Science.gov

Sample records for agnw-rgo hybrid transparent

  1. Hybridization induced transparency in composites of metamaterials and atomic media.

    PubMed

    Weis, Peter; Garcia-Pomar, Juan Luis; Beigang, René; Rahm, Marco

    2011-11-01

    We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT). PMID:22109237

  2. Graphene-carbon nanotube hybrid transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kholmanov, Iskandar N.; Kim, TaeYoung; Domingues, Sergio H.; Kim, Jin-Young; Tan, Cheng; Magnuson, Carl W.; Li, Huifeng; Piner, Richard; Ruoff, Rodney S.

    2013-06-01

    Graphene films grown by chemical vapor deposition of hydrocarbon gases on metal surfaces have been integrated with single-walled carbon nanotube (SWNT) films. Using simple thin film fabrication methods and the sequential deposition of these two components we obtained graphene/SWNT hybrid films with good structural quality. Obtained graphene/SWNT films possess opto-electrical properties better than that of pure graphene or SWNT films, making them promising for transparent conductive film (TCF) applications. The hybrid films have been tested as a transparent electrode in electrochromic (EC) devices to replace indium tin oxide (ITO) TCFs.

  3. Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode

    NASA Astrophysics Data System (ADS)

    Liu, Juhua; Yi, Yaohua; Zhou, Yihua; Cai, Huafei

    2016-02-01

    The flexible hybrid transparent electrode was prepared by a two-step process: graphene film was firstly grown on Cu foil by modified thermal chemical vapor deposition (CVD) and then transferred onto indium tin oxide (ITO) electrode on the polyethylene terephthalate (PET) substrate. The quality of the graphene is characterized by various analytic techniques, including the AFM, SEM, TEM, and Raman spectroscopy. The gradient flux was found to be beneficial to decrease defect. The thickness, morphology, light transmittance, and electromechanical properties of three conductive electrodes were investigated and compared. The outcomes show that the hybrid electrode could resist mechanical force and the results are better than original ITO electrode. It may be a potential trend to apply the graphene to other conducts in the flexible transparent conductive field.

  4. Electromagnetically induced transparency in hybrid plasmonic-dielectric system.

    PubMed

    Tang, Bin; Dai, Lei; Jiang, Chun

    2011-01-17

    We present theoretical and numerical analysis of a plasmonic-dielectric hybrid system for symmetric and asymmetric coupling between silver cut-wire pairs and silicon grating waveguide with periodic grooves. The results show that both couplings can induce electromagnetically-induced transparency (EIT) analogous to the quantum optical phenomenon. The transmission spectrum shows a single transparency window for the symmetric coupling. The strong normal phase dispersion in the vicinity of this transparent window results in the slow light effect. However, the transmission spectrum appears an additional transparency window for asymmetry coupling due to the double EIT effect, which stems from an asymmetrically coupled resonance (ACR) between the dark and bright modes. More importantly, the excitation of ACR is further associated with remarkable improvement of the group index from less than 40 to more than 2500 corresponding to a high transparent efficiency by comparing with the symmetry coupling. This scheme provides an alternative way to develop the building block of systems for plasmonic sensing, all optical switching and slow light applications.

  5. Polymer-metal hybrid transparent electrodes for flexible electronics

    PubMed Central

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-01-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133

  6. Body color development and genetic analysis of hybrid transparent crucian carp (Carassius auratus).

    PubMed

    Xu, W; Tong, G X; Geng, L W; Jiang, H F

    2015-01-01

    The aim of this study was to investigate the genetic mechanism of the transparent trait in transparent crucian carp. We observed body color development in transparent crucian carp larvae and analyzed heredity of color in hybrids produced with red crucian carp, ornamental carp, and red purse carp. The results showed that the body color of the newly hatched larvae matured into the adult pattern at approximately 54 days post-hatching. Two inter-species reciprocal crosses between transparent crucian carp and red crucian carp, and self-cross F1 of transparent crucian carp and self-cross F1 of red marking transparent crucian carp were conducted, and results indicated that the transparent-scaled trait is dominant over the normal-scaled trait. Furthermore, the transparent trait is a quantitative trait. All offspring in the four inter-genera reciprocal crosses of transparent crucian carp with ornamental carp and red purse carp were hybrids of common carp and crucian carp, and had a relatively low survival rate of 10-20%. Moreover, the transparent-scaled trait was observed to be dominant over the normal-scaled trait in the hybrid fish. In conclusion, our results suggest that the genetic mechanism underlying the color of goldfish is complex and requires further investigation. PMID:25966213

  7. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications

  8. Flexible and Transparent Field Emission Devices based on Graphene-Nanowire Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad; Heo, Kwang; Lee, Byung Yang; Seo, David H.; Seo, Sunae; Jian, Jikang; Hong, Seunghun

    2011-03-01

    Recent developments in wafer scale synthesis and transfer of graphene have made it possible to fabricate electrodes for versatile flexible devices. However, a flexible and transparent graphene-based field emission device has not been explored yet. Herein, we report the fabrication of flexible and transparent field emission devices based on graphene-nanowire hybrid structures. In this work, we successfully grew vertically-aligned Au nanowires on graphene surface using an electrochemical method and utilized it as a cathode. We also utilized a graphene electrode for an anode resulting in a transparent and flexible field emission device. Our field emission devices can be bent down to 22 mm radius of curvature without any significant change in its field emission currents. This flexible and transparent field emission device based on graphene-nanowire hybrid structures will utilized for various applications such as field emission displays, x-ray tubes, and pressure sensors.

  9. Electrochemical and Optical Evaluation of Noble Metal-and Carbon-ITO Hybrid Optically Transparent Electrodes

    SciTech Connect

    Zudans, Imants; Paddock, Jean R.; Kuramitz, Hideki; Maghasi, Anne T.; Wansapura, Chamika M.; Conklin, Sean D.; Kaval, Necati; Shtoyko, Tanya; Monk, David J.; Bryan, Samuel A.; Hubler, Timothy L.; Richardson, John N.; Seliskar, Carl J.; Heineman, William R.

    2004-04-15

    Optically transparent hybrid electrodes were constructed by sputtering or thermally evaporating layers of varying thickness of Au, Pd, Pt, or C onto an existing conductive indium-tin oxide (ITO) layer on glass. These electrodes were characterized using UV-Vis spectroscopy and cyclic voltammetry; redox probes examined were potassium ferricyanide, tris-(2, 2'-bipyridyl)ruthenium(II) chloride, hydroquinone, and para-aminophenol (PAP). Each type of hybrid was evaluated and compared with other hybrids, as well as with bare ITO electrodes and commercially available Au, Pt, and glassy carbon disk electrodes. Our results indicated that these hybrid electrodes are reasonably robust, easy to prepare, and extend the capabilities of bare ITO surfaces with respect to the electrochemical response (especially for organic redox probes), while giving up little in the way of optical transparency. Because of these characteristics, hybrid electrodes should be especially suited to many spectroelectrochemical applications.

  10. Preparation of superhydrophobic and transparent micro-nano hybrid coatings from polymethylhydroxysiloxane and silica ormosil aerogels

    NASA Astrophysics Data System (ADS)

    Nagappan, Saravanan; Park, Jin Joo; Park, Sung Soo; Ha, Chang-Sik

    2014-12-01

    Superhydrophobic and transparent polymethylhydroxysiloxane (PMHOS)/silica ormosil aerogel hybrids were prepared successfully by mixing of PMHOS with various weight percentages of silica ormosil aerogels (as synthesized from methyltriethoxysilane (MTES) and methyltrimethoxysilane (MTMS) precursors) in separate seal perfume glass vials. The hybrids were spin coated on glass substrate at 1000 rpm for 60 seconds and used for further analysis. The surface morphology and chemical compositions of the hybrids were analyzed by high resolution scanning electron microscopy, high resolution transmission electron microscopy, atomic force spectroscopy, adsorption and desorption isotherm, and X-ray photoelectron spectroscopy. The transparency, thermal decomposition and static contact angle (SCA) of each sample were measured by UV-Visible spectrophotometer, TGA and drop shape analysis system, respectively. The spin coated substrates showed good superhydrophobic properties, thermal stability as well as transparency on the glass substrates.

  11. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.

    PubMed

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y

    2016-06-16

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.

  12. Transparency

    ERIC Educational Resources Information Center

    LaFee, Scott

    2009-01-01

    Citizens now expect access to information, particularly from public institutions like local school districts. They demand input and accountability. Cultural and technological changes, such as the Internet, make it possible for districts to comply. Yet transparency--the easily seen and understood actions of a school district and the thinking behind…

  13. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably. PMID:26226281

  14. A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles

    NASA Astrophysics Data System (ADS)

    Gebauer, Denis; Oliynyk, Vitaliy; Salajkova, Michaela; Sort, Jordi; Zhou, Qi; Bergström, Lennart; Salazar-Alvarez, German

    2011-09-01

    Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy.Nanocellulose hybrids are promising candidates for biodegradable multifunctional materials. Hybrids of nanocrystalline cellulose (NCC) and amorphous calcium carbonate (ACC) nanoparticles were obtained through a facile chemical approach over a wide range of compositions. Controlling the interactions between NCC and ACC results in hard, transparent structures with tunable composition, homogeneity and anisotropy. Electronic supplementary information (ESI) available: Additional experimental procedures and results. See DOI: 10.1039/c1nr10681c

  15. Plasmon-induced multilevel-transparency in two-dimensional hybrid coplanar waveguide

    NASA Astrophysics Data System (ADS)

    Shang, Xiong-Jun; Wang, Ling-Ling; Zhai, Xiang; Yue, Jing; Luo, Xin; Duan, Hui-Gao

    2016-09-01

    The optical transmission property of a hybrid coplanar waveguide consisting of three quarters of a nanoring (TQNR) and a slot cavity resonator is numerically investigated and theoretically analyzed. In this paper, the apparent multilevel plasmon-induced transparency (PIT) effect can be obtained due to the interaction between the resonance modes of the two elements. Combining the calculated magnetic field distribution with the theoretically fitted parameters, the transparency windows of all resonance modes can be clearly investigated. The results show that the second-order transparency window originates from the destructive interference between the bright and dark mode of the hybrid system, while the first- and third-order transparency windows originate from the suppression effect of the dark mode. As the assessment standard for application, the maximal values of \\text{FO}{{\\text{M}}\\ast} appear at the transmission dips and their highest reaches to near 18. While the \\text{FOM} reaches to an impressive value 270 at the third-order transparent window, and the sensitivity is as high as 2650 nm RIU-1 at the first-order transparent window. This research provides a guide to the practical applications in the visible and near-infrared light region.

  16. Plasmon-induced multilevel-transparency in two-dimensional hybrid coplanar waveguide

    NASA Astrophysics Data System (ADS)

    Shang, Xiong-Jun; Wang, Ling-Ling; Zhai, Xiang; Yue, Jing; Luo, Xin; Duan, Hui-Gao

    2016-09-01

    The optical transmission property of a hybrid coplanar waveguide consisting of three quarters of a nanoring (TQNR) and a slot cavity resonator is numerically investigated and theoretically analyzed. In this paper, the apparent multilevel plasmon-induced transparency (PIT) effect can be obtained due to the interaction between the resonance modes of the two elements. Combining the calculated magnetic field distribution with the theoretically fitted parameters, the transparency windows of all resonance modes can be clearly investigated. The results show that the second-order transparency window originates from the destructive interference between the bright and dark mode of the hybrid system, while the first- and third-order transparency windows originate from the suppression effect of the dark mode. As the assessment standard for application, the maximal values of \\text{FO}{{\\text{M}}\\ast} appear at the transmission dips and their highest reaches to near 18. While the \\text{FOM} reaches to an impressive value 270 at the third-order transparent window, and the sensitivity is as high as 2650 nm RIU‑1 at the first-order transparent window. This research provides a guide to the practical applications in the visible and near-infrared light region.

  17. Graphene/carbon nanotube hybrid-based transparent 2D optical array.

    PubMed

    Kim, Un Jeong; Lee, Il Ha; Bae, Jung Jun; Lee, Sangjin; Han, Gang Hee; Chae, Seung Jin; Güneş, Fethullah; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Kim, Jong Min; Lee, Young Hee

    2011-09-01

    Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth. Highly aligned single-walled CNTs show a better performance for the diffraction intensity. PMID:21769950

  18. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-01

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ~4 Ω per square with ~78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non

  19. Highly flexible, hybrid-structured indium tin oxides for transparent electrodes on polymer substrates

    SciTech Connect

    Triambulo, Ross E.; Kim, Jung-Hoon; Park, Jin-Woo; Na, Min-Young; Chang, Hye-Jung

    2013-06-17

    We developed highly flexible, hybrid-structured crystalline indium tin oxide (ITO) for use as transparent electrodes on polymer substrates by embedding Ag nanoparticles (AgNPs) into the substrate. The hybrid ITO consists of domains in one orientation grown on the AgNPs and a matrix of the other orientation. The domains are stronger than the matrix and function as barriers to crack propagation. As a result, both the critical bending radius (r{sub c}) (under which the resistivity change ({Delta}{rho}) is less than a given value) and the change in {Delta}{rho} with decreasing r significantly decreased in the hybrid ITO compared with homogenous ITO.

  20. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    NASA Astrophysics Data System (ADS)

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S.; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J. Y.

    2016-06-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq-1) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are

  1. Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials

    PubMed Central

    Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.

    2015-01-01

    We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born−Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born−Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices. PMID:26183735

  2. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.

  3. Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids

    PubMed Central

    Schütz, Christina; Sort, Jordi; Bacsik, Zoltán; Oliynyk, Vitaliy; Pellicer, Eva; Fall, Andreas; Wågberg, Lars; Berglund, Lars; Bergström, Lennart; Salazar-Alvarez, German

    2012-01-01

    The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces. PMID:23049689

  4. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    SciTech Connect

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-10-15

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V{sub OC} = 1.041 V, J{sub SC} = 2.97 mA/cm{sup 2}, FF = 32.3%) to 2.6% (V{sub OC} = 1.336 V, J{sub SC} = 4.65 mA/cm{sup 2}, FF = 41.98%) due to the eliminated interfacial series resistance.

  5. Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode.

    PubMed

    Spechler, Joshua A; Nagamatsu, Ken A; Sturm, James C; Arnold, Craig B

    2015-05-20

    In this Research Article, we demonstrate pulsed laser processing of a silver nanowire network transparent conductor on top of an otherwise complete solar cell. The macroscopic pulsed laser irradiation serves to sinter nanowire-nanowire junctions on the nanoscale, leading to a much more conductive electrode. We fabricate hybrid silicon/organic heterojunction photovoltaic devices, which have ITO-free, solution processed, and laser processed transparent electrodes. Furthermore, devices which have high resistive losses show up to a 35% increase in power conversion efficiency after laser processing. We perform this study over a range of laser fluences, and a range of nanowire area coverage to investigate the sintering mechanism of nanowires inside of a device stack. The increase in device performance is modeled using a simple photovoltaic diode approach and compares favorably to the experimental data.

  6. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles.

    PubMed

    Lee, Seung Goo; Ham, Dong Seok; Lee, Dong Yun; Bong, Hyojin; Cho, Kilwon

    2013-12-01

    This paper describes a simple approach to prepare a transparent superhydrophobic coating and a translucent superamphiphobic coating via spraying silica-fluoropolymer hybrid nanoparticles (SFNs) without any pre- or post-treatment of substrates; these nanoparticles create both microscale and nanoscale roughness, and fluoropolymer acts as a low surface energy binder. We also demonstrate the effects of varying the concentration of the SFN sol on the water and hexadecane repellency and on the transparency of the coated glass substrates. An increase in the concentration of the sol facilitates the transition between the superhydrophobic/transparent and superamphiphobic/translucent states. This transition results from an increase in the discontinuities in the three-phase (solid-liquid-gas) contact line and in the light scattering properties due to micropapillae tuned by varying the concentration of the sol. This versatile and controllable approach can be applied to a variety of substrates over large areas and may provide a wide range of applications for self-cleaning coatings of optoelectronics, liquid-repellent coatings, and microfluidic systems. PMID:24224524

  7. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles.

    PubMed

    Lee, Seung Goo; Ham, Dong Seok; Lee, Dong Yun; Bong, Hyojin; Cho, Kilwon

    2013-12-01

    This paper describes a simple approach to prepare a transparent superhydrophobic coating and a translucent superamphiphobic coating via spraying silica-fluoropolymer hybrid nanoparticles (SFNs) without any pre- or post-treatment of substrates; these nanoparticles create both microscale and nanoscale roughness, and fluoropolymer acts as a low surface energy binder. We also demonstrate the effects of varying the concentration of the SFN sol on the water and hexadecane repellency and on the transparency of the coated glass substrates. An increase in the concentration of the sol facilitates the transition between the superhydrophobic/transparent and superamphiphobic/translucent states. This transition results from an increase in the discontinuities in the three-phase (solid-liquid-gas) contact line and in the light scattering properties due to micropapillae tuned by varying the concentration of the sol. This versatile and controllable approach can be applied to a variety of substrates over large areas and may provide a wide range of applications for self-cleaning coatings of optoelectronics, liquid-repellent coatings, and microfluidic systems.

  8. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.

  9. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.

    PubMed

    Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong

    2016-01-20

    Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs. PMID:26699194

  10. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding.

    PubMed

    Lee, Jongsoo; Woo, Ju Yeon; Kim, Ju Tae; Lee, Byung Yang; Han, Chang-Soo

    2014-07-23

    Here, we report highly transparent and flexible AgNW/SWCNT hybrid networks on PET substrates combined with plasmonic welding for securing ultrahigh stability in mechanical and electrical properties under severe bending. Plasmonic welding produces local heating and welding at the junction of AgNWs and leads strong adhesion between AgNW and SWCNT as well as between hybrid structure and substrate. The initial sheet resistance of plasmon treated AgNW/SWCNT hybrid film was 26 Ω sq(-1), with >90% optical transmittance over the wavelength range 400-2700 nm. Following 200 cycles of convex/concave bending with a bending radius of 5 mm, the sheet resistance changed from 26 to 29 Ω sq(-1). This hybrid structure combined with the plasmonic welding process provided excellent stability, low resistance, and high transparency, and is suitable for highly flexible electronics applications, including touch panels, solar cells, and OLEDs.

  11. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding.

    PubMed

    Lee, Jongsoo; Woo, Ju Yeon; Kim, Ju Tae; Lee, Byung Yang; Han, Chang-Soo

    2014-07-23

    Here, we report highly transparent and flexible AgNW/SWCNT hybrid networks on PET substrates combined with plasmonic welding for securing ultrahigh stability in mechanical and electrical properties under severe bending. Plasmonic welding produces local heating and welding at the junction of AgNWs and leads strong adhesion between AgNW and SWCNT as well as between hybrid structure and substrate. The initial sheet resistance of plasmon treated AgNW/SWCNT hybrid film was 26 Ω sq(-1), with >90% optical transmittance over the wavelength range 400-2700 nm. Following 200 cycles of convex/concave bending with a bending radius of 5 mm, the sheet resistance changed from 26 to 29 Ω sq(-1). This hybrid structure combined with the plasmonic welding process provided excellent stability, low resistance, and high transparency, and is suitable for highly flexible electronics applications, including touch panels, solar cells, and OLEDs. PMID:24972024

  12. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    PubMed Central

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-01-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors. PMID:26507006

  13. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters.

    PubMed

    Kim, A-Young; Kim, Min Kyu; Hudaya, Chairul; Park, Ji Hun; Byun, Dongjin; Lim, Jong Choo; Lee, Joong Kee

    2016-02-14

    Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (∼50 nm) and FTO thin films (∼20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles. The hybrid transparent heater shows excellent optical transmittance (>90%) and high saturation temperature (162 °C) at low applied DC voltage (6 V). Moreover, the FTO/NiCr/AgNW heater exhibits a stable sheet resistance in a hostile environment, hence highlighting the excellent oxidation-resistance of the heating materials. These results indicate that the proposed hybrid transparent heaters could be a promising approach to combat the inherent problems associated with AgNW-based transparent heaters for various functional applications. PMID:26515282

  14. Tunable plasmon-induced transparency in hybrid waveguide-magnetic resonance system.

    PubMed

    Song, Jiakun; Song, Yuzhi; Li, Kangwen; Zhang, Zuyin; Wei, Xin; Xu, Yun; Song, Guofeng

    2015-03-20

    We present a hybrid waveguide-magnetic resonance system with split ring resonators (SRRs) periodically arranged on top of a waveguide layer. Due to the destructive interference between the electric coupling to the magnetic resonance mode generated in the SRRs and the TE/TM waveguide modes supported by the waveguide layer, double plasmon-induced transparency is obtained at the infrared wavelength. Furthermore, the PIT resonance can be dynamically tuned by the incident angle. An ultranarrow PIT window with an FWHM of 7 nm is observed at the wavelength of 1.448 μm. The group index at the narrow PIT window can reach up to 100. We also demonstrate that the refractive index sensitivity and the figure of merit value can reach up to 640  nm/RIU and 64 in the sensing range, respectively. The proposed hybrid waveguide-magnetic resonance system with a high-quality factor PIT window is promising for efficient optical sensing, optical switching, and slow-light device design.

  15. Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films.

    PubMed

    Zhu, Jiayi; Cao, Yang; He, Junhui

    2014-04-15

    We reported a novel approach to fabricate graphene-TiO2 hybrid films by combination of the layer-by-layer (LbL) assembly and the surface sol-gel (SSG) process. The reduced graphene oxide (RGO) nanosheets and films were characterized by means of transmission electron microscopy, Raman spectroscopy, UV-visible absorbance spectroscopy, contact angle/interface system, and four-point probe. It was found that the graphene-TiO2 hybrid film showed enhanced photoresponse performance compared with RGO thin film and TiO2 thin film. The photoresponse properties of hybrid films could be manipulated by variation of the cycle numbers of RGO LbL assembly and titanium precursor SSG process. Photoinduced superhydrophility of the hybrid film was shown under broadband light illumination. The obtained transparent, superhydrophilic and conductive graphene-TiO2 hybrid film showed excellent photoresponse, antifogging, and antistatic behaviors.

  16. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    PubMed Central

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-01-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering. PMID:26955789

  17. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.

    PubMed

    Yu, Longhai; Zheng, Jiajiu; Xu, Yang; Dai, Daoxin; He, Sailing

    2014-11-25

    Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its properties, a promising approach is to combine a graphene sheet with optical waveguides, such as silicon nanophotonic wires considered in this paper. Here we report local and nonlocal optically induced transparency (OIT) effects in graphene-silicon hybrid nanophotonic integrated circuits. A low-power, continuous-wave laser is used as the pump light, and the power required for producing the OIT effect is as low as ∼0.1 mW. The corresponding power density is several orders lower than that needed for the previously reported saturated absorption effect in graphene, which implies a mechanism involving light absorption by the silicon and photocarrier transport through the silicon-graphene junction. The present OIT effect enables low power, all-optical, broadband control and sensing, modulation and switching locally and nonlocally. PMID:25372937

  18. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators

    NASA Astrophysics Data System (ADS)

    Ketzaki, Dimitra A.; Tsilipakos, Odysseas; Yioultsis, Traianos V.; Kriezis, Emmanouil E.

    2013-09-01

    Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.

  19. Transparent and hard zirconia-based hybrid coatings with excellent dynamic/thermoresponsive oleophobicity, thermal durability, and hydrolytic stability.

    PubMed

    Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi

    2013-08-28

    Smooth, transparent, and extremely hard zirconia (ZrO2)-based inorganic-organic hybrid films showing excellent dynamic oleophobicity, thermal durability, and hydrolytic stability were successfully prepared through a simple combination of zirconium tetrapropoxide (Zr(O(CH2)2CH3)4) with stearic acids. In this study, we have particularly focused on the effects of stearic acid molecular architecture (linear-stearic acid (LSA) and branched-stearic acid (BSA)) on surface physical/chemical properties. Although, in each case, the resulting hybrid (Zr:LSA and Zr:BSA) films achieved by a simple spin-coating method were highly smooth and transparent, the final surface properties were markedly dependent on their molecular architectures. Thanks to the thermal stability of BSA, our Zr:BSA hybrid films displayed a greatly improved thermal effective range (maximum of 200 °C), while for Zr:LSA hybrid films, serious thermal damage to surface dewetting behavior was observed at less than 150 °C. The hardness of the Zr:BSA hybrid films were markedly increased by curing at 200 °C for 1 h (from 1.95 GPa to 3.03 GPa), while maintaining their dynamic dewettability toward n-hexadecane, when compared with Zr:LSA hybrid films (0.95-1.19 GPa). Small volume n-hexadecane droplets (5 μL) were easily set in motion, sliding across and off our best Zr:BSA hybrid film surfaces at low substrate tilt angles (<10°) without pinning. Moreover, they also showed thermoresponsive dynamic dewetting behavior, reasonable resistance to hydrolysis in an aqueous environment, and antifingerprint properties.

  20. Preparation and characterization of the transparent hybrids of silicone epoxy resin and titanium dioxide nanoparticles via sol-gel reactions.

    PubMed

    Lem, Kwok Wai; Nguyen, Dinh Huong; Kim, Han Na; Lee, Dai Soo

    2011-08-01

    In order to prepare transparent hybrid films of high refractive index, nanoparticles of TiO2 were prepared and dispersed in a silicone epoxy (SE) resin synthesized from diphenyl silane diol and [2-(3,4-epoxycyclohexyl)ethyl] trimethoxysilane by sol-gel reactions. It was found that amorphous TiO2 nanoparticles of about 5 nm modified with hexahydro-4-methyl phthalic anhydride [HMPA] were dispersed in the SE resin without agglomerations. The refractive index of the hybrids increased linearly with increasing the TiO2 contents. The hybrid containing 30 wt% of the TiO2 particles showed light transmittance of 94% at 450 nm and refractive index of 1.63. The fine dispersion of the TiO2 nanoparticles was attributable to the sol-gel reactions between the SE resin and TiO2 nanoparticles and the modification of the TiO2 particles with HMPA.

  1. A facile UV-curing method for the preparation of transparent and conductive carbon nanotube hybrid films.

    PubMed

    Kim, Jin Ho; Jung, Jae Mok; Kwak, Jun Young; Hwang, Tai Kyung; Ganapathy, Hullathy Subban; Jeong, Yeon Tae; Lim, Kwon Taek

    2011-01-01

    A new method for preparing flexible, transparent, and conductive multiwalled carbon nanotube (MWCNT) hybrid films with scratch resistance through a facile UV-curing method is described herein. UV-curable urethane oligomers were used as the binder between the MWCNTs and the plastic substrates. The transparency and sheet resistance of MWCNT thin films can be easily tailored by controlling the number of bar coaters. Composite films with different binder ratios were prepared to evaluate and optimize the surface abrasion resistance and adhesion parameter. Two types of MWCNT films, those with a 56% (with a 586 komega/sq sheet resistance) and a 78% transmittance (with a 22 Momega/sq sheet resistance) were obtained using the UV-curable resin, and the conductive films showed distinguished abrasion resistance and good adhesion.

  2. High performance hybrid rGO/Ag quasi-periodic mesh transparent electrodes for flexible electrochromic devices

    NASA Astrophysics Data System (ADS)

    Voronin, A. S.; Ivanchenko, F. S.; Simunin, M. M.; Shiverskiy, A. V.; Aleksandrovsky, A. S.; Nemtsev, I. V.; Fadeev, Y. V.; Karpova, D. V.; Khartov, S. V.

    2016-02-01

    A possibility of creating a stable hybrid coating based on the hybrid of a reduced graphene oxide (rGO)/Ag quasi-periodic mesh (q-mesh) coating has been demonstrated. The main advantages of the suggested method are the low cost of the processes and the technology scalability. The Ag q-mesh coating is formed by means of the magnetron sputtering of silver on the original template obtained as a result of quasi-periodic cracking of a silica film. The protective rGO film is formed by low temperature reduction of a graphene oxide (GO) film, applied by the spray-deposition in the solution of NaBH4. The coatings have low sheet resistance (12.3 Ω/sq) and high optical transparency (82.2%). The hybrid coatings are characterized by high chemical stability, as well as they show high stability to deformation impacts. High performance of the hybrid coatings as electrodes in the sandwich-system «electrode-electrochromic composition-electrode» has been demonstrated. The hybrid electrodes allow the electrochromic sandwich to function without any visible degradation for a long time, while an unprotected mesh electrode does not allow performing even a single switching cycle.

  3. Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-02-01

    Transparent conductive electrodes (TCE) were fabricated by combining three emerging nano-materials: copper nanowires (CuNWs), zinc oxide (ZnO) nano-particulate thin films, and reduced graphene oxide (rGO) platelets. Whereas CuNWs are responsible for essentially all of the electrical conductivity of our thin-film TCEs, the ZnO matrix embeds and strengthens the CuNW network in its adhesion to the substrate, while the rGO platelets provide a protective overcoat for the composite electrode, thereby improving its stability in hot and humid environments. Our CuNW/ZnO/rGO hybrid electrodes deposited on glass substrates have low sheet resistance (Rs ˜ 20 Ω/sq) and fairly high optical transmittance (T550 ˜ 79%). In addition, our hybrid TCEs are mechanically strong and able to withstand multiple scotch-tape peel tests. Finally, these TCEs can be fabricated on rigid glass as well as flexible plastic substrates.

  4. Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform.

    PubMed

    Li, Juan; Wieghold, Sarah; Öner, Murat Anil; Simon, Patrick; Hauf, Moritz V; Margapoti, Emanuela; Garrido, Jose A; Esch, Friedrich; Palma, Carlos-Andres; Barth, Johannes V

    2014-08-13

    Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication. PMID:25115337

  5. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes.

    PubMed

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-03-11

    Transparent conducting films with a composite structure of AlZnO-Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al2O3-TiO2-Al2O3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm(-2), which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm(-1)). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10(-7) A cm(-2) at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits.

  6. Silver Nanowire-IZO-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Yun, Ho Jun; Kim, Se Jung; Hwang, Ju Hyun; Shim, Yong Sub; Jung, Sun-Gyu; Park, Young Wook; Ju, Byeong-Kwon

    2016-10-01

    Solution-processed silver nanowire (AgNW) has been considered as a promising material for next-generation flexible transparent conductive electrodes. However, despite the advantages of AgNWs, some of their intrinsic drawbacks, such as large surface roughness and poor interconnection between wires, limit their practical application in organic light-emitting diodes (OLEDs). Herein, we report a high-performance AgNW-based hybrid electrode composed of indium-doped zinc oxide (IZO) and poly (3,4-ethylenediowythiophene):poly(styrenesulfonate) [PEDOT:PSS]. The IZO layer protects the underlying AgNWs from oxidation and corrosion and tightly fuses the wires together and to the substrate. The PEDOT:PSS effectively reduces surface roughness and increases the hybrid films’ transmittance. The fabricated electrodes exhibited a low sheet resistance of 5.9 Ωsq‑1 with high transmittance of 86% at 550 nm. The optical, electrical, and mechanical properties of the AgNW-based hybrid films were investigated in detail to determine the structure-property relations, and whether optical or electrical properties could be controlled with variation in each layer’s thickness to satisfy different requirements for different applications. Flexible OLEDs (f-OLEDs) were successfully fabricated on the hybrid electrodes to prove their applicability; their performance was even better than those on commercial indium doped tin oxide (ITO) electrodes.

  7. Silver Nanowire-IZO-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light-Emitting Diodes

    PubMed Central

    Yun, Ho Jun; Kim, Se Jung; Hwang, Ju Hyun; Shim, Yong Sub; Jung, Sun-Gyu; Park, Young Wook; Ju, Byeong-Kwon

    2016-01-01

    Solution-processed silver nanowire (AgNW) has been considered as a promising material for next-generation flexible transparent conductive electrodes. However, despite the advantages of AgNWs, some of their intrinsic drawbacks, such as large surface roughness and poor interconnection between wires, limit their practical application in organic light-emitting diodes (OLEDs). Herein, we report a high-performance AgNW-based hybrid electrode composed of indium-doped zinc oxide (IZO) and poly (3,4-ethylenediowythiophene):poly(styrenesulfonate) [PEDOT:PSS]. The IZO layer protects the underlying AgNWs from oxidation and corrosion and tightly fuses the wires together and to the substrate. The PEDOT:PSS effectively reduces surface roughness and increases the hybrid films’ transmittance. The fabricated electrodes exhibited a low sheet resistance of 5.9 Ωsq−1 with high transmittance of 86% at 550 nm. The optical, electrical, and mechanical properties of the AgNW-based hybrid films were investigated in detail to determine the structure-property relations, and whether optical or electrical properties could be controlled with variation in each layer’s thickness to satisfy different requirements for different applications. Flexible OLEDs (f-OLEDs) were successfully fabricated on the hybrid electrodes to prove their applicability; their performance was even better than those on commercial indium doped tin oxide (ITO) electrodes. PMID:27703182

  8. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    NASA Astrophysics Data System (ADS)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  9. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial.

    PubMed

    Kurter, Cihan; Tassin, Philippe; Zhang, Lei; Koschny, Thomas; Zhuravel, Alexander P; Ustinov, Alexey V; Anlage, Steven M; Soukoulis, Costas M

    2011-07-22

    Metamaterials are engineered materials composed of small electrical circuits producing novel interactions with electromagnetic waves. Recently, a new class of metamaterials has been created to mimic the behavior of media displaying electromagnetically induced transparency (EIT). Here we introduce a planar EIT metamaterial that creates a very large loss contrast between the dark and radiative resonators by employing a superconducting Nb film in the dark element and a normal-metal Au film in the radiative element. Below the critical temperature of Nb, the resistance contrast opens up a transparency window along with a large enhancement in group delay, enabling a significant slowdown of waves. We further demonstrate precise control of the EIT response through changes in the superfluid density. Such tunable metamaterials may be useful for telecommunication because of their large delay-bandwidth products.

  10. Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime

    NASA Astrophysics Data System (ADS)

    Ren, Bao-Cang; Wang, Guan-Yu; Deng, Fu-Guo

    2015-03-01

    We present the dipole induced transparency (DIT) of a diamond nitrogen-vacancy center embedded in a photonic crystal cavity coupled to two waveguides, and it is obvious with the robust and flexible reflectance and transmittance difference of circularly polarized lights between the uncoupled and the coupled cavities even in the bad cavity regime (the Purcell regime). With this DIT, we propose two universal hyperparallel hybrid photonic quantum logic gates, including a hybrid hyper-controlled-not gate and a hybrid hyper-Toffoli gate, on photon systems in both the polarization and the spatial-mode degrees of freedom (DOFs), which are equal to two identical quantum logic gates operating simultaneously on the systems in one DOF. They can be used to perform more quantum operations with less resources in the quantum information protocols with multiqubit systems in several DOFs, which may depress the resources consumed and the photonic dissipation. Moreover, they are more robust against asymmetric environment noise in the weak-coupling regime, compared with the integration of two cascaded quantum logic gates in one DOF.

  11. Embedded Fin-Like Metal/CNT Hybrid Structures for Flexible and Transparent Conductors.

    PubMed

    Jiang, Di; Wang, Nan; Edwards, Michael; Mu, Wei; Nylander, Andreas; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-03-01

    In this paper, an embedded fin-like metal-coated carbon nanotube (Fin-M/CNT) structure is demonstrated for flexible and transparent conductor wire applications. Embedded in a polydimethylsiloxane polymeric substrate, Fin-M/CNT wires with a minimum width of 5 μm and a minimum pitch of 10 μm have been achieved. Direct current resistances of single Fin-M/CNT wires, where the supporting CNT structures have been covered by Ti/Al/Au metal coatings of different thicknesses, have been measured. The high aspect ratio of the fin-like structures not only improves the adhesion between the wires and the polymeric substrate, but also yields a low resistance at a small surface footprint. In addition, transparent Fin-M/CNT grid lines with hexagonal patterns, with a sheet resistance of as low as 45 Ω sq(-1) , have been achieved at an optical transmittance of 88%. The robustness of the Fin-M/CNT structures has been demonstrated in bending tests up to 500 cycles and no significant changes in wire resistances are observed. PMID:26766128

  12. Embedded Fin-Like Metal/CNT Hybrid Structures for Flexible and Transparent Conductors.

    PubMed

    Jiang, Di; Wang, Nan; Edwards, Michael; Mu, Wei; Nylander, Andreas; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-03-01

    In this paper, an embedded fin-like metal-coated carbon nanotube (Fin-M/CNT) structure is demonstrated for flexible and transparent conductor wire applications. Embedded in a polydimethylsiloxane polymeric substrate, Fin-M/CNT wires with a minimum width of 5 μm and a minimum pitch of 10 μm have been achieved. Direct current resistances of single Fin-M/CNT wires, where the supporting CNT structures have been covered by Ti/Al/Au metal coatings of different thicknesses, have been measured. The high aspect ratio of the fin-like structures not only improves the adhesion between the wires and the polymeric substrate, but also yields a low resistance at a small surface footprint. In addition, transparent Fin-M/CNT grid lines with hexagonal patterns, with a sheet resistance of as low as 45 Ω sq(-1) , have been achieved at an optical transmittance of 88%. The robustness of the Fin-M/CNT structures has been demonstrated in bending tests up to 500 cycles and no significant changes in wire resistances are observed.

