Science.gov

Sample records for agonist allyl isothiocyanate

  1. Effects of allyl isothiocyanate from horseradish on several experimental gastric lesions in rats.

    PubMed

    Matsuda, Hisashi; Ochi, Momotaro; Nagatomo, Akifumi; Yoshikawa, Masayuki

    2007-04-30

    Allyl isothiocyanate is well known to be a principal pungent constituent of horseradish and an agonist for transient receptor potential (TRP) A1. Ally isothiocyanate markedly inhibited the formation of gastric lesions induced by ethanol (1.5 ml/rat, p.o.), 0.6 M HCl (1.5 ml/rat, p.o.), 1% ammonia (1.5 ml/rat, p.o.), and aspirin (150 mg/kg, p.o.) (ED(50)=1.6, 2.2, 1.7, ca. 6.5 mg/kg, p.o.). It also significantly inhibited the formation of gastric lesions induced by indomethacin (20 mg/kg, p.o.), though the inhibition was ca. 60% at a high dose (40 mg/kg, p.o.). Furthermore, several synthetic isothiocyanate compounds also significantly inhibited ethanol and indomethacin-induced gastric lesions. Whereas, TRPV1 agonists, capsaicin and piperine, inhibited gastric lesions induced by ethanol, 1% ammonia, and aspirin, but had less of an effect on 0.6 M HCl-induced gastric lesions. With regard to mode of action, the protective effects of ally isothiocyanate on ethanol-induced gastric lesions were attenuated by pretreatment with indomethacin, but not with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME), or ruthenium red. Pretreatment with indomethacin reduced the protective effects of piperine, and L-NAME reduced the effects of capsaicin and omeprazole. Furthermore, ruthenium red reduced the effects of capsaicin, piperine, and omeprazole. These findings suggest that endogenous prostaglandins play an important role in the protective effect of allyl isothiocyanate in ethanol-induced gastric lesions different from capsaicin, piperine, and omeprazole.

  2. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants.

  3. Effect of Allyl Isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also re...

  4. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  5. [Inhibition of aflatoxin production and fungal growth on stored corn by allyl isothiocyanate vapor].

    PubMed

    Okano, Kiyoshi; Ose, Ayaka; Takai, Mitsuhiro; Kaneko, Misao; Nishioka, Chikako; Ohzu, Yuji; Odano, Masayoshi; Sekiyama, Yasushi; Mizukami, Yuichi; Nakamura, Nobuya; Ichinoe, Masakatsu

    2015-01-01

    Studies were conducted to determine the effectiveness of allyl isothiocyanate (AIT) vapor treatment with a commercial mustard seed extract (Wasaouro(®)) in controlling aflatoxin-producing fungi on stored corn. The concentration of AIT in the closed container peaked at 54.6 ng/mL on the 14th day and remained at 21.8 ng/mL on the 42nd day. AIT inhibited visible growth of aflatoxigenic molds in unsterilized corn and in sterilized corn inoculated with various aflatoxigenic fungi. However, fungi such as Aspergillus glaucus group, A. penicillioides and A. restrictus were detected by means of culture methods. PMID:25748979

  6. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    PubMed

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 < 3 ppm). Isotropic chemical shifts, ICS(γ), were determined for sp, sp(x), and sp(2) N-hybridization, and the γ dependencies of δ(N4) and δ(C5) are very large (10-33 ppm). Atom-centered density matrix propagation trajectories show that every conformer can access a large region of the potential energy surface AITC(γ,ε,...) with 120° < γ < 180° and 155° < ε < 180°. Because the extreme broadening of the (13)C NMR signal of the ITC carbon is caused by the structural flexibility of every conformer of AITC, the analysis provides a general explanation for the near-silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  7. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  8. Antimicrobial effect of allyl isothiocyanate and modified atmosphere on Pseudomonas aeruginosa in fresh catfish fillet under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 degree C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aeru...

  9. Effect of allyl isothiocyanate in headspace and modified atmosphere on Pseduomonas Aeruginosa growth in fresh catfish fillets under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 deg C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aerugin...

  10. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES...

  11. Sensitivity to allyl isothiocyanate, dimethyl trisulfide, sinigrin, and cooked cauliflower consumption.

    PubMed

    Engel, Erwan; Martin, Nathalie; Issanchou, Sylvie

    2006-05-01

    The consumption of cauliflower consumers has been related to the olfactory and gustatory sensitivities to potentially objectionable flavor compounds in this vegetable. Based on the ascending concentration series method of limits, a first experiment was designed to develop rapid tests dedicated to estimate individuals' olfactory thresholds for allyl isothiocyanate (AITC) and dimethyl trisulfide (DMTS) and gustatory thresholds for sinigrin (SIN). The best compromise between rapidity and reliability was obtained with two replications of a four-alternative forced choice (AFC) at six ascending concentrations (6x2x4-AFC) for both AITC and DMTS, and with a 6x1x4-AFC for SIN. In a second experiment, sensitivity to SIN, AITC and DMTS was determined on 267 participants divided into three cauliflower consumer target groups: non-, medium- or high consumers. The non-consumers were significantly more sensitive to SIN and AITC than were the medium and high consumers. No effect of consumer's sensitivity to DMTS was observed.

  12. Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo.

    PubMed

    Kumar, Akhilesh; D'Souza, Saritha S; Tickoo, Sanjay; Salimath, Bharathi P; Singh, H B

    2009-03-01

    The authors investigate the antiangiogenic and proapoptotic effects of mustard essential oil containing allyl isothiocyanate (AITC) and explore its mechanism of action on Ehrlich ascites tumor (EAT) cells. Swiss albino mice transplanted with EAT cells were used to study the effect of AITC. AITC was effective at a concentration of 10 mum as demonstrated by the inhibition of proliferation of EAT cells when compared with the normal HEK293 cells. It significantly reduced ascites secretion and tumor cell proliferation by about 80% and inhibited vascular endothelial growth factor expression in tumor-bearing mice in vivo. It also reduced vessel sprouting and exhibited potent antiangiogenic activity in the chorioallantoic membrane and cornea of the rat. AITC arrested the growth of EAT cells by inducing apoptosis and effectively arrested cell cycle progression at the G1 phase. The results clearly suggest that AITC inhibits tumor growth by both antiangiogenic and proapoptotic mechanisms.

  13. Synergistic effect of allyl isothiocyanate (AITC) on cisplatin efficacy in vitro and in vivo

    PubMed Central

    Ling, Xiang; Westover, David; Cao, Felicia; Cao, Shousong; He, Xiang; Kim, Hak-Ryul; Zhang, Yuesheng; Chan, Daniel CF; Li, Fengzhi

    2015-01-01

    Although in vitro studies have shown that isothiocyanates (ITCs) can synergistically sensitize cancer cells to cisplatin treatment, the underlying mechanisms have not been well defined, and there are no in vivo demonstrations of this synergy. Here, we report the in vitro and in vivo data for the combination of allyl isothiocyanate (AITC), one of the most common naturally occurring ITCs, with cisplatin. Our study revealed that cisplatin and AITC combination synergistically inhibits cancer cell growth and colony formation, and enhances apoptosis in association with the downregulation of antiapoptotic proteins Bcl-2 and survivin. Importantly, the in vivo combination treatment suppresses human tumor growth in animal models without observable increases in toxicity (body weight loss) in comparison with single agent treatment. Furthermore, our data revealed that addition of AITC to cisplatin treatment changes the profile of G2/M arrest (e.g. increase in M phase cell number) and significantly extends the duration of G2/M arrest in comparison with cisplatin treatment alone. To explore the underlying mechanism, we found that AITC treatment rapidly depletes b-tubulin. Combination of AITC and cisplatin inhibits the expression of G2/M checkpoint-relevant proteins including CDC2, cyclin B1 and CDC25. Together, our findings reveal a novel mechanism for AITC enhancing cisplatin efficacy and provides the first in vivo evidence to support ITCs as potential candidates for developing new regimens to overcome platinum resistance. PMID:26396928

  14. Multidirectional Time-Dependent Effect of Sinigrin and Allyl Isothiocyanate on Metabolic Parameters in Rats

    PubMed Central

    2010-01-01

    Sinigrin (SIN) and allyl isothiocyanate (AITC) are compounds found in high concentrations in Brassica family vegetables, especially in Brussels sprouts. Recently, they have been used as a nutrition supplement for their preventive and medicinal effect on some types of cancer and other diseases. In this research, nutritional significance of parent glucosinolate sinigrin 50 μmol/kg b. w./day and its degradation product allyl isothiocyanate 25 μmol/kg b. w./day and 50 μmol/kg b. w./day was studied by the evaluation of their influence on some parameters of carbohydrate and lipid metabolism in an animal rat model in vivo after their single (4 h) and 2 weeks oral administration. Additionally, the aim of this trial was to evaluate the direct action of AITC on basal and epinephrine-induced lipolysis in isolated rat adipocytes at concentration 1 μM, 10 μM and 100 μM in vitro. Sole AITC after 4 h of its ingestion caused liver triacylglycerols increment at both doses and glycaemia only at the higher dose. Multiple SIN treatment showed its putative bioconversion into AITC. It was found that SIN and AITC multiple administration in the same way strongly disturbed lipid and carbohydrate homeostasis, increasing esterified and total cholesterol, free fatty acids and lowering tracylglycerols in the blood serum. Additionally, AITC at both doses elevated insulinaemia and liver glycogen enhancement. The in vitro experiment revealed that AITC potentiated basal lipolysis process at 10 μM, and had stimulatory effect on epinephrine action at 1 μM and 10 μM. The results of this study demonstrated that the effect of SIN and AITC is multidirectional, indicating its impact on many organs like liver as well as pancreas, intestine in vivo action and rat adipocytes in vitro. Whilst consumption of cruciferous vegetables at levels currently considered “normal” seems to be beneficial to human health, this data suggest that any large increase in intake could conceivably lead

  15. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  16. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    PubMed Central

    Sporsheim, Bjørnar; Øverby, Anders; Bones, Atle Magnar

    2015-01-01

    Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system. PMID:26690132

  17. Effect of allyl isothiocyanate against Anisakis larvae during the anchovy marinating process.

    PubMed

    Giarratana, Filippo; Panebianco, Felice; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro

    2015-04-01

    Allyl isothiocyanate (AITC), is a natural compound found in plants belonging to the family Cruciferae and has strong antimicrobial activity and a biocidal activity against plants parasites. Anisakidosis is a zoonotic disease caused by the ingestion of larval nematodes in raw, almost raw, and marinated and/or salted seafood dishes. The aim of this work was to evaluate the effect of AITC against Anisakis larvae and to study its potential use during the marinating process. The effects of AITC against Anisakis larvae were tested in three experiment: in vitro with three liquid media, in semisolid media with a homogenate of anchovy muscle, and in a simulation of two kinds of anchovy fillets marinating processes. For all tests, the concentrations of AITC were 0, 0.01, 0.05, and 0.1%. Significant activity of AITC against Anisakis larvae was observed in liquid media, whereas in the semisolid media, AITC was effective only at higher concentrations. In anchovy fillets, prior treatment in phosphate buffer solution (1.5% NaCl, pH 6.8) with 0.1% AITC and then marination under standard conditions resulted in a high level of larval inactivation. AITC is a good candidate for further investigation as a biocidal agent against Anisakis larvae during the industrial marinating process.

  18. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    PubMed

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype. PMID:25771977

  19. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion.

    PubMed

    Bhattacharya, Arup; Li, Yun; Wade, Kristina L; Paonessa, Joseph D; Fahey, Jed W; Zhang, Yuesheng

    2010-12-01

    Allyl isothiocyanate (AITC), which occurs in many common cruciferous vegetables, was recently shown to be selectively delivered to bladder cancer tissues through urinary excretion and to inhibit bladder cancer development in rats. The present investigation was designed to test the hypothesis that AITC-containing cruciferous vegetables also inhibit bladder cancer development. We focused on an AITC-rich mustard seed powder (MSP-1). AITC was stably stored as its glucosinolate precursor (sinigrin) in MSP-1. Upon addition of water, however, sinigrin was readily hydrolyzed by the accompanying endogenous myrosinase. This myrosinase was also required for full conversion of sinigrin to AITC in vivo, but the matrix of MSP-1 had no effect on AITC bioavailability. Sinigrin itself was not bioactive, whereas hydrated MSP-1 caused apoptosis and G(2)/M phase arrest in bladder cancer cell lines in vitro. Comparison between hydrated MSP-1 and pure sinigrin with added myrosinase suggested that the anticancer effect of MSP-1 was derived principally, if not entirely, from the AITC generated from sinigrin. In an orthotopic rat bladder cancer model, oral MSP-1 at 71.5 mg/kg (sinigrin dose of 9 μmol/kg) inhibited bladder cancer growth by 34.5% (P < 0.05) and blocked muscle invasion by 100%. Moreover, the anticancer activity was associated with significant modulation of key cancer therapeutic targets, including vascular endothelial growth factor, cyclin B1 and caspase 3. On an equimolar basis, the anticancer activity of AITC delivered as MSP-1 appears to be more robust than that of pure AITC. MSP-1 is thus an attractive delivery vehicle for AITC and it strongly inhibits bladder cancer development and progression. PMID:20889681

  20. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  1. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    PubMed

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype.

  2. Hepatoprotective effects of allyl isothiocyanate against carbon tetrachloride-induced hepatotoxicity in rat.

    PubMed

    Ahn, Meejung; Kim, Jeongtae; Bang, Hyojin; Moon, Jihwan; Kim, Gi Ok; Shin, Taekyun

    2016-07-25

    We evaluated the hepatoprotective activity of allyl isothiocyanate (AITC) against carbon tetrachloride (CCl4)-induced liver injury in rats. Sprague Dawley rats were orally administered AITC at doses of 5 (AITC 5) and 50 (AITC 50) mg/kg body weight once daily for 3 days, with or without intraperitoneal injection of CCl4. Serum chemistry was assessed for changes in alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The enzyme activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were examined in liver tissues, while pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) mRNA expression were analyzed using real-time polymerase chain reaction. And heme oxygenase-1 (HO-1) and ionized calcium binding protein-1 (Iba-1) immunoreactivities were evaluated by Western blot analysis and immunohistochemistry, respectively. In serum chemistry, the oral administration of AITC itself did not affect the serum levels of ALT or AST, furthermore pretreatment with AITC 5 and AITC 50 significantly reduced the ALT and AST activity levels that were elevated in CCl4-intoxicated rats. In addition, AITC significantly suppressed the reduction of SOD and CAT, and the elevation of MDA, TNF-α mRNA expression, on the other hands, induced the expression of HO-1 compared with those of the vehicle-treated CCl4 group. The histopathological evaluation and Iba-1 immunoreactivity also supported the hepatoprotective effects of AITC against CCl4-induced liver injury. These results suggest that AITC ameliorates oxidative liver injury, possibly through reducing lipid peroxidation, enhancing antioxidant enzymes, and suppressing Kupffer cells and macrophages. PMID:27241356

  3. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion.

    PubMed

    Bhattacharya, Arup; Li, Yun; Wade, Kristina L; Paonessa, Joseph D; Fahey, Jed W; Zhang, Yuesheng

    2010-12-01

    Allyl isothiocyanate (AITC), which occurs in many common cruciferous vegetables, was recently shown to be selectively delivered to bladder cancer tissues through urinary excretion and to inhibit bladder cancer development in rats. The present investigation was designed to test the hypothesis that AITC-containing cruciferous vegetables also inhibit bladder cancer development. We focused on an AITC-rich mustard seed powder (MSP-1). AITC was stably stored as its glucosinolate precursor (sinigrin) in MSP-1. Upon addition of water, however, sinigrin was readily hydrolyzed by the accompanying endogenous myrosinase. This myrosinase was also required for full conversion of sinigrin to AITC in vivo, but the matrix of MSP-1 had no effect on AITC bioavailability. Sinigrin itself was not bioactive, whereas hydrated MSP-1 caused apoptosis and G(2)/M phase arrest in bladder cancer cell lines in vitro. Comparison between hydrated MSP-1 and pure sinigrin with added myrosinase suggested that the anticancer effect of MSP-1 was derived principally, if not entirely, from the AITC generated from sinigrin. In an orthotopic rat bladder cancer model, oral MSP-1 at 71.5 mg/kg (sinigrin dose of 9 μmol/kg) inhibited bladder cancer growth by 34.5% (P < 0.05) and blocked muscle invasion by 100%. Moreover, the anticancer activity was associated with significant modulation of key cancer therapeutic targets, including vascular endothelial growth factor, cyclin B1 and caspase 3. On an equimolar basis, the anticancer activity of AITC delivered as MSP-1 appears to be more robust than that of pure AITC. MSP-1 is thus an attractive delivery vehicle for AITC and it strongly inhibits bladder cancer development and progression.

  4. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs. PMID:23470258

  5. Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.

    PubMed

    Terada, Yuko; Masuda, Hideki; Watanabe, Tatsuo

    2015-08-28

    Allyl isothiocyanate (ITC) (4) is the main pungent component in wasabi, and it generates an acrid sensation by activating TRPA1. The flavor and pungency of ITCs vary depending on the compound. However, the differences in activity to activate TRPA1 between ITCs are not known except for a few compounds. To investigate the effect of carbon chain length and substituents of ITCs, the TRPA1-activiting ability of 16 ITCs was measured. Since most of the ITCs showed nearly equal TRPA1-activiting potency, the ITC moiety is likely the predominant contributor to their TRPA1-activating abilities, and contributions of other functional groups to their activities to activate TRPA1 are comparatively small.

  6. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  7. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation.

    PubMed

    Tripathi, Kaushlendra; Hussein, Usama K; Anupalli, Roja; Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P; Owen, Laurie B; Piazza, Gary A; Palle, Komaraiah

    2015-03-10

    Allyl isothiocyanate (AITC), a constituent of many cruciferous vegetables exhibits significant anticancer activities in many cancer models. Our studies provide novel insights into AITC-induced anticancer mechanisms in human A549 and H1299 non-small cell lung cancer (NSCLC) cells. AITC exposure induced replication stress in NSCLC cells as evidenced by γH2AX and FANCD2 foci, ATM/ATR-mediated checkpoint responses and S and G2/M cell cycle arrest. Furthermore, AITC-induced FANCD2 foci displayed co-localization with BrdU foci, indicating stalled or collapsed replication forks in these cells. Although PITC (phenyl isothiocyanate) exhibited concentration-dependent cytotoxic effects, treatment was less effective compared to AITC. Previously, agents that induce cell cycle arrest in S and G2/M phases were shown to sensitize tumor cells to radiation. Similar to these observations, combination therapy involving AITC followed by radiation treatment exhibited increased DDR and cell killing in NSCLC cells compared to single agent treatment. Combination index (CI) analysis revealed synergistic effects at multiple doses of AITC and radiation, resulting in CI values of less than 0.7 at Fa of 0.5 (50% reduction in survival). Collectively, these studies identify an important anticancer mechanism displayed by AITC, and suggest that the combination of AITC and radiation could be an effective therapy for NSCLC.

  8. Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian mustard (Brassica juncea L.).

    PubMed

    Gerendás, Jóska; Podestát, Jana; Stahl, Thorsten; Kübler, Kerstin; Brückner, Hans; Mersch-Sundermann, Volker; Mühling, Karl H

    2009-05-13

    Food derived from Brassica species is rich in glucosinolates. Hydrolysis of these compounds by myrosinase yields isothiocyanates and other breakdown products, which due to their pungency represent the primary purpose of Indian mustard cultivation. Strong interactive effects of S (0.0, 0.2, and 0.6 g pot(-1)) and N (1, 2, and 4 g pot(-1)) supply on growth, seed yield, and the concentrations of glucosinolates and isothiocyanates in seeds were observed in growth experiments, reflecting the involvement of S-containing amino acids in both protein and glucosinolate synthesis. At intermediate S supply, a strong N-induced S limitation was apparent, resulting in high concentrations of sinigrin (12 micromol g(-1) of DM) and allyl isothiocyanate (213 micromol kg(-1) of DM) at low N supply only. Myrosinase activity in seeds increased under low N and low S supply, but the results do not suggest that sinigrin functions as a transient reservoir for S. PMID:19309148

  9. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro.

    PubMed

    Bordin, K; Saladino, F; Fernández-Blanco, C; Ruiz, M J; Mañes, J; Fernández-Franzón, M; Meca, G; Luciano, F B

    2017-02-15

    This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-AITC) were lower than 42.13%, but significantly higher than the original mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also evaluated, with toxic effects observed at higher levels than 75μM. Further studies should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-AITC. PMID:27664682

  10. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    PubMed

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.

  11. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. PMID:26146190

  12. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives.

  13. Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized Oriental mustard extract.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2016-08-01

    Ready-to-eat meats are considered foods at high risk to cause life-threatening Listeria monocytogenes infections. This study screened 5 L. monocytogenes strains for their ability to hydrolyze sinigrin (a glucosinolate in Oriental mustard), which formed allyl isothiocyanate (AITC) and reduced L. monocytogenes viability on inoculated vacuum-packed, cooked, cured roast chicken slices at 4 °C. Tests involved incorporation of 25-50 μl/g AITC directly or 100-250 mg/g Oriental mustard extract in 0.5% (w/v) κ-carrageenan/2% (w/v) chitosan-based coatings prepared using 1.5% malic or acetic acid. L. monocytogenes strains hydrolyzed 33.6%-48.4% pure sinigrin in MH broth by 21 d at 25 °C. Acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 100-250 mg/g mustard reduced the viability of L. monocytogenes and aerobic bacteria on cooked, cured roast chicken slices by 4.1 to >7.0 log10 CFU/g compared to uncoated chicken stored at 4 °C for 70 d. Coatings containing malic acid were significantly more antimicrobial than those with acetic acid. During storage for 70 d, acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 250 mg/g mustard extract reduced lactic acid bacteria (LAB) numbers 3.8 to 5.4 log10 CFU/g on chicken slices compared to uncoated samples. Acidified κ-carrageenan/chitosan-based coatings containing either AITC or Oriental mustard extract at the concentrations tested had the ability to control L. monocytogenes viability and delay growth of potential spoilage bacteria on refrigerated, vacuum-packed cured roast chicken. PMID:27052706

  14. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  15. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F

    2010-05-01

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but spoilage then occurred due to growth of fermentative yeasts, which produced ethanol in the cucumbers. Allyl isothiocyanate (2 mM) prevented growth of Zygosaccharomyces globiformis, which has been responsible for commercial pickle spoilage, as well as the yeasts that were present on fresh cucumbers. However, allyl isothiocyanate did not prevent growth of Lactobacillus plantarum. When these compounds were added in combination to acidified cucumbers, the cucumbers were successfully preserved as indicated by the fact that neither yeasts or lactic acid bacteria increased in numbers nor were lactic acid or ethanol produced by microorganisms when cucumbers were stored at 30 degrees C for at least 2 mo. This combination of 2 naturally occurring preservative compounds may serve as an alternative approach to the use of sodium benzoate or sodium metabisulfite for preservation of acidified vegetables without a thermal process.

  16. Toxicity of allyl isothiocyanate and cinnamic aldehyde assessed using cultured human KB cells and yeast, Saccharomyces cervisiae

    SciTech Connect

    Mochida, K.; Gomyoda, M.; Fujita, T.; Yamagata, K.

    1988-03-01

    The main components of mustard and cinnamon oils are allyl isothiocyante (AIT) and cinnamic aldehyde (CA), substances used as food additives. The acute toxicity of these substances has been noted in rats (Jenner et al. 1964) and it is desirable to obtain information on the toxic effects of these compounds in vitro systems. The authors report the toxicity of AIT and CA on human KB cells and Saccharomyces cervisiae cultivated in culture systems.

  17. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition.

    PubMed

    Hanschen, Franziska S; Yim, Bunlong; Winkelmann, Traud; Smalla, Kornelia; Schreiner, Monika

    2015-01-01

    Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products. PMID:26186695

  18. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition

    PubMed Central

    Hanschen, Franziska S.; Yim, Bunlong; Winkelmann, Traud; Smalla, Kornelia; Schreiner, Monika

    2015-01-01

    Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products. PMID:26186695

  19. Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil).

    PubMed

    Savio, André Luiz Ventura; da Silva, Glenda Nicioli; de Camargo, Elaine Aparecida; Salvadori, Daisy Maria Fávero

    2014-04-01

    Allyl isothiocyanate (AITC) is present in plants of the cruciferous family and is abundant in mustard seed. Due to its high bioavailability in urine after ingestion, AITC has been considered a promising antineoplastic agent against bladder cancer. Because TP53 mutations are the most common alterations in bladder cancer cells and are frequently detected in in situ carcinomas, in this study, we investigated whether the AITC effects in bladder cancer cells are dependent on the TP53 status. Two bladder transitional carcinoma cell lines were used: RT4, with wild-type TP53; and T24, mutated TP53 gene. AITC was tested at concentrations of 0.005, 0.0625, 0.0725, 0.0825, 0.0925, 0.125 and 0.25 μM in cytotoxicity, cell and clonogenic survival assays, comet and micronucleus assays and for its effects on cell cycle and apoptosis by flow cytometry and on TP53 gene expression. The data showed increased primary DNA damage in both cell lines; however, lower concentrations of AITC were able to induce genotoxicity in the mutant cells for the TP53 gene. Furthermore, the results demonstrated increased apoptosis and necrosis rates in the wild-type cells, but not in mutated TP53 cells, and cell cycle arrest in the G2 phase for mutated cells after AITC treatment. No significant differences were detected in TP53 gene expression in the two cell lines. In conclusion, AITC caused cell cycle arrest, increased apoptosis rates and varying genotoxicity dependent on the TP53 status. However, we cannot rule out the possibility that those differences could reflect other intrinsic genetic alterations in the examined cell lines, which may also carry mutations in genes other than TP53. Therefore, further studies using other molecular targets need to be performed to better understand the mechanisms by which AITC may exert its antineoplastic properties against tumor cells. PMID:24625788

  20. Elimination of Escherichia coli O157:H7 from Fermented Dry Sausages at an Organoleptically Acceptable Level of Microencapsulated Allyl Isothiocyanate

    PubMed Central

    Chacon, Pedro A.; Muthukumarasamy, Parthiban; Holley, Richard A.

    2006-01-01

    Four sausage batters (17.59% beef, 60.67% pork, and 17.59% pork fat) were inoculated with two commercial starter culture organisms (>7 log10 CFU/g Pediococcus pentosaceus and 6 log10 CFU/g Staphylococcus carnosus) and a five-strain cocktail of nonpathogenic variants of Escherichia coli O157:H7 to yield 6 to 7 log10 CFU/g. Microencapsulated allyl isothiocyanate (AIT) was added to three batters at 500, 750, or 1,000 ppm to determine its antimicrobial effects. For sensory analysis, separate batches with starter cultures and 0, 500, or 750 ppm microencapsulated AIT were produced. Sausages were fermented at ≤26°C and 88% relative humidity (RH) for 72 h. Subsequently sausages were dried at 75% RH and 13°C for at least 25 days. The water activity (aw), pH, and levels of starter cultures, E. coli O157:H7, and total bacteria were monitored during fermentation and drying. All sausages showed changes in the initial pH from 5.57 to 4.89 and in aw from 0.96 to 0.89 by the end of fermentation and drying, respectively. Starter culture numbers were reduced during sausage maturation, but there was no effect of AIT on meat pH reduction. E. coli O157:H7 was reduced by 6.5 log10 CFU/g in sausages containing 750 and 1,000 ppm AIT after 21 and 16 days of processing, respectively. E. coli O157:H7 numbers were reduced by 4.75 log10 CFU/g after 28 days of processing in treatments with 500 ppm AIT, and the organism was not recovered from this treatment beyond 40 days. During sensory evaluation, sausages containing 500 ppm AIT were considered acceptable although slightly spicy by panelists. PMID:16672446

  1. Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2015-06-01

    Control of Salmonella in poultry is a public health concern as salmonellosis is one of the most common foodborne diseases worldwide. This study aimed to screen the ability of 5 Salmonella serovars to degrade the mustard glucosinolate, sinigrin (by bacterial myrosinase) in Mueller-Hinton broth at 25 °C for 21 d and to reduce Salmonella on fresh chicken breasts by developing an edible 0.2% (w/v) κ-carrageenan/2% (w/v) chitosan-based coating containing Oriental mustard extract, allyl isothiocyanate (AITC), EDTA or their combinations. Individual Salmonella serovars degraded 50.2%-55.9% of the sinigrin present in 21 d. κ-Carrageenan/chitosan-based coatings containing 250 mg Oriental mustard extract/g or 50 μl AITC/g reduced the numbers of Salmonella on chicken breasts 2.3 log10 CFU/g at 21 d at 4 °C. However, when either mustard extract or AITC was combined with 15 mg/g EDTA in κ-carrageenan/chitosan-based coatings, Salmonella numbers were reduced 2.3 log10 CFU/g at 5 d and 3.0 log10 CFU/g at 21 d. Moreover, these treatments reduced numbers of lactic acid bacteria and aerobic bacteria by 2.5-3.3 log10 CFU/g at 21 d. κ-Carrageenan/chitosan coatings containing either 50 μl AITC/g or 250 mg Oriental mustard extract/g plus 15 mg EDTA/g have the potential to reduce Salmonella on raw chicken.

  2. Effect of some isothiocyanates on the hydrogenation of canola oil

    SciTech Connect

    Abraham, V.; de Man, J.M.

    1987-06-01

    Sulfur compounds were added to refined and bleached canola oil before hydrogenation in the form of allyl, heptyl and 2-phenethyl isothiocyanates, and the effects on hydrogenation rate, solid fat content and percentage trans fatty acids were determined. The poisoning effect was most pronounced with allyl isothiocyanate and least phenethyl isothiocyanate. As the amount of added sulfur increased, the hydrogenation rate decreased. Of the three isothiocyanates used, allyl isothiocyanate caused formation of larger amounts of trans isomers. An increased sulfur level in the oil resulted in increased solid fat content and trans isomer level. Allyl isothiocyanate also caused formation of larger amounts of solid fat than other isothiocyanates at all levels of sulfur addition. (Refs. 24).

  3. Allyl astatide

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Syuch, Z.

    1988-11-01

    Allyl astatide was prepared by the interhalogen exchange method, by replacement of the bromine in allyl bromide with astatide ion. The most favorable conditions for the synthesis were found by variations of the method that uses hydrazine hydrate and sodium formaldehyde sulfoxylate as reductants. A by-product is formed by the reaction of allyl bromide with excited astatine-211 which forms by disintegration of radon-211. Allyl astatide was identified by radio gas-liquid chromatography. Its retention indexes on nonpolar and weakly polar liquid phases were found. The stability of this newly prepared astatine compound was studied. The extrapolated boiling point of allyl astatide is 129 +/- 2/sup 0/C.

  4. 3-(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-alkyl-N-arylbenzamides: potent, non-peptidic agonists of both the micro and delta opioid receptors.

    PubMed

    Bishop, Michael J; Garrido, Dulce M; Boswell, G Evan; Collins, Mark A; Harris, Philip A; McNutt, Robert W; O'Neill, Scott J; Wei, Ke; Chang, Kwen-Jen

    2003-02-13

    Opioid analgesics with both micro and delta opioid receptor activation represent a new approach to the treatment of severe pain with an improved safety profile. Compounds with this profile may exhibit strong analgesic properties due to micro agonism, with a reduced side effect profile resulting from delta agonism. Replacing the p-diethylamide of the known potent delta opioid receptor selective agonist BW373U86 with a m-diethylamide resulted in a compound with agonist activity at both the micro and delta opioid receptors. Modifying the amide to an N-methyl-N-phenylamide increased agonist potency at both receptors. A series of 3-(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-alkyl-N-arylbenzamides have been made to explore the structure-activity relationship (SAR) around the N-methyl-N-phenylamide. Several potent agonists of both the micro and delta opioid receptors have been identified, including (+)-3-((alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(4-fluorophenyl)-N-methylbenzamide (23), which has EC50 values of 0.67 and 1.1 nM at the micro (guinea pig ileum assay) and delta (mouse vas deferens assay) opioid receptors, respectively.

  5. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. Definition of two agonist types at the mammalian cold-activated channel TRPM8.

    PubMed

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. PMID:27449282

  8. [3,3]-sigmatropic rearrangements of fluorinated allyl (Thio)cyanates - a tool for the synthesis of fluorinated (Thio)ureas.

    PubMed

    Ramb, Daniel C; Kost, Lisa; Haufe, Günter

    2014-01-01

    The first (thio)cyanate to iso(thio)cyanate rearrangements based on 2-fluoroallylic alcohols are presented. Long-chain 2-fluoroallylic alcohols were converted to corresponding N-unsubstituted carbamates by treatment with trichloroacetyl isocyanate. Dehydration using trifluoroacetic anhydride in the presence of triethylamine formed intermediate allylic cyanates, which immediately underwent sigmatropic rearrangement to fluorinated allyl isocyanates. Without isolation the latter delivered fluorinated ureas by addition of amines. The thiocyanate to isothiocyanate rearrangements started from the same fluorinated allylic alcohols, which were first converted to mesylates. Heating in THF with potassium thiocyanate led to fluorinated allyl isothiocyanates, via [3,3]-sigmatropic rearrangement of intermediate allyl thiocyanates. The formed products were further reacted with amines to fluorinated thioureas.

  9. Interstellar isothiocyanic acid

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Linke, R. A.; Thaddeus, P.

    1979-01-01

    Isothiocyanic acid (HNCS) has been identified in Sgr B2 from millimeter-wave spectral line observations. We have definitely detected three rotational lines, and have probably detected two others. The rotational temperature of HNCS in Sgr B2 is 14 plus or minus 5 K, its column density is 2.5 plus or minus 1.0 x 10 to the 13th per sq cm, and its abundance relative to HNCO is consistent with the cosmic S/O ratio, 1/42.

  10. Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop

    SciTech Connect

    Trott, Donna M.; LePage, Jane; Hebert, Vincent

    2012-01-01

    A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

  11. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  12. [3,3]-Sigmatropic shifts and retro-ene rearrangements in cyanates, isocyanates, thiocyanates, and isothiocyanates of the form RX-YCN and RX-NCY.

    PubMed

    Koch, Rainer; Finnerty, Justin J; Murali, Sukumaran; Wentrup, Curt

    2012-02-17

    Retro-ene type [2π + 2π + 2σ] and [3,3]-sigmatropic shift reactions involving the substituent groups R in heteroatom-substituted cyanates and thiocyanates RX-YCN and the isomeric isocyanates and isothiocyanates of the type RX-NCY (X = CR(2), NR', O, or S; Y = O or S) have been investigated computationally at the B3LYP/6-311++G(d,p) level. Retro-ene reactions of alkyl derivatives of the title compounds afford alkenes, imines, carbonyl and thiocarbonyl compounds together with HNCO (HNCS) or HOCN (HSCN). [3,3]-Sigmatropic shifts (hetero-Cope rearrangements) of the corresponding allyl, propargyl, benzyl, and aryl derivatives causes allylic rearrangements, propargyl-allenyl rearrangement, conversion of benzyl cyanates to o-isocyanatotoluenes, and conversion of N-cyanatoarylamines to o-isocyanatoanilines, etc. The corresponding rearrangements of allyl thiocyanates, arylamino thiocyanates and isothiocyanates, and arylsulfenyl thiocyanates and isothiocyanates are also described. PMID:22251012

  13. Copper-catalyzed borylative allyl-allyl coupling reaction.

    PubMed

    Semba, Kazuhiko; Bessho, Naoto; Fujihara, Tetsuaki; Terao, Jun; Tsuji, Yasushi

    2014-08-18

    Borylative allyl-allyl coupling using allenes, bis(pinacolato)diboron, and allyl phosphates has been developed in the presence of a copper catalyst bearing an N-heterocyclic carbene ligand. The reaction affords boryl-substituted 1,5-diene derivatives in good to high yields with high regioselectivity and Z selectivity. PMID:24986738

  14. Long-lasting facilitation of respiratory rhythm by treatment with TRPA1 agonist, cinnamaldehyde

    PubMed Central

    Tani, Mariho; Yazawa, Itaru; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    The transient receptor potential (TRP) channels are widely distributed in the central nervous system (CNS) and peripheral nervous system. We examined the effects of TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and allyl isothiocyanate) on respiratory rhythm generation in brainstem-spinal cord preparations from newborn rats [postnatal days 0–3 (P0–P3)] and in in situ-perfused preparations from juvenile rats (P11–P13). Preparations were superfused with modified Krebs solution at 25–26°C, and activity of inspiratory C4 ventral root (or phrenic nerve) was monitored. In the newborn rat, an in vitro preparation of cinnamaldehyde (0.5 mM) induced typically biphasic responses in C4 rate: an initial short increase and subsequent decrease, then a gradual recovery of rhythm during 15 min of bath application. After washout, the respiratory rhythm rate further increased, remaining 200% of control for >120 min, indicating long-lasting facilitation. Allyl isothiocyanate induced effects similar to those of cinnamaldehyde. The long-lasting facilitation of respiratory rhythm was partially antagonized by the TRPA1 antagonist HC-030031 (10 μM). We obtained similar long-lasting facilitation in an in situ-perfused reparation from P11–P13 rats. On the basis of results from transection experiments of the rostral medulla and whole-cell recordings from preinspiratory neurons in the parafacial respiratory group (pFRG), we suggest that the rostral medulla, including the pFRG, is important to the induction of long-lasting facilitation. A histochemical analysis demonstrated a wide distribution of TRPA1 channel-positive cells in the reticular formation of the medulla, including the pFRG. Our findings suggest that TRPA1 channel activation could induce long-lasting facilitation of respiratory rhythm and provide grounds for future study on the roles of TRPA1 channels in the CNS. PMID:26108952

  15. Contractile effect of TRPA1 receptor agonists in the isolated mouse intestine.

    PubMed

    Penuelas, Angelica; Tashima, Kimihito; Tsuchiya, Shizuko; Matsumoto, Kenjiro; Nakamura, Tomonori; Horie, Syunji; Yano, Shingo

    2007-12-01

    TRPA1 is a member of the transient receptor potential (TRP) channel family expressed in sensory neurons. The present study focused on the effects of TRPA1 activation on contractile responses in isolated mouse intestine preparations. The jejunum, ileum, and proximal and distal colon were surgically isolated from male ddY mice. Intestinal motility was recorded as changes in isotonic tension. TRPA1, TRPM8, and TRPV1 expressions were examined by reverse transcription-polymerase chain reaction (RT-PCR). A TRPA1 agonist allyl isothiocyanate (AITC) dose-dependently induced contractions in the proximal and distal colon, whereas in the jejunum and ileum, even 100 muM AITC caused very little contraction. Likewise, a TRPA1 and TRPM8 agonist icilin, a TRPA1 agonist allicin, and a TRPV1 agonist capsaicin induced contractions in the colon. However, a TRPM8 agonist menthol induced long-lasting relaxation in the colon. Repeated exposure to AITC produced desensitization of its own contraction in the colon. Moreover, contractions induced by AITC generate cross-desensitization with icilin and capsaicin. Tetrodotoxin completely abolished AITC-induced contractions in the colon, whereas atropine significantly attenuated AITC-induced contractions in the distal colon, but not in the proximal colon. Menthol-induced relaxation in the colon was not inhibited by tetrodotoxin and atropine. RT-PCR analysis revealed the expression of TRPA1 and TRPV1, but not TRPM8, throughout the mouse intestine. These results suggest that TRPA1, but not TRPM8, are functionally expressed in the enteric nervous system throughout the mouse intestine on neurons that may also co-express TRPV1, yet the contractile responses to TRPA1 activation differ depending on their location along the intestine.

  16. Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: insight to the mode of action

    PubMed Central

    Nowicki, Dariusz; Rodzik, Olga; Herman-Antosiewicz, Anna; Szalewska-Pałasz, Agnieszka

    2016-01-01

    Production of Shiga toxins by enterohemorrhagic Escherichia coli (EHEC) which is responsible for the pathogenicity of these strains, is strictly correlated with induction of lambdoid bacteriophages present in the host’s genome, replication of phage DNA and expression of stx genes. Antibiotic treatment of EHEC infection may lead to induction of prophage into a lytic development, thus increasing the risk of severe complications. This, together with the spread of multi-drug resistance, increases the need for novel antimicrobial agents. We report here that isothiocyanates (ITC), plant secondary metabolites, such as sulforaphane (SFN), allyl isothiocyanate (AITC), benzyl isothiocynanate (BITC), phenyl isothiocyanate (PITC) and isopropyl isothiocyanate (IPRITC), inhibit bacterial growth and lytic development of stx-harboring prophages. The mechanism underlying the antimicrobial effect of ITCs involves the induction of global bacterial stress regulatory system, the stringent response. Its alarmone, guanosine penta/tetraphosphate ((p)ppGpp) affects major cellular processes, including nucleic acids synthesis, which leads to the efficient inhibition of both, prophage induction and toxin synthesis, abolishing in this way EHEC virulence for human and simian cells. Thus, ITCs could be considered as potential therapeutic agents in EHEC infections. PMID:26922906

  17. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.

    PubMed

    Hu, Ping; Hollister, Emily B; Somenahally, Anilkumar C; Hons, Frank M; Gentry, Terry J

    2014-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  18. Definition of two agonist types at the mammalian cold-activated channel TRPM8

    PubMed Central

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. DOI: http://dx.doi.org/10.7554/eLife.17240.001 PMID:27449282

  19. Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein

    PubMed Central

    Kaye, Clive M.

