The star formation rate (SFR) covers a wide range, from 0 to a few hundred {M}ȯ {{yr}}-1, with an average of ∼ 40 {M}ȯ {{yr}}-1. The instantaneous SMBH accretion rate shows large variations on short timescales, but the average value correlates well with the SFR. Simulations without stellar feedback or self-gravity produce qualitatively similar results, but a lower SMBH feedback efficiency (0.1% compared to 1%) results in too many stars.

  2. Dual AGNs in Mergers: An X-ray and IR investigation

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Secrest, Nathan; Rothburg, Barry; Ellison, Sara L.; McNulty, Paul

    2016-01-01

    Since the vast majority of galaxies contain supermassive black holes (SMBHs) and galaxy interactions trigger nuclear gas accretion, a direct consequence of the hierarchical model of galaxy formation would be the existence of binary active galactic nuclei (AGNs). The existence, frequency, and characteristics of such binary AGNs have important astrophysical implications on the SMBH mass function, the interplay between SMBHs and the host galaxy, and the M-sigma relation. Despite decades of searching, and strong theoretical reasons that they should exist, observationally confirmed cases of binary AGNs are extremely rare, and most have been discovered serendipitously. Using the all-sky WISE survey, we identified a population of over one hundred strongly interacting galaxies that display extreme red mid-infrared colors thus far exclusively associated in extragalactic sources with powerful AGNs. In this talk, I will summarize follow-up X-ray and near-IR spectroscopic observations of this population that reveal a population of optically quiescent dual AGNs at kpc scales. These observations demonstrate that mid_IR surveys are an ideal pre-selection strategy in finding dual AGNs in the most advanced mergers.

  3. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  4. The small observed scale of AGN-driven outflows, and inside-out disc quenching

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2016-11-01

    Observations of massive outflows with detectable central active galactic nuclei (AGN) typically find them within radii ≲10 kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of the order of the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity, the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant-shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas-rich galaxies, these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas-rich discs, with gas-to-baryon fraction <0.2, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalization of the Kennicutt-Schmidt law. The star formation enhancement is probably stronger in the outskirts of galaxy discs, so coasting outflows might be detected by their effects upon the disc even after the driving AGN has shut off. We compare our results to the recent inference of inside-out quenching of star formation in galaxy discs.

  5. Triggering processes and star formation in AGN: multi-wavelength matters

    NASA Astrophysics Data System (ADS)

    Ellison, Sara

    2016-08-01

    AGN can be selected via an array of multi-wavelength diagnostics, spanning the X-ray and optical, to the mid-IR and radio. Many studies of AGN and host galaxy properties focus on samples selected in only one of these domains. However, AGN selected at different wavelengths can exhibit very different properties, such that understanding the "big picture" requires a simultaneous multi-wavelength approach. In this talk, I will present a homogeneous analysis of 3 large samples of z~0 AGN, selected in the radio, mid-IR and optical in order to address the following two questions: what are the triggering mechanisms of AGN accretion, and what are the star formation rates of the host galaxies? Thanks to the combination of multi-wavelength data, large samples, and homogeneous treatment, it is possible to distinguish different triggering mechanisms (e.g. mergers vs. secular) contributing to different AGN samples, and clearly measure differences in their relative star formation rates.

  6. ISO Key Project: Exploring the Full Range of Quasar/AGN Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, B.

    2001-01-01

    The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultra-violet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution, remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.

  7. Community Colleges. The Boston Junior College Blues

    ERIC Educational Resources Information Center

    Papke, David Ray

    1975-01-01

    Private junior colleges for women in Boston are suffering from severe financial difficulties. The solutions at three schools, Garland Junior College, Pine Manor Junior College, and Mount Ida Junior College, are presented. (Author/PG)

  8. Flow-induced arrest of spatiotemporal chaos and transition to a stationary pattern in the Gray-Scott model.

    PubMed

    Das, Debojyoti

    2015-11-01

    We examine the prototypical Gray-Scott model, which mimics cubic autocatalytic reaction with linear decay of the autocatalyst, to model the kinetics of a reaction-diffusion system subjected to advective streamline flow. For a proper choice of boundary conditions and parameter space, the system admits wave-induced spatiotemporal chaos in the absence of flow. We show that flow above a critical value leads to an arrest of the spatiotemporal chaos due to a change in the instability from absolute to convective type. Furthermore, stationary spatial structures are borne out of a second successive bifurcation for yet another critical flow value. The theoretical formulations are corroborated by extensive numerical simulation of the full reaction-diffusion-advection system in one dimension.

  9. The 25 March 1993 Scotts Mills, Oregon, earthquake and aftershock sequence: Spatial distribution, focal mechanisms, and the mount angel fault

    USGS Publications Warehouse

    Thomas, G.C.; Crosson, R.S.; Carver, D.L.; Yelin, T.S.

    1996-01-01

    The 25 March 1993 ML = 5.7 crustal earthquake near Scotts Mills, Oregon, was the largest earthquake to occur in the Pacific Northwest in over a decade. The mainshock was located at 45.033?? N, 122.586?? W and at a depth of about 15.1 km, based on arrival time data from the short-period Pacific Northwest Seismograph Network. Beginning about 12 h after the mainshock, investigators from the U.S. Geological Survey deployed 22 digital seismographs to record aftershocks. Using data from the temporary and permanent stations, we analyzed a subset of 50 after-shocks with quality locations. Hypocenters of these aftershocks lie on a northwesttrending steeply dipping plane (strike 290 ?? 10??, dipping 60 ?? 5?? to the north-northeast), in agreement with the preferred slip plane of the mainshock focal mechanism solution (strike 294??, dipping 58?? to the north-northeast). The planar structure defined by the aftershock locations may be a southeast continuation of the Mount Angel Fault, a reverse fault identified from both surface and subsurface evidence. The mapped southeast extent of the Mount Angel Fault is located less than 10 km west of the Scotts Mills epicentral region. In addition, the mainshock focal mechanism solution, with a combination of reverse motion and right-lateral strike slip, has a geometry and sense of motion consistent with the Mount Angel Fault. While aftershock focal mechanisms are varied, P axes are consistently oriented in a subhorizontal north-south direction. This earthquake sequence, together with the geological and geophysical evidence for the Mount Angel Fault, suggests a significant crustal earthquake hazard for this region of northwest Oregon.

  10. Geologic map of the Scotts Mills, Silverton, and Stayton Northeast 7.5 minute quadrangles, Northwest Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry; Beeson, Marvin; Wheeler, Karen L.

    1999-01-01

    The Scotts Mills, Silverton, and Stayton NE 7.5 minute quadrangles are situated along the eastern margin of the Willamette Valley and adjacent lower foothills (Waldo and Silverton Hills) of the Cascade Range (Fig. 1). The terrain within this area is of low to moderate relief, ranging from 100 to more than 1000 ft above sea level. This area is largely rural, with most of the valley floor and low-relief foothills under cultivation. In the last decade, the rural areas outside the boundaries of established towns have experienced significant growth in new homes built and the expansion of housing subdivisions. This growth has placed an increased demand on existing geologic resources (e.g., groundwater, sand and gravel, crushed stone) and the need to better understand potential geologic hazards within this region. Previous geologic mapping by Piper (1942), Peck and others (1964), Newton (1969), Hampton (1972), Miller and Orr (1984), Orr and Miller (1984), and Miller and Orr (1986, 1988) established and refined the general stratigraphic framework of this region. This mapping identified few faults or folds; earlier investigators were hindered by the lack of reliably identifiable marker horizons within the stratigraphic section. Werner (1991), using available seismic profile lines and well data in the Willamette Valley to locate the top of the Columbia River Basalt Group, was able to identify and map faults within the subsurface. Reconnaissance mapping of the Columbia River Basalt Group (CRBG) units in this region in the early 1980’s indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985, 1989; Beeson and Tolan, 1990). The major emphasis of this investigation was to identify and map CRBG units within the Scotts Mills, Silverton, and Stayton NE quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features.

  11. The Third Turn toward the Social: Nancy Welch's "Living Room," Tony Scott's "Dangerous Writing," and Rhetoric and Composition's Turn toward Grassroots Political Activism

    ERIC Educational Resources Information Center

    Kinney, Kelly; Girshin, Thomas; Bowlin, Barrett

    2013-01-01

    This review essay examines recent texts by Nancy Welch and Tony Scott, both of which use embodied activism as a starting point for their inquiries. Taken together, these works point to a distinct shift in composition studies' turn toward the social, one that calls on workers both within and outside the academy to actively engage in grassroots…

  12. A Critique of "An Exploratory Investigation of the Effects of Communication Apprehension in Alternative Systems of Instruction" by Michael Scott, Michael Yates, and Lawrence Wheeless.

    ERIC Educational Resources Information Center

    Daly, John A.

    In this critique, comments and suggestions are offered that might be integrated into future research by Scott, Yates, and Wheeless on the topics of communication apprehension and alternative instructional approaches. These authors suggest, in their paper, that one's level of communication apprehension should be predictive of attitudes held toward,…

  13. Theoretical and Observational Studies of the Central Engines of AGN

    NASA Technical Reports Server (NTRS)

    Sivron, Ran

    1995-01-01

    In Active Galactic Nuclei (AGN) the luminosity is so intense that the effect of radiation pressure on a particle may exceed the gravitational attraction. It was shown that when such luminosities are reached, relatively cold (not completely ionized) thermal matter clouds may form in the central engines of AGN, where most of the luminosity originates. We show that the spectrum of emission from cold clouds embedded in hot relativistic matter is similar to the observed spectrum. We also show that within the hot relativistic matter, cold matter moves faster than the speed of sound or the Alfven speed, and shocks form. The shocks provide a mechanism by which a localized perturbation can propagate throughout the central engine. The shocked matter can emit the observed luminosity, and can explain the flux and spectral variability. It may also provide an efficient mechanism for the outward transfer of angular momentum and provide the outward flow of winds. With observations from X-ray satellites, emission features from the cold and hot matter may be revealed. Our analysis of X-ray data from the Seyfert 1 galaxy MCG - 6-30-15 over five years using detectors on the Ginga and Rosat satellites, revealed some interesting variable features. A source with hot matter emits non-thermal radiation which is Compton reflected from cold matter and then absorbed by warm (partially ionized) absorbing matter in the first model, which can be fit to the data if both the cold and warm absorbers are near the central engine. An alternative model in which the emission from the hot matter is partially covered by very warm matter (in which all elements except Iron are mostly ionized) is also successful. In this model the cold and warm matter may be at distances of up to 100 times the size of the central engine, well within the region where broad optical lines are produced. The flux variability is more naturally explained by the second model. Our results support the existence of cold matter in, or

  14. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  15. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    SciTech Connect

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.

  16. Navigating College

    ERIC Educational Resources Information Center

    Arum, Richard

    2016-01-01

    Students moving from high school to college in the United States typically confront a bewildering set of largely unstructured options. In the absence of clear signals about how to get the most out of college, they often choose pathways that involve limited academic rigor and engagement. In this article, Richard Arum describes a study that followed…

  17. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  18. Electoral College.

    ERIC Educational Resources Information Center

    Goldstein, Joel K.

    1996-01-01

    Examines one of the least understood institutions of U.S. politics, the Electoral College. Discusses the historical circumstances resulting in its creation as well as the current structure and membership. Provides arguments for and against continuation of the Electoral College. (MJP)

  19. College Calendars.

    ERIC Educational Resources Information Center

    Larsson, Robert D.

