Science.gov

Sample records for agonist allyl isothiocyanate

  1. TRPA1 agonists--allyl isothiocyanate and cinnamaldehyde--induce adrenaline secretion.

    PubMed

    Iwasaki, Yusaku; Tanabe, Manabu; Kobata, Kenji; Watanabe, Tatsuo

    2008-10-01

    Thermosensitive transient receptor potential (TRP) channels, especially TRPV1 and TRPA1, are activated by the pungent compounds present in spices. TRPV1 activation by the intake of capsaicin, the irritant in hot pepper, induces adrenaline secretion and increases energy consumption. TRPV1 is mainly expressed in the sensory neurons and coexpressed with TRPA1 at a high frequency. However, the mechanism underlying adrenaline secretion by TRPA1 agonists such as allyl isothiocyanate (AITC) and cinnamaldehyde (CNA), the pungent ingredients in mustard and cinnamon, is not known. We examined whether AITC and CNA could induce adrenaline secretion in anesthetized rats. An intravenous injection of AITC or CNA (10 mg/kg) increased adrenaline secretion. These responses disappeared completely in capsaicin-treated rats with an impaired sensory nerve function. Moreover, pretreatment with cholinergic blockers (hexamethonium and atropine) attenuated the AITC- or CNA-induced adrenaline secretion. These results suggest that TRPA1 agonists activate the sensory nerves and induce adrenaline secretion via the central nervous system.

  2. Corn oil and milk enhance the absorption of orally administered allyl isothiocyanate in rats.

    PubMed

    Ippoushi, Katsunari; Ueda, Hiroshi; Takeuchi, Atsuko

    2013-11-15

    Allyl isothiocyanate, a chief component of mustard oil, exhibits anticancer effects in both cultured cancer cells and animal models. The accumulation of the N-acetylcysteine conjugate of allyl isothiocyanate, the final metabolite of allyl isothiocyanate, in urine was evaluated in rats that were orally coadministered allyl isothiocyanate with fluids (e.g., water, green tea, milk, and 10% ethanol) or corn oil. The N-acetylcysteine conjugate of allyl isothiocyanate content in urine when allyl isothiocyanate (2 or 4μmol) was coadministered with corn oil or milk showed a greater increase (1.4±0.22 or 2.7±0.34μmol or 1.2±0.32 or 2.5±0.36μmol, 1.6- to 1.8-fold or 1.5-fold, respectively) than when allyl isothiocyanate (2 or 4μmol) was coadministered with water (0.78±0.10 or 1.7±0.17μmol). This result demonstrates that corn oil and milk enhance the absorption of allyl isothiocyanate in rats.

  3. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants.

  4. Effect of Allyl Isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also re...

  5. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  6. Release of allyl isothiocyanate from mustard seed meal powder.

    PubMed

    Dai, Ruyan; Lim, Loong-Tak

    2014-01-01

    Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products.

  7. Allyl isothiocyanate sensitizes TRPV1 to heat stimulation.

    PubMed

    Alpizar, Yeranddy A; Boonen, Brett; Gees, Maarten; Sanchez, Alicia; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2014-03-01

    The powerful plant-derived irritant allyl isothiocyanate (AITC, aka mustard oil) induces hyperalgesia to heat in rodents and humans through mechanisms that are not yet fully understood. It is generally believed that AITC activates the broadly tuned chemosensory cation channel transient receptor potential cation channel subfamily A member 1 (TRPA1), triggering an inflammatory response that sensitizes the heat sensor transient receptor potential cation channel subfamily V member 1 (TRPV1). In the view of recent data demonstrating that AITC can directly activate TRPV1, we here explored the possibility that this compound sensitizes TRPV1 to heat stimulation in a TRPA1-independent manner. Patch-clamp recordings and intracellular Ca(2+) imaging experiments in HEK293T cells over-expressing mouse TRPV1 revealed that the increase in channel activation induced by heating is larger in the presence of AITC than in control conditions. The analysis of the effects of AITC and heat on the current-voltage relationship of TRPV1 indicates that the mechanism of sensitization is based on additive shifts of the voltage dependence of activation towards negative voltages. Finally, intracellular Ca(2+) imaging experiments in mouse sensory neurons isolated from Trpa1 KO mice yielded that AITC enhances the response to heat, specifically in the subpopulation expressing TRPV1. Furthermore, this effect was strongly reduced by the TRPV1 inhibitor capsazepine and virtually absent in neurons isolated from double Trpa1/Trpv1 KO mice. Taken together, these findings demonstrate that TRPV1 is a locus for cross sensitization between AITC and heat in sensory neurons and may help explaining, at least in part, the role of this channel in AITC-induced hyperalgesia to heat.