    1973-01-01

    1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754

  20. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    EPA Science Inventory

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  1. Overexpression of Glutathione Transferase E7 in Drosophila Differentially Impacts Toxicity of Organic Isothiocyanates in Males and Females

    PubMed Central

    Mannervik, Bengt; Mannervik, Mattias

    2014-01-01

    Organic isothiocyanates (ITCs) are allelochemicals produced by plants in order to combat insects and other herbivores. The compounds are toxic electrophiles that can be inactivated and conjugated with intracellular glutathione in reactions catalyzed by glutathione transferases (GSTs). The Drosophila melanogaster GSTE7 was heterologously expressed in Escherichia coli and purified for functional studies. The enzyme showed high catalytic activity with various isothiocyanates including phenethyl isothiocyanate (PEITC) and allyl isothiocyanate (AITC), which in millimolar dietary concentrations conferred toxicity to adult D. melanogaster leading to death or a shortened life-span of the flies. In situ hybridization revealed a maternal contribution of GSTE7 transcripts to embryos, and strongest zygotic expression in the digestive tract. Transgenesis involving the GSTE7 gene controlled by an actin promoter produced viable flies expressing the GSTE7 transcript ubiquitously. Transgenic females show a significantly increased survival when subjected to the same PEITC treatment as the wild-type flies. By contrast, transgenic male flies show a significantly lower survival rate. Oviposition activity was enhanced in transgenic flies. The effect was significant in transgenic females reared in the absence of ITCs as well as in the presence of 0.15 mM PEITC or 1 mM AITC. Thus the GSTE7 transgene elicits responses to exposure to ITC allelochemicals which differentially affect life-span and fecundity of male and female flies. PMID:25329882

  2. Assessment of DNA Damage and Repair in Adults Consuming AllylIsothiocyanate or Brassica Vegetables

    PubMed Central

    Charron, Craig S.; Clevidence, Beverly A.; Albaugh, George A.; Kramer, Matthew H.; Vinyard, Bryan T.; Milner, John A.; Novotny, Janet A.

    2012-01-01

    Allylisothiocyanate (AITC) is a dietary component with possible anti-cancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n=46) consumed AITC, AITC-rich vegetables (mustard and cabbage), or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells (PBMCs) was assessed by single cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten day intake of neither AITC nor mustard/cabbage(M/C) resulted in statistically significant differences in DNA strand breaks (LS mean % DNA in tail ± SEM: 4.8 ± 0.6 for control, 5.7 ± 0.7 for AITC, 5.3 ± 0.6 for M/C) or urinary 8-oxodG (LS mean µg 8-oxodG/g creatinine ± SEM: 2.95 ± 0.09 for control, 2.88 ± 0.09 for AITC, 3.06 ± 0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3h post-consumption (LS mean % DNA in tail ± SEM: 3.2 ± 0.7 for control, 8.3 ± 1.7 for AITC, 8.0 ± 1.7 for M/C), and this difference disappeared at 6h (4.2 ± 0.9 for control, 5.7 ± 1.2 for AITC, 5.5 ± 1.2 for M/C). Genotypes for GSTM1, GSTT1, and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair. PMID:22902324

  3. Microcapsule preparation of allyl isothiocyanate and its application on mature green tomato preservation.

    PubMed

    Wu, Hua; Xue, Na; Hou, Chang-liang; Feng, Jun-tao; Zhang, Xing

    2015-05-15

    Studies have shown that AITC can effectively control pathogenic fungi, which cause fruits and vegetables decay and rotting during storage. However, because of its strong irritant, AITC has not been conveniently used in fruits and vegetables preservation. Microencapsulation techniques may solve this problem. Up to 2% (w/v) gelatin and 2% (w/v) gum arabic (as wall material and materials), as well as AITC (as core material) were prepared used to form microcapsules with a ratio of 1:2 (the core material: to wall material). On the basis of the microcapsule option conditions, the AITC microcapsule encapsulation efficiency is above 90%, which can effectively control AITC release decrease irritant. Compared with control group, the storage time of the tomato of AITC microcapsule preservation was prolonged significantly, and the sensory quality of the tomato was better. Thus, the AITC microcapsule preservation has broad application prospects and development value prospects.

  4. Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa

    PubMed Central

    Son, Hee Jin; Kweon, Hae-Jin; Kim, Jung Tae; Kim, Yiseul; Shim, Jaewon; Suh, Byung-Chang; Rhyu, Mee-Ra

    2015-01-01

    Transient receptor potential ankyrin1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) are members of the TRP superfamily of structurally related, nonselective cation channels and mediators of several signaling pathways. Previously, we identified methyl syringate as an hTRPA1 agonist with efficacy against gastric emptying. The aim of this study was to find hTRPA1 and/or hTRPV1 activators in Agastache rugosa (Fisch. et Meyer) O. Kuntze (A.rugosa), commonly known as Korean mint to improve hTRPA1-related phenomena. An extract of the stem and leaves of A.rugosa (Labiatae) selectively activated hTRPA1 and hTRPV1. We next investigated the effects of commercially available compounds found in A.rugosa (acacetin, 4-allylanisole, p-anisaldehyde, apigenin 7-glucoside, L-carveol, β-caryophyllene, trans-p-methoxycinnamaldehyde, methyl eugenol, pachypodol, and rosmarinic acid) on cultured hTRPA1- and hTRPV1-expressing cells. Of the ten compounds, L-carveol, trans-p-methoxycinnamaldehyde, methyl eugenol, 4-allylanisole, and p-anisaldehyde selectively activated hTRPA1, with EC50 values of 189.1±26.8, 29.8±14.9, 160.2±21.9, 1535±315.7, and 546.5±73.0 μM, respectively. The activities of these compounds were effectively inhibited by the hTRPA1 antagonists, ruthenium red and HC-030031. Although the five active compounds showed weaker calcium responses than allyl isothiocyanate (EC50=7.2±1.4 μM), our results suggest that these compounds from the stem and leaves of A.rugosa are specific and selective agonists of hTRPA1. PMID:25978436

  5. The allylic chalcogen effect in olefin metathesis

    PubMed Central

    Lin, Yuya A

    2010-01-01

    Summary Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications. PMID:21283554

  6. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes.

    SciTech Connect

    Trovitch, R. J.; John, K. D.; Martin, R. L.; Obrey, S. J.; Sattelberger, A. P.; Scott, B. L.; Baker, R. T.; LANL; Univ. of Ottawa

    2009-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2}-{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the roles of the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  7. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  8. Complex Allylation by the Direct Cross-Coupling of Imines with Unactivated Allylic Alcohols**

    PubMed Central

    Takahashi, Masayuki; McLaughlin, Martin; Micalizio, Glenn C.

    2010-01-01

    We report a reaction for the convergent coupling of allylic alcohols with imines that delivers stereodefined homoallylic amines. The process proceeds with net allylic transposition, without the intermediacy of allylic organometallic reagents, and forges two stereodefined centers and a geometrically defined di- or trisubstituted alkene with very high levels of selectivity. PMID:19360820

  9. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  10. Broad spectrum antibacterial activity of a mixture of isothiocyanates from nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix).

    PubMed

    Conrad, A; Biehler, D; Nobis, T; Richter, H; Engels, I; Biehler, K; Frank, U

    2013-02-01

    Isothiocyanates have been reported to exert antimicrobial activity. These compounds are found in a licensed native preparation of nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix) which is used for treatment of upper respiratory and urinary tract infections. The aim of our investigation was to assess the antimicrobial activity of a mixture of the contained benzyl-, allyl-, and phenylethyl- isothiocyanates against clinically important bacterial and fungal pathogens including antimicrobial resistant isolates. Susceptibility testing was performed by agar-dilution technique. Isothiocyanates were mixed in proportions identical to the licensed drug. Minimum inhibitory- and minimum bactericidal concentrations were assessed. The Minimum inhibitory concentration90 was defined as the concentration which inhibited 90% of the microbial species tested. H. influenzae, M. catarrhalis, S. marcescens, P. vulgaris, and Candida spp. were found to be highly susceptible, with minimum inhibitory concentration90 -values ranging between ≤0.0005% and 0.004% (v/v) of total ITC. Intermediate susceptibilities were observed for S. aureus, S. pyogenes, S. pneumoniae, K. pneumoniae, E. coli and P. aeruginosa, with Minimum inhibitory concentration90 -values ranging between 0.004% and 0.125% (v/v), but with elevated Minimum bactericidal concentrations90-values (2-7 dilution steps above Minimum inhibitory concentration90). Low susceptibilities were determined for viridans streptococci and enterococci. Interestingly, both resistant and non-resistant bacteria were similarly susceptible to the test preparation.

  11. Regiodivergent Addition of Phenols to Allylic Oxides

    PubMed Central

    Vaccarello, David N.; Moschitto, Matthew J.; Lewis, Chad A.

    2015-01-01

    The regiodivergent addition of substituted phenols to allylic-oxides has been demonstrated using C2-symmetric palladium complexes. Complex phenol donors tyrosine, estradiol, and griseofulvin follow the predictive model. The Tsuji-Trost reaction is a powerful method to append both O- and C-donors to η3-allyl systems.1 The η3-allyl progenitor structures include allylic esters, carbonates, halides, and oxides. Internal allylic oxides2 remain one of the few systems that retain a marker of stereochemical induction with the newly liberated carbinol. The origin of the products can be traced to the diastereomeric η3-allyl intermediate and stereoisomer of oxide employed. We have recently identified3 a system capable of the conversion of racemic allylic oxides to distinct enantioenriched regioisomers using achiral phenol donors (Scheme 1). The allylic oxide regio-resolution (AORR) allowed the preparation of enantioenriched carbasugar natural products. We have now expanded this study to include a diverse array of achiral and chiral phenol donors. PMID:25933102

  12. Human TRPM8 and TRPA1 pain channels, including a gene variant with increased sensitivity to agonists (TRPA1 R797T), exhibit differential regulation by SRC-tyrosine kinase inhibitor

    PubMed Central

    Morgan, Kevin; Sadofsky, Laura R.; Crow, Christopher; Morice, Alyn H.

    2014-01-01

    TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation. PMID:24975826

  13. Manual gas-phase isothiocyanate degradation.

    PubMed

    Brandt, W F; Frank, G

    1988-02-01

    We describe a manual gas-phase isothiocyanate degradation procedure for the primary structure determination of proteins and peptides. The proteins and peptides are applied to a polybrene-coated glass fiber filter wedged into a small glass column. The phenylisothiocyanate is directly pipetted onto the filter disk. The coupling and cleavage reactions are performed in small desiccators containing trimethylamine and trifluoroacetic acid vapors, respectively. The wash and extraction steps are performed by allowing the suitable solvents to percolate through the filter disk. The extracted anilinothiazolinone is then converted to the phenylthiohydantoin and identified by any one of a number of described methods. Our results show that this method is very sensitive and that the reactions proceed faster than those of the published automated procedure. No expensive equipment is required and the manual degradation can be performed by a laboratory assistant. A large number of samples can be simultaneously subjected to the degradation under identical conditions, making this an ideal method for physicochemical investigations into the isothiocyanate degradation. We also use this method to screen HPLC fractions after enzymatic protein fragmentation. Manually sequenced glass filters can be transferred to the automated instrument for more extended degradations.

  14. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria

    PubMed Central

    Rosengarten, Jamila F.; de Graaf, Rob M.; Jetten, Mike S. M.

    2016-01-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  15. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria.

    PubMed

    Welte, Cornelia U; Rosengarten, Jamila F; de Graaf, Rob M; Jetten, Mike S M

    2016-04-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  16. The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins.

    PubMed

    Pedras, M Soledade C; Zheng, Qing-An; Gadagi, Ravi S

    2007-01-28

    The discovery of the first naturally occurring aromatic isothiocyanates, indole-3-isothiocyanates, their first synthesis, antimicrobial activity and proposed biogenetic origin in canola plants are reported.

  17. Copper-Catalyzed Enantioselective Allyl-Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/N-Heterocyclic Carbene Chiral Ligand.

    PubMed

    Yasuda, Yuto; Ohmiya, Hirohisa; Sawamura, Masaya

    2016-08-26

    Copper-catalyzed enantioselective allyl-allyl coupling between allylboronates and either Z-acyclic or cyclic allylic phosphates using a new chiral N-heterocyclic carbene ligand, bearing a phenolic hydroxy, is reported. This reaction occurs with exceptional SN 2'-type regioselectivities and high enantioselectivities to deliver chiral 1,5-diene derivatives with a tertiary stereogenic center at the allylic/homoallylic position. PMID:27467163

  18. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  19. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  20. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.

  1. Transition‐Metal‐Free Borylation of Allylic and Propargylic Alcohols

    PubMed Central

    Miralles, Núria; Alam, Rauful

    2016-01-01

    Abstract The base‐catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1‐disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid–base adduct, [Hbase]+[MeO‐B2pin2]− favored the formation of 1,2,3‐triborylated species from the tertiary allylic alcohols and 1‐propargylic cyclohexanol at 90 °C. PMID:26934578

  2. Peptide Reactivity of Isothiocyanates – Implications for Skin Allergy

    PubMed Central

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-01-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins. PMID:26883070

  3. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  4. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. PMID:25367779

  5. Palladium-catalyzed allylic alkylation of simple ketones with allylic alcohols and its mechanistic study.

    PubMed

    Huo, Xiaohong; Yang, Guoqiang; Liu, Delong; Liu, Yangang; Gridnev, Ilya D; Zhang, Wanbin

    2014-06-23

    Allylic alcohols were directly used in Pd-catalyzed allylic alkylations of simple ketones under mild reaction conditions. The reaction proceeded smoothly at 20 °C by the concerted action of a Pd catalyst, a pyrrolidine co-catalyst, and a hydrogen-bonding solvent, and does not require any additional reagents. A computational study suggested that methanol plays a crucial role in the formation of the π-allylpalladium complex by lowering the activation barrier. PMID:24848670

  6. Scandium(III)-catalyzed enantioselective allylation of isatins using allylsilanes.

    PubMed

    Hanhan, Nadine V; Tang, Yng C; Tran, Ngon T; Franz, Annaliese K

    2012-05-01

    The scandium(III)-catalyzed enantioselective Hosomi-Sakurai allylation of isatins with various substituted allylic silanes is described. A catalyst loading as low as 0.05 mol % is utilized at room temperature to afford the 3-allyl-3-hydroxy-2-oxindoles in excellent yields and enantioselectivity up to 99% ee, including a demonstration of a gram-scale reaction. The effects of additives and varying silyl groups were explored to demonstrate the scope and application.

  7. Isothiocyanates of Phosphorus Acids, N-Phosphorylated Thiocarbamates and Thioureas

    NASA Astrophysics Data System (ADS)

    Kamalov, R. M.; Zimin, M. G.; Pudovik, A. N.

    1985-12-01

    Current data on the synthesis, structures, the activities, and practical applications of the isothiocyanates of tricoordinate, tetracoordinate, pentacoordinate, and hexacoordinate phosphorus acids and N-phosphorylated and N-thiophosphorylated thiocarbamates, dithiocarbamates, and thioureas are examined and surveyed. The bibliography includes 223 references.

  8. Water and methyl isothiocyanate distribution in soil after drip fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide (MBr) has resulted in greater use of MITC generators. In order to understand the efficacy of MITC, it is necessary to assess its generat...

  9. Dehydrative Direct C-H Allylation with Allylic Alcohols under [Cp*Co(III)] Catalysis.

    PubMed

    Suzuki, Yudai; Sun, Bo; Sakata, Ken; Yoshino, Tatsuhiko; Matsunaga, Shigeki; Kanai, Motomu

    2015-08-17

    The unique reactivity of [Cp*Co(III)] over [Cp*Rh(III)] was demonstrated. A cationic [Cp*Co(III)] catalyst promoted direct dehydrative C-H allylation with non-activated allyl alcohols, thus giving C2-allylated indoles, pyrrole, and phenyl-pyrazole in good yields, while analogous [Cp*Rh(III)] catalysts were not effective. The high γ-selectivity and C2-selectivity indicated that the reaction proceeded by directing-group-assisted C-H metalation. DFT calculations suggested that the γ-selective substitution reaction proceeded by C-H metalation and insertion of a C-C double bond, with subsequent β-hydroxide elimination. The [Cp*Co(III)] catalyst favored β-hydroxide elimination over β-hydride elimination.

  10. Preliminary Investigation on the Use of Allyi Isothiocyanate to Increase the Shelf-Life of Gilthead Sea Bream (Sparus Aurata) Fillets

    PubMed Central

    Crinò, Chiara; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro; Panebianco, Antonio

    2015-01-01

    The aim of this work is to evaluate the activity of allyl isothiocyanate (AITC) against fish spoilage bacteria (specific spoilage organisms; SSOs) as well as its possible use in gilthead sea bream (Sparus aurata) fillets to extend their shelf-life. In this regard, in vitro tests are carried out in order to evaluate the inhibitory activity of AITC and its vapours on several strains of SSOs. The AITC effect on the shelf-life of sea bream fillets was made by putting them in plastic trays hermetically closed with the addition AITC. Microbiological and sensorial evaluations were made on fish fillets during storage. Treated fillets maintained microbial populations at a significantly lower level compared with the control samples during storage, showing better sensorial characteristics. Therefore, the use of AITC’s vapours seems to be a new and interesting alternative way to increase fish product shelf-life. PMID:27800402

  11. Disintegration of microtubules in Arabidopsis thaliana and bladder cancer cells by isothiocyanates

    PubMed Central

    Øverby, Anders; Bævre, Mette S.; Thangstad, Ole P.; Bones, Atle M.

    2015-01-01

    Isothiocyanates (ITCs) from biodegradation of glucosinolates comprise a group of electrophiles associated with growth-inhibitory effects in plant- and mammalian cells. The underlying modes of action of this feature are not fully understood. Clarifying this has involved mammalian cancer cells due to ITCs' chemopreventive potential. The binding of ITCs to tubulins has been reported as a mechanism by which ITCs induce cell cycle arrest and apoptosis. In the present study we demonstrate that ITCs disrupt microtubules in Arabidopsis thaliana contributing to the observed inhibited growth phenotype. We also confirmed this in rat bladder cancer cells (AY-27) suggesting that cells from plant and animals share mechanisms by which ITCs affect growth. Exposure of A. thaliana to vapor-phase of allyl ITC (AITC) inhibited growth and induced a concurrent bleaching of leaves in a dose-dependent manner. Transcriptional analysis was used to show an upregulation of heat shock-genes upon AITC-treatment. Transgenic A. thaliana expressing GFP-marked α-tubulin was employed to show a time- and dose-dependent disintegration of microtubules by AITC. Treatment of AY-27 with ITCs resulted in a time- and dose-dependent decrease of cell proliferation and G2/M-arrest. AY-27 transiently transfected to express GFP-tagged α-tubulin were treated with ITCs resulting in a loss of microtubular filaments and the subsequent formation of apoptotic bodies. In conclusion, our data demonstrate an ITC-induced mechanism leading to growth inhibition in A. thaliana and rat bladder cancer cells, and expose clues to the mechanisms underlying the physiological role of glucosinolates in vivo. PMID:25657654

  12. Cp*Co(III)-Catalyzed Dehydrative C-H Allylation of 6-Arylpurines and Aromatic Amides Using Allyl Alcohols in Fluorinated Alcohols.

    PubMed

    Bunno, Youka; Murakami, Nanami; Suzuki, Yudai; Kanai, Motomu; Yoshino, Tatsuhiko; Matsunaga, Shigeki

    2016-05-01

    Cp*Co(III)-catalyzed C-H allylation of various aromatic C-H bonds using allyl alcohols as allylating reagents is described. Improved reaction conditions using fluorinated alcohol solvents afforded efficient directed C-H allylation of 6-arylpurines, benzamides, and a synthetically useful Weinreb amide with good functional group compatibility.

  13. Copper-catalyzed enantioselective allylic substitution with alkylboranes.

    PubMed

    Shido, Yoshinori; Yoshida, Mika; Tanabe, Masahito; Ohmiya, Hirohisa; Sawamura, Masaya

    2012-11-14

    The first catalytic enantioselective allylic substitution reaction with alkylboron compounds has been achieved. The reaction between alkyl-9-BBN reagents and primary allylic chlorides proceeded with excellent γ-selectivities and high enantioselectivities under catalysis of a Cu(I)-DTBM-SEGPHOS system. The protocol produces terminal alkenes with an allylic stereogenic center branched with functionalized sp(3)-alkyl groups. The reaction with a γ-silicon-substituted allyl chloride affords an efficient strategy for the enantioselective synthesis of functionalized α-stereogenic chiral allylsilanes. PMID:23106350

  14. Palladium-catalyzed mono-N-allylation of unprotected anthranilic acids with allylic alcohols in aqueous media.

    PubMed

    Hikawa, Hidemasa; Yokoyama, Yuusaku

    2011-10-21

    Palladium-catalyzed N-allylation of anthranilic acids 1a-j with allyl alcohol 2a in the presence of Pd(OAc)(2), sodium diphenylphosphinobenzene-3-sulfonate (TPPMS) in THF-H(2)O at room temperature gave only mono-N-allylated anthranilic acids 3a-j in good yields (70-98%). The reactions of 4-bromoanthranilic acid 1i with 2-methyl-3-buten-2-ol 2b showed complete chemoselectivity in N-allylation (neutral conditions) and C-vinylation (basic conditions). In our catalytic system, the keys to success are use of an unprotected anthranilic acid as a starting material and the presence of water in the reaction medium. The carboxyl group of anthranilic acid and water may play important roles for the smooth generation of the π-allyl palladium species by activation of the hydroxyl group of the allylic alcohol. PMID:21919524

  15. Resonance Raman spectrum of the allyl-d5 radical and the force field analysis of the allyl radical

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Getty, James D.; Kelly, Peter B.

    1993-08-01

    Resonance Raman spectra of the allyl-d5 radical have been obtained with excitation between 247 and 223 nm. Analysis of the spectra yields the first observation of fundamental frequencies, nu4, nu5, and nu7 and overtone frequencies 2nu9, 2nu10, and 2nu12. The new vibrational data are combined with previously observed frequencies of allyl-h5 and allyl-d5 radical to produce the force field analysis for the allyl radical. This study suggests reassignment of several previously observed infrared (IR) bands. Experimental frequencies and assignments for allyl-h5 and allyl-d5 are compared with results from ab initio calculations. Force constants obtained in the present work are compared with the force constants of other sp2 hybridization molecules such as benzene, allene, and ethylene.

  16. Silicon-directed rhenium-catalyzed allylic carbaminations and oxidative fragmentations of γ-silyl allylic alcohols.

    PubMed

    Chavhan, Sanjay W; Cook, Matthew J

    2014-04-22

    A highly regioselective allylic substitution of β-silyl allylic alcohols has been achieved that provides the branched isomer as a single product. This high level of regiocontrol is achieved through the use of a vinyl silane group that can perform a Hiyama coupling providing 1,3-disubstituted allylic amines. An unusual oxidative fragmentation product was also observed at elevated temperature that appears to proceed by a Fleming-Tamao-type oxidation-elimination pathway.

  17. Synthesis of Branched Alkylboronates by Copper-Catalyzed Allylic Substitution Reactions of Allylic Chlorides with 1,1-Diborylalkanes.

    PubMed

    Kim, Junghoon; Park, Sangwoo; Park, Jinyoung; Cho, Seung Hwan

    2016-01-22

    Reported herein is a copper-catalyzed S(N)2'-selective allylic substitution reaction using readily accessible allylic chlorides and 1,1-diborylalkanes, a reaction which proceeds with chemoselective C-B bond activation of the 1,1-diborylalkanes. In the presence of a catalytic amount of [Cu(IMes)Cl] [IMes=1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene] and LiOtBu as a base, a range of primary and secondary allylic chlorides undergo the S(N)2'-selective allylic substitution reaction to produce branched alkylboronates. The synthetic utilities of the obtained alkylboronates are also presented. PMID:26666468

  18. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  19. [Isothiocyanate and vinyl thio-oxazolidone contents of rape seeds and rape seed oil].

    PubMed

    Franzke, C; Göbel, R; Noack, G; Seiffert, I

    1975-01-01

    Comparative studies on the isothiocyanate content of rape-seeds and rape-seed oil show that, apart from nearly 300 mg/100 g of vinyl thio-oxazolidone, rape-seeds contain almost 200--300 mg/100 g of isothiocyanates of which 3-butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are the main components as evidenced thin-layer and gaschromatographically. Only about 1 mg/100 g of isothiocyanates are found in pressed rape-seed oil; and but circa 10 mg/100 g, in extracted rape-seed oil. 3-Butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are once more the main components. Thioglycerides are not detected in the oil. Vinyl thio-oxazolidone is found only in extracted rape-seed oil (about 2 mg/100 g). PMID:1152977

  20. Synthesis and herbicidal activity of substituted pyrazole isothiocyanates.

    PubMed

    Wu, Hua; Feng, Jun-Tao; Lin, Kai-Chun; Zhang, Xing

    2012-01-01

    Isothiocyanates and substituted pyrazoles were combined to form a series of novel isothiocyanates with highly effective herbicidal activity. The target compounds were analyzed by elemental analysis, 1H-NMR, EI-MS and IR spectroscopy. The synthesized compounds, particularly compounds 3-1 and 3-7, exhibited good herbicidal activities against four weeds. The EC(50) values of compound 3-1 against Echinochloa crusgalli L., Cyperus iria L., Dactylis glomerata L., and Trifolium repens L. were 64.32, 65.83, 62.42, and 67.72 µg/mL, respectively. The EC(50) values of compound 3-7 against E. crusgalli L., C. iria L., D. glomerata L., T. repens L. were 65.33, 64.90, 59.41 and 67.41 µg/mL, respectively. Compounds 3-1 and 3-7 may be further optimized as lead compounds for new herbicides. PMID:23075815

  1. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C-F bond cleavage.

    PubMed

    Nishimine, Takayuki; Fukushi, Kazunobu; Shibata, Naoyuki; Taira, Hiromi; Tokunaga, Etsuko; Yamano, Akihito; Shiro, Motoo; Shibata, Norio

    2014-01-01

    Two birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation.

  2. Photooxygenation of allylic alcohols: kinetic comparison of unfunctionalized alkenes with prenol-type allylic alcohols, ethers and acetates.

    PubMed

    Griesbeck, Axel G; Adam, Waldemar; Bartoschek, Anna; El-Idreesy, Tamer T

    2003-08-01

    The kinetics of the chemical and physical quenching of the first excited singlet state of oxygen [1O2 (1delta(g))] by unfunctionalized alkenes 1-4, allylic alcohols 5-7 and 9, allylic acetates 8 and 11, and the allylic ether 10 display small solvent-polarity effects on the reactivity. The regioselectivity of the singlet oxygen ene reaction is solvent independent for the unfunctionalized alkenes as well as the prenol-type substrates, the latter showing substantial solvent effects on the diastereoselectivity. Pronounced physical quenching is detected only for the allylic alcohols 5 and 6. These results are interpreted in terms of the interactions between singlet oxygen and the allylic hydroxy groups, conformationally promoted by allylic strain which lead either to chemical activation or to physical quenching. The results for substrate 9 in deuterated v.s non-deuterated methanol are in accord with hydrogen bonding between the allylic alcohol and 1O2, which directs the diastereoselectivity of the ene reaction with chiral allylic alcohols.

  3. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells. PMID:26882972

  4. Allyl 4-hydroxy­phenyl carbonate

    PubMed Central

    Flores Ahuactzin, Víctor Hugo; López, Delia; Bernès, Sylvain

    2009-01-01

    The title mol­ecule, C10H10O4, is a functionalized carbonate used in the synthetic route to organic glasses. The central CH fragment of the allyl group is disordered over two positions, with occupancies in a 0.758 (10):0.242 (10)ratio. This disorder reflects the torsional flexibility of the oxygen–allyl group, although both disordered parts present the expected anti­clinal conformation, with O—CH2—CH=CH2 torsion angles of −111 (2) and 119.1 (4)°. The crystal structure is based on chains parallel to [010], formed by O⋯H—O hydrogen bonds involving hydroxyl and carbonyl groups as donors and acceptors, respectively. The mol­ecular packing is further stabilized by two weak C—H⋯π contacts from the benzene ring of the asymmetric unit with two benzene rings of neighboring mol­ecules. PMID:21582877

  5. Iridium-catalyzed allylic substitutions with cyclometalated phosphoramidite complexes bearing a dibenzocyclooctatetraene ligand: preparation of (π-allyl)Ir complexes and computational and NMR spectroscopic studies.

    PubMed

    Raskatov, Jevgenij A; Jäkel, Mascha; Straub, Bernd F; Rominger, Frank; Helmchen, Günter

    2012-11-01

    (π-Allyl)Ir complexes derived from dibenzocyclooctatetraene and phosphoramidites by cyclometalation are effective catalysts for allylic substitution reactions of linear monosubstituted allylic carbonates. These catalysts provide exceptionally high degrees of regioselectivity and allow the reactions to be run under aerobic conditions. A series of (π-allyl)Ir complexes were prepared and characterized by X-ray crystal structure analyses. An allylic amination with aniline displayed different resting states depending on the presence of a strong base. DFT calculations were carried out on the mechanistic aspects of these reactions. The results suggest that for the (π-allyl)Ir complexes, the formation and reactions with nucleophiles proceed with comparable rates. PMID:23018807

  6. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile.

    PubMed

    Nguyen, T N Thanh; Thiel, Niklas O; Pape, Felix; Teichert, Johannes F

    2016-05-20

    An easily accessible copper(I)/N-heterocyclic carbene (NHC) complex enables a regioselective hydride transfer to allylic bromides, an allylic reduction. The resulting aryl- and alkyl-substituted branched α-olefins, which are valuable building blocks for synthesis, are obtained in good yields and regioselectivity. A commercially available silane, (TMSO)2Si(Me)H, is employed as hydride source. This protocol offers a unified alternative to the established metal-catalyzed allylic substitutions with carbon nucleophiles, as no adaption of the catalyst to the nature of the nucleophile is required. PMID:27151495

  7. Aryne 1,2,3-Trifunctionalization with Aryl Allyl Sulfoxides.

    PubMed

    Li, Yuanyuan; Qiu, Dachuan; Gu, Rongrong; Wang, Junli; Shi, Jiarong; Li, Yang

    2016-08-31

    An aryne 1,2,3-trisubstitution with aryl allyl sulfoxides is accomplished, featuring an incorporation of C-S, C-O, and C-C bonds on the consecutive positions of a benzene ring. The reaction condition is mild with broad substrate scope. Preliminary mechanistic study suggests a cascade formal [2 + 2] reaction of aryne with S═O bond, an allyl S → O migration, and a Claisen rearrangement. PMID:27527334

  8. Enantioselective synthesis of α-tri- and α-tetrasubstituted allylsilanes by copper-catalyzed asymmetric allylic substitution of allyl phosphates with silylboronates.

    PubMed

    Takeda, Momotaro; Shintani, Ryo; Hayashi, Tamio

    2013-05-17

    A copper/N-heterocyclic carbene-catalyzed asymmetric allylic substitution of allyl phosphates with a silylboronate has been developed to give highly enantioenriched allylsilanes. High regioselectivity has been achieved by employing NaOH as the base, and this catalyst system is effective for both γ-mono- and disubstituted allyl phosphates. PMID:23647080

  9. Intramolecular Tsuji-Trost-type Allylation of Carboxylic Acids: Asymmetric Synthesis of Highly π-Allyl Donative Lactones.

    PubMed

    Suzuki, Yusuke; Seki, Tomoaki; Tanaka, Shinji; Kitamura, Masato

    2015-08-01

    Tsuji-Trost-type asymmetric allylation of carboxylic acids has been realized by using a cationic CpRu complex with an axially chiral picolinic acid-type ligand (Cl-Naph-PyCOOH: naph = naphthyl, py = pyridine). The carboxylic acid and allylic alcohol intramolecularly condense by the liberation of water without stoichiometric activation of either nucleophile or electrophile part, thereby attaining high atom- and step-economy, and low E factor. This success can be ascribed to the higher reactivity of allylic alcohols as compared with the allyl ester products in soft Ru/hard Brønstead acid combined catalysis, which can function under slightly acidic conditions unlike the traditional Pd-catalyzed system. Detailed analysis of the stereochemical outcome of the reaction using an enantiomerically enriched D-labeled substrate provides an intriguing view of enantioselection. PMID:26199057

  10. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    PubMed

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-02-18

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  11. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  12. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    PubMed

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs.

  13. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  14. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates, as a defense against bacteria, fungi, insects and herbivores including man. Low levels of isothiocyanates trigger a host defense system in mammals that protects them against chronic diseases. Becaus...

  15. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk1234

    PubMed Central

    Gao, Yu-Tang; Shu, Xiao-Ou; Cai, Qiuyin; Li, Guo-Liang; Li, Hong-Lan; Ji, Bu-Tian; Rothman, Nathaniel; Dyba, Marcin; Xiang, Yong-Bing; Chung, Fung-Lung; Chow, Wong-Ho; Zheng, Wei

    2010-01-01

    Background: Isothiocyanates, compounds found primarily in cruciferous vegetables, have been shown in laboratory studies to possess anticarcinogenic activity. Glutathione S-transferases (GSTs) are involved in the metabolism and elimination of isothiocyanates; thus, genetic variations in these enzymes may affect in vivo bioavailability and the activity of isothiocyanates. Objective: The objective was to prospectively evaluate the association between urinary isothiocyanate concentrations and colorectal cancer risk as well as the potential modifying effect of GST genotypes on the association. Design: A nested case-control study of 322 cases and 1251 controls identified from the Shanghai Women's Health Study was conducted. Results: Urinary isothiocyanate concentrations were inversely associated with colorectal cancer risk; the inverse association was statistically significant or nearly significant in the GSTM1-null (P for trend = 0.04) and the GSTT1-null (P for trend = 0.07) genotype groups. The strongest inverse association was found among individuals with both the GSTM1-null and the GSTT1-null genotypes, with an adjusted odds ratio of 0.51 (95% CI: 0.27, 0.95), in a comparison of the highest with the lowest tertile of urinary isothiocyanates. No apparent associations between isothiocyanate concentration and colorectal cancer risk were found among individuals who carried either the GSTM1 or GSTT1 gene (P for interaction < 0.05). Conclusion: This study suggests that isothiocyanate exposure may reduce the risk of colorectal cancer, and this protective effect may be modified by the GSTM1 and GSTT1 genes. PMID:20042523

  16. Antimicrobial activities of phenethyl isothiocyanate isolated from horseradish.

    PubMed

    Chen, Hongxia; Wang, Chengzhang; Ye, Jianzhong; Zhou, Hao; Chen, Xijuan

    2012-01-01

    Phenethyl isothiocyanate (PEITC) was obtained from horseradish. The preparation procedure was as follows: the horseradish powder was hydrolysed in the water first, and then, after filtration, the residue was extracted by petroleum ether; finally, PEITC was isolated by silica gel column. The structure of PEITC was identified by IR, MS, ¹H-NMR and ¹³C-NMR chromatography methods. The inhibitory activities of PEITC against Gibberella zeae, Xanthomonas axonopodis pv . citri, Cytospora sp . and Phytophthora capsisi showed that PEITC had good inhibition effects. The EC₅₀ values of G. zeae, X. axonopodis pv . citri, Cytospora sp . and P. capsisi were 13.92, 1.20, 0.73 and 3.69 µg mL⁻¹, respectively. PMID:21815843

  17. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer

    PubMed Central

    Veeranki, Omkara L.; Bhattacharya, Arup; Tang, Li; Marshall, James R.; Zhang, Yuesheng

    2015-01-01

    Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50–80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues. PMID:26273545

  18. Genetic Incorporation of a Reactive Isothiocyanate Group into Proteins.

    PubMed

    Xuan, Weimin; Li, Jack; Luo, Xiaozhou; Schultz, Peter G

    2016-08-16

    Methods for the site-specific modification of proteins are useful for introducing biological probes into proteins and engineering proteins with novel activities. Herein, we genetically encode a novel noncanonical amino acid (ncAA) that contains an aryl isothiocyanate group which can form stable thiourea crosslinks with amines under mild conditions. We show that this ncAA (pNCSF) allows the selective conjugation of proteins to amine-containing molecular probes through formation of a thiourea bridge. pNCSF was also used to replace a native salt bridge in myoglobin with an intramolecular crosslink to a proximal Lys residue, leading to increased thermal stability. Finally, we show that pNCSF can form stable intermolecular crosslinks between two interacting proteins. PMID:27418387

  19. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  20. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  1. Scalable and sustainable electrochemical allylic C–H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C–H oxidation (demonstrated on 100 grams), enabling the adoption of this C–H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  2. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact. PMID:27096371

  3. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-01

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  4. Catalytic asymmetric generation of (Z)-disubstituted allylic alcohols.

    PubMed

    Salvi, Luca; Jeon, Sang-Jin; Fisher, Ethan L; Carroll, Patrick J; Walsh, Patrick J

    2007-12-26

    A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetalation with dialkylzinc reagents generate (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (-)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX-promoted reaction, a series of inhibitors were screened. It was found that 20-30 mol % tetraethylethylenediamine inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity.

  5. Scalable and sustainable electrochemical allylic C-H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  6. The Reaction of Carbon Dioxide with Palladium Allyl Bonds

    PubMed Central

    Wu, Jianguo; Green, Jennifer C.; Hruszkewycz, Damian P.; Incarvito, Christopher D.; Schmeier, Timothy J.

    2010-01-01

    A family of palladium allyl complexes of the type bis(2-methylallyl)Pd(L) (L = PMe3 (1), PEt3 (2), PPh3 (3) or NHC (4); NHC = 1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene) have been prepared through the reaction of bis(2-methylallyl)Pd with the appropriate free ligand. Compounds 1–4 contain one η1 and one η3-2-methylallyl ligand and 3 was characterized by X-ray crystallography. These complexes react rapidly with CO2 at low temperature to form well defined unidentate palladium carboxylates of the type (η3-2-methylallyl)Pd(OC(O)C4H7)(L) (L = PMe3 (6), PEt3 (7), PPh3 (8) or NHC (9). The structure of 9 was elucidated using X-ray crystallography. The mechanism of the reaction of 1–4 with CO2 was probed using a combination of experimental and theoretical (density functional theory) studies. The coordination mode of the allyl ligand is crucial and whereas nucleophilic η1-allyls react rapidly with CO2, η3-allyls do not react. We propose that the reaction of η1-palladium allyls with CO2 does not proceed via direct insertion of CO2 into the Pd-C bond but through nucleophilic attack of the terminal olefin on electrophilic CO2, followed by an associative substitution at palladium. PMID:21218132

  7. Structurally defined allyl compounds of main group metals: coordination and reactivity.

    PubMed

    Lichtenberg, Crispin; Okuda, Jun

    2013-05-10

    Organometallic allyl compounds are important as allylation reagents in organic synthesis, as polymerization catalysts, and as volatile metal precursors in material science. Whereas the allyl chemistry of synthetically relevant transition metals such as palladium and of the lanthanoids is well-established, that of main group metals has been lagging behind. Recent progress on allyl complexes of Groups 1, 2, and 12-16 now provides a more complete picture. This is based on a fundamental understanding of metal-allyl bonding interactions in solution and in the solid state. Furthermore, reactivity trends have been rationalized and new types of allyl-specific reactivity patterns have been uncovered. Key features include 1) the exploitation of the different types of metal-allyl bonding (highly ionic to predominantly covalent), 2) the use of synergistic effects in heterobimetallic compounds, and 3) the adjustment of Lewis acidity by variation of the charge of allyl compounds.

  8. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.

    PubMed

    Waterman, Carrie; Cheng, Diana M; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Lila, Mary Ann; Raskin, Ilya

    2014-07-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as both a food and medicine throughout the tropics. A moringa concentrate (MC), made by extracting fresh leaves with water, utilized naturally occurring myrosinase to convert four moringa glucosinolates into moringa isothiocyanates. Optimum conditions maximizing MC yield, 4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate, and 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate exhibited 80% stability at 37°C for 30 days. MC, and both of the isothiocyanates described above significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, both attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFα at 1 and 5 μM. These results suggest a potential for stable and concentrated moringa isothiocyanates, delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases.

  9. Copper-catalyzed divergent kinetic resolution of racemic allylic substrates.

    PubMed

    Pineschi, Mauro; Di Bussolo, Valeria; Crotti, Paolo

    2011-10-01

    When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation. PMID:21837639

  10. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  11. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  12. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  13. Trifluoromethyl sulfoxides from allylic alcohols and electrophilic SCF3 donor by [2,3]-sigmatropic rearrangement.

    PubMed

    Maeno, Mayaka; Shibata, Norio; Cahard, Dominique

    2015-04-17

    An electrophilic trifluoromethylthiolation of allylic alcohols produces the corresponding allylic trifluoromethanesulfenates, which spontaneously rearrange into trifluoromethyl sulfoxides via a [2,3]-sigmatropic rearrangement. The reaction is straightforward and proceeds in good to high yields for the preparation of various allylic trifluoromethyl sulfoxides.

  14. Enantioselective transformation of Na2SO3 into allylic sulfonic acids under Pd catalysis.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang

    2015-01-14

    Pd-catalyzed asymmetric allylic sulfonation of di-aryl-substituted allylic acetates with sodium sulfite (Na2SO3) in THF-H2O at room temperature was described. This method directly provided allylic sulfonic acids in up to excellent yield and enantioselectivity. PMID:25415622

  15. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  16. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  17. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  18. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  19. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation.

    PubMed

    Grenning, Alexander J; Boyce, Jonathan H; Porco, John A

    2014-08-20

    Polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. Herein, we present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via double decarboxylative allylation (DcA) of acylphloroglucinol scaffolds to access allyl-desoxyhumulones followed by dearomative conjunctive allylic alkylation (DCAA). PMID:25061804

  20. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  1. Metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates: construction of chiral nonracemic allylic isocyanates.