    In order to determine whether there were compelling reasons for Schenectady County Community College (SCCC) to change its quarter calendar, and which calendar would be most appropriate to the college and most responsive to the problems that made the change seem desirable, previous calendar change studies were reviewed and administrators of…

  20. The Host Galaxy Properties of Variability Selected AGN in the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Gezari, S.; Kumar, S.; Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-07-01

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV - r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  1. Interpreting the IR SED of z~0.3-2.8 IR-Luminous Galaxies and AGN Using Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Roebuck, Eric John; Sajina, Anna; Hayward, Christopher C.; Pope, Alexandra; Kirkpatrick, Allison; Hernquist, Lars E.; Yan, Lin

    2016-01-01

    We use three-dimensional hydrodynamical galaxy merger simulations to further investigate the nature of a sample of 342 24 μm-selected (ultra) luminous infrared galaxies at z~0.3-2.8. All of our sources have low-resolution Spitzer/IRS spectra -- the largest such sample outside the local universe. These spectra allow us to determine that our sample consists of a mixture of star forming galaxies (SFGs), AGN, and composites. We address the question of how well do empirical IR AGN fraction estimates trace the intrinsic AGN fraction (i.e. the AGN-to-total power in the galaxy prior to dust re-processing), including how they relate to galaxy properties such as merger stage, dust/gas content, and star formation rates. We do this by fitting the observed SEDs of our sample with theoretical SEDs based on GADGET hydrodynamic merger simulations additionally processed through the SUNRISE radiative transfer code. We additionally investigate systematic uncertainties associated with these quantities using the goodness of fits to our model library. The key findings are: 1) our simulation-based fits are in broad agreement with the empirical model-based fits, 2) much of the AGN fraction of LIR is missed if the AGN's contribution to heating the host galaxy dust is not accounted for, and 3) the IR AGN fraction traces the intrinsic AGN fraction up to the coalescence stage, however may underestimate the intrinsic AGN fraction post coalescence.

  2. X-ray Obscured AGN in the GOODS-N

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, E.

    2010-07-01

    We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ / fR > 1000. This population has been proposed to contain a significant fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is flat with Γ=1±0.1 very similar to the stacked spectrum of the undetected DOGs (Γ=0.8±0.2). However, most of our X-ray detected DOGs present only moderate absorption with column densities 1022 < NH < 1024 cm-2. Only three sources (20%) present very flat spectra and are probably associated with reflection dominated Compton-thick sources. Our finding is rather at odds with papers which claim that the vast majority of DOGs are associated with Compton-thick sources. In any case, such sources at high redshift (z > 2) present limited interest for the X-ray background: the population synthesis models predict a contribution, for the z > 2 Compton-thick AGN, to the X-ray background flux at 30 keV, of less than 1 percent.

  3. High School Observations of AGN Using the GTN

    NASA Astrophysics Data System (ADS)

    McLin, Kevin M.; Jordan, R.; Perkins, A.; Adkins, J.; Cominsky, L.

    2008-03-01

    Students at Deer Valley High School in Antioch, California have undertaken an AGN monitoring program using telescopes of the Global Telescope Network (GTN) and SkyNet. The GTN is a network of small telescopes funded by GLAST to support the science of high energy astrophysics missions, specifically GLAST, Swift and XMM-Newton. It is managed by the NASA E/PO Group at Sonoma State University. SkyNet is a network of small telescopes managed from the University of North Carolina to catch gamma ray burst afterglows. A primary motivator behind both networks is education. In the program outlined here, high school students will schedule, reduce and analyze observations of active galaxies in order to determine if any microflaring activity has occurred. Students will compare their results with previous studies reported in the literature and then report their own results at the Contra Costa County Science and Engineering Fair. This work will give the students direct experience with several aspects of scientific research, including literature searches, data acquisition and analysis, and reporting of results.

  4. Simultaneous NuSTAR - XMM-Newton observations of AGN

    NASA Astrophysics Data System (ADS)

    Gokus, Andrea; Schartel, Norbert; Santos-Lleo, Maria; Wilms, Jörn; Fürst, Felix; Ballhausen, Ralf

    2016-08-01

    With the launch of NuSTAR in 2012, for the first time spatially resolved observations in the hard X-ray region, far beyond 10 keV, have become possible. NASA's NuSTAR observes from 4 keV to 80 keV. Many observations of NuSTAR are performed simultaneously with ESA's XMM-Newton X-ray observatory whichobserves from 0.3 keV to 12 keV. The soft and hard X-ray spectra together allow determining the continuum, absorption, reflection and emission lines. The broad band coverage of XMM and NuSTAR allows to resolve degeneracies between different spectral components. Joint bservations of the two satellites have become the main tool to study the iron K alpha line emission in the direct environment of black holes. In this region, relativistic effects distort the line profile allowing, amongst others, to constrain the primary X-ray emission region and the spin of supermassive black holes in AGN. The present study aims for the first time to analyze all available simultaneous NuSTAR - XMM-Newton observations in a coherent way with the aim to improve the cross-calibration and characterize physical content of public data.

  5. Stimulated Cerenkov-radiation processes in dusty AGN

    SciTech Connect

    Krishan, V.

    1994-01-01

    An electron moving with a superluminal velocity in a dielectric medium gives rise to spontaneous Cerenkov radiation. If, instead of a single electron, a high density superluminal electron beam is made to pass through a dielectric, the spontaneously generated radiation will grow exponential with distance and is known as stimulated Cerenkov-Compton radiation. If, in addition, an incident electromagnetic field interacts with a strong superluminal or subluminal electron beam, a frequency up-converted stimulated scattered radiation is produced, which by analogy to a similar process in vacuum with subluminal electron beams, is known as Cerenkov-Raman radiation. We explore and point out the role of these processes in the dust environs of Active Galactic Nuclei (AGN). Since, the refractive index of the dust matter is a key factor in these processes, their inclusion links the properties of the dust grains with the characteristics of the non-thermal continuum especially in the infrared range, which, the observations show to be particularly bumpy and therefore requires additional contributions over the thermal continuum.

  6. Characterization of the AGN variability in the optical and Near Infrared regimes

    NASA Astrophysics Data System (ADS)

    Sanchez, Paula; Lira, Paulina; Cartier, Regis

    2016-08-01

    Variability is one of the most defining characteristic of Active Galactic Nuclei (AGN), and it is observed in every waveband in which they have been studied. For this reason variability studies are fundamental to understand the extreme physical conditions of accretion disks near supermassive black holes. Several efforts have been done to analyze the variability in the optical range, however, in order to relate the variability and physical properties of AGN, we need well sampled light curves. On the other hand, very little is known about the variability in the infrared range. This waveband gives us information about the dust surrounding the accretion disk at low redshift, and about the accretion disk at high redshift. In this talk, we will present the current status of our QUEST-La Silla AGN variability survey. This is an effort to obtain well sampled optical light curves of AGN in extragalactic fields with unique multiwavelength observations, using the QUEST camera on the ESO-Schmidt telescope.The survey uses a broadband filter, the Q-band, similar to the union of the g and the r filters. In particular, we will present the status of the analysis of the COSMOS, ELAIS-S1 and Stripe82 fields. Besides, we will present our statistical study of the near infrared (NIR) variability of AGN in the COSMOS field, using UltraVISTA data. This dataset give us a huge sample of light curves, making possible to have a global description of the nature of AGNs for different ranges of redshift, and for different levels of obscuration. By using both surveys, we expect to have a better understanding of the difference between type 1 and type 2 AGN.

  7. Obscuring Torus Geometry from the NuSTAR Survey of Swift/BAT AGN

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR

    2016-06-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the spectral window above 10 keV with unprecedented spatial resolution and two orders of magnitude better sensitivity than any other instrument operating in that energy range. As a part of its long-term extragalactic program NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT). I will present spectroscopic results based on NuSTAR and Swift observations of ~150 Swift/BAT AGN surveyed in the first three years of NuSTAR operation. This sample forms an atlas of the highest quality hard X-ray spectra available to date for a large number of AGN, providing unprecedented insight into the variety AGN spectra in the hard X-ray band. In addition to phenomenology, which is an essential ingredient of Cosmic X-ray Background studies, it is possible to use new fitting models to directly probe the geometry of the toroidal obscurer (torus). Its main spectral features lie within the NuSTAR bandpass, making it possible to test the common assumption that a similar Compton-thick torus exists around essentially every Seyfert-type AGN. I will discuss torus geometry constraints based on the X-ray spectra in relation to those from other wavelengths, the effects on interpretation of high-redshift AGN observations, and the limitations of the current results.

  8. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  9. Retired galaxies: not to be forgotten in the quest of the star formation - AGN connection

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Costa-Duarte, M. V.; Vale Asari, N.; Cid Fernandes, R.; Sodré, L.

    2015-05-01

    We propose a fresh look at the Main Galaxy Sample of the Sloan Digital Sky Survey by packing the galaxies in stellar mass and redshift bins. We show how important it is to consider the emission-line equivalent widths, in addition to the commonly used emission-line ratios, to properly identify retired galaxies (i.e. galaxies that have stopped forming stars and are ionized by their old stellar populations) and not mistake them for galaxies with low-level nuclear activity. We find that the proportion of star-forming galaxies decreases with decreasing redshift in each mass bin, while that of retired galaxies increases. Galaxies with M⋆ > 1011.5 M⊙ have formed all their stars at redshift larger than 0.4. The population of AGN hosts is never dominant for galaxy masses larger than 1010 M⊙. We warn about the effects of stacking galaxy spectra to discuss galaxy properties. We estimate the lifetimes of active galactic nuclei (AGN) relying entirely on demographic arguments - i.e. without any assumption on the AGN radiative properties. We find upper-limit lifetimes of about 1-5 Gyr for detectable AGN in galaxies with masses between 1010-1012 M⊙. The lifetimes of the AGN-dominated phases are a few 108 yr. Finally, we compare the star formation histories of star-forming, AGN and retired galaxies as obtained by the spectral synthesis code STARLIGHT. Once the AGN is turned on, it inhibits star formation for the next ˜0.1 Gyr in galaxies with masses around 1010 M⊙, ˜ 1 Gyr in galaxies with masses around 1011 M⊙.

  10. GT1_pbarthel_1: The Herschel Legacy of distant radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Barthel, P.

    2010-03-01

    We propose Herschel observations of the virtually complete sample of 3CR radio-galaxies and quasars in the redshift range 1 < z < 2.5, and a representative additional set of 4C objects extending to redshift z = 3, in order to quantify the orientation-dependence of AGN radiation (AGN unification), to investigate the interplay between accretion onto the central black-hole and star-formation in the hosts, to understand the evolution of the black-hole/stellar-bulge relation, and to make the first accurate assay of the energetics of AGN at the epoch of their peak activity, the quasar era. The low-frequency radio-selection provides us with very powerful and massive active galaxies free from any orientation/obscuration bias, a requirement for testing AGN unification. The properties of particularly the high-z 3CR sources are well known throughout the electromagnetic spectrum, except in the rest-frame mid- and far-IR, where they were hitherto outside the reach of space missions. We propose PACS/SPIRE 70-500 micron photometry of 71 3CR+4C sources in 5 bands, in order to measure their detailed spectral energy distributions between available Spitzer and SCUBA/MAMBO data. The rest-frame FIR emission serves as an isotropic calorimeter and the MIR/FIR luminosity ratio is determined by the relative strength of the AGN and star-forming contributions combined with dust obscuration. These observations will return crucial new information on the energy processes in powerful AGN and their hosts at the cosmic heyday, providing an essential anchor for studies of galaxy and AGN evolution.

  11. Large homogeneous sample of X-ray selected AGN and its study

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Paronyan, Gurgen M.; Abrahamyan, Hayk V.