  13. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-06-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (108). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system

  14. Synthesis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction.

    PubMed

    Na, Moonkyong; Park, Hoyyul; Ahn, Myeongsang; Lee, Hyeonhwa; Chung, Ildoo

    2010-10-01

    Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.

  15. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    SciTech Connect

    Wang Yige; Wang Li; Li Huanrong Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-03-15

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex.

  16. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique

    PubMed Central

    2014-01-01

    To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films. PMID:25386105

  17. A Novel Hybrid Ultramicrotomy/FIB-SEM Technique: Preparation of Serial Electron-Transparent Thin Sections of a Hayabusa Grain

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2014-01-01

    the 'ribs' protruding from either side run parallel. Each rib indicates the location of a planned FIB section, and the spine contains the final two planned sections. We use a cap with a 4 micron-wide spine and 2micron-wide ribs that have ?3.5 micron of space between them (narrower cuts result in too much re-deposition of material inside the trenches). Using a 30kV, 3nA ion-beam we expose the front surface of the grain and commence milling trenches between sections. Rather than using the typical C-cut to prepare the sample for lift-out, an L-cut is used instead, leaving the sample connected by an interior tab. tab. Sections are lifted out, attached to TEM grids and thinned to electron transparency. TEM analyses show that our hybrid technique preserves both interior and edge features, including surface modifications from exposure to the space environment, such as damaged rims that form in response to solar wind implantation effects and adhering grains. In addition, the FIB sections provide larger areas that are free of fractures and chatter effects in comparison to the microtome thin sections, thus enabling more accurate measurements of solar flare particle track densities that are used to determine the surface exposure age of the particles.

  18. A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate.

    PubMed

    Nam, Gwang-Hee; Baek, Seong-Ho; Cho, Chang-Hee; Park, Il-Kyu

    2014-10-21

    We demonstrate the fabrication of a graphene/ZnO nanorod (NR) hybrid structure by mechanical exfoliation of ZnO NRs grown on a graphite substrate. We confirmed the existence of graphene sheets on the hybrid structure by analyzing the Raman spectra and current-voltage (I-V) characteristics. The Raman spectra of the exfoliated graphene/ZnO NR hybrid structure show G and 2D band peaks that are shifted to lower wavenumbers, indicating that the exfoliated graphene layer exists under a significant amount of strain. The I-V characteristics of the graphene/ZnO NR hybrid structure show current flow through the graphene layer, while no current flow is observed on the ZnO NR/polydimethylsiloxane (PDMS) composite without graphene, thereby indicating that the few-layer graphene was successfully transferred onto the hybrid structure. A piezoelectric nanogenerator is demonstrated by using the fabricated graphene/ZnO NR hybrid structure. The nanogenerator exhibits stable output voltage up to 3.04 V with alternating current output characteristics.

  19. Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh.

    PubMed

    Chen, Tong Lai; Ghosh, Dhriti Sundar; Mkhitaryan, Vahagn; Pruneri, Valerio

    2013-11-27

    Polycrystalline graphene and metallic nanowires (NWs) have been proposed to replace indium tin oxide (ITO), the most widely used transparent electrode (TE) film on the market. However, the trade-off between optical transparency (Topt) and electrical sheet resistance (Rs) of these materials taken alone makes them difficult to compete with ITO. In this paper, we show that, by hot-press transfer of graphene monolayer on Ag NWs, the resulting combined structure benefits from the synergy of the two materials, giving a Topt-Rs trade-off better than that expected by simply adding the single material contributions Ag NWs bridge any interruption in transferred graphene, while graphene lowers the contact resistance among neighboring NWs and provides local conductivity in the uncovered regions in-between NWs. The hot-pressing not only allows graphene transfer but also compacts the NWs joints, thus reducing contact resistance. The dependence on the initial NW concentration of the effects produced by the hot press process on its own and the graphene transfer using hot press was investigated and indicates that a low concentration is more suitable for the proposed geometry. A TE film with Topt of 90% and Rs of 14 Ω/sq is demonstrated, also on a flexible glass substrate about 140 μm thick, a very attractive platform for efficient flexible electronic and photonic devices. PMID:24164641

  20. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density.

    PubMed

    Wang, Huiyuan; Cai, Lei; Paul, Alexandra; Enejder, Annika; Heilshorn, Sarah C

    2014-09-01

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell-matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.

  1. Hybrid Elastin-like Polypeptide–Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density

    PubMed Central

    2015-01-01

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP’s lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell–matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics. PMID:25111283

  2. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.

    PubMed

    Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan

    2015-02-11

    Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology. PMID:25599588

  3. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Dung; Tai, Nyan-Hwa; Chen, Szu-Ying; Chueh, Yu-Lun

    2012-01-01

    We report a versatile synthetic process based on rapid heating and cooling chemical vapor deposition for the growth of carbon nanotube (CNT)-graphene hybrid materials where the thickness of graphene and density of CNTs are properly controlled. Graphene films are demonstrated as an efficient barrier layer for preventing poisoning of iron nanoparticles, which catalyze the growth of CNTs on copper substrates. Based on this method, the opto-electronic and field emission properties of graphene integrated with CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of 2.15 kΩ sq-1 with a transmittance of 85.6% (at 550 nm), while a CNT-graphene hybrid film shows an improved sheet resistance of 420 Ω sq-1 with an optical transmittance of 72.9%. Moreover, CNT-graphene films are demonstrated as effective electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3 V μm-1, respectively. The development of CNT-graphene films with a wide range of tunable properties presented in this study shows promising applications in flexible opto-electronic, energy, and sensor devices.

  4. Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Gao, Kezheng; Shao, Ziqiang; Peng, Xiaoqing; Wu, Xue; Wang, Feijun

    2014-03-01

    Cellulose nanofibers (CNFs) paper with low thermal expansion and electrolyte absorption properties is considered to be a good potential substrate for supercapacitors. Unlike traditional substrates, such as glass or plastic, CNFs paper saves surfaces pretreatment when Layer-by-Layer (LbL) assembly method is used. In this study, negatively charged graphene oxide (GO) nanosheets and poly(3,4-ethylenedioxythiophene: poly(styrene sulfonate)) (PEDOT:PSS) nanoparticles are deposited onto CNFs paper with positively charged polyaniline (PANI) nanowires as agents to prepare multilayer thin film electrodes, respectively. Due to the different nanostructures of reduced graphene oxide (RGO) and PEDOT:PSS, the microstructures of the electrodes are distinguishing. Our work demonstrate that CNFs paper/PANI/RGO electrode provides a more effective pathway for ion transport facilitation compared with CNFs paper/PANI/PEDOT:PSS electrode. The supercapacitor fabricated by CNFs/[PANI-RGO]8 (S-PG-8) exhibits an excellent areal capacitance of 5.86 mF cm-2 at a current density of 0.0043 mA cm-2, and at the same current density the areal capacitance of the supercapacitor fabricated by CNFs/[PANI-PEDOT:PSS]8 (S-PP-8) is 4.22 mF cm-2. S-PG-8 also exhibits good cyclic stability. This study provides a novel method using CNFs as substrate to prepare hybrid electrodes with diverse microstructures that are promising for future flexible supercapacitors.

  5. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  6. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics.

    PubMed

    Im, Hyeon-Gyun; Jung, Soo-Ho; Jin, Jungho; Lee, Dasom; Lee, Jaemin; Lee, Daewon; Lee, Jung-Yong; Kim, Il-Doo; Bae, Byeong-Soo

    2014-10-28

    We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.

  7. Electronic structure and defect properties of B6O from hybrid functional and many-body perturbation theory calculations: A possible ambipolar transparent conductor

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; Miglio, A.; Hautier, G.

    2014-07-01

    B6O is a member of icosahedral boron-rich solids known for their physical hardness and stability under irradiation bombardment, but it has also recently emerged as a promising high mobility p -type transparent conducting oxide. Using a combination of hybrid functional and many-body perturbation theory calculations, we report on the electronic structure and defect properties of this material. Our calculations identify B6O has a direct band gap in excess of 3.0 eV and possesses largely isotropic and low effective masses for both holes and electrons. Of the native defects, we identify no intrinsic origin to the reported p -type conductivity and confirm that p-type doping is not prevented by intrinsic defects such as oxygen vacancies, which we find act exclusively as neutral defects rather than hole-killing donors. We also investigate a number of common impurities and plausible dopants, finding that isolated acceptor candidates tend to yield deep states within the band gap or act instead as donors, and cannot account for p-type conductivity. Our calculations identify the only shallow acceptor candidate to be a complex consisting of interstitial H bonded to C substituting on the O site (CH)O. We therefore attribute the origins of p-type conductivity to these complexes formed during growth or more likely via isolated CO which later binds with H within the crystal. Lastly, we identify Si as a plausible n -type dopant, as it favorably acts as a shallow donor and does not suffer from self-compensation as may the C-related defects. Thus, in addition to the observed p-type conductivity, B6O exhibits promise of n -type dopability if the stoichiometry and both native and extrinsic sources of compensation can be sufficiently controlled.

  8. Maintaining Transparency

    PubMed Central

    Beebe, David C.

    2008-01-01

    The lens and cornea are transparent and usually avascular. Controlling nutrient supply while maintaining transparency is a physiological challenge for both tissues. During sleep and with contact lens wear the endothelial layer of the cornea may become hypoxic, compromising its ability to maintain corneal transparency. The mechanism responsible for establishing the avascular nature of the corneal stroma is unknown. In several pathological conditions, the stroma can be invaded by abnormal, leaky vessels, leading to opacification. Several molecules that are likely to help maintain the avascular nature of the corneal stroma have been identified, although their relative contributions remain to be demonstrated. The mammalian lens is surrounded by capillaries early in life. After the fetal vasculature regresses, the lens resides in a hypoxic environment. Hypoxia is likely to be required to maintain lens transparency. The vitreous body may help to maintain the low oxygen level around the lens. The hypothesis is presented that many aspects of the aging of the lens, including increased hardening, loss of accommodation (presbyopia), and opacification of the lens nucleus, are caused by exposure to oxygen. Testing this hypothesis may lead to prevention for nuclear cataract and insight into the mechanisms of lens aging. Although they are both transparent, corneal pathology is associated with an insufficient supply of oxygen, while lens pathology may involve excessive exposure to oxygen. PMID:17920963

  9. Price transparency.

    PubMed

    Butcher, Lola

    2014-06-01

    Payers and patients want to know up front the cost of the care they're paying for, and to be able to compare providers on value. Hospitals are using a variety of strategies to be more transparent on cost and quality.

  10. Welcoming Transparency

    PubMed Central

    Budin, Wendy C.

    2009-01-01

    In this column, the editor of The Journal of Perinatal Education (JPE) discusses why there is a need for transparency to improve maternity care. The editor also describes the contents of this JPE issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth. PMID:19516885

  11. Visibly Transparent Heaters.

    PubMed

    Gupta, Ritu; Rao, K D M; Kiruthika, S; Kulkarni, Giridhar U

    2016-05-25

    Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above. PMID:27176472

  12. Transparent switchboard

    NASA Technical Reports Server (NTRS)

    Rasmussen, H. P. (Inventor)

    1973-01-01

    A tin oxide coating is formed on a plate of glass and the coating is then etched away from the glass in thin lines to form separate electrical conductors which extend to one end of the plate and connect to either a vertical (column) or horizontal (row) position sensing SCR circuit. A thin transparent insulating coating is formed over the oxide layer except at selected touch points which are positioned in a matrix pattern of vertical columns and horizontal rows. Touching one of these points with a finger bridges the thin line between adjacent conductors to activate trigger circuits in the particular row and column sensing circuits associated with the point touched. The row and column sensing circuits are similar and are powered with a low frequency, ac voltage source. The source for the row circuits is 180 out of phase with the source for the column circuits so that one circuit acts as ground for the other during half of the supply voltage cycle. The signals from the sensing circuits are input to a logic circuit which determines the presence of a valid touch, stores a binary matrix number associated with the touched point, signals a computer of the presence of a stored number and prevents storage of a new number before receiving an enable signal from the computer.

  13. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  14. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells. PMID:23206541

  15. Transparent and conductive PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films prepared by spin-coating at room temperature

    NASA Astrophysics Data System (ADS)

    Qingqing, Yue; Jinliang, Yan; Delan, Meng

    2015-12-01

    PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films were deposited on PET substrates by the spin coating technique at room temperature. The optical transmittance, sheet resistance, crystallization and surface morphology were characterized by using the double beam spectrophotometer, Hall effect system, X-ray diffractometer and field emission scanning electron microscopy. XRD patterns of the hybrid films display characteristic diffraction peaks of Ag (111) and Ag (200), and the Ag NW networks have a polycrystalline structure with a Ag (111) preferred orientation. A high transmittance of 83.95% at the 550 nm wavelength and a low sheet resistance of 21.98 Ω/□ are achieved for 3-PEDOT:PSS/5-Ag NW/3-PEDOT:PSS hybrid films. Project supported by the National Natural Science Foundation of China (No. 10974077), and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  16. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.

    PubMed

    Kwon, Ki Yong; Sirowatka, Brenton; Weber, Arthur; Li, Wen

    2013-10-01

    Electrocorticogram (ECoG) recordings, taken from electrodes placed on the surface of the cortex, have been successfully implemented for control of brain machine interfaces (BMIs). Optogenetics, direct optical stimulation of neurons in brain tissue genetically modified to express channelrhodopsin-2 (ChR2), enables targeting of specific types of neurons with sub-millisecond temporal precision. In this work, we developed a BMI device, called an Opto- μECoG array, which combines ECoG recording and optogenetics-based stimulation to enable multichannel, bi-directional interactions with neurons. The Opto- μECoG array comprises two sub-arrays, each containing a 4 × 4 distribution of micro-epidural transparent electrodes ( ∼ 200 μm diameter) and embedded light-emitting diodes (LEDs) for optical neural stimulation on a 2.5 × 2.5 mm² footprint to match the bilateral hemispherical area of the visual cortex in a rat. The transparent electrodes were fabricated with indium tin oxide (ITO). Parylene-C served as the main structural and packaging material for flexibility and biocompatibility. Optical, electrical, and thermal characteristics of the fabricated device were investigated and in vivo experiments were performed to evaluate the efficacy of the device.

  17. Tunable Broadband Printed Carbon Transparent Conductor

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wan, Jiayu

    Transparent conductors have been widely applied in solar cells, transparent smart skins, and sensing/imaging antennas, etc. Carbon-based transparent conductor has attracted great attention for its low cost and broad range transparency. Ion intercalation has been known to highly dope graphitic materials, thereby tuning materials' optoelectronic properties. For the first time, we successfully tune the optical transmittance of a reduced graphene oxide (RGO)/CNT network from mid-IR range to visible range by means of Li-ion intercalation/deintercalation. We also observed a simultaneous increase of the electrical conductivity with the Li-ion intercalation. This printed carbon hybrid thin film was prepared through all solution processes and was easily scalable. This study demonstrates the possibility of using ion intercalation for low cost, tunable broadband transparent conductors.

  18. Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO.

    PubMed

    Agoston, Péter; Albe, Karsten; Nieminen, Risto M; Puska, Martti J

    2009-12-11

    We present a comparative study of oxygen vacancies in In2O3, SnO2, and ZnO based on the hybrid-functional method within the density-functional theory (DFT). For In2O3 and SnO2, our results provide strong evidence of shallow donor states at oxygen vacancies. In comparison with the (semi)local exchange-correlation approximations in DFT, the hybrid-functional method strongly lowers the formation energy of the positive charge state and keeps that of the neutral state nearly intact. The trend is analyzed in terms of changes in lattice relaxation energies and in electron energy levels near the band gap. The existence of shallow donor states at oxygen vacancies and the consequent n-type conductivity are in line with experimental findings. The results invalidate some former theoretical interpretations based on standard DFT calculations. PMID:20366209

  19. Soils. Transparency Masters.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This document is a collection of 43 overhead transparency masters to be used as teaching aids in a course of study involving soils such as geology, agronomy, hydrology, earth science, or land use study. Some transparencies are in color. Selected titles of transparencies may give the reader a better understanding of the graphic content. Titles are:…

  20. The art of transparency

    PubMed Central

    Sayim, Bilge; Cavanagh, Patrick

    2011-01-01

    Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles. PMID:23145252

  1. Transparencies and Reflections.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  2. Toward transparent clinical policies.

    PubMed

    Shiffman, Richard N; Marcuse, Edgar K; Moyer, Virginia A; Neuspiel, Daniel R; Hodgson, Elizabeth Susan; Glade, Gordon; Harbaugh, Norman; Miller, Marlene R; Sevilla, Xavier; Simpson, Lisa; Takata, Glenn

    2008-03-01

    Clinical policies of professional societies such as the American Academy of Pediatrics are valued highly, not only by clinicians who provide direct health care to children but also by many others who rely on the professional expertise of these organizations, including parents, employers, insurers, and legislators. The utility of a policy depends, in large part, on the degree to which its purpose and basis are clear to policy users, an attribute known as the policy's transparency. This statement describes the critical importance and special value of transparency in clinical policies, guidelines, and recommendations; helps identify obstacles to achieving transparency; and suggests several approaches to overcome these obstacles.

  3. Highly compliant transparent electrodes

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger M.; McNamara, Alena; Clarke, David R.

    2012-08-01

    Adaptive optical devices based on electric field induced deformation of dielectric elastomers require transparent and highly compliant electrodes to conform to large shape changes. Electrical, optical, and actuation properties of acrylic elastomer electrodes fabricated with single-walled carbon nanotubes (SWCNTs) and silver nanowires (AgNWs) have been evaluated. Based on these properties, a figure of merit is introduced for evaluating the overall performance of deformable transparent electrodes. This clearly indicates that SWCNTs outperform AgNWs. Under optimal conditions, optical transparency as high as 91% at 190% maximum actuation strain is readily achievable using SWCNT electrodes.

  4. A Dictionary for Transparency

    SciTech Connect

    Kouzes, Richard T.

    2001-11-15

    There are many terms that are used in association with the U.S. Defense Threat Reduction Agency (DTRA) Transparency Project associated with the Mayak Fissile Materials Storage Facility. This is a collection of proposed definitions of these terms.

  5. Zinc oxyfluoride transparent conductor

    SciTech Connect

    Gordon, R.G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400 C to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings. 8 figures.

  6. Zinc oxyfluoride transparent conductor

    DOEpatents

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  7. Complicating Methodological Transparency

    ERIC Educational Resources Information Center

    Bridges-Rhoads, Sarah; Van Cleave, Jessica; Hughes, Hilary E.

    2016-01-01

    A historical indicator of the quality, validity, and rigor of qualitative research has been the documentation and disclosure of the behind-the-scenes work of the researcher. In this paper, we use what we call "methodological data" as a tool to complicate the possibility and desirability of such transparency. Specifically, we draw on our…

  8. [Camouflage and transparency].

    PubMed

    Silveira, M F; Sobral, V; Junqueira, C S

    2000-01-01

    This study establishes analogies between some universal symbols and death rituals developed in nursing, based on the comprehension of ELIADE. It shows the existent camouflage of these rituals in the nursing profession and points out to the need of eliciting (making transparent) these practices in order to enrich nursing practice, thus benefitting caretakers and patients.

  9. Transparent spinel development

    NASA Astrophysics Data System (ADS)

    Patterson, Mark; Caiazza, Jenni E.; Roy, Donald W.

    2000-10-01

    The optical and mechanical properties of polycrystalline MgAl2O4 spinel make this material of interest for transparent armor and for window and dome applications in the 0.3 micrometers to 5.5 micrometers range. Spinel was briefly produced commercially, and qualified for a range of dome and window applications in the early 1990's. Since 1993 however, there has been no commercial producer and consequently the interest in the application of spinel has waned. This paper summarizes development efforts by Technology Assessment and Transfer (TA&T) to fabricate transparent spinel with high optical quality for both transparent armor, and a selection of window and dome applications. A cooperative research and development agreement between TA&T and the US Army Research Laboratory is focused at optimizing processing parameters to maximize strength and transparency while minimizing the costs for fabrication by the hot-press/HIP approach. Present interest is in fabricating large armor panels of spinel up to 15 inches square and 0.5 inches thick, and in the fabrication of thinner windows and domes with the view to establishing TA&T as a commercial supplier of spinel in the near future.

  10. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics.

    PubMed

    Beiley, Zach M; Christoforo, M Greyson; Gratia, Paul; Bowring, Andrea R; Eberspacher, Petra; Margulis, George Y; Cabanetos, Clément; Beaujuge, Pierre M; Salleo, Alberto; McGehee, Michael D

    2013-12-23

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. PMID:24123497

  11. Teaching the Concept of Resonance with Transparent Overlays.

    ERIC Educational Resources Information Center

    Richardson, W. S.

    1986-01-01

    Describes a visual transparency method to develop the concept of resonance with respect to molecular resonance hybrid structures and partial charge on the atoms of an ion. Discusses the distinction between tautomerism and resonance, and emphasizes clarification of the Lewis structure concept. (JM)

  12. Stretchable and transparent electrodes based on in-plane structures.

    PubMed

    Kim, Kukjoo; Kim, Joohee; Hyun, Byung Gwan; Ji, Sangyoon; Kim, So-Yun; Kim, Sungwon; An, Byeong Wan; Park, Jang-Ung

    2015-09-21

    Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing stretchable electrodes, which are one of the most important building blocks for stretchable electronics. Stretchable transparent thin-film electrodes, which retain their electrical conductivity and optical transparency under mechanical deformation, are particularly important for the favourable application of stretchable devices. This minireview summarizes recent advances in stretchable transparent thin-film electrodes, especially employing strategies based on in-plane structures. Various approaches using metal nanomaterials, carbon nanomaterials, and their hybrids are described in terms of preparation processes and their optoelectronic/mechanical properties. Some challenges and perspectives for further advances in stretchable transparent electrodes are also discussed. PMID:26287668

  13. Optical and surface properties of optically transparent Li3 PO4 solid electrolyte layer for transparent solid batteries.

    PubMed

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2016-07-01

    In this study, optical and surface properties of the optically transparent Li3 PO4 solid electrolyte layer for transparent solid battery have been investigated for the first time. To determine the optical properties, transmittance, absorbance, reflection, refractive index spectra, and optical band gap were determined by UV-Vis spectrophotometer and optical interferometer. The surface property of the transparent Li3 PO4 solid electrolyte was analyzed using atomic force microscopy. One another important parameter is contact angle (CA) surface free energy (SFE). CA and SFE were determined by optical tensiometer. These values probably are a most important parameter for polymer and hybrid battery performance. For the best performance, value of CA should be low. As a result, solid electrolyte layer is a highly transparent and it has a high wettability. SCANNING 38:317-321, 2016. © 2015 Wiley Periodicals, Inc.

  14. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  15. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future. PMID:26872163

  16. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  17. The transparency of aging.

    PubMed

    Sorrell, Jeanne M

    2007-03-01

    This article is not meant to provide answers but to provoke thinking related to the questions we should be asking about the ethical personhood of aging adults. Are we covering over the rich opportunities to learn from their stories with an invisible cloak of transparency? Health care professionals have a moral obligation to rethink the assumptions that underlie their definitions of quality of life in aging. We cannot know what should be done unless we learn to listen to the life stories of aging people. This may even help us to see what is most real. PMID:17396715

  18. Transparent anti-stain coatings with good thermal and mechanical properties based on polyimide-silica nanohybrids.

    PubMed

    Choi, Myeon-Cheon; Sung, Giju; Nagappan, Saravanan; Han, Mi-Jeong; Ha, Chang-Sik

    2012-07-01

    In this work, we synthesized polyimide/silica hybrid materials via sol-gel method using a fluorinated poly(amic acid) silane precursor and a variety of perfluorosilane contents. We studied the influence of a hybrid coating film with the following characteristics; hydrophobicity, oleophobicity, optical transparency, and surface hardness of the coating films. The hybrid coatings with the fluorosilane contents up to 10 wt% are optically transparent and present good thermal stability with a degradation temperature of > 500 degrees C as well as a glass transition of > 300 degrees C. Both water contact angle and oil contact angle increase rapidly with introducing small amount of the fluorosilane in the hybrids and reaches the maximum of 115 degrees and 61 degrees, respectively. The hardness of the hybrid coatings increases up to 5H with an increase of the FTES content in the hybrids. These colorless, transparent, and thermally stable hybrid materials could be suitable for applications as anti-stain coatings.

  19. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  20. Corneal structure and transparency.

    PubMed

    Meek, Keith M; Knupp, Carlo

    2015-11-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  1. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  2. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  3. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  4. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed. PMID:27459942

  5. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p–n junctions will also be briefly discussed.

  6. How hospitals approach price transparency.

    PubMed

    Houk, Scott; Cleverley, James O

    2014-09-01

    A survey of finance leaders found that hospitals with lower charges were more likely than other hospitals to emphasize making prices defensible rather than simply transparent. Finance leaders of hospitals with higher charges were more likely to express concern that price transparency would cause a reduction in hospital revenue by forcing them to lower charges. Those respondents said commercial payers likely will have to agree to renegotiate contracts for price transparency to be a financially viable proposition. PMID:25647890

  7. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  8. Hole conduction pathways in transparent amorphous tin oxides

    NASA Astrophysics Data System (ADS)

    Wahila, Matthew; Lebens-Higgins, Zachary; Quackenbush, Nicholas; Piper, Louis; Butler, Keith; Hendon, Christopher; Walsh, Aron; Watson, Graeme

    P-type transparent amorphous oxide semiconductors (TAOS) have yet to be sufficiently demonstrated or commercialized, severely limiting the possible device architecture of transparent and flexible oxide electronics. The lack of p-type amorphous oxide candidates mainly originates from the directional oxygen 2 p character of their topmost valence states. Previous attempts to create p-type oxides have involved hybridization of the O 2 p with metal orbitals, such as with CuAlO2 and its Cu 3 d - O 2 p hybridization. However, the highly directional nature of the utilized orbitals means that structural disorder inhibits hybridization and severely disrupts hole-conduction pathways. Crystalline stannous oxide (SnO) and other lone-pair active post-transition metal oxides can have reduced localization at the valence band edge due to complex hybridization between the O 2 p, metal p, and spherical metal s-orbitals. I will discuss our investigation of structural disorder in SnO. Using a combination of synchrotron spectroscopy, and atomistic calculations, our investigation elucidates the important interplay between atomistic and electronic structure in establishing continuous hole conduction pathways at the valence band edge of transparent amorphous oxides.

  9. Multiphoton electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Wen, Lingling; Kang, Hoonsoo; Zhu, Yifu; Wu, Ying

    2003-05-01

    We show that in multi-level atomic systems coupled by multiple laser fields, all linear and nonlinear absorptions may be completely suppressed, leading to the multiphoton electromagnetically induced transparency (EIT). Under suitable conditions, multiphoton EIT may be used to realize selective steady-state population inversion in coherently pumped atomic systems and achieve efficient nonlinear light generation at low light intensities. As examples, we will present studies of multiphoton EIT in five-level and six-level atomic systems, which demonstrate steady-state population inversion from selective nonlinear excitation. We will also present studies of resonant hyper-Raman and four-wave mixing processes that are enhanced via suppression of the lower-order linear and nonlinear absorptions, and are capable of generating short-wavelength, coherent light at low pump intensities.

  10. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  11. Air transparent soundproof window

    SciTech Connect

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  12. Transparent volume imaging

    NASA Astrophysics Data System (ADS)

    Wixson, Steve E.

    1990-07-01

    Transparent Volume Imaging began with the stereo xray in 1895 and ended for most investigators when radiation safety concerns eliminated the second view. Today, similiar images can be generated by the computer without safety hazards providing improved perception and new means of image quantification. A volumetric workstation is under development based on an operational prototype. The workstation consists of multiple symbolic and numeric processors, binocular stereo color display generator with large image memory and liquid crystal shutter, voice input and output, a 3D pointer that uses projection lenses so that structures in 3 space can be touched directly, 3D hard copy using vectograph and lenticular printing, and presentation facilities using stereo 35mm slide and stereo video tape projection. Volumetric software includes a volume window manager, Mayo Clinic's Analyze program and our Digital Stereo Microscope (DSM) algorithms. The DSM uses stereo xray-like projections, rapidly oscillating motion and focal depth cues such that detail can be studied in the spatial context of the entire set of data. Focal depth cues are generated with a lens and apeture algorithm that generates a plane of sharp focus, and multiple stereo pairs each with a different plane of sharp focus are generated and stored in the large memory for interactive selection using a physical or symbolic depth selector. More recent work is studying non-linear focussing. Psychophysical studies are underway to understand how people perce ive images on a volumetric display and how accurately 3 dimensional structures can be quantitated from these displays.

  13. Is the Universe transparent?

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Avgoustidis, A.; Li, Zhengxiang

    2015-12-01

    We present our study on cosmic opacity, which relates to changes in photon number as photons travel from the source to the observer. Cosmic opacity may be caused by absorption or scattering due to matter in the Universe, or by extragalactic magnetic fields that can turn photons into unobserved particles (e.g., light axions, chameleons, gravitons, Kaluza-Klein modes), and it is crucial to correctly interpret astronomical photometric measurements like type Ia supernovae observations. On the other hand, the expansion rate at different epochs, i.e., the observational Hubble parameter data H (z ), are obtained from differential ageing of passively evolving galaxies or from baryon acoustic oscillations and thus are not affected by cosmic opacity. In this work, we first construct opacity-free luminosity distances from H (z ) determinations, taking into consideration correlations between different redshifts for our error analysis. Moreover, we let the light-curve fitting parameters, accounting for distance estimation in type Ia supernovae observations, free to ensure that our analysis is authentically cosmological-model independent and gives a robust result. Any nonzero residuals between these two kinds of luminosity distances can be deemed as an indication of the existence of cosmic opacity. While a transparent Universe is currently consistent with the data, our results show that strong constraints on opacity (and consequently on physical mechanisms that could cause it) can be obtained in a cosmological-model-independent fashion.

  14. Multispectral plasmon induced transparency in coupled meta-atoms.

    PubMed

    Artar, Alp; Yanik, Ahmet A; Altug, Hatice

    2011-04-13

    We introduce an approach enabling construction of a scalable metamaterial media supporting multispectral plasmon induced transparency. The composite multilayered media consist of coupled meta-atoms with radiant and subradiant hybridized plasmonic modes interacting through the structural asymmetry. A perturbative model incorporating hybridization and mode coupling is introduced to explain the observed novel spectral features. The proposed scheme is demonstrated experimentally by developing a lift-off-free fabrication scheme that can automatically register multiple metamaterial layers in the transverse plane. This metamaterial which can simultaneously enhance nonlinear processes at multiple frequency domains could open up new possibilities in optical information processing.

  15. Transparent conductive graphene textile fibers.

    PubMed

    Neves, A I S; Bointon, T H; Melo, L V; Russo, S; de Schrijver, I; Craciun, M F; Alves, H

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  16. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas.

  17. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. PMID:27276698

  18. Transparent conductive graphene textile fibers

    PubMed Central

    Neves, A. I. S.; Bointon, T. H.; Melo, L. V.; Russo, S.; de Schrijver, I.; Craciun, M. F.; Alves, H.

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  19. Transparent, abrasion resistant coating compositions

    SciTech Connect

    Ashlock, L.T.; Mukamal, H.; White, W.H.

    1985-02-19

    There is disclosed transparent, abrasion resistant coating compositions comprising a colloidal dispersion of a water insoluble dispersant in a water-alcohol solution of the partial condensate of silanol wherein the dispersant comprises metals, alloys and salts thereof.

  20. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  1. Lines that induce phenomenal transparency.

    PubMed

    Grieco, Alba; Roncato, Sergio

    2005-01-01

    Three neighbouring opaque surfaces may appear split into two layers, one transparent and one opaque beneath, if an outline contour is drawn that encompasses two of them. The phenomenon was originally observed by Kanizsa [1955 Rivista di Psicologia 69 3-19; 1979 Organization in Vision: Essays on Gestalt Psychology (New York: Praeger)], for the case where an outline contour is drawn to encompass one of the two parts of a bicoloured figure and a portion of a background of lightest (or darkest) luminance. Preliminary observations revealed that the outline contour yields different effects: in addition to the stratification into layers described by Kanizsa, a second split, opposite in depth order, may occur when the outline contour is close in luminance to one of the three surfaces. An initial experiment was designed to investigate what conditions give rise to the two phenomenal transparencies: this led to the conclusion that an outline contour superimposed on an opaque surface causes this surface to emerge as a transparent layer when the luminances of the contour and the surface differ, in absolute value, by no more than 13.2 cd m(-2). We have named this phenomenon 'transparency of the intercepted surface', to distinguish it from the phenomenal transparency arising when the contour and surface are very different in luminance. When such a difference exists, the contour acts as a factor of surface definition and grouping: the portion of the homogeneous surface it bounds emerges as a fourth surface and groups with a nearby surface if there is one close in luminance. The transparency phenomena ('transparency of the contoured surface') perceived in this context conform to the constraints of Metelli's model, as demonstrated by a second experiment, designed to gather 'opacity' ratings of stimuli. The observer judgments conformed to the values predicted by Metelli's formula for perceived degree of transparency, alpha. The role of the outline contour in conveying figural and

  2. Price transparency: building community trust.

    PubMed

    Clarke, Richard L

    2007-01-01

    With the push from policymakers, payers, and consumers for hospitals to make their prices public, healthcare executives need to recognize two central issues related to price transparency: 1) meaningful price transparency involves helping patients and consumers understand their financial obligation for an episode of care, and 2) price transparency is key to the most critical success strategy for healthcare providers: building trust. This article reviews the history of pricing and billing practices and explores why price transparency is not easily achieved in today's environment. Pricing is a mystery even to those of us who work in the field, yet despite its complexity, the call for price transparency is not going to go away. For transparency, the goal should be to establish a rational pricing system that is easily explainable and justified to all stakeholders. Healthcare executives must make pricing a priority, understand cost, develop a pricing philosophy, understand the overall revenue requirements, examine market conditions and prices, and set up systems for review. A rational process of price setting should enhance community trust. In this matter there is nothing less at stake than the hearts of our community members. PMID:17405387

  3. Cu mesh for flexible transparent conductive electrodes.

    PubMed

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  4. Cu Mesh for Flexible Transparent Conductive Electrodes

    PubMed Central

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-01-01

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target—a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10–3/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells. PMID:26039977

  5. Coherent-state-induced transparency

    NASA Astrophysics Data System (ADS)

    Gogyan, A.; Malakyan, Yu.

    2016-04-01

    We examine electromagnetically induced transparency (EIT) in an ensemble of cold Λ -type atoms induced by a quantum control field in multimode coherent states and compare it with the transparency created by the classical light of the same intensity. We show that the perfect coincidence is achieved only in the case of a single-mode coherent state, whereas the transparency sharply decreases, when the number of the modes exceeds the mean number of control photons in the medium. The origin of the effect is the modification of photon statistics in the control field with increasing the number of the modes that weakens its interaction with atoms resulting in a strong probe absorption. For the same reason, the probe pulse transforms from EIT-based slow light into superluminal propagation caused by the absorption.

  6. Transparent ceramics for spacecraft windows

    NASA Astrophysics Data System (ADS)

    Salem, Jonathan A.

    2013-06-01

    The mechanical properties of several transparent ceramics were investigated to determine if their use might lighten next generation spacecraft windows. The measured fracture toughness and slow crack growth parameters were used as inputs to functions describing the required mass for a desired window life. Transparent magnesium aluminate (spinel, MgAlO4) and AlON exhibit superior slow crack resistance relative to fused silica, which is the historical material of choice. For spinel, slow crack growth, strength and fracture toughness are significantly influenced by the grain size, and alumina rich phases and porosity at the grain boundaries lead to intergranular fracture in coarse grain spinel. The results imply that transparent ceramics can lighten window panes from a slow crack growth perspective.

  7. Partial transparency of compressed wood

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hiroyuki; Sugimori, Masatoshi

    2016-05-01

    We have developed novel wood composite with optical transparency at arbitrary region. Pores in wood cells have a great variation in size. These pores expand the light path in the sample, because the refractive indexes differ between constituents of cell and air in lumen. In this study, wood compressed to close to lumen had optical transparency. Because the condition of the compression of wood needs the plastic deformation, wood was impregnated phenolic resin. The optimal condition for high transmission is compression ratio above 0.7.

  8. Anisotropy-Induced Transparency in Optically Dense Media

    NASA Astrophysics Data System (ADS)

    Tokman, M. D.; Erukhimova, M. A.

    2015-04-01

    The effect of anisotropy-induced transparency, which is analogous to electromagnetically induced transparency in the three-level medium located in a resonance field, is predicted and studied theoretically. This effect is connected with destructive interference between oscillations in different degrees of freedom of an anisotropic medium, which are connected with each other, as radiation propagates at an angle to one of the optical axes in a triaxial or uniaxial crystal. In this case, a hybrid-type polariton is formed in the "transparency window," which combines the quasi-longitudinal polarization with the "vacuum" refractive index. Such a wave is excited easily by radiation incident from the vacuum and should have enhanced impedance of coupling with active or nonlinear elements, which can be useful for the creation of small-size optical systems. Due to the interest in quantum-optical effects displayed recently, the regime of anisotropy-induced transparency is considered within the framework of the quantum theory of radiation in an optically dense medium.