    PubMed

    Grange, Rebecca L; Evans, P Andrew

    2014-08-27

    We report the facile and efficient metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates. This process facilitates the room temperature construction of an array of chiral nonracemic allylic isocyanates, which are versatile intermediates for the construction of unsymmetrical ureas, carbamates, thiocarbamates and amides. Furthermore, the sulfilimine/isocyanate metathesis reaction with 4,4'-methylene diphenyl diisocyanate (4,4'-MDI) circumvents harsh reaction conditions and/or hazardous reagents employed with more classical methods for the preparation of this important functional group.

  2. Allylation of acetanilides with allyl acetate under conditions of metal-complex catalysis combined with phase-transfer catalysis

    SciTech Connect

    Lebedev, S.A.; Leonova, Yu.P.; Berestova, S.S.; Petrov, E.S.

    1988-10-20

    Acetanilides are alkylated at the nitrogen atom under the conditions of phase-transfer catalysis. For the case of the reaction of acetanilides with allyl acetate the authors showed that 2-alkenyl esters can be used for the alkylation of acetanilides under the conditions of phase-transfer catalysis in the presence of the complexes of zero valent palladium. N-Acetylskatole was obtained with a yield of 50% from N-allyl-2-bromoacetanilide by intramolecular cyclization in the presence of Od(OAc)/sub 2/ as catalyst.

  3. Complete reversal in Wacker oxidation of acetonides and cyclic carbonates of allylic diols

    SciTech Connect

    Suk-Ku Kang; Kyung-Yun Jung; Eun-Young Namkoong

    1995-12-31

    The palladium(II)-catalyzed oxidation of terminal olefins to give methyl ketones (Wacker prossess) is well established in organic synthetic reactions. However palladium(II)-catalyzed oxidation of acetonide or cyclic carbonate of terminal allylic diol afforded aldehyde or {alpha},{beta}-unsaturated aldehyde as the sole products, resulting of anti-Markovnikov hydration. Alternatively, for the internal olefins of the substituted allylic diols, (E)-allylic diol provided {beta}-keto-product, whereas (Z)-allylic diol afforded {alpha}-keto-product. The acetonides and cyclic carbonates of the substituted allylic diols yielded {beta}-keto-products and {alpha},{beta}-unsaturated ketones.

  4. Emission, Distribution And Leaching Of Methyl Isothiocyanate And Chloropicrin Under Different Surface Containments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental fate of fumigants methyl isothiocyanate (MITC) and chloropicrin (CP) is of great concern for potential air and groundwater contamination while retaining sufficient concentrations for pest control efficacy. The emission, gas phase distribution, leaching, and persistence of MITC and ...

  5. [Cu(NHC)]-Catalyzed C-H Allylation and Alkenylation of both Electron-Deficient and Electron-Rich (Hetero)arenes with Allyl Halides.

    PubMed

    Xie, Weilong; Chang, Sukbok

    2016-01-26

    New reactivity of a [Cu(NHC)] (NHC=N-heterocyclic carbene) catalyst is disclosed for the efficient C-H allylation of polyfluoroarenes using allyl halides in benzene at room temperature. The same catalyst system also promotes an isomerization-induced alkenylation of initially the generated allyl arenes when the reaction is run in tetrahydrofuran. Significantly, not only electron-deficient but also electron-rich (hetero)arenes undergo this double-bond migration process, thus leading to alkenylated products. The present system features mild reaction conditions, broad scope with respect to the arene substrates and allyl halide reactants, good functional-group tolerance, and high stereoselectivity. PMID:26695120

  6. Proteins as binding targets of isothiocyanates in cancer prevention

    PubMed Central

    Mi, Lixin; Di Pasqua, Anthony J.

    2011-01-01

    Isothiocyanates are versatile cancer-preventive compounds. Evidence from animal studies indicates that the anticarcinogenic activities of ITCs involve all the major stages of tumor growth: initiation, promotion and progression. Epidemiological studies have also shown that dietary intake of ITCs is associated with reduced risk of certain human cancers. A number of mechanisms have been proposed for the chemopreventive activities of ITCs. To identify the molecular targets of ITCs is a first step to understand the molecular mechanisms of ITCs. Studies in recent years have shown that the covalent binding to certain protein targets by ITCs seems to play an important role in ITC-induced apoptosis and cell growth inhibition and other cellular effects. The knowledge gained from these studies may be used to guide future design and screen of better and more efficacious compounds. In this review, we intend to cover all potential protein targets of ITCs so far studied and summarize what are known about their binding sites and the potential biological consequences. In the end, we also offer discussions to shed light onto the relationship between protein binding and reactive oxygen species generation by ITCs. PMID:21665889

  7. Molecular Targets of Isothiocyanates in Cancer: Recent Advances

    PubMed Central

    Gupta, Parul; Kim, Bonglee; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITC) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anti-cancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of pre-clinical studies, few ITCs have advanced to the clinical phase. Available data from pre-clinical as well as available clinical studies suggests ITCs to be one of the promising anti-cancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer. PMID:24510468

  8. Electrochemical Allylic Oxidation of Olefins: Sustainable and Safe.

    PubMed

    Waldvogel, Siegfried R; Selt, Maximilian

    2016-10-01

    The power you're supplying: With the application of an optimized electrochemical approach, the allylic oxidation of olefins, which is an important C-H activation process that provides access to enones, becomes a sustainable, versatile, and potent key reaction for organic synthesis.

  9. DFT studies on the palladium-catalyzed dearomatization reaction between naphthalene allyl chloride and allyltributylstannane.

    PubMed

    Cao, Wei; Tian, Dongxu; Han, Dongxue

    2015-10-01

    The Pd-catalyzed dearomatization of naphthalene allyl chloride with allyltributylstannane has been investigated using density functional theory (DFT) calculations at the B3LYP level. The calculations indicate that the (ŋ(1)-allyl)(ŋ(3)-allyl)Pd(PH3) complex is responsible for the formation of ortho-dearomatized product. Moreover it is easy to produce the ortho-dearomatized product when reductive elimination starts from (ŋ(3)-allylnaphthalene)(ŋ(1)-allyl)Pd complex 7, while it is easy to form the para-dearomatized product when reductive elimination starts from (ŋ(3)-allylnaphthalene)(ŋ(1)-allyl)Pd complex 9. The Stille coupling products can't be produced due to high reaction energy barrier. Graphical Abstract Two mechanisms of dearomatization are investigated by DFT, and (ŋ(1)-allyl)(ŋ(3)-allyl)Pd(PH3) complexes are the main intermediates for ortho-dearomatized product.

  10. 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate: conformers, vibration structure and multiplet Fermi resonance.

    PubMed

    Yenagi, Jayashree; Nandurkar, Anita R; Tonannavar, J

    2012-06-01

    IR and Raman spectral measurements in the region 3500-400/50 cm(-1) have been made for the liquid samples of 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate. A complete assignment of the measured bands has been proposed as aided by conformational and vibration analyses at B3LYP/6-311++G** level of calculations. Three conformers for 2-Methoxyphenyl isocyanate and two for 2-Methoxyphenyl isothiocyanate have been determined. The tilt of the isocyanate (NCO) and isothiocyanate (NCS) moieties with respect to phenyl ring are in broad agreement with their parents. Stretching mode frequencies of methyl group (-OCH(3)) in 2-Methoxyphenyl isocyanate have been lowered in the 2900-2800 cm(-1); deformation asymmetric modes are IR strong and symmetric one Raman strong. In 2-Methoxyphenyl isothiocyanate, a similar pattern is true for stretching modes but deformation asymmetric modes are IR strong and symmetric mode has not been observed. Multiplet absorption band system near 2200 cm(-1) in 2-Methoxyphenyl isocyanate has been interpreted to be caused by Fermi resonance. A similar pattern in absorption near 2100 cm(-1) in 2-Methoxyphenyl isothiocyanate but more complex Raman band pattern has also been explained through Fermi resonance from heuristic stand-point. Many Raman modes in 1300-1100 cm(-1) are intensified apparently owing to isothiocyanate than isocyanate moiety. Phenyl ring breathing mode is shifted to 1040 cm(-1) as strong Raman; the symmetric stretching mode of O-CH(3) near 1023 cm(-1) as strong absorption.

  11. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  12. The effects of vehicles on the human dermal irritation potentials of allyl esters.

    PubMed

    Politano, Valerie T; Isola, Daniel A; Lalko, Jon; Api, Anne Marie

    2006-01-01

    Allyl esters, frequently used in the fragrance industry, often contain a certain percentage of free allyl alcohol. Allyl alcohol is known to have a potential for delayed skin irritation. Also present in the finished product are different solvent systems, or vehicles, which are used to deliver the fragrances based upon their intended application. This study was conducted to determine whether different vehicles affect the skin irritation potential of five different allyl esters. The allyl esters tested were allyl amyl glycolate, allyl caproate, allyl (cyclohexyloxy)acetate, allyl cyclohexylpropionate, and allyl phenoxyacetate in the vehicles diethyl phthalate, 3:1 diethyl phthalate:ethanol, and 1:3 diethyl phthalate:ethanol at concentrations of 0.1%, 0.5%, 1.0%, and 2.0% (w/w). A modified cumulative irritation test was conducted in 129 human subjects. Test materials (0.3 ml) were applied under occlusion to skin sites on the back for 1 day (24 h) using Hill Top chambers. Irritation was assessed at 1, 2, 4, and 5 days following application of test materials. Cumulative irritation scores varied considerably among test materials. There were no delayed irritation observations. The highest irritation scores were observed at the 2.0% concentration for all test materials. The irritation scores for allyl amyl glycolate, allyl (cyclohexyloxy)acetate, and allyl phenoxyacetate were highest in 1:3 diethyl phthalate:ethanol, thus the resulting calculated no-observed-effect levels, 0.12%, 0.03%, and 0%, respectively, were much lower for this vehicle compared to the diethyl phthalate vehicle, 0.33%, 0.26%, 0.25%, respectively. These data showed a trend for lower concentration thresholds to induce irritation when higher levels of ethanol were used in the vehicle.

  13. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  14. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    SciTech Connect

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.; Stewart, Deirdre S.; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E.; Cohen, Jonathan B.; Forman, Stuart A.; Miller, Keith W.; Bruzik, Karol S.

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.

  15. Allyl m-trifluoromethyldiazirine mephobarbital: an unusually potent enantioselective and photoreactive barbiturate general anesthetic.

    PubMed

    Savechenkov, Pavel Y; Zhang, Xi; Chiara, David C; Stewart, Deirdre S; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E; Cohen, Jonathan B; Forman, Stuart A; Miller, Keith W; Bruzik, Karol S

    2012-07-26

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the (3)H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC(50) approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human α1β2/3γ2L GABA(A) receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both α1 and β3 subunits of human α1β3 GABA(A) receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.

  16. Copper-Catalyzed Oxidative Amination and Allylic Amination of Alkenes

    PubMed Central

    Liwosz, Timothy W.; Chemler, Sherry R.

    2014-01-01

    Enamines and enamides are useful synthetic intermediates and common components of bioactive compounds. A new protocol for their direct synthesis by a net alkene C–H amination and allylic amination by using catalytic CuII in the presence of MnO2 is reported. Reactions between N-aryl sulfonamides and vinyl arenes furnish enamides, allylic amines, indoles, benzothiazine dioxides, and dibenzazepines directly and efficiently. Control experiments further showed that MnO2 alone can promote the reaction in the absence of a copper salt, albeit with lower efficiency. Mechanistic probes support the involvement of nitrogen-radical intermediates. This method is ideal for the synthesis of enamides from 1,1-disubstituted vinyl arenes, which are uncommon substrates in existing oxidative amination protocols. PMID:23878099

  17. Radiation initiated copolymerization of allyl alcohol with acrylonitrile

    NASA Astrophysics Data System (ADS)

    Şolpan, Dilek; Güven, Olgun

    1996-07-01

    Copolymerization of allyl alcohol (AA) with acrylonitrile (AN) initiated by γ-rays has been investigated to determine the respective reactivity ratios. Three different experimental techniques, namely Fourier Transform Infrared (FTIR), Ultraviolet (UV/vis) and elemental analysis (EA) have been used for the determination of copolymer compositions. Fineman-Ross (FR), Kelen-Tüdös (KT), Non-Linear Least Square (NLLS) Analysis and Q-e methods have been applied to the three sets of experimental data. It has been concluded that data obtained from elemental analysis as applied to the Non-Linear Least Square approach gave the most reliable reactivity ratios as 2.09 and 0.40 for acrylonitrile and allyl alcohol, respectively.

  18. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  19. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro

    PubMed Central

    Waterman, Carrie; Cheng, Diana M.; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Ann Lila, Mary; Raskin, Ilya

    2014-01-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as food and medicine throughout the tropics. A moringa concentrate (MC) made by extracting fresh leaves with water utilized naturally occurring myrosinase to convert four moringa glucosinolates (1–4) into moringa isothiocyanates (5–8). Optimum conditions maximizing MC yield, compound 5 (4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate), and compound 8 (4-[(4’-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate) content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. Compound 8 exhibited 80% stability at 37 °C for 30 days. MC, 5, and 8 significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, 5 and 8 attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFβ at 1 and 5 µM. Our results suggest a potential for stable and concentrated moringa isothiocyanates (5–8), delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. PMID:24731259

  20. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  1. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  2. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product. PMID:25810003

  3. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  4. Petasis Borono-Mannich reaction and allylation of carbonyl compounds via transient allyl boronates generated by palladium-catalyzed substitution of allyl alcohols. an efficient one-pot route to stereodefined alpha-amino acids and homoallyl alcohols.

    PubMed

    Selander, Nicklas; Kipke, Andreas; Sebelius, Sara; Szabó, Kalman J

    2007-11-01

    An efficient one-pot procedure was designed by integration of the pincer-complex-catalyzed borylation of allyl alcohols in the Petasis borono-Mannich reaction and in allylation of aldehydes and ketones. These procedures are suitable for one-pot synthesis of alpha-amino acids and homoallyl alcohols from easily available allyl alcohol, amine, aldehyde, or ketone substrates. In the presented transformations, the active allylating agents are in situ generated allyl boronic acid derivatives. These transient intermediates are proved to be reasonably acid-, base-, alcohol-, water-, and air-stable species, which allows a high level of compatibility with the reaction conditions of the allylation of various aldehyde/ketone and imine electrophiles. The boronate source of the reaction is diboronic acid or in situ hydrolyzed diboronate ester ensuring that the waste product of the reaction is nontoxic boric acid. The regio- and stereoselectivity of the reaction is excellent, as almost all products form as single regio- and stereoisomers. The described procedure is suitable to create quaternary carbon centers in branched allylic products without formation of the corresponding linear allylic isomers. Furthermore, products comprising three stereocenters were formed as single products without formation of other diastereomers. Because of the highly disciplined consecutive processes, up to four-step, four-component transformations could be performed selectively as a one-pot sequence. For example, stereodefined pyroglutamic acid could be prepared from a simple allyl alcohol, a commercially available amine, and glyoxylic acid in a one-step procedure. The presented method also grants an easy access to stereodefined 1,7-dienes that are useful substrates for Grubbs ring-closing metathesis.

  5. Regiochemical control in the metal-catalyzed transposition of allylic silyl ethers.

    PubMed

    Hansen, Eric C; Lee, Daesung

    2006-06-28

    A novel mode of regiochemical control over the allylic [1,3]-transposition of silyloxy groups catalyzed by Re2O7 has been developed. This strategy relies on a cis-oriented vinyl boronate, generated from the Alder-ene reaction of homoallylic silyl ethers and alkynyl boronates, to trap out the allylic hydroxyl group. The resulting cyclic boronic acids are excellent partners for cross-coupling reactions. High chirality transfer is observed for the rearrangement of enantioenriched allylic silyl ethers.

  6. Gold(I)-Assisted α-Allylation of Enals and Enones with Alcohols.

    PubMed

    Mastandrea, Marco Michele; Mellonie, Niall; Giacinto, Pietro; Collado, Alba; Nolan, Steven P; Miscione, Gian Pietro; Bottoni, Andrea; Bandini, Marco

    2015-12-01

    The intermolecular α-allylation of enals and enones occurs by the condensation of variously substituted allenamides with allylic alcohols. Cooperative catalysis by [Au(ItBu)NTf2] and AgNTf2 enables the synthesis of a range of densely functionalized α-allylated enals, enones, and acyl silanes in good yield under mild reaction conditions. DFT calculations support the role of an α-gold(I) enal/enone as the active nucleophilic species.

  7. Preparation of aliphatic ketones through a ruthenium-catalyzed tandem cross-metathesis/allylic alcohol isomerization.

    PubMed

    Finnegan, David; Seigal, Benjamin A; Snapper, Marc L

    2006-06-01

    Grubbs' 2nd generation and Hoveyda-Grubbs' ruthenium alkylidenes are shown to be effective catalysts for cross-metatheses of allylic alcohols with cyclic and acyclic olefins, as well as isomerization of the resulting allylic alcohols to alkyl ketones. The net result of this new tandem methodology is a single-flask process that provides highly functionalized, ketone-containing products from simple allylic alcohol precursors. [reaction: see text

  8. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.

  9. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  10. Isocyanates and isothiocyanates as versatile platforms for accessing (thio)amide-type compounds.

    PubMed

    Pace, Vittorio; Monticelli, Serena; de la Vega-Hernández, Karen; Castoldi, Laura

    2016-08-16

    The addition of carbon (Grignard and organolithium reagents) and hydride nucleophiles (Schwartz reagent) to isocyanates and isothiocyanates constitutes a versatile, direct and high yielding approach to the synthesis of functionalized (thio)amide derivatives including haloamides and formamides. The chemoselective delivery of a nucleophilic (eventually configurationally stable) organometallic species to a given iso(thio)cyanate is the crucial parameter for the success of the strategy. Thus, the influence of the factors governing classical methodologies (e.g. dehydrative condensation) such as steric hindrance and electronic properties of the reactants become practically negligible. PMID:27461156

  11. Alpha-hydroxyalkyl heterocycles via chiral allylic boronates: Pd-catalyzed borylation leading to a formal enantioselective isomerization of allylic ether and amine.

    PubMed

    Lessard, Stéphanie; Peng, Feng; Hall, Dennis G

    2009-07-22

    An efficient catalytic enantioselective preparation of synthetically useful pyranyl and piperidinyl allylic boronates was achieved via a palladium-catalyzed borylation/isomerization reaction on the corresponding alkenyl triflates. The influence of the base and solvent was found to be crucial on the regio- and enantioselectivity of this reaction. The overall borylation process constitutes a successful example of formal asymmetric isomerization of allylic ether/amine. The resulting allylic boronate reagents add to various aldehydes in a one-pot process to give synthetically useful alpha-hydroxyalkyl derivatives in high stereoselectivity. PMID:19552416

  12. Dechalcogenative Allylic Selenosulfide And Disulfide Rearrangements: Complementary Methods For The Formation Of Allylic Sulfides In The Absence Of Electrophiles. Scope, Limitations, And Application To The Functionalization Of Unprotected Peptides In Aqueous Media

    PubMed Central

    Crich, David; Krishnamurthy, Venkataramanan; Brebion, Franck; Karatholuvhu, Maheswaran; Subramanian, Venkataraman; Hutton, Thomas K.

    2008-01-01

    Primary allylic selenosulfates (seleno Bunte salts) and selenocyanates transfer the allylic selenide moiety to thiols giving primary allylic selenosulfides, which undergo rearrangement in the presence of PPh3 with the loss of selenium to give allylically rearranged allyl alkyl sulfides. This rearrangement may be conducted with prenyl-type selenosulfides to give isoprenyl alkyl sulfides. Alkyl secondary and tertiary allylic disulfides, formed by sulfide transfer from allylic heteroaryl disulfides to thiols, undergo desulfurative allylic rearrangement on treatment with PPh3 in methanolic acetonitrile at room temperature. With nerolidyl alkyl disulfides this rearrangement provides an electrophile-free method for the introduction of the farnesyl chain onto thiols. Both rearrangements are compatible with the full range of functionality found in the proteinogenic amino acids and it is demonstrated that the desulfurative rearrangement functions in aqueous media, enabling the derivatization of unprotected peptides. It is also demonstrated that the allylic disulfide rearrangement can be inducted in the absence of phosphine at room temperature by treatment with piperidine, or simply by refluxing in methanol. Under these latter conditions the reaction is also applicable to allyl aryl disulfides, providing allylically rearranged allyl aryl sulfides in good yields. PMID:17655306

  13. Evaluating surface seals in soil columns to mitigate methy isothiocyanate volatilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The banning of methyl bromide (MeBr) as a pre-plant soil fumigant due to its implication as an ozone depleting substance, has led to increased interest in finding alternative soil fumigants to replace MeBr. One of the promising alternatives for certain crops is methyl isothiocyanate (MITC) generati...

  14. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  15. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    ERIC Educational Resources Information Center

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  16. Cobalt-catalyzed chelation assisted C-H allylation of aromatic amides with unactivated olefins.

    PubMed

    Yamaguchi, Takuma; Kommagalla, Yadagiri; Aihara, Yoshinori; Chatani, Naoto

    2016-08-01

    The cobalt-catalyzed chelation assisted ortho C-H allylation of aromatic amides with unactivated aliphatic alkenes is reported. The reaction proceeds in air under mild reaction conditions, providing allylated products in good to excellent yields with high E-selectivities. This operationally simple method shows a high functional group tolerance.

  17. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    PubMed

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions. PMID:25410944

  18. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    PubMed

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  19. Pd-catalyzed cascade allylic alkylation and dearomatization reactions of indoles with vinyloxirane.

    PubMed

    Gao, Run-Duo; Xu, Qing-Long; Dai, Li-Xin; You, Shu-Li

    2016-09-14

    We have developed Pd-catalyzed intermolecular Friedel-Crafts-type allylic alkylation and allylic dearomatization reactions of substituted indoles bearing a nucleophilic group with vinyloxirane, providing an efficient method to synthesize structurally diverse tetrahydrocarboline and spiroindolenine derivatives under mild conditions. PMID:27511802

  20. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  1. Oxidative addition of allylic halides to ruthenium(II) compounds. Preparation, reactions, and X-ray crystallographic structure of ruthenium(IV)-allyl complexes

    SciTech Connect

    Nagashima, Hideo; Mukai, Katsunori; Shiota, Yusuke; Yamaguchi, Keitaro; Ara, Kenichi; Fukahori, Takahiko; Itoh, Kenji ); Suzuki, Hiroharu; Akita, Munetaka; Moro-oka, Yoshihiko )

    1990-03-01

    The oxidative addition of allylic halides to (C{sub 5}R{sub 5})RuL{sub 2}X (R = H, Me; L = CO, PPh{sub 3}) gave new Ru(IV)-{eta}{sup 3}-allyl complexes, (C{sub 5}R{sub 5})RuX{sub 2}({eta}{sup 3}-allyl). An X-ray structure determination was carried out on (C{sub 5}Me{sub 5})RuBr{sub 2}({eta}{sup 3}-C{sub 3}H{sub 5}), indicating a pseudo-piano-stool structure having two Br atoms and two terminal carbons of the endo-{eta}{sup 3}-allyl ligand located at the basal positions. There is a crystal mirror plane bisecting the pentamethylcyclopentadienyl and the {pi}-allyl ligands. Crystal data: orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, a = 22.738 (1) {angstrom}, b = 13.367 (7) {angstrom}, c = 9.383 (1) {angstrom}, Z = 4., data refined to R = 0.0695. Its {sup 1}H and {sup 13}C NMR spectra showed symmetric allyl signals, supporting that the above-described piano-stool structure is maintained even in solution.

  2. A natural history of "agonist".

    PubMed

    Russo, Ruth

    2002-01-01

    This paper constructs a brief history of the biochemical term agonist by exploring the multiple meanings of the root agôn in ancient Greek literature and describing how agonist first appeared in the scientific literature of the 20th century in the context of neurophysiologists' debates about the existence and properties of cellular receptors. While the narrow scientific definition of agonist may appear colorless and dead when compared with the web of allusions spun by the ancient Greek agôn, the scientific power and creativity of agonist actually resides precisely in its exact, restricted meaning for biomedical researchers.

  3. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  4. Chiral isothiocyanates - An approach to determination of the absolute configuration using circular dichroism measurement

    NASA Astrophysics Data System (ADS)

    Michalski, Oskar; Cież, Dariusz

    2013-04-01

    Chiral alkyl 2-isothiocyanates have been obtained from enantiopure, aliphatic amines. ECD measurements allowed us to correlate an absolute configuration at C-2 with a sign of the Cotton effect (CE) observed for n-π* transition at the longer-wavelength range of the spectrum. Chirooptical data calculated for all enantiomers were consistent with the measured CE values and indicated that the weak absorption band at 240 nm could give an important information concerning the stereochemistry of simple, chiral isothiocyanates. Optically active esters of 2-isothiocyanatocarboxylic acids, prepared from α-amino acids, showed two absorption bands located over 195 nm. The more intensive band near 200 nm and the weak absorption located at 250 nm were related to n-π* transitions in NCS group. TD DFT calculations carried out for methyl esters of 2-isothiocyanatocarboxylic acids showed the correlation between signs of CE determined for both absorption bands, and the absolute configuration on C-2.

  5. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  6. Reaction of /alpha/,/beta/-unsaturated acyl isothiocyanates with salts of dithiocarbamic acids

    SciTech Connect

    Krus, K.; Masias, A.; Beletskaya, I.P.

    1989-01-10

    The reaction of unsaturated isothiocyanates with the sodium and calcium salts of N-alkyl- and N,N-dialkyldithiocarbamic acids was studied. Depending on the structure of the dithiocarbamate, the reaction products are thiazines or acyl dithiocarbamates. For the salts of methyldithiocarbamic acid the effect of the concentration and the nature of the metal on the relative yields of 6-phenyl-3-methylpropiorhodanine and 6-phenylpropiorhodanine was studied. A method is proposed for the synthesis of 3-substituted propiorhodanines.

  7. Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines.

    PubMed

    Kennemur, Jennifer L; Kortman, Gregory D; Hull, Kami L

    2016-09-14

    The regiodivergent Rh-catalyzed hydrothiolation of allyl amines and imines is presented. Bidentate phosphine ligands with larger natural bite angles (βn ≥ 99°), for example, DPEphos, dpph, or L1, promote a Markovnikov-selective hydrothiolation in up to 88% yield and >20:1 regioselectivity. Conversely, when smaller bite angle ligands (βn ≤ 86°), for example, dppbz or dppp, are employed, the anti-Markovnikov product is formed in up to 74% yield and >20:1 regioselectivity. Initial mechanistic investigations are performed and are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism for each regioisomeric pathway. We hypothesize that the change in regioselectivity is an effect of diverging coordination spheres to favor either Rh-S or Rh-H insertion to form the branched or linear isomer, respectively. PMID:27547858

  8. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    PubMed

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  9. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    PubMed

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects.

  10. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera

    PubMed Central

    Boyunegmez Tumer, Tugba; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2016-01-01

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate and 4-[(4′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  11. Hydrogen sulfide releasing capacity of natural isothiocyanates: is it a reliable explanation for the multiple biological effects of Brassicaceae?

    PubMed

    Citi, Valentina; Martelli, Alma; Testai, Lara; Marino, Alice; Breschi, Maria C; Calderone, Vincenzo

    2014-06-01

    Hydrogen sulfide is an endogenous pleiotropic gasotransmitter, which mediates important physiological effects in the human body. Accordingly, an impaired production of endogenous hydrogen sulfide contributes to the pathogenesis of important disorders. To date, exogenous compounds, acting as hydrogen sulfide-releasing agents, are viewed as promising pharmacotherapeutic agents. In a recent report, the hydrogen sulfide-releasing properties of some synthetic aryl isothiocyanate derivatives have been reported, indicating that the isothiocyanate function can be viewed as a suitable slow hydrogen sulfide-releasing moiety, endowed with the pharmacological potential typical of this gasotransmitter. Many isothiocyanate derivatives (deriving from a myrosinase-mediated transformation of glucosinolates) are well-known secondary metabolites of plants belonging to the family Brassicaceae, a large botanical family comprising many edible species. The phytotherapeutic and nutraceutic usefulness of Brassicaceae in the prevention of important human diseases, such as cancer, neurodegenerative processes and cardiovascular diseases has been widely discussed in the scientific literature. Although these effects have been largely attributed to isothiocyanates, the exact mechanism of action is still unknown. In this experimental work, we aimed to investigate the possible hydrogen sulfide-releasing capacity of some important natural isothiocyanates, studying it in vitro by amperometric detection. Some of the tested natural isothiocyanates exhibited significant hydrogen sulfide release, leading us to hypothesize that hydrogen sulfide may be, at least in part, a relevant player accounting for several biological effects of Brassicaceae.

  12. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Chapsal, Bruno D.; Ojima, Iwao

    2008-01-01

    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands. PMID:16562900

  13. O-allyl decoration on alpha-glucan isolated from the haloalkaliphilic Halomonas pantelleriensis bacterium.

    PubMed

    Corsaro, Maria Michela; Gambacorta, Agata; Lanzetta, Rosa; Nicolaus, Barbara; Pieretti, Giuseppina; Romano, Ida; Parrilli, Michelangelo

    2007-07-01

    An alpha-glucan containing the unprecedented peculiar O-allyl substituent was isolated from the haloalkaliphilic Gram-negative Halomonas pantelleriensis bacterium. Its dextran-like structure was deduced from chemical degradative and spectroscopic methods.

  14. Cross coupling of dialkylmagnesium derivatives with allylic compounds catalyzed by copper salts

    SciTech Connect

    Ibragimov, A.G.; Dzhemilev, U.M.; Saraev, R.A.

    1985-07-20

    The reaction of allylic compounds with Grignard reagents catalyzed by salts of copper, nickel, iron and cobalt, titanium and palladium is a simple and efficient method for the preparation of unsaturated hydrocarbons. However, information concerning the use of dialkylmagnesium derivatives, which are more reactive than Grignard reagents, is extremely limited in these reactions. To continue a study of the cross-coupling of allylic compounds with dialkylmagnesium derivatives in an effort to expand the scope of this reaction and to elucidate the effect of the R/sub 2/Mg reagent structure on its reactivity, the authors investigated the reaction of dialkylmagnesium and diarlmagnesium reagents with allylic ethers and esters, thioethers, and amines, by the action of transition metal salts. This work demonstrates the feasibility of the preparation of unsaturated hydrocarbons of given structure by the cross-coupling of dialkylmagnesium derivatives with functional allylic compounds by the action of catalytic amounts of copper complexes.

  15. Iridium-Catalyzed Enantioselective Allylic Substitution of Enol Silanes from Vinylogous Esters and Amides.

    PubMed

    Chen, Ming; Hartwig, John F

    2015-11-01

    The enol silanes of vinylogous esters and amides are classic dienes for Diels-Alder reactions. Here, we report their reactivity as nucleophiles in Ir-catalyzed, enantioselective allylic substitution reactions. A variety of allylic carbonates react with these nucleophiles to give allylated products in good yields with high enantioselectivities and excellent branched-to-linear ratios. These reactions occur with KF or alkoxide as the additive, but mechanistic studies suggest that these additives do not activate the enol silanes. Instead, they serve as bases to promote the cyclometalation to generate the active Ir catalyst. The carbonate anion, which was generated from the oxidative addition of the allylic carbonate, likely activates the enol silanes to trigger their activity as nucleophiles for reactions with the allyliridium electrophile. The synthetic utility of this method was illustrated by the synthesis of the anti-muscarinic drug, fesoterodine. PMID:26441002

  16. Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones

    PubMed Central

    Ceban, Victor; Tauchman, Jiří; Meazza, Marta; Gallagher, Greg; Light, Mark E.; Gergelitsová, Ivana; Veselý, Jan; Rios, Ramon

    2015-01-01

    The highly enantioselective asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with anthrones is presented. The reaction is simply catalyzed by cinchona alkaloid derivatives affording the final alkylated products in good yields and excellent enantioselectivities. PMID:26592555

  17. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  18. Enantiomerization of Allylic Trifluoromethyl Sulfoxides Studied by HPLC Analysis and DFT Calculations.

    PubMed

    Bailly, Laetitia; Petit, Emilie; Maeno, Mayaka; Shibata, Norio; Trapp, Oliver; Cardinael, Pascal; Chataigner, Isabelle; Cahard, Dominique

    2016-02-01

    Enantiomerization of allylic trifluoromethyl sulfoxides occurs spontaneously at room temperature through the corresponding allylic trifluoromethanesulfenates via a [2,3]-sigmatropic rearrangement. Dynamic enantioselective high-performance liquid chromatography (HPLC) analysis revealed the stereodynamics of these sulfoxides ranging from chromatographic resolution to peak coalescence at temperatures between 5 and 53 °C. The rate constant of enantiomerization and activation parameters were determined and compared with Density Functional Theory (DFT) calculations.

  19. Enzyme- and ruthenium-catalyzed dynamic kinetic resolution of functionalized cyclic allylic alcohols.

    PubMed

    Lihammar, Richard; Millet, Renaud; Bäckvall, Jan-E

    2013-12-01

    Enantioselective synthesis of functionalized cyclic allylic alcohols via dynamic kinetic resolution has been developed. Cyclopentadienylruthenium catalysts were used for the racemization, and lipase PS-IM or CALB was employed for the resolution. By optimization of the reaction conditions the formation of the enone byproduct was minimized, making it possible to prepare a range of optically active functionalized allylic alcohols in good yields and high ee's.

  20. Palladium-Catalyzed Asymmetric Allylic Alkylations with Toluene Derivatives as Pronucleophiles.

    PubMed

    Mao, Jianyou; Zhang, Jiadi; Jiang, Hui; Bellomo, Ana; Zhang, Mengnan; Gao, Zidong; Dreher, Spencer D; Walsh, Patrick J

    2016-02-12

    The first two highly enantioselective palladium-catalyzed allylic alkylations with benzylic nucleophiles, activated with Cr(CO)3 , have been developed. These methods enable the enantioselective synthesis of α-2-propenyl benzyl motifs, which are important scaffolds in natural products and pharmaceuticals. A variety of cyclic and acyclic allylic carbonates are competent electrophilic partners furnishing the products in excellent enantioselectivity (up to 99 % ee and 92 % yield). This approach was employed to prepare a nonsteroidal anti-inflammatory drug analogue.

  1. DABO Boronate Promoted Conjugate Allylation of α,β-Unsaturated Aldehydes Using Copper(II) Catalysis.

    PubMed

    Roest, Pjotr C; Michel, Nicholas W M; Batey, Robert A

    2016-08-01

    The first catalytic method for the selective 1,4-conjugate allylation of α,β-unsaturated aldehydes is reported. The method employs an air-stable diethanolamine-complexed boronic acid (DABO boronate) as the allyl transfer reagent and promotes conjugate addition over 1,2-addition. A variety of aryl- and alkyl-substituted enals are tolerated, providing δ,ε-unsaturated aldehyde products in good yields and selectivities under mild conditions. PMID:27362535

  2. Electrophilic reactions of group-VI element halides. VIII. Reactions of selenium and tellurium tetrahalides with allyl cinnamate

    SciTech Connect

    Lendel, V.G.; Sani, A.Yu.; Balog, I.M.; Migalina, Yu.V.; Kornilov, M.Yu.; Turov, A.V.

    1988-02-20

    It was shown that, as a result of two-phase selenohalogenation or tellurohalogenation of allyl cinnamate at /minus/30 C, addition took place at the C/doteq/C bond of the allyl group; the C=C bond of the cinnamoyl moiety remained uninvolved. Selenium tetrahalides were added to allyl cinnamate in accordance with the Markownikoff rule, forming adducts with 1:2 composition; tellurium tetrahalides formed products of rearrangement of the adducts with a 1:1 composition.

  3. Allylic and Allenic Halide Synthesis via NbCl5- and NbBr5-Mediated Alkoxide Rearrangements

    PubMed Central

    Ravikumar, P. C.; Yao, Lihua; Fleming, Fraser F.

    2009-01-01

    Addition of NbCl5, or NbBr5, to a series of magnesium, lithium, or potassium allylic or propargylic alkoxides directly provides allylic or allenic halides. Halogenation formally occurs through a metalla-halo-[3,3] rearrangement although concerted, ionic, and direct displacement mechanisms appear to operate competitively. Transposition of the olefin is equally effective for allylic alkoxides prepared by nucleophilic addition, deprotonation, or reduction. Experimentally, the niobium pentahalide halogenations are rapid, afford essentially pure E-allylic or allenic halides after extraction, and are applicable to a range of aliphatic and aromatic alcohols, aldehydes, and ketones. PMID:19739606

  4. Allylic and allenic halide synthesis via NbCl(5)- and NbBr(5)-mediated alkoxide rearrangements.

    PubMed

    Ravikumar, P C; Yao, Lihua; Fleming, Fraser F

    2009-10-01

    Addition of NbCl(5) or NbBr(5) to a series of magnesium, lithium, or potassium allylic or propargylic alkoxides directly provides allylic or allenic halides. Halogenation formally occurs through a metalla-halo-[3,3] rearrangement, although concerted, ionic, and direct displacement mechanisms appear to operate competitively. Transposition of the olefin is equally effective for allylic alkoxides prepared by nucleophilic addition, deprotonation, or reduction. Experimentally, the niobium pentahalide halogenations are rapid, afford essentially pure (E)-allylic or -allenic halides after extraction, and are applicable to a range of aliphatic and aromatic alcohols, aldehydes, and ketones. PMID:19739606

  5. Metal-mediated reaction modeled on nature: the activation of isothiocyanates initiated by zinc thiolate complexes.

    PubMed

    Eger, Wilhelm A; Presselt, Martin; Jahn, Burkhard O; Schmitt, Michael; Popp, Jürgen; Anders, Ernst

    2011-04-18

    On the basis of detailed theoretical studies of the mode of action of carbonic anhydrase (CA) and models resembling only its reactive core, a complete computational pathway analysis of the reaction between several isothiocyanates and methyl mercaptan activated by a thiolate-bearing model complex [Zn(NH(3))(3)SMe](+) was performed at a high level of density functional theory (DFT). Furthermore, model reactions have been studied in the experiment using relatively stable zinc complexes and have been investigated by gas chromatography/mass spectrometry and Raman spectroscopy. The model complexes used in the experiment are based upon the well-known azamacrocyclic ligand family ([12]aneN(4), [14]aneN(4), i-[14]aneN(4), and [15]aneN(4)) and are commonly formulated as ([Zn([X]aneN(4))(SBn)]ClO(4). As predicted by our DFT calculations, all of these complexes are capable of insertion into the heterocumulene system. Raman spectroscopic investigations indicate that aryl-substituted isothiocyanates predominantly add to the C═N bond and that the size of the ring-shaped ligands of the zinc complex also has a very significant influence on the selectivity and on the reactivity as well. Unfortunately, the activated isothiocyanate is not able to add to the thiolate-corresponding mercaptan to invoke a CA analogous catalytic cycle. However, more reactive compounds such as methyl iodide can be incorporated. This work gives new insight into the mode of action and reaction path variants derived from the CA principles. Further, aspects of the reliability of DFT calculations concerning the prediction of the selectivity and reactivity are discussed. In addition, the presented synthetic pathways can offer a completely new access to a variety of dithiocarbamates. PMID:21405064

  6. Synthesis of Cyclic Azomethine Imines by Cycloaddition Reactions of N-Isocyanates and N-Isothiocyanates.

    PubMed

    Bongers, Amanda; Ranasinghe, Indee; Lemire, Philippe; Perozzo, Alyssa; Vincent-Rocan, Jean-François; Beauchemin, André M

    2016-08-01

    Various nitrogen-substituted iso(thio)cyanates engage in [3 + 2]-cycloaddition reactions to form azomethine imines containing triazolone, triazole-thione, and pyrazole-thione cores. First, iminoisothiocyanates are shown to undergo aminothiocarbonylation reactions with strained alkenes, and a comparison with recently reported reactions of iminoisocyanates highlights their reduced reactivity. In contrast, amino(thio)carbonylation reactions of imines with iminoisocyanates and iminoisothiocyanates proved more efficient, providing access to triazolone and triazole-thione cores. The dipole products can be converted to valuable heterocyclic cores through simple derivatization reactions. PMID:27458786

  7. Studies on the interaction of fluorescein isothiocyanate and its sugar analogues with cetyltrimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujit Kumar; Ali, Mohammed; Chatterjee, Hirak

    2013-03-01

    The interaction of fluorescein isothiocyanate (FITC) and its two sugar analogues (viz., FITC-Dextran 40S and FITC-Dextran 2000S) with cetyltrimethylammonium bromide has been elucidated by absorption, fluorescence, Fourier transform infrared spectroscopy and fluorescence microscopic studies. It is seen that the emission of the probe molecules is uniquely sensitive to the changes in surfactant concentrations at a particular regime due to the formation of dye-surfactant supramolecular assembly. The formation of supramolecular assembly becomes effective at a lower surfactant concentration with increasing dextran size as a consequence of definite dye-surfactant interaction and could pave a facile strategy for designing hierarchical superstructures.

  8. Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast.