  8. Allyl isothiocyanate: comparative disposition in rats and mice

    SciTech Connect

    Ioannou, Y.M.; Burka, L.T.; Matthews, H.B.

    1984-09-15

    Allyl isothiocyanate (AITC), the major component of volatile oil of mustard, was recently reported to induce transitional-cell papillomas in the urinary bladder of male Fischer 344 rats, but not in the bladders of female rats or B6C3F1 mice. The present investigation of comparative disposition in both sexes of each species was designed to detect sex or species differences in disposition which might explain susceptibility to AITC toxicity. AITC was readily cleared from all rat and mouse tissues so that within 24 hrs. after administration less than 5% of the total dose was retained in tissues. The highest concentration of AITC-derived radioactivity was observed in male rat bladder. Clearance of AITC-derived radioactivity by each species was primarily in urine (70 to 80%) and in exhaled air (13 to 15%) with lesser amounts in feces (3 to 5%). Rats excreted one major and four minor metabolites in urine. The major metabolite from rat urine was identified by NMR spectroscopy to be the mercapturic acid N-acetyl-S-(N-allylthiocarbamoyl)-L-cysteine. Mice excreted in urine the same major metabolite identified in rat urine as well as three other major and two minor metabolites. Sex-related variations were observed in the relative amounts of these metabolites. Both species excreted a single metabolite in feces. Metabolism of AITC by male and female rats was similar, but female rats excreted over twice the urine volume of male rats. Results of the present study indicate that excretion of a more concentrated solution of AITC metabolite(s) in urine may account for the toxic effects of AITC on the bladder of male rats.

  9. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    PubMed Central

    2011-01-01

    Background Allyl isothiocyanate (AITC) from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP) 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC (< 0.1 μM). However, treatment with higher concentrations (> 1.0 μM) resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed. PMID:22093285

  10. Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats.

    PubMed

    Yokoyama, Toru; Ohbuchi, Toyoaki; Saito, Takeshi; Sudo, Yuka; Fujihara, Hiroaki; Minami, Kouichiro; Nagatomo, Toshihisa; Uezono, Yasuhito; Ueta, Yoichi

    2011-03-25

    Allyl isothiocyanates (AITC) and cinnamaldehyde are pungent compounds present in mustard oil and cinnamon oil, respectively. These compounds are well known as transient receptor potential ankyrin 1 (TRPA1) agonists. TRPA1 is activated by low temperature stimuli, mechanosensation and pungent irritants such as AITC and cinnamaldehyde. TRPA1 is often co-expressed in TRPV1. Recent study showed that hypertonic solution activated TRPA1 as well as TRPV1. TRPV1 is involved in excitatory synaptic inputs to the magnocellular neurosecretory cells (MNCs) that produce vasopressin in the supraoptic nucleus (SON). However, it remains unclear whether TRPA1 may be involved in this activation. In the present study, we examined the role of TRPA1 on the synaptic inputs to the MNCs in in vitro rat brain slice preparations, using whole-cell patch-clamp recordings. In the presence of tetrodotoxin, AITC (50μM) and cinnamaldehyde (30μM) increased the frequency of miniature excitatory postsynaptic currents without affecting the amplitude. This effect was significantly attenuated by previous exposure to ruthenium red (10μM), non-specific TRP channels blocker, high concentration of menthol (300μM) and HC-030031 (10μM), which are known to antagonize the effects of TRPA1 agonists. These results suggest that TRPA1 may exist at presynaptic terminals to the MNCs and enhance glutamate release in the SON.

  11. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice.

    PubMed

    Luvisetto, Siro; Vacca, Valentina; Cianchetti, Carlo

    2015-02-01

    We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists.