  9. Transparency in Cooperative Online Education

    ERIC Educational Resources Information Center

    Dalsgaard, Christian; Paulsen, Morten Flate

    2009-01-01

    The purpose of this article is to discuss the following question: What is the potential of social networking within cooperative online education? Social networking does not necessarily involve communication, dialogue, or collaboration. Instead, the authors argue that "transparency" is a unique feature of social networking services. Transparency…

  10. Could Transparency Bring Economic Diversity?

    ERIC Educational Resources Information Center

    Kahlenberg, Richard D.

    2007-01-01

    The Spellings Commission report calls for greater access to higher education for low- and moderate-income students, greater transparency in the way higher education works and greater accountability for producing results. These recommendations are all significant in their own right, but the three concepts also converge to provide powerful support…

  11. Optical transparency of crystalline germanium

    NASA Astrophysics Data System (ADS)

    Kaplunov, I. A.; Smirnov, Yu. M.; Kolesnikov, A. I.

    2005-02-01

    This paper discusses the optical transparency of single-crystal and polycrystalline germanium. It is shown that the attenuation of IR radiation is affected by the presence of impurities (their form and concentration) and the structure of the material. The temperature dependences of the attenuation factor are obtained.

  12. Transparent ceramic lamp envelope materials

    NASA Astrophysics Data System (ADS)

    Wei, G. C.

    2005-09-01

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  13. Photopatternable transparent conducting oxide nanoparticles for transparent electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Won Jin; Kim, Sung Jin; Cartwright, Alexander N.; Prasad, Paras N.

    2013-02-01

    We report a method to fabricate tailored transparent electrodes using photopatternable transparent conducting oxide nanoparticles (TCO NPs). We demonstrate solution-processed micropatterns by a conventional photolithography technique. We have synthesized indium tin oxide (ITO) NPs and functionalized them with a photolabile group, such as t-butoxycarbonyl (t-BOC), which can be deprotected by a chemical amplification reaction in the solid state film. The chemical amplification reaction leads to a shortening of the ligand that changes the solubility of the resulting ITO films. This ligand shortening process also contributes to a reduction of the sheet resistance in the resulting photopatterned ITO films. Furthermore, we have demonstrated the general viability and strength of this approach by also photopatterning zinc oxide (ZnO) NPs.

  14. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors.

    PubMed

    Wang, A; Babcock, J R; Edleman, N L; Metz, A W; Lane, M A; Asahi, R; Dravid, V P; Kannewurf, C R; Freeman, A J; Marks, T J

    2001-06-19

    Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. In(x)Cd(1-x)O films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing. PMID:11416196

  15. Fracture properties and behavior of transparent ceramics

    NASA Astrophysics Data System (ADS)

    Patel, Parimal J.; Swab, Jeffrey J.; Gilde, Gary A.

    2000-10-01

    For the past several decades, the Army has been interested in materials transparent to visible and infrared wavelengths for use in armor, IR windows and sensor windows. Future requirements for transparent armor are systems that can defeat greater threats without increased weight and thickness and minimal optical distortion. The Army Research Laboratory is developing transparent armor systems to increase the performance of new windows. Aluminum oxynitride spinel and single-crystal sapphire are two of the ceramic candidates for advanced transparent armor applications.

  16. Transparency and Oversight in Local Wellness Policies

    ERIC Educational Resources Information Center

    Chriqui, Jamie F.; Chaloupka, Frank J.

    2011-01-01

    Background: Advocates have called for increased wellness policy transparency and oversight through the use of health advisory councils. This study examines (1) wellness policy transparency, (2) advisory council requirements, (3) factors associated with each, and (4) whether transparency or advisory council requirements are indicative of a stronger…

  17. Making It with Media. Transparency Design.

    ERIC Educational Resources Information Center

    Beasley, Augie E.; Palmer, Carolyn G.

    This guide to the design and production of overhead transparencies begins with a matching test of related terminology and definitions. Introductory materials include an outline of advantages and disadvantages of using transparencies; a list of recommended uses of the overhead and transparencies; tips for overhead presentations; general…

  18. Transparent metals for ultrabroadband electromagnetic waves.

    PubMed

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Li, Jia; Liu, Yongmin; Hu, Qing; Wang, Mu; Zhang, Xiang

    2012-04-17

    Making metals transparent, which could lead to fascinating applications, has long been pursued. Here we demonstrate that with narrow slit arrays metallic plates become transparent for extremely broad bandwidths; the high transmission efficiency is insensitive to the metal thickness. This work provides a guideline to develop novel devices, including transparent conducting panels, broadband metamaterials, and antireflective solar cells.

  19. Transparent metals for ultrabroadband electromagnetic waves.

    PubMed

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Li, Jia; Liu, Yongmin; Hu, Qing; Wang, Mu; Zhang, Xiang

    2012-04-17

    Making metals transparent, which could lead to fascinating applications, has long been pursued. Here we demonstrate that with narrow slit arrays metallic plates become transparent for extremely broad bandwidths; the high transmission efficiency is insensitive to the metal thickness. This work provides a guideline to develop novel devices, including transparent conducting panels, broadband metamaterials, and antireflective solar cells. PMID:22431279

  20. Dipole-Induced Electromagnetic Transparency

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-01

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  1. Electromagnetically induced transparency in rubidium

    NASA Astrophysics Data System (ADS)

    Olson, Abraham J.; Mayer, Shannon K.

    2009-02-01

    We investigate ladder-type electromagnetically induced transparency (EIT) in rubidium gas. The theoretical absorption profile of a weak probe laser beam at 780.2nm (5S1/2→5P3/2) is modeled in the presence of a strong coupling laser beam at 776.0nm (5P3/2→5D5/2) and the absorption transparency window is characterized. We use two grating-feedback diode lasers and observe EIT experimentally in rubidium and compare the results to the theory. This experiment brings quantum optics into the advanced undergraduate laboratory and utilizes equipment and expertise commonly available in laboratories equipped to perform diode-laser-based absorption spectroscopy of rubidium.

  2. Transparent multiprocessing boosts MUC throughput

    SciTech Connect

    Kinder, D.

    1982-04-15

    Although multitasking and multiprocessing have become common features of microprocessor operating sytems, rarely can the software support multiple processors. One exception is the IMAX operating sytem, written in ADA and running on IAPX 432 general-purpose data processors. By keeping tasks independent of the processors which operate on them, IMAX makes multiprocessing transparent. The 432's multiprocessing architecture solves the problem of keeping task dispatching independent of processors. The system is described.

  3. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  4. Optically transparent/colorless polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Stclair, T. L.; Slemp, W.; Ezzell, K. S.

    1985-01-01

    Several series of linear aromatic polyimide films have been synthesized and characterized with the objective of obtaining maximum optical transparency. Two approaches have been used as part of this structure-property relationship study. The first approach is to vary the molecular structure so as to separate chromophoric centers and reduce electronic interactions between polymer chains to lower the intensity of color in the resulting polymer films. A second and concurrent approach is to perform polymerizations with highly purified monomers. Glass transition temperatures of thermally cured polyimide films are obtained by thermomechanical analysis and thermal decomposition temperatures are determined by thermogravimetric analysis. Transmittance UV-visible spectra of the polyimide films are compared to that of a commercial polyimide film. Fully imidized films are tested for solubility in common organic solvents. The more transparent films prepared in this study are evaluated for use on second-surface mirror thermal control coating systems. Lightly colored to colorless films are characterized by UV-visible spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. The effects of monomer purity, casting solvent and cure atmosphere on polyimide film transparency are also investigated.

  5. "Bottom-up" transparent electrodes.

    PubMed

    Morag, Ahiud; Jelinek, Raz

    2016-11-15

    Transparent electrodes (TEs) have attracted significant scientific, technological, and commercial interest in recent years due to the broad and growing use of such devices in electro-optics, consumer products (touch-screens for example), solar cells, and others. Currently, almost all commercial TEs are fabricated through "top-down" approaches (primarily lithography-based techniques), with indium tin oxide (ITO) as the most common material employed. Several problems are encountered, however, in this field, including the cost and complexity of TE production using top-down technologies, the limited structural flexibility, high-cost of indium, and brittle nature and low transparency in the far-IR spectral region of ITO. Alternative routes based upon bottom-up processes, have recently emerged as viable alternatives for production of TEs. Bottom up technologies are based upon self-assembly of building blocks - atoms, molecules, or nanoparticles - generating thin patterned films that exhibit both electrical conductivity and optical transparency. In this Feature Article we discuss the recent progress in this active and exciting field, including bottom-up TE systems produced from carbon materials (carbon nanotubes, graphene, graphene-oxide), silver, gold, and other metals. The current hurdles encountered for broader use of bottom-up strategies along with their significant potential are analyzed. PMID:27545510

  6. "Bottom-up" transparent electrodes.

    PubMed

    Morag, Ahiud; Jelinek, Raz

    2016-11-15

    Transparent electrodes (TEs) have attracted significant scientific, technological, and commercial interest in recent years due to the broad and growing use of such devices in electro-optics, consumer products (touch-screens for example), solar cells, and others. Currently, almost all commercial TEs are fabricated through "top-down" approaches (primarily lithography-based techniques), with indium tin oxide (ITO) as the most common material employed. Several problems are encountered, however, in this field, including the cost and complexity of TE production using top-down technologies, the limited structural flexibility, high-cost of indium, and brittle nature and low transparency in the far-IR spectral region of ITO. Alternative routes based upon bottom-up processes, have recently emerged as viable alternatives for production of TEs. Bottom up technologies are based upon self-assembly of building blocks - atoms, molecules, or nanoparticles - generating thin patterned films that exhibit both electrical conductivity and optical transparency. In this Feature Article we discuss the recent progress in this active and exciting field, including bottom-up TE systems produced from carbon materials (carbon nanotubes, graphene, graphene-oxide), silver, gold, and other metals. The current hurdles encountered for broader use of bottom-up strategies along with their significant potential are analyzed.

  7. Plasmon-mediated magneto-optical transparency

    PubMed Central

    Belotelov, V. I.; Kreilkamp, L. E.; Akimov, I. A.; Kalish, A. N.; Bykov, D. A.; Kasture, S.; Yallapragada, V. J.; Venu Gopal, Achanta; Grishin, A. M.; Khartsev, S. I.; Nur-E-Alam, M.; Vasiliev, M.; Doskolovich, L. L.; Yakovlev, D. R.; Alameh, K.; Zvezdin, A. K.; Bayer, M.

    2013-01-01

    Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization. PMID:23839481

  8. Perceptual transparency in neon color spreading displays.

    PubMed

    Ekroll, Vebjørn; Faul, Franz

    2002-08-01

    In neon color spreading displays, both a color illusion and perceptual transparency can be seen. In this study, we investigated the color conditions for the perception of transparency in such displays. It was found that the data are very well accounted for by a generalization of Metelli's (1970) episcotister model of balanced perceptual transparency to tristimulus values. This additive model correctly predicted which combinations of colors would lead to optimal impressions of transparency. Color combinations deviating slightly from the additive model also looked transparent, but less convincingly so.

  9. Optically transparent high temperature shape memory polymers.

    PubMed

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles. PMID:26686222

  10. Transparent bulk-size nanocomposites with high inorganic loading

    SciTech Connect

    Chen, Shi; Gaume, Romain

    2015-12-14

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  11. Motion transparency: making models of motion perception transparent.

    PubMed

    Snowden; Verstraten

    1999-10-01

    In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.

  12. Enhanced tunability of plasmon induced transparency in graphene strips

    SciTech Connect

    Shi, Xi; Su, Xiaopeng; Yang, Yaping

    2015-04-14

    The approach of slow-light efficiency manipulation is theoretically investigated in graphene analogue of electromagnetically induced transparency (EIT) system, which cannot be realized in conventional quantum regime. In this system, two graphene strips with different Fermi energies placed side by side as radiative elements have been discussed, and the coupling strength between radiative elements and dark elements is tuned by these radiative elements. Our proposed scheme exploits the tuning of coupling strength between the radiative elements and dark elements in contrast with the existing approaches that rely on tuning the damping rates of radiative or dark elements. The transparent window and group delays can be tuned by different coupling strength without changing the geometry of structure. This manipulation can be explained using a temporal coupled-mode theory. Furthermore, the hybridized states in this EIT-like system can be manipulated by tuning the Fermi energy of radiative elements. This kind of controllable electromagnetically induced transparency has many significant potential applications in optoelectronic, photodetectors, tunable sensors, and storage of optical data regimes.

  13. Modified silver nanowire transparent electrodes with exceptional stability against oxidation.

    PubMed

    Idier, J; Neri, W; Labrugère, C; Ly, I; Poulin, P; Backov, R

    2016-03-11

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones. PMID:26866415

  14. Modified silver nanowire transparent electrodes with exceptional stability against oxidation

    NASA Astrophysics Data System (ADS)

    Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R.

    2016-03-01

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones.

  15. Fully transparent and rollable electronics.

    PubMed

    Mativenga, Mallory; Geng, Di; Kim, Byungsoon; Jang, Jin

    2015-01-28

    Major obstacles toward the manufacture of transparent and flexible display screens include the difficulty of finding transparent and flexible semiconductors and electrodes, temperature restrictions of flexible plastic substrates, and bulging or warping of the flexible electronics during processing. Here we report the fabrication and performance of fully transparent and rollable thin-film transistor (TFT) circuits for display applications. The TFTs employ an amorphous indium-gallium-zinc oxide semiconductor (with optical band gap of 3.1 eV) and amorphous indium-zinc oxide transparent conductive electrodes, and are built on 15-μm-thick solution-processed colorless polyimide (CPI), resulting in optical transmittance >70% in the visible range. As the CPI supports processing temperatures >300 °C, TFT performance on plastic is similar to that on glass, with typical field-effect mobility, turn-on voltage, and subthreshold voltage swing of 12.7 ± 0.5 cm(2)/V·s, -1.7 ± 0.2 V, and 160 ± 29 mV/dec, respectively. There is no significant degradation after rolling the TFTs 100 times on a cylinder with a radius of 4 mm or when shift registers, each consisting of 40 TFTs, are operated while bent to a radius of 2 mm. For handling purposes, carrier glass is used during fabrication, together with a very thin (∼1 nm) solution-processed carbon nanotube (CNT)/graphene oxide (GO) backbone that is first spin-coated on the glass to decrease adhesion of the CPI to the glass; peel strength of the CPI from glass decreases from 0.43 to 0.10 N/cm, which eases the process of detachment performed after device fabrication. Given that the CNT/GO remains embedded under the CPI after detachment, it minimizes wrinkling and decreases the substrate's tensile elongation from 8.0% to 4.6%. Device performance is also stable under electrostatic discharge exposures up to 10 kV, as electrostatic charge can be released via the conducting CNTs. PMID:25526282

  16. Biometrics between opacity and transparency.

    PubMed

    Gutwirth, Serge

    2007-01-01

    The overall aim of the democratic constitutional state is to protect a social order in which the individual liberty of the citizen is a major concern. As a consequence the democratic constitutional state should guarantee simultaneously and paradoxically a high level of individual freedom and an order in which such freedom is made possible and guaranteed. Biometrics provide a strong and expressive example both of the necessity to address the issue of opacity and transparency and the complexity of the process. Indeed, the large scale use of biometrics does not only question the position of the individual in society, but it also alters the architecture or nature of this society as such.

  17. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc. PMID:23496768

  18. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc.

  19. Transparent communications permit unmanned operations

    SciTech Connect

    1995-07-01

    Not-normally-manned platforms are not a new development. However, their use in harsher environments has until recently, been limited. Development of reliable communications networks capable of handling the large amounts of data required for process control in real time with distributed control systems (DCSs) has been a key factor in making the concept viable for harsher, more remote environments. The article below examines the transparent communications network and DCS installed on Pickerill field, offshore UK, by Fisher-Rosemount Systems and its operational parameters. Pickerill field, some 50 mi off the Lincolnshire coast, comprises two small unmanned platforms producing gas under remote control from Arco`s operations base at Great Yarmouth about 60 mi south. Reliable communication is required both with the two platforms offshore and with Conoco`s gas processing operators at Theddlethorpe. Fundamental to project success was the ability of the process control system to provide entirely secure and transparent communication with equipment offshore and thus enable operators at Great Yarmouth to interact with the process as if it were local to their control center.

  20. Thermal property of transparent silver nanowire films

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Shin, D. K.; Ahn, J.; Lee, J. Y.

    2014-01-01

    Through a comparison with transparent polymer composite films, we investigate the thermal property of transparent silver nanowire (AgNW) films that may be employed for heat sink in transparent electronic devices. To fabricate transparent polymer composite films and enhance their thermal property, poly(methyl methacrylate) (PMMA) solution featuring high transparency (∼90%) and thermal emissivity (0.9) is mixed with thermal conductive fillers such as aluminum nitride (AlN) and silicon carbide (SiC). It is observed that the thermal emissivity of the AgNW films is decreased as the sheet resistance is reduced. However, we have found that the AgNW film shows the most excellent heat dissipation property (53.7 °C) while maintaining relatively higher transparency (77.1% at 520 nm), followed by the PMMA:SiC and then PMMA:AlN films.

  1. Metamaterial transparency induced by cooperative electromagnetic interactions.

    PubMed

    Jenkins, Stewart D; Ruostekoski, Janne

    2013-10-01

    We propose a cooperative asymmetry-induced transparency, CAIT, formed by collective excitations in metamaterial arrays of discrete resonators. CAIT can display a sharp transmission resonance even when the constituent resonators individually exhibit broad resonances. We further show how dynamically reconfiguring the metamaterial allows one to actively control the transparency. While reminiscent of electromagnetically induced transparency, which can be described by independent emitters, CAIT relies on a cooperative response resulting from strong radiative couplings between the resonators.

  2. Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Singh, Ranjan; Zhang, Caihong; Han, Jiaguang; Tonouchi, Masayoshi; Zhang, Weili

    2013-09-01

    Structured plasmonic metamaterial devices offer the design flexibility to be size scaled for operation across the electromagnetic spectrum and are extremely attractive for generating electromagnetically induced transparency and slow-light behaviors via coupling of bright and dark subwavelength resonators. Here, we experimentally demonstrate a thermally active superconductor-metal coupled resonator based hybrid terahertz metamaterial on a sapphire substrate that shows tunable transparency and slow light behavior as the metamaterial chip is cooled below the high-temperature superconducting phase transition temperature. This hybrid metamaterial opens up the avenues for designing micro-sized active circuitry with switching, modulation, and "slowing down terahertz light" capabilities.

  3. Transparent displays enabled by resonant nanoparticle scattering

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Qiu, Wenjun; Shapira, Ofer; Delacy, Brendan G.; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The ability to display graphics and texts on a transparent screen can enable many useful applications. Here we create a transparent display by projecting monochromatic images onto a transparent medium embedded with nanoparticles that selectively scatter light at the projected wavelength. We describe the optimal design of such nanoparticles, and experimentally demonstrate this concept with a blue-color transparent display made of silver nanoparticles in a polymer matrix. This approach has attractive features including simplicity, wide viewing angle, scalability to large sizes and low cost.

  4. Biometrics between opacity and transparency.

    PubMed

    Gutwirth, Serge

    2007-01-01

    The overall aim of the democratic constitutional state is to protect a social order in which the individual liberty of the citizen is a major concern. As a consequence the democratic constitutional state should guarantee simultaneously and paradoxically a high level of individual freedom and an order in which such freedom is made possible and guaranteed. Biometrics provide a strong and expressive example both of the necessity to address the issue of opacity and transparency and the complexity of the process. Indeed, the large scale use of biometrics does not only question the position of the individual in society, but it also alters the architecture or nature of this society as such. PMID:17536155

  5. Broadband cavity electromagnetically induced transparency

    SciTech Connect

    Wei Xiaogang; Wang Yanhua; Zhang Jiepeng; Zhu Yifu

    2011-10-15

    Cavity electromagnetically induced transparency (EIT) is created in a three-level atomic system confined in a cavity and coupled to a free-space control laser and is manifested as a narrow transmission peak of a probe laser coupled into the cavity mode and tuned to the two-photon Raman resonance with the control laser. Cavity EIT can be observed with a control laser detuned from the atomic transition frequency in a range limited by the vacuum Rabi splitting of two cavity-atom normal modes. This leads to the broadband cavity EIT obtained in the coupled-cavity-atom system with a free-space, broadband control laser. We report an experimental observation of broadband cavity EIT in cold Rb atoms with a frequency-modulated control laser and discuss its application in multichannel and multifrequency light memory.

  6. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  7. Highly Anisotropic, Highly Transparent Wood Composites.

    PubMed

    Zhu, Mingwei; Song, Jianwei; Li, Tian; Gong, Amy; Wang, Yanbin; Dai, Jiaqi; Yao, Yonggang; Luo, Wei; Henderson, Doug; Hu, Liangbing

    2016-07-01

    For the first time, two types of highly anisotropic, highly transparent wood composites are demonstrated by taking advantage of the macro-structures in original wood. These wood composites are highly transparent with a total transmittance up to 90% but exhibit dramatically different optical and mechanical properties.

  8. Laser-induced hybrid trap for microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhu; Ni, H. Q.; Li, Yong Qing; Xu, Yuguang; Lu, Baolong; Shao, Wei

    1992-10-01

    This paper reports the observation of stable trapping of a transparent microparticle. The trap is a light induced hybrid one which consists of both light pressure force and fluid force. A theoretical analysis and experimental results are given. The possible applications are also discussed.

  9. Oboe Transparency Results - Oboes 1-9

    SciTech Connect

    Heinle, R A

    2002-10-15

    The motivation for the ''Transparency'' experiment is that DOE/DP would like to have data available to show to interested parties, such as the JASONs. The U1a subcritical experiments are consistent with U.S. policy on nuclear testing. This would be done in a spirit of ''Transparency'' if doubts should arise. Thus, the objective of the ''Transparency'' measurements on the Oboe series is to place an upper bound on the nuclear energy released in the subcritical experiments. Two separate experimental packages cover the transparency measurement issue thoroughly. These are: (1) Neutron Track-Etch Dosimetry. (2) Scintillator Fission Neutron/Gamma Rate Measurement. Because the containment barrier is only 1-inch steel, plus 6-inch shotcrete, it is quite transparent to fission neutrons and, thus, both experiments can be mounted outside the containment barrier and can be recovered post shot. An additional group of dosimeters was placed on the lid of the vessel for greater sensitivity.

  10. TRANSPARENCY, VERIFICATION AND THE FUTURE OF NUCLEAR NONPROLIFERATION AND ARMS CONTROL

    SciTech Connect

    J. PILAT

    2000-11-01

    In the future, if the nuclear nonproliferation and arms control agendas are to advance, they will likely become increasingly seen as parallel undertakings with the objective of cradle-to-grave controls over nuclear warheads and/or materials. The pursuit of such an agenda was difficult enough at the outset of the nuclear age; it will be more difficult in the future with relatively wide-spread military and civil nuclear programs. This agenda will require both verification and transparency. To address emerging nuclear dangers, we may expect hybrid verification-transparency regimes to be seen as acceptable. Such regimes would have intrusive but much more limited verification provisions than Cold War accords, and have extensive transparency provisions designed in part to augment the verification measures, to fill in the ''gaps'' of the verification regime, and the like.

  11. Copercolating Networks: An Approach for Realizing High-Performance Transparent Conductors using Multicomponent Nanostructured Networks

    NASA Astrophysics Data System (ADS)

    Das, Suprem R.; Sadeque, Sajia; Jeong, Changwook; Chen, Ruiyi; Alam, Muhammad A.; Janes, David B.

    2016-06-01

    Although transparent conductive oxides such as indium tin oxide (ITO) are widely employed as transparent conducting electrodes (TCEs) for applications such as touch screens and displays, new nanostructured TCEs are of interest for future applications, including emerging transparent and flexible electronics. A number of twodimensional networks of nanostructured elements have been reported, including metallic nanowire networks consisting of silver nanowires, metallic carbon nanotubes (m-CNTs), copper nanowires or gold nanowires, and metallic mesh structures. In these single-component systems, it has generally been difficult to achieve sheet resistances that are comparable to ITO at a given broadband optical transparency. A relatively new third category of TCEs consisting of networks of 1D-1D and 1D-2D nanocomposites (such as silver nanowires and CNTs, silver nanowires and polycrystalline graphene, silver nanowires and reduced graphene oxide) have demonstrated TCE performance comparable to, or better than, ITO. In such hybrid networks, copercolation between the two components can lead to relatively low sheet resistances at nanowire densities corresponding to high optical transmittance. This review provides an overview of reported hybrid networks, including a comparison of the performance regimes achievable with those of ITO and single-component nanostructured networks. The performance is compared to that expected from bulk thin films and analyzed in terms of the copercolation model. In addition, performance characteristics relevant for flexible and transparent applications are discussed. The new TCEs are promising, but significant work must be done to ensure earth abundance, stability, and reliability so that they can eventually replace traditional ITO-based transparent conductors.

  12. Transparent conducting oxide free backside illuminated perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yao, Jiexiong; Xia, Huarong; Sun, Wentao; Liu, Jian; Peng, Lianmao

    2015-07-01

    Recently, hybrid perovskites have attracted great attention because of their promising applications in solar cells. However, perovskite solar devices reported till now are mostly based on transparent conducting oxide (TCO) substrates which account for a large proportion in the total cost. Herein, TCO-free perovskite solar cells are fabricated. A photo-electricity conversion efficiency of 5.27% is obtained with short circuit current density (Jsc) of 10.7 mA/cm2, open circuit voltage (Voc) of 0.837 V, and fill factor of 0.588. This study points a feasible way of replacing TCO substrate by low cost substrates, indicating promising potentials in solar energy conversion applications.

  13. High-performance, bare silver nanowire network transparent heaters.

    PubMed

    Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Unalan, Husnu Emrah

    2016-11-01

    Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to investigate and determine the thermal performance limits of bare-Ag-NW-network-based THs. Herein, we report on the effect of NW density, contact geometry, applied bias, flexing and incremental bias application on the TH performance of Ag NW networks. Ag-NW-network-based THs with a sheet resistance and percentage transmittance of 4.3 Ω sq(-1) and 83.3%, respectively, and a NW density of 1.6 NW μm(-2) reached a maximum temperature of 275 °C under incremental bias application (5 V maximum). With this performance, our results provide a different perspective on bare-Ag-NW-network-based transparent heaters. PMID:27678197

  14. High-performance, bare silver nanowire network transparent heaters.

    PubMed

    Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Unalan, Husnu Emrah

    2016-11-01

    Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to investigate and determine the thermal performance limits of bare-Ag-NW-network-based THs. Herein, we report on the effect of NW density, contact geometry, applied bias, flexing and incremental bias application on the TH performance of Ag NW networks. Ag-NW-network-based THs with a sheet resistance and percentage transmittance of 4.3 Ω sq(-1) and 83.3%, respectively, and a NW density of 1.6 NW μm(-2) reached a maximum temperature of 275 °C under incremental bias application (5 V maximum). With this performance, our results provide a different perspective on bare-Ag-NW-network-based transparent heaters.

  15. High-performance, bare silver nanowire network transparent heaters

    NASA Astrophysics Data System (ADS)

    Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Emrah Unalan, Husnu

    2016-11-01

    Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to investigate and determine the thermal performance limits of bare-Ag-NW-network-based THs. Herein, we report on the effect of NW density, contact geometry, applied bias, flexing and incremental bias application on the TH performance of Ag NW networks. Ag-NW-network-based THs with a sheet resistance and percentage transmittance of 4.3 Ω sq‑1 and 83.3%, respectively, and a NW density of 1.6 NW μm‑2 reached a maximum temperature of 275 °C under incremental bias application (5 V maximum). With this performance, our results provide a different perspective on bare-Ag-NW-network-based transparent heaters.

  16. A study of polaritonic transparency in couplers made from excitonic materials

    SciTech Connect

    Singh, Mahi R.; Racknor, Chris

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  17. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications

    PubMed Central

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N.

    2015-01-01

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation–spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration. PMID:26576667

  18. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications.

    PubMed

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-01-01

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation-spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration. PMID:26576667

  19. p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Sheng, Su; Fang, Guojia; Li, Chun; Xu, Sheng; Zhao, Xingzhong

    2006-06-01

    The recent advance of p-type transparent conductive oxide thin films is reviewed. The focus is on p-type transparent oxide semiconductors CuAlO2, CuGaO2, CuInO2, SrCu2O2, and LaCuOCh (Ch = chalcogen). These materials and related device applications are then shown as examples. Room temperature operation of current injection emission from ultraviolet light-emitting diodes based on p-SCO/n-ZnO p-n junctions has been demonstrated. This changed with the discovery of p-type transparent conducting oxides, thereby opening up the possibility for all-oxide transparent electronics.

  20. Coloured Rings Produced on Transparent Plates

    ERIC Educational Resources Information Center

    Suhr, Wilfried; Schlichting, H. Joachim

    2007-01-01

    Beautiful colored interference rings can be produced by using transparent plates such as window glass. A simple model explains this effect, which was described by Newton but has almost been forgotten. (Contains 11 figures.)

  1. Visual perception of thick transparent materials.

    PubMed

    Fleming, Roland W; Jäkel, Frank; Maloney, Laurence T

    2011-06-01

    Under typical viewing conditions, human observers readily distinguish between materials such as silk, marmalade, or granite, an achievement of the visual system that is poorly understood. Recognizing transparent materials is especially challenging. Previous work on the perception of transparency has focused on objects composed of flat, infinitely thin filters. In the experiments reported here, we considered thick transparent objects, such as ice cubes, which are irregular in shape and can vary in refractive index. An important part of the visual evidence signaling the presence of such objects is distortions in the perceived shape of other objects in the scene. We propose a new class of visual cues derived from the distortion field induced by thick transparent objects, and we provide experimental evidence that cues arising from the distortion field predict both the successes and the failures of human perception in judging refractive indices.

  2. Visual perception of thick transparent materials.

    PubMed

    Fleming, Roland W; Jäkel, Frank; Maloney, Laurence T

    2011-06-01

    Under typical viewing conditions, human observers readily distinguish between materials such as silk, marmalade, or granite, an achievement of the visual system that is poorly understood. Recognizing transparent materials is especially challenging. Previous work on the perception of transparency has focused on objects composed of flat, infinitely thin filters. In the experiments reported here, we considered thick transparent objects, such as ice cubes, which are irregular in shape and can vary in refractive index. An important part of the visual evidence signaling the presence of such objects is distortions in the perceived shape of other objects in the scene. We propose a new class of visual cues derived from the distortion field induced by thick transparent objects, and we provide experimental evidence that cues arising from the distortion field predict both the successes and the failures of human perception in judging refractive indices. PMID:21597102

  3. Motion-Driven Transparency and Opacity

    PubMed Central

    Anstis, Stuart; Ho, Alan

    2016-01-01

    When two adjacent surfaces move in step, this can generate a sensation of transparency, even in the absence of intersections. Stopping the motion of one surface makes it look suddenly opaque. PMID:27698992

  4. Broadband plasmon induced transparency in terahertz metamaterials.

    PubMed

    Zhu, Zhihua; Yang, Xu; Gu, Jianqiang; Jiang, Jun; Yue, Weisheng; Tian, Zhen; Tonouchi, Masayoshi; Han, Jiaguang; Zhang, Weili

    2013-05-31

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range.

  5. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  6. Transparency Film for Demonstration of Biaxial Optics.

    ERIC Educational Resources Information Center

    Camp, Paul R.

    1994-01-01

    Explains why transparency film demonstrates biaxial optical properties. Provides detailed descriptions of the procedure and equipment needed for large-scale optics demonstrations of the polarization interference pattern produced by biaxial crystals. (DDR)

  7. Transparency--"Deal or no deal"?

    PubMed

    Lutz, Sandy

    2007-01-01

    In the United States, transparency is becoming an ideal worthy of Mom and apple pie, like quality in healthcare. Physicians, payers, hospitals, business associations, and organizations representing patients have all chimed in expressing support. At the local, state, and national levels a variety of transparency initiatives are under way. How will transparency affect the healthcare industry? Transparency could profoundly change today's balance of power, for it is about information, and information is power. As employers push more cost sharing to workers, hospitals and health systems will have to construct a pricing structure that is meaningful to consumers. What are providers to do? To be successful with this new demand, providers should make sure they are making quality information as well as pricing information available to consumers. They will have to know the market, know what their own prices mean, consider the customer, and reengineer business processes around the patient rather than around the billing side of business. PMID:17405388

  8. Transparent Soil for Imaging the Rhizosphere

    PubMed Central

    Downie, Helen; Holden, Nicola; Otten, Wilfred; Spiers, Andrew J.; Valentine, Tracy A.; Dupuy, Lionel X.

    2012-01-01

    Understanding of soil processes is essential for addressing the global issues of food security, disease transmission and climate change. However, techniques for observing soil biology are lacking. We present a heterogeneous, porous, transparent substrate for in situ 3D imaging of living plants and root-associated microorganisms using particles of the transparent polymer, Nafion, and a solution with matching optical properties. Minerals and fluorescent dyes were adsorbed onto the Nafion particles for nutrient supply and imaging of pore size and geometry. Plant growth in transparent soil was similar to that in soil. We imaged colonization of lettuce roots by the human bacterial pathogen Escherichia coli O157:H7 showing micro-colony development. Micro-colonies may contribute to bacterial survival in soil. Transparent soil has applications in root biology, crop genetics and soil microbiology. PMID:22984484

  9. Transparency in nursing leadership: a chosen ethic.

    PubMed

    Milton, Constance L

    2009-01-01

    The concept of transparency has been viewed as an essential leadership attribute or element in healthcare organizational structures and processes. While viewed as something that is desired and valued, there is a lack of nursing disciplinary literature that defines the concept and its possible meanings. This column provides a beginning definition of transparency from the humanbecoming nursing theoretical perspective and launches a discussion with potential ethical implications for leadership in nursing practice and education.

  10. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  11. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  12. High quality transparent conducting oxide thin films

    DOEpatents

    Gessert, Timothy A.; Duenow, Joel N.; Barnes, Teresa; Coutts, Timothy J.

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  13. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    NASA Astrophysics Data System (ADS)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The

  14. Non-reciprocal Brillouin scattering induced transparency

    NASA Astrophysics Data System (ADS)

    Kim, Junhwan; Kuzyk, Mark C.; Han, Kewen; Wang, Hailin; Bahl, Gaurav

    2015-03-01

    Electromagnetically induced transparency provides a powerful mechanism for controlling light propagation in a dielectric medium, and for producing slow and fast light. Electromagnetically induced transparency traditionally arises from destructive interference induced by a non-radiative coherence in an atomic system. Stimulated Brillouin scattering of light from propagating hypersonic acoustic waves has also been used successfully for the generation of slow and fast light. However, Electromagnetically induced transparency-type processes based on stimulated Brillouin scattering were considered infeasible because of the short coherence lifetime of hypersonic phonons. Here, we report a new Brillouin scattering induced transparency phenomenon generated by acousto-optic interaction of light with long-lived propagating phonons in a silica resonator. We demonstrate that Brillouin scattering induced transparency is uniquely non-reciprocal owing to the propagating acoustic wave and accompanying momentum conservation requirement. We also show that Brillouin scattering induced transparency enables ultralow-power ultralow-footprint slow-light generation with delay-bandwidth product comparable to state-of-the-art stimulated Brillouin scattering systems.

  15. Transparent polymer nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Saotome, Tsuyoshi

    Transparent polymer nanocomposites (PNC) with carbon nano-fillers such as carbon nanotubes (CNT) or C60 fullerene were studied. Fabrication of PNC with covalently functionalized C60 fullerene, which acquired high visible light transparency, was performed to study how it would affect the optical, thermal, and mechanical properties of the base polycarbonate (chapter two). Novel mechanical and chemical approaches were applied to a dilute CNT mat, a thin layer of fibrous multi-walled carbon nanotubes (MWNT), in order to investigate how those approaches would affect the optical and electrical properties of the CNT mat (chapter three and four). The objective of this study is to deepen our understanding of transparent PNC with carbon nano-fillers from optical, mechanical, thermal, and electrical perspectives. Based on these understandings, we propose a future plan to achieve multifunctional transparent PNC, which is mechanically robust and capable of generating electricity out of UV light when combined with p-CuAlO 2/n-ZnO transparent solar cell. Such multifunctional, transparent PNC can be applied to large space structures. An abstract of each study is detailed at the beginning of the individual chapters.

  16. Lutetium oxide-based transparent ceramic scintillators

    DOEpatents

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  17. Broadband Tunable Transparency in rf SQUID Metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Jung, Philipp; Butz, Susanne; Ustinov, Alexey; Anlage, Steven

    2015-03-01

    We demonstrate a metamaterial with broadband tunable transparency in microwave electromagnetic fields. This metamaterial is made of Radio Frequency Superconducting QUantum Interference Devices (rf SQUIDs). We show both experimentally and theoretically that the resonance of this metamaterial totally disappears when illuminated with electromagnetic waves of certain power ranges, so that waves can propagate through the metamaterial with little dissipation in a wide frequency spectrum. Unlike traditional electromagnetically induced transparency, high transmission through this metamaterial is due to the intrinsic nonlinearity of the rf SQUID. Transparency occurs when the metamaterial enters its bistability regime. We can control the metamaterial to be transparent or opaque by switching between the two states depending on the initial conditions and signal scanning directions. We also show that the degree of transparency can be tuned by temperature, power of the incident wave, and dc magnetic field and discuss analytical and numerical models that reveal how to systematically control the transparency regime. The metamaterial has potential application in fast tunable digital filter, power limiter and auto-cloaking. This work is supported by the NSF-GOALI and OISE programs through grant # ECCS-1158644, and CNAM.