    PubMed

    Golla, Upendarrao; Bandi, Goutham; Tomar, Raghuvir S

    2015-06-15

    Allyl alcohol (AA) is one of the environmental pollutants used as a herbicide and industrial chemical. AA undergoes enzymatic oxidation in vivo to form Acrolein (Acr), a highly reactive and ubiquitous environmental toxicant. The exposure to AA/Acr has detrimental effects on cells and is highly fatal. In corroboration to the current literature describing AA/Acr toxicity, this study aimed to investigate the molecular cytotoxicity mechanisms of AA/Acr using budding yeast as a eukaryotic model organism. Genome-wide transcriptome analysis of cells treated with a sublethal dose of AA (0.4 mM) showed differential regulation of approximately 30% of the yeast genome. Functional enrichment analysis of the AA transcriptome revealed that genes belong to diverse cellular processes including the cell cycle, DNA damage repair, metal homeostasis, stress response genes, ribosomal biogenesis, metabolism, meiosis, ubiquitination, cell morphogenesis, and transport. Moreover, we have identified novel molecular targets of AA/Acr through genetic screening, which belongs to oxidative stress, DNA damage repair, iron homeostasis, and cell wall integrity. This study also demonstrated the epigenetic basis of AA/Acr toxicity mediated through histone tails and chromatin modifiers. Interestingly, our study disclosed the use of pyrazole and ethanol as probable antidotes for AA intoxication. For the first time, this study also demonstrated the reproductive toxicity of AA/Acr using the yeast gametogenesis (spermatogenesis) model. Altogether, this study unravels the molecular mechanisms of AA/Acr cytotoxicity and facilitates the prediction of biomarkers for toxicity assessment and therapeutic approaches. PMID:25919230

  9. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes : site-isolation, reactivity, and decomposition studies.

    SciTech Connect

    Trovitch, R. J.; Guo, N.; Janicke, M. T.; Li, H.; Marshall, C. L.; Miller, J. T.; Sattelberger, A. P.; John, K. D.; Baker, R. T.; LANL; Univ. of Ottawa

    2010-01-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated ?-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (?AlO)Ir(allyl)2, as characterized by CP-MAS 13C NMR, inductively coupled plasma-mass spectrometry, and Ir L3 edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)3 and several associated tertiary phosphine addition complexes suggest that the ?3-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir0 is also formed upon reaction of Ir(allyl)3 with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (?AlO)Ir(allyl)2(CNAr) [Ar = 2,6-(CH3)2C6H4] and (?AlO)Ir(allyl)2(CO)2, respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir0 nanoparticles, rather than a well-defined Ir3+ complex, are responsible for the observed activity.

  10. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes: site-isolation, reactivity, and decomposition studies.

    PubMed

    Trovitch, Ryan J; Guo, Neng; Janicke, Michael T; Li, Hongbo; Marshall, Christopher L; Miller, Jeffrey T; Sattelberger, Alfred P; John, Kevin D; Baker, R Thomas

    2010-03-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated gamma-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (=AlO)Ir(allyl)(2), as characterized by CP-MAS (13)C NMR, inductively coupled plasma-mass spectrometry, and Ir L(3) edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)(3) and several associated tertiary phosphine addition complexes suggest that the eta(3)-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir(0) is also formed upon reaction of Ir(allyl)(3) with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (=AlO)Ir(allyl)(2)(CNAr) [Ar = 2,6-(CH(3))(2)C(6)H(4)] and (=AlO)Ir(allyl)(2)(CO)(2), respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220 degrees C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir(0) nanoparticles, rather than a well-defined Ir(3+) complex, are responsible for the observed activity. PMID:20112918

  11. FTIR studies of iron-carbonyl intermediates in allylic alcohol photoisomerization.

    PubMed

    Chong, Thiam Seong; Tan, Sze Tat; Fan, Wai Yip

    2006-06-23

    The 532 or 355 nm laser-induced photoisomerization of allylic alcohols to aldehydes catalyzed by [Fe(3)(CO)(12)] or [Fe(CO)(4)PPh(3)] in hexane was investigated. The Fourier transform infrared (FTIR) absorption spectra of iron-carbonyl intermediate species such as [Fe(CO)(5)], [Fe(CO)(4)(R-C(3)H(4)OH)], and more importantly the pi-allyl iron-carbonyl hydride species [FeH(CO)(3)(R-C(3)H(3)OH)] (R=H, Me, Ph) were recorded during the catalytic process using [Fe(3)(CO)(12)] as the catalytic precursor. When [Fe(CO)(4)PPh(3)] was photolyzed with 355 nm, [FeH(CO)(3)(R-C(3)H(3)OH)] was also generated indicating the common occurrence of the species in these two systems. The pi-allyl hydride species is long believed to be a key intermediates and its detection here lends support to the pi-allyl mechanism of the photoisomerization of allyl alcohols.

  12. Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles, and epithionitriles.

    PubMed

    Pope, Tom W; Kissen, Ralph; Grant, Murray; Pickett, John A; Rossiter, John T; Powell, Glen

    2008-10-01

    Cruciferous plants (Brassicaceae) are characterized by the accumulation of a group of secondary metabolites known as glucosinolates that, following attack by pathogens or herbivores, may be hydrolyzed to one of a number of products including isothiocyanates and nitriles. Despite the range of hydrolysis products that may be produced, the toxicity of glucosinolates to pathogens and herbivores may be explained largely by the production of isothiocyanates. Isothiocyanates are also known to provide an indirect defense by acting as host finding cues for parasitoids of insect herbivores that attack crucifers. It has been speculated that nitriles may provide a similar indirect defense. Here, we investigate the olfactory perception and orientation behavior of the aphid parasitoid Diaeretiella rapae, to a range of alkenylglucosinolate hydrolysis products, including isothiocyanates, nitriles, and epithionitriles. Electroantennogram responses indicated peripheral odor perception in D. rapae females to all 3-butenylglucosinolate hydrolysis products tested. By contrast, of the 2-propenylglucosinolate hydrolysis products tested, only the isothiocyanate elicited significant responses. Despite showing peripheral olfactory detection of a range of 3-butenylglucosinolate hydrolysis products, naïve females oriented only to the isothiocyanate. Similarly, parasitoids oriented to 3-isothiocyanatoprop-1-ene, but not to the corresponding nitrile or epithionitrile. However, by rearing D. rapae either on Brassica nigra, characterized by the accumulation of 2-propenylglucosinolate, or Brassica rapa var rapifera, characterized by the accumulation of 3-butenylglucosinolate, altered the innate response of parasitoids to 3-isothiocyanatoprop-1-ene and 4-isothiocyanatobut-1-ene. These results are discussed in relation to the defensive roles of glucosinolate hydrolysis products and the influence of the host plant on aphid parasitoid behavior.

  13. Comparative study between extraction techniques and column separation for the quantification of sinigrin and total isothiocyanates in mustard seed.

    PubMed

    Cools, Katherine; Terry, Leon A

    2012-07-15

    Glucosinolates are β-thioglycosides which are found naturally in Cruciferae including the genus Brassica. When enzymatically hydrolysed, glucosinolates yield isothiocyanates and give a pungent taste. Both glucosinolates and isothiocyanates have been linked with anticancer activity as well as antifungal and antibacterial properties and therefore the quantification of these compounds is scientifically important. A wide range of literature exists on glucosinolates, however the extraction and quantification procedures differ greatly resulting in discrepancies between studies. The aim of this study was therefore to compare the most popular extraction procedures to identify the most efficacious method and whether each extraction can also be used for the quantification of total isothiocyanates. Four extraction techniques were compared for the quantification of sinigrin from mustard cv. Centennial (Brassica juncea L.) seed; boiling water, boiling 50% (v/v) aqueous acetonitrile, boiling 100% methanol and 70% (v/v) aqueous methanol at 70 °C. Prior to injection into the HPLC, the extractions which involved solvents (acetonitrile or methanol) were freeze-dried and resuspended in water. To identify whether the same extract could be used to measure total isothiocyanates, a dichloromethane extraction was carried out on the sinigrin extracts. For the quantification of sinigrin alone, boiling 50% (v/v) acetonitrile was found to be the most efficacious extraction solvent of the four tested yielding 15% more sinigrin than the water extraction. However, the removal of the acetonitrile by freeze-drying had a negative impact on the isothiocyanate content. Quantification of both sinigrin and total isothiocyanates was possible when the sinigrin was extracted using boiling water. Two columns were compared for the quantification of sinigrin revealing the Zorbax Eclipse to be the best column using this particular method. PMID:22743340

  14. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  15. [2+2+2] cyclotrimerization of alkynes and isocyanates/isothiocyanates catalyzed by ruthenium-alkylidene complexes.

    PubMed

    Alvarez, Silvia; Medina, Sandra; Domínguez, Gema; Pérez-Castells, Javier

    2013-10-01

    Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents. The reaction of unsymmetrical α,ω-diynes gave a product only with the substituent adjacent to the 2-pyridone nitrogen. Isothiocyanates gave thiopyranimines upon reaction with the C═S bond, whereas CS2 reacted efficiently to give a thioxothiopyrane.

  16. Regiodivergent Addition of Phenols to Allylic Oxides: Control of 1,2 and 1,4-Additions for Cyclitol Synthesis**

    PubMed Central

    Moschitto, Matthew J.; Vaccarello, David N.; Lewis, Chad A.

    2015-01-01

    Control of 1,2- and 1,4-addition of substituted phenols to allylic oxides is achieved by intercepting palladium π-allyl complexes. The interconversion of palladium complexes results in the total synthesis of MK7607, cyathiformine B type, streptol, and a new cyclitol. PMID:25533617

  17. Highly Regio-, Diastereo-, and Enantioselective Mannich Reaction of Allylic Ketones and Cyclic Ketimines: Access to Chiral Benzosultam.

    PubMed

    Qiao, Baokun; Huang, Yin-Jun; Nie, Jing; Ma, Jun-An

    2015-09-18

    An organocatalytic asymmetric Mannich reaction of allylic ketones with cyclic N-sulfonyl α-iminoester has been developed. By using a saccharide-derived chiral tertiary amino-thiourea catalyst, a range of allylic ketones and N-sulfonyl ketimines reacted smoothly to afford tetrasubstituted α-amino esters in high yields with good to excellent regio-, diastero-, and enantioselectivities. PMID:26335386

  18. Formation of gas-phase. pi. -allyl radicals from propylene over bismuth oxide and. gamma. -bismuth molybdate catalysts

    SciTech Connect

    Martir, W.; Lunsford, J.H.

    1981-07-01

    Gas-phase ..pi..-allyl radicals were produced when propylene reacted over Bi/sub 2/O/sub 3/ and ..gamma..-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10/sup -3/ and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than ..gamma..-bismuth molybdate. By contrast ..cap alpha..-bismuth molybdate was ineffective in forming allyl radicals and MoO/sub 3/ acted as a sink for radicals which were produced elsewhere in the system. Comparison of the ..pi..-allyl radical and the stable product concentrations over Bi/sub 2/O/sub 3/ revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system.

  19. Synthesis of 3-fluoropyrrolidines and 4-fluoropyrrolidin-2-ones from allylic fluorides.

    PubMed

    Combettes, Lorraine E; Schuler, Marie; Patel, Rakesh; Bonillo, Baltasar; Odell, Barbara; Thompson, Amber L; Claridge, Tim D W; Gouverneur, Véronique

    2012-10-01

    Various 3-fluoropyrrolidines and 4-fluoropyrrolidin-2-ones were prepared by 5-exo-trig iodocyclisation from allylic fluorides bearing a pending nitrogen nucleophile. These bench-stable precursors were made accessible upon electrophilic fluorination of the corresponding allylsilanes. The presence of the allylic fluorine substituent induces syn-stereocontrol upon iodocyclisation with diastereomeric ratios ranging from 10:1 to > 20:1 for all N-tosyl-3-fluoropent-4-en-1-amines and amides. The sense and level of stereocontrol is strikingly similar to the corresponding iodocyclisation of structurally related allylic fluorides bearing pending oxygen nucleophiles. These results suggest that the syn selectivity observed upon ring closure involves I(2)-π complexes with the fluorine positioned inside.

  20. VUV Photoionization Study of the Allyl Radical from Premixed Gasoline/Oxygen Flame

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Yang, Bin; Huang, Chao-qun; Wei, Li-xia; Wang, Jing; Shan, Xiao-bin; Sheng, Liu-si; Zhang, Yun-wu; Qi, Fei; Yao, Chun-de; Li, Qi; Ji, Qing

    2006-02-01

    The allyl radical has been observed in a low-pressure premixed gasoline/oxygen/argon flame by using tunable vacuum ultraviolet photoionization mass spectrometry. The ionization potential of the allyl radical is derived to be (8.13 ± 0.02) eV from photoionization efficiency curve. In addition, a high level ab initio Gaussian-3 (G3) method was used to calculate the energies of the radical and its cation. The calculated adiabatic ionization potential is 8.18 eV, which is in excellent agreement with the experimental value. The result is helpful for identifying the allyl radical formed from other flames and for understanding the mechanism of soot formation.

  1. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    NASA Astrophysics Data System (ADS)

    Genshuan, Wei; Guanghui, Wang; Ruipu, Yang; Jilan, Wu

    1996-02-01

    A study of the effects of γ-radiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3CHOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited.

  2. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis.

    PubMed

    Krautwald, Simon; Schafroth, Michael A; Sarlah, David; Carreira, Erick M

    2014-02-26

    We describe the fully stereodivergent, dual catalytic α-allylation of linear aldehydes. The reaction proceeds via direct iridium-catalyzed substitution of racemic allylic alcohols with enamines generated in situ. The use of an Ir(P,olefin) complex and a diarylsilyl prolinol ether as catalysts in the presence of dimethylhydrogen phosphate as the promoter proved to be crucial for achieving high enantio- and diastereoselectivity (>99% ee, up to >20:1 dr). The utility of the method is demonstrated in a concise enantioselective synthesis of the antidepressant (-)-paroxetine. PMID:24506196

  3. Stereodivergent Dual Catalytic α-Allylation of Protected α-Amino- and α-Hydroxyacetaldehydes.

    PubMed

    Sandmeier, Tobias; Krautwald, Simon; Zipfel, Hannes F; Carreira, Erick M

    2015-11-23

    Fully stereodivergent dual-catalytic α-allylation of protected α-amino- and α-hydroxyacetaldehydes is achieved through iridium- and amine-catalyzed substitution of racemic allylic alcohols with chiral enamines generated in situ. The operationally simple method furnishes useful aldehyde building blocks in good yields, more than 99% ee, and with d.r. values greater than 20:1 in some cases. Additionally, the γ,δ-unsaturated products can be further functionalized in a stereodivergent fashion with high selectivity and with preservation of stereochemical integrity at the Cα  position. PMID:26427612

  4. Synthesis of substituted quinolines via allylic amination and intramolecular Heck-coupling.

    PubMed

    Murru, Siva; McGough, Brandon; Srivastava, Radhey S

    2014-12-01

    A new catalytic approach for the synthesis of substituted quinolines via C-N and C-C bond formation using 2-haloaryl hydroxylamines and allylic C-H substrates is described. Fe-catalyzed allylic C-H amination followed by Pd-catalyzed intramolecular Heck-coupling and aerobic dehydrogenation deliver the valuable quinoline and naphthyridine heterocycles in good to excellent overall yields. In this process, Pd(OAc)2 plays a dual role in catalyzing Heck coupling as well as aerobic dehydrogenation of dihydroquinolines. PMID:25247637

  5. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities.

  6. Chemoselective and stereoselective lithium carbenoid mediated cyclopropanation of acyclic allylic alcohols.

    PubMed

    Durán-Peña, M J; Flores-Giubi, M E; Botubol-Ares, J M; Harwood, L M; Collado, I G; Macías-Sánchez, A J; Hernández-Galán, R

    2016-03-01

    The reaction of geraniol with different lithium carbenoids generated from n-BuLi and the corresponding dihaloalkane has been evaluated. The reaction occurs in a chemo and stereoselective manner, which is consistent with a directing effect from the oxygen of the allylic moiety. Furthermore, a set of polyenes containing allylic hydroxyl or ether groups were chemoselectively and stereoselectively converted into the corresponding gem-dimethylcyclopropanes in one single step in moderate to good yields mediated by a lithium carbenoid generated in situ by the reaction of n-BuLi and 2,2-dibromopropane.

  7. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis.

    PubMed

    Krautwald, Simon; Schafroth, Michael A; Sarlah, David; Carreira, Erick M

    2014-02-26

    We describe the fully stereodivergent, dual catalytic α-allylation of linear aldehydes. The reaction proceeds via direct iridium-catalyzed substitution of racemic allylic alcohols with enamines generated in situ. The use of an Ir(P,olefin) complex and a diarylsilyl prolinol ether as catalysts in the presence of dimethylhydrogen phosphate as the promoter proved to be crucial for achieving high enantio- and diastereoselectivity (>99% ee, up to >20:1 dr). The utility of the method is demonstrated in a concise enantioselective synthesis of the antidepressant (-)-paroxetine.

  8. Asymmetric catalysis with silicon-based cuprates: enantio- and regioselective allylic substitution of linear precursors.

    PubMed

    Hensel, Alexander; Oestreich, Martin

    2015-06-15

    An enantio- and regioselective allylic silylation of linear allylic phosphates that makes use of catalytically generated cuprate-type silicon nucleophiles is reported. The method relies on soft bis(triorganosilyl) zincs as silicon pronucleophiles that are prepared in situ from the corresponding hard lithium reagents by transmetalation with ZnCl2 . With a preformed chiral N-heterocyclic carbene-copper(I) complex as catalyst, exceedingly high enantiomeric excesses are achieved. The new method is superior to existing ones using a silicon-boron reagent as the source of the silicon nucleophile.

  9. Fumigation of wheat using liquid ethyl formate plus methyl isothiocyanate in 50-tonne farm bins.

    PubMed

    Ren, Yonglin; Lee, Byungho; Mahon, Daphne; Xin, Ni; Head, Matthew; Reid, Robin

    2008-04-01

    Australian Standard White wheat, Triticum aestivum L. (a marketing grade with mixed grain hardness),with a moisture content of 12.5% was fumigated with a new ethyl formate formulation (95% ethyl formate plus 5% methyl isothiocyanate) identified and developed by Commonwealth Scientific and Industrial Research Organization Entomology, Canberra, Australia. Wheat was fumigated with the formulation at a calculated application rate of 80 g/m3 in two 50-tonne sealed metal vertical silos located at Fisherman Islands, Queensland, Australia. Access was gained through the top of the silo where the application of the formulation was completed within a few minutes by pouring it onto the top of the wheat. After 2 h of recirculation, using a 0.5-kW fan, the in-bin concentrations of ethyl formate achieved equilibrium with a concentration variation < 7%. The ethyl formate concentration, in both silos 1 and 2, during the first day's exposure period remained above 10 g/m3. The concentration of ethyl formate by time product achieved was 790 and 650 g h/m3 in silos 1 and 2, respectively. In silo 1, the formulation was sufficient to kill all life stages of mixed age cultures of Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst). In silo 2, control was 100% for R. dominica and T. castaneum and 99.4% for S. oryzae. After 5 d fumigation, the silo top-hatch was opened but no forced aeration was initiated. The in-bin concentration of ethyl formate was lower than the Australian experimental threshold limit value of 100 ppm. The ethyl formate and methyl isothiocyanate residues in the grain had declined to below the Australian experimental maximum residue limit of 0.2 and 0.1 mg/kg, respectively. The workspace and environmental levels of ethyl formate and methyl isothiocyanate were less than the detection limit of 0.1 ppm. The treatment with ethyl formate formulation had no affect on the wheat germination and seed color compared with untreated controls. PMID

  10. Unlocking ylide reactivity in the metal-catalyzed allylic substitution reaction: stereospecific construction of primary allylic amines with aza-ylides.

    PubMed

    Evans, P Andrew; Clizbe, Elizabeth A

    2009-07-01

    The transition metal catalyzed allylic amination represents a powerful and versatile cross-coupling for the asymmetric construction of stereogenic C-N bonds that are present in secondary metabolites and medicinally important agents. We have developed a regio- and enantiospecific rhodium-catalyzed allylic amination reaction using the aza-ylide derived from 1-aminopyridinium iodide. This investigation demonstrates the importance of the ylide-stabilizing group for obtaining the desired nucleophilicity and the ability to utilize the aza-ylide as a commercially available ammonia equivalent, which serves to illustrate the synthetic potential of this nucleophile for the preparation of primary amines. Overall, this work provides an opportunity to investigate the utility of this new class of nucleophiles in related metal-catalyzed reactions.

  11. Structural Interactions Dictate the Kinetics of Macrophage Migration Inhibitory Factor Inhibition by Different Cancer-Preventive Isothiocyanates

    PubMed Central

    Crichlow, Gregg V.; Fan, Chengpeng; Keeler, Camille; Hodsdon, Michael; Lolis, Elias J.

    2012-01-01

    Regulation of cellular processes by dietary nutrients is known to affect the likelihood of cancer development. One class of cancer preventive nutrients, isothiocyanates (ITCs) derived from consumption of cruciferous vegetables, is known to have various effects on cellular biochemistry. One target of ITCs is macrophage migration inhibitory factor (MIF), a widely expressed protein with known inflammatory, pro-tumorigenic, pro-angiogenic, and anti-apoptotic properties. MIF is covalently inhibited by a variety of ITCs, which in part, may explain how they exert their cancer-preventive effects. We report the crystallographic structures of human MIF bound to phenethylisothiocyanate and to L-sulforaphane (dietary isothiocyanates derived from watercress and broccoli, respectively), and correlate structural features of these two isothiocyanates with their second-order rate constants for MIF inactivation. We also characterize changes in the MIF structure using NMR HSQC spectra of these complexes and observe many changes at the subunit interface. While a number of chemical shifts do not change, many of those that change do not have similar features in magnitude or direction for the two isothiocyanates. The difference in the binding modes of these two ITCs provides a means of using structure-activity relationships to reveal insights into MIF biological interactions. The results of this study provide a framework for the development of therapeutics that target MIF. PMID:22931430

  12. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells.

    PubMed

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  13. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells

    PubMed Central

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  14. Milk prevents the degradation of daikon (Raphanus sativus L.) isothiocyanate and enhances its absorption in rats.

    PubMed

    Ippoushi, Katsunari; Ueda, Hiroshi; Takeuchi, Atsuko

    2014-10-15

    Epidemiological and experimental researches show that isothiocyanate (ITC), a class of phytochemical compounds that imparts a characteristic biting taste and pungent odour to cruciferous vegetables, such as daikon (Japanese white radish, Raphanus sativus L. Daikon Group), broccoli, cabbage, and Chinese cabbage, possesses anticancer and anti-inflammatory properties. The concentration of daikon ITC, which degrades in aqueous solution, was measured in mixtures of daikon juice and water, corn oil, or milk. Daikon juice mixed with corn oil or milk showed a higher concentration (1.4-fold) of daikon ITC than that in mixture with water; thus, corn oil and milk prevent the degradation of daikon ITC. Moreover, orally administered daikon juice with milk increased daikon ITC absorption in rats. Therefore, dishes or drinks that include raw daikon with corn oil or milk may promote the possible health benefits of daikon ITC by preventing ITC degradation and enhancing its absorption in vivo.

  15. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    PubMed Central

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-01-01

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic α- and β-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy in coping with crisis of misfolded proteins. PMID:19682429

  16. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    PubMed Central

    Angelino, Donato; Dosz, Edward B.; Sun, Jianghao; Hoeflinger, Jennifer L.; Van Tassell, Maxwell L.; Chen, Pei; Harnly, James M.; Miller, Michael J.; Jeffery, Elizabeth H.

    2015-01-01

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3–5 servings a week of brassica vegetables may provide health effects, even if they are cooked. PMID:26500669

  17. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  18. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions

    SciTech Connect

    DeLuca, N.; Bzik, D.; Person, S.; Snipes, W.

    1981-02-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyanate (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 ..mu..g/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 ..mu..g/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell.

  19. 7-Methylsulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes.

    PubMed

    Rose, P; Faulkner, K; Williamson, G; Mithen, R

    2000-11-01

    Watercress is an exceptionally rich dietary source of beta-phenylethyl isothiocyanate (PEITC). This compound inhibits phase I enzymes, which are responsible for the activation of many carcinogens in animals, and induces phase II enzymes, which are associated with enhanced excretion of carcinogens. In this study, we show that watercress extracts are potent inducers of quinone reductase (QR) in murine hepatoma Hepa 1c1c7 cells, a widely adopted assay for measuring phase II enzyme induction. However, contrary to expectations, this induction was not associated with PEITC (which is rapidly lost to the atmosphere upon tissue disruption due to its volatility) or a naturally occurring PEITC-glutathione conjugate, but with 7-methylsulfinyheptyl and 8-methylsulfinyloctyl isothiocyanates (ITCs). While it was confirmed that PEITC does induce QR (5 microM required for a two-fold induction in QR), 7-methylsulfinyheptyl and 8-methylsulfinyloctyl ITCs were more potent inducers (0.2 microM and 0.5 microM, respectively, required for a two-fold induction in QR). Thus, while watercress contains three times more phenylethyl glucosinolate than methylsulfinylalkyl glucosinolates, ITCs derived from methylsulfinylalkyl glucosinolates may be more important phase II enzyme inducers than PEITC, having 10 - to 25-fold greater potency. Analysis of urine by liquid chromatography-mass spectroscopy (LC-MS) following consumption of watercress demonstrated the presence of N:-acetylcysteine conjugates of 7-methylsulfinylheptyl, 8-methylsulfinyloctyl ITCs and PEITC, indicating that these ITCs are taken up by the gut and metabolized in the body. Watercress may have exceptionally good anticarcinogenic potential, as it combines a potent inhibitor of phase I enzymes (PEITC) with at least three inducers of phase II enzymes (PEITC, 7-methylsulfinylheptyl ITC and 8-methylsulfinyloctyl ITC). The study also demonstrates the application of LC-MS for the detection of complex glucosinolate-derived metabolites in

  20. Solvent-Controlled, Tunable β-OAc and β-H Elimination in Rh(III)-Catalyzed Allyl Acetate and Aryl Amide Coupling via C-H Activation.

    PubMed

    Dai, Huimin; Yu, Chao; Wang, Zihao; Yan, Hong; Lu, Changsheng

    2016-07-15

    The Heck reaction between arenes and allyl acetate has led to cinnamyl derivatives and allyl products depending on the regioselectivity of β-elimination. The regioselectivity can be controlled by the solvent in the Rh(III)-catalyzed arene-allyl acetate coupling via C-H activation: (1) in THF, cinnamyl derivatives via β-H elimination were generated; (2) in MeOH, allyl products via β-OAc elimination were produced. Both routes have advantages such as excellent γ-selectivity toward allyl acetate, good to excellent yields, and broad substrate scope. PMID:27351917

  1. Anti-NF-κB and Anti-inflammatory Activities of Synthetic Isothiocyanates: effect of chemical structures and cellular signaling

    PubMed Central

    Prawan, Auemduan; Saw, Constance Lay Lay; Khor, Tin Oo; Keum, Young-Sam; Yu, Siwang; Hu, Longqin; Kong, Ah-Ng

    2009-01-01

    Many cancer chemopreventive agents have been associated with lower cancer risk by suppressing nuclear factor-κB (NF-κB) signaling pathways, which subsequently leads to attenuated pro-inflammatory mediators and activities. Of the natural compounds, the isothiocyanates (ITCs) found in cruciferous vegetables have received particular attention because of their potential anti-cancer effects. However, limited studies regarding the influence of ITCs structure on NF-κB transactivation and anti-inflammatory action are reported. In the present study, the anti-inflammatory potential of ten structurally divergent synthetic ITCs were evaluated in HT-29-N9 human colon cancer cells and RAW 264.7 murine macrophages. The effect of ITCs on the basal transcriptional activation of NF-κB and the inflammatory response to bacterial lipopolysaccharide (LPS) were assessed. The synthetic ITC analogs suppressed NF-κB-mediated pro-inflammatory gene transcription. Among the ITC analogs, tetrahydrofurfuryl isothiocyanate, methyl-3-isothiocyanatopropionate, 3-morpholinopropyl isothiocyanate and 3,4-methyelendioxybenzyl isothiocyanate showed stronger NF-κB inhibition as compared to the parent compound, phenylethyl isothiocyanate (PEITC). Molecular analysis revealed that several of the pro-inflammatory mediators and cytokines (iNOS, COX-2, IL-1β , IL-6 and TNF-α ,) were reduced by ITCs, and correlated with the downregulation of NF-κB signaling pathways. Immunoblotting showed that ITCs suppressed LPS-induced phosphorylation and degradation of IκBα and decreased nuclear translocation of p65. In parallel, ITCs suppressed the phosphorylation of IκB kinase α /β (IKKα /β ). Taken together, our findings provide the possibility that synthetic ITC analogs might have promising cancer chemopreventive potential, based on their stronger anti-NF-κB and anti-inflammatory activities, than the natural ITCs. PMID:19159619

  2. Photocatalytic synthesis of allylic trifluoromethyl substituted styrene derivatives in batch and flow.

    PubMed

    Kreis, Lukas M; Krautwald, Simon; Pfeiffer, Nicole; Martin, Rainer E; Carreira, Erick M

    2013-04-01

    A cobalt-catalyzed photochemical synthesis of allylic trifluoromethanes from styrene derivatives using 2,2,2-trifluoroethyl iodide is described. The method complements existing approaches, providing an alternative bond construction strategy to access these compounds. The process may be conducted in continuous mode in a novel photochemical flow reactor, resulting in a notable productivity increase. PMID:23517196

  3. Kinetics of the reaction of diethylene glycol bis-chloroformate with allyl alcohol

    SciTech Connect

    Alekseev, N.N.; Shtoda, N.F.; Dzumedzei, N.V.

    1988-10-01

    The kinetics of diethylene glycol bis-chloroformate solvolysis by excess allyl alcohol in toluene and carbon tetrachloride has been studied. Under conditions of a pseudofirst order reaction with respect to diethylene glycol bis-chloroformate the activation parameters confirm an addition-detachment mechanism.

  4. Oxidative allylic rearrangement of cycloalkenols: Formal total synthesis of enantiomerically pure trisporic acid B

    PubMed Central

    Dubberke, Silke; Abbas, Muhammad

    2011-01-01

    Summary Enantiomerically highly enriched unsaturated β-ketoesters bearing a quaternary stereocenter can be utilized as building blocks for the synthesis of natural occurring terpenes, i. a., trisporic acid and its derivatives. An advanced building block has been synthesized in a short reaction sequence, which involves an oxidative allylic rearrangement initiated by pyridinium dichromate (PDC) as the key step. PMID:21512603

  5. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    PubMed

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid.

  6. Direct and Highly Regioselective and Enantioselective Allylation of β-Diketones

    PubMed Central

    Chalifoux, Wesley A.; Reznik, Samuel K.; Leighton, James L.

    2012-01-01

    The enantioselective allylation of ketones represents both a problem of fundamental importance in asymmetric reaction design and one of only a very small number of available methods to access valuable tertiary carbinols. Despite the vast amount of attention from chemists that this problem has elicited,1-8 however, success has generally been limited to just a few simple ketone types thus limiting the utility of these methods. A method for the selective allylation of functionally complex ketones would be expected to increase the utility of ketone allylation methods in the chemical synthesis of important targets. Here we describe the operationally simple, direct, regioselective, and enantioselective allylation of β-diketones. The strong tendency of β-diketones to act as nucleophilic species was overcome by the co-optation of their enol form to provide the necessary Brønsted acid activation. This unprecedented reaction thus not only significantly expands the pool of enantiomerically enriched and functionally complex tertiary carbinols that may be easily accessed, but also overturns more than a century of received wisdom regarding the reactivity of β-diketones. PMID:22763452

  7. Biomonitoring the intake of garlic via urinary excretion of allyl mercapturic acid.

    PubMed

    Verhagen, H; Hageman, G J; Rauma, A L; Versluis-de Haan, G; van Herwijnen, M H; de Groot, J; Törrönen, R; Mykkänen, H

    2001-08-01

    Allium vegetables (onions, leeks, chives) and in particular garlic have been claimed to have health-promoting potential. This study was conducted to get insight into the perspectives for monitoring the intake of garlic by a biomarker approach. Chemically, the biomarker results from exposure to gamma-glutamyl-S-allyl-l-cysteine, which is first hydrolysed by gamma-glutamine-transpeptidase resulting in the formation of S-allyl-l-cysteine. The latter compound is subsequently N-acetylated by N-acetyltransferase into S-allyl-mercapturic acid (ALMA) and excreted into urine. The mercapturic acid was measured in urine using gaschromatography with mass spectrometry. Thus the intake of garlic was determined to check the compliance of garlic intake in a placebo-controlled intervention study. Results indicate that S-allyl-mercapturic acid could be detected in 15 out of 16 urine samples of garlic supplement takers, indicating good compliance. In addition, the intake of garlic was also monitored in a cross-section study of vegans versus controls in Finland, in which no differences in garlic consumption nor in ALMA output were recorded between vegans and controls. These data indicate good possibilities for further studies in the field of biomarkers to investigate the putative chemopreventive effects of garlic and garlic-containing products. PMID:11520428

  8. Ping-pong polymerization by allylation and hydroformylation for alternating vinyl alcohol-vinyl monomer copolymers.

    PubMed

    Ito, Shingo; Noguchi, Masaki; Nozaki, Kyoko

    2012-11-01

    Inspired by the enzymatic ping-pong mechanism, we designed a novel "ping-pong polymerization", which employs allylation and hydroformylation in an iterative and alternating manner. Thus, alternating and regioregular vinyl alcohol-vinyl monomer copolymers possessing multiple hydroxy groups in a periodical manner were successfully synthesized.

  9. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  10. Diastereoselective zinco-cyclopropanation of chiral allylic alcohols with gem-dizinc carbenoids.

    PubMed

    Fournier, Jean-François; Mathieu, Simon; Charette, André B

    2005-09-28

    The highly diastereoselective zinco-cyclopropanation of chiral allylic alcohols using gem-dizinc carbenoids is described. The reaction produces three contiguous stereogenic centers, and the resulting chiral cyclopropylzinc derivatives can be trapped with electrophiles with retention of configuration. Simple functional group manipulations lead to the efficient synthesis of orthogonally protected 1,2,3-substituted cyclopropane derivatives. PMID:16173730

  11. Total synthesis of (±)-leuconolam: intramolecular allylic silane addition to a maleimide carbonyl group

    PubMed Central

    Izgu, Enver Cagri

    2014-01-01

    A concise total synthesis of the plant alkaloid (±)-leuconolam (1) has been achieved. A regio- and diastereoselective Lewis-acid mediated allylative cyclization was used to establish, simultaneously, two adjacent tetrasubstituted carbon centers. Furthermore, an essential arene cross-coupling to a hindered haloalkene was enabled by the use of a novel 2-anilinostannane. PMID:25419448

  12. Oxidative rearrangement of cyclic tertiary allylic alcohols with IBX in DMSO.

    PubMed

    Shibuya, Masatoshi; Ito, Shinichiro; Takahashi, Michiyasu; Iwabuchi, Yoshiharu

    2004-11-11

    A practical and environmentally friendly method for oxidative rearrangement of five- and six-membered cyclic tertiary allylic alcohols to beta-disubstituted alpha,beta-unsaturated ketones by the IBX/DMSO reagent system is described. Several conventional protecting groups (e.g., Ac, MOM, and TBDPS) are compatible under the reaction conditions prescribed.

  13. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  14. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  15. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  16. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  17. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    PubMed

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid. PMID:21268603

  18. Silylene-Mediated Ring Contraction of Homoallylic Ethers to Form Allylic Silanes

    PubMed Central

    Bourque, Laura E.; Haile, Pamela A.; Woerpel, K. A.

    2009-01-01

    (—)-Isopulegol derivatives undergo a ring contraction under silylene-mediated conditions to provide cyclopentane products. Silylene transfer to other homoallylic ethers did not provide the ring contraction products. Allylic silane products were elaborated to determine the stereochemical course of the ring contraction reaction. A mechanism for the transformation is proposed. PMID:19681592

  19. Silylene-mediated ring contraction of homoallylic ethers to form allylic silanes.

    PubMed

    Bourque, Laura E; Haile, Pamela A; Woerpel, K A

    2009-09-18

    (-)-Isopulegol derivatives undergo a ring contraction under silylene-mediated conditions to provide cyclopentane products. Silylene transfer to other homoallylic ethers did not provide the ring contraction products. Allylic silane products were elaborated to determine the stereochemical course of the ring contraction reaction. A mechanism for the transformation is proposed. PMID:19681592

  20. Zirconium-allyl complexes as resting states in zirconocene-catalyzed α-olefin polymerization.

    PubMed

    Panchenko, Valentina N; Babushkin, Dmitrii E; Brintzinger, Hans H

    2015-01-01

    UV-vis spectroscopic data indicate that zirconocene cations with Zr-bound allylic chain ends are generally formed during olefin polymerization with zirconocene catalysts. The rates and extent of their formation and of their re-conversion to the initial pre-catalyst cations depend on the types of zirconocene complexes and activators used.

  1. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions. PMID:27490708

  2. Temporary silicon connection strategies in intramolecular allylation of aldehydes with allylsilanes.

    PubMed

    Beignet, Julien; Jervis, Peter J; Cox, Liam R

    2008-07-18

    Three gamma-(amino)silyl-substituted allylsilanes 14a-c have been prepared in three steps from the corresponding dialkyldichlorosilane. The aminosilyl group has been used to link this allylsilane nucleophile to a series of beta-hydroxy aldehydes through a silyl ether temporary connection. The size of the alkyl substituents at the silyl ether tether governs the outcome of the reaction on exposure to acid. Thus, treatment of aldehyde (E)-9aa, which contains a dimethylsilyl ether connection between the aldehyde and allylsilane, with a range of Lewis and Brønsted acid activators provides an (E)-diene product. The mechanism of formation of this undesired product is discussed. Systems containing a sterically more bulky diethylsilyl ether connection react differently: thus in the presence of TMSOTf and a Brønsted acid scavenger, intramolecular allylation proceeds smoothly to provide two out of the possible four diastereoisomeric oxasilacycles, 23 (major) and 21 (minor). A diene product again accounts for the remaining mass balance in the reaction. This side product can be completely suppressed by using a sterically even more bulky diisopropylsilyl ether connection in the cyclization precursor, although this is now at the expense of a slight erosion in the 1,3-stereoinduction in the allylation products. The sense of 1,3-stereoinduction observed in these intramolecular allylations has been rationalized by using an electrostatic argument, which can also explain the stereochemical outcome of a number of related reactions. Levels of 1,4-stereoinduction in the intramolecular allylation are more modest but can be significantly improved in some cases by using a tethered (Z)-allylsilane in place of its (E)-stereoisomer. Oxidation of the major diastereoisomeric allylation product 23 under Tamao-Kumada conditions provides an entry into stereodefined 1,2-anti-2,4-syn triols 28.

  3. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-01

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds. PMID:25739630

  4. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (<0.01 l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC.

  5. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-01

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  6. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  7. Synthesis, Characterization, and Some Properties of Cp*W(NO)(H)(η(3)-allyl) Complexes.

    PubMed

    Baillie, Rhett A; Holmes, Aaron S; Lefèvre, Guillaume P; Patrick, Brian O; Shree, Monica V; Wakeham, Russell J; Legzdins, Peter; Rosenfeld, Devon C

    2015-06-15

    Sequential treatment at low temperatures of Cp*W(NO)Cl2 in THF with 1 equiv of a binary magnesium allyl reagent, followed by an excess of LiBH4, affords three new Cp*W(NO)(H)(η(3)-allyl) complexes, namely, Cp*W(NO)(H)(η(3)-CH2CHCMe2) (1), Cp*W(NO)(H)(η(3)-CH2CHCHPh) (2), and Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3). Complexes 1-3 are isolable as air-stable, analytically pure yellow solids in good to moderate yields by chromatography or fractional crystallization. In solutions, complex 1 exists as two coordination isomers in an 83:17 ratio differing with respect to the endo/exo orientation of the allyl ligand. In contrast, complexes 2 and 3 each exist as four coordination isomers, all differing by the orientation of their allyl ligands which can have either an endo or an exo orientation with the phenyl or methyl groups being either proximal or distal to the nitrosyl ligand. A DFT computational analysis using the major isomer of Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3a) as the model complex has revealed that its lowest-energy thermal-decomposition pathway involves the intramolecular isomerization of 3a to the 16e η(2)-alkene complex, Cp*W(NO)(η(2)-CH2═CHCH2Me). Such η(2)-alkene complexes are isolable as their 18e PMe3 adducts when compounds 1-3 are thermolyzed in neat PMe3, the other organometallic products formed during these thermolyses being Cp*W(NO)(PMe3)2 (5) and, occasionally, Cp*W(NO)(H)(η(1)-allyl)(PMe3). All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  8. The Wacker oxidation of allyl alcohol along cyclic-intermediate routes: An ab initio molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Nair, Nisanth N.

    2016-09-01

    The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.

  9. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  10. Stereochemistry of ring-opening/cross metathesis reactions of exo- and endo-7-oxabicyclo[2.2.1]hept-5-ene-2-carbonitriles with allyl alcohol and allyl acetate

    PubMed Central

    Dąbrowski, Michał; Szczepaniak, Lech; Morzycki, Jacek W; Witkowski, Stanisław

    2015-01-01

    Summary The ROCM reactions of exo- and endo-2-cyano-7-oxanorbornenes with allyl alcohol or allyl acetate promoted by different ruthenium alkylidene catalysts were studied. The stereochemical outcome of the reactions was established. The issues concerning chemo- (ROCM vs ROMP), regio- (1-2- vs 1-3-product formation), and stereo- (E/Z isomerism) selectivity of reactions under various conditions are discussed. Surprisingly good yields of the ROCM products were obtained under neat conditions. PMID:26664608

  11. One-Pot Conversion of N-Allyl-α-cyano Esters to α-Allyl-α-cyano Lactams through a Hydrolysis/Ketene Formation/Cyclization/Claisen Rearrangement Sequence.