  12. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    PubMed

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 < 3 ppm). Isotropic chemical shifts, ICS(γ), were determined for sp, sp(x), and sp(2) N-hybridization, and the γ dependencies of δ(N4) and δ(C5) are very large (10-33 ppm). Atom-centered density matrix propagation trajectories show that every conformer can access a large region of the potential energy surface AITC(γ,ε,...) with 120° < γ < 180° and 155° < ε < 180°. Because the extreme broadening of the (13)C NMR signal of the ITC carbon is caused by the structural flexibility of every conformer of AITC, the analysis provides a general explanation for the near-silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  13. Intragastric administration of allyl isothiocyanate increases carbohydrate oxidation via TRPV1 but not TRPA1 in mice.

    PubMed

    Mori, Noriyuki; Kawabata, Fuminori; Matsumura, Shigenobu; Hosokawa, Hiroshi; Kobayashi, Shigeo; Inoue, Kazuo; Fushiki, Tohru

    2011-06-01

    The transient receptor potential (TRP) channel family is composed of a wide variety of cation-permeable channels activated polymodally by various stimuli and is implicated in a variety of cellular functions. Recent investigations have revealed that activation of TRP channels is involved not only in nociception and thermosensation but also in thermoregulation and energy metabolism. We investigated the effect of intragastric administration of TRP channel agonists on changes in energy substrate utilization of mice. Intragastric administration of allyl isothiocyanate (AITC; a typical TRPA1 agonist) markedly increased carbohydrate oxidation but did not affect oxygen consumption. To examine whether TRP channels mediate this increase in carbohydrate oxidation, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastric administration of AITC increased carbohydrate oxidation in TRPA1 KO mice but not in TRPV1 KO mice. Furthermore, AITC dose-dependently increased intracellular calcium ion concentration in cells expressing TRPV1. These findings suggest that AITC might activate TRPV1 and that AITC increased carbohydrate oxidation via TRPV1.

  14. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  15. Effect of allyl isothiocyanate in headspace and modified atmosphere on Pseduomonas Aeruginosa growth in fresh catfish fillets under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 deg C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aerugin...

  16. Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the antimicrobial effect of a chitosan coating + allyl isothiocyanate (AIT) and nisin against Salmonella on whole fresh cantaloupes. Cantaloupes were inoculated with a cocktail of three Salmonella strains and treated with chitosan, chitosan + AIT, chitosan + nisin, and chitos...

  17. Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and fruit quality of blueberry (Vaccinium corymbosum L., cv. Duke)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of allyl isothiocyanate (AITC) on antioxidant enzyme activities, flavonoid content, and fruit quality of blueberries var. Duke (Vaccinium corymbosum L.) was evaluated. Results from this study showed that AITC was effective in maintaining higher amounts of sugars and lower organic acids co...

  18. Synergistic effect of allyl isothiocyanate (AITC) on cisplatin efficacy in vitro and in vivo.

    PubMed

    Ling, Xiang; Westover, David; Cao, Felicia; Cao, Shousong; He, Xiang; Kim, Hak-Ryul; Zhang, Yuesheng; Chan, Daniel Cf; Li, Fengzhi

    2015-01-01

    Although in vitro studies have shown that isothiocyanates (ITCs) can synergistically sensitize cancer cells to cisplatin treatment, the underlying mechanisms have not been well defined, and there are no in vivo demonstrations of this synergy. Here, we report the in vitro and in vivo data for the combination of allyl isothiocyanate (AITC), one of the most common naturally occurring ITCs, with cisplatin. Our study revealed that cisplatin and AITC combination synergistically inhibits cancer cell growth and colony formation, and enhances apoptosis in association with the downregulation of antiapoptotic proteins Bcl-2 and survivin. Importantly, the in vivo combination treatment suppresses human tumor growth in animal models without observable increases in toxicity (body weight loss) in comparison with single agent treatment. Furthermore, our data revealed that addition of AITC to cisplatin treatment changes the profile of G2/M arrest (e.g. increase in M phase cell number) and significantly extends the duration of G2/M arrest in comparison with cisplatin treatment alone. To explore the underlying mechanism, we found that AITC treatment rapidly depletes b-tubulin. Combination of AITC and cisplatin inhibits the expression of G2/M checkpoint-relevant proteins including CDC2, cyclin B1 and CDC25. Together, our findings reveal a novel mechanism for AITC enhancing cisplatin efficacy and provides the first in vivo evidence to support ITCs as potential candidates for developing new regimens to overcome platinum resistance.