  18. Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide.

    PubMed

    Zhang, Jing; Cai, Likang; Bai, Wenli; Song, Guofeng

    2010-10-15

    We propose a hybrid waveguide-plasmon system consisting of gold pillar arrays on top of a dielectric waveguide. The formation of extraordinary transmissions induced by the hybrid waveguide-plasmon resonances is investigated by rigorous coupled-wave analysis. The characteristics of the hybrid resonances can be predicted by introducing the photonic crystal slab theory. Extremely narrow absorption peaks and the electromagnetically induced transparency-like optical property are demonstrated in our hybrid system.

  19. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  20. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  1. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  2. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  3. Transmission in Optically Transparent Core Networks

    NASA Astrophysics Data System (ADS)

    Kilper, Dan; Jensen, Rich; Petermann, Klaus; Karasek, Miroslav

    2007-03-01

    Call for Papers: Transmission in Optically Transparent Core Networks

    Guest Feature Editors

    Dan Kilper and Rich Jensen, Coordinating Associate Editors Klaus Petermann and Miroslav Karasek, Guest Feature Editors

    Submission deadline: 15 June 2007
    Optically transparent networks in which optical transport signals are routed uninterrupted through multiple nodes have long been viewed as an important evolutionary step in fiber optic communications. More than a decade of research and development on transparent network technologies together with the requisite traffic growth has culminated in the recent deployment of commercial optically transparent systems. Although many of the traditional research goals of optical transmission remain important, optical transparency introduces new challenges. Greater emphasis is placed on system efficiency and control. The goal of minimizing signal terminations, which has been pursued through increasing reach and channel capacity, also can be realized through wavelength routing techniques. Rather than bounding system operation by rigid engineering rules, the physical layer is controlled and managed by automation tools. Many static signal impairments become dynamic due to network reconfiguration and transient fault events. Recently new directions in transmission research have emerged to address transparent networking problems. This special issue of the Journal of Optical Networking will examine the technologies and theory underpinning transmission in optically transparent core networks, including both metropolitan and long haul systems.

    Scope of Submission

    The special issue editors are soliciting high-quality original research papers related to transmission in optically transparent core networks. Although this does not include edge networks such as access or enterprise networks, core networks that have access capabilities will be considered in scope as will topics

  4. Promoting Improved Ballistic Resistance of Transparent Armor

    SciTech Connect

    Wereszczak, Andrew A; Patel, P; Templeton, D W

    2011-01-01

    Transparent armor is a material or system of materials designed to be optically transparent, yet protect from fragmentation or ballistic impacts. Although engineered to defeat specific threats, or a range of threats, there are general requirements common to all of these designs. The primary requirement for a transparent armor system is to not only defeat the designated threat but also provide a multi-hit capability with minimized distortion of surrounding areas. Ground platforms have several parameters that must be optimized, such as weight, space efficiency, and cost versus performance. Glass exhibits tensile failure stress that is very much dependent on the amount of material being stressed, the side being tensile-stressed (i.e., air-versus tin-side if a float glass), and where it is being tensile stressed (i.e., in the middle or near an edge). An axiom arising from those effects is a greater amount of allowable deflection (i.e., higher failure stress) of a ballistically impacted transparent armor will result in improved ballistic resistance. Therefore, the interpretation and management of those tensile-failure-stress dependencies shall ultimately improve ballistic resistance and its predictability of transparent armor. Each of those three dependencies (size, side, and location) in a soda-lime silicate glass is described.

  5. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  6. Preparation and properties of transparent conductors

    SciTech Connect

    Gordon, R.G.

    1996-12-31

    Transparent, electrically conductive films have been prepared from several different metal oxides, including those of tin, indium and zinc. Deposition methods for these materials are reviewed, and their properties summarized and compared. A figure of merit for a transparent conductor may be defined as the ratio of the electrical conductivity to the optical absorption coefficient of the film. The figure of merit for fluorine-doped zinc oxide is shown to be larger than that of other transparent conductors, such as boron-doped zinc oxide, fluorine-doped tin oxide, and tin-doped indium oxide. Physical, chemical and thermal durability, deposition temperature, and cost are other factors which may also influence the choice of material for a particular application.

  7. Transparency and public involvement in animal research.

    PubMed

    Pound, Pandora; Blaug, Ricardo

    2016-05-01

    To be legitimate, research needs to be ethical, methodologically sound, of sufficient value to justify public expenditure and be transparent. Animal research has always been contested on ethical grounds, but there is now mounting evidence of poor scientific method, and growing doubts about its clinical value. So what of transparency? Here we examine the increasing focus on openness within animal research in the UK, analysing recent developments within the Home Office and within the main group representing the interests of the sector, Understanding Animal Research. We argue that, while important steps are being taken toward greater transparency, the legitimacy of animal research continues to be undermined by selective openness. We propose that openness could be increased through public involvement, and that this would bring about much needed improvements in animal research, as it has done in clinical research.

  8. Transparency and public involvement in animal research.

    PubMed

    Pound, Pandora; Blaug, Ricardo

    2016-05-01

    To be legitimate, research needs to be ethical, methodologically sound, of sufficient value to justify public expenditure and be transparent. Animal research has always been contested on ethical grounds, but there is now mounting evidence of poor scientific method, and growing doubts about its clinical value. So what of transparency? Here we examine the increasing focus on openness within animal research in the UK, analysing recent developments within the Home Office and within the main group representing the interests of the sector, Understanding Animal Research. We argue that, while important steps are being taken toward greater transparency, the legitimacy of animal research continues to be undermined by selective openness. We propose that openness could be increased through public involvement, and that this would bring about much needed improvements in animal research, as it has done in clinical research. PMID:27256456

  9. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    SciTech Connect

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  10. Basic materials physics of transparent conducting oxides.

    PubMed

    Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M

    2004-10-01

    Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides. PMID:15452622

  11. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Stauber, Renaud Emmanuel

    2003-10-01

    Transparent conductors have important energy and general technology applications as transparent front contacts to photovoltaic cells, electrochromic windows and flat panel displays. Conventional transparent conductors such as SnO 2 are n-type (electron) conductors. As yet, there are no comparable, p-type (hole) analogues. However, researchers have recently reported that CuAlO2, N:ZnO and SrCu2O2 films (among others) may be viable p-type transparent conductors, albeit with carrier concentrations three orders of magnitude lower than n-type SnO2. If these materials could be more effectively hole-doped, they would enhance existing technologies and enable new photovoltaic designs through improved transparent contacts to p-type materials and as possible heterojunction partners. This thesis describes our program for growing and evaluating CuAlO2, ZnO and SrCu 2O2 thin films for use as p-type transparent conductors. Our work on CuAlO2 focused on the optimization of crystal growth and transport properties by pulsed laser deposition (PLD) and sputtering. The films with the best surface morphology and phase-purity were formed by annealing precursors that had been sputtered at room temperature at 940°C in 10T of O2. The phase-purity and transparency of these films is higher than any reported in the literature, and we provided the first experimental confirmation of Kawazoe's work on CuAlO2 [1] as a potential p-type conductor. We also attempted to make transparent electrically conductive p-type ZnO by PLD and sputtering using N2, N2O, NO, and NH 3 gases. Expanding on the work of Kawai and coworkers [2,3], we used an ion source, rather than an ECR source in the PLD chamber to dissociate N2O gas, and explored the use of aluminum in addition to gallium as potential co-dopants. The most promising results have been obtained with DC reactive sputtering of un-doped zinc metal targets in NO or NH3. A three to six order of magnitude reduction in n-type conductivity occurred when 2% of

  12. Nuclear transparencies from photoinduced pion production

    SciTech Connect

    W. Cosyn; M.C. Martinez; J. Ryckebusch; B. Van Overmeire

    2006-12-01

    We present a relativistic and cross-section factorized framework for computing nuclear transparencies extracted from A({gamma}, {pi} N) reactions at intermediate energies. The proposed quantum mechanical model adopts a relativistic extension to the multiple-scattering Glauber approximation to account for the final state interactions of the ejected nucleon and pion. The theoretical predictions are compared against the experimental {sup 4}He({gamma},p {pi}{sup -}) data from Jefferson Lab. For those data, our results show no conclusive evidence for the onset of mechanisms related to color transparency.

  13. Transparent conductive coatings in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Park, Jung HO; Wilson, Michele M.; Keffer, Charles E.; Torr, Douglas G.

    1993-01-01

    In certain cases a space-borne optical instrument with a dielectric window requires a transparent conductive coating deposited on the window to remove the electrostatic charge collected due to the bombardment of ionized particles. Semiconductor and metal films are studied for use as transparent conductive coatings for the front window of far ultraviolet camera. Cr is found to be the best coating material. The theoretical search for the semiconductor and metal coating materials and experimental results for ITO and Cr films are reported.

  14. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  15. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  16. Transparent superstrate terrestrial solar cell module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  17. Working toward Transparency in Library Automation

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2007-01-01

    In this article, the author argues the need for transparency with regard to the automation systems used in libraries. As librarians make decisions regarding automation software and services, they should have convenient access to information about the organizations it will potentially acquire technology from and about the collective experiences of…

  18. Transparency Master: Planaria in the Classroom.

    ERIC Educational Resources Information Center

    Jensen, Lauritz A.; Allen, A. Lester

    1983-01-01

    Background information on the morphology and physiology of planarians and uses of the organism in schools is provided. Also provided is a transparency master demonstrating a planarian with an everted proboscis, two-headed/two-tailed planarians, and a planarian demonstrating the digestive tract. (JN)

  19. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband...

  20. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband...

  1. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband...

  2. 47 CFR 8.3 - Transparency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION GENERAL PRESERVING THE OPEN INTERNET § 8.3 Transparency. A person engaged in the provision of broadband Internet access service shall publicly disclose accurate information regarding the network management practices, performance, and commercial terms of its broadband...

  3. Copper Nanowires as Fully Transparent Conductive Electrodes

    PubMed Central

    Guo, Huizhang; Lin, Na; Chen, Yuanzhi; Wang, Zhenwei; Xie, Qingshui; Zheng, Tongchang; Gao, Na; Li, Shuping; Kang, Junyong; Cai, Duanjun; Peng, Dong-Liang

    2013-01-01

    In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency. PMID:23900572

  4. Transparency Master: The Annual Aphid Cycle.

    ERIC Educational Resources Information Center

    Sessions, Mary Lynne

    1983-01-01

    Aphids, often referred to as plant lice, can be found in great numbers on stems, leaves, and flowers of many plants. In many cases these organisms are potentially harmful to their plant hosts. Provided is a description of the annual life cycle of the aphid and an accompanying transparency master. (Author/JN)

  5. Transparent Watercolor. Art Education: 6673.07.

    ERIC Educational Resources Information Center

    Greenaway, Jean E.

    An introductory course designed to develop skills and techniques in transparent watercolor offers an exploration of a variety of techniques emphasizing drawing and composition and allowing the student to create and matt his own paintings. Students in grades 7 through 12 develop competencies in flat and graded wash and dry and stipple brush…

  6. Semantic transparency affects memory conjunction errors

    PubMed Central

    Wong, Mungchen; Rotello, Caren M.

    2009-01-01

    Memory conjunction errors occur when aspects of two different events are falsely recognized or recalled as having occurred as parts of the same event. One theoretical account of conjunction errors is rooted in traditional dual-process models of recognition judgments, in which responses are based on an item’s familiarity or the retrieval of recollected details associated with the encoding of that item. We manipulated the familiarity of test probes by varying their semantic overlap with studied items, taking advantage of the inherent semantic transparency of compound words. Transparent compounds are those whose component parts (lexemes) are semantically related to the meaning of the entire word. In contrast, opaque compounds’ lexemes do not contribute directly to the meaning of the compound. We showed that the familiarity of semantically transparent assembly lures created from their lexemes (study dog and house, test on doghouse) is greater than the familiarity of opaque assembly lures (study back and draw, test on drawback). A response-signal experiment revealed no evidence for the use of a recall-to-reject process for either semantically transparent or opaque lures. PMID:19966238

  7. Overview of Russian HEU transparency issues

    SciTech Connect

    Kempf, C.R.; Bieniawski, A.

    1993-09-01

    The U.S. has signed an agreement with the Russian Federation for the purchase of 500 metric tons of highly-enriched uranium (HEU) taken from dismantled nuclear weapons. The HEU will be blended down to low-enriched uranium and will be transported to the U.S. to be used by fuel fabricators to make fuel for commercial nuclear power plants. Both the U.S. and Russia have been preparing to institute transparency measures to provide assurance that nonproliferation and arms control objectives specified in the agreement are met. This paper provides background information on the original agreement and on subsequent negotiations with the Russians, as well as discussion of technical aspects of developing transparency measures suited to the facilities and processes which are expected to be involved. Transparency has been defined as those agreed-upon measures which build confidence that arms control and non-proliferation objectives shared by the parties are met. Transparency is a departure from exhaustive, detailed arms control verification regimes of past agreements, which were based on a presumption of detecting transgressions as opposed to confirming compliance.

  8. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  9. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  10. Classical analog of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Garrido Alzar, C. L.; Martinez, M. A. G.; Nussenzveig, P.

    2002-01-01

    We present a classical analog of electromagnetically induced transparency (EIT). In a system of just two coupled harmonic oscillators subject to a harmonic driving force, we reproduce the phenomenology observed in EIT. We also describe a simple experiment with two linearly coupled RLC circuits which can be incorporated into an undergraduate laboratory.

  11. Color transparency experiments at higher energies

    SciTech Connect

    Filippone, B.W.

    1994-04-01

    The phenomena of Color Transparency has recently attracted a significant amount of theoretical (and experimental) interest. With an increase in the CEBAF beam energy to 8 - 10 GeV, important new data on the process could become available. The present status of the experiments and future prospects at CEBAF are discussed.

  12. Lattice-induced transparency in planar metamaterials

    NASA Astrophysics Data System (ADS)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan

    2016-10-01

    Lattice modes are intrinsic to periodic structures and they can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed the excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report an experimental observation of a lattice-induced transparency (LIT) by coupling the first-order lattice mode (FOLM) to the structural resonance of a terahertz asymmetric split ring resonator. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM assisted dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes a large change in its bandwidth and resonance position. We propose a three-oscillator model to explain the underlying coupling mechanism in LIT system that shows good agreement with the observed results. Besides controlling the transparency behavior, LIT also shows a huge enhancement in its Q factor and exhibits a high group delay of 28 ps with an enhanced group index of 4.5 ×104 , which could be pivotal in ultrasensitive sensing and slow-light device applications.

  13. Copper Nanowires as Fully Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Guo, Huizhang; Lin, Na; Chen, Yuanzhi; Wang, Zhenwei; Xie, Qingshui; Zheng, Tongchang; Gao, Na; Li, Shuping; Kang, Junyong; Cai, Duanjun; Peng, Dong-Liang

    2013-07-01

    In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 +/- 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency.

  14. Making Usable, Quality Opaque or Transparent Soap

    ERIC Educational Resources Information Center

    Mabrouk, Suzanne T.

    2005-01-01

    The experiment to make opaque and transparent soap, using cold and semi boiled processes respectively, and surfactant tests that measure the pH of the prepared soap, is introduced. The experiment shows an easy method to make soap by giving a choice to select oils and scents for the soap, which can be used at home.

  15. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    SciTech Connect

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  16. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  17. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    NASA Astrophysics Data System (ADS)

    Tamboli, Adele C.; van Hest, Maikel F. A. M.; Steiner, Myles A.; Essig, Stephanie; Perl, Emmett E.; Norman, Andrew G.; Bosco, Nick; Stradins, Paul

    2015-06-01

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm2 for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga0.5In0.5P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  18. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    SciTech Connect

    Tamboli, Adele C. Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul; Perl, Emmett E.

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  19. Glare-Tunable Transparent Electrochemical Smart Window Coupled with Transparent Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Shibasaki, Masaaki; Matsuzaki, Tatsuya; Nagata, Yujiro

    2013-04-01

    We fabricated a novel device assembled by coupling a transparent organic light-emitting diode (TOLED) and a glare-tunable transparent electrochemical device. This device could be operated in six different states, namely, (1) transparent, (2) mirror, (3) black, (4) dual emission, (5) single-side emission with mirror, and (6) single-side emission with black. Switching between each of these states could be tuned by varying/selecting the applied DC bias voltage. The device showed 63.8% transmittance in the transparent state, and 42.1% reflectance in the mirror state at 700 nm. Transmittance in both the mirror and black states was less than 0.1% in the visible range.

  20. 76 FR 1180 - FDA Transparency Initiative: Improving Transparency to Regulated Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... Directive instructing executive departments and agencies to take specific actions to implement the principles of transparent, collaborative, and participatory government. The Open Government Directive was issued December 8, 2009. Under the leadership of Secretary of Health and Human Services,...

  1. A Method for Making Color-Lift Transparencies.

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1982-01-01

    Outlines a procedure for making color-lift transparencies by using photos or drawings from glossy-stock (clay-coated paper) magazines and transparent contact paper. Includes possible periodicals as sources of biological illustrations. (DC)

  2. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  3. Transparent Laser Ceramics at Lawrence Livermore National Laboratory (LLNL)

    SciTech Connect

    Soules, T

    2007-06-28

    LLNL has been using the largest transparent laser ceramics for the last two years in the solid-state heat capacity laser (SSHCL). The lab is very interested in extending the use of transparent ceramics to other laser applications. In this talk we will discuss work at the laboratory aimed at better understanding the sintering and the criteria needed for good ceramic transparency, the application of transparent ceramics in the SSHCL laser and possible new applications of tailored ceramics.

  4. Transparent Information Systems through Gateways, Front Ends, Intermediaries, and Interfaces.

    ERIC Educational Resources Information Center

    Williams, Martha E.

    1986-01-01

    Provides overview of design requirements for transparent information retrieval (implies that user sees through complexity of retrieval activities sequence). Highlights include need for transparent systems; history of transparent retrieval research; information retrieval functions (automated converters, routers, selectors, evaluators/analyzers);…

  5. Competing Triggers: Transparency and Opacity in Vowel Harmony

    ERIC Educational Resources Information Center

    Kimper, Wendell A.

    2011-01-01

    This dissertation takes up the issue of transparency and opacity in vowel harmony--that is, when a segment is unable to undergo a harmony process, will it be skipped over by harmony (transparent) or will it prevent harmony from propagating further (opaque)? I argue that the choice between transparency and opacity is best understood as a…

  6. Hybrid mesons

    NASA Astrophysics Data System (ADS)

    Meyer, C. A.; Swanson, E. S.

    2015-05-01

    A review of the theoretical and experimental status of hybrid hadrons is presented. The states π1(1400) , π1(1600) , and π1(2015) are thoroughly reviewed, along with experimental results from GAMS, VES, Obelix, COMPASS, KEK, CLEO, Crystal Barrel, CLAS, and BNL. Theoretical lattice results on the gluelump spectrum, adiabatic potentials, heavy and light hybrids, and transition matrix elements are discussed. These are compared with bag, string, flux tube, and constituent gluon models. Strong and electromagnetic decay models are described and compared to lattice gauge theory results. We conclude that while good evidence for the existence of a light isovector exotic meson exists, its confirmation as a hybrid meson awaits discovery of its iso-partners. We also conclude that lattice gauge theory rules out a number of hybrid models and provides a reference to judge the success of others.

  7. Transparent ceramics and methods of preparation thereof

    DOEpatents

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Seeley, Zachary M.; Soules, Thomas F.

    2011-10-18

    According to one embodiment, a method for forming a transparent ceramic preform includes forming a suspension of oxide particles in a solvent, adding the suspension to a mold of a desired shape, and uniformly curing the suspension in the mold for forming a preform. The suspension includes a dispersant but does not include a gelling agent. In another embodiment, a method includes creating a mixture without a gelling agent, the mixture including: inorganic particles, a solvent, and a dispersant. The inorganic particles have a mean diameter of less than about 2000 nm. The method also includes agitating the mixture, adding the mixture to a mold, and curing the mixture in the mold at a temperature of less than about 80.degree. C. for forming a preform. Other methods for forming a transparent ceramic preform are also described according to several embodiments.

  8. Transparent superhydrophobic and highly oleophobic coatings.

    PubMed

    Cao, Liangliang; Gao, Di

    2010-01-01

    We report a facile process for fabrication of transparent superhydrophobic and highly oleophobic surfaces through assembly of silica nanoparticles and sacrificial polystyrene nanoparticles. The silica and polystyrene nanoparticles are first deposited by a layer-by-layer assembly technique. The polystyrene nanoparticles are then removed by calcination, which leaves a porous network of silica nanoparticles. The cavities created by the sacrificial polystyrene particles form overhang structures on the surfaces. Modified with a fluorocarbon molecule, such surfaces are superhydrophobic and transparent. They also repel liquids with low surface tensions, such as hexadecane, due to the overhang structures that prevent liquids from getting into the air pockets even though the intrinsic contact angles of these liquids are less than 90 degrees. PMID:21043414

  9. Environmentally benign processing of YAG transparent wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Wu, Yiquan

    2015-12-01

    Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.

  10. Transparent material thickness measurements by Raman scattering.

    PubMed

    Pershin, Sergey M; Lednev, Vasily N; Yulmetov, Renat N; Klinkov, Vladimir K; Bunkin, Alexey F

    2015-07-01

    An efficient and simple and convenient technique for transparent samples thickness measurements by Raman spectroscopy is suggested. The elastic scattering can be effectively used for sample border indication if the refractive index changes more than 3%, while it fails to detect an ice-to-water border of floating ice. The alternative is to use Raman spectroscopy to detect the interface between different layers of transparent materials. The difference between the Raman spectra of poly methyl methacrylate (PMMA) and water, and between ice and liquid water were employed to locate the PMMA-water and ice-water interfaces, while elastic scattering was used for air-solid surface detection. This approach yields an error of 2%-5% indicating that it is promising to express a remote and noninvasive thickness measurement technique in field experiments. PMID:26193136

  11. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  12. Transparent conducting materials: overview and recent results

    NASA Astrophysics Data System (ADS)

    van Deelen, Joop; Illiberi, Andrea; Hovestad, Arjan; Barbu, Ionut; Klerk, Lennaert; Buskens, Pascal

    2012-10-01

    An overview of different transparent conductors is given. In addition, atmospheric pressure CVD of ZnO resulted in conductivities below 1 mΩ cm for a temperature of 480°C, whereas at a process temperature of 200°C a value of 2 mΩ cm was obtained. Also atmospheric pressure spatial ALD was used to make conductive ZnO. Furthermore, the properties of transparent conductive oxides (TCO) can be enhanced by application of metallic grids. This way, sheet resistances of below 0.1 Ω/sq and transmittances above 85 % can be achieved. Modeling indicates that the performance of thin film cells can be enhanced by18% using a grid/TCO combination. Light scattering is a vital element of thin film solar cells and both texturization and multimaterial approaches for advanced light management such as plasmonics are discussed.

  13. Controlling optomechanically induced transparency through rotation

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar; Zhu, Shiyao

    2015-12-01

    In this article, we describe controlling the optomechanically induced transparency (OMIT) phenomena through rotation. An optomechanical cavity, which is coupled to a weak probe field and to a strong drive field, is placed along the diameter of a rotating table. When the table rotates, the centrifugal force due to rotation changes the length of the optomechanical cavity because of which the transparency window in OMIT disappears. We further point out that OMIT can be recovered by shifting both the drive and probe frequencies simultaneously. We derived an analytic parameter to estimate the minimum angular velocity that can effect OMIT for a given optomechanical cavity. In other words, we describe turning on and turning off OMIT by controlling the rotation rate.

  14. Transparent superhydrophobic and highly oleophobic coatings.

    PubMed

    Cao, Liangliang; Gao, Di

    2010-01-01

    We report a facile process for fabrication of transparent superhydrophobic and highly oleophobic surfaces through assembly of silica nanoparticles and sacrificial polystyrene nanoparticles. The silica and polystyrene nanoparticles are first deposited by a layer-by-layer assembly technique. The polystyrene nanoparticles are then removed by calcination, which leaves a porous network of silica nanoparticles. The cavities created by the sacrificial polystyrene particles form overhang structures on the surfaces. Modified with a fluorocarbon molecule, such surfaces are superhydrophobic and transparent. They also repel liquids with low surface tensions, such as hexadecane, due to the overhang structures that prevent liquids from getting into the air pockets even though the intrinsic contact angles of these liquids are less than 90 degrees.

  15. Transparent data service with multiple wireless access

    NASA Technical Reports Server (NTRS)

    Dean, Richard A.; Levesque, Allen H.

    1993-01-01

    The rapid introduction of digital wireless networks is an important part of the emerging digital communications scene. The introduction of Digital Cellular, LEO and GEO Satellites, and Personal Communications Services poses both a challenge and an opportunity for the data user. On the one hand wireless access will introduce significant new portable data services such as personal notebooks, paging, E-mail, and fax that will put the information age in the user's pocket. On the other hand the challenge of creating a seamless and transparent environment for the user in multiple access environments and across multiple network connections is formidable. A summary of the issues associated with developing techniques and standards that can support transparent and seamless data services is presented. The introduction of data services into the radio world represents a unique mix of RF channel problems, data protocol issues, and network issues. These problems require that experts from each of these disciplines fuse the individual technologies to support these services.

  16. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating

    NASA Astrophysics Data System (ADS)

    Mo, Lixin; Ran, Jun; Yang, Li; Fang, Yi; Zhai, Qingbin; Li, Luhai

    2016-02-01

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing.

  17. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating.

    PubMed

    Mo, Lixin; Ran, Jun; Yang, Li; Fang, Yi; Zhai, Qingbin; Li, Luhai

    2016-02-12

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing. PMID:26758939

  18. Hybrid SCR

    SciTech Connect

    Jantzen, T.; Zammit, K.

    1996-01-01

    Hybrid selective catalytic reduction (SCR) systems consist of either a combination of SCR techniques (i.e. in-dust SCR combined with air heater SCR) or selective noncatalytic reduction (SNCR) in combination with SCR. These Hybrid SCR systems can offer substantial benefits in reduced cost and enhanced performance; however, their applicability is very unit specific. This paper presents the results of a study to document the current experience and develop a tool by which utilities can determine the applicability of Hybrid SCR to meet their NO{sub x} reduction goals, a guideline for selecting the best configuration, and a reference for developing the design parameters necessary to implement the technology. Hybrid SCR systems have been installed and demonstrated on utility boilers. The systems have included in-duct SCR combined with air heater SCR and SNCR combined with SCR as includes a review of the results of these demonstrations as well as comments on the applicability of those results for other utility systems. Finally this document provides a reference for the development of design parameters for the implementation of Hybrid SCR. There are a number of technical and commercial considerations which must be resolved prior to designing or procuring a Hybrid SCR system. The boiler operating, temperature and emissions data necessary for the final design are presented along with the process design variables which must be specified. Procurement suggestions are included to assist the user in addressing some of the more pertinent commercial issues.

  19. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    SciTech Connect

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael; Dantan, Aurelien

    2011-11-15

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane's mechanical oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement even for cavity widths larger than the mechanical resonance frequency.

  20. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene.

    PubMed

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, GyeongHo; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-19

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the 'Internet of Things' area. PMID:27166976

  1. Transparent magnetic photoresists for bioanalytical applications.

    PubMed

    Gach, Philip C; Sims, Christopher E; Allbritton, Nancy L

    2010-11-01

    Microfabricated devices possessing magnetic properties are of great utility in bioanalytical microdevices due to their controlled manipulation with external magnets. Current methods for creating magnetic microdevices yield a low-transparency material preventing light microscopy-based inspection of biological specimens on the structures. Uniformly transparent magnetic photoresists were developed for microdevices that require high transparency as well as consistent magnetism across the structure. Colloidal formation of 10 nm maghemite particles was minimized during addition to the negative photoresists SU-8 and 1002F through organic capping of the nanoparticles and utilization of solvent-based dispersion techniques. Photoresists with maghemite concentrations of 0.01-1% had a high transparency due to the even dispersal of maghemite nanoparticles within the polymer as observed with transmission electron microscopy (TEM). These magnetic photoresists were used to fabricate microstructures with aspect ratios up to 4:1 and a resolution of 3 μm. Various cell lines showed excellent adhesion and viability on the magnetic photoresists. An inspection of cells cultured on the magnetic photoresists with TEM showed cellular uptake of magnetic nanoparticles leeched from the photoresists. Cellular contamination by magnetic nanoparticles was eliminated by capping the magnetic photoresist surface with native 1002F photoresist or by removing the top layer of the magnetic photoresist through surface roughening. The utility of these magnetic photoresists was demonstrated by sorting single cells (HeLa, RBL and 3T3 cells) cultured on arrays of releasable magnetic micropallets. 100% of magnetic micropallets with attached cells were collected following release from the array. 85-92% of the collected cells expanded into colonies. The polymeric magnetic materials should find wide use in the fabrication of microstructures for bioanalytical technologies. PMID:20719380

  2. Measurement Of Composition In Transparent Model Alloy

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Perry, Gretchen L.; Curreri, Peter A.

    1989-01-01

    Variation of FTIR technique developed to enable study of growth of cells of different solid phase in unidirectional solidification of these organic mixtures, which serve as transparent anologs of opaque monotectic metal alloys. Study of organic analogs expected to contribute to understanding of formation of aligned rods and particles in directional solidification of metal alloys. Advantage of technique is redistribution of material caused by solidification determined after fact, to very fine scale.

  3. Experiments On Transparent Conductive Films For Spacecraft

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David

    1995-01-01

    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  4. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  5. Transparent heat-spreader for optoelectronic applications

    DOEpatents

    Minano, Juan Carlos; Benitez, Pablo

    2014-11-04

    An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

  6. Price Transparency in the Online Age.

    PubMed

    Kaplan, Jonathan L; Mills, Parker H

    2016-05-01

    Plastic surgeons are sometimes hesitant to provide their pricing information online, due to several concerns. However, if implemented right, price transparency can be used as a lead generation tool that provides consumers with the pricing information they want and gives the physician the consumer's contact information for follow-up. This study took place during the author's first year in private practice in a new city. An interactive price transparency platform (ie, cost estimator) was integrated into his website, allowing consumers to submit a "wishlist" of procedures to check pricing on these procedures of interest. However, the consumer must submit their contact information to receive the desired breakdown of costs that are tailored based on the author's medical fees. During that first year, without any advertising expenditure, the author's website received 412 wishlists from 208 unique consumers. Consumers (17.8%) that submitted a wishlist came in for a consultation and 62% of those booked a procedure. The average value of a booked procedure was over US $4000 and cumulatively, all of the leads from this one lead source in that first year generated over US $92,000 in revenue. When compared with non-price-aware patients, price-aware patients were 41% more likely to book a procedure. Price transparency led to greater efficiency and reduced consultations that ended in "sticker shock." When prudently integrated into a medical practice, price transparency can be a great lead generation source for patients that are (1) paying out of pocket for medically necessary services due to a high-deductible health plan or (2) paying for services not typically covered by insurance, such as cosmetic services.

  7. Capture and transparency in coarse quantized images.

    PubMed

    Morrone, M C; Burr, D C

    1997-09-01

    This study examines the effect of coarse quantization (blocking) on image recognition, and explores possible mechanisms. Thresholds for noise corruption showed that coarse quantization reduces drastically the recognizability of both faces and letters, well beyond the levels expected by equivalent blurring. Phase-shifting the spurious high frequencies introduced by the blocking (with an operation designed to leave both overall and local contrast unaffected, and feature localization) greatly improved recognizability of both faces and letters. For large phase shifts, the low spatial frequencies appear in transparency behind a grid structure of checks or lines. We also studied a more simple example of blocking, the checkerboard, that can be considered as a coarse quantized diagonal sinusoidal plaid. When one component of the plaid was contrast-inverted, it was seen in transparency against the checkerboard, while the other remained "captured" within the block structure. If the higher harmonics are then phase-shifted by pi, the contrast-reversed fundamental becomes captured and the other seen in transparency. Intermediate phase shifts of the higher harmonics cause intermediate effects, which we measured by adjusting the relative contrast of the fundamentals until neither orientation dominated. The contrast match varied considerably with the phase of the higher harmonics, over a range of about 1.5 log units. Simulations with the local energy model predicted qualitatively the results of the recognizability of both faces and letters, and quantitatively the apparent orientation of the modified checkerboard pattern. More generally, the model predicts the conditions under which an image will be "captured" by coarse quantization, or seen in transparency.

  8. Getting a charge out of transparent tape

    NASA Astrophysics Data System (ADS)

    Harrington, Randal

    2000-01-01

    When two pieces of transparent tape are placed on top of each other (sticky side to nonsticky side) and then separated, it is observed that one piece becomes negatively charged and the other positively charged. The sign of the charge on each piece depends on the brand of tape used. This phenomenon is frequently used to investigate the properties of charge and charged objects in introductory physics courses.

  9. Transparency of Magnetized Plasma at Cyclotron Frequency

    SciTech Connect

    G. Shvets; J.S. Wurtele

    2002-03-14

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.

  10. Transparent plasmonic nanocontainers protect organic fluorophores against photobleaching.

    PubMed

    Zaiba, Soraya; Lerouge, Fréderic; Gabudean, Ana-Maria; Focsan, Monica; Lermé, Jean; Gallavardin, Thibault; Maury, Olivier; Andraud, Chantal; Parola, Stéphane; Baldeck, Patrice L

    2011-05-11

    Numerous research efforts are investigating the possibility of using light interactions with metallic nanoparticles to improve the fluorescence properties of nearby molecules. Few investigations have considered the encapsulation of molecules in metallic nanocavities. In this paper, we present the optical properties of new hybrid nanoparticles consisting of gold nanoshells and fluorescent organic dyes in their liquid cores. Microspectroscopy on single nanoparticle demonstrates that the extinction spectra are in good agreement with Mie's theory. Finite difference time domain (FDTD) calculations reveal that excitation and emission radiations are efficiently transmitted through the thin gold nanoshells. Thus, they can be considered as transparent plasmonic nanocontainers for photoactive cores. In agreement with FDTD calculations, measurements show that fluorophores encapsulated in gold nanoshells keep their brightness, but they show fluorescence lifetimes 1 order of magnitude shorter. As a salient consequence, the photoresistance of encapsulated organic dyes is also improved by an order of magnitude. This unusual ultraviolet photoresistance results from the reduced probability of triplet-singlet conversion that eventually exposes dyes to singlet oxygen photodegradation. PMID:21488657

  11. Transparent conducting oxides for electro-optical plasmonic modulators

    NASA Astrophysics Data System (ADS)

    Babicheva, Viktoriia E.; Boltasseva, Alexandra; Lavrinenko, Andrei V.

    2015-06-01

    The ongoing quest for ultra-compact optical devices has reached a bottleneck due to the diffraction limit in conventional photonics. New approaches that provide subwavelength optical elements, and therefore lead to miniaturization of the entire photonic circuit, are urgently required. Plasmonics, which combines nanoscale light confinement and optical-speed processing of signals, has the potential to enable the next generation of hybrid information-processing devices, which are superior to the current photonic dielectric components in terms of speed and compactness. New plasmonic materials (other than metals), or optical materials with metal-like behavior, have recently attracted a lot of attention due to the promise they hold to enable low-loss, tunable, CMOScompatible devices for photonic technologies. In this review, we provide a systematic overview of various compact optical modulator designs that utilize a class of the most promising new materials as the active layer or core— namely, transparent conducting oxides. Such modulators can be made low-loss, compact, and exhibit high tunability while offering low cost and compatibility with existing semiconductor technologies. A detailed analysis of different configurations and their working characteristics, such as their extinction ratio, compactness, bandwidth, and losses, is performed identifying the most promising designs.

  12. Rapid Dissolving-Debonding Strategy for Optically Transparent Paper Production

    PubMed Central

    Chen, Jinbo; Han, Xiaogang; Fang, Zhiqiang; Cheng, Fan; Zhao, Bin; Lu, Pengbo; Li, Jun; Dai, Jiaqi; Lacey, Steven; Elspas, Raphael; Jiang, Yuhao; Liu, Detao; Hu, Liangbing

    2015-01-01

    Transparent paper is an alternative substrate for electronic devices due to its unique properties. However, energy-intensive and/or time-consuming procedures currently limit the scalable production of transparent paper. In this report, we demonstrate a rapid process to fabricate optically transparent paper with regenerative cellulose fibers (RCFs) by employing a dissolving-debonding strategy. The RCFs have an average width of 19.3 μm and length of several hundred microns and are prepared into transparent paper by vacuum filtration. This new dissolving-debonding approach enables high production efficiency while creating transparent paper with excellent optical and mechanical properties. PMID:26657809

  13. Interplay between transparency and efficiency in dye sensitized solar cells.

    PubMed

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  14. Transparent Conductive Nanofiber Paper for Foldable Solar Cells

    PubMed Central

    Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi

    2015-01-01

    Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells. PMID:26607742

  15. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  16. Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more.