    PubMed

    Shen, Mei-Hua; Han, Mei; Xu, Hua-Dong

    2016-03-01

    An intramolecular ketene aza-Claisen rearrangement is developed for the first time to enable the stereoselective synthesis of α-ally-α-cyano-lactams from N-allyl amino esters. This reaction also exhibits outstanding chemoselectivity when an unsymmetrical bis-N-allyl group is present in the starting molecule. The usefulness of this method is demonstrated by a short synthesis of optically active bicyclolactam from l-proline. PMID:26872217

  12. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  13. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-01

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee. PMID:25504907

  14. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  15. Generation of CF3-containing epoxides and aziridines by visible-light-driven trifluoromethylation of allylic alcohols and amines.

    PubMed

    Kim, Eunjin; Choi, Sungkyu; Kim, Heejeong; Cho, Eun Jin

    2013-05-10

    Radical reactions! Efficient methods for the generation of CF3-containing epoxides and aziridines have been developed (see scheme). A variety of allylic alcohols and allylic amines were transformed into the corresponding epoxides and aziridines by using [Ru(bpy)3]Cl2 (bpy = 2,2'-bipyridine), CF3 I, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (or N,N,N',N'-tetramethylethylenediamine, TMEDA) under visible-light irradiation.

  16. Regio- and Stereospecific 1,3-Allyl Group Transfer Triggered by a Copper-Catalyzed Borylation/ortho-Cyanation Cascade.

    PubMed

    Yang, Yang

    2016-01-01

    A copper-catalyzed borylation/ortho-cyanation/allyl group transfer cascade was developed. Initiated by an unconventional copper-catalyzed electrophilic dearomatization, this process features regio- and stereospecific 1,3-transposition of the allyl fragment enabled by an aromatization-driven Cope rearrangement. This method provides an effective means for the construction of adjacent tertiary and quaternary stereocenters with excellent diastereocontrol. PMID:26509757

  17. Iridium-Catalyzed Allylic Amination Route to α-Aminoboronates: Illustration of the Decisive Role of Boron Substituents

    PubMed Central

    Touchet, Sabrina; Molander, Gary A.; Carboni, Bertrand; Bouillon, Alexandre

    2012-01-01

    The development of a new route to α-aminoboronates using an iridium-catalyzed allylic amination on boronated substrates is described. Unlike the boronate group, the trifluoroborato substituent was found to govern the regioselectivity exclusively in favor of branched products. The transformation of an allylic substitution product into an α-aminoboronic ester in an efficient way validated the implementation of this approach. PMID:22350584

  18. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Liardo, Elisa; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2016-07-18

    The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning.

  19. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal.

    PubMed

    Ishikawa, Shota; Maruyama, Atsushi; Yamamoto, Yukihiro; Hara, Setsuko

    2014-01-01

    While some isothiocyanate (ITCs) are attractive targets for the agricultural and pharmaceutical industries, the presence of goitrin and ITCs has hampered the widespread utilization of rapeseed meal. ITCs are the products of the myrosinase-mediated hydrolysis of glucosinolate (GSLs). As such, a study was conducted in order to gain a better understanding into the identity of the GSLs contained in rapeseed meal. Extraction of the GSLs was carried out with 20% ethanol, affording 3.0% GSL content. The resulting GSL extracts were purified via silica gel column chromatography resulting in the isolation of main three pure GLSs (GSL A, B, and C) and a final GSL content of 39.8%. The indirect-identification of the GSLs in rapeseed meal was also carried out via GC/MS analysis of ITCs. The GSLs, progoitrin and gluconapin, were present in the highest concentration in these extracts. Interestingly, only goitrin was produced when GSL A was the substrate for the defatted rapeseed meal mediated hydrolysis reaction. This indicates GSL A is a progoitrin. Conversely, 3-butenyl ITC was produced only when GSL B was used as substrate, indicating GSL B is gluconapin. These results will be helpful for opening the doors for the use of rapeseed meal in the agricultural or pharmaceutical sectors.

  20. Effect of combined application of methyl isothiocyanate and chloropicrin on their transformation.

    PubMed

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin

    2004-01-01

    Combining several soil fumigants to increase the broad spectrum of pest control is a common fumigation practice in current production agriculture. In this study, we investigated the effect of combined application of chloropicrin and methyl isothiocyanate (MITC) on their transformations and persistence in the environment. In aqueous solution, no direct reaction between MITC and chloropicrin occurred and relatively slow rates of hydrolysis of these compounds were observed in aquatic environments free of suspended solids. The transformation of chloropicrin, however, was accelerated in aqueous solution with MITC because of a reduction reaction with bisulfide (HS(-)), which is a by-product of MITC hydrolysis. In soil, when fumigants were applied simultaneously, the degradation of MITC was suppressed under the bi-fumigant application due to the inhibition of soil microbial activity and a possible abiotic competition with chloropicrin for a limited number of reaction sites on the surface of soil particles. However, the degradation rate of chloropicrin was significantly enhanced in the bi-fumigant soil system, which was primarily attributed to the reaction of chloropicrin and HS(-). Two sequential application approaches were developed to investigate the feasibility of the combined application of metam sodium (parent compound of MITC) and chloropicrin in soil and assess their potential effects on environmental fate. For both application sequences, the degradation of chloropicrin was accelerated and that of MITC, as a major breakdown product of metam sodium, was inhibited in soil. PMID:15537938

  1. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    PubMed

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  2. Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses1

    PubMed Central

    Andersson, Mats X.; Nilsson, Anders K.; Johansson, Oskar N.; Boztaş, Gülin; Adolfsson, Lisa E.; Pinosa, Francesco; Petit, Christel Garcia; Aronsson, Henrik; Mackey, David; Tör, Mahmut; Hamberg, Mats; Ellerström, Mats

    2015-01-01

    Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that these compounds also trigger local defense responses in Arabidopsis tissue. PMID:25371552

  3. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice

    PubMed Central

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J.; Wicks, Shawna; Stephens, Jacqueline M.; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-01-01

    Scope Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. Methods and results C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti- diabetic effects observed. Conclusion Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. PMID:25620073

  4. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate.

    PubMed

    Thaler, Roman; Maurizi, Antonio; Roschger, Paul; Sturmlechner, Ines; Khani, Farzaneh; Spitzer, Silvia; Rumpler, Monika; Zwerina, Jochen; Karlic, Heidrun; Dudakovic, Amel; Klaushofer, Klaus; Teti, Anna; Rucci, Nadia; Varga, Franz; van Wijnen, Andre J

    2016-03-25

    Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis. PMID:26757819

  5. [Effect of phenylhexyl isothiocyanate on Wnt/beta-catenin signaling pathway in Jurkat cell line].

    PubMed

    Lin, Juan; Huang, Yi-Qun; Ma, Xu-Dong

    2013-04-01

    This study was purposed to investigate the effect of phenylhexyl isothiocyanate (PHI) on Wnt/β-catenin signaling pathway, histone acetylation, histone methylation and cell apoptosis in Jurkat cell line. The viability of Jurkat cells after treatment with PHI was tested by MTT. Apoptotic rate of Jurkat cells was measured by flow cytometry. The levels of Wnt/β-catenin related proteins including β-catenin, TCF, c-myc, and cyclinD1, histone acetylated H3 and H4, histone methylated H3K9 and H3K4 were detected by Western blot. The results showed that PHI inhibited the cell growth and induced apoptosis in Jurkat cells in time-and dose-dependent manners. Its IC50 at 48 h was about 20 µmol/L. Expression of histone acetylated H3, H4 and histone methylated H3k4 increased after exposure to PHI for 3 h, while histone methylated H3K9 decreased. Expression of β-catenin was not changed after exposure to PHI for 3 h, but expression of β-catenin, and its cell cycle-related genes such as TCF, c-myc and cyclinD1 decreased after exposure to PHI for 7 h. It is concluded that PHI regulates acetylation and methylation of histone, inhibits Wnt/β-catenin signal pathway, and is able to induce apoptosis and inhibits growth of Jurkat cells. PMID:23628033

  6. Emission, distribution and leaching of methyl isothiocyanate and chloropicrin under different surface containments.

    PubMed

    Zhang, Y; Wang, D

    2007-06-01

    The environmental fate of fumigants methyl isothiocyanate (MITC) and chloropicrin (CP) is of great concern for potential air and groundwater contamination while retaining sufficient concentrations for pest control efficacy. The emission, gas phase distribution, leaching, and persistence of MITC and CP were examined in repacked columns filled with sandy soils under three surface conditions: tarp without irrigation, tarp with limited irrigation, and 5-d irrigation without tarp cover. For MITC, cumulative emission constituted 62%, 36%, and 0.3% of the amount applied under tarp without irrigation, tarp with limited irrigation, and 5-d irrigation without tarp surface conditions, respectively. The corresponding cumulative emission losses were 45%, 30%, and 5.4% for CP. During the first 24h after injection, soil air concentrations of the two fumigants were much higher in the 15-25cm depth range than other depths in the soil profile. Small amounts of leaching occurred for both fumigants, indicating potential for groundwater contamination should heavy rain fall or irrigation occurs immediately after soil fumigation. Very small amounts of residual MITC and CP (<2%) were found in the soil 24 days after the experiment. The study clearly showed that atmospheric emission and degradation were the two primary pathways of MITC and CP dissipation during soil fumigation. Emission could be effectively reduced with 5-d irrigation if small leaching is acceptable or be prevented.

  7. Benzyl isothiocyanate inhibits HNSCC cell migration and invasion, and sensitizes HNSCC cells to cisplatin.

    PubMed

    Wolf, M Allison; Claudio, Pier Paolo

    2014-01-01

    Metastasis and chemoresistance represent two detrimental events that greatly hinder the outcome for those suffering with head and neck squamous cell carcinoma (HNSCC). Herein, we investigated benzyl isothiocyanate's (BITC) ability to inhibit HNSCC migration and invasion and enhance chemotherapy. Our data suggests that treatment with BITC 1) induced significant reductions in the viability of multiple HNSCC cell lines tested (HN12, HN8, and HN30) after 24 and 48 h, 2) decreased migration and invasion of the HN12 cells in a dose dependent manner, and 3) inhibited expression and altered localization of the epithelial-mesenchymal transition (EMT) marker, vimentin. We also observed that a pretreatment of BITC followed by cisplatin treatment 1) induced a greater decrease in HN12, HN30, and HN8 cell viability and total cell count than either treatment alone and 2) significantly increased apoptosis when compared to either treatment alone. Taken together these data suggest that BITC has the capacity to inhibit processes involved in metastasis and enhance the effectiveness of chemotherapy. Consequently, the results indicate that further investigation, including in vivo studies, are warranted.

  8. Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts.

    PubMed

    De Nicola, Gina Rosalinda; Bagatta, Manuela; Pagnotta, Eleonora; Angelino, Donato; Gennari, Lorenzo; Ninfali, Paolino; Rollin, Patrick; Iori, Renato

    2013-11-01

    The consumption of brassica sprouts as raw vegetables provides a fair amount of glucosinolates (GLs) and active plant myrosinase, which enables the breakdown of GLs into health-promoting isothiocyanates (ITCs). This study reports the determination of the main constituents related to human health found in edible sprouts of two Brassica oleracea varieties, broccoli and Tuscan black kale, and two Raphanus sativus varieties, Daikon and Sango. Radish sprouts exhibited the highest ability to produce ITCs, with Daikon showing the greatest level of conversion of GLs into bioactive ITCs (96.5%), followed by Sango (90.0%). Tuscan black kale gave a value of 68.5%, whereas broccoli displayed the lowest with 18.7%. ITCs were not the exclusive GL breakdown products in the two B. oleracea varieties, since nitriles were also produced, thus accounting for the lower conversion observed. Measuring the release of plant ITCs is a valuable tool in predicting the potential level of exposure to these bioactive compounds after the consumption of raw brassica sprouts.

  9. Evaluation of Fluorescein Isothiocyanate-labeled Whole Antiserum in the Immunofluorescent Identification of Microorganisms

    PubMed Central

    Sweet, George H.; Schindler, Charles A.

    1967-01-01

    Portions of a whole antiserum to Histoplasma capsulatum were reacted with amounts of fluorescein isothiocyanate (FITC) that ranged from 50 to 400 μg/mg of protein. Portions of the globulin from the same antiserum were reacted with amounts of FITC that ranged from 12.5 to 50 μg of FITC per mg of protein. The globulin conjugates (postlabeled globulins), the whole serum conjugates, and the globulins from the whole serum conjugates (prelabeled globulins) were compared with respect to their fluorescein-protein (F:P) ratios and fluorescent-antibody (FA) activities. The whole serum sample treated with 50 μg of FITC per mg of protein was least reactive in FA tests, and its globulin had the lowest F:P. All other conjugates had globulins with F:P ratios that were considered to be adequate for high FA activity. It was found, however, that the prelabeled globulins were considerably less reactive than the postlabeled globulins or the whole serum conjugates. A larger amount of brightly staining reagent per milliliter of original serum could be obtained from labeled whole serum than from postlabeled globulin. Lissamine-rhodamine conjugated to bovine serum albumin (LRBSA) was evaluated as a counterstain to be used in conjunction with FITC-labeled whole antisera. The counterstain was effective in masking nonspecific FITC fluorescence in Formalin-fixed tissues and in culture smears of fungi. Masking was incomplete in culture smears of a bacterium and in blood smears containing a protozoan. Images PMID:5337774

  10. Dibutyl Maleate and Dibutyl Fumarate Enhance Contact Sensitization to Fluorescein Isothiocyanate in Mice.

    PubMed

    Matsuoka, Takeshi; Kurohane, Kohta; Suzuki, Wakana; Ogawa, Erina; Kobayashi, Kamiyu; Imai, Yasuyuki

    2016-01-01

    Di-n-butyl phthalate (DBP), a phthalate ester, has been shown to have an adjuvant effect on fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse models. Di-n-butyl maleate (DBM), widely used as a plasticizer for industrial application, has been reported to cause dermatitis in humans. DBM is a butyl alcohol ester of di-carboxylic acid that represents a part of the DBP structure, while di-n-butyl fumarate (DBF) is a trans isomer of DBM. We examined whether DBM or DBF exhibits an adjuvant effect like DBP does. When BALB/c mice were epicutaneously sensitized with FITC in the presence of DBM or DBF, the FITC-specific CHS response was enhanced, as we have observed for DBP. As to underlying mechanisms, DBM and DBF facilitated the trafficking of FITC-presenting CD11c(+) dendritic cells (DCs) from skin to draining lymph nodes and increased the cytokine production by draining lymph nodes. In conclusion, DBM and DBF may have an effect that aggravates contact dermatitis through a skin sensitization process. PMID:26632200

  11. Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

    PubMed Central

    Abdul Kadir, Habsah; Tayyab, Saad

    2013-01-01

    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔGDH2O and ΔGD25°C in presence of honey also suggested protein stabilization. PMID:24222758

  12. Effects of hyperthermia, irradiation, and cytotoxic drugs on fluorescein isothiocyanate staining intensity for flow cytofluorometry

    SciTech Connect

    Dyson, J.E.; McLaughlin, J.B.; Surrey, C.R.; Simmons, D.M.; Daniel, J.

    1987-01-01

    Measurement of fluorescein isothiocyanate (FITC) staining intensity of cultured lymphoblastoid cells following hyperthermia showed large increases without concomitant increases in nuclear protein. Similar measurements of cells following incubation with cytotoxic drugs showed fluorescent intensity increases that exceeded the increases in nuclear protein that were due to the cell cycle blocking action of the drug. The reverse, however, was true for cells following irradiation. In contrast, FITC staining intensity and nuclear protein measurements of cells proceeding through the cell cycle after removal of the cycle blocking agent showed nearly parallel changes, although there were reproducible minor differences, especially following blocking with hydroxyurea. These results suggest that FITC staining intensity is a function not only of nuclear protein content but also of stain access to the reaction sites of the protein constituents of the chromatin. Thus, it is possible that FITC staining may be used as a probe of changes in chromatin structure following experimental manipulation of cells in vitro or treatment of tumors in vivo.

  13. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  14. Palladium-catalyzed Allylic Substitution with (η6-arene–CH2Z)Cr(CO)3-based Nucleophiles

    PubMed Central

    Zhang, Jiadi; Stanciu, Corneliu; Wang, Beibei; Hussain, Mahmud M.; Da, Chao-Shan; Carroll, Patrick J.; Dreher, Spencer D.; Walsh, Patrick J.

    2011-01-01

    Although the palladium-catalyzed Tsuji-Trost allylic substitution reaction has been intensively studied, there is a lack of general methods to employ simple benzylic nucleophiles. Such a method would facilitate access to “α-2-propenyl benzyl” motifs, which are common structural motifs in bioactive compounds and natural products. We report herein the palladium-catalyzed allylation reaction of toluene-derived pronucleophiles activated by tricarbonylchromium. A variety of cyclic and acyclic allylic electrophiles can be employed with in situ generated (η6-C6H5–CHLiR)Cr(CO)3 nucleophiles. Catalyst identification was performed by high throughput experimentation (HTE) and led to the Xantphos/palladium hit, which proved to be a general catalyst for this class of reactions. In addition to η6-toluene complexes, benzyl amine and ether derivatives (η6-C6H5–CH2Z)Cr(CO)3 (Z=NR2, OR) are also viable pronucleophiles, allowing C–C bond-formation alpha to heteroatoms with excellent yields. Finally, a tandem allylic substitution/demetallation procedure is described that affords the corresponding metal-free allylic substitution products. This method will be a valuable complement to the existing arsenal of nucleophiles with applications in allylic substitution reactions. PMID:22047504

  15. The Biosynthesis of Some Isothiocyanates and Oxazolidinethiones in Rape (Brassica campestris L.) 1

    PubMed Central

    Chisholm, M. D.; Wetter, L. R.

    1967-01-01

    The incorporation of the radioactivity from acetate-1-14C, acetate-2-14C, dl-methionine-1-14C, dl-methionine-2-14C, dl-methionine-3,4-14C, dl-homomethionine-2-14C, dl-allyl-glycine-2-14C, and dl-2-amino-5-hydroxyvalerate-2-14C into the aglycones of progoitrin, gluconapin, and glucobrassicanapin of maturing rape plants (Brassica campestris L.) was investigated. Radioactivity from dl-methionine-2-14C, dl-methionine-3,4-14C, dl-homomethionine-2-14C, and acetate-2-14C were incorporated into the 3 major thioglucosides. The other organic compounds were poorly incorporated except for dl-allylglycine-2-14C into glucobrassicanapin. The results obtained suggest that the rape plant can synthesize amino acids by the condensation of acetate (as acetyl CoA) to α-keto acids to yield a homologue of the original amino acid. These newly formed amino acids are then employed to synthesize the 3 major thioglucosides. PMID:16656711

  16. Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst.

    PubMed

    Wróblewska, Agnieszka; Fajdek, Anna

    2010-07-15

    The results of the epoxidation of allyl alcohol with 30% hydrogen peroxide over the TS-1 catalyst have been presented. The studies were carried out under the atmospheric pressure and at the presence of methanol as a solvent. The influence of the following technological parameters on the course of epoxidation was examined: the temperature of 20-60 degrees C, the molar ratio of AA/H(2)O(2) 1:1-5:1, the methanol concentration of 5-90 wt%, the catalyst content of 0.1-5.0 wt% and the reaction time 5-300 min. The main functions describing the process were the selectivity to glycidol in relation to allyl alcohol consumed, the conversion of substrates, and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The parameters at which the functions describing the process reached the highest values were determined.

  17. Accessing Both Retention and Inversion Pathways in Stereospecific, Nickel-Catalyzed Miyaura Borylations of Allylic Pivalates.

    PubMed

    Zhou, Qi; Srinivas, Harathi D; Zhang, Songnan; Watson, Mary P

    2016-09-14

    We have developed a stereospecific, nickel-catalyzed Miyaura borylation of allylic pivalates, which delivers highly enantioenriched α-stereogenic γ-aryl allylboronates with good yields and regioselectivities. Our complementary sets of conditions enable access to either enantiomer of allylboronate product from a single enantiomer of readily prepared allylic pivalate substrate. Excellent functional group tolerance, yields, regioselectivities, and stereochemical fidelities are observed. The stereochemical switch from stereoretention to stereoinversion largely depends upon solvent and can be explained by competitive pathways for the oxidative addition step. Our mechanistic investigations support a stereoretentive pathway stemming from a directed oxidative addition and a stereoinvertive pathway that is dominant when MeCN blocks coordination of the directing group by binding the nickel catalyst. PMID:27589327

  18. Rheology and viscosity scaling of gelatin/1-allyl-3-methylimidazolium chloride solution

    NASA Astrophysics Data System (ADS)

    Qiao, Congde; Li, Tianduo; Zhang, Ling; Yang, Xiaodeng; Xu, Jing

    2014-05-01

    Gelatin/1-allyl-3-methylimidazolium chloride solutions are prepared by using the ionic liquid 1-allyl-3-methylimidazolium chloride as solvent. The rheological properties of the gelatin solutions have been investigated by steady shear and oscillatory shear measurements. In the steady shear measurements, the gelatin solutions with high concentration show a shear-thinning flow behavior at high shear rates, while another shear thinning region can be found in the dilute gelatin solutions at low shear rates. The overlap concentration of gelatin in [amim]Cl is 1.0 wt% and the entanglement concentration is a factor of 4 larger (4.0 wt%). The high intrinsic viscosity (295 mL/g) indicates that the gelatin chains dispersed freely in the ionic liquid and no aggregation phenomenon occurs in dilute gelatin solution. The frequency dependences of modulus changed obviously with an increase in gelatin concentration. The empirical time-temperature superposition principle holds true at the experimental temperatures.

  19. Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression

    PubMed Central

    Wang, Hsiao-Chi; Pao, Jung; Lin, Shuw-Yuan; Sheen, Lee-Yan

    2012-01-01

    Skin cancer is a serious concern whose incidence is increasing at an alarming rate. Allyl sulfides—i.e., sulfur metabolites in garlic oil—have been demonstrated to have anticancer activity against several cancer types, although the mechanisms underlying these effects remain enigmatic. Our previous study showed that diallyl trisulfide (DATS) is more potent than mono- and disulfides against skin cancer. DATS inhibits cell growth of human melanoma A375 cells and basal cell carcinoma (BCC) cells by increasing the levels of intracellular reactive oxygen species (ROS) and DNA damage and by inducing G2/M arrest, endoplasmic reticulum (ER) stress, and mitochondria-mediated apoptosis, including the caspase-dependent and -independent pathways. This short review focuses on the molecular mechanisms of garlic-derived allyl sulfides on skin cancer prevention. PMID:23050963

  20. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives.

    PubMed

    Timoshenko, Mariya A; Kharitonov, Yurii V; Shakirov, Makhmut M; Bagryanskaya, Irina Yu; Shults, Elvira E

    2016-02-01

    A selective synthesis of 7- or 14-nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α-hydroxy-15,16-dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3-nitroaniline, 3-(trifluoromethyl)aniline, and 4-(trifluoromethyl)aniline yield the subsequent 7α-, 7β- and 14αnitrogen-containing diterpenoids. The reaction with 2-nitroaniline, 4-nitro-2-chloroaniline, 4-methoxy-2-nitroaniline, phenylsulfamide, or tert-butyl carbamate proceeds with the formation of 7α-nitrogen-substituted diterpenoids as the main products. PMID:27308214

  1. Mechanistic Study on Oxorhenium-Catalyzed Deoxydehydration and Allylic Alcohol Isomerization.

    PubMed

    Wu, Di; Zhang, Yugen; Su, Haibin

    2016-05-20

    The reaction mechanism of 1,2×n-deoxydehydration (DODH; n=1, 2, 3 …) reactions with 1-butanol as a reductant in the presence of methyltrioxorhenium(VII) catalyst has been investigated by DFT. The reduced rhenium compound, methyloxodihydroxyrhenium(V), serves as the catalytically relevant species in both allylic alcohol isomerization and subsequent DODH processes. Compared with three-step pathway A, involving [1,3]-transposition of allylic alcohols, direct two-step pathway B is an alternative option with lower activation barriers. The rate-limiting step of the DODH reaction is the first hydrogen transfer in methyltrioxorhenium(VII) reduction. Moreover, the increase in the distance between two hydroxyl groups in direct 1,2×n-DODH reactions for C4 and C6 diols results in a higher barrier height. PMID:26991093

  2. Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics.

    PubMed

    Westbrook, Charles K; Pitz, William J; Mehl, Marco; Glaude, Pierre-Alexandre; Herbinet, Olivier; Bax, Sarah; Battin-Leclerc, Frederique; Mathieu, Olivier; Petersen, Eric L; Bugler, John; Curran, Henry J

    2015-07-16

    Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed. PMID:25822578

  3. Iridium-Catalyzed Allylation of Chiral β-Stereogenic Alcohols: Bypassing Discrete Formation of Epimerizable Aldehydes

    PubMed Central

    Schmitt, Daniel C.; Dechert-Schmitt, Anne-Marie R.; Krische, Michael J.

    2012-01-01

    The cyclometallated π-allyliridium 3,4-dinitro-C,O-benzoate complex modified by (R)- or (S)-Cl,MeO-BIPHEP promotes the transfer hydrogenative coupling of allyl acetate to β-stereogenic alcohols with good to excellent levels of catalyst-directed diastereoselectivity to furnish homoallylic alcohols. Remote electronic effects of the C,O-benzoate of the catalyst play a critical role in suppressing epimerization of the transient α-stereogenic aldehyde. PMID:23231774

  4. Additive-free decarboxylative coupling of cinnamic acid derivatives in water: synthesis of allyl amines.

    PubMed

    Park, Kyungho; Lee, Sunwoo

    2015-03-01

    The first example of an additive-free decarboxylative coupling of cinnamic acid derivatives with formaldehyde and amines to afford the corresponding allyl amines is reported. This reaction is highly environmentally friendly because it was conducted in H2O and without any additives, releasing only CO2 and H2O as byproducts. This reaction showed a broad substrate scope including cyclic and acyclic amines and high functional group tolerance. Moreover, phenyl dienoic acid participated in this type of decarboxylative coupling reaction.

  5. Highly diastereoselective palladium-catalyzed indium-mediated allylation of chiral hydrazones.

    PubMed

    Balasubramanian, Narayanaganesh; Mandal, Tanmay; Cook, Gregory R

    2015-01-16

    The general and efficient palladium-catalyzed indium-mediated allylation of chiral hydrazones was accomplished with excellent yield (72-92%) and diastereoselectivity (up to 99:1). The development of this reaction and the substrate scope are described. The conversion was found to be proportional to the phosphine concentration, which provided insight into the mechanism and competing pathways of the redox transmetalation process.

  6. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    PubMed

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-01

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  7. Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111}.

    PubMed

    Cropley, Rachael L; Williams, Federico J; Urquhart, Andrew J; Vaughan, Owain P H; Tikhov, Mintcho S; Lambert, Richard M

    2005-04-27

    The selective oxidation of trans-methylstyrene, a phenyl-substituted propene that contains labile allylic hydrogen atoms, has been studied on Cu{111}. Mass spectrometry and synchrotron fast XPS were used to detect, respectively, desorbing gaseous products and the evolution of surface species as a function of temperature and time. Efficient partial oxidation occurs yielding principally the epoxide, and the behavior of the system is sensitive to the order in which reactants are adsorbed. The latter is understandable in terms of differences in the spatial distribution of oxygen adatoms; isolated adatoms lead to epoxidation, while islands of "oxidic" oxygen do not. NEXAFS data taken over a range of coverages and in the presence and absence of coadsorbed oxygen indicate that the adsorbed alkene lies essentially flat with the allylic hydrogen atoms close to the surface. The photoemission results and comparison with the corresponding behavior of styrene on Cu{111} strongly suggest that allylic hydrogen abstraction is indeed a critical factor that limits epoxidation selectivity. An overall mechanism consistent with the structural and reactive properties is proposed.

  8. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    NASA Astrophysics Data System (ADS)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  9. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications

    PubMed Central

    Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon

    2015-01-01

    Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363

  10. Investigation of the possibility of intermediate formation of allyl alcohol in the process of oxidative acetoxylation of propylene on a palladium-copper zeolite catalyst

    SciTech Connect

    Minachev, K.M.; Chizhov, O.S.; Kadentsev, V.I.; Kharlamov, V.V.; Nefedov, O.M.; Rodin, A.N.

    1985-12-10

    The formation of allyl acetate in reactions of oxidative acetoxylation of propylene by labeled acetic acid and esterification of labeled acetic acid by allyl alcohol on a Pd, Cu-zeolite catalyst occur with complete conservation of the labeled oxygen of the original labeled acetic acid in the reaction product. The authors propose a reaction scheme for the oxidative acetoxylation of propylene, providing for the formation of allyl alcohol as an intermediate compound, present in a chemisorbed state in the form of a complex with a Pd atom. The gas-phase oxidative acetoxylation of propylene is an industrial method of producing allyl acetate.

  11. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    PubMed Central

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  12. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens

    PubMed Central

    Kurepina, Natalia; Kreiswirth, Barry N.; Mustaev, Arkady

    2013-01-01

    Aims The aim of this study was to test the growth inhibition activity of isothiocyanates (ITC), defense compounds of plants, against common human microbial pathogens. Methods and Results In this study we have tested the growth inhibitory activity of a diverse collection of new and previously known representative ITC of various structural classes against pathogenic bacteria, fungi and molds by a serial dilution method. Generally, the compounds were more active against Gram-positive bacteria and fungi exhibiting species-specific bacteriostatic or bactericidal effect. The most active compounds inhibited the growth of both drug-susceptible and multi drug resistant (MDR) pathogens at micromolar concentrations. In the case of Mycobacterium tuberculosis some compounds were more active against MDR, rather than against susceptible strains. The average anti-microbial activity for some of new derivatives was significantly higher than previously reported for the most active ITC compounds. The structure-activity relationship (SAR) established for various classes of ITC with Bacillus cereus (model organism for B. anthracis) followed a distinct pattern, thereby enabling prediction of new more efficient inhibitors. Remarkably, tested bacteria failed to develop resistance to ITC. While effectively inhibiting microbial growth, ITCs displayed moderate toxicity towards eukaryotic cells. Conclusions High antimicrobial activity coupled with moderate toxicity grants further thorough studies of the ITC compounds aimed at elucidation of their cellular targets and inhibitory mechanism. Significance and impact of the study This systematic study identified new ITC compounds highly active against common human microbial pathogens at the concentrations comparable with those for currently used antimicrobial drugs (e.g. rifampicin, fluconazole). Tested representative pathogens do not develop resistance to the inhibitors. These properties justify further evaluation of ITC compounds as potential

  13. Benefits and Risks of the Hormetic Effects of Dietary Isothiocyanates on Cancer Prevention

    PubMed Central

    Bao, Yongping; Wang, Wei; Zhou, Zhigang; Sun, Changhao

    2014-01-01

    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint. PMID:25532034

  14. Anticancer Activities of Pterostilbene-Isothiocyanate Conjugate in Breast Cancer Cells: Involvement of PPARγ

    PubMed Central

    Nikhil, Kumar; Sharan, Shruti; Singh, Abhimanyu K.; Chakraborty, Ajanta; Roy, Partha

    2014-01-01

    Trans-3,5-dimethoxy-4′-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway. PMID:25119466

  15. Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ.

    PubMed

    Nikhil, Kumar; Sharan, Shruti; Singh, Abhimanyu K; Chakraborty, Ajanta; Roy, Partha

    2014-01-01

    Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway. PMID:25119466

  16. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China.

    PubMed

    Fowke, Jay H; Shu, Xiao-Ou; Dai, Qi; Shintani, Ayumi; Conaway, C Clifford; Chung, Fung-Lung; Cai, Qiuyin; Gao, Yu-Tang; Zheng, Wei

    2003-12-01

    Alternative measures of Brassica vegetable consumption (e.g., cabbage) may clarify the association between Brassica and cancer risk. Brassica isothiocyanates (ITCs) are excreted in urine and may provide a sensitive and food-specific dietary biomarker. However, the persistence of ITCs in the body may be brief and dependent on the activity of several Phase II enzymes, raising questions about the relationship between a single ITC measure and habitual dietary patterns. This study investigates the association between urinary ITC excretion and habitual Brassica consumption, estimated by a food frequency questionnaire, among healthy Chinese women enrolled in the Shanghai Breast Cancer Study. Participants (n = 347) completed a validated food frequency questionnaire querying habitual dietary intake during the prior 5 years and provided a fasting first-morning urine specimen. Genetic deletion of glutathione S-transferases (GSTM1/GSTT1), and single nucleotide substitutions in GSTP1 (A313G) and NAD(P)H:quinone oxidoreductase 1 (NQO1: C609T), were identified from blood DNA. Urinary ITC excretion levels were marginally higher with the GSTT1-null or GSTP1-G/G genotypes (P = 0.07, P = 0.05, respectively). Mean habitual Brassica intake was 98.3 g/day, primarily as bok choy, and Brassica intake significantly increased across quartile categories of ITC levels. The association between habitual Brassica intake and urinary ITC levels was stronger among women with GSTT1-null or GSTP1-A/A genotypes, or NQO1 T-allele, and the interaction was statistically significant across GSTP1 genotype. In conclusion, a single urinary ITC measure, in conjunction with markers of Phase II enzyme activity, provides a complementary measure of habitual Brassica intake among Shanghai women.

  17. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    PubMed

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F H

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  18. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China.

    PubMed

    Fowke, Jay H; Shu, Xiao-Ou; Dai, Qi; Shintani, Ayumi; Conaway, C Clifford; Chung, Fung-Lung; Cai, Qiuyin; Gao, Yu-Tang; Zheng, Wei

    2003-12-01

    Alternative measures of Brassica vegetable consumption (e.g., cabbage) may clarify the association between Brassica and cancer risk. Brassica isothiocyanates (ITCs) are excreted in urine and may provide a sensitive and food-specific dietary biomarker. However, the persistence of ITCs in the body may be brief and dependent on the activity of several Phase II enzymes, raising questions about the relationship between a single ITC measure and habitual dietary patterns. This study investigates the association between urinary ITC excretion and habitual Brassica consumption, estimated by a food frequency questionnaire, among healthy Chinese women enrolled in the Shanghai Breast Cancer Study. Participants (n = 347) completed a validated food frequency questionnaire querying habitual dietary intake during the prior 5 years and provided a fasting first-morning urine specimen. Genetic deletion of glutathione S-transferases (GSTM1/GSTT1), and single nucleotide substitutions in GSTP1 (A313G) and NAD(P)H:quinone oxidoreductase 1 (NQO1: C609T), were identified from blood DNA. Urinary ITC excretion levels were marginally higher with the GSTT1-null or GSTP1-G/G genotypes (P = 0.07, P = 0.05, respectively). Mean habitual Brassica intake was 98.3 g/day, primarily as bok choy, and Brassica intake significantly increased across quartile categories of ITC levels. The association between habitual Brassica intake and urinary ITC levels was stronger among women with GSTT1-null or GSTP1-A/A genotypes, or NQO1 T-allele, and the interaction was statistically significant across GSTP1 genotype. In conclusion, a single urinary ITC measure, in conjunction with markers of Phase II enzyme activity, provides a complementary measure of habitual Brassica intake among Shanghai women. PMID:14693750

  19. Theoretical Comparative Study of the Structure, Dynamics and Electronic Properties of Five Ally Molecules: Allicin, Methyl Propyl Disulfide (MPD), Allyl Methyl Sulfide (AMS), S-allyl cysteine (SAC) and S-allyl mercaptocysteine (SAMC)

    NASA Astrophysics Data System (ADS)

    Deniz Calisir, Emine; Erkoc, Sakir; Yildirim, Handan; Kara, Abdelkader; Rahman, Talat S.; Selvi, Mahmut; Erkoc, Figen

    2006-03-01

    The structural, dynamics and electronic properties of five allyl molecules have been investigated theoretically by performing semi-empirical molecular orbital (AM1 and PM3), ab-initio (RHF) and density functional theory calculations. The geometry of the molecules have been optimized, the vibrational spectra and the electronic properties of the molecules have been calculated in their ground states in gas phase. For each molecule, we found that the optimized geometries resulting from calculations based on the three levels of accuracy, to be very similar. However, we found that an accurate description of the vibrational properties of these molecules necessitates calculations at the ab-initio level. The electronic structures of these molecules were performed at the DFT level, resulting in an accurate description of the HOMO-LUMO gap and the local charges.

  20. Surface-mediated isomerization and oxidation of allyl alcohol on Cu(110)

    SciTech Connect

    Brainard, R.L.; Peterson, C.G.; Madix, R.J. )

    1989-06-21

    Allyl alcohol reacts with clean and oxygen-covered Cu(110) surfaces to produce propanal, acrolein, n-propyl alcohol, and hydrogen under ultrahigh-vacuum conditions. Very small amounts of propylene and water are also formed. This pattern of reactivity contrasts sharply to the selective oxidation to acrolein observed on Ag(110). On the clean Cu(110) surface allyl alcohol undergoes O-H cleavage to form the surface alkoxide CH{sub 2}{double bond}CHCH{sub 2}O{sub (a)} and H{sub (a)}. The results suggest that the olefin in this species undergoes partial hydrogenation to the surface-bound oxametallacycles ({minus}CH{sub 2}CH{sub 2}CH{sub 2}O-){sub (a)} and ({minus}CH-(CH{sub 3})CH{sub 2}O-){sub (a)} and complete hydrogenation to CH{sub 3}CH{sub 2}CH{sub 2}O{sub (a)}. Propanal forms at 320 K via further reaction of these oxametallacycles. Evidence for a {pi}-bonded allyl oxide CH{sub 2}{double bond}CHCH{sub 2}O{sub (a)}, which is more stable than n-propoxide (CH{sub 3}CH{sub 2}CH{sub 2}O{sub (a)}) toward {beta}-hydride elimination, is presented. This allyl oxide decomposes at 370 K to form acrolein. The interaction of the double bond with the surface apparently restricts the interaction of the {beta}-C-H bond with the surface and increases the stability of this species. Propanal, acrolein, and H{sub 2} are formed at 435 K by a process thought to involve the thermal decomposition of ({minus}CH{sub 2}CH{sub 2}CH{sub 2}O-){sub (a)} by a {beta}-hydride elimination pathway. This dehydrogenation pathway exhibits an activation energy 8 kcal/mol greater than for acyclic alkoxides. The conversion of allyl alcohol to propanal and propyl alcohol obviously involves the hydrogenation of the double bond which, by comparison, does not occur for propylene coadsorbed with hydrogen under similar conditions on this surface.

  1. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  2. [Adrenergic beta-agonist intoxication].

    PubMed

    Carrola, Paulo; Devesa, Nuno; Silva, José Manuel; Ramos, Fernando; Alexandrino, Mário B; Moura, José J

    2003-01-01

    The authors describe two clinical cases (father and daughter), observed in the Hospital Urgency with distal tremors, anxiety, palpitations, nausea, headaches and dizziness, two hours after ingestión of cow liver. They also had leucocytosis (with neutrophylia), hypokalemia and hyperglycaemia. After treatment with potassium i.v. and propranolol, the symptoms disappeared. The symptoms recurred at home because the patients didn't take the prescribed medication and persisted for five days, with spontaneous disappearance. The serum of both patients revealed the presence of clenbuterol (65 hg/ml - father and 58 hg/ml - daughter). The animal's liver had a concentration of 1,42 mg/kg. Clenbuterol is a ß-adrenergic agonist with low specificity, with some veterinary indications. However, this substance has been illegally used as a growth's promotor. We intend to alert doctors for this problem, particularly those that work in the Urgency.

  3. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  4. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel E.; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis. PMID:27462337

  5. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  6. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis. PMID:27462337

  7. New [Mo(eta3-allyl)(CO)2L3]+ complexes with monodentate or tridentate nitrogen-donor ligands.

    PubMed

    Pérez, Julio; Morales, Dolores; Nieto, Sonia; Riera, Lucía; Riera, Víctor; Miguel, Daniel

    2005-03-01

    Cationic complexes [Mo(eta(3)-allyl)(CO)2L3]+ (L3 = either nitrogen-donor tridentate ligand or three monodentate ligands) were prepared in high yield and under mild conditions using as precursors either the triflato complex [Mo(eta(3)-allyl)(OTf)(CO)2(NCMe)2] or the combination of the chloro complex [Mo(eta(3)-allyl)Cl(CO)2(NCMe)2] and the salt NaBAr'(4)(Ar'= 3,5-bis(trifluoromethyl)phenyl). The tridentate ligands employed were 2,2':6',2'-terpyridine (terpy) and cis,cis-1,3,5-cyclohexanetriamine (CHTA), whereas the monodentate ligands imidazole (im) and 3,5-dimethylpyrazole (dmpz) were chosen. In order to stabilize the labile intermediates, an excess of acetonitrile was used in most of the syntheses. However, the pyrazole complex was prepared through a nitrile-free route to avoid reactions at the coordinated nitrile. The solid state structures of [Mo(eta(3)-methallyl)(CO)2(terpy)]OTf (2), [Mo(eta(3)-methallyl)(CO)2(CHTA)]BAr'4 (3), [Mo(eta(3)-methallyl)(CO)2(NCMe)3]BAr'4 (4), [Mo(eta(3)-allyl)(CO)2(im)3]OTf (5) and [Mo(eta(3)-allyl)(CO)2(dmpz)3]BAr'4 (6) were determined by means of single-crystal X-ray diffraction. PMID:15726140

  8. The evolution of beta2-agonists.

    PubMed

    Sears, M R

    2001-08-01

    Beta-agonists have been widely used in the treatment of asthma for many years Although concerns have been expressed over their safety based largely upon epidemics of increased mortality in asthmatics associated with high doses of isoprenaline in the 1960s and fenoterol in the 1970s and 1980s, the specific beta2-agonists are vital drugs in asthma management. The short-acting beta2-agonists have an important prophylactic role in the prevention of exercise-induced bronchoconstriction, and are essential in the emergency treatment of severe asthma. However, little if any benefit seems to be derived from regular use of short-acting beta2-agonists and regular or frequent use can increase the severity of the condition. The development of beta2-agonists with long-acting properties, such as salmeterol and formoterol, has provided advantages over short-acting beta-agonists, such as prolonged bronchodilation, reduced day- and night-time symptoms and improved quality of sleep, and has reduced the requirement for short-acting beta2-agonists as relief medication. Both drugs are well tolerated and, when added to inhaled corticosteroids, produce greater mprovement in lung function than increased steroid dose alone. Because of its rapid onset of action, formoterol also has the potential to be used for as-needed bronchodilator therapy in asthma.