    2015-08-01

    The combined catalogue of AGN (ROSAT BSC/FSC AGN) selected from optical identifications of X-ray sources based on Hamburg--ROSAT Catalogue (HRC) and Byurakan--Hamburg--ROSAT Catalogue (BHRC) is a homogeneous sample for statistical studies. Optically identified X-ray sources from ROSAT Bright Source Catalogue (BSC) and Faint Source Catalogue (FSC) are included, 4253 X-ray selected AGN in total. All these sources are confirmed or candidate AGN based on Hamburg Quasar Survey (HQS) low-dispersion spectra. 3352 of them are listed in the Catalogue of QSOs and Active Galaxies (Véron-Cetty & Véron (2010; 13th version) and 387 are in the Multifrequency Catalogue of Blazars (Roma--BZCAT) by Massaro et al. (2012). We carried out classification for 210 of these candidate sources based on available SDSS spectra and enlarged the sample of confirmed AGN to 3650. A special emphasis is made on narrow-line Sy1.0-Sy1.5 galaxies and QSOs, as many of them have soft X-ray, strong FeII lines, and relatively narrow lines coming from BLR (“narrow broad lines”) we have classified 45 new AGN as such objects. We carried out statistical investigations of the sample, including study of luminosity function, flux-ratios for different ranges, luminosity evolution, etc. Multiwavelength SEDs have also been constructed to follow their behavior for different kinds of AGN and link these SEDs to classifications. The sample is a relevant sources for identification of new blazars.

  12. An infrared and optical analysis of a sample of XBONGs and optically elusive AGNs

    SciTech Connect

    Smith, K. L.; Mushotzky, R. F.; Koss, M. E-mail: richard@astro.umd.edu

    2014-10-20

    We present near-infrared (NIR) spectra of four optically elusive active galactic nuclei (AGNs) and four X-ray bright, optically normal galaxies (XBONGs) from the Swift-BAT survey. With archival observations from the Sloan Digital Sky Survey, the Two Micron All Sky Survey, Spitzer, and the Wide-field Infrared Survey Explorer (WISE), we test a number of AGN indicators in the NIR and mid-infrared; namely, NIR emission line diagnostic ratios, the presence of coronal high-ionization lines, and infrared photometry. Of our eight hard X-ray selected AGNs, we find that optical normalcy has a variety of causes from object to object, and no one explanation applies. Our objects have normal Eddington ratios and so are unlikely to host radiatively inefficient accretion flows. It is unlikely that star formation in the host or starlight dilution is contributing to their failure of optical diagnostics, except perhaps in two cases. The NIR continua are well fit by two blackbodies: one at the stellar temperature, and a hot dust component near the dust sublimation temperature. The XBONGs are more likely to have significant hot dust components, while these components are small relative to starlight in the optically elusive AGN. Some of our sample have NIR line ratios typical of AGNs, but NIR diagnostics are unsuccessful in distinguishing H II regions from AGNs in general. In one object, we discover a hidden broad-line region in the NIR. These results have strong relevance to the origin of optically normal AGNs in deep X-ray surveys.

  13. The Broad Line Region in AGNs: Structure, Physics, and the f Factor

    NASA Astrophysics Data System (ADS)

    Grier, Catherine; Peterson, B. M.; Martini, P.; Pogge, R. W.; Pancoast, A.; Treu, T.; Watson, L. C.

    2014-01-01

    We present recent results in an effort to investigate the structure of the broad line region in active galactic nuclei (AGNs) using reverberation mapping data. AGNs provide our only means for exploring the black hole (BH) population outside the local universe. To measure black hole masses (MBH) in AGNs, we use the broad line region (BLR) by assuming that the motion of the emitting gas is dominated by the gravity of the BH. Virial MBH measurements can be made using the resulting Doppler-broadened emission lines: MBH = fRΔV^2/G. R is the distance of the emitting gas from the BH, ΔV is the velocity dispersion of the emitting gas, obtained from the width of the emission line, and f is a dimensionless factor that accounts for the geometry and orientation of the BLR. Because the BLR is unresolvable, the true value of f in for each object is unknown. Typically, an average virial factor f is used, calculated by assuming that AGNs follow the same MBH--σ relation as quiescent galaxies. Our inability to directly observe the structure of the BLR and is a major source of uncertainties in MBH measurements. To learn about BLR structure, we must rely on either reverberation mapping techniques or microlensing of gravitationally lensed quasars. We have been working on various aspects of this problem using high-quality reverberation-mapping data from various observing campaigns based at MDM Observatory on Kitt Peak. Results from these reverberation efforts have a broad impact on our understanding of AGN physics as well as on all MBH measurements in AGNs that provide a basis for galaxy evolution and AGN feedback models.

  14. Evidence for Distributed Young Stellar Populations in Strong AGN at z 1

    NASA Astrophysics Data System (ADS)

    Ammons, Mark; Melbourne, J.; Koo, D.; Max, C.

    2008-09-01

    We present stellar populations analysis of 8 AGN hosts at z 1 and derive stellar age trends that compare to local AGN host samples. We utilize laser guide star adaptive optics imaging in K-band, taken at the Keck Observatory, of hosts in the Great Observatories Origins Deep Survey (GOODS) South. Combination of these data with imaging in B, V, i, z from the HST Advanced Camera for Surveys (ACS) gives multi-color photometry with comparable spatial resolution of better than 100 mas in all bands. The AGN nature of these hosts is implied from their large X-ray luminosities (log L > 42 in ergs/s, 2-10 keV) as measured by Chandra. We fit Bruzual & Charlot (2003) stellar populations models to the 5-band photometry. Our use of near-IR fluxes in the fitting process gives tighter constraints on the dust extinction. The strongest conclusion is that the presence of distributed younger stellar populations (age less than 100 Myr) is correlated with the [OIII] line luminosity or X-ray (2-10 keV) luminosity. This finding is consistent with similar studies at lower redshift. However, we also find that strong Type II AGN hosts at this redshift are more likely to have some disk component or be irregulars than all Type I sources, which tend to be of earlier type. The mid-IR SEDs of the strong Type II AGN indicates that they are excited to LIRG status via galactic starbursting, while the strong Type I AGN are excited to LIRG status via hot dust surrounding the central engine. This suggests that the obscured nature of Type II AGN at this redshift is connected with global starbursting and that they may be extincted by kpc-scale dusty features that are byproducts of this starbursting. This study is funded by the Bachmann family and the NSF.

  15. Are the variability properties of the Kepler AGN light curves consistent with a damped random walk?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-08-01

    We test the consistency of active galactic nuclei (AGN) optical flux variability with the damped random walk (DRW) model. Our sample consists of 20 multiquarter Kepler AGN light curves including both Type 1 and 2 Seyferts, radio-loud and -quiet AGN, quasars, and blazars. Kepler observations of AGN light curves offer a unique insight into the variability properties of AGN light curves because of the very rapid (11.6-28.6 min) and highly uniform rest-frame sampling combined with a photometric precision of 1 part in 105 over a period of 3.5 yr. We categorize the light curves of all 20 objects based on visual similarities and find that the light curves fall into five broad categories. We measure the first-order structure function of these light curves and model the observed light curve with a general broken power-law power spectral density (PSD) characterized by a short-time-scale power-law index γ and turnover time-scale τ. We find that less than half the objects are consistent with a DRW and observe variability on short time-scales (˜2 h). The turnover time-scale τ ranges from ˜10-135 d. Interesting structure function features include pronounced dips on rest-frame time-scales ranging from 10-100 d and varying slopes on different time-scales. The range of observed short-time-scale PSD slopes and the presence of dip and varying slope features suggests that the DRW model may not be appropriate for all AGN. We conclude that AGN variability is a complex phenomenon that requires a more sophisticated statistical treatment.

  16. Is Community College Really College?

    ERIC Educational Resources Information Center

    Blankenship, Mark

    2011-01-01

    There are a lot of misconceptions when it comes to community college. The general population appears to believe that because the tuition per credit hour is incredibly cheaper than that of the average university, students are receiving a "discounted," "cheap," "rip-off" education. Top community college students struggle against the mistaken…

  17. A Chandra-Swift View of Point Sources in Hickson Compact Groups: High AGN Fraction but a Dearth of Strong AGNs

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Gallagher, S. C.; Hornschemeier, A. E.; Fedotov, K.; Eracleous, M.; Brandt, W. N.; Desjardins, T. D.; Charlton, J. C.; Gronwall, C.

    2014-01-01

    We present Chandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances of 34-89 Mpc. We perform detailed X-ray point source detection and photometry and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (L(sub x)) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (gamma), hardness ratios, and L(sub X), in the full (0.5-8.0 keV), soft (0.5-2.0 keV), and hard (2.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions. Two-thirds of our galaxies have nuclear X-ray sources with Swift/UVOT counterparts. Two nuclei have L(sub X),0.5-8.0 keV > 10(exp 42) erg s-1, are strong multi-wavelength active galactic nuclei (AGNs), and follow the known alpha OX-?L? (nearUV) correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the 'non-AGN locus' in alpha OX-?L? (nearUV) space, which also hosts other normal galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR (is) less than -20 and L(sub X),0.5-8.0 keV (is) greater than 10(exp 41) erg s-1 is 0.08+0.35 -0.01, somewhat higher than the 5% fraction in galaxy clusters.

  18. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not

  19. Self-consistent two-phase AGN torus models⋆. SED library for observers

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED

  20. Modeling optical and UV polarization of AGNs. III. From uniform-density to clumpy regions

    NASA Astrophysics Data System (ADS)

    Marin, F.; Goosmann, R. W.; Gaskell, C. M.

    2015-05-01

    Context. A growing body of evidence suggests that some, if not all, scattering regions of active galactic nuclei (AGNs) are clumpy. The inner AGN components cannot be spatially resolved with current instruments and must be studied by numerical simulations of observed spectroscopy and polarization data. Aims: We run radiative transfer models in the optical/UV for a variety of AGN reprocessing regions with different distributions of clumpy scattering media. We obtain geometry-sensitive polarization spectra and images to improve our previous AGN models and their comparison with the observations. Methods: We use the latest public version 1.2 of the Monte Carlo code stokes presented in the first two papers of this series to model AGN reprocessing regions of increasing morphological complexity. We replace previously uniform-density media with up to thousands of constant-density clumps. We couple a continuum source to fragmented equatorial scattering regions, polar outflows, and toroidal obscuring dust regions and investigate a wide range of geometries. We also consider different levels of fragmentation in each scattering region to evaluate the importance of fragmentation for the net polarization of the AGN. Results: In comparison with uniform-density models, equatorial distributions of gas and dust clouds result in grayer spectra and show a decrease in the net polarization percentage at all lines of sight. The resulting polarization position angle depends on the morphology of the clumpy structure, with extended tori favoring parallel polarization while compact tori produce orthogonal polarization position angles. In the case of polar scattering regions, fragmentation increases the net polarization unless the cloud filling factor is small. A complete AGN model constructed from the individual, fragmented regions can produce low polarization percentages (<2%), with a parallel polarization angle for observer inclinations up to 70° for a torus half opening angle of 60°. For

  1. The OPTX Project. IV. How Reliable is [O III] as a Measure of AGN Activity?

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.