    PubMed

    Lv, Ruitao; Cruz-Silva, Eduardo; Terrones, Mauricio

    2014-05-27

    Graphene is theoretically a robust two-dimensional (2D) sp(2)-hybridized carbon material with high electrical conductivity and optical transparency. However, due to the existence of grain boundaries and defects, experimentally synthesized large-area polycrystalline graphene sheets are easily broken and can exhibit high sheet resistances; thus, they are not suitable as flexible transparent conductors. As described in this issue of ACS Nano, Tour et al. circumvented this problem by proposing and synthesizing a novel hybrid structure that they have named "rebar graphene", which is composed of covalently interconnected carbon nanotubes (CNTs) with graphene sheets. In this particular configuration, CNTs act as "reinforcing bars" that not only improve the mechanical strength of polycrystalline graphene sheets but also bridge different crystalline domains so as to enhance the electrical conductivity. This report seems to be only the tip of the iceberg since it is also possible to construct novel and unprecedented hybrid carbon architectures by establishing covalent interconnections between CNTs with graphene, thus yielding graphene-CNT hybrids, three-dimensional (3D) covalent CNT networks, 3D graphene networks, etc. In this Perspective, we review the progress of these carbon hybrid systems and describe the challenges that need to be overcome in the near future.

  17. Generating tunable white light by resonance energy transfer in transparent dye-conjugated metal oxide nanocrystals.

    PubMed

    Wang, Ting; Chirmanov, Vadim; Chiu, Wan Hang M; Radovanovic, Pavle V

    2013-10-01

    We report the design and properties of hybrid white-light-emitting nanophosphors obtained by electronic coupling of defect states in colloidal Ga2O3 nanocrystals emitting in blue-green with selected organic molecules emitting in orange-red. Coupling between the two components is enabled by the nanocrystal's size-dependent resonance energy transfer, allowing the photoluminescence chromaticity to be precisely tuned by changing the nanocrystal size and selecting the complementary organic dye molecule. Using this approach, we demonstrate the generation of pure white light with quantum yield of ~30%, color rendering index up to 95, and color temperature of 5500 K. These results provide a guideline for the design of a new class of hybrid white-light-emitting nanophosphors and other multifunctional nanostructures based on transparent metal oxides.

  18. Blown Bubble Assembly of Graphene Oxide Patches for Transparent Electrodes in Carbon-Silicon Solar Cells.

    PubMed

    Wu, Shiting; Yang, Yanbing; Li, Yitan; Wang, Chunhui; Xu, Wenjing; Shi, Enzheng; Zou, Mingchu; Yang, Liusi; Yang, Xiangdong; Li, Yan; Cao, Anyuan

    2015-12-30

    Graphene oxide (GO) sheets have a strong tendency to aggregate, and their interfaces can impose limitations on the electrical conductivity, which would hinder practical applications. Here, we present a blown bubble film method to assemble GO sheets with a uniform distribution over a large area and further interconnect individual GO sheets by transforming the bubble film into graphitized carbon. A conventional polymer was used to facilitate the bubble blowing process and disperse GO sheets in the bubble. Then, the bubble film was annealed on a Cu substrate, resulting in a highly transparent reduced GO (RGO)-carbon hybrid structure consisting of RGO patches well adhered to the carbon film. We fabricated RGO-carbon/Si solar cells with power conversion efficiencies up to 6.42%, and the assembled RGO patches hybridized with carbon film can form an effective junction with Si, indicating potential applications in thin film electronic devices and photovoltaics. PMID:26641030

  19. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Hu, Yongsheng; Lin, Jie; Li, Yantao; Liu, Xingyuan

    2016-08-01

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb2O3/Ag/Sb2O3 (SAS) source and drain electrodes has been developed. A pentacene/N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm2/V s and 0.027 cm2/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  20. Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices

    NASA Astrophysics Data System (ADS)

    Spechler, Joshua Allen

    Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.

  1. Printed optically transparent graphene cellulose electrodes

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  2. High-durability infrared transparent coatings

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Tustison, Randal W.

    1994-09-01

    LWIR windows are exposed to harsh conditions during high speed flight. These include high speed rain drop impact, sand abrasion, corrosion, and aerothermodynamic load. With the possible exception of diamond, there are no LWIR transparent window/dome materials which can withstand these various environments. Rain erosion protective (REP) and oxide based abrasion resistant/oxidation resistant durable antireflection (DAR) coatings have been developed for LWIR applications. These coatings have demonstrated a substantial degree of raindrop impact protection (i.e., damage threshold velocities of approximately Mach 1, for 2 mm equivalent waterdrop impacts at normal incidence). The combination of REP + DAR coating have also demonstrated excellent resistance to sand abrasion in simulated flight environments. The high degree of abrasion resistance makes the DAR coatings applicable to ground based systems, using ZnS and ZnSe, windows as well. An additional advantage of the Raytheon REP + DAR combination is that they are transparent from the visible to the LWIR (8 to 12 mm), making them suitable for applications requiring broadband transparency. Furthermore, the DAR coatings have protected ZnS substrates from oxidation at temperatures up to 1000 degree(s)C. The combination of ZnS REP coating and DAR coating are ideally suited for protecting high speed LWIR missiles from rain and sand damage during captive carry, as well as protecting the dome/window from oxidation during high speed flight. Data are presented to demonstrate the rain/sand and oxidation protection provided by these coatings. The REP and DAR coatings have been scaled up to coat windows and domes for far infrared applications.

  3. Surface-scribed transparency-based microplates.

    PubMed

    Li, Xin Ye; Cheong, Brandon Huey-Ping; Somers, Anthony; Liew, Oi Wah; Ng, Tuck Wah

    2013-01-15

    Transparency sheets, which are normally associated with use on overhead projectors, offer lowered costs and high amenability for optical diagnostics in microplate instrumentation. An alternative microplate design in which circles are scribed on the surface of the transparency to create the boundaries to hold the drop in place is investigated here. The 3D profile of the scribed regions obtained optically showed strong likelihood of affecting three-phase contact line interactions. During dispensation, the contact angle (≈95°) was larger than the drop advancing state (≈80°) due to a period of nonadhesion, where the contact angle later reduced to the drop advancing state followed by increase in the liquid area coverage on the substrate. It was established that 50 μL was needed to fill the well fully, and the maximum volume retainable before breaching was 190 μL. While the tilt angle needed for displacement reduced significantly from 50 to 95 μL, this was markedly better than nonscribed surfaces, where tilt angles always had to be kept to within 30°. It was found that there was greater ability to fill the well with smaller volumes with dispensation at the center. This was attributed to the growing contact line not meeting the scribed edge in parallel if liquid was dispensed closer to it, wherein pinning reduction in some directions permitted liquid travel along the scribed edge to undergo contact angle hysteresis. Fluorescence measurements conducted showed no performance compromise when using scribed transparency microplates over standard microplates. PMID:23215012

  4. Satellite imagery and discourses of transparency

    NASA Astrophysics Data System (ADS)

    Harris, Chad Vincent

    In the last decade there has been a dramatic increase in satellite imagery available in the commercial marketplace and to the public in general. Satellite imagery systems and imagery archives, a knowledge domain formally monopolized by nation states, have become available to the public, both from declassified intelligence data and from fully integrated commercial vendors who create and market imagery data. Some of these firms have recently launched their own satellite imagery systems and created rather large imagery "architectures" that threaten to rival military reconnaissance systems. The increasing resolution of the imagery and the growing expertise of software and imagery interpretation developers has engendered a public discourse about the potentials for increased transparency in national and global affairs. However, transparency is an attribute of satellite remote sensing and imagery production that is taken for granted in the debate surrounding the growing public availability of high-resolution satellite imagery. This paper examines remote sensing and military photo reconnaissance imagery technology and the production of satellite imagery in the interests of contemplating the complex connections between imagery satellites, historically situated discourses about democratic and global transparency, and the formation and maintenance of nation state systems. Broader historical connections will also be explored between satellite imagery and the history of the use of cartographic and geospatial technologies in the formation and administrative control of nation states and in the discursive formulation of national identity. Attention will be on the technology itself as a powerful social actor through its connection to both national sovereignty and transcendent notions of scientific objectivity. The issues of the paper will be explored through a close look at aerial photography and satellite imagery both as communicative tools of power and as culturally relevant

  5. Epitaxial Growth of Transparent Conductive Oxides

    NASA Astrophysics Data System (ADS)

    Ohta, Hiromichi; Orita, Masahiro; Hirano, Masahiro; Ueda, Kazushige; Hosono, Hideo

    Transparent conductive oxides of ITO, ZnO, β-Ga2O3, and CuGaO2 SrCu2O2 were grown on single crystal substrates of α-Al2O3 and YSZ by pulsed-laser deposition, and their crystallinity was evaluated by using high-resolution X-ray diffraction and electron microscope. Heteroepitaxial growth was observed in spite of relatively large lattice mismatches between film and substrate. A few disordered layers were generated automatically at film/substrate boundary, played buffer layer to suppress propagation of edge dislocations.

  6. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1977-01-01

    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  7. Electromagnetically induced transparency with noisy lasers

    SciTech Connect

    Xiao Yanhong; Wang Tun; Baryakhtar, Maria; Jiang Liang; Lukin, Mikhail D.; Van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Walsworth, Ronald L.; Phillips, David F.; Yelin, Susanne F.

    2009-10-15

    We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.

  8. Transparent Seismic Mitigation for Community Resilience

    NASA Astrophysics Data System (ADS)

    Poland, C. D.; Pekelnicky, R.

    2008-12-01

    Healthy communities continuously grow by leveraging their intellectual capital to drive economic development while protecting their cultural heritage. Success, in part, depends on the support of a healthy built environment that is rooted in contemporary urban planning, sustainability and disaster resilience. Planners and policy makers are deeply concerned with all aspects of their communities, including its seismic safety. Their reluctance to implement the latest plans for achieving seismic safety is rooted in a misunderstanding of the hazard they face and the risk it poses to their built environment. Probabilistic lingo and public debate about how big the "big one" will be drives them to resort to their own experience and intuition. There is a fundamental lack of transparency related to what is expected to happen, and it is partially blocking the policy changes that are needed. The solution: craft the message in broad based, usable terms that name the hazard, defines performance, and establishes a set of performance goals that represent the resiliency needed to drive a community's natural ability to rebound from a major seismic event. By using transparent goals and measures with an intuitive vocabulary for both performance and hazard, earthquake professionals, working with the San Francisco Urban Planning and Research Association (SPUR), have defined a level of resiliency that needs to be achieved by the City of San Francisco to assure their response to an event will be manageable and full recovery achievable within three years. Five performance measures for buildings and three for lifeline systems have been defined. Each declares whether people will be safe inside, whether the building will be able to be repaired and whether they will be usable during repairs. Lifeline systems are further defined in terms of the time intervals to restore 90%, 95%, and full service. These transparent categories are used in conjunction with the expected earthquake level to describe

  9. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  10. Transparent electromagnetic shielding enclosure with CVD graphene

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Tong; Wu, Bian; Zhang, Yu; Hao, Yang

    2016-09-01

    Cavity resonant modes of shielding enclosure for housing electronic circuits may cause electromagnetic interference (EMI). Here, we present an effective approach by using graphene to suppress unwanted resonant modes while maintaining good transparency to visible light. The structure consists of graphene sheet on quartz substrate attached to the shielding enclosure made from indium tin oxide. We experimentally demonstrate that the proposed approach can lead to good absorption of microwave waves at a wide frequency range from 5 to 12 GHz and high attenuation of cavity modes up to 20-30 dB. Its effectiveness of EMI shielding averaged 20 dB is proven to be comparable with conventional metallic enclosures.

  11. Transparent nanowire network electrode for textured semiconductors.

    PubMed

    Gao, Jinwei; Pei, Ke; Sun, Tianyi; Wang, Yaohui; Zhang, Linghai; Peng, Weijin; Lin, Qinggeng; Giersig, Michael; Kempa, Krzysztof; Ren, Zhifeng; Wang, Yang

    2013-03-11

    This work presents an inexpensive and easily manufacturable, highly conductive and transparent nanowire network electrode for textured semiconductors. It is based on lines of silver nanoparticles transformed into a nanowire network by microwave or furnace sintering. The nanonetwork electrode on crystalline silicon is demonstrated experimentally, with the nanoparticles self-assembling in the valleys between the pyramids of the textured surface. Optical experiments show that this conductive nanowire network electrode can be essentially 'invisible' when covered with the conventional anti-reflection coating (ARC), and thus could be employed in photovoltaic applications.

  12. Nanostructured transparent conducting oxide electrochromic device

    DOEpatents

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  13. Dynamic failure of a transparent polycrystalline ceramic

    NASA Astrophysics Data System (ADS)

    Cazamias, J. U.; Bless, S. J.; Simha, C. Hari Manoj; Hartnett, T. M.

    2000-04-01

    We have performed bar impact experiments on aluminum oxynitride (AlON), a transparent polycrystalline ceramic, measuring the peak stress and taking high-speed photographs. The peak stress measured in the AlON bars is 4 GPa, about 10% higher than that measured in AD-99.5 bars. Failure was observed propagating up the center of the bar, leaving the outer part intact at relatively late times. There was anomalous damage to the witness bar, similar to what happens with glass bars, indicating either retained strength in the center column or explosive fracture of the AlON bar.

  14. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene

    NASA Astrophysics Data System (ADS)

    Park, Jihun; Kim, Joohee; Kim, Kukjoo; Kim, So-Yun; Cheong, Woon Hyung; Park, Kyeongmin; Song, Joo Hyeb; Namgoong, Gyeongho; Kim, Jae Joon; Heo, Jaeyeong; Bien, Franklin; Park, Jang-Ung

    2016-05-01

    Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area.Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the `Internet of Things' area. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01468b

  15. An innovative transparent cranial window based on skull optical clearing An innovative transparent cranial window

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhang, Y.; Xu, T. H.; Luo, Q. M.; Zhu, D.

    2012-06-01

    Noninvasive optical methods for viewing the structural and functional organization of cortex have been playing important roles in brain research, which usually suffer from turbid skull. Various cranial window models based on surgical operation have been proposed, but have respective limitations. Here, an innovative transparent cranial window of mouse was established by topically treatment with a skull optical clearing solution (SOCS), rather than by craniotomy. Based on the experiment of optical clearing efficacy of skull in vitro, we found that the turbid skull became transparent within 25 min after application of SOCS. The USAF target is visible through the treated skull, and the calculated resolution can achieve 8.4 μm. After the in vivo skull was topically treated with SOCS, the cortical micro-vessels can be visible clearly. The quantitative analysis indicated that the minimum resolution diameter of micro-vessels in 14.4±0.8 μm through the transparent cranial window closed to that in 12.8±0.9 μm of the exposed cortical micro-vessels. Further, preliminary results from Laser Speckle Imaging demonstrated that there was no influence on cortical blood flow distribution of mouse after topically treatment with SOCS on skull. This transparent cranial window will provide a convenient model for cortex imaging in vivo, which is very significant for neuroscience research.

  16. Optically transparent multi-suction electrode arrays

    PubMed Central

    Nagarah, John M.; Stowasser, Annette; Parker, Rell L.; Asari, Hiroki; Wagenaar, Daniel A.

    2015-01-01

    Multielectrode arrays (MEAs) allow for acquisition of multisite electrophysiological activity with submillisecond temporal resolution from neural preparations. The signal to noise ratio from such arrays has recently been improved by substrate perforations that allow negative pressure to be applied to the tissue; however, such arrays are not optically transparent, limiting their potential to be combined with optical-based technologies. We present here multi-suction electrode arrays (MSEAs) in quartz that yield a substantial increase in the detected number of units and in signal to noise ratio from mouse cortico-hippocampal slices and mouse retina explants. This enables the visualization of stronger cross correlations between the firing rates of the various sources. Additionally, the MSEA's transparency allows us to record voltage sensitive dye activity from a leech ganglion with single neuron resolution using widefield microscopy simultaneously with the electrode array recordings. The combination of enhanced electrical signals and compatibility with optical-based technologies should make the MSEA a valuable tool for investigating neuronal circuits. PMID:26539078

  17. Ethical Information Transparency and Sexually Transmitted Infections.

    PubMed

    Feltz, Adam

    2015-01-01

    Shared decision making is intended to help protect patient autonomy while satisfying the demands of beneficence. In shared decision making, information is shared between health care professional and patient. The sharing of information presents new and practical problems about how much information to share and how transparent that information should be. Sharing information also allows for subtle paternalistic strategies to be employed to "nudge" the patient in a desired direction. These problems are illustrated in two experiments. Experiment 1 (N = 146) suggested that positively framed messages increased the strength of judgments about whether a patient with HIV should designate a surrogate compared to a negatively framed message. A simple decision aid did not reliably reduce this effect. Experiment 2 (N = 492) replicated these effects. In addition, Experiment 2 suggested that providing some additional information (e.g., about surrogate decision making accuracy) can reduce tendencies to think that one with AIDS should designate a surrogate. These results indicate that in some circumstances, nudges (e.g., framing) influence judgments in ways that non-nudging interventions (e.g., simple graphs) do not. While non-nudging interventions are generally preferable, careful thought is required for determining the relative benefits and costs associated with information transparency and persuasion. PMID:26149163

  18. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  19. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  20. A GPU accelerated PDF transparency engine

    NASA Astrophysics Data System (ADS)

    Recker, John; Lin, I.-Jong; Tastl, Ingeborg

    2011-01-01

    As commercial printing presses become faster, cheaper and more efficient, so too must the Raster Image Processors (RIP) that prepare data for them to print. Digital press RIPs, however, have been challenged to on the one hand meet the ever increasing print performance of the latest digital presses, and on the other hand process increasingly complex documents with transparent layers and embedded ICC profiles. This paper explores the challenges encountered when implementing a GPU accelerated driver for the open source Ghostscript Adobe PostScript and PDF language interpreter targeted at accelerating PDF transparency for high speed commercial presses. It further describes our solution, including an image memory manager for tiling input and output images and documents, a PDF compatible multiple image layer blending engine, and a GPU accelerated ICC v4 compatible color transformation engine. The result, we believe, is the foundation for a scalable, efficient, distributed RIP system that can meet current and future RIP requirements for a wide range of commercial digital presses.

  1. Ethical Information Transparency and Sexually Transmitted Infections.

    PubMed

    Feltz, Adam

    2015-01-01

    Shared decision making is intended to help protect patient autonomy while satisfying the demands of beneficence. In shared decision making, information is shared between health care professional and patient. The sharing of information presents new and practical problems about how much information to share and how transparent that information should be. Sharing information also allows for subtle paternalistic strategies to be employed to "nudge" the patient in a desired direction. These problems are illustrated in two experiments. Experiment 1 (N = 146) suggested that positively framed messages increased the strength of judgments about whether a patient with HIV should designate a surrogate compared to a negatively framed message. A simple decision aid did not reliably reduce this effect. Experiment 2 (N = 492) replicated these effects. In addition, Experiment 2 suggested that providing some additional information (e.g., about surrogate decision making accuracy) can reduce tendencies to think that one with AIDS should designate a surrogate. These results indicate that in some circumstances, nudges (e.g., framing) influence judgments in ways that non-nudging interventions (e.g., simple graphs) do not. While non-nudging interventions are generally preferable, careful thought is required for determining the relative benefits and costs associated with information transparency and persuasion.

  2. Diabatic flow boiling in circular transparent microchannels

    NASA Astrophysics Data System (ADS)

    Silvério, V.; Moreira, A. L. N.

    2012-11-01

    The horizontally assembled circular microchannel (Dh= 543μm, LHT = 60mm) made of transparent borosilicate glass is kept under constant wall heat flux conditions by means of a transparent metallic thin film deposit at the channel external wall as in Silvério and Moreira [1]. Heat transfer and pressure drop measurements are achieved by measuring the temperature and pressure at the channel inlet and outlet. Temperature is also measured along the channel outer wall. Experiments are carried with two different fluids, ethanol and methanol. Inlet liquid subcooling is of 297K, mass fluxes, G, up to 689kg.m-2.s-1 and imposed heat fluxes, q"s, up to 12.5W.cm-2 at ΔTsub from 0.8 to 50K. Synchronized high-speed visualization and microscope optics are used to determine dominant two-phase flow patterns and characterize hydrodynamic instabilities. Vapor qualities, χ, of -0.1 (indicating a subcooled liquid state) to 0.5 are under investigation. Semi-periodic variation of the flow patterns is noticeable for different flow conditions.

  3. Transparent conducting thin films for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  4. Fabrication of optically transparent chitin nanocomposites

    NASA Astrophysics Data System (ADS)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  5. Transparent, Weakly Conductive Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Griffin, John; Morgan, Ashraf; Hambourger, Paul D.

    2004-01-01

    Electrically insulating spacecraft surfaces are vulnerable to nonuniform charge buildup due to particles emitted by the sun. On Mars, insulating surfaces of exploration vehicles and structures will be affected by dust coatings possibly held in place by triboelectric surface charge. Application of a conductive film may be a solution to the charging problem, but the coating must be highly transparent if used on solar panels, lenses, etc. Sheet resistivity requirements depend on the application and are in the range 10(exp 2) - 10(exp 8) ohms/square. Co-deposited indium tin oxide (ITO) and MgF2 is promising, with high transparency, tailorable electrical properties, and durability to atomic oxygen. Due to ITO's relatively narrow bandgap (approximately 3.5 eV), the film might absorb enough ultraviolet to protect polymeric substrates. Recent work on dual-magnetron-sputtered ITO-MgF2 showed that a variety of polymeric substrates can be coated at room temperature. However, the sheet resistivity is very sensitive to composition, suggestive of a percolation transition. This could be a serious problem for large-scale coating production. We will report on attempts to control film composition by plasma emission monitoring of the ITO and MgF2 guns.

  6. Broadband Electromagnetic Transparency by Graded Metamaterial Sphere

    NASA Astrophysics Data System (ADS)

    Sun, L.; Yu, K. W.

    2010-03-01

    We have investigated the scattering of electromagnetic waves from a radially inhomogeneous metamaterial sphere whose dielectric permittivity is described by the graded Drude model ɛs(r)=1-φp^2(r)/2̂. The radial position dependent plasma frequency depends on r as φp^2=1/2-c(r/r0)^n, where c and n are positive constants and r0 is the radius of the sphere. The electromagnetic field distribution has been calculated within the full-wave Mie scattering theory. When n=2, exact analytic solutions can be obtained in terms of confluent Heun function and confluent hypergeometric function of Kummer. This allows us to obtain the full-wave total scattering cross section analytically from the scattering field amplitudes. While the total scattering cross section Qs depends on both the graded plasma frequency profile and the frequency of the incident electromagnetic wave, it is found that Qs can achieve extremely small values over a broad frequency band and graded parameters. The analytic solutions allow us to assess the conditions for achieving broadband electromagnetic transparency in the metamaterial sphere and make tunable electromagnetic transparency feasible.

  7. Transparent self-cleaning dust shield

    DOEpatents

    Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.

    2005-06-28

    A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.

  8. Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Anlage, Steven M.

    2015-10-01

    Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT) in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a "dark mode." However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.

  9. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.

    PubMed

    Jiang, Jieke; Bao, Bin; Li, Mingzhu; Sun, Jiazhen; Zhang, Cong; Li, Yang; Li, Fengyu; Yao, Xi; Song, Yanlin

    2016-02-17

    Conductive microcables embedded in a transparent film are fabricated by inkjet printing silver-nanoparticle ink into a liquid poly(dimethylsiloxane) (PDMS) precursor substrate. By controlling the spreading of the ink droplet and the rheological properties of the liquid substrate, transparent multilayer circuits composed of high-resolution embedded cables are achieved using a commercial inkjet printer. This facile strategy provides a new avenue for inkjet printing of highly integrated and transparent electronics.

  10. Characterization of UV-transparent capillaries for CEC and CE.

    PubMed

    Bandilla, Dirk; Cabral, Jean-Louis; Skinner, Cameron D

    2006-08-01

    This short communication describes features of UV-transparent capillaries employed for CEC and CE. A waveguide effect was observed when using UV-transparent capillaries. Through imaging with SEM, the UV-transparent coating was found to be highly porous unlike polyimide coating, which did not exhibit any porosity at all. Prolonged exposure to several commonly employed solvents with elevated pH caused abrasion of the coating at the capillary tip but no swelling of the UV-transparent coating was observed. Lastly, four different cutting techniques were compared to obtain smooth capillary tips.

  11. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  12. Enhancement of Characteristics of Transparent Conductive Electrode on Flexible Substrate by Combination of Solution-Based Oxide and Metallic Layers.

    PubMed

    Hong, Sung-Jei; Kim, Yong-Hoon; Cha, Seung-Jae; Kim, Yong-Sung

    2015-10-01

    This study investigates solution-processed transparent conductors with hybrid structure consisting of silver nanowires (AgNWs) and indium-tin-oxide nanoparticles (ITO-NPs) layers fabricated on polymeric flexible polyethylene terephthalate (PET) substrate. The transparent conductors had stacked structures of AgNWs/ITO-NPs on 125-μm-thick PET and ITO-NPs/AgNWs/ITO-NPs on 125-μm-thick PET, 188-μm-thick PET, or 700-μm-thick glass substrate, respectively. Successful integrations were possible on the substrates without any deformation or distortion. Sheet resistance of the triple-layered transparent conductor samples exhibits low values ranging from 22.41 Ω/square to 22.99 Ω/squarer. Also, their optical transmittance exhibits high values ranging from 83.78 to 87.29% at 550 nm. The triple-layered transparent conductor showed a good thermal stability in terms of sheet resistance and optical transmittance against the high-temperature environment up to 250 °C. All the double and triple-layered transparent conductors fabricated on PET and glass substrates are so stable against the accelerated thermal aging from 110 °C to 130 °C, that ΔR/R0 and ΔT(550)/T0(550) values exhibit less than 0.068 and 0.049, respectively. Furthermore, the layers are so flexible that ΔR/R0 of the layers on PET substrates is lower than 0.1 even at 4.0-mm bending. Especially, triple-layered transparent conductor on 125-μm-thick PET substrates exhibits ΔR/R0 value of 0.042 even at 4.0 mm bending. Thus, it can be concluded that the hybrid structures have the advantage of both thermal stability and flexibility for electrical and optical properties of transparent conductive electrode; which makes them highly applicable in flexible electronics. PMID:26726453

  13. Novel stable hard transparent conductors in TiO2-TiC system: Design materials from scratch

    PubMed Central

    Meng, Xiangying; Liu, Dongyan; Dai, Xuefeng; Pan, Haijun; Wen, Xiaohong; Zuo, Liang; Qin, Gaowu

    2014-01-01

    Two new ternary compounds in the TiO2-TiC system, Ti5C2O6 and Ti3C2O2, are reported for the first time based on ab initio evolutionary algorithm. Ti5C2O6 has a tube-structure in which sp1 hybridized carbon chains run through the lattice along the b-axis; while in the Ti3C2O2 lattice, double TiO6 polyhedral are separated by the non-coplanar sp2 hybridized hexagon graphite layers along the c-axis, forming a sandwich-like structure. At ambient conditions, the two compounds are found to be mechanically and dynamically stable and intrinsic transparent conductors with high hardness (about twice harder than the conventional transparent conducting oxides). These mechanical, electronic, and optical properties make Ti5C2O6 and Ti3C2O2 ternary compounds be promising robust, hard, transparent, and conductive materials. PMID:25511583

  14. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.

    PubMed

    Zhao, Jingpeng; Wei, Zuwu; Feng, Xin; Miao, Miao; Sun, Lining; Cao, Shaomei; Shi, Liyi; Fang, Jianhui

    2014-09-10

    Highly flexible, transparent, and luminescent nanofibrillated cellulose (NFC) nanopaper with heterogeneous network, functionalized by rare-earth up-converting luminescent nanoparticles (UCNPs), was rapidly synthesized by using a moderate pressure extrusion paper-making process. NFC was successfully prepared from garlic skin using an efficient extraction approach combined with high frequency ultrasonication and high pressure homogenization after removing the noncellulosic components. An efficient epoxidation treatment was carried out to enhance the activity of the UCNPs (NaYF4:Yb,Er) with oleic acid ligand capped on the surface. The UCNPs after epoxidation then reacted with NFC in aqueous medium to form UCNP-grafted NFC nanocomposite (NFC-UCNP) suspensions at ambient temperature. Through the paper-making process, the assembled fluorescent NFC-UCNP hybrid nanopaper exhibits excellent properties, including high transparency, strong up-conversion luminescence, and good flexibility. The obtained hybrid nanopaper was characterized by transmission electron microscopy (TEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), field emission-scanning electron microscope (FE-SEM), up-conversion luminescence (UCL) spectrum, and ultraviolet and visible (UV-vis) spectrophotometer. The experimental results demonstrate that the UCNPs have been successfully grafted to the NFC matrix with heterogeneous network. And the superiorly optical transparent and luminescent properties of the nanopaper mainly depend on the ratio of UCNPs to NFC. Of importance here is that, NFC and UCNPs afford the nanopaper a prospective candidate for multimodal anti-counterfeiting, sensors, and ion probes applications.

  15. Method for determination of the parameters of transparent ultrathin films deposited on transparent substrates under conditions of low optical contrast.

    PubMed

    Kostruba, Andriy; Stetsyshyn, Yuriy; Vlokh, Rostyslav

    2015-07-10

    In the present work we suggest an original ellipsometric technique for independently determining strongly correlated refractive index and thickness of transparent ultrathin films. We demonstrate significant accuracy improvement for the single-wavelength null-ellipsometry measurements when using multiple incidence angles for the system "transparent film on a transparent substrate" studied in the thickness range of 1.0-20.0 nm and the low-contrast region for the film-substrate surface. A straightforward relationship is obtained between the refractive index n(1) of the transparent film and the incidence angle φ. It follows from invariability ensured for the amplitude ellipsometric parameter Ψ with respect to the film thickness changes.

  16. Hybrid microelectronic technology

    NASA Astrophysics Data System (ADS)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  17. Transparent metal electrodes from ordered nanosphere arrays

    NASA Astrophysics Data System (ADS)

    Morfa, Anthony J.; Akinoglu, Eser M.; Subbiah, Jegadesan; Giersig, Michael; Mulvaney, Paul

    2013-08-01

    We show that perforated metal electrode arrays, fabricated using nanosphere lithography, provide a viable alternative to conductive metal oxides as transparent electrode materials. The inter-aperture spacing is tuned by varying etching times in an oxygen plasma, and the effect of inter-aperture "wire" thickness on the optical and electronic properties of perforated silver films is shown. Optical transmission is limited by reflection and surface plasmons, and for these results do not exceed 73%. Electrical sheet resistance is shown to be as low as 3 Ω ◻-1 for thermally evaporated silver films. The performance of organic photovoltaic devices comprised of a P3HT:PCBM bulk heterojunction deposited onto perforated metal arrays is shown to be limited by optical transmission, and a simple model is presented to overcome these limitations.

  18. Highly stretchable, transparent ionic touch panel.

    PubMed

    Kim, Chong-Chan; Lee, Hyun-Hee; Oh, Kyu Hwan; Sun, Jeong-Yun

    2016-08-12

    Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games. PMID:27516597

  19. Escalation of commitment with transparent future outcomes.

    PubMed

    Karlsson, Niklas; Gärling, Tommy; Bonini, Nicolao

    2005-01-01

    A frequent case of irrational decision making is the tendency to escalate commitment to a chosen course of action after unsuccessful prior investments of money, effort, or time (sunk costs). In previous research it is argued that escalation does not occur when future outcomes and alternative investments are transparent. Inconsistent with this argument, in an experiment in which undergraduates were presented fictitious investment problems with sunk costs, escalation was demonstrated when full information was given about investment alternatives and estimates of future returns. Thus, it is indicated that people may escalate despite knowing that it will not make them economically better off. A more comprehensive understanding of escalation requires disentangling people's noneconomic reasons for escalation.

  20. Multifunctional transparent ZnO nanorod films

    NASA Astrophysics Data System (ADS)

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-01

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  1. Integrated broadband bowtie antenna on transparent substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Wang, Shiyi; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T.

    2015-03-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  2. Reporting transparency: making the ethical mandate explicit.

    PubMed

    Nicholls, Stuart G; Langan, Sinéad M; Benchimol, Eric I; Moher, David

    2016-03-16

    Improving the transparency and quality of reporting in biomedical research is considered ethically important; yet, this is often based on practical reasons such as the facilitation of peer review. Surprisingly, there has been little explicit discussion regarding the ethical obligations that underpin reporting guidelines. In this commentary, we suggest a number of ethical drivers for the improved reporting of research. These ethical drivers relate to researcher integrity as well as to the benefits derived from improved reporting such as the fair use of resources, minimizing risk of harms, and maximizing benefits. Despite their undoubted benefit to reporting completeness, questions remain regarding the extent to which reporting guidelines can influence processes beyond publication, including researcher integrity or the uptake of scientific research findings into policy or practice. Thus, we consider investigation on the effects of reporting guidelines an important step in providing evidence of their benefits.

  3. Stable and transparent superhydrophobic nanoparticle films.

    PubMed

    Ling, Xing Yi; Phang, In Yee; Vancso, G Julius; Huskens, Jurriaan; Reinhoudt, David N

    2009-03-01

    A superhydrophobic surface with a static water contact angle (theta(w)) > 150 degrees was created by a simple "dip-coating" method of 60-nm SiO2 nanoparticles onto an amine-terminated (NH2) self-assembled monolayer (SAM) glass/silicon oxide substrate, followed by chemical vapor deposition of a fluorinated adsorbate. For comparison, a close-packed nanoparticle film, formed by convective assembly, gave theta(w) approximately 120 degrees. The stability of the superhydrophobic coating was enhanced by sintering of the nanoparticles in an O2 environment at high temperature (1100 degress C). A sliding angle of < 5 degrees indicated the self-cleaning properties of the surface. The dip-coating method can be applied to glass substrates to prepare surfaces that are superhydrophobic and transparent.

  4. Tunable lenses using transparent dielectric elastomer actuators.

    PubMed

    Shian, Samuel; Diebold, Roger M; Clarke, David R

    2013-04-01

    Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency, and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present an elastomer-liquid lens system which makes use of an inline, transparent electroactive polymer actuator. The lens requires only a minimal number of components: a frame, a passive membrane, a dielectric elastomer actuator membrane, and a clear liquid. The focal length variation was recorded to be greater than 100% with this system, responding in less than one second. Through the analysis of membrane deformation within geometrical constraints, it is shown that by selecting appropriate lens dimensions, even larger focusing dynamic ranges can be achieved. PMID:23571956

  5. Transparent reporting of trials is essential.

    PubMed

    Altman, Douglas G

    2013-08-01

    Reports of randomized controlled trials (RCTs) inform the care of future patients and are especially important to clinicians and systematic reviewers. Readers should satisfy themselves that the study methods were sound. Clinicians should consider the relevance to their own patients, both benefits and harms, and absolute as well as relative effects. Trial reports should provide a clear, transparent, and complete report of what was done and what was found. Unfortunately, bad reporting of RCTs is common, which has serious consequences for clinical practice, research, policy making, and ultimately for patients. RCT reports should adhere to the CONSORT Statement, a minimum set of items that should be addressed. Authors, peer reviewers, and editors should all work to ensure that research reports maximize the value derived from the cost and effort of conducting a trial.

  6. Transparent lattices and their solitary waves.

    PubMed

    Sadurní, E

    2014-09-01

    We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.

  7. Transparent ceramics and methods of preparation thereof

    SciTech Connect

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Seeley, Zachary M.; Soules, Thomas F.

    2012-12-25

    A method for forming a transparent ceramic preform in one embodiment includes forming a suspension of oxide particles in a solvent, wherein the suspension includes a dispersant, with the proviso that the suspension does not include a gelling agent; and uniformly curing the suspension for forming a preform of gelled suspension. A method according to another embodiment includes creating a mixture of inorganic particles, a solvent and a dispersant, the inorganic particles having a mean diameter of less than about 2000 nm; agitating the mixture; adding the mixture to a mold; and curing the mixture in the mold for gelling the mixture, with the proviso that no gelling agent is added to the mixture.

  8. A soft and transparent handleable protein model.

    PubMed

    Kawakami, Masaru

    2012-08-01

    The field of structural biology currently relies on computer-generated graphical representations of three-dimensional (3D) structures to conceptualize biomolecules. As the size and complexity of the molecular structure increases, model generation and peer discussions become more difficult. It is even more problematic when discussing protein-protein interactions wherein large surface area contact is considered. This report demonstrates the viability of a new handleable protein molecular model with a soft and transparent silicone body similar to the molecule's surface. A full-color printed main chain structure embedded in the silicone body enables users to simultaneously feel the molecular surface, view through the main chain structure, and manually simulate molecular docking. The interactive, hands-on experience deepens the user's intuitive understanding of the complicated 3D protein structure and elucidates ligand binding and protein-protein interactions. This model would be an effective discussion tool for the classroom or laboratory that stimulates inspired learning in this study field.