  9. Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1.

    PubMed

    Narukawa, Masataka; Koizumi, Kanako; Iwasaki, Yusaku; Kubota, Kikue; Watanabe, Tatsuo

    2010-01-01

    We investigated the activation of transient receptor potential cation channel (TRP) subfamily V, member 1 (TRPV1) and TRP subfamily A, member 1 (TRPA1) by 1'-acetoxychavicol acetate (ACA), the main pungent component in galangal. ACA did not activate TRPV1-expressing human embryonic kidney (HEK) cells, but strongly activated TRPA1-expressing HEK cells. ACA was more potent than allyl isothiocyanate, the typical TRPA1 agonist.

  10. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth.

    PubMed

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-10-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53(R175), one of the most frequent 'hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53(R175) mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53(R175) mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53(R175) mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53(R175) and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary

  11. Urinary Isothiocyanate Levels and Lung Cancer Risk Among Non-Smoking Women: a Prospective Investigation

    PubMed Central

    Fowke, Jay H.; Gao, Yu-Tang; Chow, Wong-Ho; Cai, Qiuyin; Shu, Xiao-Ou; Li, Hong-lan; Ji, Bu-Tian; Rothman, Nat; Yang, Gong; Chung, Fung-Lung; Zheng, Wei

    2010-01-01

    Background Aside from tobacco carcinogen metabolism, isothiocyanates (ITC) from cruciferous vegetables may induce apoptosis or steroid metabolism to reduce lung cancer risk. To separate the effect of these divergent mechanisms of action, we investigated the association between urinary ITC levels and lung cancer risk among non-smoking women. Methods We conducted a nested case-control within the Shanghai Women’s Health Study. Subjects included 209 incident lung cancer cases who never used tobacco, and 787 individually matched non-smoking controls. Conditional logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI) summarizing the association between urinary ITC levels and lung cancer. Secondary analyses stratified the ITC-lung cancer analyses by menopausal status, exposure to environmental tobacco smoke, and GSTM1 and GSTT1 genotypes. Results Urinary ITC levels were not significantly associated with lower lung cancer risk among non-smoking women, regardless of exposure to environmental tobacco smoke or menopausal status. Furthermore, this association was not modified by GSTT1 genotype. However, an inverse association was suggested among women with a GSTM1-positive genotype (Q1: OR=1.0 (reference); Q2: OR=0.35 (0.14, 0.89); Q3: OR=0.47 (0.20, 1.10); Q4: OR=0.63 (0.35, 1.54), p-trend = 0.38)). In contrast, lung cancer risk was positively associated with urinary ITC levels among women with the GSTM1-null genotype (Q1: OR=1.0 (reference); Q2: OR=1.67 (0.80, 3.50); Q3: OR=1.54 (0.71, 3.33); Q4: OR=2.22 (1.05, 4.67), p-trend = 0.06)). Conclusion Urinary ITC levels were not associated overall with lower lung cancer risk among non-smoking women, but secondary analyses suggested an interaction between urinary ITC levels, GSTM1 genotype, and lung cancer risk. PMID:21122939

  12. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth

    PubMed Central

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-01-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53R175, one of the most frequent ‘hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53R175 mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53R175 mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53R175 mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53R175 and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary compound and

  13. Nrf2 Knockout Attenuates the Anti-Inflammatory Effects of Phenethyl Isothiocyanate and Curcumin

    PubMed Central

    2015-01-01

    The role of phytochemicals in preventive and therapeutic medicine is a major area of scientific research. Several studies have illustrated the mechanistic roles of phytochemicals in Nrf2 transcriptional activation. The present study aims to examine the importance of the transcription factor Nrf2 by treating peritoneal macrophages from Nrf2+/+ and Nrf2–/– mice ex vivo with phenethyl isothiocyanate (PEITC) and curcumin (CUR). The peritoneal macrophages were pretreated with the drugs and challenged with lipopolysaccharides (LPSs) alone and in combination with PEITC or CUR to assess their anti-inflammatory and antioxidative effects based on gene and protein expression in the treated cells. LPS treatment resulted in an increase in the expression of inflammatory markers such as cycloxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in both Nrf2+/+ and Nrf2–/– macrophages, detected by quantitative polymerase chain reaction (qPCR). Nrf2+/+ macrophages treated with PEITC and CUR exhibited a significant decrease in the expression of these anti-inflammatory genes along with an increase in the expression of hemeoxygenase-1 (HO-1), which is an antioxidative stress gene downstream of the Nrf2 transcription factor battery. Although there was no significant decrease in the expression of the anti-inflammatory genes or an increase in HO-1 expression in Nrf2–/– macrophages treated with either PEITC or CUR, there was a significant decrease in the protein expression of COX-2 and an increase in the expression of HO-1 in Nrf2+/+ macrophages treated with PEITC compared to that with CUR treatment. No significant changes were observed in the macrophages from knockout animals. Additionally, there was a significant decrease in LPS-induced IL-6 and TNF-α production following PEITC treatment compared with that following CUR in Nrf2+/+ macrophages, whereas no change was observed in the macrophages from knockout

  14. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  15. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism.

    PubMed

    Takemura, Shigekazu; Minamiyama, Yukiko; Kodai, Shintaro; Shinkawa, Hiroji; Tsukioka, Takuma; Okada, Shigeru; Azuma, Hideki; Kubo, Shoji

    2013-09-01

    It is important to prevent and improve diabetes mellitus and its complications in a safe and low-cost manner. S-Allyl cysteine, an aged garlic extract with antioxidant activity, was investigated to determine whether S-allyl cysteine can improve type 2 diabetes in Otsuka Long-Evans Tokushima Fatty rats with nonalcoholic fatty liver disease. Male Otsuka Long-Evans Tokushima Fatty rats and age-matched Long-Evans Tokushima Otsuka rats were used and were divided into two groups at 29 weeks of age. S-Allyl cysteine (0.45% diet) was administered to rats for 13 weeks. Rats were killed at 43 weeks of age, and detailed analyses were performed. S-Allyl cysteine improved hemoglobinA1c, blood glucose, triglyceride, and low-density lipoprotein cholesterol levels. Furthermore, S-allyl cysteine normalized plasma insulin levels. S-Allyl cysteine activated the mRNA and protein expression of both peroxisome proliferator-activated receptor α and γ, as well as inhibiting pyruvate dehydrogenase kinase 4 in Otsuka Long-Evans Tokushima Fatty rat liver. Sterol regulatory element-binding protein 1c and forkhead box O1 proteins were normalized by S-allyl cysteine in Otsuka Long-Evans Tokushima Fatty rat liver. In conclusions, these findings support the hypothesis that S-allyl cysteine has diabetic and nonalcoholic fatty liver disease therapeutic potential as a potent regulating agent against lipogenesis and glucose metabolism. PMID:24062606

  16. Pressure-resistant plane disk viewports from allyl diglycol carbonate plastic for hyperbaric chambers

    SciTech Connect

    Stachiw, J.D.; Stachiw, M.A.

    1986-12-01

    Acrylic plastic viewports have been used for over 40 yr in pressure vessels for human occupancy without any catastrophic failure resulting in a loss of life. However, there are special applications, such as for example in hyperbaric chambers for medical purposes, where the susceptibility of flexure stressed acrylic plastic to surface crazing and cracking in the presence of common organic solvents contained in antibacterial sprays is a distinct disadvantage. To solve this problem, a search has been initiated for transparent plastics that are not attacked by organic solvents and can be cast economically in thick sections. Allyl diglycol carbonate plastic appears not only to satisfy to foregoing requirement, but also to provide better resistance to abrasion, pitting, and X-ray or gamma irradiation than acrylic plastic. Short-term, long-term, and cyclic pressure testing has been conducted on over one hundred allyl diglycol carbonate plane disk viewports with t/D/sub 0/ ratio in the 0.06 to 0.4 range and temperature in the 4/sup 0/C to +52/sup 0/C (+40F to 125/sup 0/F) range. It appears that plane disks cast from allyl diglycol carbonate plastic can perform safely as pressure-resistant viewports in pressure vessels for human occupancy. It is recommended that for such an application their design temperature be limited to under 52/sup 0/C (125/sup 0/F), and that their design pressure at 52/sup 0/C (125/sup 0/F) design temperature not exceed 4 percent of their (STCP) short-term critical pressure at 24/sup 0/C (75/sup 0/F).

  17. Monoterpenoid agonists of TRPV3

    PubMed Central

    Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

    2007-01-01

    Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

  18. Design, synthesis, and applications of potential substitutes of t-Bu-phosphinooxazoline in Pd-catalyzed asymmetric transformations and their use for the improvement of the enantioselectivity in the Pd-catalyzed allylation reaction of fluorinated allyl enol carbonates.

    PubMed

    Bélanger, Étienne; Pouliot, Marie-France; Courtemanche, Marc-André; Paquin, Jean-François

    2012-01-01

    The design, synthesis, and applications of potential substitutes of t-Bu-PHOX in asymmetric catalysis is reported. The design relies on the incorporation of geminal substituents at C5 in combination with a substituent at C4 other than t-butyl (i-Pr, i-Bu, or s-Bu). Most of these new members of the PHOX ligand family behave similarly in terms of stereoinduction to t-Bu-PHOX in three palladium-catalyzed asymmetric transformations. Electronically modified ligands were also prepared and used to improve the enantioselectivity in the Pd-catalyzed allylation reaction of fluorinated allyl enol carbonates.

  19. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  20. A Spectroscopic and Theoretical Study of Weak Intramolecular OH\\cdots π Interactions in Allyl Carbinol and Methallyl Carbinol

    NASA Astrophysics Data System (ADS)

    Schroeder, Sidsel D.; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2013-06-01

    The weak intramolecular OH\\cdots π interactions in allyl carbinol and methallyl carbinol have been studied using a combination of NIR spectroscopy and theory. The third OH-stretching overtone region of vapor phase allyl carbinol and methallyl carbinol have been recorded with intracavity laser photoacoustic spectroscopy to study the effect of an enhanced OH\\cdots π interaction in methallyl carbinol arising from the electron donating methyl group. Local mode calculations were employed to assign the observed bands. The OH-stretching transition frequency of methallyl carbinol was observed to be red shifted relative to the OH-stretching transition frequency of allyl carbinol. A red shift of the transition frequency is in this context normally interpreted as a signature of hydrogen bonding. Whether the OH\\cdots π interaction can be categorized as a hydrogen bond will be discussed in this talk.

  1. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  2. Molybdenum-Catalyzed Asymmetric Allylic Alkylation of 3-Alkyloxindoles: Reaction Development and Applications

    PubMed Central

    Trost, Barry M.; Zhang, Yong

    2013-01-01

    We report a full account of our work towards the development of Mo-catalyzed asymmetric allylic alkylation reactions with 3-alkyloxindoles as nucleophiles. The reaction is complementary to the Pd-catalyzed reaction with regard to the scope of oxindole nucleophiles. A number of 3-alkyloxindoles were alkylated successfully under mild conditions to give products with excellent yields and good-to-excellent enantioselectivities. Applications of this method to the preparation of indoline alkaloids such as (−)-physostigmine, ent-(−)-debromoflustramine B, and the indolinoquinoline rings of communesin B are reported. PMID:21290436

  3. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    NASA Astrophysics Data System (ADS)

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-09-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and—although there are a small number of catalytic enantioselective conjugate allyl additions—related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  4. Oxidative Allylic Esterification of Alkenes by Cooperative Selenium-Catalysis Using Air as the Sole Oxidant.

    PubMed

    Ortgies, Stefan; Depken, Christian; Breder, Alexander

    2016-06-17

    A new metal-free catalysis protocol for the oxidative coupling of nonactivated alkenes with simple carboxylic acids has been established. This method is predicated on the cooperative interaction of a diselane and a photoredox catalyst, which allows for the use of ambient air or pure O2 as the terminal oxidant. Under the title conditions, a range of both functionalized and nonfunctionalized alkenes can be readily converted into the corresponding allylic ester products with good yields (up to 89%) and excellent regioselectivity as well as good functional group tolerance.

  5. Organocatalytic Enantioselective Nucleophilic Alkynylation of Allyl Fluorides Affording Chiral Skipped Ene-ynes.

    PubMed

    Okusu, Satoshi; Okazaki, Hiroki; Tokunaga, Etsuko; Soloshonok, Vadim A; Shibata, Norio

    2016-06-01

    Asymmetric methods for preparation of chiral alkynyl-containing compounds are in extremely high demand in many sectors of chemical research. In this work, we report the discovery of a general organocatalytic enantioselective alkynylation based on the idea of Si/F activation of the allylic C-F bond. This approach features reasonably broad substrate scope, functional group tolerance, and relatively neutral, mild, and operationally convenient reaction conditions; all of which bode well for the synthetic value of the discovered method. In particular, this method provides unique chiral skipped 1,4-ene-ynes having two kinds of versatile functional groups. PMID:27111713

  6. Oxidative Allylic Esterification of Alkenes by Cooperative Selenium-Catalysis Using Air as the Sole Oxidant.

    PubMed

    Ortgies, Stefan; Depken, Christian; Breder, Alexander

    2016-06-17

    A new metal-free catalysis protocol for the oxidative coupling of nonactivated alkenes with simple carboxylic acids has been established. This method is predicated on the cooperative interaction of a diselane and a photoredox catalyst, which allows for the use of ambient air or pure O2 as the terminal oxidant. Under the title conditions, a range of both functionalized and nonfunctionalized alkenes can be readily converted into the corresponding allylic ester products with good yields (up to 89%) and excellent regioselectivity as well as good functional group tolerance. PMID:27257803

  7. Allylic C-H amination for the preparation of syn-1,3-amino alcohol motifs.

    PubMed

    Rice, Grant T; White, M Christina

    2009-08-26

    A highly selective and general Pd/sulfoxide-catalyzed allylic C-H amination reaction en route to syn-1,3-amino alcohol motifs is reported. Key to achieving this reactivity under mild conditions is the use of electron-deficient N-nosyl carbamate nucleophiles that are thought to promote functionalization by furnishing higher concentrations of anionic species in situ. The reaction is shown to be orthogonal to classical C-C bond-forming/-reduction sequences as well as nitrene-based C-H amination methods.

  8. Comparative investigation of the mutagenicity of propenylic and allylic asarone isomers in the Ames fluctuation assay.

    PubMed

    Berg, Kerstin; Bischoff, Roland; Stegmüller, Simone; Cartus, Alexander; Schrenk, Dieter

    2016-07-01

    α-, β- and γ-asarone are naturally occurring phenylpropenes that occur in different plant families, mainly in Aristolochiaceae, Acoraceae and Lauraceae. Plants containing asarones are used as flavouring ingredients in alcoholic beverages (bitters), traditional phytomedicines and the rhizome of e.g. Acorus calamus is used to prepare tea. Although α- and β-asarone show a potential in the treatment of several diseases, previous studies have shown carcinogenicity in rodents (duodenum, liver). However, the mechanism of action remained unclear. Studies on the mutagenicity of propenylic α- and β-asarone are inconsistent and data on carcinogenicity and genotoxicity of allylic γ-asarone are lacking completely. Thus, the present study determined the mutagenicity of the three asarone isomers using the Ames fluctuation assay with and without exogenous metabolic activation (S9 mix) in the standard Salmonella typhimurium strains TA98 and TA100. A concentration dependent increase in mutagenicity could be verified for α- and β-asarone in strain TA100 in the presence of rat liver homogenate. The side-chain epoxides of α- and β-asarone, major metabolites formed in liver microsomes, caused mutations in TA100, supporting the hypothesis that epoxidation of the side chain plays a key role in mutagenicity of the propenylic alkenylbenzenes. The allylic γ-asarone, not undergoing detectable side-chain epoxidation in liver microsomes, was supposed to be activated via side-chain hydroxylation and further sulphonation, a typical pathway for other allylic alkenylbenzenes like estragole or methyleugenol. However, neither y-asarone nor 1'-OH-γ-asarone showed any mutagenic effect even in the human SULT-expressing Salmonella strains (TA100-hSULT1A1 and TA100-hSULT1C2), while 1'-OH-methyleugenol used as a positive control was mutagenic under these conditions. These results indicate that the propenylic asarones are genotoxic via metabolic formation of side-chain epoxides while the side

  9. Comparative investigation of the mutagenicity of propenylic and allylic asarone isomers in the Ames fluctuation assay.

    PubMed

    Berg, Kerstin; Bischoff, Roland; Stegmüller, Simone; Cartus, Alexander; Schrenk, Dieter

    2016-07-01

    α-, β- and γ-asarone are naturally occurring phenylpropenes that occur in different plant families, mainly in Aristolochiaceae, Acoraceae and Lauraceae. Plants containing asarones are used as flavouring ingredients in alcoholic beverages (bitters), traditional phytomedicines and the rhizome of e.g. Acorus calamus is used to prepare tea. Although α- and β-asarone show a potential in the treatment of several diseases, previous studies have shown carcinogenicity in rodents (duodenum, liver). However, the mechanism of action remained unclear. Studies on the mutagenicity of propenylic α- and β-asarone are inconsistent and data on carcinogenicity and genotoxicity of allylic γ-asarone are lacking completely. Thus, the present study determined the mutagenicity of the three asarone isomers using the Ames fluctuation assay with and without exogenous metabolic activation (S9 mix) in the standard Salmonella typhimurium strains TA98 and TA100. A concentration dependent increase in mutagenicity could be verified for α- and β-asarone in strain TA100 in the presence of rat liver homogenate. The side-chain epoxides of α- and β-asarone, major metabolites formed in liver microsomes, caused mutations in TA100, supporting the hypothesis that epoxidation of the side chain plays a key role in mutagenicity of the propenylic alkenylbenzenes. The allylic γ-asarone, not undergoing detectable side-chain epoxidation in liver microsomes, was supposed to be activated via side-chain hydroxylation and further sulphonation, a typical pathway for other allylic alkenylbenzenes like estragole or methyleugenol. However, neither y-asarone nor 1'-OH-γ-asarone showed any mutagenic effect even in the human SULT-expressing Salmonella strains (TA100-hSULT1A1 and TA100-hSULT1C2), while 1'-OH-methyleugenol used as a positive control was mutagenic under these conditions. These results indicate that the propenylic asarones are genotoxic via metabolic formation of side-chain epoxides while the side

  10. Thermophysical properties and reaction kinetics of γ-irradiated poly allyl diglycol carbonates nuclear track detector

    NASA Astrophysics Data System (ADS)

    Elmaghraby, Elsayed K.; Seddik, Usama

    2015-07-01

    Kinetic thermogravimetric technique was used to study the effect of gamma irradiation on the poly allyl diglycol carbonates (PADC) within the dose range from 50 to ? Gy. The approach of Coats-Redfern was used to analyze the data. Results showed that low doses around 50 Gy make the polymer slightly more resistive to heat treatment. Higher radiation doses cause severe effects in the samples accompanied by the formation of lower molecular mass species and consequent crosslinking. Results support the domination of re-polymerization and crosslinking for the γ radiation interaction PADC at dose below about ? Gy, while the situation is inverted above ? Gy in which chain secession dominates.

  11. A short scalable route to (-)-α-kainic acid using Pt-catalyzed direct allylic amination.

    PubMed

    Zhang, Ming; Watanabe, Kenji; Tsukamoto, Masafumi; Shibuya, Ryozo; Morimoto, Hiroyuki; Ohshima, Takashi

    2015-03-01

    An increased supply of scarce or inaccessible natural products is essential for the development of more sophisticated pharmaceutical agents and biological tools, and thus the development of atom-economical, step-economical and scalable processes to access these natural products is in high demand. Herein we report the development of a short, scalable total synthesis of (-)-α-kainic acid, a useful compound in neuropharmacology that is, however, limited in supply from natural resources. The synthesis features sequential platinum-catalyzed direct allylic aminations and thermal ene-cyclization, enabling the gram-scale synthesis of (-)-α-kainic acid in six steps and 34% overall yield. PMID:25604395

  12. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  13. The toxic effects of benzyl glucosinolate and its hydrolysis product, the biofumigant benzyl isothiocyanate, to Folsomia fimetaria.

    PubMed

    Jensen, John; Styrishave, Bjarne; Gimsing, Anne Louise; Bruun Hansen, Hans Christian

    2010-02-01

    Natural isothiocyanates (ITCs) are toxic to a range of pathogenic soil-living species, including nematodes and fungi, and can thus be used as natural fumigants called biofumigants. Natural isothiocyanates are hydrolysis products of glucosinolates (GSLs) released from plants after cell rupture. The study investigated the toxic effects of benzyl-GSL and its hydrolysis product benzyl-ITC on the springtail Folsomia fimetaria, a beneficial nontarget soil-dwelling micro-arthropod. The soil used was a sandy agricultural soil. Half-lives for benzyl-ITC in the soil depended on the initial soil concentration, ranging from 0.2 h for 67 nmol/g to 13.2 h for 3,351 nmol/g. For benzyl-ITC, the concentration resulting in 50% lethality (LC50) value for F. fimetaria adult mortality was 110 nmol/g (16.4 mg/kg) and the concentration resulting in 50% effect (EC50) value for juvenile production was 65 nmol/g (9.7 mg/kg). Benzyl-GSL proved to be less toxic and consequently an LC50 value for mortality could not be estimated for springtails exposed to benzyl-GSL. For reproduction, an EC50 value was estimated to approximately 690 nmol/g. The study indicates that natural soil concentrations of ITCs may be toxic to beneficial nontarget soil-dwelling arthropods such as springtails. PMID:20821454

  14. Identification and analysis of isothiocyanates and new acylated anthocyanins in the juice of Raphanus sativus cv. Sango sprouts.

    PubMed

    Matera, Riccardo; Gabbanini, Simone; De Nicola, Gina Rosalinda; Iori, Renato; Petrillo, Gianna; Valgimigli, Luca

    2012-07-15

    The freeze-dried sprouts' juice of Raphanus sativus (L.) cv. Sango was prepared and analysed for the first time. HPLC analysis of total isothiocyanates, after protein displacement, resulted in 77.8 ± 3.0 μmol/g of dry juice while GC-MS analysis of hexane and acetone extracts showed E- and Z-raphasatin (8.9 and 0.11 μmol/g, respectively) and sulforaphene (11.7 μmol/g), summing up to 20.7 ± 1.7 μmol/g of free isothiocyanates. Sprouts' juice contained an unprecedented wealth of anthocyanins and a new fractionation methodology allowed us to isolate 34 mg/g of acylated anthocyanins (28.3 ± 1.9 μmol/g), belonging selectively to the cyanidin family. Analysis was performed by HPLC-PDA-ESI-MS(n) and extended to deacylated anthocyanins and aglycones, obtained, respectively, by alkaline and acid hydrolysis. This study identified 70 anthocyanins, 19 of which have never been described before and 32 of which are reported here in R. sativus for the first time. Sango radish sprouts are exceptional dietary sources of heath-promoting micronutrients.

  15. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.

    PubMed

    Chen, Yi-Ming; Cheng, Tian-Lu; Tseng, Wei-Lung

    2009-10-01

    Selective turn-on fluorescence detection of I(-) was accomplished using fluorescein isothiocyanate-decorated gold nanoparticles (FITC-AuNPs). FITC molecules, which fluoresce strongly in an alkaline solution, were severely quenched when they were attached to the surface of AuNPs through their isothiocyanate group. Upon the addition of I(-), FITC molecules were detached because of I(-) adsorption on the surface of AuNPs. As a result, released FITC molecules were restored to their original fluorescence intensity. Because I(-) has a higher binding affinity to the surface of Au than do Br(-), Cl(-), or F(-), the FITC-AuNPs obviously have a higher selectivity toward I(-) than toward these other anions. Meanwhile, after IO(3)(-) was reduced to I(-) with ascorbic acid, the detection of IO(3)(-) was successfully achieved using the FITC-AuNPs. Under an optimum pH and AuNP concentration, the lowest detectable concentrations of I(-) and IO(3)(-) using this probe were 10.0 and 50.0 nM, respectively. The FITC-AuNPs provide a number of advantages, including easy preparation, selectivity, sensitivity, and low cost. This unique probe was applied to an analysis of the total iodine in edible salt and seawater.

  16. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species.

  17. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species. PMID:25625566

  18. Isothiocyanate-Functionalized Bifunctional Chelates and fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) Complexes for Targeting uPAR in Prostate Cancer.

    PubMed

    Kasten, Benjamin B; Ma, Xiaowei; Cheng, Kai; Bu, Lihong; Slocumb, Winston S; Hayes, Thomas R; Trabue, Steven; Cheng, Zhen; Benny, Paul D

    2016-01-20

    Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).

  19. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-01

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes. PMID:16808533

  20. (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibits growth of colon tumors in mice

    PubMed Central

    Son, Dong Ju; Choi, Min Gi; Choi, Jeong Soon; Nam, Kyung Tak; Kim, Hae Deun; Rodriguez, Kevin; Gann, Benjamin; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-01-01

    In our previous study, we found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal showed anti-cancer effect, but it showed lack of stability and drug likeness. We have prepared several (E)-2,4-bis(p-hydroxyphenyl)-2-butenal analogues by Heck reaction. We selected two compounds which showed significant inhibitory effect of colon cancer cell growth. Thus, we evaluated the anti-cancer effects and possible mechanisms of one compound (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol in vitro and in vivo. In this study, we found that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol induced apoptotic cell death in a dose dependent manner (0-15 μg/ml) through activation of Fas and death receptor (DR) 3 in HCT116 and SW480 colon cancer cell lines. Moreover, the combination treatment with (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol and nuclear factor κB (NF-κB) inhibitor, phenylarsine oxide (0.1 μM) or signal transducer and activator of transcription 3 (STAT3) inhibitor, Stattic (50 μM) increased the expression of Fas and DR3 more significantly. In addition, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol suppressed the DNA binding activity of both STAT3 and NF-κB. Knock down of STAT3 or NF-κB p50 subunit by STAT3 small interfering RNA (siRNA) or p50 siRNA magnified (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol-induced inhibitory effect on colon cancer cell growth. Besides, the expression of Fas and DR3 was increased in STAT3 siRNA or p50 siRNA transfected cells. Moreover, docking model and pull-down assay showed that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol directly bound to STAT3 and NF-κB p50 subunit. Furthermore, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibited colon tumor growth in a dose dependent manner (2.5 mg/kg-5 mg/kg) in mice. Therefore, these findings indicated that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol may be a promising anti-cancer agent for colon cancer with more advanced research. PMID

  1. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Liardo, Elisa; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2016-07-18

    The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning. PMID:27258838

  2. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-01

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes.

  3. Iodine-Catalyzed Decarboxylative Amidation of β,γ-Unsaturated Carboxylic Acids with Chloramine Salts Leading to Allylic Amides.

    PubMed

    Kiyokawa, Kensuke; Kojima, Takumi; Hishikawa, Yusuke; Minakata, Satoshi

    2015-10-26

    The iodine-catalyzed decarboxylative amidation of β,γ-unsaturated carboxylic acids with chloramine salts is described. This method enables the regioselective synthesis of allylic amides from various types of β,γ-unsaturated carboxylic acids containing substituents at the α- and β-positions. In the reaction, N-iodo-N-chloroamides, generated by the reaction of a chloramine salt with I2 , function as a key active species. The reaction provides an attractive alternative to existing methods for the synthesis of useful secondary allylic amine derivatives. PMID:26493878

  4. γ-Selective Allylation of (E)-Alkenylzinc Iodides Prepared by Reductive Coupling of Arylacetylenes with Alkyl Iodides.

    PubMed

    Zhurkin, Fedor E; Hu, Xile

    2016-07-01

    The first examples of Cu-catalyzed γ-selective allylic alkenylation using organozinc reagents are reported. (E)-Alkenylzinc iodides were prepared by Fe-catalyzed reductive coupling of terminal arylalkynes with alkyl iodides. In the presence of a copper catalyst, these reagents reacted with allylic bromides derived from Morita-Baylis-Hillman alcohols to give 1,4-dienes in high yields. The reactions are highly γ-selective (generally γ/α > 49:1) and tolerate a wide range of functional groups such as ester, cyano, keto, and nitro. PMID:27285459

  5. Dopamine receptor partial agonists and addiction.

    PubMed

    Moreira, Fabricio A; Dalley, Jeffrey W

    2015-04-01

    Many drugs abused by humans acutely facilitate, either directly or indirectly, dopamine neurotransmission in the mesolimbic pathway. As a consequence dopamine receptor agonists and antagonists have been widely investigated as putative pharmacological therapies for addiction. This general strategy, however, has had only limited success due in part to poor treatment adherence and efficacy and the significant adverse effects of dopaminergic medications. In this perspective, we discuss the potential therapeutic use of dopamine receptor partial agonists in addiction, developed initially as antipsychotic agents. Recent research indicates that the dopamine D2 receptor partial agonists, such as aripiprazole, also shows useful ancillary efficacy in several animal models of psychostimulant and opioid addiction. Notably, these findings suggest that unlike full dopamine receptor agonists and antagonists these compounds have low abuse liability and are generally well tolerated. Indeed, partial dopamine agonists attenuate the rewarding properties of opioids without interfering with their analgesic effects. Herein we discuss the utility and potential of dopamine receptor partial agonists as treatments for both stimulant and non-stimulant drug addiction.

  6. PPAR Agonists and Cardiovascular Disease in Diabetes.

    PubMed

    Calkin, Anna C; Thomas, Merlin C

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARalpha agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARgamma agonists, and more recently dual PPARalpha/gamma coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARgamma receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.

  7. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  8. Fibroblasts contracting collagen matrices form transient plasma membrane passages through which the cells take up fluorescein isothiocyanate-dextran and Ca2+.

    PubMed Central

    Lin, Y C; Ho, C H; Grinnell, F

    1997-01-01

    When fibroblasts contract collagen matrices, the cells activate a Ca(2+)-dependent cyclic AMP signaling pathway. We have found that contraction also stimulates uptake of fluorescein isothiocyanate-dextran molecules from the medium. Our results indicate that fluorescein isothiocyanate-dextran enters directly into the cell cytoplasm through 3- to 5-nm plasma membrane passages. These passages, which reseal in less than 5 s in the presence of divalent cations, also are likely sites of Ca2+ uptake during contraction and the first step in contraction-activated cyclic AMP signaling. The formation of plasma membrane passages during fibroblast contraction may reflect a general cellular response to rapid mechanical changes. Images PMID:9017595

  9. Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models

    PubMed Central

    2012-01-01

    Background HER2 is an oncogene, expression of which leads to poor prognosis in 30% of breast cancer patients. Although trastuzumab is apparently an effective therapy against HER2-positive tumors, its systemic toxicity and resistance in the majority of patients restricts its applicability. In this study we evaluated the effects of phenethyl isothiocyanate (PEITC) in HER2-positive breast cancer cells. Methods MDA-MB-231 and MCF-7 breast cancer cells stably transfected with HER2 (high HER2 (HH)) were used in this study. The effect of PEITC was evaluated using cytotoxicity and apoptosis assay in these syngeneic cells. Western blotting was used to delineate HER2 signaling. SCID/NOD mice were implanted with MDA-MB-231 (HH) xenografts. Results Our results show that treatment of MDA-MB-231 and MCF-7 cells with varying concentrations of PEITC for 24 h extensively reduced the survival of the cells with a 50% inhibitory concentration (IC50) of 8 μM in MDA-MB-231 and 14 μM in MCF-7 cells. PEITC treatment substantially decreased the expression of HER2, epidermal growth factor receptor (EGFR) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr-705. The expression of BCL-2-associated × (BAX) and BIM proteins were increased, whereas the levels of B cell lymphoma-extra large (BCL-XL) and X-linked inhibitor of apoptosis protein (XIAP) were significantly decreased in both the cell lines in response to PEITC treatment. Substantial cleavage of caspase 3 and poly-ADP ribose polymerase (PARP) were associated with PEITC-mediated apoptosis in MDA-MB-231 and MCF-7 cells. Notably, transient silencing of HER2 decreased and overexpressing HER2 increased the effects of PEITC. Furthermore, reactive oxygen species (ROS) generation, mitochondrial depolarization and apoptosis by PEITC treatment were much higher in breast cancer cells expressing higher levels of HER2 (HH) as compared to parent cell lines. The IC50 of PEITC following 24 h of treatment was

  10. Hot water-promoted S(N)1 solvolysis reactions of allylic and benzylic alcohols.

    PubMed

    Xu, Zhao-Bing; Qu, Jin

    2013-01-01

    During the studies of hydrolysis of epoxides in water, we found that the hydrolysis of (-)-α-pinene oxide at 20 °C gave enantiomerically pure trans-(-)-sobrerol, whereas the same reaction in water heated at reflux unexpectedly gave a racemic mixture of trans- and cis-sobrerol (trans/cis = 6:4). We have examined this remarkable difference in detail and found that hot water, whose behavior is quite different compared with room- or high-temperature water, could promote S(N)1 solvolysis reactions of allylic alcohols and thus caused the racemization of trans-(-)-sobrerol. The effect of reaction temperature, the addition of organic co-solvent, and the concentration of the solute on the rate of the racemization of trans-(-)-sobrerol were further examined to understand the role that hot water played in the reaction. It was proposed that the catalytic effects of hot water are owing to its mild acidic characteristic, thermal activation, high ionizing power, and better solubility of organic reactant. Further investigation showed that the racemization of other chiral allylic/benzylic alcohols could efficiently proceed in hot water.

  11. Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine.

    PubMed

    Maldonado, Perla D; Alvarez-Idaboy, J Raúl; Aguilar-González, Adriana; Lira-Rocha, Alfonso; Jung-Cook, Helgi; Medina-Campos, Omar Noel; Pedraza-Chaverrí, José; Galano, Annia

    2011-11-17

    S-Allylcysteine (SAC) is the most abundant compound in aged garlic extracts, and its antioxidant properties have been demonstrated. It is known that SAC is able to scavenge different reactive species including hydroxyl radical (•OH), although its potential ability to scavenge peroxyl radical (ROO•) has not been explored. In this work the ability of SAC to scavenge ROO• was evaluated, as well as the role of the allyl group (-S-CH(2)-CH═CH(2)) in its free radical scavenging activity. Two derived compounds of SAC were prepared: S-benzylcysteine (SBC) and S-propylcysteine (SPC). Their abilities to scavenge •OH and ROO• were measured. A computational analysis was performed to elucidate the mechanism by which these compounds scavenge •OH and ROO•. SAC was able to scavenge •OH and ROO•, in a concentration-dependent way. Such activity was significantly ameliorated when the allyl group was replaced by benzyl or propyl groups. It was shown for the first time that SAC is able to scavenge ROO•.

  12. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    PubMed Central

    Porter, David; Poon, Belinda M-L

    2015-01-01

    Summary Iron(II) complexes of the tetradentate amines tris(2-pyridylmethyl)amine (TPA) and N,N′-bis(2-pyridylmethyl)-N,N′-dimethylethane-1,2-diamine (BPMEN) are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol %) or FeBPMEN (10 mol %) converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxy)carbamate) in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+)-(2R,2′R)-1,1′-bis(2-pyridylmethyl)-2,2′-bipyrrolidine ((R,R′)-PDP). PMID:26734101

  13. Further exploration of the heterocyclic diversity accessible from the allylation chemistry of indigo

    PubMed Central

    Shakoori, Alireza; Bremner, John B; Abdel-Hamid, Mohammed K; Willis, Anthony C; Haritakun, Rachada

    2015-01-01

    Summary Diversity-directed synthesis based on the cascade allylation chemistry of indigo, with its embedded 2,2’-diindolic core, has resulted in rapid access to new examples of the hydroxy-8a,13-dihydroazepino[1,2-a:3,4-b']diindol-14(8H)-one skeleton in up to 51% yield. Additionally a derivative of the novel bridged heterocycle 7,8-dihydro-6H-6,8a-epoxyazepino[1,2-a:3,4-b']diindol-14(13H)-one was produced when the olefin of the allylic substrate was terminally disubstituted. Further optimisation also produced viable one-pot syntheses of derivatives of the spiro(indoline-2,9'-pyrido[1,2-a]indol)-3-one (65%) and pyrido[1,2,3-s,t]indolo[1,2-a]azepino[3,4-b]indol-17-one (72%) heterocyclic systems. Ring-closing metathesis of the N,O-diallylic spiro structure and subsequent Claisen rearrangement gave rise to the new (1R,8aS,17aS)-rel-1,2-dihydro-1-vinyl-8H,17H,9H-benz[2',3']pyrrolizino[1',7a':2,3]pyrido[1,2-a]indole-8,17-(2H,9H)-dione heterocyclic system. PMID:25977722

  14. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    ERIC Educational Resources Information Center

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  15. Enantioselective formal α-allylation of nitroalkanes through a chiral iminophosphorane-catalyzed Michael reaction-Julia-Kocienski olefination sequence.

    PubMed

    Uraguchi, Daisuke; Nakamura, Shinji; Sasaki, Hitoshi; Konakade, Yuki; Ooi, Takashi

    2014-04-01

    A two-step sequence for the asymmetric formal α-allylation of nitroalkanes is disclosed. This new methodology relies on the development of a highly diastereo- and enantioselective conjugate addition of nitroalkanes to vinylic 2-phenyl-1H-tetrazol-5-ylsulfones using chiral triaminoiminophosphorane as a requisite base catalyst and subsequent Julia-Kocienski olefination under kinetic conditions.

  16. Catalytic asymmetric reductive coupling of alkynes and aldehydes: enantioselective synthesis of allylic alcohols and alpha-hydroxy ketones.

    PubMed

    Miller, Karen M; Huang, Wei-Sheng; Jamison, Timothy F

    2003-03-26

    A highly enantioselective method for catalytic reductive coupling of alkynes and aldehydes is described. Allylic alcohols are afforded with complete E/Z selectivity, generally >95:5 regioselectivity, and in up to 96% ee. In conjunction with ozonolysis, this process is complementary to existing methods of enantioselective alpha-hydroxy ketone synthesis. PMID:12643701

  17. Diastereoselective Allylation of "N"-"Tert"-Butanesulfinyl Imines: An Asymmetric Synthesis Experiment for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Chen, Xiao-Yang; Sun, Li-Sen; Gao, Xiang; Sun, Xing-Wen

    2015-01-01

    An asymmetric synthetic experiment that encompasses both diastereoselectivity and enantioselectivity is described. In this experiment, Zn-mediated allylation of an ("R")-"N"-"tert"-butanesulfinyl imine is first performed to obtain either diastereomer using two different solvent systems, followed by oxidation of the…

  18. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    PubMed

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination. PMID:25849818

  19. Oxidation, reduction, and isomerization of allyl alcohol and 1-propanol over Cu[sub 2]O(100)

    SciTech Connect

    Schulz, K.H.; Cox, D.F. )

    1993-01-21

    The reactivity of allyl alcohol and 1-propanol has been studied with TDS and XPS on the polar, Cu[sup +]-terminated, Cu[sub 2]O(100) surface. Allyl alcohol reacts on the (100) surface to give selective and nonselective oxidation products (acrolein, CO, CO[sub 2], H[sub 2]O), an isomerization product (propionaldehyde), and a reduction product (propene). 1-Propanol also reacts on the (100) surface to give selective and nonselective oxidation products (acrolein, propionaldehyde, CO, CO[sub 2], H[sub 2]O) and a reduction product (propene). Both alcohols dissociatively adsorb to form alkoxides. The alkoxide species undergo hydride elimination on the carbon [alpha] to the oxygen to form the corresponding aldehydes. The acrolein and propionaldehyde formed from the alcohols are linked by a common surface enolate intermediate which explains the similarity in C[sub 3] products observed from the two alcohols. A low-temperature reaction to propene is attributed to pathways involving C-O bond scission from unsaturated surface oxygenates to give a surface allyl. Hydrogenation of the resulting allyl produces propene at low temperature. 28 refs., 6 figs., 2 tabs.

  20. Enantioselective synthesis of 4-substituted tetrahydroisoquinolines via palladium-catalyzed intramolecular Friedel-Crafts type allylic alkylation of phenols.

    PubMed

    Zhao, Zheng-Le; Xu, Qing-Long; Gu, Qing; Wu, Xin-Yan; You, Shu-Li

    2015-03-14

    Palladium-catalyzed asymmetric intramolecular Friedel-Crafts type allylic alkylation reaction of phenols was developed under mild conditions. In the presence of Pd2(dba)3 with (1R,2R)-DACH-phenyl Trost ligand (L2) in toluene at 50 °C, the reaction provides various C4 substituted tetrahydroisoquinolines with moderate to excellent yields, regioselectivity and enantioselectivity. PMID:25625805

  1. Effects of the selective delta opioid agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys.

    PubMed

    Do Carmo, Gail Pereira; Mello, Nancy K; Rice, Kenner C; Folk, John E; Negus, S Stevens

    2006-10-10

    Delta agonists such as SNC80 ((+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) produce some cocaine-like behavioral effects and warrant evaluation as candidate "agonist" medications for cocaine abuse. The present study examined acute and chronic effects of the systemically active delta agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Acute SNC80 (0.32-3.2 mg/kg, i.m.) pretreatment dose-dependently decreased cocaine self-administration (0.0032 mg/kg/injection), but doses of SNC80 that decreased cocaine self-administration also decreased food-maintained responding. In chronic studies, SNC80 (0.32-3.2 mg/kg/h, i.v.) was delivered for 7 days, and food or cocaine (0.01 mg/kg/injection) was available during 4 daily components of food availability and 4 daily components of drug availability. Chronic SNC80 (1.8 mg/kg/h) tended to decrease cocaine self-administration but produced greater reductions in food-maintained responding. A higher dose of 3.2 mg/kg/h SNC80 eliminated both cocaine- and food-maintained responding and produced profound sedation in one monkey and was not tested in other monkeys. These findings indicate that SNC80 produced dose-dependent and non-selective reductions in cocaine self-administration. These results suggest that SNC80 is unlikely to be useful as a treatment for cocaine dependence. PMID:16934797

  2. Agonists and antagonists of antennal responses of gypsy moth (Lymantria dispar) to the pheromone (+)-disparlure and other odorants.