    2010-10-01

    We compare optical and hard X-ray identifications of active galactic nuclei (AGNs) using a uniformly selected (above a flux limit of f 2-8 keV = 3.5 × 10-15 erg cm-2 s-1) and highly optically spectroscopically complete (>80% for f 2-8 keV > 10-14 erg cm-2 s-1 and >60% below) 2-8 keV sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N). We find that empirical emission-line ratio diagnostic diagrams misidentify 50% of the X-ray-selected AGNs that can be put on these diagrams as star formers. We confirm that there is a large (two orders of magnitude) dispersion in the ratio of the [O III]λ5007 (hereafter [O III]) to hard X-ray luminosities for the non-broad-line AGNs, even after applying reddening corrections to the [O III] luminosities. We find that the dispersion is similar for the broad-line AGNs, where there is not expected to be much X-ray absorption from an obscuring torus around the AGN nor much obscuration from the galaxy along the line of sight if the AGN is aligned with the galaxy. We postulate that the X-ray-selected AGNs that are misidentified by the diagnostic diagrams have low [O III] luminosities due to the complexity of the structure of the narrow-line region, which causes many ionizing photons from the AGN not to be absorbed. This would mean that the [O III] luminosity can only be used to predict the X-ray luminosity to within a factor of ~3 (1σ). Despite selection effects, we show that the shapes and normalizations of the [O III] and transformed hard X-ray luminosity functions show reasonable agreement, suggesting that the [O III] samples are not finding substantially more AGNs at low redshifts than hard X-ray samples. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial

  2. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    SciTech Connect

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C.; Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn; Rangel, Cyprian; Laird, Elise S.; Bell, Eric F.; Alexander, David M.; Bournaud, Frederic; Conselice, Christopher J.; Dekel, Avishai; and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  3. HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs

    SciTech Connect

    Hickox, Ryan C.; Jones, Christine; Forman, William R.; Murray, Stephen S.; Brodwin, Mark; Narayan, Ramesh; Kenter, Almus; Caldwell, Nelson; Anderson, Michael E.; Kochanek, Christopher S.; Eisenstein, Daniel; Jannuzi, Buell T.; Dey, Arjun; Brown, Michael J. I.; Stern, Daniel; Eisenhardt, Peter R.; Gorjian, Varoujan; Cool, Richard J.

    2009-05-01

    We explore the connection between different classes of active galactic nuclei (AGNs) and the evolution of their host galaxies, by deriving host galaxy properties, clustering, and Eddington ratios of AGNs selected in the radio, X-ray, and infrared (IR) wavebands. We study a sample of 585 AGNs at 0.25 < z < 0.8 using redshifts from the AGN and Galaxy Evolution Survey (AGES). We select AGNs with observations in the radio at 1.4 GHz from the Westerbork Synthesis Radio Telescope, X-rays from the Chandra XBooetes Survey, and mid-IR from the Spitzer IRAC Shallow Survey. The radio, X-ray, and IR AGN samples show only modest overlap, indicating that to the flux limits of the survey, they represent largely distinct classes of AGNs. We derive host galaxy colors and luminosities, as well as Eddington ratios, for obscured or optically faint AGNs. We also measure the two-point cross-correlation between AGNs and galaxies on scales of 0.3-10 h {sup -1} Mpc, and derive typical dark matter halo masses. We find that: (1) radio AGNs are mainly found in luminous red sequence galaxies, are strongly clustered (with M {sub halo} {approx} 3 x 10{sup 13} h {sup -1} M {sub sun}), and have very low Eddington ratios {lambda} {approx}< 10{sup -3}; (2) X-ray-selected AGNs are preferentially found in galaxies that lie in the 'green valley' of color-magnitude space and are clustered similar to the typical AGES galaxies (M {sub halo} {approx} 10{sup 13} h {sup -1} M {sub sun}), with 10{sup -3} {approx}< {lambda} {approx}< 1; (3) IR AGNs reside in slightly bluer, slightly less luminous galaxies than X-ray AGNs, are weakly clustered (M {sub halo} {approx}< 10{sup 12} h {sup -1} M {sub sun}), and have {lambda}>10{sup -2}. We interpret these results in terms of a simple model of AGN and galaxy evolution, whereby a 'quasar' phase and the growth of the stellar bulge occurs when a galaxy's dark matter halo reaches a critical mass between {approx}10{sup 12} and 10{sup 13} M {sub sun}. After this event

  4. VizieR Online Data Catalog: Catalog of Type-1 AGNs from SDSS-DR7 (Oh+, 2015)

    NASA Astrophysics Data System (ADS)

    Oh, K.; Yi, S. K.; Schawinski, K.; Koss, M.; Trakhtenbrot, B.; Soto, K.

    2015-08-01

    We have recently identified a substantial number of type 1 active galactic nuclei (AGNs) featuring weak broad-line regions (BLRs) at z<0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad Hα emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The newly discovered BLR AGNs have increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected with the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGNs. Based on our new and more complete catalog of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII]λ5007 emission luminosity and explored the possible dilution effect on obscured AGNs due to star formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than has been suggested previously by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present the possibility that the Eddington ratio plays a role in determining opening angles. (2 data files).

  5. AKARI infrared camera observations of the 3.3 μm PAH feature in Swift/BAT AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Shirahata, Mai; Ichikawa, Kohei; Oyabu, Shinki; Clark, David M.; Imanishi, Masatoshi; Nakagawa, Takao; Ueda, Yoshihiro

    2014-12-01

    We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the nine-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E ≲ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (NH) towards the AGNs. We use the 3.3 μm PAH luminosity (L3.3μm) as a proxy for star-formation activity and hard X-ray luminosity (L14-195 keV) as an indicator of the AGN activity. We search for possible differences in star-formation activity between type 1 (unabsorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper limits of the PAH lines into account utilizing survival analysis methods. The results of our log (L14-195 keV) versus log (L3.3 μm) regression show a positive correlation and the slope for the type 1/unobscured AGNs is steeper than that of type 2/obscured AGNs at a 3 σ level. Our analysis also shows that the circumnuclear star formation is more enhanced in type 2/absorbed AGNs than type 1/unabsorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs, while there is no significant dependence of star-formation activities on the AGN type in the high X-ray luminosities/Eddington ratios.

  6. Cosmology with AGN dust time lags - Simulating the new VEILS survey

    NASA Astrophysics Data System (ADS)

    Hönig, S. F.; Watson, D.; Kishimoto, M.; Gandhi, P.; Goad, M.; Horne, K.; Shankar, F.; Banerji, M.; Boulderstone, B.; Jarvis, M.; Smith, M.; Sullivan, M.

    2016-10-01

    The time lag between optical and near-infrared continuum emission in active galactic nuclei (AGN) shows a tight correlation with luminosity and has been proposed as a standardisable candle for cosmology. In this paper, we explore the use of these AGN hot-dust time lags for cosmological model fitting under the constraints of the new VISTA Extragalactic Infrared Legacy Survey VEILS. This new survey will target a 9 deg2 field observed in J- and Ks-band with a 14-day cadence and will run for three years. The same area will be covered simultaneously in the optical griz bands by the Dark Energy Survey, providing complementary time-domain optical data. We perform realistic simulations of the survey setup, showing that we expect to recover dust time lags for about 450 objects out of a total of 1350 optical type 1 AGN, spanning a redshift range of 0.1 < z < 1.2. We use the lags recovered from our simulations to calculate precise distance moduli, establish a Hubble diagram, and fit cosmological models. Assuming realistic scatter in the distribution of the dust around the AGN as well as in the normalisation of the lag-luminosity relation, we are able to constrain Ω _Λ in ΛCDM with similar accuracy as current supernova samples. We discuss the benefits of combining AGN and supernovae for cosmology and connect the present work to future attempts to reach out to redshifts of z > 4.

  7. Theoretical uncertainties due to AGN subgrid models in predictions of galaxy cluster observable properties

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. Karen; Sutter, P. M.; Ricker, Paul M.

    2012-12-01

    Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modelling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter-sensitivity study in a single cluster using several commonly adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (˜20 per cent for Mgas and a factor of ˜2 for LX at R500), whereas TX, YSZ and YX are more robust (˜10-20 per cent at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and TX, which is another reason why YSZ and YX are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-TX and LX-TX relations.

  8. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-09-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  9. The effects of AGN feedback and SPH formulation on black hole growth in galaxies

    NASA Astrophysics Data System (ADS)

    Liu, MaoSheng; Di Matteo, Tiziana; Feng, Yu

    2016-05-01

    We perform simulations of isolated galaxies and major mergers to investigate the effects on black hole (BH) growth due to variations in active galactic nuclei (AGN) feedback models and different smooth particle hydrodynamic (SPH) solvers. In particular we examine density-SPH versus newer pressure-SPH formulation and their significance relative to minor changes in subgrid AGN feedback prescriptions. The aim is to use these idealized simulations to understand the impact of these effects for large cosmological volume simulations where these models are often adopted. In both isolated galaxies and galaxy mergers, we find that star formation histories are largely insensitive to the choice of SPH schemes whilst BH accretion rate can change. This can result in a factor of 2-3 difference in final BH mass for the two hydrodynamic formulations. However, the differences are much smaller than those obtained even with small changes in the subgrid AGN feedback prescription. In particular, depending on the size of the region and the manner in which the AGN energy is deposited, the star formation rate is suppressed by a factor of 2 in isolated galaxies and the star burst completely quenched during the coalescence of two galaxies. The final BH mass differs by over an order of magnitude by changes in AGN feedback model. Our results indicated that any change in the hydrodynamic formulation is likely subdominant to the effects of changing subgrid physics around the BH, although thermodynamic state and morphology of the gas remnant are also sensitive to the change in hydrodynamic solver.

  10. The connection between AGN-driven dusty outflows and the surrounding environment

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Fabian, A. C.

    2016-04-01

    Significant reservoirs of cool gas are observed in the circumgalactic medium (CGM) surrounding galaxies. The CGM is also found to contain substantial amounts of metals and dust, which require some transport mechanism. We consider AGN (active galactic nucleus) feedback-driven outflows based on radiation pressure on dust. Dusty gas is ejected when the central luminosity exceeds the effective Eddington luminosity for dust. We obtain that a higher dust-to-gas ratio leads to a lower critical luminosity, implying that the more dusty gas is more easily expelled. Dusty outflows can reach large radii with a range of velocities (depending on the outflowing shell configuration and the ambient density distribution) and may account for the observed CGM gas. In our picture, dust is required in order to drive AGN feedback, and the preferential expulsion of dusty gas in the outflows may naturally explain the presence of dust in the CGM. On the other hand, the most powerful AGN outflow events can potentially drive gas out of the local galaxy group. We further discuss the effects of radiation pressure of the central AGN on satellite galaxies. AGN radiative feedback may therefore have a significant impact on the evolution of the whole surrounding environment.

  11. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  12. AGN 191976: a novel thromboxane A2-mimetic with ocular hypotensive properties.

    PubMed

    Krauss, A H; Woodward, D F; Chen, J; Gibson, L L; Lai, R K; Protzman, C E; Shan, T; Williams, L S; Gac, T S; Burk, R M

    1995-01-01

    The possible subdivision of thromboxane A2-sensitive (TP) receptors is currently a controversial subject. We report herein on a novel thromboxane A2 mimetic, AGN 191976, which has almost identical pharmacological activity to the well-characterized prostaglandin H2/thromboxane A2 (PGH2/TxA2) mimetic U-46619, but its effects on intraocular pressure are quite distinct from U-46619. Prostanoid receptor activity was determined in vitro using different smooth muscle assays and platelets. Intraocular pressure was measured tonometrically in ocular normotensive Beagle dogs and Cynomolgus monkeys. Conjunctival microvascular permeability was determined in guinea pigs. Despite closely resembling U-46619 as a potent and selective TP receptor agonist, AGN 191976 was a potent ocular hypotensive in dogs and monkeys whereas U-46619 did not lower IOP in either species. The ocular hypotensive effect of AGN 191976 in dogs was attenuated by pretreatment with the TP receptor antagonist SQ 29548. Thus, the ocular hypotensive effects of AGN 191976 are consistent with TP receptor stimulation. Both TxA2-mimetics caused plasma leakage in the guinea pig conjunctiva. The disparate activities of U-46619 and AGN 191976 in our studies suggest the existence of heterogeneous populations of TP-receptors in the eye.