  9. Reporting transparency: making the ethical mandate explicit.

    PubMed

    Nicholls, Stuart G; Langan, Sinéad M; Benchimol, Eric I; Moher, David

    2016-01-01

    Improving the transparency and quality of reporting in biomedical research is considered ethically important; yet, this is often based on practical reasons such as the facilitation of peer review. Surprisingly, there has been little explicit discussion regarding the ethical obligations that underpin reporting guidelines. In this commentary, we suggest a number of ethical drivers for the improved reporting of research. These ethical drivers relate to researcher integrity as well as to the benefits derived from improved reporting such as the fair use of resources, minimizing risk of harms, and maximizing benefits. Despite their undoubted benefit to reporting completeness, questions remain regarding the extent to which reporting guidelines can influence processes beyond publication, including researcher integrity or the uptake of scientific research findings into policy or practice. Thus, we consider investigation on the effects of reporting guidelines an important step in providing evidence of their benefits. PMID:26979591

  10. Transparent lattices and their solitary waves

    NASA Astrophysics Data System (ADS)

    Sadurní, E.

    2014-09-01

    We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.

  11. A soft and transparent handleable protein model

    NASA Astrophysics Data System (ADS)

    Kawakami, Masaru

    2012-08-01

    The field of structural biology currently relies on computer-generated graphical representations of three-dimensional (3D) structures to conceptualize biomolecules. As the size and complexity of the molecular structure increases, model generation and peer discussions become more difficult. It is even more problematic when discussing protein-protein interactions wherein large surface area contact is considered. This report demonstrates the viability of a new handleable protein molecular model with a soft and transparent silicone body similar to the molecule's surface. A full-color printed main chain structure embedded in the silicone body enables users to simultaneously feel the molecular surface, view through the main chain structure, and manually simulate molecular docking. The interactive, hands-on experience deepens the user's intuitive understanding of the complicated 3D protein structure and elucidates ligand binding and protein-protein interactions. This model would be an effective discussion tool for the classroom or laboratory that stimulates inspired learning in this study field.

  12. Classical analogs of double electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-03-01

    Double electromagnetically induced transparency (DEIT) in a four-level atomic system with tripod-type energy-level configuration is modeled by using two classical systems. The first is a set of three coupled harmonic oscillators subject to frictional forces and external drives and the second is a set of three coupled RLC circuits with electric resistors and alternating voltage sources. It is shown that both of the two classical systems have absorption spectra of DEIT similar to that of the four-level tripod-type atomic system. These classical analogies provide simple and intuitive physical description of quantum interference processes and can be used to illustrate experimental observations of the DEIT in quantum systems.

  13. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  14. Highly stretchable, transparent ionic touch panel

    NASA Astrophysics Data System (ADS)

    Kim, Chong-Chan; Lee, Hyun-Hee; Oh, Kyu Hwan; Sun, Jeong-Yun

    2016-08-01

    Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games.

  15. Dynamic Failure of a Transparent Polycrystalline Ceramic

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Manoj Simha, C. Hari; Hartnett, Thomas

    1999-06-01

    We have performed some bar impact experiments on the transparent polycrystalline ceramic aluminum oxynitride (AlON). The experiments use embedded manganin gauges that measure the peak stress that propagates down the bar, and also high speed single frame photography. The peak stress measured in the AlON bars is 4 GPA, about 10% higher than that measured in AD-99.5 bars. The results of our work suggest that the behavior of AlON is similar to that of opaque polycrystalline alumina AD-99.5. The high speed photography has revealed some interesting insights into the behavior of the opaque alumina AD-99.5 which we have been investigating.

  16. Assuring data transparency through design methodologies

    NASA Technical Reports Server (NTRS)

    Williams, Allen

    1990-01-01

    This paper addresses the role of design methodologies and practices in the assurance of technology transparency. The development of several subsystems on large, long life cycle government programs was analyzed to glean those characteristics in the design, development, test, and evaluation that precluded or enabled the insertion of new technology. The programs examined were Minuteman, DSP, B1-B, and space shuttle. All these were long life cycle, technology-intensive programs. The design methodologies (or lack thereof) and design practices for each were analyzed in terms of the success or failure in incorporating evolving technology. Common elements contributing to the success or failure were extracted and compared to current methodologies being proposed by the Department of Defense and NASA. The relevance of these practices to the design and deployment of Space Station Freedom were evaluated. In particular, appropriate methodologies now being used on the core development contract were examined.

  17. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  18. Fabrication of Transparent Nanohybrids with Heat Resistance Using High-Density Amorphous Formation and Uniform Dispersion of Nanodiamond.

    PubMed

    Al Mamun, Muhammad Abdullah; Soutome, Youichi; Kasahara, Yusuke; Meng, Qi; Akasaka, Shuichi; Fujimori, Atsuhiro

    2015-08-19

    A new technology for the production of transparent material using a "crystalline" polymer is proposed in the present study. Further, transparent and flexible crystalline polymer nanohybrid film containing well-dispersed nanodiamond filler was fabricated. Partially fluorinated crystalline polymer with switchboard-type lamellae results in high transparency as a consequence of the formation of a high-density amorphous structure based on high-temperature drawing just below the melting point at 110 °C. Although the formation of nanohybrid materials composed of fluorinated-polymer/organo-modified nanocarbon is generally difficult, we confirmed the formation, via melt-compounding, using atomic force microscopy and wide-angle X-ray diffraction. Even though the polymer matrix/nanodiamond hybrid has remarkable aggregation properties, a well-dispersed state was achieved because of improvement in wettability obtained through surface modification of filler. The resulting nanohybrid demonstrates transparency, increased thermal degradation temperature, and enhanced mechanical properties, which seem to be derived from the nucleation effect caused by the adsorption of the terminal polymer chain onto the organic modifier.

  19. Chitin Nanofiber Transparent Paper for Flexible Green Electronics.

    PubMed

    Jin, Jungho; Lee, Daewon; Im, Hyeon-Gyun; Han, Yun Cheol; Jeong, Eun Gyo; Rolandi, Marco; Choi, Kyung Cheol; Bae, Byeong-Soo

    2016-07-01

    A transparent paper made of chitin nanofibers (ChNF) is introduced and its utilization as a substrate for flexible organic light-emitting diodes is demonstrated. Given its promising macroscopic properties, biofriendly characteristics, and availability of the raw material, the utilization of the ChNF transparent paper as a structural platform for flexible green electronics is envisaged.

  20. Transparency and Opacity: Levinasian Reflections on Accountability in Australian Schooling

    ERIC Educational Resources Information Center

    Sellar, Sam

    2015-01-01

    This article draws on the philosophy of Emmanuel Levinas to consider, from an ethical perspective, the current transparency and accountability agenda in Australian schooling. It focuses on the case of the "My School" website and the argument that transparent publication of comparative performance data via the website provides a basis for…

  1. Transparency in the ePortfolio Creation Process

    ERIC Educational Resources Information Center

    Jones, Stephanie A.; Downs, Elizabeth; Jenkins, Stephen J.

    2015-01-01

    This paper presents the findings of a study examining the effect of transparency on the ePortfolio creation process. The purpose of the study was to examine whether increased awareness of other students' ePortfolios through the implementation of transparency and peer review would positively affect the quality of performance of school library media…

  2. Variable-transparency wall regulates temperatures of structures

    NASA Technical Reports Server (NTRS)

    Osullivan, W. J., Jr.

    1964-01-01

    An effective temperature regulating wall consists of one layer /e.g., one of the paraffins/ relatively opaque to thermal radiation in the solid state and transparent to it in the molten state and placed between two transparent layers. A mirror coating is applied to back layer.

  3. Enhancing Learning Capabilities by Providing Transparency in Business Simulators.

    ERIC Educational Resources Information Center

    Groessler, Andreas; Maier, Frank H.; Milling, Peter M.

    2000-01-01

    Discussion of computer-based simulations for business focuses on adding transparency through system dynamics techniques. Describes an experiment that evaluated the relevance and the effects of providing structural transparency to users of business simulators and suggests further research. (Contains 51 references.) (LRW)

  4. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  5. Conductivity and Transparency in Amorphous In-Zn-O Transparent Conductors

    SciTech Connect

    Perkins, J. D.; van Hest, M. F. A. M.; Taylor, M. P.; Ginley, D. S.

    2009-01-01

    Amorphous indium zinc oxide (a-IZO) is an increasingly important material both as a transparent conductor or semiconductor in transparent electronics and as an archetype amorphous electronic mixed metal oxide in itself. Here, a co-sputtering composition spread combinatorial approach was used to examine the conductivity and optical transparency in a-IZO thin films as a function of both In : Zn metals stoichiometry and the amount of oxygen added to the argon sputter gas. For optimising the conductivity, the percent oxygen in the sputter gas and the metals composition were found to have a strongly coupled effect. In particular, a-IZO films with conductivity {sigma} > 2000 S/cm can be grown for a broad range of metals compositions, In content from {approx}60 to {approx}85 cation%, as long as the corresponding optimal oxygen level is used in the deposition. The amount of oxygen required increases with increasing indium content. When too much oxygen is used, the conductivity is reduced due to a decreased carrier concentration whereas when too little oxygen is used, the conductivity is reduced due to decreased electron mobility. Concurrent with the decrease in electron mobility, there is increasing optical absorption from 400 nm to 1000 nm which renders the oxygen deficient a IZO samples grey.

  6. Influence of the "second gap" on the transparency of transparent conducting oxides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    2016-05-01

    Transparent conducting oxides (TCOs) are essential to many technologies. These materials are doped (n- or p-type) oxides with a large enough band gap (ideally >3 eV) to ensure transparency. However, the high carrier concentration present in TCOs leads additionally to the possibility for optical transitions from the occupied conduction bands to higher states for n-type materials and from lower states to the unoccupied valence bands for p-type TCOs. The "second gap" formed by these transitions might limit transparency, and a large second gap has been sometimes proposed as a design criteria for high performance TCOs. Here, we study the influence of this second gap on optical absorption using ab initio computations for several well-known n- and p-type TCOs. Our work demonstrates that most known n-type TCOs do not suffer from second gap absorption in the visible even at very high carrier concentrations. On the contrary, p-type oxides show lowering of their optical transmission for high carrier concentrations due to second gap effects. We link this dissimilarity to the different chemistries involved in n- versus typical p-type TCOs. Quantitatively, we show that second gap effects lead to only moderate loss of transmission (even in p-type TCOs) and suggest that a wide second gap, while beneficial, should not be considered as a needed criteria for a working TCO.

  7. ALON optical ceramic transparencies for window, dome, and transparent armor applications

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Twedt, Rich; Balasubramanian, Sreeram; Sastri, Suri

    2011-06-01

    Surmet continues to invest in and expand its manufacturing capability for ALON® Optical Ceramic, as the market demand for this material increases. The biggest demand and opportunity continues to be in the area of transparent armor, however, the market for sensor domes and windows, made from ALON, continues to grow at an impressive rate as well. ALON® Transparent Armor's unsurpassed ballistic performance, combined with the robustness of ALON's manufacturing process and reproducibly high material quality make ALON the leading candidate for many future armor systems. Recent results for ALON armor windows will be presented. Advances being made in Surmet's production capability to support the very large quantities of material required by the transparent armor market also benefit the sensor market. Improvements in quality, quantity and manufacturability of ALON material, combined with improvements being made in optical quality, ensure a robust supply of high quality material for high volume window and dome applications. Recent advancement in ALON® window and dome blanks, as well as in optical fabrication will be presented.

  8. Nonperiodic metallic gratings transparent for broadband terahertz waves

    NASA Astrophysics Data System (ADS)

    Ren, Xiao-Ping; Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Xu, Di-Hu; Zhou, Yu; Wang, Mu

    2015-01-01

    In this work, we demonstrate both theoretically and experimentally that nonperiodic metallic gratings can become transparent for broadband terahertz waves. It is shown that broadband high transmission appears in aperiodic metallic gratings (including quasiperiodic and disordered ones), which originates from the nonresonant excitations in the grating system. Quasiperiodic and disordered metallic gratings effectively weaken and even eliminate Wood's anomalies, which are the diffraction-related characters of periodic gratings. Consequently, both the transparence bandwidth and transmission efficiency are significantly increased due to the structural aperiodicity. An optimal condition is also achieved for broadband high transparency in aperiodic metallic gratings. Experimental measurements at the terahertz regime reasonably agree with both analytical analysis and numerical simulations. Furthermore, we show that for a specific light source, for example, a line source, a corresponding nonperiodic transparent grating can be also designed. We expect that our findings can be applied for transparent conducting panels, perfect white-beam polarizers, antireflective conducting solar cells, and beyond.

  9. Semantic transparency and masked morphological priming: An ERP investigation

    PubMed Central

    Morris, Joanna; Frank, Tiffany; Grainger, Jonathan; Holcomb, Phillip J.

    2009-01-01

    The role of semantics in the segmentation of morphologically complex words was examined using event-related potentials (ERPs) recorded to target words primed by semantically transparent (hunter–hunt,) opaque (corner–corn), and orthographically related (scandal–scan) masked primes. Behavioral data showed that only transparent items gave rise to priming. The ERP data showed both N250 and the N400 effects with transparent items generating greater priming than orthographic or opaque. Furthermore, priming effects across conditions revealed the existence of a significant linear trend, with transparent items showing the greatest effects and orthographic items the smallest, suggesting that these priming effects vary as a function of morphological structure and semantic transparency. The results are discussed in terms of a model of morphological processing. PMID:17498223

  10. Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO₂ nanoparticles for a high-performance and semi-transparent supercapacitor electrode.

    PubMed

    Rodríguez-Moreno, Jorge; Navarrete-Astorga, Elena; Dalchiele, Enrique A; Schrebler, Ricardo; Ramos-Barrado, José R; Martín, Francisco

    2014-05-30

    Hybrid nano-architectures with high electrochemical performance for supercapacitors have been designed by growing hierarchical ZnO NRs@CuS@PEDOT@MnO2 core@shell heterostructured nanorod arrays on ITO/glass substrates. This hybrid nano-structured electrode exhibits excellent electrochemical performance, with a high specific areal capacitance of 19.85 mF cm(-2), good rate capability, cycling stability and diffused coloured transparency.

  11. Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO₂ nanoparticles for a high-performance and semi-transparent supercapacitor electrode.

    PubMed

    Rodríguez-Moreno, Jorge; Navarrete-Astorga, Elena; Dalchiele, Enrique A; Schrebler, Ricardo; Ramos-Barrado, José R; Martín, Francisco

    2014-05-30

    Hybrid nano-architectures with high electrochemical performance for supercapacitors have been designed by growing hierarchical ZnO NRs@CuS@PEDOT@MnO2 core@shell heterostructured nanorod arrays on ITO/glass substrates. This hybrid nano-structured electrode exhibits excellent electrochemical performance, with a high specific areal capacitance of 19.85 mF cm(-2), good rate capability, cycling stability and diffused coloured transparency. PMID:24756158

  12. Hybrid Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  13. "On Cloud Nine" and "On All Fours": Which Is More Transparent? Elements in EFL Learners' Transparency Assumptions

    ERIC Educational Resources Information Center

    Lin, Crystal Jia-yi

    2015-01-01

    Idiom transparency refers to how speakers think the meaning of the individual words contributes to the figurative meaning of an idiom as a whole (Gibbs, Nayak, & Cutting, 1989). However, it is not clear how speakers or language learners form their assumptions about an idiom's transparency level. This study set out to discover whether there are…

  14. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.

    PubMed

    Aulin, Christian; Salazar-Alvarez, German; Lindström, Tom

    2012-10-21

    A novel, technically and economically benign procedure to combine vermiculite nanoplatelets with nanocellulose fibre dispersions into functional biohybrid films is presented. Nanocellulose fibres of 20 nm diameters and several micrometers in length are mixed with high aspect ratio exfoliated vermiculite nanoplatelets through high-pressure homogenization. The resulting hybrid films obtained after solvent evaporation are stiff (tensile modulus of 17.3 GPa), strong (strength up to 257 MPa), and transparent. Scanning electron microscopy (SEM) shows that the hybrid films consist of stratified nacre-like layers with a homogenous distribution of nanoplatelets within the nanocellulose matrix. The oxygen barrier properties of the biohybrid films outperform commercial packaging materials and pure nanocellulose films showing an oxygen permeability of 0.07 cm(3) μm m(-2) d(-1) kPa(-1) at 50% relative humidity. The oxygen permeability of the hybrid films can be tuned by adjusting the composition of the films. Furthermore, the water vapor barrier properties of the biohybrid films were also significantly improved by the addition of nanoclay. The unique combination of excellent oxygen barrier behavior and optical transparency suggests the potential of these biohybrid materials as an alternative in flexible packaging of oxygen sensitive devices such as thin-film transistors or organic light-emitting diode displays, gas storage applications and as barrier coatings/laminations in large volume packaging applications.

  15. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability

    NASA Astrophysics Data System (ADS)

    Aulin, Christian; Salazar-Alvarez, German; Lindström, Tom

    2012-09-01

    A novel, technically and economically benign procedure to combine vermiculite nanoplatelets with nanocellulose fibre dispersions into functional biohybrid films is presented. Nanocellulose fibres of 20 nm diameters and several micrometers in length are mixed with high aspect ratio exfoliated vermiculite nanoplatelets through high-pressure homogenization. The resulting hybrid films obtained after solvent evaporation are stiff (tensile modulus of 17.3 GPa), strong (strength up to 257 MPa), and transparent. Scanning electron microscopy (SEM) shows that the hybrid films consist of stratified nacre-like layers with a homogenous distribution of nanoplatelets within the nanocellulose matrix. The oxygen barrier properties of the biohybrid films outperform commercial packaging materials and pure nanocellulose films showing an oxygen permeability of 0.07 cm3 μm m-2 d-1 kPa-1 at 50% relative humidity. The oxygen permeability of the hybrid films can be tuned by adjusting the composition of the films. Furthermore, the water vapor barrier properties of the biohybrid films were also significantly improved by the addition of nanoclay. The unique combination of excellent oxygen barrier behavior and optical transparency suggests the potential of these biohybrid materials as an alternative in flexible packaging of oxygen sensitive devices such as thin-film transistors or organic light-emitting diode displays, gas storage applications and as barrier coatings/laminations in large volume packaging applications.

  16. [To Protect Corneal Transparency against Diseases].

    PubMed

    Usui, Tomohiko

    2016-03-01

    To protect corneal transparency, we tried to develop a new therapeutic strategy for corneal neovascularization, corneal scar, and TGFBI-related corneal dystrophy using nucleic acid drug. 1. The expression of angiopietin-like protein 2 (Angptl2) markedly increased in the neovascularized corneas compared to the normal cornea, and Angtpl2 was(a potent inducer of inflammatory corneal neovascularization. We have produced a single-stranded proline-modified short hairpin anti-Angptl2 ribonucleric acid interference (RNAi) molecule that is carried in a lipid nanoparticle for topical application. We have found this agent can penetrate all layers of the cornea. Angptl2 mRNA expression and corneal neovascularization were inhibited in a mouse alkari injury model by topical application of this agent. Thus, this modified RNAi agent is a new topical formulation for use against corneal neovascularization and scar. 2. Human umbilical vein endothelial cells (HUVECs) were cultured with human corneal keratocytes under serum-free conditions. We performed microarray gene-expression analysis in the coculture system and selected angiopoietin-like protein 7 (Angptl7). In vivo, intrastromal injections of an anti-Angptl7 RNAi agent into the avascular corneal stroma of mice resulted in the growth of blood vessels. Further, we examined the effects of Angptl7 on corneal nerves using culture rat trigeminal cells and this molecule had neurotrophic property on the cornea. Thus, Angpt17 is a unique molecule, which contain its bilateral character (anti-angiogenic and neurotrophic) in the cornea; an agonistic nucleic acid drug for Angptl7 may be a new therapeutic tool for protecting corneal transparency. 3. We examined local gene editing for TGFBI-related corneal dystrophy using CRISPR-Cas9 mediated homology directed repair (HDR). Cultured corneal keratocytes were obtained from a patient of R124H granular dystrophy. The R124H gene arrangement was corrected by a tranfection of guide RNA and HDR repair

  17. Physical impairment aware transparent optical networks

    NASA Astrophysics Data System (ADS)

    Antona, Jean-Christophe; Morea, Annalisa; Zami, Thierry; Leplingard, Florence

    2009-11-01

    As illustrated by optical fiber and optical amplification, optical telecommunications have appeared for the last ten years as one of the most promising candidates to increase the transmission capacities. More recently, the concept of optical transparency has been investigated and introduced: it consists of the optical routing of Wavelength Division Multiplexed (WDM) channels without systematic optoelectronic processing at nodes, as long as propagation impairments remain acceptable [1]. This allows achieving less power-consuming, more scalable and flexible networks, and today partial optical transparency has become a reality in deployed systems. However, because of the evolution of traffic features, optical networks are facing new challenges such as demand for higher transmitted capacity, further upgradeability, and more automation. Making all these evolutions compliant on the same current network infrastructure with a minimum of upgrades is one of the main issues for equipment vendors and operators. Hence, an automatic and efficient management of the network needs a control plan aware of the expected Quality of Transmission (QoT) of the connections to set-up with respect to numerous parameters such as: the services demanded by the customers in terms of protection/restoration; the modulation rate and format of the connection under test and also of its adjacent WDM channels; the engineering rules of the network elements traversed with an accurate knowledge of the associated physical impairments. Whatever the method and/or the technology used to collect this information, the issue about its accuracy is one of the main concerns of the network system vendors, because an inaccurate knowledge could yield a sub-optimal dimensioning and so additional costs when installing the network in the field. Previous studies [1], [2] illustrated the impact of this knowledge accuracy on the ability to predict the connection feasibility. After describing usual methods to build

  18. Hybrid Simulator

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  19. 78 FR 57409 - U.S. Extractive Industries Transparency Initiative Public Outreach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... U.S. Extractive Industries Transparency Initiative Public Outreach AGENCY: Office of the Secretary.... Extractive Industries Transparency Initiative (USEITI) candidacy application. By this notice, Interior is... announced the United States' commitment to participate in the Extractive Industries Transparency...

  20. Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Mun, Seongchoel; Min, Seung-Ki; Kim, Hyun Chan; Im, Jongbeom; Geddis, Demetris L.; Kim, Jaehwan

    2015-04-01

    Inorganic-organic hybrid composite has attracted as its combined synergistic properties. Cellulose based inorganicorganic hybrid composite was fabricated with semiconductive nanomaterials which has functionality of nanomaterial and biocompatibility piezoelectricity, high transparency and flexibility of cellulose electro active paper namely EAPap. ZnO is providing semiconductive functionality to EAPap for hybrid nanocomposite by simple chemical reaction. Cellulose- ZnO hybrid nanocomposite (CEZOHN) demonstrates novel electrical, photoelectrical and electromechanical behaviors. This paper deals with methods to improve electromechanical property of CEZOHN. The fabrication process is introduced briefly, charging mechanism and evaluation is studied with measured piezoelectric constant. And its candidate application will be discussed such as artificial muscle, energy harvester, strain sensor, flexible electrical device.

  1. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  2. Microprocessing of glass by hybrid laser processing

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Obata, Kotaro; Midorikawa, Katsumi; Hong, Ming Hui; Wu, Ding J.; Wong, L. L.; Lu, Yongfeng; Chong, Tow Chong

    2002-09-01

    Hybrid laser processing for precision microfabrication of glass materials, in which the interaction of a conventional pulsed laser beam and another medium on the material surface leads to effective ablation and modification, is reviewed. The main role of the medium is to produce strong absorption of the nanosecond laser beam by the materials. Simultaneous irradiation of the vacuum ultraviolet (VUV)laser beam, which possesses extremely small laser fluence, with the ultraviolet (UV) laser greatly improves the ablation quality and modification efficiency for fused (VUV-UV multiwavelength excitation processing). Metal plasma generated by the laser beam effectively for assists high- quality ablation of transparent materials, resulting in microstructuring, cutting, color marking, printing and selective metallization of glass materials (laser-induced plasma-assisted ablation (LIPAA)). The detailed discussion described in this paper includes the ablation mechanism of hybrid laser processing.

  3. Hybrid laser processing for microfabrication of glass

    NASA Astrophysics Data System (ADS)

    Sugioka, K.; Obata, K.; Hong, M. H.; Wu, D. J.; Wong, L. L.; Lu, Y. F.; Chong, T. C.; Midorikawa, K.

    Hybrid laser processing for the precision microfabrication of glass materials, in which the interaction of a conventional pulsed laser beam and a medium on the material surface leads to effective ablation and modification, is reviewed. A major role of the medium is to produce strong absorption of the conventional laser beam by the material. Simultaneous irradiation by a vacuum ultraviolet (VUV) laser beam that possesses an extremely small laser fluence and an ultraviolet (UV) laser greatly improves the ablation quality and modification efficiency for fused silica (VUV-UV multiwavelength excitation process). The metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials by the same laser beam, resulting in microstructuring, cutting, color marking, printing, and selective metallization of glass materials (laser-induced plasma-assisted ablation (LIPAA)). The detailed discussion presented here includes the ablation mechanism of hybrid laser processing.

  4. Verification and transparency in future arms control

    SciTech Connect

    Pilat, J.F.

    1996-09-01

    Verification`s importance has changed dramatically over time, although it always has been in the forefront of arms control. The goals and measures of verification and the criteria for success have changed with the times as well, reflecting such factors as the centrality of the prospective agreement to East-West relations during the Cold War, the state of relations between the United States and the Soviet Union, and the technologies available for monitoring. Verification`s role may be declining in the post-Cold War period. The prospects for such a development will depend, first and foremost, on the high costs of traditional arms control, especially those associated with requirements for verification. Moreover, the growing interest in informal, or non-negotiated arms control does not allow for verification provisions by the very nature of these arrangements. Multilateral agreements are also becoming more prominent and argue against highly effective verification measures, in part because of fears of promoting proliferation by opening sensitive facilities to inspectors from potential proliferant states. As a result, it is likely that transparency and confidence-building measures will achieve greater prominence, both as supplements to and substitutes for traditional verification. Such measures are not panaceas and do not offer all that we came to expect from verification during the Cold war. But they may be the best possible means to deal with current problems of arms reductions and restraints at acceptable levels of expenditure.

  5. Transparent Conveyor of Dielectric Liquids or Particles

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, James G.

    2009-01-01

    The concept of a transparent conveyor of small loose dielectric parti cles or small amounts of dielectric liquids has emerged as an outgro wth of an effort to develop efficient, reliable means of automated re moval of dust from solar cells and from windows of optical instrumen ts. This concept is based on the previously reported concept of an e lectrodynamic screen, according to which a grid-like electric field is established on and near a surface and is moved along the surface p erpendicularly to the grid lines. The resulting electrodynamic force s on loose dielectric particles or dielectric liquid drops in the vic inity would move the particles or drops along the surface. In the or iginal dust-removal application, dust particles would thus be swept out of the affected window area. Other potential applications may occ ur in nanotechnology -- for example, involving mixing of two or more fluids and/or nanoscale particles under optical illumination and/or optical observation.

  6. Transparent conductor-Si pillars heterojunction photodetector

    SciTech Connect

    Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang

    2014-08-14

    We report a high-performing heterojunction photodetector by enhanced surface effects. Periodically, patterned Si substrates were used to enlarge the photo-reactive regions and yield proportionally improved photo-responses. An optically transparent indium-tin-oxide (ITO) was deposited on a Si substrate and spontaneously formed an ITO/Si heterojunction. Due to an electrical conductive ITO film, ITO/Si heterojunction device can be operated at zero-bias, which effectively suppresses the dark current, resulting in better performances than those by a positive or a negative bias operation. This zero-bias operating heterojunction device exhibits a short response time (∼ 22.5 ms) due to the physical reaction to the incident light. We revealed that the location of the space charge region (SCR) is crucial for a specific photon-wavelength response. The SCR space has the highest collection efficiency of the photo-generated carriers. The photo-response can be maximized when we design the photodetector by superposing the SCR space over a corresponding photon-absorption length. The surface enhanced Si pillar devices significantly improved the photo-responses ratios from that of a planar Si device. According to this design scheme, a high photo-response ratio of 5560% was achieved at a wavelength of 600 nm. This surfaced-enhanced heterojunction design scheme would be a promising approach for various photoelectric applications.

  7. Highly transparent light-harvesting window film.

    PubMed

    Cocilovo, Byron; Hashimura, Aki; Tweet, Douglas J; Voutsas, Tolis; Norwood, Robert A

    2015-10-20

    We have simulated unique textured window films that capture solar radiation without compromising the window's transparency by scattering infrared light toward photovoltaic strips located at the edges of the window. These films are ideal for powering electrochromic glass, which is difficult to install as each window requires its own power source. Our most promising design consists of an embedded array of 35° cones coated with a five-layer SiO2-Ag stack that was simulated to direct 1.4% of the incident light toward the edges and generate 1 W of power under a collimated 1000  W/m2 AM1.5G source at 60° and an average of 0.5 W over a full year when applied to a 1  m×1  m window. The internal visible transmittance of the window with the applied film is 95% at normal incidence, and remains above 85% for viewing angles up to 60°. The haze is 0.6% at normal incidence and 3.9% at 60°. PMID:26560389

  8. Transparent Electrode for Si Heterojunction Photoelectric Devices.

    PubMed

    Kumar, M Melvin David; Kim, Hyunki; Kim, Joondong

    2016-05-01

    The transparent conductive oxide layers are of great interest in recent researches because of their tunable properties which avail them to be used in varieties of applications. The important and most widely used TCO materials such as ITO and AZO films were prepared with three different layer thicknesses using DC sputtering system. The structural, optical and electrical characteristics of both ITO and AZO samples were analyzed and compared to reveal thickness dependent tunable properties of TCO materials. The maximum transmittance of 99.5% was obtained for AZO films at 600-700 nm wavelength range. The resistivity of ITO films was 200 times lesser than that of AZO films. The internal and external quantum efficiencies of ITO devices increased with increasing layer thickness whereas this situation was just opposite in case of AZO devices. The optical and electrical properties of ITO samples were found easily adjustable by changing layer thickness as compared to AZO samples. This study explores the strong association between the layer thickness and the properties of TCO films. This would be useful to extend the applications boundary of TCO materials. PMID:27483858

  9. Transparency-based microplates for fluorescence quantification.

    PubMed

    Cheong, Brandon Huey-Ping; Diep, Vu; Ng, Tuck Wah; Liew, Oi Wah

    2012-03-01

    Microplates for use in resource-limited laboratories should ideally not require processes that involve substantial large-scale production in order to be viable. We describe and demonstrate here an approach of using a silicone sheet with holes, conveniently cut out precisely using an inexpensive cutting plotter to correspond with regions where liquid is to be dispensed, and attaching it to a transparency to create very thin well arrays. With this, the contact angle hysteresis behavior of liquid could be harnessed to produce taller drop shapes so that the fiber probe used could read in the emitted light more effectively. Experimentation conducted revealed fluorescence measurements that were significantly more sensitive than standard microplates, notwithstanding that smaller volumes of liquid were needed. This was achieved using both the fiber optic and imaging evaluation modes. The two methods investigated, one with a lid placed and one without, showed the latter to produce marginally more sensitive readings as opposed to improved immunity from the environment with the former. These favorable measurement characteristics were found to be achievable with an estimated production cost of AU $0.40 and fabrication times of 3.5 min (96 wells) and 6.5 min (384 wells) per plate. PMID:22266206

  10. Transparency and Coherence in rf SQUID Metamaterials

    NASA Astrophysics Data System (ADS)

    Anlage, Steven; Trepanier, Melissa; Zhang, Daimeng

    We have developed active metamaterials capable of quickly tuning their electrical and magnetic responses over a wide frequency range. These metamaterials are based on superconducting elements to form low loss, physically and electrically small, highly tunable structures for fundamental studies of extraordinarily nonlinear media. The meta-atoms are rf superconducting quantum interference devices (SQUIDs) that incorporate the Josephson effect. RF SQUIDs have an inductance which is strongly tunable with dc and rf magnetic fields and currents. The rf SQUID metamaterial is a richly nonlinear effective medium introducing qualitatively new macroscopic quantum phenomena into the metamaterials community, namely magnetic flux quantization and the Josephson effect. The coherent oscillation of the meta-atoms is strongly sensitive to the environment and measurement conditions, and we have developed several strategies to improve the coherence experimentally by exploiting ideas from nonlinear dynamics. The metamaterials also display a unique form of transparency whose development can be manipulated through multiple parametric dependences. We discuss these qualitatively new metamaterial phenomena. This work is supported by the NSF-GOALI and OISE Programs through Grant No. ECCS-1158644 and the Center for Nanophysics and Advanced Materials (CNAM).

  11. Adaptive lenses using transparent dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger; Clarke, David

    2013-03-01

    Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.

  12. Relativistic Transparency Experiments at the Trident Laser

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Palaniyappan, S.; Gautier, D. C.; Kim, Y. H.; Clark, D. D.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Herrmann, H. W.

    2013-10-01

    With near-diffraction-limited irradiance of 3 × 1020 W/cm2 on target and prelase contrast better than 10-9, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many uC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work has been performed under the auspices of the US DOE contract number DE-AC52-06NA25396.

  13. 2011 Annual Health Physics Report for the HEU transparency Program

    SciTech Connect

    Radev, R

    2012-04-30

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoring visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.

  14. 2009 Annual Health Physics Report for the HEU Transparency Program

    SciTech Connect

    Radev, R

    2010-04-14

    During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.

  15. Replica mold for nanoimprint lithography from a novel hybrid resin.

    PubMed

    Lee, Bong Kuk; Hong, Lan-Young; Lee, Hea Yeon; Kim, Dong-Pyo; Kawai, Tomoji

    2009-10-01

    The use of durable replica molds with high feature resolution has been proposed as an inexpensive and convenient route for manufacturing nanostructured materials. A simple and fast duplication method, involving the use of a master mold to create durable polymer replicas as imprinting molds, has been demonstrated using both UV- and thermal nanoimprinting lithography (NIL). To obtain a high-durability replicating material, a dual UV/thermal-curable, organic-inorganic hybrid resin was synthesized using a sol-gel-based combinatorial method. The cross-linked hybrid resin exhibited high transparency to UV light and resistance to organic solvents. Molds made of this material showed good mechanical properties (Young's modulus=1.76 GPa) and gas permeability. The low viscosity of the hybrid resin (approximately 29 cP) allowed it to be easily transferred to relief nanostructures on transparent glass substrates using UV-NIL at room temperature and low pressure (0.2 MPa) over a relatively short time (80 s). A low surface energy release agent was successfully coated onto the hybrid mold surface without destroying the imprinted nanostructures, even after O2 plasma treatment. Nanostructures with feature sizes down to 80 nm were successfully reproduced using these molds in both UV- and thermal-NIL processes. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable collapse or contamination of the replica surface was observed. These results indicate that the hybrid molds could tolerate repeated UV- and thermal-NIL processes.

  16. Organic devices based on nickel nanowires transparent electrode

    PubMed Central

    Kim, Jeongmo; da Silva, Wilson Jose; bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed. PMID:26804335

  17. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  18. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  19. Hybridized tetraquarks

    NASA Astrophysics Data System (ADS)

    Esposito, A.; Pilloni, A.; Polosa, A. D.

    2016-07-01

    We propose a new interpretation of the neutral and charged X , Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0 π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X , Z particles. Considerations on a state with the same quantum numbers as the X (5568) are also made.

  20. Bonding III-V material to SOI with transparent and conductive ZnO film at low temperature.

    PubMed

    Huang, Xinnan; Gao, Yonghao; Xu, Xingsheng

    2014-06-16

    A procedure of bonding III-V material to SOI at low temperature using conductive and transparent adhesive ZnO as intermediate layer is demonstrated. Bonding layer thickness of less than 100 nm was achieved in our experiment that guaranteed good light coupling efficiency between III-V and silicon. This bonding method showed good bonding strength with shear stress of 80 N/cm(2). The lowest resistance of the bonded samples was 48.9 Ω and the transmittance of the spin-coated ZnO layer was above 99%. This procedure is applicable for fabricating hybrid III-V/Si lasers. PMID:24977526

  1. Quasiparticle energies, excitonic effects, and dielectric screening in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Schleife, André

    Using the power of high-performance super computers, computational materials scientists nowadays employ highly accurate quantum-mechanical approaches to reliably predict materials properties. In particular, many-body perturbation theory is an excellent framework for performing theoretical spectroscopy on novel materials including transparent conducting oxides, since this framework accurately describes quasiparticle and excitonic effects.We recently used hybrid exchange-correlation functionals and an efficient implementation of the Bethe-Salpeter approach to investigate several important transparent conducting oxides. Despite their exceptional potential for applications in photovoltaics and optoelectronics their optical properties oftentimes remain poorly understood: Our calculations explain the optical spectrum of bixbyite indium oxide over a very large photon energy range, which allows us to discuss the importance of quasiparticle and excitonic effects at low photon energies around the absorption onset, but also for excitations up to 40 eV. We show that in this regime the energy dependence of the electronic self energy cannot be neglected. Furthermore, we investigated the influence of excitonic effects on optical absorption for lanthanum-aluminum oxide and hafnium oxide. Their complicated conduction band structures require an accurate description of quasiparticle energies and we find that for these strongly polar materials, a contribution of the lattice polarizability to dielectric screening needs to be taken into account. We discuss how this affects the electron-hole interaction and find a strong influence on excitonic effects.The deep understanding of electronic excitations that can be obtained using these modern first-principles techniques, eventually will allow for computational materials design, e.g. of band gaps, densities of states, and optical properties of transparent conducting oxides and other materials with societally important applications.