    PubMed

    Plettner, Erika; Gries, Regine

    2010-03-24

    Insects use the sense of smell to guide many behaviors that are important for their survival. The gypsy moth uses a pheromone to bring females and males together over long distances. Male moth antennae are equipped with innervated sensory hairs that selectively respond to pheromone components and other odors. Host plant odors, in particular, are detected by moths and sometimes cause an enhancement of the antennal and behavioral responses of the moths to their pheromone. Inspired by naturally occurring agonists and antagonists of insect pheromone responses, we have screened, by electroantennogram (EAG) recordings, a collection of compound sets and of individual compounds. We have detected interference of some compounds with the EAG responses of male gypsy moth antennae to the pheromone. We describe three activities: (1) short-term inhibition or enhancement of mixed compound + pheromone plumes, (2) long-term inhibition of pure pheromone plumes following a mixed compound + pheromone plume, and (3) inhibition of the recovery phase of mixed compound + pheromone plumes. Long-term inhibition was robust, decayed within 30 s, and correlated with the inhibition of recovery; for both activities clear structure-activity patterns were detected. The commercial repellent N,N-diethyltoluamide (DEET) was included for comparison. The most active and reproducible short-term inhibitor was a mixture of 1-allyl-2,4-dimethoxybenzene and 2-allyl-1,3-dimethoxybenzene. The most active long-term inhibitors were a set of 1-alkoxy-4-propoxybenzenes, DEET, and 1-ethoxy-4-propoxybenzene. DEET was more specific in the olfactory responses it inhibited than 1-ethoxy-4-propoxybenzene, and DEET did not inhibit recovery, whereas 1-ethoxy-4-propoxybenzene did. Target sites for the three activities are discussed.

  3. Effects of the delta-opioid agonist SNC80 on the abuse liability of methadone in rhesus monkeys: a behavioral economic analysis

    PubMed Central

    Banks, Matthew L.; Roma, Peter G.; Folk, John E.; Rice, Kenner C.

    2012-01-01

    Rationale Delta-opioid agonists enhance the antinociceptive efficacy of methadone and other mu-opioid agonists. However, relatively little is known about the degree to which delta agonists might enhance the abuse-related effects of mu agonists. Objective This study used a behavioral economic approach to examine effects of the delta agonist SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N,N-diethylbenzamide] on the reinforcing effects of methadone in a drug self-administration assay. Interactions between SNC80 and cocaine were also examined for comparison. Methods Rhesus monkeys (n=4), surgically implanted with indwelling intravenous catheters, were tested in two phases. In phase 1, drug self-administration dose-effect curves for methadone (0.0032–0.1 mg/kg/injection (inj)) and cocaine (0.0032–0.32 mg/kg/inj) alone were determined under a fixed-ratio 10 (FR 10) schedule of reinforcement. In phase 2, FR values were increased every 3 days (FR 1–FR 1800) during availability of methadone alone (0.032 mg/kg/inj) and in combination with varying proportions of SNC80 (0.1:1, 0.3:1, and 0.9:1 SNC80/methadone) or of cocaine alone (0.032 mg/kg/inj) and in combination with varying proportions of SNC80 (0.33:1, 1:1, and 3:1 SNC80/ cocaine). Demand curves related drug intake to FR price, and measures of reinforcement were derived. Results Methadone and cocaine alone each functioned as a reinforcer. SNC80 did not alter measures of reinforcement for either methadone or cocaine. Conclusions SNC80 at proportions previously shown to enhance methadone-induced antinociception did not enhance the abuse-related effects of methadone. These results support the proposition that delta agonists may selectively enhance mu agonist analgesic effects without enhancing mu agonist abuse liability. PMID:21369752

  4. Isothiocyanate-functionalized bifunctional chelates and fac-[MI(CO)3]+ (M = Re, 99mTc) complexes for targeting uPAR in prostate cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing strategies to rapidly incorporate the fac-[MI(CO)3]+ (M = Re, 99mTc) core into biological targeting vectors is a growing realm in radiopharmaceutical development. This work presents the preparation of a novel isothiocyanate-functionalized bifunctional chelate based on 2,2´-dipicolylamine ...

  5. Generation of the antioxidant yellow pigment derived from 4-methylthio-3-butenyl isothiocyanate in salted radish roots (takuan-zuke).

    PubMed

    Takahashi, Asaka; Yamada, Tsuyoshi; Uchiyama, Yohei; Hayashi, Satomi; Kumakura, Kei; Takahashi, Hitoe; Kimura, Norihisa; Matsuoka, Hiroki

    2015-01-01

    2-[3-(2-Thioxopyrrolidin-3-ylidene)methyl]-tryptophan (TPMT) is a yellow pigment of salted radish roots (takuan-zuke) derived from 4-methylthio-3-butenyl isothiocyanate (MTBITC), the pungent component of radish roots. Here, we prepared salted radish and analyzed the behavior of the yellow pigment and related substances in the dehydration process and long-term salting process. All salted radish samples turned yellow, and their b(*) values increased with time and temperature. The salted radish that was sun-dried and pickled at room temperature turned the brightest yellow, and the generation of TPMT was clearly confirmed. These results indicate that tissue shrinkage due to dehydration, salting temperature, and pH play important roles in the yellowing of takuan-zuke.

  6. Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate.

    PubMed

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell(®) system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT-FITC rapid dissociation as an intermediate phase.

  7. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate

    PubMed Central

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT–FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT–FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT–FITC rapid dissociation as an intermediate phase. PMID:25784800

  8. Fluorescein Isothiocyanate-Labeled Lectin Analysis of the Surface of the Nitrogen-Fixing Bacterium Azospirillum brasilense by Flow Cytometry

    PubMed Central

    Yagoda-Shagam, Janet; Barton, Larry L.; Reed, William P.; Chiovetti, Robert

    1988-01-01

    The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies. Images PMID:16347693

  9. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. PMID:26945724

  10. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  11. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases.

  12. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells.

    PubMed

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  13. 1,n-Rearrangement of allylic alcohols promoted by hot water: application to the synthesis of navenone B, a polyene natural product.

    PubMed

    Li, Pei-Fang; Wang, Heng-Lu; Qu, Jin

    2014-05-01

    It was reported for the first time that hot water as a mildly acidic catalyst efficiently promoted 1,n-rearrangement (n = 3, 5, 7, 9) of allylic alcohols. In some cases, the rearrangement reactions joined isolated C-C double or triple bonds to generate conjugated polyene or enyne structure motifs. We used the 1,3-rearrangement reaction of an allylic alcohol in hot water as part of an attractive new strategy for construction of the polyene natural product navenone B by iterative use of a Grignard reaction, a 1,3-rearrangement of the resulting allylic alcohol, and subsequent oxidation of the rearranged product. PMID:24716495

  14. beta2-Agonists at the Olympic Games.

    PubMed

    Fitch, Kenneth D

    2006-01-01

    The different approaches that the International Olympic Committee (IOC) had adopted to beta2-agonists and the implications for athletes are reviewed by a former Olympic team physician who later became a member of the Medical Commission of the IOC (IOC-MC). Steadily increasing knowledge of the effects of inhaled beta2-agonists on health, is concerned with the fact that oral beta2-agonists may be anabolic, and rapid increased use of inhaled beta2-agonists by elite athletes has contributed to the changes to the IOC rules. Since 2001, the necessity for athletes to meet IOC criteria (i.e., that they have asthma and/or exercise-induced asthma [EIA]) has resulted in improved management of athletes. The prevalence of beta2-agonist use by athletes mirrors the known prevalence of asthma symptoms in each country, although athletes in endurance events have the highest prevalence. The age-of-onset of asthma/EIA in elite winter athletes may be atypical. Of the 193 athletes at the 2006 Winter Olympics who met th IOC's criteria, only 32.1% had childhood asthma and 48.7% of athletes reported onset at age 20 yr or older. These findings lead to speculation that years of intense endurance training may be a causative factor in bronchial hyperreactivity. The distinction between oral (prohibited in sports) and inhaled salbutamol is possible, but athletes must be warned that excessive use of inhaled salbutamol can lead to urinary concentrations similar to those observed after oral administration. This article provides justification that athletes should provide evidence of asthma or EIA before being permitted to use inhaled beta2-agonists. PMID:17085798

  15. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments.

    PubMed

    Van Eylen, D; Oey, I; Hendrickx, M; Van Loey, A

    2007-03-21

    The Brassicaceae plant family contains high concentrations of glucosinolates, which can be hydrolyzed by myrosinase yielding products having an anticarcinogenic activity. The pressure and temperature stabilities of endogenous broccoli myrosinase, as well as of the synthetic isothiocyanates sulforaphane and phenylethyl isothiocyanate, were studied in broccoli juice on a kinetic basis. At atmospheric pressure, kinetics of thermal (45-60 degrees C) myrosinase inactivation could be described by a consecutive step model. In contrast, only one phase of myrosinase inactivation was observed at elevated pressure (100-600 MPa) combined with temperatures from 10 up to 60 degrees C, indicating inactivation according to first-order kinetics. An antagonistic effect of pressure (up to 200 MPa) on thermal inactivation (50 degrees C and above) of myrosinase was observed indicating that pressure retarded the thermal inactivation. The kinetic parameters of myrosinase inactivation were described as inactivation rate constants (k values), activation energy (Ea values), and activation volume (Va values). On the basis of the kinetic data, a mathematical model describing the pressure and temperature dependence of myrosinase inactivation rate constants was constructed. The stability of isothiocyanates was studied at atmospheric pressure in the temperature range from 60 to 90 degrees C and at elevated pressures in the combined pressure-temperature range from 600 to 800 MPa and from 30 to 60 degrees C. It was found that isothiocyanates were relatively thermolabile and pressure stable. The kinetics of HP/T isothiocyanate degradation could be adequately described by a first-order kinetic model. The obtained kinetic information can be used for process evaluation and optimization to increase the health effect of Brassicaceae.

  16. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes.

    PubMed

    Krautwald, Simon; Sarlah, David; Schafroth, Michael A; Carreira, Erick M

    2013-05-31

    An important challenge in asymmetric synthesis is the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. In the ideal case, where four products are possible, applying distinct catalysts to the same set of starting materials under identical conditions would in a single step afford any given stereoisomer. Herein, we describe the realization of this concept in a fully stereodivergent dual-catalytic synthesis of γ,δ-unsaturated aldehydes bearing vicinal quaternary/tertiary stereogenic centers. The reaction is enabled by chiral iridium and amine catalysts, which activate the allylic alcohol and aldehyde substrates, respectively. Each catalyst exerts high local stereocontrol irrespective of the other's inherent preference. PMID:23723229

  17. Cp-Ftmw Spectroscopy of a Claisen Rearrangement Precursor Allyl Phenyl Ether

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S., II; Frank, Derek S.; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.

    2016-06-01

    The pure rotational spectrum of a Claisen rearrangement precursor, allyl phenyl ether (APE), has been measured on a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer in the 8-14 GHz region. Rotational and centrifugal distortion constants for multiple conformations have been determined for the first time and will be discussed. This is the first study of a phenyl-containing ether where multiple conformers were experimentally observed all within their ground vibrational states. Quantum chemical calculations have been performed to isolate low energy geometries of APE and are implemented to aid in spectral assignment. Other structural parameters such as planar moments and inertial defects for the APE conformers are presented and compared to similar molecules for discussion.

  18. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    NASA Astrophysics Data System (ADS)

    Behenna, Douglas C.; Liu, Yiyang; Yurino, Taiga; Kim, Jimin; White, David E.; Virgil, Scott C.; Stoltz, Brian M.

    2012-02-01

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures.

  19. Mechanism of oxidation of allyl alcohol on a V-Mo oxide catalyst

    SciTech Connect

    Makarova, M.A.; Rozentuller, B.V.; Krylov, O.V.

    1989-01-01

    The kinetics of oxidation of allyl alcohol by oxygen on a V-Mo oxide catalyst have been studied in situ by EPR. It has been found that during the course of the reaction V ions within the bulk volume of the catalyst undergo redox conversions, V/sup 4+/ /yields/ V/sup 5+/. At elevated temperatures (213/degree/C) the process kinetics can be described very well in terms of an oxidation-reduction scheme which takes into account reactions occurring within the catalyst bulk, and that the rate of acrolein formation is linearly related to the concentration (V/sup 4+/) in the catalyst volume. At lower temperatures this relationship is disrupted, and the rate of acrolein formation is no longer dependent on the O/sub 2/ pressure. In order to account for these effects the authors have proposed a stepwise scheme, which incorporates an oxygen activation step.

  20. Transition metal-catalysed (4 + 3) cycloaddition reactions involving allyl cations.

    PubMed

    Fernández, Israel; Mascareñas, José Luis

    2012-01-28

    In this emerging area article, we focus on novel intramolecular transition metal catalysed (4 + 3)-cycloaddition reactions of allenedienes in which the allene acts as an allylic-cation surrogate. This process has emerged as a powerful tool for the construction not only of complex seven-membered rings containing compounds but also different types of useful molecular skeletons by the proper selection of the catalyst. The transformation proceeds with high chemo- and stereoselectivity mainly because it occurs through an exo-like concerted transition state which exhibits a clear in-plane aromatic character. Despite that, different reaction mechanisms (i.e. stepwise processes) are also possible depending on the nucleophilicity of the diene moiety.

  1. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes.

    PubMed

    Krautwald, Simon; Sarlah, David; Schafroth, Michael A; Carreira, Erick M

    2013-05-31

    An important challenge in asymmetric synthesis is the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. In the ideal case, where four products are possible, applying distinct catalysts to the same set of starting materials under identical conditions would in a single step afford any given stereoisomer. Herein, we describe the realization of this concept in a fully stereodivergent dual-catalytic synthesis of γ,δ-unsaturated aldehydes bearing vicinal quaternary/tertiary stereogenic centers. The reaction is enabled by chiral iridium and amine catalysts, which activate the allylic alcohol and aldehyde substrates, respectively. Each catalyst exerts high local stereocontrol irrespective of the other's inherent preference.

  2. Catalytic asymmetric carbon-carbon bond formation via allylic alkylations with organolithium compounds

    NASA Astrophysics Data System (ADS)

    Pérez, Manuel; Fañanás-Mastral, Martín; Bos, Pieter H.; Rudolph, Alena; Harutyunyan, Syuzanna R.; Feringa, Ben L.

    2011-05-01

    Carbon-carbon bond formation is the basis for the biogenesis of nature's essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C-C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C-C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon-carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

  3. Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

    NASA Astrophysics Data System (ADS)

    Thorman, Rachel M.; Bjornsson, Ragnar; Ingólfsson, Oddur

    2016-08-01

    Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds.

  4. Theoretical study on the gas phase reaction of allyl chloride with hydroxyl radical.

    PubMed

    Zhang, Yunju; Chao, Kai; Sun, Jingyu; Zhang, Wanqiao; Shi, Haijie; Yao, Cen; Su, Zhongmin; Pan, Xiumei; Zhang, Jingping; Wang, Rongshun

    2014-02-28

    The reaction of allyl chloride with the hydroxyl radical has been investigated on a sound theoretical basis. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for important pathways in detail. The reaction mechanism confirms that OH addition to the C=C double bond forms the chemically activated adducts, IM1 (CH2CHOHCH2Cl) and IM2 (CH2OHCHCH2Cl) via low barriers, and direct H-abstraction paths may also occur. Variational transition state model and multichannel RRKM theory are employed to calculate the temperature-, pressure-dependent rate constants. The calculated rate constants are in good agreement with the experimental data. At 100 Torr with He as bath gas, IM6 formed by collisional stabilization is the major products in the temperature range 200-600 K; the production of CH2CHCHCl via hydrogen abstractions becomes dominant at high temperatures (600-3000 K). PMID:24588171

  5. Divergent C—H Insertion–Cyclization Cascades of N‐Allyl Ynamides

    PubMed Central

    Adcock, Holly V.; Chatzopoulou, Elli

    2015-01-01

    Abstract Gold carbene reactivity patterns were accessed by ynamide insertion into a C(sp3)—H bond. A substantial increase in molecular complexity occurred through the cascade polycyclization of N‐allyl ynamides to form fused nitrogen‐heterocycle scaffolds. Exquisite selectivity was observed despite several competing pathways in an efficient gold‐catalyzed synthesis of densely functionalized C(sp3)‐rich polycycles and a copper‐catalyzed synthesis of fused pyridine derivatives. The respective gold–keteniminium and ketenimine activation pathways have been explored through a structure–reactivity study, and isotopic labeling identified turnover‐limiting C—H bond‐cleavage in both processes. PMID:26515958

  6. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  7. Copper-catalyzed oxidative dehydrogenative carboxylation of unactivated alkanes to allylic esters via alkenes.

    PubMed

    Tran, Ba L; Driess, Matthias; Hartwig, John F

    2014-12-10

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV-vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C-H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C-H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper-carboxylate, copper-amidate, and copper-imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)-amidate > Cu(II)-imidate > Cu(II)-benzoate. Consistent with this trend, Cu(II)-amidates and Cu(II)-benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  8. Identification of Selective ERRγ Inverse Agonists.

    PubMed

    Kim, Jina; Im, Chun Young; Yoo, Eun Kyung; Ma, Min Jung; Kim, Sang-Bum; Hong, Eunmi; Chin, Jungwook; Hwang, Hayoung; Lee, Sungwoo; Kim, Nam Doo; Jeon, Jae-Han; Lee, In-Kyu; Jeon, Yong Hyun; Choi, Hueng-Sik; Kim, Seong Heon; Cho, Sung Jin

    2016-01-12

    GSK5182 (4) is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ) inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET) properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively). Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.

  9. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  10. Regio- and enantiospecific rhodium-catalyzed allylic etherification reactions using copper(I) alkoxides: influence of the copper halide salt on selectivity.

    PubMed

    Evans, P Andrew; Leahy, David K

    2002-07-10

    The transition metal-catalyzed allylic etherification represents a fundamentally important cross-coupling reaction for the construction of allylic ethers. We have developed a new regio- and enantiospecific rhodium-catalyzed allylic etherification of acyclic unsymmetrical allylic alcohol derivatives using copper(I) alkoxides derived from primary, secondary and tertiary alcohols. This study demonstrates that the choice of copper(I) halide salt is crucial for obtaining excellent regio- and enantiospecificity, providing another example of the effect of halide ions in asymmetric transition metal-catalyzed reactions. Finally, the ability to alter the reactivity of the alkali metal alkoxides in this manner may provide a useful method for related metal-catalyzed cross-coupling reactions involving heteroatoms.

  11. Acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis of terminal alkynes: scope, application, and mechanistic insights.

    PubMed

    Imahori, Tatsushi; Ojima, Hidetomo; Yoshimura, Yuichi; Takahata, Hiroki

    2008-01-01

    An interesting acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis has been found. Ring-closing enyne metathesis of terminal alkynes possessing an allylic hydroxy group proceeded smoothly without the ethylene atmosphere generally necessary to promote the reaction. The synthesis of (+)-isofagomine with the aid of this efficient reaction has been demonstrated. Mechanistic studies of the acceleration effect were also carried out. Results of NMR studies suggested that the reaction proceeded via an "ene-then-yne" pathway. Kinetic studies indicated switching of the rate-determining step as a consequence of the presence of an allylic hydroxy group. These results suggest acceleration of the reentry step of Ru-carbene species by the allylic hydroxy group.

  12. Domino cyclization-alkylation protocol for the synthesis of 2,3-functionalized indoles from o-alkynylanilines and allylic alcohols.

    PubMed

    Xu, Chang; Murugan, Vinod K; Pullarkat, Sumod A

    2012-05-21

    A practical and efficient protocol for the one-pot synthesis of 2,3-substituted indoles was developed via a palladacycle catalyzed domino cyclization-alkylation reaction involving 2-alkynylanilines and allylic alcohols under mild conditions without any additives.

  13. FXR agonist activity of conformationally constrained analogs of GW 4064

    SciTech Connect

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  14. FXR agonist activity of conformationally constrained analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  15. Secondary functionalization of allyl-terminated GaP(111)A surfaces via heck cross-coupling metathesis, hydrosilylation, and electrophilic addition of bromine.

    PubMed

    Peczonczyk, Sabrina L; Brown, Elizabeth S; Maldonado, Stephen

    2014-01-14

    The functionalization of single crystalline gallium phosphide (GaP) (111)A surfaces with allyl groups has been performed using a sequential chlorine-activation/Grignard reaction process. Increased hydrophobicity following reaction of a GaP(111)A surface with C3H5MgCl was observed through water contact angle measurements. Infrared spectra of GaP(111)A samples after reaction with C3H5MgCl showed the asymmetric C═C and C═C-H modes diagnostic of surface-attached allyl groups. The stability of allyl-terminated GaP(111)A surfaces under ambient and aqueous conditions was investigated. XP spectra of allyl-terminated GaP(111)A highlighted a significant resistance against interfacial oxidation both in air and in water relative to the native interface. Electrochemical impedance spectroscopy indicated a change in the flat-band potential of allyl-terminated GaP(111)A electrodes immersed in water relative to native GaP(111)A surfaces. Further, the flat-band potentials for allyl-terminated electrodes were insensitive to changes in solution pH. The utility of surface-bound allyl groups for covalent secondary functionalization of GaP(111)A interfaces was assessed through three separate reactions: Heck cross-coupling metathesis, hydrosilylation, and electrophilic addition of bromine reactions. Addition of aryl groups across the olefins on allyl-terminated GaP(111)A via Heck cross coupling was performed and confirmed through high-resolution F 1s and C 1s XP spectra and IR spectra. Control experiments with GaP(111)A surfaces functionalized with short alkanes indicated no evidence for metathesis. Hydrosilylation reactions were separately performed. Si 2s XP spectra, in conjunction with infrared spectra, similarly showed secondary evidence of surface functionalization for allyl-terminated GaP(111)A but not for CH3-terminated GaP(111)A surfaces. Similar analyses showed electrophilic addition of Br2 across the terminal olefin on an allyl-terminated GaP(111)A surface after exposure to

  16. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    PubMed

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data.

  17. Radical Cation/Radical Reactions: A Fourier Transform Ion Cyclotron Resonance Study of Allyl Radical Reacting with Aromatic Radical Cations

    PubMed Central

    Russell, Amber L.; Rohrs, Henry W.; Read, David; Giblin, Daryl E.; Gaspar, Peter P.; Gross, Michael L.

    2010-01-01

    A method for the study of reactions of open-shell neutrals (radicals) and radical cations is described. Pyrolysis (25–1500 °C) of thermally labile compounds, such as, 1,5-hexadiene via a Chen nozzle yields a seeded beam of reactive species in helium. The pyrolysis products are then analyzed by electron ionization (EI) or reacted with stored ions. Electron ionization of the pyrolysis products of 1,5-hexadiene shows that both the allyl radical and allene are generated. Reactions of benzene radical cations and the pyrolysis products of 1,5-hexadiene result in carbon-carbon bond formation. Those reactions of allyl radical with the benzene radical cation yield the C7H7+ ion of m/z 91, permitting an unusual entry into arenium ions. The reaction of allene with benzene radical cation in contrast yields C9H10+. and C9H9+. PMID:20401179

  18. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

    PubMed Central

    Silveira-Dorta, Gastón; Álvarez-Méndez, Sergio J; Martín, Víctor S

    2016-01-01

    Summary An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction–olefination process. The sequential reduction with DIBAL-H at −78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner–Wadsworth–Emmons organophosphorus reagents. A better Z-(dia)stereoselectivity was observed when compared to the previous one-pot method. The (dia)stereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives. PMID:27340486

  19. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters.

    PubMed

    Silveira-Dorta, Gastón; Álvarez-Méndez, Sergio J; Martín, Víctor S; Padrón, José M

    2016-01-01

    An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction-olefination process. The sequential reduction with DIBAL-H at -78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner-Wadsworth-Emmons organophosphorus reagents. A better Z-(dia)stereoselectivity was observed when compared to the previous one-pot method. The (dia)stereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives. PMID:27340486

  20. The pure rotational spectrum of a Claisen rearrangement precursor Allyl Phenyl Ether using CP-FTMW spectroscopy

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S.; Frank, Derek S.; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.

    2016-06-01

    The pure rotational spectrum of a Claisen rearrangement precursor, Allyl Phenyl Ether (APE), has been measured on a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer in the 8-14 GHz region. Rotational and centrifugal distortion constants for multiple conformations have been determined and are reported for the first time. This is the first study of a phenyl-containing ether where multiple conformers were experimentally observed all within their ground vibrational states. Quantum chemical calculations have been performed to isolate low energy geometries of APE and are implemented to aid in spectral assignment. Other structural parameters such as planar moments and inertial defects for the Allyl Phenyl Ether conformers are presented and compared to similar molecules.

  1. Synthesis of chiral biphenol-based diphosphonite ligands and their application in palladium-catalyzed intermolecular asymmetric allylic amination reactions.

    PubMed

    Shi, Ce; Chien, Chih-Wei; Ojima, Iwao

    2011-02-01

    A library of new 2,2'-bis(diphenylphosphinoyloxy)-1,1'-binaphthyl (binapo)-type chiral diphosphonite ligands was designed and synthesized based on chiral 3,3',5,5',6,6'-hexasubstituted biphenols. These bop ligands have exhibited excellent efficiency in a palladium-catalyzed intermolecular allylic amination reaction, which provides a key intermediate for the total synthesis of Strychnos indole alkaloids with enantiopurities of up to 96% ee. PMID:21254441

  2. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  3. Highly enantioselective Simmons-Smith fluorocyclopropanation of allylic alcohols via the halogen scrambling strategy of zinc carbenoids.

    PubMed

    Beaulieu, Louis-Philippe B; Schneider, Jakob F; Charette, André B

    2013-05-29

    Highly enantio- and diastereoenriched monofluorocyclopropanes were accessed via the Simmons-Smith fluorocyclopropanation of allylic alcohols using difluoroiodomethane and ethylzinc iodide as the substituted carbenoid precursors. The scrambling of halogens at the zinc carbenoid led to the formation of the fluorocyclopropanating agent (fluoroiodomethyl)zinc(II) fluoride. This strategy circumvented the ongoing limitation in Simmons-Smith fluorocyclopropanations relying on the use of the relatively inaccessible and expensive carbenoid precursor fluorodiiodomethane.

  4. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  5. Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX5-[3,3] Rearrangement

    PubMed Central

    Fleming, Fraser F.; Ravikumar, P. C.; Yao, Lihua

    2009-01-01

    Sequential addition of vinylmagnesium bromide and NbCl5, or NbBr5, to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide. PMID:20046989

  6. Kumada-Tamao-Corriu coupling of heteroaromatic chlorides and aryl ethers catalyzed by (IPr)Ni(allyl)Cl.

    PubMed

    Iglesias, María José; Prieto, Auxiliadora; Nicasio, M Carmen

    2012-09-01

    The complex (IPr)Ni(allyl)Cl (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolidene) catalyzes the cross-coupling reactions of heteroaromatic chlorides with aryl Grignard reagents. Catalyst loadings as low as 0.1 mol % have been used to afford the products in excellent yields. This nickel-based catalytic system also promotes the activation of the C(Ar)-O bond of anisoles in the Kumada-Tamao-Corriu reaction under fairly mild conditions.

  7. Rh(III)-catalyzed dehydrogenative alkylation of (hetero)arenes with allylic alcohols, allowing aldol condensation to indenes.

    PubMed

    Shi, Zhuangzhi; Boultadakis-Arapinis, Mélissa; Glorius, Frank

    2013-07-25

    Efficient Rh(III)-catalyzed C-H activation of different classes of (hetero)arenes such as 2-phenylpyridine, indoles, aryl ketones and acetanilide and their dehydrogenative cross-coupling with allylic alcohols are described. Several important skeletons such as β-aryl aldehydes and ketones, 2-acetylindenes, 3,4-dihydro-1H-quinolin-2-one and quinoline could be produced using this protocol. PMID:23765402

  8. Dual Catalysis Using Boronic Acid and Chiral Amine: Acyclic Quaternary Carbons via Enantioselective Alkylation of Branched Aldehydes with Allylic Alcohols.

    PubMed

    Mo, Xiaobin; Hall, Dennis G

    2016-08-31

    A ferrocenium boronic acid salt activates allylic alcohols to generate transient carbocations that react with in situ-generated chiral enamines from branched aldehydes. The optimized conditions afford the desired acyclic products embedding a methyl-aryl quaternary carbon center with up to 90% yield and 97:3 enantiomeric ratio, with only water as the byproduct. This noble-metal-free method complements alternative methods that are incompatible with carbon-halogen bonds and other sensitive functional groups. PMID:27518200

  9. Mechanisms of Nrf2/Keap1-Dependent Phase II Cytoprotective and Detoxifying Gene Expression and Potential Cellular Targets of Chemopreventive Isothiocyanates

    PubMed Central

    Das, Biswa Nath; Kim, Young-Woo

    2013-01-01

    Isothiocyanates (ITCs) are abundantly found in cruciferous vegetables. Epidemiological studies suggest that chronic consumption of cruciferous vegetables can lower the overall risk of cancer. Natural ITCs are key chemopreventive ingredients of cruciferous vegetables, and one of the prime chemopreventive mechanisms of natural isothiocyanates is the induction of Nrf2/ARE-dependent gene expression that plays a critical role in cellular defense against electrophiles and reactive oxygen species. In the present review, we first discuss the underlying mechanisms how natural ITCs affect the intracellular signaling kinase cascades to regulate the Keap1/Nrf2 activities, thereby inducing phase II cytoprotective and detoxifying enzymes. We also discuss the potential cellular protein targets to which natural ITCs are directly conjugated and how these events aid in the chemopreventive effects of natural ITCs. Finally, we discuss the posttranslational modifications of Keap1 and nucleocytoplasmic trafficking of Nrf2 in response to electrophiles and oxidants. PMID:23781297

  10. Recent advances in the discovery of alpha1-adrenoceptor agonists.

    PubMed

    Bishop, Michael J

    2007-01-01

    The alpha(1) adrenoceptors are three of nine well-characterized receptors that are activated by epinephrine and norepinephrine. Agonists acting at the alpha(1) adrenoceptors produce numerous physiological effects, and are used therapeutically for several indications. Many known alpha(1) adrenoceptor agonists are alpha(1A) selective, but the discovery of highly selective alpha(1B) and alpha(1D) adrenoceptor agonists has proven to be an extremely difficult goal to achieve. This review will focus on recent advances in the discovery, development and clinical utility of subtype-specific alpha(1) agonists as well as contributions to our understanding of agonist-receptor interactions.

  11. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; Chen, Di; Li, Hao; Liu, Qing -Rong; Ding, Chang -Hua; Chen, Bo; Hou, Xue -Long

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanistic studiesmore » by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  12. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  13. Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins

    PubMed Central

    2013-01-01

    Cross-metathesis (CM) has recently emerged as a viable strategy for protein modification. Here, efficient protein CM has been demonstrated through biomimetic chemical access to Se-allyl-selenocysteine (Seac), a metathesis-reactive amino acid substrate, via dehydroalanine. On-protein reaction kinetics reveal a rapid reaction with rate constants of Seac-mediated-CM comparable or superior to off-protein rates of many current bioconjugations. This use of Se-relayed Seac CM on proteins has now enabled reactions with substrates (allyl GlcNAc, N-allyl acetamide) that were previously not possible for the corresponding sulfur analogue. This CM strategy was applied to histone proteins to install a mimic of acetylated lysine (KAc, an epigenetic marker). The resulting synthetic H3 was successfully recognized by antibody that binds natural H3-K9Ac. Moreover, Cope-type selenoxide elimination allowed this putative marker (and function) to be chemically expunged, regenerating an H3 that can be rewritten to complete a chemically enabled “write (CM)–erase (ox)–rewrite (CM)” cycle. PMID:23889088

  14. Directed Growth of Polymer Nanorods Using Surface-Initiated Ring-Opening Polymerization of N-Allyl N-Carboxyanhydride.

    PubMed

    Lu, Lu; Lahasky, Samuel H; Zhang, Donghui; Garno, Jayne C

    2016-02-17

    A stepwise chemistry route was used to prepare arrays of polymer nanostructures of poly(N-allyl glycine) on Si(111) using particle lithography. The nanostructures were used for studying surface reactions with advanced measurements of atomic force microscopy (AFM). In the first step to fabricate the surface platform, isolated nanopores were prepared within a thin film of octadecyltrichlorosilane (OTS). The OTS served as a surface resist, and the areas of nanopores provided multiple, regularly shaped sites for further reaction. An initiator, (3-aminopropyl)triethoxysilane (APTES), was grown selectively inside the nanopores to define sites for polymerization. The initiator attached selectively to the sites of nanopores indicating OTS prevented nonspecific adsorption. Surface-initiated ring-opening polymerization of N-allyl N-carboxyanhydride with APTES produced polymer nanorods on the nanodots of APTES presenting amine functional groups. The surface changes for each step were monitored using high resolution atomic force microscopy (AFM). Slight variations in the height of the poly(N-allyl glycine) nanorods were observed which scale correspondingly to the initial dimensions of nanopores. The distance between adjacent polymer nanorods was controlled by the size of mesoparticle masks used in the experiment. This surface platform has potential application in biotechnology for smart coatings or biosensors. PMID:26789943

  15. Increased agonist affinity at the mu-opioid receptor induced by prolonged agonist exposure

    PubMed Central

    Birdsong, William T.; Arttamangkul, Seksiri; Clark, Mary J.; Cheng, Kejun; Rice, Kenner C.; Traynor, John R.; Williams, John T.

    2013-01-01

    Prolonged exposure to high-efficacy agonists results in desensitization of the mu opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling, however the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased following prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa 594, was unaffected by similar agonist pre-treatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knockout animals increased following treatment of the cells with the desensitization protocol. Thus, opioid receptors were “imprinted” with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long lasting but reversible conformational change in the receptor. PMID:23447620

  16. Triflic acid-promoted cycloisomerization of 2-alkynylphenyl isothiocyanates and isocyanates: a novel synthetic method for a variety of indole derivatives.

    PubMed

    Saito, Takao; Sonoki, Yoshihiko; Otani, Takashi; Kutsumura, Noriki

    2014-11-14

    A new approach towards the synthesis of indole derivatives via triflic acid-promoted cycloisomerization with rearrangement of 2-(alkyn-1-yl)phenyl isothiocyanates and 2-(alkyn-1-yl)phenyl isocyanates has been achieved. By this methodology, structurally diverse types of indole derivatives such as thieno- and furo-indoles, spiro-indolethiones, spiro-oxindoles, and 3-alkylidene-oxindoles were synthesized.

  17. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  18. Targeting α-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury.

    PubMed

    Costantini, Todd W; Krzyzaniak, Michael; Cheadle, Gerald A; Putnam, James G; Hageny, Ann-Marie; Lopez, Nicole; Eliceiri, Brian P; Bansal, Vishal; Coimbra, Raul

    2012-08-01

    We have previously shown that vagal nerve stimulation prevents intestinal barrier loss in a model of severe burn injury in which injury was associated with decreased expression and altered localization of intestinal tight junction proteins. α-7 Nicotinic acetylcholine receptor (α-7 nAchR) has been shown to be necessary for the vagus nerve to modulate the systemic inflammatory response, but the role of α-7 nAchR in mediating gut protection remained unknown. We hypothesized that α-7 nAchR would be present in the gastrointestinal tract and that treatment with a pharmacological agonist of α-7 nAchR would protect against burn-induced gut barrier injury. The effects of a pharmacological cholinergic agonist on gut barrier integrity were studied using an intraperitoneal injection of nicotine 30 minutes after injury. Intestinal barrier integrity was examined by measuring permeability to 4-kDa fluorescein isothiocyanate-dextran and by examining changes in expression and localization of the intestinal tight junction proteins occludin and ZO-1. Nicotine injection after injury prevented burn-induced intestinal permeability and limited histological gut injury. Treatment with nicotine prevented decreased expression and altered localization of occludin and ZO-1, as seen in animals undergoing burn alone. Defining the interactions among the vagus nerve, the enteric nervous system, and the intestinal epithelium may lead to development of targeted therapeutics aimed at reducing gut barrier failure and intestinal inflammation after severe injury.

  19. Mitochondria-mediated apoptosis in human lung cancer A549 cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish seeds.

    PubMed

    Wang, Nan; Wang, Wei; Huo, Po; Liu, Cai-Qin; Jin, Jian-Chang; Shen, Lian-Qing

    2014-01-01

    4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a well- known anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (Δψm), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/ Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC. PMID:24716946

  20. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation

    PubMed Central

    Liu, Yuanyuan; Gao, Jing; Huang, Shuangsheng; Hu, Lamei; Wang, Zhiqiang; Wang, Zheyuan; Chen, Xiao; Zhang, Xiaoyu; Li, Wenguang

    2016-01-01

    Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies.

  1. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    PubMed Central

    Calmes, Benoit; N’Guyen, Guillaume; Dumur, Jérome; Brisach, Carlos A.; Campion, Claire; Iacomi, Béatrice; Pigné, Sandrine; Dias, Eva; Macherel, David; Guillemette, Thomas; Simoneau, Philippe

    2015-01-01

    Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola. PMID:26089832

  2. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson’s Disease

    PubMed Central

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases’ pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  3. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC.

    PubMed

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-12-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level.

  4. Characterization of some amino acid derivatives of benzoyl isothiocyanate: Crystal structures and theoretical prediction of their reactivity

    NASA Astrophysics Data System (ADS)

    Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.

    2015-11-01

    The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.

  5. Remote loading of diclofenac, insulin and fluorescein isothiocyanate labeled insulin into liposomes by pH and acetate gradient methods.

    PubMed

    Hwang, S H; Maitani, Y; Qi, X R; Takayama, K; Nagai, T

    1999-03-01

    Remote loading of the model drugs diclofenac, insulin and fluorescein isothiocyanate labeled insulin (FITC-insulin) into liposomes by formation of transmembrane gradients were examined. A trapping efficiency of almost 100% was obtained for liposomal diclofenac, by the calcium acetate gradient method, whereas liposomes prepared by the conventional reverse-phase evaporation vesicle method had 1-8% trapping efficiencies. Soybean-derived sterol was a better stabilizer of the dipalmitoylphosphatidylcholine bilayer membrane than cholesterol, as shown from trapping efficiencies and drug release. The pH gradient method resulted in a 5-50% of FITC-insulin liposomal trapping efficiency, while insulin could not be loaded by this method. Liposomes released calcein in response to insulin, showing insulin interacts with the liposomal membrane in the presence of a transmembrane gradient. The present work has demonstrated a remote loading method for weak acids such as diclofenac into liposomes by the acetate gradient method. From the result of remote loading of FITC-insulin into liposomes by the pH gradient method, this method may be available for the preparation of liposomal peptides.

  6. Gas-phase reaction of methyl isothiocyanate and methyl isocyanate with hydroxyl radicals under static relative rate conditions.

    PubMed

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2014-02-26

    Gaseous methyl isothiocyanate (MITC), the principal breakdown product of the soil fumigant metam sodium (sodium N-methyldithiocarbamate), is an inhalation exposure concern to persons living near treated areas. Inhalation exposure also involves gaseous methyl isocyanate (MIC), a highly reactive and toxic transformation product of MITC. In this work, gas-phase hydroxyl (OH) radical reaction rate constants of MITC and MIC have been determined using a static relative rate technique under controlled laboratory conditions. The rate constants obtained are 15.36 × 10(-12) cm(3) molecule(-1) s(-1) for MITC and 3.62 × 10(-12) cm(3) molecule(-1) s(-1) for MIC. The average half-lives of MITC and MIC in the atmosphere are estimated to be 15.7 and 66.5 h, respectively. The molar conversion of MITC to MIC for OH radical reactions is 67% ± 8%, which indicates that MIC is the primary product of the MITC-OH reaction in the gas phase.

  7. Lack of Impact of High Dietary Vitamin A on T Helper 2-Dependent Contact Hypersensitivity to Fluorescein Isothiocyanate in Mice.

    PubMed

    Kobayashi, Chie; Kurohane, Kohta; Imai, Yasuyuki

    2015-01-01

    Overuse of vitamin A as a dietary supplement is a concern in industrialized countries. High-level dietary vitamin A is thought to shift immunity to a T helper 2 (Th2)-dominant one, resulting in the promotion of allergies. We have been studying a fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse model that involves Th2-type immunity. We fed a diet with a high retinyl palmitate content (250 international units (IU)/g diet) or a control diet (4 IU/g diet) to BALB/c mice for three weeks. No augmentation of FITC-induced CHS was found in mice fed the diet with a high vitamin A content, although accumulation of the vitamin was confirmed in the livers of these animals. The results indicated that relatively short-term feeding of the high-level vitamin A diet did not influence the Th2-driven response at a stage with significant retinol accumulation in the liver. The results were in contrast to the high-dose pyridoxine diets that produced a reduced response in FITC-induced CHS. PMID:26299258

  8. Antiproliferative activity of the dietary isothiocyanate erucin, a bioactive compound from cruciferous vegetables, on human prostate cancer cells.