  13. The water diuretic effect of the alpha-2 adrenoceptor agonist, AGN 190851, is species-dependent.

    PubMed

    Brooks, D P; Edwards, R M; Depalma, P D; Fredrickson, T A; Hieble, J P; Gellai, M

    1991-12-01

    The effect of the novel alpha-2 adrenoceptor agonist, AGN 190851, was evaluated for its diuretic action in the rat, dog and cynomolgus monkey and its ability to inhibit vasopressin-stimulated cyclic AMP accumulation in rat and dog cortical collecting tubules in vitro. The data indicate that in the rat, AGN 190851 resulted in a dose-dependent water diuresis, which was accompanied by an increase in blood pressure and osmolar clearance. In addition, AGN 190851 resulted in a dose-dependent inhibition of vasopressin-stimulated cyclic AMP accumulation in rat cortical collecting tubules in vitro. In contrast, AGN 190851 was unable to cause either a water diuresis in conscious dogs or inhibit vasopressin-stimulated adenylate cyclase activity in canine tissue in vitro. In the lightly anesthetized cynomolgus monkey, AGN 190851 also failed to alter renal function significantly. Administration of the vasopressin receptor antagonist, SK&F 105494, to either dogs or cynomolgus monkeys demonstrated that antagonism of the vasopressin V2 receptor could result in a brisk water diuresis in both species. The data demonstrate that alpha-2 adrenoceptors can functionally antagonize vasopressin antidiuretic activity in the rat, but not in the dog or cynomolgus monkey.

  14. Photoionization modeling of GRO 1655-40: A scaled down AGN Warm Absrobers!

    NASA Astrophysics Data System (ADS)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris R.; Behar, Ehud; Tombesi, Francesco

    2016-04-01

    We present photoinization models of the absorption features Galactic X-ray Binary (XRB) by implementing the MHD accretion disk wind models employed to account for the ionization properties of the AGN Warm Absorbers (WA)(Fukumura et a. 2010). The implementation of the same models rests on the fact that the radial density profiles of these winds, n(r)~1/r, guarantees the correct values of the hydrogen equivalent column NH of the most important ionic species at the correct values of their ionization parameter ξ and velocity v. The similarity of the winds' ionization properties is broken only by the peak frequency of the ionizing SED, which is in the UV in AGN and in X-rays in XRBs. This difference implies that the inner regions of the XRB winds are far more ionized than those of AGN, resulting in much smaller velocities for the same ionic species (e.g. Fe XXV) in XRB (v~1,000 km/s) than in AGN (v~10,000 km/s), in agreement with observation. Estimates of the wind mass flux deduced from our photonization modeling, imply that the latter is much larger than that needed to power the observed X-ray emission, a property that appears to be generic from the Galactic to the AGN black hole mass range suggesting a common underlying structure.

  15. Spectro-temporal diagnostics to evaluate physical structure around the AGN

    NASA Astrophysics Data System (ADS)

    Mizumoto, M.; Ebisawa, K.

    2016-06-01

    X-ray energy spectra from the AGN exhibit a lot of emission/absorption lines, which have been studied in detail by grating devices such as RGS on XMM-Newton. Variability of these spectral lines is considered to reflect physical conditions of the line emitting/absorbing matter. Thus, we study root-mean-square (RMS) spectra of several AGN observed with RGS to diagnose physical structures around these AGN. As a result, we have found clear peaks/dips in the RMS spectrum of NGC 4051, which can be modeled with variable absorption lines and non-variable emission lines. Several absorbers with different ionization states are required, where a lower-ionized (logξ=1.5) absorber shows larger variability and a higher-ionized (logξ=2.5) absorber shows little variability. These results directly give hints on physical structure around the AGN. We also show simulated RMS spectra of several AGN with Hitomi SXS, which is a more powerful diagnostic tool than RGS.

  16. Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales

    NASA Astrophysics Data System (ADS)

    Tristam, Konrad R. W.

    2016-08-01

    The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.

  17. Line Shape Variability in a Sample of AGN with Broad Lines

    NASA Astrophysics Data System (ADS)

    Ilić, D.; Popović, L. Č.; Shapovalova, A. I.; Burenkov, A. N.; Chavushyan, V. H.; Kovačević, A.

    2015-12-01

    The spectral variability of active galactic nuclei (AGN) is one of the key features that enables us to study in more detail, the structure of AGN emitting regions. Especially, the broad line profiles that vary both in flux and shape, give us invaluable information about the kinematics and geometry of the broad line region (BLR) where these lines are originating from. We give here a comparative review of the line shape variability in a sample of five type 1 AGNs, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. The main aim of this campaign is to study the physics and kinematics of the BLR on a uniform data set, focusing on the problems of the photoionization heating of the BLR and its geometry, where, in this paper, we give for a first time, a comparative analysis of the variabilty of five type 1 AGNs, discussing their complex BLR physics and geometry in the framework of the estimates of the supermassive black hole mass in AGN.

  18. AGN-starburst evolutionary connection : a physical interpretation based on radiative feedback

    NASA Astrophysics Data System (ADS)

    Ishibashi, W.; Fabian, A. C.

    2016-08-01

    Observations point towards a close connection between nuclear starbursts, active galactic nuclei (AGN), and outflow phenomena. An evolutionary sequence, starting from a dust-obscured ultra-luminous infrared galaxy and eventually leading to an unobscured optical quasar, has been proposed and discussed in the literature. AGN feedback is usually invoked to expel the obscuring gas and dust in a blow-out event, but the underlying physical mechanism remains unclear. We consider AGN feedback driven by radiation pressure on dust, which directly acts on the obscuring dusty gas. We obtain that radiative feedback can potentially disrupt dense gas in the infrared-optically thick regime, and that an increase in the dust-to-gas fraction leads to an increase in the effective Eddington ratio. Thus the more dusty gas is preferentially expelled by radiative feedback, and the central AGN is prone to efficiently remove its own obscuring dust cocoon. Large amounts of dust imply heavy obscuration but also powerful feedback, suggesting a causal link between dust obscuration and blow-out. In this picture, AGN feedback and starburst phenomena are intrinsically coupled through the production of dust in supernova explosions, leading to a natural interpretation of the observed evolutionary path.

  19. Preliminary report on land-surface subsidence in the area of Burnett, Scott, and Crystal Bays near Baytown, Texas

    USGS Publications Warehouse

    Gabrysch, R.K.

    1973-01-01

    Removal of water, oil, and gas from the subsurface in Harris County has caused declines in fluid pressures which in turn have resulted in subsidence of the land surface. One critical area of subsidence is in the area of Burnett, Scott, and Crystal Bays near Baytown. Much of this area is now subject to inundation by high tides. Production of oil and gas from the Goose Creek Field at the southern edge of Baytown had caused as much as 3.25 feet of subsidence by 1925. The subsidence bowl is restricted to the area of production and has not extended to the area of Burnett, Scott, and Crystal Bays. Withdrawals of water from large-capacity industrial wells, which resulted in declines in artesian pressure, began about 1918; as much as 250 feet of water-pressure decline has occurred in the Evangeline aquifer, Significant subsidence of the land surface probably began about 1920 or later. Possibly as much as 7.5 feet of subsidence had occurred in the area by 1971. The study of subsidence in the area of the three bays included the collection of undisturbed clay samples for laboratory analyses, collection of water-level records, and installation and monitoring of pressure transducers in clays and of observation wells in sands. Probable future subsidence was calculated for two loading situations. Case I provided that the artesian pressure in both the Alta Loma Sand of Rose (1943) and Evangeline aquifer would continue to decline at a rate of 6 feet per year until 1980 and then cease. Case II provided that artesian pressure in the Alta Loma Sand would continue to decline at a rate of about 6 feet per year until about 1995, when the potentiometric head would reach the top of the Alta Loma Sand. The artesian pressure in the Evangeline aquifer would also decline about 6 feet per year until 1995. The ultimate subsidence expected for the assumed conditions of case I and case II is 11.2 feet and 14.5 feet, respectively. However, only 1.8 feet of subsidence below present land surface

  20. Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024).

    PubMed

    Woodward, D F; Krauss, A H-P; Chen, J; Liang, Y; Li, C; Protzman, C E; Bogardus, A; Chen, R; Kedzie, K M; Krauss, H A; Gil, D W; Kharlamb, A; Wheeler, L A; Babusis, D; Welty, D; Tang-Liu, D D-S; Cherukury, M; Andrews, S W; Burk, R M; Garst, M E

    2003-05-01

    Replacement of the carboxylic acid group of prostaglandin (PG) F(2alpha) with a nonacidic moiety, such as hydroxyl, methoxy, or amido, results in compounds with unique pharmacology. Bimatoprost (AGN 192024) is also a pharmacologically novel PGF(2alpha) analog, where the carboxylic acid is replaced by a neutral ethylamide substituent. Bimatoprost potently contracted the feline lung parenchymal preparation (EC(50) value of 35-55 nM) but exhibited no meaningful activity in a variety of PG-sensitive tissue and cell preparations. Its activity seemed unrelated to FP receptor stimulation according to the following evidence. 1) Bimatoprost exhibited no meaningful activity in tissues and cells containing functional FP receptors. 2) Bimatoprost activity in the cat lung parenchyma is not species-specific because its potent activity in this preparation could not be reproduced in cells stably expressing the feline FP receptor. 3) Radioligand binding studies using feline and human recombinant FP receptors exhibited minimal competition versus [(3)H]17-phenyl PGF(2a) for Bimatoprost. 4) Bimatoprost pretreatment did not attenuate PGF(2alpha)-induced Ca(2+) signals in Swiss 3T3 cells. 5) Regional differences were apparent for Bimatoprost but not FP agonist effects in the cat lung. Bimatoprost reduced intraocular pressure in ocular normotensive and hypertensive monkeys over a 0.001 to 0.1% dose range. A single-dose and multiple-dose ocular distribution/metabolism studies using [(3)H]Bimatoprost (0.1%) were performed. Within the globe, bimatoprost concentrations were 10- to 100-fold higher in anterior segment tissues compared with the aqueous humor. Bimatoprost was overwhelmingly the predominant molecular species identified at all time points in ocular tissues, indicating that the intact molecule reduces intraocular pressure.

  1. Non-thermal Radiation Processes in Relativistic Outflows from AGN

    NASA Astrophysics Data System (ADS)

    Lefa, Eva

    2012-11-01

    Non-thermal, leptonic radiation processes have been extensively studied for the interpretation of the observed radiation from jets of Active Galactic Nuclei (AGN). This work addresses the synchrotron and Inverse Compton scattering (ICS) mechanisms, and investigates the potential of a self-consistent, time-dependent approach to currently unsolved problems. Furthermore, it examines how deviations from standard, one-zone models can modify the radiated spectrum. A detailed analysis of the shape of the ICS spectrum is also performed. In the first part a possible interpretation of the hard γ-ray blazar spectra in the framework of leptonic models is investigated. It is demonstrated that hard γ-ray spectra can be generated and maintained in the presence of energy losses, under the basic assumption of a narrow electron energy distribution (EED). Broader spectra can also be modeled if multiple zones contribute to the emission. In such a scheme, hard flaring events, like the one in Mkn 501 in 2009, can be successfully interpreted within a "leading blob" scenario, when one or few zones of emission become dominant. In the second part the shape of the Compton spectrum close to the maximum cutoff is investigated. Analytical approximations for the spectral shape in the cutoff region are derived for various soft photon fields, providing a direct link between the parent EED and the upscattered spectrum. Additionally, a generalization of the beaming pattern for various processes is derived, which accounts for non-stationary, anisotropic and non-homogeneous EEDs. It is shown that anisotropic EEDs may lead to radiated spectra substantially different from the isotropic case. Finally, a self-consistent, non-homogeneous model describing the synchrotron emission from stratified jets is developed. It is found that transverse jet stratification leads to characteristic features in the emitted spectrum different to expectations in homogeneous models.