  2. W-doped anatase TiO{sub 2} transparent conductive oxide films: Theory and experiment

    SciTech Connect

    Chen Deming; Xu Gang; Miao Lei; Chen Lihua; Nakao, Setsuo; Jin, Ping

    2010-03-15

    W-doped anatase TiO{sub 2} films were deposited on glass substrate by magnetron cosputtering. The minimum resistivity, 1.5x10{sup -2} {Omega} cm, for Ti{sub 1-x}W{sub x}O{sub 2} film (x=0.063) was obtained. X-ray photoelectron spectroscopy analysis shows W incorporated in the Ti lattice position is mostly in the W{sup 6+} state. Theoretical calculations based upon the density-functional theory were applied to analyze the electronic structure and conducting mechanism. The strong hybridization of Ti 3d states with W 5d states is the dominate factor to cause the shifting in Fermi level into conduction band. Our results suggest that tungsten is a favorable dopant to form TiO{sub 2}-based transparent conducting oxide materials.

  3. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  4. THE FISSILE MATERIAL TRANSPARENCY TECHNOLOGY DEMONSTRATION (FMTTD)

    SciTech Connect

    L. R. AVENS; J. E. DOYLE; M. F. MULLEN

    2001-06-01

    The United States Department of Defense, Defense Threat Reduction Agency Cooperative Threat Reduction program is supporting the construction of a fissile material storage facility at Mayak in the Russian Federation. Up to 34 tons of weapon-grade plutonium will be stored in the facility to await disposition. In order to meet arms control and nonproliferation objectives, the U.S. Congress has requested assurances that the nuclear material stored at the Mayak facility is derived from dismantled nuclear weapons. The usual approach to identify the origin or state of radioactive materials is to measure the intensity and energy of neutron and gamma radiation emitted. However, the Russian Federation considers such details as isotopic composition and mass to be classified. The solution arrived at by a DOE multilaboratory team is to place the radioactive specimen, the gamma and neutron counters, and all the computational equipment behind an information barrier. In the Fissile Materials Transparency Technology Demonstration (FMTD), this equipment was configured and programmed to measure the following six attributes: isotopic ratio, threshold mass, absence of oxide, presence of plutonium, age, and symmetry. On August 16, 2000, at Los Alamos National Laboratory, a delegation of Russian officials observed the successful demonstration of this new technology (called an Attribute Measurement System with Information Barrier, or AMS/IB). The scientists were able to demonstrate without releasing classified information that the nuclear material sample being tested (a nuclear weapon pit) had the declared weapon-grade plutonium characteristics. Once fully developed, AMS/IB technology will protect sensitive information while providing the United States increased confidence that the mandated Russian fissile materials have been stored. Attribute measurement systems can play a role in a number of U.S.-Russian nuclear security regimes such as the Trilateral Initiative, the Plutonium

  5. How transparent are migraine clinical trials?

    PubMed Central

    Dufka, Faustine L.; Dworkin, Robert H.

    2014-01-01

    Transparency in research requires public access to unbiased information prior to trial initiation and openly available results upon study completion. The Repository of Registered Migraine Trials is a global snapshot of registered migraine clinical trials and scorecard of results availability via the peer-reviewed literature, registry databases, and gray literature. The 295 unique clinical trials identified employed 447 investigational agents, with 30% of 154 acute migraine trials and 11% of 141 migraine prophylaxis trials testing combinations of agents. The most frequently studied categories in acute migraine trials were triptans, nonsteroidal anti-inflammatory drugs, antiemetics, calcitonin gene-related peptide antagonists, and acetaminophen. Migraine prophylaxis trials frequently studied anticonvulsants, β-blockers, complementary/alternative therapies, antidepressants, and botulinum toxin. Overall, 237 trials were eligible for a results search. Of 163 trials completed at least 12 months earlier, 57% had peer-reviewed literature results, and registries/gray literature added another 13%. Using logistic regression analysis, studies with a sample size below the median of 141 subjects were significantly less likely to have results, but the dominant factor associated with availability of results was time since study completion. In unadjusted models, trials registered on ClinicalTrials.gov and trials with industry primary sponsorship were significantly more likely to have results. Recently completed trials rarely have publicly available results; 2 years after completion, the peer-reviewed literature contains results for fewer than 60% of completed migraine trials. To avoid bias, evidence-based therapy algorithms should consider factors affecting results availability. As negative trials are less likely to be published, special caution should be exercised before recommending a therapy with a high proportion of missing trial results. PMID:25194013

  6. Making hybrids of two-hybrid systems.

    PubMed

    Dagher, M C; Filhol-Cochet, O

    1997-05-01

    Two-hybrid systems are powerful tools to find new partners for a protein of interest. However, exchange of material between two-hybrid users has been handicapped by the various versions of two-hybrid systems available and by the widely accepted idea that they are not compatible. In the present paper we show that, contrary to the dogma, the most often used two-hybrid systems may be combined by either transformation or mating assays. The protocol to be followed in each case is provided. This will greatly increase the prospects of the growing network of interacting proteins, by reconciling the "two-hybrid systems" and the "interaction trap".

  7. Electron beam irradiated silver nanowires for a highly transparent heater

    PubMed Central

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-01-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters. PMID:26639760

  8. Designing transparent superamphiphobic coatings directed by carbon nanotubes.

    PubMed

    Zhu, Xiaotao; Zhang, Zhaozhu; Ren, Guina; Men, Xuehu; Ge, Bo; Zhou, Xiaoyan

    2014-05-01

    Creating surfaces with superamphiphobic property and optical transparency simultaneously would have fundamental and practical significance but has been proven extremely challenging. Herein, we develop a transparent superamphiphobic coating using carbon nanotubes (CNTs) as the template by a facile approach. CNTs enwrapped with SiO2 coating was produced by a sol-gel method and then sprayed onto the glass slides to form coatings. Subsequent thermal treatment and surface fluoration allowed the sprayed coating to exhibit enhanced transparency across a broad spectrum of ultraviolet and visible wavelengths and also display superrepellency toward water and a number of organic liquids, such as dodecane. The obtained transparent coating can sustain its superamphiphobicity even after thermal treatment at 400 °C. Separate experiment demonstrated that the CNTs-directed geometrical structure played a key role in establishing superamphiphobicity.

  9. Electron beam irradiated silver nanowires for a highly transparent heater

    NASA Astrophysics Data System (ADS)

    Hong, Chan-Hwa; Oh, Seung Kyu; Kim, Tae Kyoung; Cha, Yu-Jung; Kwak, Joon Seop; Shin, Jae-Heon; Ju, Byeong-Kwon; Cheong, Woo-Seok

    2015-12-01

    Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

  10. Tunable Transmission-Line Metamaterials Mimicking Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Feng, T. H.; Han, H. P.

    2016-11-01

    Tunable transmission-line (TL) metamaterials mimicking electromagnetically induced transparency (EIT) have been studied. Firstly, two types of tunable TL EIT-like metamaterial, based on the double split-ring resonator (DSRR) and single split-ring resonator (SSRR), were fabricated and their transmission properties carefully compared. The results showed that the transmittance maximum was almost invariable with shift of the transparency window for the tunable DSRR-based TL EIT-like metamaterial, but for the tunable SSRR-based TL EIT-like metamaterial, the transmittance maximum gradually diminished with shift of the transparency window toward the center of the absorption band. Moreover, the reason for these different transmission properties was explored, revealing that the reduction of the transmittance maximum of the transparency window for the tunable SSRR-based TL EIT-like metamaterial is mainly due to energy loss caused by the resistance of the loaded varactor diodes.

  11. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode

    ERIC Educational Resources Information Center

    DeAngelis, Thomas P.; Heineman, William R.

    1976-01-01

    Describes a unified experiment in which an optically transparent thin layer electrode is used to illustrate the techniques of thin layer electrochemistry, cyclic voltammetry, controlled potential coulometry, and spectroelectrochemistry. (MLH)

  12. Single-Wall Carbon Nanotubes as Transparent Electrodes for Photovoltaics

    SciTech Connect

    Weeks, C.; Peltola, J.; Levitsky, I.; Glatkowski, P.; van de Lagemaat, J.; Rumbles, G.; Barnes, T.; Coutts, T.

    2006-01-01

    Transparent and electrically conductive coatings and films have a variety of uses in the fast-growing field of optoelectronic applications. Transparent electrodes typically include semiconductive metal oxides such as indium tin oxide (ITO), and conducting polymers such as poly(3,4-ethylenedioxythiophene), doped and stabilized with poly(styrenesulfonate) (PEDOT/PSS). In recent years, Eikos, Inc. has conceived and developed technologies to deliver novel alternatives using single-wall carbon nanotubes (SWNT). These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. Additional benefits include ease of ambient processing and patterning capability. This paper reports our recent findings on achieving 2.6% and 1.4% efficiencies on nonoptimized organic photovoltaic cells employing SWNT as a transparent electrode.

  13. Tunable Transmission-Line Metamaterials Mimicking Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Feng, T. H.; Han, H. P.

    2016-08-01

    Tunable transmission-line (TL) metamaterials mimicking electromagnetically induced transparency (EIT) have been studied. Firstly, two types of tunable TL EIT-like metamaterial, based on the double split-ring resonator (DSRR) and single split-ring resonator (SSRR), were fabricated and their transmission properties carefully compared. The results showed that the transmittance maximum was almost invariable with shift of the transparency window for the tunable DSRR-based TL EIT-like metamaterial, but for the tunable SSRR-based TL EIT-like metamaterial, the transmittance maximum gradually diminished with shift of the transparency window toward the center of the absorption band. Moreover, the reason for these different transmission properties was explored, revealing that the reduction of the transmittance maximum of the transparency window for the tunable SSRR-based TL EIT-like metamaterial is mainly due to energy loss caused by the resistance of the loaded varactor diodes.

  14. Design of transparent cloaks with arbitrarily inner and outer boundaries

    NASA Astrophysics Data System (ADS)

    Mei, Zhong Lei; Niu, Tiao Ming; Bai, Jing; Cui, Tie Jun

    2010-06-01

    In this paper, the efficient transformation optics method has been utilized to design and analyze two-dimensional (2D) transparent cloaks, structures that can physically protect the devices inside but do not affect their electrical performances at all. The general and explicit expressions for the material parameters of the transformed space are derived. 2D transparent cloaks with arbitrarily conformal and nonconformal inner and outer boundaries and those working in gradually changing background and layered media are designed. Full-wave simulations combined with the Huygens' principle are applied to validate the transparency of the cloaks. The simulation results under different circumstances demonstrate that the proposed method is correct and efficient. The work introduced here makes important progress in the theoretical design of the transparent cloak and expands the application of the transformation optics method.

  15. Bichromatic electromagnetically induced transparency in hot atomic vapors

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Liao, Kai-Yu; Li, Jian-Feng; Du, Yan-Xiong; Zhang, Zhi-Ming; Zhu, Shi-Liang

    2013-05-01

    In a three-level Λ atomic system coupled by a symmetrical bichromatic laser field, a weak probe laser field shows multiple absorption peaks in the case of cold atoms. As for hot atomic vapors, we experimentally observe double symmetrical electromagnetically induced transparency windows instead of multiple absorption peaks. This abnormal spectrum is due to the Doppler averaging. The electromagnetically induced transparency windows observed here are useful for obtaining slow photons at different frequencies.

  16. A Transparent and Flexible Graphene-Piezoelectric Fiber Generator.

    PubMed

    Fuh, Yiin Kuen; Kuo, Chien Cheng; Huang, Zih Ming; Li, Shan Chien; Liu, En Rui

    2016-04-13

    Piezoelectric fiber-based generators are prepared by combining two distinctive materials - poly(vinlyidene fluoride) fibers and monolayer/bilayer graphene. Novelty lies in the replacement of opaque metal electrodes with transparent graphene electrodes which enable the graphene-piezoelectric fiber generator to exhibit high flexibility and transparency as well as a great performance with an achievable output of voltage/current about 2 V/200 nA.

  17. Property enhancement of optically transparent bionanofiber composites by acetylation

    NASA Astrophysics Data System (ADS)

    Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Ifuku, Shinsuke; Yano, Hiroyuki

    2006-12-01

    The authors studied acetylation of bacterial cellulose (BC) nanofibers to widen the applications of BC nanocomposites in optoelectronic devices. The slight acetylation of BC nanofibers significantly reduces the hygroscopicity of BC nanocomposites, while maintaining their high optical transparency and thermal stability. Furthermore, the degradation in optical transparency at elevated temperature (200°C) was significantly reduced by acetylation treatment. Therefore, the acetylation of bionanofibers has an extraordinary potential as treatment for property enhancement of bionanofiber composites.

  18. Transparent Cell for Protein Crystallization under Low Applied Voltage

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Ohnishi, Yuuki

    2011-04-01

    A transparent cell with the ability to apply a uniform internal electric field has been designed for protein crystallization. The parallel configuration of two plate electrodes coated with transparent conductive films provides a cell where the growth of protein crystals can be observed. In addition, the electrodes allow the formation of parallel electric fields in the protein solution, which can be applied at a very low voltage so that the electrolysis of the solution does not occur.

  19. Doubly curved nanofiber-reinforced optically transparent composites

    PubMed Central

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-01-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts. PMID:26552990

  20. A Transparent and Flexible Graphene-Piezoelectric Fiber Generator.

    PubMed

    Fuh, Yiin Kuen; Kuo, Chien Cheng; Huang, Zih Ming; Li, Shan Chien; Liu, En Rui

    2016-04-13

    Piezoelectric fiber-based generators are prepared by combining two distinctive materials - poly(vinlyidene fluoride) fibers and monolayer/bilayer graphene. Novelty lies in the replacement of opaque metal electrodes with transparent graphene electrodes which enable the graphene-piezoelectric fiber generator to exhibit high flexibility and transparency as well as a great performance with an achievable output of voltage/current about 2 V/200 nA. PMID:26929015

  1. Doubly curved nanofiber-reinforced optically transparent composites

    NASA Astrophysics Data System (ADS)

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-11-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts.

  2. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard Lee; Hollingsworth, Joel P.

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  3. Feasibility Study of Optically Transparent Microstrip Patch Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1997-01-01

    The paper presents a feasibility study on optically transparent patch antennas with microstrip line and probe feeds. The two antennas operate at 2.3 GHz and 19.5 GHz respectively. They are constructed from a thin sheet of clear polyester with an AgHT-8 optically transparent conductive coating. The experimental results show good radiation patterns and input impedance match. The antennas have potential applications in mobile wireless communications.

  4. Critical dimension measurement of transparent film layers by multispectral imaging.

    PubMed

    Kwon, Soonyang; Kim, Namyoon; Jo, Taeyong; Pahk, Heui Jae

    2014-07-14

    An optical microscopy system as a non-destructive method for measuring critical dimension (CD) is widely used for its stability and fastness. In case of transparent thin film measurement, it is hard to recognize the pattern under white light illumination due to its transparency and reflectance characteristics. In this paper, the optical measurement system using multispectral imaging for CD measurement of transparent thin film is introduced. The measurement system utilizes an Acousto-Optic Tunable Filter (AOTF) to illuminate the specimen with various monochromatic lights. The relationship between spectral reflectance and CD measurement are deduced from series of measurement experiments with two kinds of Indium Tin Oxide (ITO) patterned samples. When the difference of spectral reflectance between substrate and thin film layers is large enough to yield a large image intensity difference, the thin film layer can be distinguished from substrate, and it is possible to measure the CD of transparent thin films. This paper analyzes CD measurement of transparent thin film with reflectance theory and shows that the CD measurement of transparent thin film can be performed successfully with the proposed system within a certain wavelength range filtered by AOTF. PMID:25090550

  5. A reinterpretation of transparency perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-03-01

    Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics.

  6. Projection type transparent 3D display using active screen

    NASA Astrophysics Data System (ADS)

    Kamoshita, Hiroki; Yendo, Tomohiro

    2015-05-01

    Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.

  7. A reinterpretation of transparency perception in terms of gamut relativity.

    PubMed

    Vladusich, Tony

    2013-03-01

    Classical approaches to transparency perception assume that transparency constitutes a perceptual dimension corresponding to the physical dimension of transmittance. Here I present an alternative theory, termed gamut relativity, that naturally explains key aspects of transparency perception. Rather than being computed as values along a perceptual dimension corresponding to transmittance, gamut relativity postulates that transparency is built directly into the fabric of the visual system's representation of surface color. The theory, originally developed to explain properties of brightness and lightness perception, proposes how the relativity of the achromatic color gamut in a perceptual blackness-whiteness space underlies the representation of foreground and background surface layers. Whereas brightness and lightness perception were previously reanalyzed in terms of the relativity of the achromatic color gamut with respect to illumination level, transparency perception is here reinterpreted in terms of relativity with respect to physical transmittance. The relativity of the achromatic color gamut thus emerges as a fundamental computational principle underlying surface perception. A duality theorem relates the definition of transparency provided in gamut relativity with the classical definition underlying the physical blending models of computer graphics. PMID:23456117

  8. Intense field electron excitation in transparent materials

    NASA Astrophysics Data System (ADS)

    Modoran, Georgia C.

    The propagation of an intense laser through transparent materials can only be understood by considering a wide range of nonlinear effects and their simultaneous interaction. Electron plasma formation plays a crucial role and is the focus of this work. The mechanisms of the nonlinear ionization are not well understood. There are two proposed interactions that contribute to electron plasma formation: photoionization and avalanche ionization, but the individual contribution of each of these ionization processes is controversial. Keldysh theory has been proposed as a description of photoionization. Two models for avalanche ionization are used in the literature, but with different intensity dependence. We address and resolve these issues. In this thesis we present a spectrally resolved pump-probe experiment that directly measures the nonlinear ionization rates and plasma evolution in solid state media. Both pump and probe are derived from an 800 nm, 120 fs laser. The maximum ionization rates were obtained in sapphire (˜1.9x10 18 fs-1 ·cm-3), while in water (˜7.2x1017 fs-1 ·cm -3), fused silica (˜8.6x1017 fs -1 ·cm-3) and methanol (˜6.6x10 17 fs-1 ·cm-3) the ionization rates were slightly different. Our measured ionization rates are consistently larger that the theoretical rate given by Keldysh theory, suggesting that this theory does not correctly describe the photoionization process. We also present measurements that separate the two excitation processes and identify the role played by each in the ionization of media. The idea underneath these experiments is a very simple one: since the two ionization processes have different intensity dependence, the absorption of light in the medium should differ similarly. Therefore it should be possible to distinguish the two mechanisms by looking at the energy dependence of the absorption. From our result we find that avalanche and multiphoton ionization have varying relative contributions, depending on the band gap. For

  9. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability

    NASA Astrophysics Data System (ADS)

    Im, Hyeon-Gyun; Jin, Jungho; Ko, Ji-Hoon; Lee, Jaemin; Lee, Jung-Yong; Bae, Byeong-Soo

    2013-12-01

    We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices.We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices. Electronic supplementary information (ESI) available: Further characteristics of AgNW-GFRHybrimer films and thermal oxidation of AgNW on glass. See DOI: 10.1039/c3nr05348b

  10. Hybrid mimics and hybrid vigor in Arabidopsis

    PubMed Central

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  11. An in vitro comparison of metal and transparent matrices used for bonded class II resin composite restorations.

    PubMed

    Müllejans, Rolf; Badawi, M O F; Raab, W H M; Lang, H

    2003-01-01

    This study compared excess formation of direct bonded Class II restorations using different matrix systems-metal or transparent. Sixty freshly extracted, non-carious, posterior human teeth were used. In all of the teeth, standardized MOD-cavities were prepared with the gingivoproximal margins located 1.0-1.5 mm cervical to the cemento-enamel junction. The prepared teeth were randomly assigned to six groups. Half were restored using metal matrices and wooden wedges; the other half were restored using transparent matrices and reflective wedges. Three different material systems were used to fill the cavities: 1) a hybrid composite (Tetric) plus an adhesive bonding agent (Syntac Classic), 2) a flowable composite (Tetric Flow) plus Syntac Classic and 3) a compomer (Dyract AP) together with an adhesive bonding agent designed for compomers (Prime & Bond NT). After the specimens were preserved in saline solution, scanning electron microscopy (SEM) assessed the amount of overhang formation at the restoration margins. The data collected indicated the use of transparent matrices resulted in significantly higher amounts of excess material at the restoration margins compared with metal matrices. Moreover, there was no significant difference between the materials when the same matrix was used. All of the dental restorations examined displayed material overhang. Based on these findings, the authors concluded that the type of matrix exerts a major impact on overhang formation, with metal matrices resulting in significantly less excess material buildup.

  12. Near-infrared luminescent copolymerized hybrid materials built from tin nanoclusters and PMMA.

    PubMed

    Fan, Weiqiang; Feng, Jing; Song, Shuyan; Lei, Yongqian; Zhou, Liang; Zheng, Guoli; Dang, Song; Wang, Song; Zhang, Hongjie

    2010-10-01

    Novel near-infrared (NIR) luminescent copolymerized hybrid materials were prepared by covalently grafting and physically doping Ln complexes (Ln = Er, Sm, Yb, and Nd) into a copolymer matrix built from nanobuilding blocks. The structures of the obtained hybrid materials were investigated by Fourier transform infrared (FTIR) spectra, nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). In the photoluminescence studies, the hybrid materials showed characteristic NIR luminescence of corresponding Ln(3+) ions through intramolecular energy transfer from ligands to Ln(3+) ions. Transparent films of these materials can be easily prepared through spin-coating on indium tin oxide (ITO) glasses taking advantage of the matrix nature.

  13. Transparent Global Seismic Hazard and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  14. Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hao, Jiaming; Ye, Huapeng; Yeo, Swee Ping; Qiu, Min; Zouhdi, Said; Qiu, Cheng-Wei

    2013-03-01

    We propose a counter-intuitive mechanism of constructing an ultrathin broadband transparent device with two perfect blackbodies. By introducing hybridization of plasmon modes, resonant modes with different symmetries coexist in this system. A broadband transmission spectrum in the near infrared regime is achieved through controlling their coupling strengths, which is governed by the thickness of high refractive index layer. Meanwhile, the transparency bandwidth is found to be tunable in a large range by varying the geometric dimension. More significantly, from the point view of applications, the proposed method of achieving broadband transparency can perfectly tolerate the misalignment and asymmetry of periodic nanoparticles on the top and bottom, which is empowered by the unique dual of coupling-in and coupling-out processes within the pair of blackbodies. Moreover, roughness has little influence on its transmission performance. According to the coupled mode theory, the distinguished transmittance performance is physically interpreted by the radiative decay rate of the entire system. In addition to the feature of uniquely robust broadband transparency, such a ultrathin seamless nanostructure (in the presence of a uniform silver layer) also provides polarization-independent and angle-independent operations. Therefore, it may power up a wide spectrum of exciting applications in thin film protection, touch screen techniques, absorber-emitter transformation, etc.We propose a counter-intuitive mechanism of constructing an ultrathin broadband transparent device with two perfect blackbodies. By introducing hybridization of plasmon modes, resonant modes with different symmetries coexist in this system. A broadband transmission spectrum in the near infrared regime is achieved through controlling their coupling strengths, which is governed by the thickness of high refractive index layer. Meanwhile, the transparency bandwidth is found to be tunable in a large range by

  15. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    SciTech Connect

    Brian D'Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents an innovative low-cost approach to

  16. One-dimensional transport in hybrid metal-semiconductor nanotube systems

    NASA Astrophysics Data System (ADS)

    Gelin, M. F.; Bondarev, I. V.

    2016-03-01

    We develop an electron transport theory for the hybrid system of a semiconducting carbon nanotube that encapsulates a one-atom-thick metallic wire. The theory predicts Fano resonances in electron transport through the system, whereby the interaction of electrons on the wire with nanotube plasmon generated near fields blocks some of the wire transmission channels to open up the new coherent plasmon-mediated channel in the nanotube forbidden gap outside the wire transmission band. Such a channel makes the entire hybrid system transparent in the energy domain where neither wire nor nanotube is individually transparent. This effect can be used to control and optimize charge transfer in hybrid nanodevices built on metal-semiconductor nanotube systems.

  17. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors

    NASA Astrophysics Data System (ADS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-09-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT-graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT-graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene-CNT/Si solar cells reveal power conversion efficiencies up to 8.50%.

  18. Conveying the 3D Shape of Transparent Surfaces Via Texture

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Fuchs, Henry; Pizer, Stephen

    1997-01-01

    Transparency can be a useful device for depicting multiple overlapping surfaces in a single image. The challenge is to render the transparent surfaces in such a way that their three-dimensional shape can be readily understood and their depth distance from underlying structures clearly perceived. This paper describes our investigations into the use of sparsely-distributed discrete, opaque texture as an 'artistic device' for more explicitly indicating the relative depth of a transparent surface and for communicating the essential features of its 3D shape in an intuitively meaningful and minimally occluding way. The driving application for this work is the visualization of layered surfaces in radiation therapy treatment planning data, and the technique is illustrated on transparent isointensity surfaces of radiation dose. We describe the perceptual motivation and artistic inspiration for defining a stroke texture that is locally oriented in the direction of greatest normal curvature (and in which individual strokes are of a length proportional to the magnitude of the curvature in the direction they indicate), and discuss several alternative methods for applying this texture to isointensity surfaces defined in a volume. We propose an experimental paradigm for objectively measuring observers' ability to judge the shape and depth of a layered transparent surface, in the course of a task relevant to the needs of radiotherapy treatment planning, and use this paradigm to evaluate the practical effectiveness of our approach through a controlled observer experiment based on images generated from actual clinical data.

  19. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-01

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  20. Optical-magnetism-induced transparency in a metamaterial

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Zhang, Kun; Peng, Ru-Wen; Xiong, Xiang; Zhang, Wei; Huang, Xian-Rong; Wang, Mu

    2013-03-01

    In this paper, we theoretically demonstrate that electromagnetic transparency can be induced by optical magnetism in a metamaterial, which is composed of metamolecules. Each metamolecule consists of a metallic split-ring resonator, as one bright meta-atom (which is optically magnetic), and also a cut-wire pair, as one dark meta-atom (which is optically nonmagnetic). It is found that magnetic resonances occur at optical frequencies due to the local magnetic interaction between “bright” meta-atoms and “dark” meta-atoms; thereafter, a transparency window emerges upon the original absorption background. The phenomenon is similar to the electromagnetically induced transparency (EIT) in atomic three-level systems, and a microscopic picture is given to compare it with the EIT. Furthermore, low loss and slow light in this metamaterial have also been verified. The investigations may achieve potential applications on integrated optical circuits.

  1. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.

    2014-01-01

    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  2. TCO/Ag/TCO transparent electrodes for solar cells application

    NASA Astrophysics Data System (ADS)

    Boscarino, S.; Crupi, I.; Mirabella, S.; Simone, F.; Terrasi, A.

    2014-09-01

    Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the nature of the top and bottom TCOs, mainly due to the change in the reflectivity of the multilayers. Structural, electrical and optical properties are studied to optimize the structure for very thin transparent electrodes suitable for photovoltaic applications.

  3. Graphene-based tunable terahertz plasmon-induced transparency metamaterial.

    PubMed

    Zhao, Xiaolei; Yuan, Cai; Zhu, Lin; Yao, Jianquan

    2016-08-18

    A novel terahertz plasmon induced transparency (PIT) metamaterial structure consisting of single-layered graphene microstructures was proposed and numerically studied in this study. A pronounced transparency peak was obtained in the transmission spectrum, which resulted from the destructive interference between the graphene dipole and monopole antennas. Further investigations have shown that the spectral location and lineshape of the transparency peak can be dynamically controlled by tuning the Fermi level in graphene. Since the monopole antennas in our designed structure exist in a continuous form, a more convenient method for tunablity is available by applying a gate voltage compared to those structures with discrete graphene patterns. This work may open up new avenues for designing tunable terahertz functional devices and slow light devices. PMID:27500393

  4. 2007 Annual Health Physics Report for the HEU Transparency Program

    SciTech Connect

    Radev, R

    2008-04-09

    During the 2007 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection and technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2007, there were 172 person-trips that required dose monitoring of the U.S. monitors. Of the 172 person-trips, 160 person-trips were SMVs and 12 person-trips were Transparency Monitoring Office (TMO) trips. There were 12 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. There were two monitoring visits (source changes) that were back to back with 14 monitors. LLNL's Hazard Control Division laboratories provided the dosimetry services for the HEU Transparency monitors.

  5. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  6. Slow light with electromagnetically induced transparency in optical fibre

    NASA Astrophysics Data System (ADS)

    Muhamad Hatta, Agus; Kamli, Ali A.; Al-Hagan, Ola A.; Moiseev, Sergey A.

    2015-08-01

    Slow light with electromagnetically induced transparency (EIT) in the core of optical fibre containing three-level atoms is investigated. The guided modes are treated in the weakly guiding approximation which renders the analysis into a manageable form. The transparency window and permittivity profile of the core due to the strong pump field in the EIT scheme is calculated. For a specific permittivity profile of the core due to EIT, the propagation constant of the weak signal field and spatial shape of fundamental guided mode are calculated by solving the vector wave equation using the finite difference method. It is found that the transparency window and slow light field can be controlled via the optical fibre parameters. The reduced group velocity of slow light in this configuration is useful for many technological applications such as optical memories, effective control of single photon fields, optical buffers and delay lines.

  7. Hot-rolling nanowire transparent electrodes for surface roughness minimization.

    PubMed

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  8. All-solution processed transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander

    2015-11-01

    In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.

  9. Parameters of Sporadic E Layers and Transparency For Radio Waves

    NASA Astrophysics Data System (ADS)

    Bencze, P.

    Two frequency parameters of sporadic E layers are included into the scaling of verti- cal incidence ionograms, foEs and fbEs. They are called critical and blanketing fre- quency, respectively. On the basis of results of incoherent scatter measurements at mid-latitudes referring to the structure of sporadic E layers, the critical frequency is considered representing the mean electron density of patches imbedded in the back- ground electron density. The blanketing frequency would correspond to the back- ground electron density. Thus, the difference between critical and blanketing frequen- cies foEs-fbEs could indicate the transparency of sporadic E layers. Comparison of temporal and spatial variations of the transparency with corresponding variations of the vertical shear of the horizontal wind shows that the transparancy can be due to the wind-shear and patches would indicate eddies in the layer.

  10. Toward transparent and self-activated graphene harmonic transponder sensors

    NASA Astrophysics Data System (ADS)

    Huang, Haiyu Harry; Sakhdari, Maryam; Hajizadegan, Mehdi; Shahini, Ali; Akinwande, Deji; Chen, Pai-Yen

    2016-04-01

    We propose the concept and design of a transparent, flexible, and self-powered wireless sensor comprising a graphene-based sensor/frequency-modulator circuitry and a graphene antenna. In this all-graphene device, the multilayered-graphene antenna receives the fundamental tone at C band and retransmits the frequency-modulated sensed signal (harmonic tone) at X band. The frequency orthogonality between the received/re-transmitted signals may enable high-performance sensing in severe interference/clutter background. Here, a fully passive, quad-ring frequency multiplier is proposed using graphene field-effect transistors, of which the unique ambipolar charge transports render a frequency doubling effect with conversion gain being chemically sensitive to exposed gas/molecular/chemical/infectious agents. This transparent, light-weight, and self-powered system may potentially benefit a number of wireless sensing and diagnosis applications, particularly for smart contact lenses/glasses and microscope slides that require high optical transparency.

  11. Novel transparent electrodes allow sustainable production of electronic devices

    SciTech Connect

    Constant, Kristen

    2010-12-27

    A novel technique for fabricating inexpensive, transparent electrodes from common metals has been developed by engineers and scientists at Iowa State University and Ames Laboratory. They exhibit very high transparency and are very good electrical conductors. This is a combination of properties that is difficult to achieve with common materials. The most frequently used transparent electrode in today's high-technology devices (such as LCD screens) is indium tin oxide (ITO). While ITO performs well in these applications, the supply of indium is very limited. In addition, it is rapidly decreasing as consumer demand for flat-panel electronics is skyrocketing. According to a 2004 US Geological Survey report, as little as 14 years exploitation of known indium reserves remains. In addition to increasing prices, the dwindling supply of indium suggests its use is not sustainable for future generations of electronics enthusiasts. Solar cells represent another application where transparent electrodes are used. To make solar-energy collection economically feasible, all parts of solar photovoltaics must be made more efficient and cost-effective. Our novel transparent electrodes have the potential to do both. In addition, there is much interest in developing more efficient, cost-effective, and environmentally friendly lighting. Incandescent light bulbs are very inefficient, because most of their energy consumption is wasted as heat. Fluorescent lighting is much more efficient but still uses mercury, an environmental toxin. An attractive alternative is offered by LEDs, which have very high efficiencies and long lifetimes, and do not contain mercury. If made bright enough, LED use for general lighting could provide a viable alternative. We have fabricated electrodes from more commonly available materials, using a technique that is cost effective and environmentally friendly. Most of today's electronic devices are made in specialized facilities equipped with low

  12. OPTIMIZING TRANSPARENT ARMOR DESIGN SUBJECT TO PROJECTILE IMPACT CONDITIONS

    SciTech Connect

    Sun, Xin; Lai, Canhai; Gorsich, Tara; Templeton, Douglas W.

    2009-03-01

    Design and manufacturing of transparent armor have been historically carried out using experimental approaches. In this study, we use advanced computational modeling tools to perform virtual design evaluations of transparent armor systems under different projectile impact conditions. AHPCRC developed modeling software EPIC’06 [1] is used in predicting the penetration resistance of transparent armor systems. LaGrangian-based finite element analyses combined with particle dynamics are used to simulate the damage initiation and propagation process for the armor system under impact conditions. It is found that a 1-parameter single state model can be used to predict the impact penetration depth with relatively good accuracy, suggesting that the finely comminuted glass particles follow the behavior similar to a viscous fluid. Even though the intact strength of borosilicate and soda lime glass are different, the same fractured strength can be used for both glasses to capture the penetration depth.

  13. Transparency and selfhood: Utopia and the informed body.

    PubMed

    Chrysanthou, Marc

    2002-02-01

    One aspect of the development of a health-orientated consumer culture is the growth of self-screening and self-diagnosis among the lay public--e.g. over-the-counter diagnostic tests, computerized health assessments. DIY genetic tests. This trend is interpreted as the expression of a distinctively postmodern 'utopian' impulse. Postmodernity's inwardly directed gaze has replaced the communitarian vision of modernity. In the absence of overarching visions, the postmodern utopian telos becomes the attainment of a perfect. imperishable body. Somatopia is the collective expression of these privatized and personalized body projects. The accomplishment and authentication of these body projects necessitates the creation of a 'transparent body'. This 'transparent body' is enabled and constructed by developments in information and medical technologies. The political and health implications of the transparent, 'informed' body are explored.

  14. Hybridization and hybrid speciation under global change.

    PubMed

    Vallejo-Marín, Mario; Hiscock, Simon J

    2016-09-01

    Contents 1170 I. 1170 II. 1172 III. 1175 IV. 1180 V. 1183 1184 References 1184 SUMMARY: An unintended consequence of global change is an increase in opportunities for hybridization among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographical isolation and phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridization 'experiments', allowing us to peer into the birth and death of evolutionary lineages. PMID:27214560

  15. From hybrid swarms to swarms of hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  16. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application.

    PubMed

    Yang, Fan; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Ji, Ting; Shi, Fang; Wei, Bin

    2015-12-01

    We demonstrate a visible transparent organic photovoltaic (OPV) with improved transmission and absorption based on tandem photonic crystals (TPCs) for greenhouse applications. The proposed device has an average transmittance of 40.3% in the visible range of 400-700 nm and a high quality transparency spectrum for plant growth with a crop growth factor of 41.9%, considering the weight of the AM 1.5G solar spectrum. Compared with the corresponding transparent OPV without photonic crystals, an enhancement of 20.7% in the average transmittance and of 24.5% in the crop growth factor are achieved. Detailed investigations reveal that the improved transmittance is attributed to the excitation of the optical Tamm state and the light interference effect in TPC. Concomitantly, the total absorption efficiency in the active layer of the designed TPC based transparent OPV reaches 51.5%, being 1.78% higher than that of the transparent OPV without PC and 76% of that of the opaque counterpart. The improved absorption originates from the Bragg forbidden reflectance of TPC. Overall, our proposal achieves the optimized utilization of sunlight by light manipulation of TPC. PMID:26836682

  17. Mesoscale hybrid calibration artifact

    DOEpatents

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  18. Making Metals Transparent for White Light by Spoof Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Rong; Peng, Ru-Wen; Fan, Ren-Hao

    2010-12-01

    From first-principles computations we reveal that metallic gratings consisting of narrow slits may become transparent for extremely broad bandwidths under oblique incidence. This phenomenon can be explained by a concrete picture in which the incident wave drives free electrons on the conducting surfaces and part of the slit walls to form spoof surface plasmons (SSPs). The SSPs then propagate on the slit walls but are abruptly discontinued by the bottom edges to form oscillating charges that emit the transmitted wave. This picture explicitly demonstrates the conversion between light and SSPs and indicates clear guidelines for enhancing SSP excitation and propagation. Making structured metals transparent may lead to a variety of applications.