    PubMed

    Melchini, Antonietta; Traka, Maria H; Catania, Stefania; Miceli, Natalizia; Taviano, Maria Fernanda; Maimone, Patrizia; Francisco, Marta; Mithen, Richard F; Costa, Chiara

    2013-01-01

    It is becoming increasingly clear that many dietary agents, such as isothiocyanates (ITCs) from cruciferous vegetables, can retard or prevent the process of prostate carcinogenesis. Erucin (ER) is a dietary ITC, which has been recently considered a promising cancer chemopreventive phytochemical. The potential protective activity of ER against prostate cancer was investigated using prostate adenocarcinoma cells (PC3), to analyze its effects on pathways involved in cell growth regulation, such as the cyclin-dependent kinase (CDKs) inhibitor p21(WAF1/CIP1) (p21), phosphatidylinositol-3 kinase/AKT, and extracellular signal-regulated kinases (ERK)1/2 signaling pathways. We have shown for the first time that ER increases significantly p21 protein expression and ERK1/2 phosphorylation in a dose-dependent manner to inhibit PC3 cell proliferation (P ≤ 0.01). Compared to the structurally related sulforaphane, a well-studied broccoli-derived ITC, ER showed lower potency in inhibiting proliferation of PC3 cells, as well as in modulating p21 and pERK1/2 protein levels. Neither of the naturally occurring ITCs was able to affect significantly pAKT protein levels in prostate cells at all concentrations tested (0-25 μM). It is clearly important for the translation of laboratory findings to clinical approaches to investigate in animal and cell studies the molecular mechanisms by which ITCs may exert health promoting effects.

  9. Formation of Thioxopyrrolidines and Dithiocarbamates from 4-Methylthio-3-butenyl Isothiocyanates, the Pungent Principle of Radish, in Aqueous Media.

    PubMed

    Matsuoka, H; Toda, Y; Yanagi, K; Takahashi, A; Yoneyama, K; Uda, Y

    1997-01-01

    Reaction products of 4-methylthio-3-butenyl isothiocyanate (MTBI), the radish pungent principle, in aqueous media were identified and their antimicrobial activities were examined. A rapid degradation of MTBI in aqueous media afforded a mixture of 3-(hydroxy)methylene-2-thioxopyrrolidine (1), (Z)-3-(methylthio)-methylene-2-thioxopyrrolidine (2), its (E)-isomer (3), methyl 4-methylthiobutyldithiocarbamate (4), methyl (Z)-4-methylthio-3-butenyldithiocarbarnaie (5), and its (E)-isomer (6). The products 1, 2, and 3 were detected at all pHs examined, while 4, 5, and 6 were formed at pH over 6.0. The formation of 4 from 6 was accompanied by an oxidation of methanethiol released from MTBI in aqueous media. Antimicrobial activities of 2 and 3 against all microbes examined were much lower than that of 1, which had MICs ranging from 50 to 400 μg/ml. As for 4, 5, and 6, antifungal activities were comparable to that of 1, but little antibacterial activities were observed. The antimicrobial activities of the six products were considered to be far lower than that of MTBI.

  10. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson's Disease.

    PubMed

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases' pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  11. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation

    PubMed Central

    Liu, Yuanyuan; Gao, Jing; Huang, Shuangsheng; Hu, Lamei; Wang, Zhiqiang; Wang, Zheyuan; Chen, Xiao; Zhang, Xiaoyu; Li, Wenguang

    2016-01-01

    Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies. PMID:27698866

  12. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1

    PubMed Central

    Li, Qiwei; Zhan, Ming; Chen, Wei; Zhao, Benpeng; Yang, Kai; Yang, Jie; Yi, Jing; Huang, Qihong; Mohan, Man; Hou, Zhaoyuan; Wang, Jian

    2016-01-01

    Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients. PMID:26848531

  13. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC

    PubMed Central

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-01-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level. PMID:25256442

  14. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. PMID:25257035

  15. Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages.

    PubMed

    Rose, Peter; Won, Yen Kim; Ong, Choon Nam; Whiteman, Matt

    2005-06-01

    Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.

  16. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. PMID:26832440

  17. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  18. Agonists of Toll-like receptor 9 containing synthetic dinucleotide motifs.

    PubMed

    Yu, Dong; Putta, Mallikarjuna R; Bhagat, Lakshmi; Li, Yukui; Zhu, Fugang; Wang, Daqing; Tang, Jimmy X; Kandimalla, Ekambar R; Agrawal, Sudhir

    2007-12-13

    Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate Toll-like receptor 9 (TLR9). Our previous studies have shown that ODNs containing two 5'-ends are more immunostimulatory than those with one 5'-end. In the present study, to understand the role of functional groups in TLR9 recognition and subsequent immune response, we substituted C or G of a CpG dinucleotide with 5-OH-dC, 5-propyne-dC, furano-dT, 1-(2'-deoxy-beta- d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, dF, 4-thio-dU, N(3)-Me-dC, N (4)-Et-dC, Psi-iso-dC, and arabinoC or 7-deaza-dG, 7-deaza-8-aza-dG, 9-deaza-dG, N(1)-Me-dG, N(2)-Me-dG, 6-Thio-dG, dI, 8-OMe-dG, 8-O-allyl-dG, and arabinoG in ODN containing two 5'-ends. Agonists of TLR9 containing cytosine or guanine modification showed activity in HEK293 cells expressing TLR9, mouse spleen, and human cell-based assays and in vivo in mice. The results presented here provide insight into which specific chemical modifications at C or G of the CpG motif are recognized by TLR9 and the ability to modulate immune responses substituting natural C or G in immune modulatory oligonucleotides. PMID:17988082

  19. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  20. Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.

    PubMed

    Carlsen, Ryan W; Ess, Daniel H

    2016-06-14

    Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row. PMID:26893287

  1. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update.

    PubMed

    Colín-González, Ana Laura; Ali, Syed F; Túnez, Isaac; Santamaría, Abel

    2015-10-01

    Therapeutic approaches based on isolated compounds obtained from natural products to handle central and peripheral disorders involving oxidative stress and inflammation are more common nowadays. The validation of nutraceutics vs. pharmaceutics as tools to induce preventive and protective profiles in human health alterations is still far of complete acceptance, but the basis to start more solid experimental and clinical protocols with natural products has already begun. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound exhibiting a considerable number of positive actions in cell models and living systems. An update, in the form of review, is needed from time to time to get access to the state-of-the-art on this topic. In this review we visited recent and refreshing evidence of new already proven and potential targets to explain the benefits of using SAC against toxic and pathological conditions. The broad spectrum of protective actions covered by this molecule comprises antioxidant, redox modulatory and anti-inflammatory activities, accompanied by anti-apoptotic, pro-energetic and signaling capacities. Herein, we detail the evidence on these aspects to provide the reader a more complete overview on the promising aspects of SAC in research. PMID:26122973

  2. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update.

    PubMed

    Colín-González, Ana Laura; Ali, Syed F; Túnez, Isaac; Santamaría, Abel

    2015-10-01

    Therapeutic approaches based on isolated compounds obtained from natural products to handle central and peripheral disorders involving oxidative stress and inflammation are more common nowadays. The validation of nutraceutics vs. pharmaceutics as tools to induce preventive and protective profiles in human health alterations is still far of complete acceptance, but the basis to start more solid experimental and clinical protocols with natural products has already begun. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound exhibiting a considerable number of positive actions in cell models and living systems. An update, in the form of review, is needed from time to time to get access to the state-of-the-art on this topic. In this review we visited recent and refreshing evidence of new already proven and potential targets to explain the benefits of using SAC against toxic and pathological conditions. The broad spectrum of protective actions covered by this molecule comprises antioxidant, redox modulatory and anti-inflammatory activities, accompanied by anti-apoptotic, pro-energetic and signaling capacities. Herein, we detail the evidence on these aspects to provide the reader a more complete overview on the promising aspects of SAC in research.

  3. Protective effect of allyl methyl disulfide on acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Zhang, Yongchun; Zhang, Fang; Wang, Kaiming; Liu, Guangpu; Yang, Min; Luan, Yuxia; Zhao, Zhongxi

    2016-04-01

    Multiple sulfur compounds of garlic have shown versatile medicinal activities in the prevention and treatment of various diseases. Allyl methyl disulfide (AMDS) was identified as one of the bioactive components in fresh garlic paste in our previous study. The purpose of this study was to investigate the hepatoprotective effect of AMDS against acetaminophen (APAP)-induced acute liver damage in mice. Results reveal that AMDS significantly alleviates APAP-induced elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels in mice. Furthermore, AMDS significantly (p < 0.05) reduced the maleic dialdehyde (MDA) level in liver tissues and restored the activities of antioxidant enzymes SOD, GSH-PX and GSH towards normal levels. IL-6 and TNF-alpha (TNF-α) levels in the serum and liver were clearly increased by acetaminophen-damage (p < 0.05) and AMDS intake significantly suppressed acetaminophen-induced increase of the two cytokines (p < 0.05). The immunohistochemical and pathological analyses showed that AMDS could ameliorate the liver injury through the strong attenuation of the CD45 expression and HNE formation. All the results indicate that AMDS had the ability to protect hepatocytes from APAP-induced liver damage.

  4. Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

    NASA Astrophysics Data System (ADS)

    Thorman, Rachel M.; Bjornsson, Ragnar; Ingólfsson, Oddur

    2016-08-01

    Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  5. The effects of allyl isovalerate on the hematopoietic and immunologic systems in rodents.

    PubMed

    Hong, H L; Huff, J E; Luster, M I; Maronpot, R R; Dieter, M P; Hayes, H T; Boorman, G A

    1988-05-01

    Female B6C3F1 mice plus male and female Fischer 344/N rats were gavaged with allyl isovalerate (AIV) in corn oil at 0, 31, 62, or 125 (mice) and 0, 31, 62, 125, or 250 (rats) mg/kg body weight for five daily exposures per week for a 2-week period. Hematologic, immunologic, and histopathologic studies were performed 48 to 72 hr following the final treatment. AIV exposure had no effect on hematology or bone marrow cellularity in mice or rats. AIV exposure at 250 mg/kg was toxic to rats causing reduced weight gain and hepatotoxicity. In vivo and in vitro studies revealed that pluripotent hematopoietic stem cells (CFU-S) and granulocyte-macrophage progenitors (CFU-GM) in the bone marrow were decreased in the treated mice. Hematopoietic suppression was correlated with the reduction in the hexose monophosphate shunt metabolism of bone marrow cells but the Embden-Meyerhof pathway and tricarboxylic acid pathway enzymes did not appear to be affected. Examination of host resistance following Plasmodium and Listeria challenge did not demonstrate significant differences between treated and control mice, nor were there other effects on the immune system. This suggests that the myelotoxic effects were minimal and of a degree that would not alter host resistance.

  6. Crystal structure of allyl­ammonium hydrogen succinate at 100 K

    PubMed Central

    Dziuk, Błażej; Zarychta, Bartosz; Ejsmont, Krzysztof

    2014-01-01

    The asymmetric unit of the title compound, C2H8N+·C4H5O4 −, consists of two allyl­ammonium cations and two hydrogen succinate anions (Z′ = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N—C—C—C torsion angle of 0.4 (3)°, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C–CH2–CH2–C group [dihedral angles = 24.4 (2), 31.2 (2) and 40.4 (2)°], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2)°. In the crystal, there are two very short, near linear O—H⋯O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O⋯O midpoint. These O—H⋯O hydrogen bonds form helical chains along the [011] which are further linked to each other through N—H⋯O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100). PMID:25309251

  7. Antibacterial activity of starch/acrylamide/allyl triphenyl phosphonium bromide copolymers synthesized by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Song, Weiqiang; Guo, Zhengchao; Zhang, Linqi; Zheng, Hongjuan; Zhao, Zhiwei

    2013-10-01

    Starch/acrylamide/allyl triphenyl phosphonium bromide (St/AM/TP) copolymers were synthesized by simultaneous gamma irradiation and characterized by FTIR and 1H NMR techniques, weight measurement and titration method. Moreover, their antibacterial activities against Staphylococcus aureus were explored by the viable cell counting method in sterile distilled water. At St/AM/TP 6:8.4:5.6 g, copolymers with higher graft ratio (G) and higher (AM+TP) graft efficiency (EAM+TP) were obtained at 3 and 6 kGy, while cationic degree (CD) and TP graft efficiency (ETP) continuously increased with absorbed dose from 1 to 6 kGy. All of the copolymers were capable of killing >99.75% of 107 CFU/ml S. aureus within 30 mins. Moreover, at 3 kGy, G, EAM+TP and ETP increased with AM/TP from 0:14 to 11.2:2.8 g at St/(AM+TP) 6:14 g, while the optimum CD and antibacterial activity were achieved at AM/TP 7:7 and 8.4:5.6 g. In addition, at 3 kGy, G, EAM+TP and CD increased with St/(AM+TP) from 6:3 to 6:18 g at AM/TP 8.4:5.6 g, while the optimum antibacterial activity was achieved at 6:10 to 6:18 g, and the optimum ETP was achieved at 6:14.

  8. Theoretical study on the gas phase reaction of allyl alcohol with hydroxyl radical.

    PubMed

    Zhang, Yunju; Chao, Kai; Sun, Jingyu; Su, Zhongmin; Pan, Xiumei; Zhang, Jingping; Wang, Rongshun

    2013-08-01

    The complex potential energy surface of allyl alcohol (CH2CHCH2OH) with hydroxyl radical (OH) has been investigated at the G3(MP2)//MP2/6-311++G(d,p) level. On the surface, two kinds of pathways are revealed, namely, direct hydrogen abstraction and addition/elimination. Rice-Ramsperger-Kassel-Marcus theory and transition state theory are carried out to calculate the total and individual rate constants over a wide temperature and pressure region with tunneling correction. It is predicted that CH2CHOHCH2OH (IM1) formed by collisional stabilization is dominate in the temperature range (200-440 K) at atmospheric pressure with N2 (200-315 K at 10 Torr Ar and 100 Torr He). The production of CH2CHCHOH + H2O via direct hydrogen abstraction becomes dominate at higher temperature. The kinetic isotope effect (KIE) has also been calculated for the title reaction. Moreover, the calculated rate constants and KIE are in good agreement with the experimental data.

  9. Novel palladium complex-catalyzed reaction of magnesium amides with allylic electrophiles

    SciTech Connect

    Dzhemilev, U.M.; Ibragimov, A.G.; Minsker, D.L.; Muslukhov, R.R.

    1987-08-20

    In order to develop an efficient method for the synthesis of higher order unsaturated tertiary amines, and also to explore a new method for the formation of C-N bonds, they have investigated the transition metal complex-catalyzed reaction of magnesium amides with electrophiles; the electrophiles selected for study included allyl ethers and esters, as well as sulfones, sulfides and quaternized allylamines. The effects of the nature and structure of the catalyst components, as well as of the reaction conditions, on product yield were examined in the case of the reaction of diethyl (bromomagnesium)amine with diallyl ether, and revealed that the highest yield of diethylallyl-amine (I) was achieved using Pd(acac)/sub 2/ (3-5 mole %) and Ph/sub 3/P (1:2) as catalyst in THF solution at 50/sup 0/C for 5 h. Other transition metal (Ni, Fe, Zr, Ti, Cu) compounds were also examined as catalysts, but the yield of (I) did not exceed 15% with these compounds. Bimetallic catalysts based on Zr (Cp/sub 2/ZrCl, Py/sub 2/ZrCl/sub 6/, (RO)/sub 4/Zr) and Ni (Ni(acac)/sub 2/ and NiCl/sub 2/) were successful in forming (I) from diethyl (bromomagnesium)amine and diallyl ether in 60% yield.

  10. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  11. Phenethyl isothiocyanate suppresses EGF-stimulated SAS human oral squamous carcinoma cell invasion by targeting EGF receptor signaling.

    PubMed

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Amagaya, Sakae; Lin, Yung-Chang; Yang, Jai-Sing

    2013-08-01

    Phenethyl isothiocyanate (PEITC) is a natural compound that is involved in chemoprevention as well as inhibition of cell growth and induction of apoptosis in several types of cancer cells. Previous studies have revealed that PEITC suppresses the invasion of AGS gastric and HT-29 colorectal cancer cells. However, the effects of PEITC on the metastasis of SAS oral cancer cells remain to be determined. Our results showed that PEITC treatment inhibited the invasion of EGF-stimulated SAS cells in a concentration-dependent manner, but appeared not to affect the cell viability. The expression and enzymatic activities of matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) were suppressed by PEITC. Concomitantly, we observed an increase in the protein expression of both tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in treated cells. Furthermore, PEITC treatments decreased the protein phosphorylation of epidermal growth factor receptor (EGFR) and downstream signaling proteins including PDK1, PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate NF-κB for the suppression of MMP-2 and MMP-9 expression. In addition, PEITC can trigger the MAPK signaling pathway through the increase in phosphorylated p38, JNK and ERK in treated cells. Our data indicate that PEITC is able to inhibit the invasion of EGF-stimulated SAS oral cancer cells by targeting EGFR and its downstream signaling molecules and finally lead to the reduced expression and enzymatic activities of both MMP-2 and MMP-9. These results suggest that PEITC is promising for the therapy of oral cancer metastasis.

  12. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.

    PubMed

    Müller, Caroline; van Loon, Joop; Ruschioni, Sara; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-10-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate

  13. Inhibition of mitochondrial fusion is an early and critical event in breast cancer cell apoptosis by dietary chemopreventative benzyl isothiocyanate.

    PubMed

    Sehrawat, Anuradha; Croix, Claudette St; Baty, Catherine J; Watkins, Simon; Tailor, Dhanir; Singh, Rana P; Singh, Shivendra V

    2016-09-01

    Benzyl isothiocyanate (BITC) is a highly promising phytochemical abundant in cruciferous vegetables with preclinical evidence of in vivo efficacy against breast cancer in xenograft and transgenic mouse models. Mammary cancer chemoprevention by BITC is associated with apoptotic cell death but the underlying mechanism is not fully understood. Herein, we demonstrate for the first time that altered mitochondrial dynamics is an early and critical event in BITC-induced apoptosis in breast cancer cells. Exposure of MCF-7 and MDA-MB-231 cells to plasma achievable doses of BITC resulted in rapid collapse of mitochondrial filamentous network. BITC treatment also inhibited polyethyleneglycol-induced mitochondrial fusion. In contrast, a normal human mammary epithelial cell line (MCF-10A) that was derived from fibrocystic breast disease, was resistant to BITC-mediated alterations in mitochondrial dynamics as well as apoptosis. Transient or sustained decrease in levels of proteins engaged in regulation of mitochondrial fission and fusion was clearly evident after BITC treatment in both cancer cell lines. A trend for a decrease in the levels of mitochondrial fission- and fusion-related proteins was also observed in vivo in tumors of BITC-treated mice compared with control. Immortalized mouse embryonic fibroblasts from Drp1 knockout mice were resistant to BITC-induced apoptosis when compared with those from wild-type mice. Upon treatment with BITC, Bak dissociated from mitofusin 2 in both MCF-7 and MDA-MB-231 cells suggesting a crucial role for interaction of Bak and mitofusins in BITC-mediated inhibition of fusion and morphological dynamics. In conclusion, the present study provides novel insights into the molecular complexity of BITC-induced cell death. PMID:27374852

  14. Study of the Role of Antimicrobial Glucosinolate-Derived Isothiocyanates in Resistance of Arabidopsis to Microbial Pathogens1

    PubMed Central

    Tierens, Koenraad F.M.-J.; Thomma, Bart P.H.J.; Brouwer, Margreet; Schmidt, Jürgen; Kistner, Katherine; Porzel, Andrea; Mauch-Mani, Brigitte; Cammue, Bruno P.A.; Broekaert, Willem F.

    2001-01-01

    Crude aqueous extracts from Arabidopsis leaves were subjected to chromatographic separations, after which the different fractions were monitored for antimicrobial activity using the fungus Neurospora crassa as a test organism. Two major fractions were obtained that appeared to have the same abundance in leaves from untreated plants versus leaves from plants challenge inoculated with the fungus Alternaria brassicicola. One of both major antimicrobial fractions was purified to homogeneity and identified by 1H nuclear magnetic resonance, gas chromatography/electron impact mass spectrometry, and gas chromatography/chemical ionization mass spectrometry as 4-methylsulphinylbutyl isothiocyanate (ITC). This compound has previously been described as a product of myrosinase-mediated breakdown of glucoraphanin, the predominant glucosinolate in Arabidopsis leaves. 4-Methylsulphinylbutyl ITC was found to be inhibitory to a wide range of fungi and bacteria, producing 50% growth inhibition in vitro at concentrations of 28 μm for the most sensitive organism tested (Pseudomonas syringae). A previously identified glucosinolate biosynthesis mutant, gsm1-1, was found to be largely deficient in either of the two major antimicrobial compounds, including 4-methylsulphinylbutyl ITC. The resistance of gsm1-1 was compared with that of wild-type plants after challenge with the fungi A. brassicicola, Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum, or Peronospora parasitica, or the bacteria Erwinia carotovora or P. syringae. Of the tested pathogens, only F. oxysporum was found to be significantly more aggressive on gsm1-1 than on wild-type plants. Taken together, our data suggest that glucosinolate-derived antimicrobial ITCs can play a role in the protection of Arabidopsis against particular pathogens. PMID:11299350

  15. Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora.

    PubMed

    Fahey, Jed W; Wehage, Scott L; Holtzclaw, W David; Kensler, Thomas W; Egner, Patricia A; Shapiro, Theresa A; Talalay, Paul

    2012-04-01

    Plant-based diets rich in crucifers are effective in preventing cancer and other chronic diseases. Crucifers contain very high concentrations of glucosinolates (GS; β-thioglucoside-N-hydroxysulfates). Although not themselves protective, GS are converted by coexisting myrosinases to bitter isothiocyanates (ITC) which defend plants against predators. Coincidentally, ITC also induce mammalian genes that regulate defenses against oxidative stress, inflammation, and DNA-damaging electrophiles. Consequently, the efficiency of conversion of GS to ITC may be critical in controlling the health-promoting benefits of crucifers. If myrosinase is heat-inactivated by cooking, the gastrointestinal microflora converts GS to ITC, a process abolished by enteric antibiotics and bowel cleansing. When single oral doses of GS were administered as broccoli sprout extracts (BSE) to two dissimilar populations (rural Han Chinese and racially mixed Baltimoreans) patterns of excretions of urinary dithiocarbamates (DTC) were very similar. Individual conversions in both populations varied enormously, from about 1% to more than 40% of dose. In contrast, administration of ITC (largely sulforaphane)-containing BSE resulted in uniformly high (70%-90%) conversions to urinary DTC. Despite the remarkably large range of conversion efficiencies between individuals, repeated determinations within individuals were much more consistent. The rates of urinary excretion (slow or fast) were unrelated to the ultimate magnitudes (low or high) of these conversions. Although no demographic factors affecting conversion efficiency have been identified, there are clearly diurnal variations: conversion of GS to DTC was greater during the day, but conversion of ITC to DTC was more efficient at night. PMID:22318753

  16. Erucin, the Major Isothiocyanate in Arugula (Eruca sativa), Inhibits Proliferation of MCF7 Tumor Cells by Suppressing Microtubule Dynamics

    PubMed Central

    Azarenko, Olga; Jordan, Mary Ann; Wilson, Leslie

    2014-01-01

    Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5–15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities. PMID:24950293

  17. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa.

    PubMed

    Tan, Sean Yang-Yi; Liu, Yang; Chua, Song Lin; Vejborg, Rebecca Munk; Jakobsen, Tim Holm; Chew, Su Chuen; Li, Yingying; Nielsen, Thomas E; Tolker-Nielsen, Tim; Yang, Liang; Givskov, Michael

    2014-11-01

    Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease. PMID:25155599

  18. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa.

    PubMed

    Tan, Sean Yang-Yi; Liu, Yang; Chua, Song Lin; Vejborg, Rebecca Munk; Jakobsen, Tim Holm; Chew, Su Chuen; Li, Yingying; Nielsen, Thomas E; Tolker-Nielsen, Tim; Yang, Liang; Givskov, Michael

    2014-11-01

    Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease.

  19. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications.

    PubMed

    Oltolina, Francesca; Gregoletto, Luca; Colangelo, Donato; Gómez-Morales, Jaime; Delgado-López, José Manuel; Prat, Maria

    2015-02-10

    Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.

  20. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli.

    PubMed

    Kim, Sung-Jin; Vassão, Daniel G; Moinuddin, Syed G A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2014-01-01

    The creosote bush (Larrea tridentata) harbors members of the monolignol acyltransferase, allylphenol synthase, and propenylphenol synthase gene families, whose products together are able to catalyze distinct regiospecific conversions of various monolignols into their corresponding allyl- and propenyl-phenols, respectively. In this study, co-expression of a monolignol acyltransferase with either substrate versatile allylphenol or propenylphenol synthases in Escherichia coli established that various monolignol substrates were efficiently converted into their corresponding allyl/propenyl phenols, as well as providing proof of concept for efficacious conversion in a bacterial platform. This capability thus potentially provides an alternate source to these important plant phytochemicals, whether for flavor/fragrance and fine chemicals, or ultimately as commodities, e.g., for renewable energy or other intermediate chemical purposes. Previous reports had indicated that specific and highly conserved amino acid residues 84 (Phe or Val) and 87 (Ile or Tyr) of two highly homologous allyl/propenyl phenol synthases (circa 96% identity) from a Clarkia species mainly dictate their distinct regiospecific catalyzed conversions to afford either allyl- or propenyl-phenols, respectively. However, several other allyl/propenyl phenol synthase homologs isolated by us have established that the two corresponding amino acid 84 and 87 residues are not, in fact, conserved.

  1. Fluorinated alcohols as promoters for the metal-free direct substitution reaction of allylic alcohols with nitrogenated, silylated, and carbon nucleophiles.

    PubMed

    Trillo, Paz; Baeza, Alejandro; Nájera, Carmen

    2012-09-01

    The direct allylic substitution reaction using allylic alcohols in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE) as reaction media is described. The developed procedure is simple, works under mild conditions (rt, 50 and 70 °C), and proves to be very general, since different nitrogenated nucleophiles and carbon nucleophiles can be used achieving high yields, especially when HFIP is employed as solvent and aromatic allylic alcohols are the substrates. Thus, sulfonamides, carbamates, carboxamides, and amines can be successfully employed as nitrogen-based nucleophiles. Likewise, silylated nucleophiles such as trimethylsilylazide, allyltrimethylsilane, trimethylsilane, and trimethylsilylphenylacetylene give the corresponding allylic substitution products in high yields. Good results for the Friedel-Crafts adducts are also achieved with aromatic compounds (phenol, anisole, indole, and anilines) as nucleophiles. Particularly interesting are the results obtained with electron-rich anilines, which can behave as nitrogenated or carbon nucleophiles depending on their electronic properties and the solvent employed. In addition, 1,3-dicarbonyl compounds (acetylacetone and Meldrum's acid) are also successfully employed as soft carbon nucleophiles. Studies for mechanism elucidation are also reported, pointing toward the existence of carbocationic intermediates and two working reaction pathways for the obtention of the allylic substitution product.

  2. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  3. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  4. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  5. Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague-Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice.

    PubMed

    Ralph, Rebecca J; Caine, S Barak

    2005-02-01

    D2 receptors have been studied in relation to therapeutic uses of dopaminergic drugs, and psychomotor stimulant effects [as manifested by decreased prepulse inhibition (PPI) of startle and increased locomotor activity] are hallmark behavioral effects of D2 agonists in rats. Genetic studies with mutant mice might be useful in this line of investigation; however, recent studies suggest that mice differ from rats with respect to D2 agonist effects. Accordingly, we studied a wide range of doses of the D2-like agonist quinelorane (0.0032-5.6 mg/kg) and the D1-like agonist R-6-Br-APB [R(+)-6-bromo-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] (0.032-5.6 mg/kg) in outbred Sprague-Dawley rats, outbred Swiss-Webster mice, and inbred 129X1/SvJ, C57BL/6J, and DBA/2J mice. Whereas the D2 agonist dose-dependently decreased PPI and increased locomotion in rats, neither of these effects was observed in outbred or inbred mice. In contrast, the D1 agonist reduced PPI and increased locomotion in Sprague-Dawley rats and in Swiss-Webster, 129X1/SvJ, and C57BL/6J mice. Neither agonist decreased PPI in DBA/2J mice, although PPI was increased in this strain by a D2 antagonist. Pretreatment with either the D2 antagonist eticlopride (1 mg/kg) or the D1 antagonist SCH39166 [(-)-trans-6,7,7a,8,9,13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo[d]naptho-(2,1-b)azepine] (1 mg/kg) prevented the PPI-disruptive effects of quinelorane in rats and R-6-Br-APB in mice, suggesting receptor interactions in both species. In summary, psychomotor stimulant effects of a D2 agonist that were robustly observed in outbred rats were absent in several outbred and inbred strains of mice. These results may have implications for the study of mutant mice to investigate genes involved in psychomotor function in humans.

  6. [Characterization of surface properties of 1-allyl-3-methylimidazolium chloride ionic liquid by inverse gas chromatography].

    PubMed

    Chen, Yali; Wang, Qiang; Deng, Lishuang; Zhang, Zhengfang; Tang, Jun

    2013-02-01

    The determination of the dispersive component of surface free energies (gamma(s)d) at different temperatures and Lewis acid-base parameters of 1-allyl-3-methylimidazolium chloride ionic liquid ([AMIM]Cl) were investigated by means of inverse gas chromatography (IGC). Four n-alkanes, including n-hexane (C6), n-heptane (C7), n-octane (C8) and n-nonane (C9), were chosen as the apolar probes to characterize the dispersive component of the surface free energies at 343.15, 353.15, 363.15 and 373.15 K, respectively; and dichloromethane (DCM), trichloromethane (TCM), tetrahydrofuran (THF), ethyl acetate (EtAc), acetone (Acet) as the polar probes to estimate the Lewis acid-base parameters to judge the interactions between [AMIM] Cl and the solvents. The IGC characterizations encompassed the adsorption thermodynamic parameters to acid-base surface interactions, including the standard enthalpy (deltaHa(s)) and the free energy change of adsorption (deltaGa(s)) at different temperatures. The results showed that the Lewis acid parameter Ka of [AMIM] Cl was 0.34, and the base parameter Kb was 1.68, which indicated it was Lewis amphoteric with predominantly basic character. Furthermore, the free energy of adsorption deltaGa(s) was also figured out. It was found that the gamma(s)d of the [AMIM] Cl were 52.26, 50.82, 46.08 and 42.05 mJ/m2 at 343.15, 353.15, 363.15 and 373.15 K, respectively. The results are of great importance to the study of the surface properties and the application of ionic liquid.

  7. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    PubMed

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit. PMID:26716949

  8. Stereoselective coordination: a six-membered P,N-chelate tailored for asymmetric allylic alkylation.

    PubMed

    Császár, Z; Farkas, G; Bényei, A; Lendvay, G; Tóth, I; Bakos, J

    2015-10-01

    Six-membered chelate complexes [Pd(1a-b)Cl2], (2a-b) and [Pd(1a-b)(η(3)-PhCHCHCHPh)]BF4, (3a-b) of P,N-type ligands 1a, ((2S,4S)-2-diphenyl-phosphino-4-isopropylamino-pentane) and 1b, ((2S,4S)-2-diphenyl-phosphino-4-methylamino-pentane) have been prepared. The Pd-complexes have been characterized in solution by 1D and 2D NMR spectroscopy. The observed structures were confirmed by DFT calculations and in the case of 2a also by X-ray crystallography. Unexpectedly, the coordination of the all-carbon-backbone aminophosphine 1a resulted in not only a stereospecific locking of the donor nitrogen atom into one of the two possible configurations but also the conformation of the six-membered chelate rings containing three alkyl substituents was forced into the same single chair structure showing the axially placed isopropyl group on the coordinated N-atom. The stereodiscriminative complexation of 1a led to the formation of a palladium catalyst with a conformationally rigid chelate having a configurationally fixed nitrogen and electronically different coordination sites due to the presence of P and N donors. The stereochemically fixed catalyst provided excellent ee's (up to 96%) and activities in asymmetric allylic alkylation reactions. In contrast, the chelate rings formed by 1b exist in two different chair conformations, both containing axial methyl groups, but with the opposite configurations of the coordinated N-atom. Pd-complexes of 1b provided low enantioselectivities in similar alkylations, therefore emphasizing the importance of the stereoselective coordination of N-atoms in analogous P-N chelates. The factors determining the coordination of the ligands were also studied with respect to the chelate ring conformation and the nitrogen configuration.

  9. N-allyl epiderpride: An extremely potent SPECT radioligand for the dopamine D2 receptor

    SciTech Connect

    Kessler, R.M.; Mason, N.S.; Ansari, M.S.

    1994-05-01

    We have previously reported that epidepride is a potent (K{sub D} 24pM) and specific SPECT radioligand for the dopamine D2 receptor which can be used to study striatal and extrastriatal dopamine D2 receptors in man. We have synthesized and evaluated the N-allyl analogue of epiderpride (APID) as a potential SPECT radioligand for the dopamine D2 receptor. In comparison to epidepride it is even more potent at the dopamine D2 receptor, the K{sub D} for APID being 11 frontal cortical homogenate. The lipophilicity, evaluated using the log kw pH 7.5, was 2.9 versus 2.05 for epidepride. Competitive binding studies using rat striatal, hippocampal and frontal cortical homogenates showed high affinity for only dopamine D2 like cerebellar ratio of 275:1 at 320 minutes post injection-similar to that seen with epidepride, but with nearly four times higher brain uptake. Of interest was the off-rate from the dopamine D2 receptor; it was 0.0046 min{sup -1} in vitro at 25{degrees}C-corresponding to an t 1/2 of 150 minutes. Studies in rhesus monkeys show an in vivo off rate (following 2.5 mg/kg raclopride IV) of about 0.0082 min{sup -1} seen that with epidepride. SPECT studies in rhesus monkeys reveal APID is a promising SPECT radioligand that appears to be similar to epidepride, but with higher brain uptake due to its more optimal lipophilicity for entry into brain.

  10. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    PubMed

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.

  11. Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?

    PubMed

    Jha, Indrani; Bisht, Meena; Venkatesu, Pannuru

    2016-06-30

    The broader scope of ILs in chemical sciences particularly in pharmaceutical, bioanalytical and many more applications is increasing day by day. Hitherto, a very less amount of research is available in the depiction of conformational stability, activity, and thermal stability of enzymes in the presence of ILs. In the present study, the perturbation in the structure, stability, and activity of stem bromelain (BM) has been observed in the presence of 1-allyl-3-methylimidazolium chloride ([Amim][Cl]) using various techniques. This is the first report in which the influence of [Amim][Cl] has been studied on the enzyme BM. Fluorescence spectroscopy has been utilized to map out the changes in the environment around tryptophan (Trp) residues of BM and also to discuss the variations in the thermal stability of BM as an outcome of its interaction with the IL at different concentrations. Further, the work delineates the denaturing effect of high concentration of IL on enzyme structure and activity. It dictates the fact that low concentrations (0.01-0.10 M) of [Amim][Cl] are only changing the structural arrangement of the protein without having harsh consequences on its activity and stability. However, high concentrations of IL proved to be totally devastating for both activity and stability of BM. The observed decrease in the stability of BM at high concentration may be due to the combined effect of cation and anion interactions with the protein residues. The present work is successful in dictating the probable mechanism of interaction between BM and [Amim][Cl]. These results can prove to be fruitful in the studies of enzymes in aqueous IL systems since the used IL is thermally stable and nonvolatile in nature thereby providing a pathway of alteration in the activity of enzymes in potentially green systems.

  12. Small Molecule Bax Agonists for Cancer Therapy

    PubMed Central

    Xin, Meiguo; Li, Rui; Xie, Maohua; Park, Dongkyoo; Owonikoko, Taofeek K.; Sica, Gabriel L.; Corsino, Patrick E.; Zhou, Jia; Ding, Chunyong; White, Mark A.; Magis, Andrew T.; Ramalingam, Suresh S.; Curran, Walter J.; Khuri, Fadlo R.; Deng, Xingming

    2014-01-01

    Bax, a central death regulator, is required at the decisional stage of apoptosis. We recently identified serine 184 (S184) of Bax as a critical functional switch controlling its proapoptotic activity. Here, we employed the structural pocket around S184 as a docking site to screen the NCI library of small molecules using the UCSF-DOCK program suite. Three compounds, small molecule Bax agonists SMBA1, SMBA2 and SMBA3, induce conformational changes in Bax by blocking S184 phosphorylation, facilitating Bax insertion into mitochondrial membranes and forming Bax oligomers. The latter leads to cytochrome c release and apoptosis in human lung cancer cells, which occurs in a Bax- but not Bak-dependent fashion. SMBA1 potently suppresses lung tumor growth via apoptosis by selectively activating Bax in vivo without significant normal tissue toxicity. Development of Bax agonists as a new class of anti-cancer drugs offers a strategy for the treatment of lung cancer and other Bax-expressing malignancies. PMID:25230299

  13. An enantioselective strategy for the total synthesis of (S)-tylophorine via catalytic asymmetric allylation and a one-pot DMAP-promoted isocyanate formation/Lewis acid catalyzed cyclization sequence.

    PubMed

    Su, Bo; Zhang, Hui; Deng, Meng; Wang, Qingmin

    2014-06-14

    A new asymmetric total synthesis of a phenanthroindolizidine alkaloid (S)-tylophorine is reported, which features a catalytic asymmetric allylation of aldehydes and an unexpected one-pot DMAP promoted isocyanate formation and Lewis acid catalyzed intramolecular cyclization reaction. In addition, White's direct C-H oxidation catalyst system converting monosubstituted olefins to linear allylic acetates was also employed for late-stage transformation.

  14. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  15. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  16. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    PubMed Central

    Weidmann, Verena; Schaffrath, Mathias; Zorn, Holger

    2013-01-01

    Summary Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site. PMID:24204436

  17. Synthesis of Alkenylphosphonates through Palladium-Catalyzed Coupling of α-Diazo Phosphonates with Benzyl or Allyl Halides.

    PubMed

    Zhou, Yujing; Ye, Fei; Wang, Xi; Xu, Shuai; Zhang, Yan; Wang, Jianbo

    2015-06-19

    An efficient method for the synthesis of organophosphonates through palladium-catalyzed coupling of α-diazo phosphonates with benzyl or allyl halides has been developed. Trisubstituted alkenylphosphonates bearing versatile functional groups can be easily accessed in good yields and with excellent stereoselectivity through this method. Moreover, with similar strategy α-substituted vinylphosphonates can also be attained by the palladium-catalyzed coupling reaction of N-tosylhydrazones and aryl bromides. Migratory insertion of palladium carbene is proposed as the key step in this reaction.

  18. Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyrans

    PubMed Central

    Rideau, Emeline

    2015-01-01

    Summary Asymmetric allylic alkylation is a powerful reaction that allows the enantioselective formation of C–C bonds. Here we describe the asymmetric alkylation of alkylzirconium species to racemic 3,6-dihydro-2H-pyrans. Two systems were examined: 3-chloro-3,6-dihydro-2H-pyran using linear optimization (45–93% ee, up to 33% yield, 5 examples) and 3,6-dihydro-2H-pyran-3-yl diethyl phosphate with the assistance of a design of experiments statistical approach (83% ee, 12% yield). 1H NMR spectroscopy was used to gain insight into the reaction mechanisms. PMID:26734091

  19. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis

    PubMed Central

    Hong, Allen Y.

    2014-01-01

    All-carbon quaternary stereocenters have posed significant challenges in the synthesis of complex natural products. These important structural motifs have inspired the development of broadly applicable palladium-catalyzed asymmetric allylic alkylation reactions of unstabilized non-biased enolates for the synthesis of enantioenriched α-quaternary products. This microreview outlines key considerations in the application of palladium-catalyzed asymmetric allylic alkylation reactions and presents recent total syntheses of complex natural products that have employed these powerful transformations for the direct, catalytic, enantioselective construction of all-carbon quaternary stereocenters. PMID:24944521

  20. A Novel synthesis of 2-functionalized benzofurans by palladium-catalyzed cycloisomerization of 2-(1-hydroxyprop-2-ynyl)phenols followed by acid-catalyzed allylic isomerization or allylic nucleophilic substitution.

    PubMed

    Gabriele, Bartolo; Mancuso, Raffaella; Salerno, Giuseppe

    2008-09-19

    A novel two-step synthesis of 2-hydroxymethylbenzofurans 3 and 2-alkoxymethylbenzofurans 4-6, based on palladium-catalyzed cycloisomerization of 2-(1-hydroxyprop-2-ynyl)phenols 1 under basic conditions to give 2-methylene-2,3-dihydrobenzofuran-3-ols 2, followed by acid-catalyzed isomerization or allylic nucleophilic substitution with alcohols as nucleophiles, is reported. Cycloisomerization reactions leading to 2 (80-98% yields) were carried out at 40 degrees C in MeOH as the solvent, in the presence of a base and catalytic amounts of PdX2 + 2KX (X = Cl, I). Isomerization reactions of 2 readily occurred at 25-60 degrees C in DME as the solvent, with H2SO4 as the proton source, to give 2-hydroxymethylbenzofurans 3 in 65-90% yields. In a similar manner, allylic nucleophilic substitution reactions of 2 with ROH as nucleophiles [carried out at 25-40 degrees C in ROH (R = Me) or ROH-DME mixtures (R = Bu, Bn) in the presence of H2SO4] afforded 2-alkoxymethylbenzofurans 4, 5, and 6 (R = Me, Bu, and Bn, respectively), in 65-98% yields.