  2. 76 FR 11291 - University of New Mexico AGN-201M Reactor Notice of Issuance of Renewed Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... COMMISSION University of New Mexico AGN-201M Reactor Notice of Issuance of Renewed Facility Operating License... No. R-102, held by the University of New Mexico (the licensee), which authorizes continued operation of the University of New Mexico AGN-201M Reactor (UNMR), located in Albuquerque, Bernalillo...

  3. The X-ray nuclei of radio-loud AGN from the 2Jy sample

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2009-10-01

    X-ray observations of AGN samples provide crucial information about both the AGN themselves and the material that obscures them. Understanding the properties of the active nuclei of radio-loud AGN is particularly vital given that these objects seem likely to have a key role in models of galaxy formation and evolution. The 2Jy sample of radio galaxies and quasars has uniquely good multiwavelength data, but until recently has been poorly studied in the X-ray. We have recently been awarded time to observe all the low-z 2Jy steep-spectrum sample with Chandra, and here propose short observations of the high-z half of the sample with XMM which will give us a complete picture of the nuclear activity in these objects, and allow a wide range of projects to be carried out.

  4. The X-ray nuclei of radio-loud AGN from the 2Jy sample

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2010-10-01

    X-ray observations of AGN samples provide crucial information about both the AGN themselves and the material that obscures them. Understanding the properties of the active nuclei of radio-loud AGN is particularly vital given that these objects seem likely to have a key role in models of galaxy formation and evolution. The 2Jy sample of radio galaxies and quasars has uniquely good multiwavelength data, but until recently has been poorly studied in the X-ray. We have recently been awarded time to observe all the low-z 2Jy steep-spectrum sample with Chandra, and here propose short observations of the high-z half of the sample with XMM which will give us a complete picture of the nuclear activity in these objects, and allow a wide range of projects to be carried out.

  5. The Role of Turbulence in AGN Self-Regulation in Galaxy Clusters

    SciTech Connect

    Scannapieco, Evan; Brueggen, Marcus

    2009-12-18

    Cool cores of galaxy clusters are thought to be heated by low-power active galactic nuclei (AGN), whose accretion is regulated by feedback. However, the interaction between the hot gas ejected by the AGN and the ambient intracluster medium is extremely difficult to simulate, as it involves a wide range of spatial scales and gas that is Rayleigh-Taylor (RT) unstable. Here we use a subgrid model for RT-driven turbulence to overcome these problems and present the first observationally-consistent hydrodynamical simulations of AGN self-regulation in galaxy clusters. For a wide range of parameter choices the cluster in our three-dimensional simulations regulates itself for at least several 10{sup 9} years. Heating balances cooling through a string of outbreaks with a typical recurrence time of {approx_equal}80 Myrs, a timescale that depends only on the global cluster properties.

  6. Narrow-line region gas kinematics of 24 264 optically selected AGN: the radio connection

    NASA Astrophysics Data System (ADS)

    Mullaney, J. R.; Alexander, D. M.; Fine, S.; Goulding, A. D.; Harrison, C. M.; Hickox, R. C.

    2013-07-01

    Using a sample of 24 264 optically selected active galactic nuclei (AGNs) from the SDSS DR7 data base, we characterize how the profile of the [O III] λ5007 emission line relates to bolometric luminosity (LAGN), Eddington ratio, radio loudness, radio luminosity (L1.4 GHz) and optical class (i.e. broad/narrow-line Seyfert 1, type 2) to determine what drives the kinematics of this kpc-scale line emitting gas. First, we use spectral stacking to characterize how the average [O III] λ5007 profile changes as a function of these five variables. After accounting for the known correlation between LAGN and L1.4 GHz, we report that L1.4 GHz has the strongest influence on the [O III] λ5007 profile, with AGNs of moderate radio luminosity (L1.4 GHz = 1023-1025 W Hz-1) having the broadest [O III] λ5007 profiles. Conversely, we find only a modest change in the [O III] λ5007 profile with increasing radio loudness and find no significant difference between the [O III] λ5007 profiles of broad- and narrow-line Seyfert 1s. When binned according to Eddington ratio, only the AGNs in our highest bin (i.e. >0.3) show any signs of having broadened [O III] λ5007 profiles, although the small numbers of such extreme AGNs in our sample mean we cannot rule out that other processes (e.g. radio jets) are responsible for this broadening. The [O III] λ5007 profiles of type 1 and type 2 AGNs show the same trends in terms of line width, but type 1 AGNs display a much stronger `blue wing', which we interpret as evidence of outflowing ionized gas. We perform multicomponent fitting to the Hβ, [O III] λλ4959, 5007, [N II] λλ6548, 6584 and Hα lines for all the AGNs in our sample to calculate the proportions of AGNs with broad [O III] λ5007 profiles. The individual fits confirm the results from our stacked spectra; AGNs with L1.4 GHz > 1023 W Hz-1 are roughly five times more likely to have extremely broad [O III] λ5007 lines (full width at half-maximum, FWHMAvg > 1000 km s-1) compared to

  7. AGN ACTIVITY AND IGM HEATING IN THE FOSSIL CLUSTER RX J1416.4+2315

    SciTech Connect

    Miraghaei, H.; Khosroshahi, H. G.; Abbassi, S.; Sengupta, C.; Raychaudhury, S.

    2015-12-15

    We study active galactic nucleus (AGN) activity in the fossil galaxy cluster RX J1416.4+2315. Radio observations were carried out using the Giant Metrewave Radio Telescope at two frequencies, 1420 and 610 MHz. A weak radio lobe that extends from the central nucleus is detected in the 610 MHz map. Assuming the radio lobe originated from the central AGN, we show that the energy injection into the intergalactic medium is only sufficient to heat up the central 50 kpc within the cluster core, while the cooling radius is larger (∼130 kpc). In the hardness ratio map, three low energy cavities have been identified. No radio emission is detected for these regions. We evaluated the power required to inflate the cavities and showed that the total energy budget is sufficient to offset the radiative cooling. We showed that the initial conditions would change the results remarkably. Furthermore, the efficiency of the Bondi accretion in powering the AGN has been estimated.

  8. AGNfitter: SED-fitting code for AGN and galaxies from a MCMC approach

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph F.; Hogg, David W.

    2016-07-01

    AGNfitter is a fully Bayesian MCMC method to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGN) and galaxies from the sub-mm to the UV; it enables robust disentanglement of the physical processes responsible for the emission of sources. Written in Python, AGNfitter makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the nuclear and host galaxy emission simultaneously. The model consists of four physical emission components: an accretion disk, a torus of AGN heated dust, stellar populations, and cold dust in star forming regions. AGNfitter determines the posterior distributions of numerous parameters that govern the physics of AGN with a fully Bayesian treatment of errors and parameter degeneracies, allowing one to infer integrated luminosities, dust attenuation parameters, stellar masses, and star formation rates.

  9. The role of interactions in triggering bars, spiral arms and AGN in disk galaxies

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara L.; Patton, David R.

    2016-01-01

    The role of secular structures like bars, rings and spiral arms in triggering star formation and AGN activity in disk galaxies are not well understood. In addition, the mechanisms which create and destroy these structures are not well characterized. Mergers are considered to be one of the main mechanisms which can trigger bars in massive disk galaxies. Using a sample of ~8000 close pair galaxies at 0.02 < z < 0.06 from the Sloan Digital Sky Survey, I will present results illustrating the role of mergers in triggering bars, rings, spiral arms and AGN as a function of close pair separation and merger ratios as well as their dependence on morphology and other physical properties of the galaxies. Time permitting, I will show how resolved IFU observations from SDSS MaNGA will help to place stronger constraints on the role of these structures in triggering star formation and AGN.

  10. The influence of local environment on the emergence of AGN activity in galaxies

    NASA Astrophysics Data System (ADS)

    Martínez, M. A.; Del Olmo, A.; Perea, J.; Coziol, R.; Focardi, P.

    2011-11-01

    We have carried out a spectroscopic study to determine the frequency and nature of the nuclear activity found in compact groups. With this aim we chose two samples, one selected from the Hickson Compact Groups Catalogue and another one from the Updated Zwicky Catalogue of Compact Groups. With the analysis of 1056 galaxies we found that more than 71% present some kind of emission, most of them, being low luminosity AGN (L_{Hα}=10^{39} erg s^{-1}). From these we only detect broad components in 16 which means a remarkable deficiency of broad line AGNs as compared to narrow lineAGNs, despite the high frequency of active galaxies encountered ingeneral in these groups.

  11. Nuclear stellar kinematics of hard X-ray selected AGNs with matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yin; Davies, Richard; Burtscher, Leonard; Rosario, David

    2016-08-01

    In a matched sample of local, 14-195 keV selected active galactic nuclei (AGN) and inactive galaxies, we investigate the spatially resolved stellar kinematics and distributions on the scale of 10-300 pc. Here we present first results on part of the sample. We use a simple model to look for non-circular motions in the observed stellar velocity fields of both AGNs and inactive galaxies. Combining the luminosity profile with larger scale data, we decompose the large-scale disk, bulge and nuclear components. And with the stellar velocity dispersion, we search for the evidence of dynamically cold nuclear stellar populations distinct from the bulge, and study the nuclear K-band stellar mass to light ratios. The key goal of this study is to understand the role of nuclear star formation in the AGN fueling process.

  12. Statistics of broad relativistic lines in AGN: a counts- and flux-limited sampl

    NASA Astrophysics Data System (ADS)

    Guainazzi, Matteo

    2006-10-01

    We propose to observe 10 X-ray unabsorbed Active Galactic Nuclei (AGN) extracted from the RXTE Slew Survey (XSS). We aim at completing the XMM-Newton coverage of a flux-limited [2-10 keV flux > 1 mCrab] sub-sample of the XSS with enough statistical quality to unambiguously establish the presence of a relativistically broadened K-alpha iron line in the spectrum of each individual object. Measuring the fraction of local universe AGN where effects due to a relativistic accretion disk are detected, along with the accurate determination of the accretion flow physical properties, will allow us to tell if and how the standard paradigm needs to be modified to explain the origin of the energy output in AGN. The total requested time is 975 ks

  13. A New Sample of Low-Mass AGNs Selected by X-ray Variability

    NASA Astrophysics Data System (ADS)

    Terashima, Yuichi

    2012-09-01

    We present results from our attempts to search for AGN containing relatively low-mass black holes (BHs) using X-ray variability. Variability time scales inversely correlate with black hole mass and can be used to select low-mass objects. We utilize the second XMM-Newton serendipitous source catalogue, which contains 262902 unique sources, to select highly variable objects. Black hole masses are derived by using the correlation between BH mass and normalized excess variance, where the effect of break in power spectra is properly taken into account. We present the sample selection and results of analysis including discovery of candidate low-mass AGNs with mass lower than 2e6 Msolar. We also present results on a peculiar AGN candidate showing soft thermal emission only found in our survey.

  14. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  15. The host galaxies of radio-loud and radio-quiet AGNs

    NASA Astrophysics Data System (ADS)

    Koziel-Wierzbowska, D.; Vale Asari, N.; Stasinska, G.; Sikora, M.

    2016-08-01

    To infer whether the jet production efficiency depends on the host properties or is determined just by intrinsic properties of the accretion flows we compared optical properties of the host galaxies of radio-quiet (RQ) and radio-loud (RL) Type 2 AGNs. We carefully selected galaxies from SDSS, FIRST, and NVSS catalogues. We confirmed that the fraction of RL AGNs increases with the black hole (BH) masses and decreases with the Eddington ratio. Therefore, the comparison of the nature of the hosts of RL and RQ AGNs requires pairmatching techniques. By pairing RL and RQ samples in BH mass, Eddington ratio and redshift, we showed that the radio-loudness correlates with the host-galaxy concentration index and morphological type, and anti-correlates with the recent specific star-formation rate and dust attenuation. Contrary to some previous studies, we found no significant difference between our radio-loud and radio-quiet samples regarding merger/interaction features.