  19. Rain droplet erosion mechanisms in transparent plastic materials

    NASA Technical Reports Server (NTRS)

    Schmitt, G. F., Jr.

    1974-01-01

    Tests were conducted to determine the damaging effects of rain erosion on optically transparent materials. The rotating arm test equipment used for the tests is described. Typical transparent materials such as those found in windshields, infrared windows, lasers, and television systems were tested. Nominal velocities of 400, 500, and 600 miles per hour and rainfall conditions of one inch per hour simulated rainfall were used in the tests. It was determined that an 80 percent reduction in laser transmittance can occur in plastics submitted to rain erosion. Significant results of the environmental tests are explained.

  20. Laser-induced breakdown in large transparent water droplets.

    PubMed

    Chang, R K; Eickmans, J H; Hsieh, W F; Wood, C F; Zhang, J Z; Zheng, J B

    1988-06-15

    Recent experiments on the laser-induced breakdown (LIB) of large transparent liquid droplets are reviewed. A physical model of LIB processes is presented with the aim of integrating the following recent results: (1) the internal and near-field distributions for large transparent spheres; (2) the location of LIB initiation based on spatially resolved plasma emission spectroscopic techniques; (3) spatially resolved but time-averaged density of the plasma plumes and temperature of the atomic species within the plasma; (4) the plasma front propagation velocities inside and outside the droplet; and (5) the fate of the remaining superheated droplet and the expelled material.

  1. Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial

    SciTech Connect

    Zhang, Fuli He, Xuan; Zhao, Qian; Lan, Chuwen; Zhou, Ji; Zhang, Weihong Qiu, Kepeng

    2014-03-31

    In this manuscript, we experimentally demonstrate magnetically coupled electromagnetically induced transparency (EIT) analogy effect inside dielectric metamaterial. In contrast to previous studies employed different metallic topological microstructures to introduce dissipation loss change, barium strontium titanate, and calcium titanate (CaTiO{sub 3}) are chosen as the bright and dark EIT resonators, respectively, due to their different intrinsic dielectric loss. Under incident magnetic field excitation, dielectric metamaterial exhibits an EIT-type transparency window around 8.9 GHz, which is accompanied by abrupt change of transmission phase. Numerical calculations show good agreement with experiment spectra and reveal remarkably increased group index, indicating potential application in slow light.

  2. Transparent sound screens. [and their noise control efficiency in buildings

    NASA Technical Reports Server (NTRS)

    Bizo, F.; Draghici, R.

    1974-01-01

    Transparent sound screens consisting of glass (organic glass) plates placed at fixed angles with respect to the floor are considered. Noise levels in the screened area depend on the cumulative effect of direct, reverberated and refracted components of sound energy radiated by the source. This effect is analyzed on the analogy of the summation of electrical impedances. Inasmuch as under given circumstances sufficient noise control can be obtained, transparent screens seem to solve the problem of unimpeded supervision of installations in noisy workshops and power plants; in administrative buildings, computing centers, design bureaus, etc., they ensure acoustic comfort without space losses and without inspiring claustrophobia.

  3. Displacement measurement of the depth migration of transparent cells

    SciTech Connect

    Yoshida, Makoto; Ishimaru, Ichirou; Ishizaki, Katsumi; Yasokawa, Toshiki; Kuriyama, Shigeki; Masaki, Tsutomu; Nakai, Seiji; Takegawa, Kaoru; Tanaka, Naoyuki

    2006-12-11

    This letter reports a method for displacement measurement of the depth migration of transparent cells. This proposed optical spatial filtering method allows visualization of the transparent cells and determination of depth migration as a horizontal displacement positive or negative first order diffracted light on the detector surface. When the sample is displaced upward or downward from the focal plane, first and negative first order diffracted light form images at a different point as a light circle. The coordinates of these two light circles on the detector surface change places when the displacement of depth migration moves to the opposite direction.

  4. Transparent oxides forming conductor/insulator/conductor heterojunctions for photodetection

    NASA Astrophysics Data System (ADS)

    Ishii, Satoshi; Duy Dao, Thang; Chen, Kai; Nagao, Tadaaki

    2015-05-01

    Photoexcited hot electrons from conductors can be injected into the conduction bands of wide-bandgap materials, thus enabling the visible and near-infrared (NIR) photoactivities of light-harvesting devices. While metals have been dominantly used as conductors to excite hot electrons, we demonstrate that transparent conductive oxides (TCOs) can also be used for this purpose. Trilayer structures consisting of a thin dielectric layer sandwiched by TCOs show photoresponsiveness in UV, visible, as well as NIR wavelength range. As these trilayer structures are transparent, they can be used to monitor light without blocking it.

  5. Matched slow pulses using double electromagnetically induced transparency.

    PubMed

    MacRae, Andrew; Campbell, Geoff; Lvovsky, A I

    2008-11-15

    We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using a tripod-shaped energy-level scheme consisting of hyperfine magnetic sublevels of the 5S1/2-->5P1/2 transition. We show experimentally that through the use of DEIT one can control the contrast of transparency windows as well as group velocities of the two signal fields. In particular, the group velocities can be equalized, which holds promise to greatly enhance nonlinear optical interaction between these fields.

  6. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  7. High-strength transparent spinel with fine, unimodal grain size

    NASA Astrophysics Data System (ADS)

    Sweeney, S. M.; Brun, M. K.; Yosenick, T. J.; Kebbede, A.; Manoharan, M.

    2009-05-01

    Spinel (MgAl2O4) is a good candidate material for transparent armor and IR window applications. Traditionally, transparent spinel has suffered from poor strength and difficult polishing owing to its large, bimodal grain structure. Starting from a spinel nanopowder, spinel ceramics with a grain size of less than 2 microns have been made with better than 80% in-line transmittance at 632 nm wavelength for 3/8" thick samples. A ring-on-ring test has been used to measure biaxial flexural strength on samples machined to 0.8 mm thickness. The average strength was found to exceed 480 MPa.

  8. Hybrid quantum information processing

    SciTech Connect

    Furusawa, Akira

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  9. Hybrid armature projectile

    DOEpatents

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  10. Hybrid armature projectile

    DOEpatents

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  11. Hybrid quantum information processing

    NASA Astrophysics Data System (ADS)

    Furusawa, Akira

    2014-12-01

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  12. Homoploid hybrid expectations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  13. Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO3/Ag/MoO3 anode

    NASA Astrophysics Data System (ADS)

    Tian, Ximin; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Shi, Fang; Wang, Hua; Wei, Bin; Huang, Wei

    2015-01-01

    We demonstrate an inverted low bandgap semitransparent organic solar cell with improved absorption as well as reasonable transparency perception based on a nanopatterned MoO3/Ag/MoO3 (MAM) multilayer film as the transparent anode under illumination from the MAM side. The integrated absorption efficiency of the active layer at normal hybrid-polarized incidence considering an AM 1.5G solar spectrum is up to 51.69%, increased by 18.53% as compared to that of the equivalent planar device (43.61%) and reaching 77.3% of that of the corresponding opaque nanopatterned device (66.90%). Detailed investigations reveal that the excitation of plasmonic waveguide modes (at transverse magnetic polarization) and photonic modes (at transverse electric polarization) are responsible for the observed enhancement in absorption. Importantly, the proposed device exhibits an average transmittance of up to 28.4% and an average transparency perception of 26.3% for the human eyes under hybrid-polarized light illumination along with a good color rendering property. Additionally, our proposal works very well over a fairly wide angular range.

  14. Highly transparent Au-coated Ag nanowire transparent electrode with reduction in haze.

    PubMed

    Kim, Taegeon; Canlier, Ali; Cho, Changsoon; Rozyyev, Vepa; Lee, Jung-Yong; Han, Seung Min

    2014-08-27

    Ag nanowire transparent electrode has excellent transmittance and sheet resistance, yet its optical haze still needs to be improved in order for it to be suitable for display applications. Ag nanowires are known to have high haze because of the geometry of the nanowire and the high light scattering characteristic of the Ag. In this study, a Au-coated Ag nanowire structure was proposed to reduce the haze, where a thin layer of Au was coated on the surface of the Ag nanowires using a mild [Au(en)2]Cl3 galvanic displacement reaction. The mild galvanic exchange allowed for a thin layer of Au coating on the Ag nanowires with minimal truncation of the nanowire, where the average length and the diameter were 13.0 μm and 60 nm, respectively. The Au-coated Ag nanowires were suspended in methanol and then electrostatically sprayed on a flexible polycarbonate substrate that revealed a clear reduction in haze with a 2-4% increase in total transmittance, sheet resistance ranges of 80-90%, and 8.8-36.8 Ohm/sq. Finite difference time domain simulations were conducted for Au-coated Ag nanowires that indicated a significant reduction in the average scattering from 1 to 0.69 for Au layer thicknesses of 0-10 nm.

  15. The hydrogen hybrid option

    SciTech Connect

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  16. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    NASA Astrophysics Data System (ADS)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  17. Alloying ZnS in the hexagonal phase to create high-performing transparent conducting materials.

    PubMed

    Faghaninia, Alireza; Bhatt, Kunal Rajesh; Lo, Cynthia S

    2016-08-10

    Alloyed zinc sulfide (ZnS) has shown promise as a relatively inexpensive and earth-abundant transparent conducting material (TCM). Though Cu-doped ZnS has been identified as a high-performing p-type TCM, the corresponding n-doped ZnS has, to date, been challenging to synthesize in a controlled manner; this is because the dopant atoms compete with hole-inducing zinc vacancies near the conduction band minimum as the most thermodynamically stable intrinsic point defects. We thus aim to identify the most promising n-type ZnS-based TCM, with the optimal combination of physical stability, transparency, and electrical conductivity. Using a relatively new method for calculating the free energy of both the sphalerite (cubic) and wurtzite (hexagonal) phases of undoped and doped ZnS, we find that doped ZnS is more stable in the hexagonal structure. This, for the first time, fundamentally explains previous experimental observations of the coexistence of both phases in doped ZnS; hence, it profoundly impacts future work on sulfide TCMs. We also employ hybrid density functional theory calculations and a new carrier transport model, AMSET (ab initio model for mobility and Seebeck coefficient using the Boltzmann transport equation), to analyze the defect physics and electron mobility of the different cation- (B, Al, Ga, In) and anion-doped (F, Cl, Br, I) ZnS, in both the cubic and hexagonal phases, at various dopant compositions, temperatures, and carrier concentrations. Among all doped ZnS candidates, Al-doped ZnS (AZS) exhibits the highest dopant solubility, largest electronic band gap, and highest electrical conductivity of 3830, 1905, and 321 S cm(-1), corresponding to the possible carrier concentrations of n = 10(21), 10(20), and 10(19) cm(-3), respectively, at the optimal 6.25% dopant concentration of Al and the temperature of 300 K. PMID:27477188

  18. Hybridization and extinction.

    PubMed

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities. PMID:27468307

  19. Understanding Solar Energy Systems, Instructional Modules and Transparency Masters.

    ERIC Educational Resources Information Center

    Keaton, Laurie; Edington, Everett

    This instructional package was designed to develop a basic understanding of solar energy systems. It consists of seven instructional units, a glossary and a collection of transparency masters for use with the units. Each unit presents: (1) unit objective and specific objectives; (2) background material for student reading; (3) student assignment…

  20. Waterborne polyacrylic/PEDOT nanocomposites for conductive transparent adhesives.

    PubMed

    Kim, Byeonggwan; Park, Teahoon; Kim, Jeonghun; Kim, Eunkyoung

    2013-11-01

    A new nanocomposite for conductive transparent adhesives (CTAs) was synthesized by emulsion polymerization of acrylate monomers dispersed with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). Polymer particles of waterborne CTAs were uniform, and the average size of the particles was 330 nm. The conductive transparent adhesive nanocomposites (CTANs) were casted onto various substrates including slide glass, indium tin oxide (ITO) glass, and PET film. Upon thermal processing at 80 degrees C, highly transparent adhesive films were obtained with surface uniformity. The stress of the CTANs was affected by the contents of PEDOT:PSS, and a 7.5 wt% CTAN film had the highest maximum stress of 0.33 MPa. Importantly, polyacrylic nanoparticles were well dispersed with conductive filler PEDOT:PSS in water because of their high dispersity in water. Therefore, the polyacrylic/PEDOT nanocomposite had a low percolation threshold of approximately 8% due to the enhanced connection between conductive channels. The CTANs with an optimum content (10 wt%) of PEDOT:PSS had high electromagnetic interference shielding effectiveness (36 dB) and transparency (75%) for application to electronics including displays and solar cells. PMID:24245305

  1. Transparent conductive grids via direct writing of silver nanoparticle inks

    SciTech Connect

    Ahn, Bok Y; Lorang, David J; Lewis, Jennifer A

    2011-01-01

    Transparent conductive grids are patterned by direct writing of concentrated silver nanoparticle inks. This maskless, etch-free patterning approach is used to produce well-defined, two-dimensional periodic arrays composed of conductive features with center-to-center separation distances of up to 400 µm and an optical transmittance as high as 94.1%.

  2. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature.

    PubMed

    Yu, Shen; Guo, Zhiguang; Liu, Weimin

    2015-02-01

    It is well known that high optical transparency is one of the most crucial criteria for the overwhelming majority of optical devices and correlative functions, including smart windows, camera lenses, solar cell systems and optoelectronic devices. With the frequent exposure of this equipment to all sorts of environments, such as outdoor conditions, a surface with self-cleaning properties can guard against fouling, humidity, bacterial growth and so forth. That is one type of application of the big family of superhydrophobic coatings. Therefore, integrating high transparency with self-cleaning characteristics is of great importance for such applications. In this review, the recent developments in designing, synthesizing and manufacturing transparent and superhydrophobic surfaces are reviewed. Firstly, the established theoretical aspects of surface wetting properties are summarized and then several natural and bio-inspired superhydrophobic surfaces of diverse microcosmic structures are presented as representative examples. With a focus on distinctively employed materials and the corresponding fabrication of superhydrophobic coatings with high transparency, the promising research directions and application prospects of this rapidly developing field are briefly addressed as well. PMID:25406877

  3. Solving the Controversy on the Wetting Transparency of Graphene

    PubMed Central

    Kim, Donggyu; Pugno, Nicola M.; Buehler, Markus J.; Ryu, Seunghwa

    2015-01-01

    Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and elucidate the origin of the partial wetting transparency. We show that the liquid bulk modulus is crucial to accurately calculate the van der Waals interactions between the liquid and the surface, and that various wetting states on rough surfaces must be considered to understand a wide range of contact angle measurements that cannot be fitted with a theory considering the flat surface. In addition, we reveal that the wetting characteristic of the substrate almost vanishes when covered by any coating as thick as graphene double layers. Our findings reveal a more complete picture of the wetting transparency of graphene as well as other atomically thin coatings, and can be applied to study various surface engineering problems requiring wettability-tuning. PMID:26496835

  4. One-piece transparent shell improves design of helmet assembly

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Okane, J. H.

    1966-01-01

    One-piece transparent helmet shell made of polycarbonate is equipped with a helmet protection pad, a visor assembly, a communications skull cap, and an emergency oxygen supply. This design offers improvements over previous designs in weight, visual field, comfort and protection.

  5. Truth, Transparency and Trust: Treasured Values in Higher Education

    ERIC Educational Resources Information Center

    Gross, Karen

    2015-01-01

    The words "truth," "transparency," and "trust" recently have taken on renewed importance in higher education. The reporting and handling of sexual assaults, athletic cheating scandals, Muslim student deaths, the intrusion into the admissions process by college/university presidents forcing acceptance of new students…

  6. 45 CFR 156.220 - Transparency in coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS HEALTH INSURANCE ISSUER STANDARDS UNDER THE AFFORDABLE CARE ACT, INCLUDING STANDARDS RELATED TO EXCHANGES Qualified Health Plan Minimum Certification Standards § 156.220 Transparency in coverage. (a) Required...

  7. Low velocity impact testing and nondestructive evaluation of transparent materials

    SciTech Connect

    Brennan, R. E.; Green, W. H.

    2011-06-23

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  8. 77 FR 69781 - Enhanced Natural Gas Market Transparency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Pipeline Posting Requirements under Section 23 of the Natural Gas Act, Order No. 720, 73 FR 73494 (Dec. 2..., Order No. 704-A, 73 FR 55726 (Sept. 26, 2008), FERC Stats. & Regs. ] 31,275 (2008), order dismissing reh... Transparency Provisions of Section 220 of the Federal Power Act, Order No. 768, 77 FR 61896 (Oct. 11,...

  9. Nonperiodic metallic gratings transparent for broadband terahertz waves

    NASA Astrophysics Data System (ADS)

    Fan, Ren-Hao; Ren, Xiao-Ping; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    Recently, we demonstrate both theoretically and experimentally that nonperiodic metallic gratings can become transparent for broadband terahertz waves. Quasiperiodic and disordered metallic gratings effectively weaken and even eliminate Wood's anomalies, which are the diffraction-related characters of periodic gratings. Consequently, both the transparence bandwidth and transmission efficiency are significantly increased due to the structural aperiodicity. Furthermore, we show that for a specific light source, for example, a line source, a corresponding nonperiodic transparent grating can be also designed. We expect that our findings can be applied for transparent conducting panels, perfect white-beam polarizers, antireflective conducting solar cells, and beyond. References: X. P. Ren, R. H. Fan, R. W. Peng, X. R. Huang, D. H. Xu, Y. Zhou, and Mu Wang, Physical Review B, 91, 045111 (2015); R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, Mu. Wang, and X. Zhang, Advanced Materials, 24, 1980 (2012); and X. R. Huang, R. W. Peng, and R. H. Fan. Physical Review Letters, 105, 243901 (2010).

  10. Transparency of a flame at combustion of forest combustible materials

    NASA Astrophysics Data System (ADS)

    Tsvyk, Ruvim S.

    2003-03-01

    In activity the outcomes of experimental researches of a spectral transparency of a flame are adduced at combustion of wood combustible materials in range 0.6×6 microns at the altitude 0.1m above a surface of combustion. The conditions of a surface forest fires were modeled at absence of a wind.

  11. Man-machine communication - A transparent switchboard for computers

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1971-01-01

    Device uses pattern of transparent contact touch points that are put on cathode ray tube screen. Touch point system compels more precise and unambiguous communication between man and machine than is possible with any other means, and speeds up operation responses.

  12. Theory-driven design of hole-conducting transparent oxides

    NASA Astrophysics Data System (ADS)

    Trimarchi, G.; Peng, H.; Im, J.; Freeman, A. J.; Cloet, V.; Raw, A.; Poeppelmeier, K. R.; Biswas, K.; Lany, S.; Zunger, A.

    2012-02-01

    The design of p-type transparent conducting oxides (TCOs) aims at simultaneously achieving transparency and high hole concentration and hole conductivity in one compound. Such design principles (DPs) define a multi-objective optimization problem that is to be solved by searching a large set of compounds for optimum ones. Here, we screen a large set of ternary compounds, including Ag and Cu oxides and chalcogenides, by calculating via first-principles methods the design properties of each compound, in order to search for optimum p-type TCOs. We first select Ag3VO4 as a case study of the application of ab-initio methods to assess a compound as a candidate p-type TCO. We predict Ag3VO4 (i) to have a hole concentration of 10^14 cm-3 at room temperature, (ii) to be at the verge of transparency, and (iii) to have lower hole effective mass than the prototype p-type TCO CuAlO2. We then map the hole effective mass vs. the band gap in the selected compounds and determine those that best meet the DPs by having simultaneously minimum effective mass and a band gap large enough for transparency.

  13. 45 CFR 155.1040 - Transparency in coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Transparency in coverage. 155.1040 Section 155.1040 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT...

  14. 45 CFR 155.1040 - Transparency in coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Transparency in coverage. 155.1040 Section 155.1040 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT...

  15. Color transparency at energies available at the CERN COMPASS experiment

    SciTech Connect

    Miller, Gerald A.; Strikman, Mark

    2010-08-15

    Pionic quasielastic knockout of protons from nuclei at 200 GeV show very large effects of color transparency as -t increases from 0 to several GeV{sup 2}. Similar effects are expected for quasielastic photoproduction of vector mesons.

  16. Controllable motion of optical vortex arrays using electromagnetically induced transparency.

    PubMed

    Shwa, David; Shtranvasser, Evgeny; Shalibo, Yoni; Katz, Nadav

    2012-10-22

    We demonstrate control of the collective motion of an optical vortex array using an electromagnetically induced transparency media. Scanning the frequency detuning between the pump and probe fields changes the susceptibility of the media, producing a unique effective diffraction of the vortex array for each detuning. We measure several experimental configurations and compare them to numerical simulations.

  17. Natural Decompositions of Perceived Transparency: Reply to Albert (2008)

    ERIC Educational Resources Information Center

    Anderson, Barton L.; Singh, Manish; O'Vari, Judit

    2008-01-01

    In M. Singh and B. L. Anderson, the authors proposed a model based on ratios of Michelson contrasts to explain how human observers quantitatively scale the perceived opacity of transparent surfaces. In subsequent work by B. L. Anderson, M. Singh, & J. Meng, the authors found that this model failed to generalize to other contexts and replaced it…

  18. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes

    PubMed Central

    Guo, Chuan Fei; Liu, Qihan; Wang, Guohui; Wang, Yecheng; Shi, Zhengzheng; Suo, Zhigang; Chu, Ching-Wu; Ren, Zhifeng

    2015-01-01

    Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated loads in practical applications. Here we show that optimizing topology and/or tuning adhesion of metal nanomeshes can significantly improve stretchability and eliminate strain fatigue. The ligaments in an Au nanomesh on a slippery substrate can locally shift to relax stress upon stretching and return to the original configuration when stress is removed. The Au nanomesh keeps a low sheet resistance and high transparency, comparable to those of strain-free indium tin oxide films, when the nanomesh is stretched to a strain of 300%, or shows no fatigue after 50,000 stretches to a strain up to 150%. Moreover, the Au nanomesh is biocompatible and penetrable to biomacromolecules in fluid. The superstretchable transparent conductors are highly desirable for stretchable photoelectronics, electronic skins, and implantable electronics. PMID:26392537

  19. 42 CFR 425.308 - Public reporting and transparency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Public reporting and transparency. 425.308 Section 425.308 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE SHARED SAVINGS PROGRAM Program Requirements and Beneficiary Protections § 425.308...

  20. Application and Testing of Transparent Plastics Used in Airplane Construction

    NASA Technical Reports Server (NTRS)

    Riechers, K; Olms, J

    1938-01-01

    This report concerns the efforts being made to remove the source of danger to passengers arising from the fracturing of silicate glass. Some of the alternatives presented include: single-layer safety glass, multi-layer safety glass, transparent plastic resins. Some of the resins considered are celluloid, cellulose acetates, and mixtures of polymers.

  1. Launcher and Transparent Air Table for Use with Overhead Projector

    ERIC Educational Resources Information Center

    Carr, H. Y.; and others

    1969-01-01

    Describes an apparatus designed for quantitative demonstrations of collision experiments. The apparatus consists of a transparent air table and a launching device for projecting two objects simultaneously. It may be used with an overhead projector. The apparatus won third prize in Demonstration Lecture Apparatus in the A.A.P.T. Apparatus…

  2. Flexible transparent and free-standing silicon nanowires paper.

    PubMed

    Pang, Chunlei; Cui, Hao; Yang, Guowei; Wang, Chengxin

    2013-10-01

    If the flexible transparent and free-standing paper-like materials that would be expected to meet emerging technological demands, such as components of transparent electrical batteries, flexible solar cells, bendable electronics, paper displays, wearable computers, and so on, could be achieved in silicon, it is no doubt that the traditional semiconductor materials would be rejuvenated. Bulk silicon cannot provide a solution because it usually exhibits brittleness at below their melting point temperature due to high Peierls stress. Fortunately, when the silicon's size goes down to nanoscale, it possesses the ultralarge straining ability, which results in the possibility to design flexible transparent and self-standing silicon nanowires paper (FTS-SiNWsP). However, realization of the FTS-SiNWsP is still a challenging task due largely to the subtlety in the preparation of a unique interlocking alignment with free-catalyst controllable growth. Herein, we present a simple synthetic strategy by gas flow directed assembly of a unique interlocking alignment of the Si nanowires (SiNWs) to produce, for the first time, the FTS-SiNWsP, which consisted of interconnected SiNWs with the diameter of ~10 nm via simply free-catalyst thermal evaporation in a vertical high-frequency induction furnace. This approach opens up the possibility for creating various flexible transparent functional devices based on the FTS-SiNWsP. PMID:23984843

  3. Radiation-transparent windows, method for imaging fluid transfers

    DOEpatents

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  4. Transparent ceramics for armor and EM window applications

    NASA Astrophysics Data System (ADS)

    Patel, Parimal J.; Gilde, Gary A.; Dehmer, Peter G.; McCauley, James W.

    2000-10-01

    Recently, the U.S. Army Research Laboratory (ARL) has focused increased attention on the development of transparent armor material systems for a variety of applications. Future combat and non-combat environments will require lightweight, threat adjustable, multifunctional, and affordable armor. Current glass/polycarbonate technologies are not expected to meet the increased requirements. Results over the past few years indicate that the use of transparent crystalline ceramics greatly improve the performance of a system. These results coupled with recent processing and manufacturing advances have revitalized the interest in using transparent ceramics for armor systems. The materials currently under investigation at ARL are magnesium aluminate spinel (MgAl2O4), aluminum oxynitride spinel (AlON), single crystal sapphire (Al2O3), glasses, and glass-ceramics. The polymers under investigation are polycarbonate (PC) and polyurethane (PU). An overview of current ARL efforts in these areas, including the motivation for using transparent ceramics, the requirements, the potential applications, and the ongoing processing research will be reviewed.

  5. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  6. Visible-Light-Responsive Photocatalytic Flow Reactor Composed of Titania Film Photosensitized by Metal Complex-Clay Hybrid.

    PubMed

    Goto, Takehito; Ogawa, Makoto

    2015-06-17

    Synthetic saponite containing a photosensitizing metal complex, tris(2,2'-bipyridine)ruthenium(II)), in the interlayer space was complexed with anatase nanoparticles to obtain transparent hybrid film photocatalyst. The catalyst film was mounted in a flow reactor device to catalyze such photocatalytic reactions as the decomposition of aqueous acetic acid and N-alkylation of benzylamine with ethanol. PMID:26029789

  7. First-Principles study of defects in transparent conducting oxide materials

    NASA Astrophysics Data System (ADS)

    Amini, Mozhgan

    The study of defects and impurities is an important area in semiconductor physics. Defects can be used to control the electronic and optoelectronic properties of materials. However, to achieve such control, knowledge of the fundamental processes that control doping is necessary. First-principles calculations have already made important contributions to the understanding of these fundamental processes of doping in different semiconductors. An important class of materials with an already widespread application area is the transparent conducting oxides (TCOs). These materials combine electrical conductivity and optical transparency and are essential for photovoltaic and optoelectronic applications. The electronic structure of TCOs has therefore been a subject of interest for a long time. In this thesis we provide a first-principles study of defects in TCO materials using density functional theory (DFT). An introduction to TCO materials, their properties, fabrications, and applications are presented in chapter 1. It is followed by a general explanation of the basics of DFT, a quantum mechanical approach for ground state calculations, in chapter 2. Then in chapter 3, different kinds of defects are classified and some important issues such as donor, acceptor, shallow, deep, formation energy, transition level, optical and thermal ionization energies are introduced. In chapter 4, we have used first principles calculations based on DFT to study point defects in CdO within the local density approximation and beyond (LDA+U). Chapter 5 presented the electronic structure and formation energies of group III elements (Al, Ga, In) doped in ZnO. Then in chapter 6, the effect of the presence of both hydrogen and an extrinsic defect (Al, Ga or In) in ZnO is studied. In chapter 7, ZnM2O4 (M=Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides and the formation energies of acceptor-like defects are reported with an advanced hybrid exchange

  8. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  9. Transparent capacitors based on nanolaminate Al{sub 2}O{sub 3}/TiO{sub 2}/Al{sub 2}O{sub 3} with H{sub 2}O and O{sub 3} as oxidizers

    SciTech Connect

    Zhang, G. Z.; Wu, H. Chen, C.; Wang, T.; Yue, J.; Liu, C.; Wang, P. Y.; Mai, L. Q.

    2014-04-21

    Transparent capacitors with nanolaminate Al{sub 2}O{sub 3}/TiO{sub 2}/Al{sub 2}O{sub 3} (ATA) hybrid dielectrics have been prepared on quartz glass by atomic layer deposition. The maximal capacitance density of 14 fF/μm{sup 2} at 1 kHz was obtained. Moreover, an ultralow leakage current density of 2.1 × 10{sup −9} A/cm{sup 2} at 1 V was realized by using O{sub 3} as the oxidizer. Fowler-Nordheim tunneling is the main mechanism of the leakage current at high fields, while several conduction mechanisms coexist at low fields. The AlZnO/ATA/AlZnO transparent capacitors exhibit an average optical transmittance of more than 80% in the visible range, which serve as good candidates for integration in transparent circuits.

  10. 76 FR 61366 - Food and Drug Administration Transparency Initiative: Draft Proposals for Public Comment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... HUMAN SERVICES Food and Drug Administration Food and Drug Administration Transparency Initiative: Draft Proposals for Public Comment to Increase Transparency By Promoting Greater Access to the Agency's Compliance and Enforcement Data; Availability AGENCY: Food and Drug Administration, HHS. ] ACTION: Notice...

  11. HEU Transparency Implementation Program and its Radiation Safety Program

    SciTech Connect

    Radev, R

    2002-01-31

    In February 1993, the Governments of the United States (U.S.) and the Russian Federation (R.F.) signed a bilateral Agreement for the U.S. purchase of low enriched uranium (LEU) derived from 500 metric tons (MT) of highly enriched uranium (HEU) resulting from the dismantlement of Russian nuclear weapons. The HEU Purchase Agreement serves important national security and nonproliferation policy imperatives for both countries since its implementation reduces the quantity of surplus Russian HEU that could be stolen and diverted for weapons use. In return, Russia receives much needed U.S. dollars over a 20-year delivery period. In 2001, Russia received over half a billion US dollars from the purchase of the LEU blended from 30 MT HEU. As part of this Agreement, transparency rights were agreed upon that provide confidence to both governments that the nonproliferation objectives of the Agreement are being fulfilled. While the U.S. Department of State, in concert with the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) is responsible negotiating transparency rights associated with this nuclear material, the NNSA is responsible for implementing those rights. These rights allow U.S. and R.F., personnel (called ''monitors'') to visit the processing facilities and observe the steps for processing the HEU into fuel for nuclear reactors. In this fashion, the processing of HEU to LEU is made ''transparent.'' For DOE, there are three transparency objectives: (1) that the HEU is extracted from nuclear weapons, (2) that this same HEU is oxidized, and (3) that the HEU is blended into LEU. For MINATOM, the transparency objective is: (1) that the LEU is fabricated into fuel for commercial nuclear power reactors: The transparency is based on visits by designated transparency monitors (100 preapproved U.S. and Russian monitors) with specific rights to monitor and to access storage and processing areas to provide confidence that the nonproliferation goals

  12. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  13. 78 FR 77132 - Notification of a Public Meeting of the Government Accountability and Transparency Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... ADMINISTRATION Notification of a Public Meeting of the Government Accountability and Transparency Board AGENCY...: The Government Accountability and Transparency (GAT) Board will host a meeting for the public to make... Accountability and Transparency Board's mandate appears in Executive Order 13576 (June 13, 2011), which in...

  14. Setting Goals to Switch between Tasks: Effect of Cue Transparency on Children's Cognitive Flexibility

    ERIC Educational Resources Information Center

    Chevalier, Nicolas; Blaye, Agnes

    2009-01-01

    Three experiments examined the difficulty of translating cues into verbal representations of task goals by varying the degree of cue transparency (auditory transparent cues, visual transparent cues, visual arbitrary cues) in the Advanced Dimensional Change Card Sort, which requires switching between color- and shape-sorting rules on the basis of…

  15. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem.

    PubMed

    Weltin, Andreas; Slotwinski, Kinga; Kieninger, Jochen; Moser, Isabella; Jobst, Gerhard; Wego, Marcus; Ehret, Ralf; Urban, Gerald A

    2014-01-01

    We present a novel, multiparametric microphysiometry system for the dynamic online monitoring of human cancer cell metabolism. The optically transparent, modular, hybrid microsystem is based on a glass chip and combines a cell cultivation chamber, microfluidics and metabolic monitoring with fully integrated chemo- and biosensors. pH and oxygen are measured in the cell culture area, and biosensors for lactate and glucose are connected downstream by microfluidics. The wafer-level fabrication features thin-film platinum and iridium oxide microelectrodes on a glass chip, microfluidics in an epoxy resist, a hybrid assembly and an on-chip reference electrode. The reliable analytical performance of the sensors in cell culture medium was demonstrated. The pH sensors exhibit a long-term stable, linear response. The oxygen sensors show a linear behaviour, which is also observed for low oxygen concentrations. Glucose and lactate measurements show a linear, long-term stable, selective and reversible behaviour in the desired range. T98G human brain cancer cells were cultivated and cell culture metabolism was measured on-chip. Stop/flow cycles were applied and extracellular acidification, respiration, glucose consumption and lactate production were quantified. Long-term metabolic rates were determined and all parameters could be measured in the outlet channel. A placement downstream of the cell cultivation area for biosensors was realised. A highly effective medium exchange and undiluted sampling from the cell culture chamber with low flow rates (2 μl min(-1)) and low volumes (15 μl per cycle) were achieved. The drug screening application was demonstrated by detecting alteration and recovery effects of cellular metabolism induced by the addition of substances to the medium. PMID:24217869

  16. Managing hybrid marketing systems.

    PubMed

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  17. Hybridization facilitates evolutionary rescue

    PubMed Central

    Stelkens, Rike B; Brockhurst, Michael A; Hurst, Gregory D D; Greig, Duncan

    2014-01-01

    The resilience of populations to rapid environmental degradation is a major concern for biodiversity conservation. When environments deteriorate to lethal levels, species must evolve to adapt to the new conditions to avoid extinction. Here, we test the hypothesis that evolutionary rescue may be enabled by hybridization, because hybridization increases genetic variability. Using experimental evolution, we show that interspecific hybrid populations of Saccharomyces yeast adapt to grow in more highly degraded environments than intraspecific and parental crosses, resulting in survival rates far exceeding those of their ancestors. We conclude that hybridization can increase evolutionary responsiveness and that taxa able to exchange genes with distant relatives may better survive rapid environmental change. PMID:25558281

  18. Reconfigurable hybrid metamaterial waveguide system at terahertz regime.

    PubMed

    Zhao, Xiaolei; Zhu, Lin; Yuan, Cai; Yao, Jianquan

    2016-08-01

    We propose an optically controlled reconfigurable hybrid metamaterial waveguide system at terahertz frequencies, which consists of a two dimensional gold cut wire array deposited on top of a dielectric slab waveguide. Numerical findings reveal that this device is able to realize dynamic transformation from double electromagnetically induced transparency like material to ultra-narrow band guided mode resonance (GMR) filter by controlling the optically excited free carriers in gallium arsenide pads inserted between the gold cut wires. During this reconfiguration process of resonance modes, high quality factors up to ~104 and ~118 for the two EIT-like peaks and up to ~578 for the GMR filter are obtained. PMID:27505788

  19. Hybrid metal-semiconductor mirror for high power VECSEL

    NASA Astrophysics Data System (ADS)

    Laurain, Alexandre; Gbele, Kokou; Hader, Jorg; Stolz, Wolfgang; Koch, Stephan; Ruiz Perez, Antje; Moloney, Jerome V.

    2016-03-01

    We demonstrate a low thermal impedance hybrid mirror VECSEL. We used only 14 pairs of AlGaAs/AlAs, transparent at the pump wavelength, and we used a patterned mask to deposit pure gold on areas of the chip to be pumped, and Ti/Au on other area to circumvent the poor adhesion of gold on GaAs. A higher gain is observed on an area metallized with pure gold and an output power of 4W was obtained, showing the effectiveness of the metallic mirror and validating the bonding quality. Chip processing and laser characteristics are studied in detail and compared to simulations.

  20. Silica/silicone nanofilament hybrid coatings with almost perfect superhydrophobicity.

    PubMed

    Zhang, Junping; Seeger, Stefan

    2013-06-01

    A facile method for the preparation of silica/silicone nanofilament hybrid coatings with almost perfect superhydrophobicity (contact angle=179.8° and sliding angle=1.3°) is presented. The coatings are obtained by dip-coating of silica nanoparticles, followed by chemical vapor deposition of silicone nanofilaments. Predominant growth of silicone nanofilaments onto aggregated silica nanoparticles generates a two-tier structure. The effect of silica nanoparticle size on the growth of silicone nanofilaments, along with their anti-wetting properties and transparency are investigated in detail. Surface roughness and anti-wetting properties can be simply regulated by controlling the size of silica nanoparticles.