  16. The Kepler Light Curves of KSwAGS AGN: A Unique Window into Accretion Physics

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard; Boyd, Padi; Edelson, Rick; Howell, Steve; Gelino, Dawn; Brown, Alex

    2016-08-01

    The Kepler-Swift Active Galaxies Survey (KSwAGS) discovered ~160 AGN in the Kepler and K2 fields. The optical Kepler and K2 light curves of these AGN are by far the most precise and evenly-sampled ever obtained. There are unique challenges involved in adapting Kepler/K2 data for use with AGN since the Kepler pipeline removes stochasticity; however, once mitigated, these data provide an unprecedented glimpse of the accretion disk's variability. We have also conducted follow-up spectral observations to determine black hole masses and accretion rates for the sample, which fill a wide parameter space (6.9 < Log MBH < 9.4, 0.003 < L/Ledd < 0.6). These, in tandem with the light curves, may be able to distinguish between different accretion models.

  17. AGN Feedback in Galaxy Groups: A Joint GMRT/X-ray Study

    NASA Astrophysics Data System (ADS)

    Giacintucci, S.; Vrtilek, J. M.; O'Sullivan, E.; Raychaudhury, S.; David, L. P.; Venturi, T.; Athreya, R.; Gitti, M.

    2009-12-01

    We present an ongoing study of 18 nearby galaxy groups, chosen for the availability of Chandra and/or XMM-Newton data and evidence for AGN/hot intragroup gas interaction. We have obtained 235 and 610 MHz observations at the GMRT for all the groups, and 327 and 150 MHz for a few. We discuss two interesting cases-NGC 5044 and AWM 4-which exhibit different kinds of AGN/hot gas interaction. With the help of these examples we show how joining low-frequency radio data (to track the history of AGN outbursts through emission from aged electron populations) with X-ray data (to determine the state of hot gas, its disturbances, heating and cooling) can provide a unique insight into the nature of the feedback mechanism in galaxy groups.

  18. AGN spectral states from simultaneous UV and X-ray observations by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Guainazzi, M.; Merloni, A.

    2016-06-01

    The accretion on super-massive black holes is believed to be similar to the accretion on stellar-mass black holes. It has been suggested by Koerding et al. (2006) and Sobolewska et al. (2008) that different types of Active Galactic Nuclei (AGN) correspond to different spectral states of X-Ray Binaries. We extend previous works by comparing strictly simultaneous UV and X-ray measurements of AGN obtained by the XMM-Newton satellite. The thermal disc component is estimated from the UV flux while the non-thermal flux is constrained from the 2-10 keV X-ray luminosity. For sources with available radio-flux measurements, we investigate how the spectral hardness is related to their radio power, radio spectral slope and morphology. Our results suggest that the AGN may spectrally evolve in a similar way as X-ray binaries, however, several problems still remain unclear.

  19. Gas Dynamics in AGN Galaxies: First Results of the HI-NUGA Survey

    NASA Astrophysics Data System (ADS)

    Haan, S.; Schinnerer, E.; Mundell, C. G.; García-Burillo, S.; Combes, F.

    2007-05-01

    Active Galactic Nuclei (AGN) galaxies are generally known as very luminous galaxies where a small emitting region is associated with gas accretion onto a central supermassive black hole. Up to now the process of fueling the AGN with material (gas or stars) generally far away from the gravitational influence of the central black hole is controversial and not understood. Since the required material has to remove its high angular momentum in order to fall into the center, various mechanisms may play a role, including m = 2 perturbations (bars and spirals), m = 1 perturbations (spirals, warps, lopsidedness), tidal interactions between galaxies, and galaxy mergers. In order to study the gas transport from the outskirts to the centers of AGN galaxies, we are carrying out a key project, named NUGA (Nuclei of Galaxies), which is a high spectral and angular resolution CO and HI survey of low luminosity AGN in nearby galaxies (Seyferts, LINERs and transition objects). The complete dataset provides us with the unique opportunity to understand and ultimately model the whole disk kinematics on spatial scales ranging over several orders of magnitude. Here, we will present observations of 15 galaxies recently obtained in the 21 cm emission of neutral hydrogen using the Very Large Array. First results on the HI gas and velocity distribution of these galaxies are summarized and discussed. The derived properties, including the ratio of dynamical mass versus gas mass (+ stellar mass), will be presented and compared with the AGN activity types in order to search for possible dependences. Additionally, effects of satellites and tidal disturbances onto the HI disk as well as their correlation with AGN type and dynamical modes probed by CO (inner kpc) will be examined.

  20. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    NASA Astrophysics Data System (ADS)

    Jacobsen, Idunn B.; Wu, Kinwah; On, Alvina Y. L.; Saxton, Curtis J.

    2015-08-01

    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A (Koers & Tinyakov and Becker & Biermann), we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from Chandra and Swift/BAT X-ray luminosity functions (Silverman et al. and Ajello et al.). We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by IceCube (by ˜4-106 × at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.

  1. AGN populations in GOODS-N through eMERGE ultra-deep JVLA observations

    NASA Astrophysics Data System (ADS)

    Guidetti, Daria; Bondi, M.; Prandoni, I.; Beswick, R. J.; Muxlow, T. W. B.; Wrigley, N.; Smail, I. R.; McHardy, I.; Ivison, R.; eMERGE Collaboration

    2016-08-01

    Multi-wavelength studies of deep radio fields show a composite population of star-forming galaxies, radio-quiet and radio-loud AGNs, with the formers dominating at the lowest flux densities (< 100 microJy). However, the exact mixture between these types of radio sources is still matter of debate. The most direct way to identify faint AGN-driven radio emission is the detection of embedded radio cores in the host galaxies, through ultra-deep and very high resolution radio observations. This would open the perspective of studying the whole AGN population in the radio band, including the radio-quiet component traditionally selected at other wavelengths (opt/IR/X-ray). Assessing the faint AGN component in deep radio fields, will provide an important tool to understand the role of nuclear activity in distant galaxies and its possible co-evolution with star-formation processes, as radio wavelengths are not affected by dust extinction and/or gas absorption. In my talk I will report about the e-MERLIN Galaxy Evolution Survey (eMERGE, PI: Muxlow), a legacy project which aims at undertaking a spatially-resolved study of AGN and star formation processes up to high redshift in a 30 arcmin diameter field in the GOODS-N region, through ultra-deep (sub-microJy rms), sub-arcsec (50-500 mas) imaging at 1.4 and 5 GHz, using combined JVLA and eMERLIN observations. I will focus on the 5 GHz JVLA mosaic observations and catalogue of GOODS-N (94 sources), in the framework of the eMERGE project, and on the study of a larger sample of GOODS-N galaxies (300 objects) selected at 1.4 GHz to constrain the presence of AGN cores in moderate-to-high redshift (1

  2. Multi-wavelength properties and SMBH's masses of the isolated AGNs in the Local Universe

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Vasylenko, A. A.; Babyk, Iu. V.; Pulatova, N. G.

    2016-08-01

    The sample of 36 nearest isolated AGNs was cross-matched by 2MIG and Veron-Cetty catalogues and limited to Ks ≤ 12.0m and Vr < 15 000 km/s in the northern sky (δ ≥ -15°). These objects were in isolation during ~ 3 Gyrs. For revealing their multi-wavelength properties we used all the available databases obtained with ground-based and space observatories (from radio to X-ray ranges). It is allowed us to separate the internal evolution mechanisms from the environment influence and consider them as two separate processes related to fueling nuclear activity and accretion on the SMBHs outside of the environment. In this report we present briefly main results, which were already published (Pulatova N., Vavilova I., Sawangwit U. et al. The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky, MNRAS, 447, Issue 3, p. 2209-2223 (2015)). We accentuate that for the first time we revealed that the host isolated galaxies with AGNs of Sy1 type (without faint companions) appear to possess the bar morphological features (e.g., the interaction with neighboring galaxies is not necessary condition for broad-line region formation). We give also current results as concerns with more detail X-ray analysis, emission features and spectral models for several AGNs for which a cumulative soft and hard energy spectrum was reconstructed. The estimates of SMBH masses show that are systematically lower than the SMBH masses of AGNs located in a dense environment.

  3. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    SciTech Connect

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon; Trichas, Markos; Goto, Tomo; Malkan, Matt; Ruiz, Angel; Lee, Hyung Mok; Kim, Seong Jin; Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke; Shim, Hyunjin; Hanami, Hitoshi; Serjeant, Stephen; White, Glenn J.; and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (AGN component and that of star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  4. Infrared and X-Ray Evidence of an AGN in the NGC 3256 Southern Nucleus

    NASA Astrophysics Data System (ADS)

    Ohyama, Youichi; Terashima, Yuichi; Sakamoto, Kazushi

    2015-06-01

    We investigate signs of an active galactic nucleus (AGN) in the luminous infrared (IR) galaxy NGC 3256 at both IR and X-ray wavelengths. NGC 3256 has double nuclei: the northern and southern (hereafter, N and S nuclei, respectively). We show that the Spitzer IRAC colors extracted at the S nucleus are AGN-like, and the Spitzer IRS spectrum is bluer at \\lt 6 μm than at the N nucleus. We built for the S nucleus an AGN-starburst composite model with a heavily absorbed AGN to successfully reproduce not only the IRAC and IRS specrophotometries at ≃ 3″, but also the very deep silicate 9.7 μm absorption observed at a 0.″ 36 scale by Díaz-Santos et al. We found a 2.2 μm compact source at the S nucleus in an HST NICMOS image and identified its unresolved core (at 0.″ 26 resolution) with the compact core in previous mid-infrared observations at comparable resolution. The flux of the 2.2 μm core is consistent with our AGN spectral energy distribution model. We also analyzed a deeper than ever Chandra X-ray spectrum of the unresolved (at 0.″ 5 resolution) source at the S nucleus. We found that a dual-component power-law model (for primary and scattered ones) fits an apparently very hard spectrum with a moderately large absorption on the primary component. Together with a limit on equivalent width of a fluorescent Fe-K emission line at 6.4 keV, the X-ray spectrum is consistent with a typical Compton-thin Seyfert 2. We therefore suggest that the S nucleus hosts a heavily absorbed low-luminosity AGN.

  5. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    SciTech Connect

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin; Chapman, Scott; Pak, Soojong; Edge, Alastair

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  6. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  7. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo

    2015-08-01

    Accretion and feedback tied to supermassive black holes are known to play central role in the cosmic evolution of galaxies, groups, and clusters of galaxies. The self-regulation mechanism, that is how to link feedback and accretion, is matter of intense debate.Using high-resolution 3D hydrodynamic simulations, I discuss how the AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion. In a turbulent atmosphere heated by AGN feedback, cold clouds and filaments condense out of the hot plasma via nonlinear thermal instability, up to radii of 10s kpc, and rain toward the black hole. In the inner core, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation, boosting the accretion rate up to 100 times the Bondi rate, which is comparable to the cooling rate.Such rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. I highlight the major imprints of mechanical AGN feedback, such as buoyant bubbles, shocks, turbulence, and uplifted gas, with a critical eye toward concordance with X-ray observations. The tight self-regulation has key implications for the group/cluster scaling relations, such as Lx-Tx, in agreement with a recent X-ray stacking analysis of 250000 central galaxies.The AGN heating stifles the formation of multiphase gas, and thus accretion. Lacking the main fuel, AGN feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, chaotic cold accretion creates a symbiotic link between the black hole and the whole host galaxy, leading to a tight self-regulated feedback loop which preserves the cores of groups and clusters in quasi thermal equilibrium throughout cosmic time.

  8. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo

    2015-08-01

    Accretion and feedback tied to supermassive black holes are known to play central role in the cosmic evolution of galaxies, groups, and clusters of galaxies. The self-regulation mechanism, that is how to link feedback and accretion, is matter of intense debate.Using high-resolution 3D hydrodynamic simulations, I discuss how the AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion. In a turbulent atmosphere heated by AGN feedback, cold clouds and filaments condense out of the hot plasma via nonlinear thermal instability, up to radii of 10s kpc, and rain toward the black hole. In the inner core, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation, boosting the accretion rate up to 100 times the Bondi rate, which is comparable to the cooling rate.Such rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. I highlight the major imprints of mechanical AGN feedback, such as buoyant bubbles, shocks, turbulence, and uplifted gas, with a critical eye toward observational concordance. The tight self-regulation has key implications for the group/cluster scaling relations, such as Lx-Tx, in agreement with a recent X-ray stacking analysis of 250000 central galaxies.The AGN heating stifles the formation of multiphase gas, and thus accretion. Lacking the main fuel, AGN feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, chaotic cold accretion creates a symbiotic link between the black hole and the whole host galaxy, leading to a tight self-regulated feedback loop which preserves the cores of groups and clusters in quasi thermal equilibrium throughout cosmic time.

  9. The self-regulated AGN feedback loop: the role of chaotic cold accretion

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo

    2015-08-01

    Accretion and feedback tied to supermassive black holes are known to play central role in the cosmic evolution of galaxies, groups, and clusters of galaxies. The self-regulation mechanism, that is how to link feedback and accretion, is matter of intense debate.Using high-resolution 3D hydrodynamic simulations, I discuss how the AGN feedback is tightly coupled with the formation of multiphase gas and the newly probed chaotic cold accretion. In a turbulent atmosphere heated by AGN feedback, cold clouds and filaments condense out of the hot plasma via nonlinear thermal instability, up to radii of 10s kpc, and rain toward the black hole. In the inner core, the recurrent chaotic collisions between the cold clouds, filaments, and central torus promote angular momentum cancellation, boosting the accretion rate up to 100 times the Bondi rate, which is comparable to the cooling rate.Such rapid variability triggers powerful AGN outflows, which quench the cooling flow and star formation without destroying the cool core. I highlight the major imprints of mechanical AGN feedback, such as buoyant bubbles, shocks, turbulence, and uplifted gas, with a critical eye toward observational concordance. The tight self-regulation has key implications for the scaling relations, such as Lx-Tx, and the X-ray spectrum of hot halos.The AGN heating stifles the formation of multiphase gas, and thus accretion. Lacking the main fuel, AGN feedback subsides and the hot halo is allowed to cool again, restarting a new cycle. Ultimately, chaotic cold accretion creates a symbiotic link between the black hole and the whole host galaxy, leading to a tight self-regulated feedback loop which preserves the cores of groups and clusters in quasi thermal equilibrium throughout cosmic time.

  10. Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey

    SciTech Connect

    de Vries, W H; Hodge, J A; Becker, R H; White, R L; Helfand, D J

    2007-04-18

    We investigate faint radio emission from low- to high-luminosity Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their radio properties are inferred by coadding large ensembles of radio image cut-outs from the FIRST survey, as almost all of the sources are individually undetected. We correlate the median radio flux densities against a range of other sample properties, including median values for redshift, [O III] luminosity, emission line ratios, and the strength of the 4000{angstrom} break. We detect a strong trend for sources that are actively undergoing star-formation to have excess radio emission beyond the {approx} 10{sup 28} ergs s{sup -1} Hz{sup -1} level found for sources without any discernible star-formation. Furthermore, this additional radio emission correlates well with the strength of the 4000{angstrom} break in the optical spectrum, and may be used to assess the age of the star-forming component. We examine two subsamples, one containing the systems with emission line ratios most like star-forming systems, and one with the sources that have characteristic AGN ratios. This division also separates the mechanism responsible for the radio emission (star-formation vs. AGN). For both cases we find a strong, almost identical, correlation between [O III] and radio luminosity, with the AGN sample extending toward lower, and the star-formation sample toward higher luminosities. A clearer separation between the two subsamples is seen as function of the central velocity dispersion {sigma} of the host galaxy. For systems at similar redshifts and values of {sigma}, the star-formation subsample is brighter than the AGN in the radio by an order of magnitude. This underlines the notion that the radio emission in star-forming systems can dominate the emission associated with the AGN.

  11. AGNfitter: An MCMC Approach to Fitting SEDs of AGN and galaxies

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, Gabriela; Lusso, Elisabeta; Hennawi, Joseph; Hogg, David W.

    2016-08-01

    I will present AGNfitter: a tool to robustly disentangle the physical processes responsible for the emission of active galactic nuclei (AGN). AGNfitter is the first open-source algorithm based on a Markov Chain Monte Carlo method to fit the spectral energy distributions of AGN from the sub-mm to the UV. The code makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the host galaxy and the nuclear emission simultaneously. The model consists in four physical components comprising stellar populations, cold dust distributions in star forming regions, accretion disk, and hot dust torus emissions. AGNfitter is well suited to infer numerous parameters that rule the physics of AGN with a proper handling of their confidence levels through the sampling and assumptions-free calculation of their posterior probability distributions. The resulting parameters are, among many others, accretion disk luminosities, dust attenuation for both galaxy and accretion disk, stellar masses and star formation rates. We describe the relevance of this fitting machinery, the technicalities of the code, and show its capabilities in the context of unobscured and obscured AGN. The analyzed data comprehend a sample of 714 X-ray selected AGN of the XMM-COSMOS survey, spectroscopically classified as Type1 and Type2 sources by their optical emission lines. The inference of variate independent obscuration parameters allows AGNfitter to find a classification strategy with great agreement with the spectroscopical classification for ˜ 86% and ˜ 70% for the Type1 and Type2 AGNs respectively. The variety and large number of physical properties inferred by AGNfitter has the potential of contributing to a wide scope of science-cases related to both active and quiescent galaxies studies.

  12. The Infrared Medium-Deep Survey. II. How to Trigger Radio AGNs? Hints from their Environments

    NASA Astrophysics Data System (ADS)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Chapman, Scott; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Pak, Soojong; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin; Edge, Alastair

    2014-12-01

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ~25 deg2 and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (Mu - Mr ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  13. On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan

    2013-01-01

    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.

  14. A novel FGD1 mutation in a family with Aarskog–Scott syndrome and predominant features of congenital joint contractures

    PubMed Central

    Griffin, Laurie Beth; Farley, Frances A.; Antonellis, Anthony; Keegan, Catherine E.

    2016-01-01

    Mutations in FGD1 cause Aarskog–Scott syndrome (AAS), an X-linked condition characterized by abnormal facial, skeletal, and genital development due to abnormal embryonic morphogenesis and skeletal formation. Here we report a novel FGD1 mutation in a family with atypical features of AAS, specifically bilateral upper and lower limb congenital joint contractures and cardiac abnormalities. The male proband and his affected maternal uncle are hemizygous for the novel FGD1 mutation p.Arg921X. This variant is the most carboxy-terminal FGD1 mutation identified in a family with AAS and is predicted to truncate the FGD1 protein at the second to last amino acid of the carboxy-terminal pleckstrin homology (PH) domain. Our study emphasizes the importance of the 3′ peptide sequence in the structure and/or function of the FGD1 protein and further demonstrates the need to screen patients with X-linked congenital joint contractures for FGD1 mutations. PMID:27551683

  15. Development and testing of Baylor Scott & White Health's “Attitudes and Practices of Patient Safety Survey”

    PubMed Central

    Compton, Jan; Saldaña, Margaret; Tecson, Kristen M.; Hastings, Chizuko; Kennerly, Donald A.

    2016-01-01

    Improving the quality of patient care requires a culture attuned to safety. We describe the development, implementation, and psychometric evaluation of the Attitudes and Practices of Patient Safety Survey (APPSS) within the Baylor Scott & White Health system. The APPSS was designed to enable safety culture data to be collected and aggregated at the unit level to identify high-priority needs. The survey, with 27 Likert-scale core questions divided into 4 concept domains and 2 open-ended questions, was administered electronically to employees with direct patient care responsibilities (n = 16,950). The 2015 response rate was 50.4%. The Cronbach's α values for the four domains ranged from 0.78 to 0.90, indicating strong internal consistency. Confirmatory factor analysis results were mixed but were comparable to those of established safety culture surveys. Over the years, the adaptability of the APPSS has proven helpful to administrative and clinical leaders alike, and the survey responses have led to the creation of programs to improve the organization's patient safety culture. In conclusion, the APPSS provides a reliable measure of patient safety culture and may be useful to other health care organizations seeking to improve the quality and safety of the care they provide. PMID:27695163

  16. Development and testing of Baylor Scott & White Health's “Attitudes and Practices of Patient Safety Survey”

    PubMed Central

    Compton, Jan; Saldaña, Margaret; Tecson, Kristen M.; Hastings, Chizuko; Kennerly, Donald A.

    2016-01-01

    Improving the quality of patient care requires a culture attuned to safety. We describe the development, implementation, and psychometric evaluation of the Attitudes and Practices of Patient Safety Survey (APPSS) within the Baylor Scott & White Health system. The APPSS was designed to enable safety culture data to be collected and aggregated at the unit level to identify high-priority needs. The survey, with 27 Likert-scale core questions divided into 4 concept domains and 2 open-ended questions, was administered electronically to employees with direct patient care responsibilities (n = 16,950). The 2015 response rate was 50.4%. The Cronbach's α values for the four domains ranged from 0.78 to 0.90, indicating strong internal consistency. Confirmatory factor analysis results were mixed but were comparable to those of established safety culture surveys. Over the years, the adaptability of the APPSS has proven helpful to administrative and clinical leaders alike, and the survey responses have led to the creation of programs to improve the organization's patient safety culture. In conclusion, the APPSS provides a reliable measure of patient safety culture and may be useful to other health care organizations seeking to improve the quality and safety of the care they provide.

  17. The CELSS Antarctic Analog Project: an advanced life support testbed at the Amundsen-Scott South Pole Station, Antarctica.

    PubMed

    Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.

  18. Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman-Scott weather generator

    NASA Astrophysics Data System (ADS)

    Jomo Danielsen Sørup, Hjalte; Bøssing Christensen, Ole; Arnbjerg-Nielsen, Karsten; Steen Mikkelsen, Peter

    2016-04-01

    Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman-Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km × 60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.

  19. Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction–diffusion model

    NASA Astrophysics Data System (ADS)

    Har-Shemesh, Omri; Quax, Rick; Hoekstra, Alfons G.; Sloot, Peter M. A.

    2016-04-01

    The Fisher–Rao metric from information geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of information geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher–Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reaction–diffusion model using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.

  20. Radio AGN signatures in massive quiescent galaxies out to z=1.5

    NASA Astrophysics Data System (ADS)

    Man, Allison

    2016-08-01

    This work represents the first multi-wavelength analysis of the average IR and radio emission in 14200 quiescent galaxies out to z=3. By stacking 24um, Herschel and VLA imaging data, we reveal the widespread presence of low-luminosity radio AGN among massive galaxies of Mstar>10^11Msun out to at least z=1.5, reciprocating the fact that massive quiescent galaxies are the preferential hosts of low-lumionsity AGN. Combined with the result of low average 24um emission, we infer that only radio-mode feedback, but not (obscured) quasar-mode feedback, is at work in keeping star formation inefficient in these galaxies.