  19. Increased presevation of sliced mozzarella cheese by antimibrobial sachet incorporated with allyl isothiocyanate

    PubMed Central

    Pires, Ana Clarissa dos Santos; de Fátima Ferreira Soares, Nilda; de Andrade, Nélio José; da Silva, Luis Henrique Mendes; Camilloto, Geany Peruch; Bernardes, Patrícia Campos

    2009-01-01

    There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT), a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL-1) inside the active packaging system was observed at the 6-day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10% of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects. PMID:24031453

  20. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  1. Effect of allyl isothiocyanate against Anisakis larvae during the anchovy marinating process.

    PubMed

    Giarratana, Filippo; Panebianco, Felice; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro

    2015-04-01

    Allyl isothiocyanate (AITC), is a natural compound found in plants belonging to the family Cruciferae and has strong antimicrobial activity and a biocidal activity against plants parasites. Anisakidosis is a zoonotic disease caused by the ingestion of larval nematodes in raw, almost raw, and marinated and/or salted seafood dishes. The aim of this work was to evaluate the effect of AITC against Anisakis larvae and to study its potential use during the marinating process. The effects of AITC against Anisakis larvae were tested in three experiment: in vitro with three liquid media, in semisolid media with a homogenate of anchovy muscle, and in a simulation of two kinds of anchovy fillets marinating processes. For all tests, the concentrations of AITC were 0, 0.01, 0.05, and 0.1%. Significant activity of AITC against Anisakis larvae was observed in liquid media, whereas in the semisolid media, AITC was effective only at higher concentrations. In anchovy fillets, prior treatment in phosphate buffer solution (1.5% NaCl, pH 6.8) with 0.1% AITC and then marination under standard conditions resulted in a high level of larval inactivation. AITC is a good candidate for further investigation as a biocidal agent against Anisakis larvae during the industrial marinating process.

  2. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  3. Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi.

    PubMed

    Ko, J A; Kim, W Y; Park, H J

    2012-02-01

    Allyl isothiocyanate (AITC) is a well-recognized antimicrobial agent but, application of AITC to food systems is limited due to its high volatility and strong odor. This study was performed to overcome the volatility of AITC by encapsulation using gum Arabic and chitosan and to investigate the effect of microencapsulated AITC as a natural additive on the shelf-life and quality of Kimchi. AITC loaded microparticles were prepared using gum Arabic and chitosan and were added to Kimchi at various concentrations (0-0.02%, w/w). The titratable acidity, pH, microbial changes, and sensory test of Kimchi were examined for 15days at different fermentation temperatures (4 and 10°C). The pH of Kimchi containing AITC microparticles was significantly higher than that of control and the higher the quantity of added AITC, the higher the pH became. The titratable acidity of Kimchi increased during storage especially, titratable acidity of control increased significantly higher than those of Kimchi with added AITC microparticles. The number of Leuconostoc and Lactobacillus species in Kimchi decreased with an increase in the concentration of AITC. The addition of AITC induced reduction of sour taste and improvement of the texture of Kimchi during fermentation. However, as the content of AITC increased, the scores of overall acceptability decreased due to the odor of AITC. These results indicate that addition of AITC (less than 0.1%) to Kimchi is an effective way of enhancing the shelf-life of Kimchi without reducing quality.

  4. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs.

  5. Purinoceptor-mediated, capsaicin-resistant excitatory effect of allyl isothiocyanate on neurons of the guinea-pig small intestine.

    PubMed

    Bartho, Lorand; Nordtveit, Elin; Szombati, Veronika; Benko, Rita

    2013-08-01

    Allyl isothiocyanate (AITC; 200 μM) caused atropine- and tetrodotoxin-sensitive longitudinal muscle contraction on the guinea-pig small intestine. The response was not influenced by hexamethonium, a functional blockade of capsaicin-sensitive neurons or by antagonists acting at TRPV1 or TRPA1, but was abolished by the P2 purinoceptor antagonist PPADS (50 μM). It is concluded that cholinergic motoneurons are activated by a purinergic mechanism in the course of the AITC response, independently of capsaicin-sensitive processes or even TRPA1.

  6. Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.

    PubMed

    Terada, Yuko; Masuda, Hideki; Watanabe, Tatsuo

    2015-08-28

    Allyl isothiocyanate (ITC) (4) is the main pungent component in wasabi, and it generates an acrid sensation by activating TRPA1. The flavor and pungency of ITCs vary depending on the compound. However, the differences in activity to activate TRPA1 between ITCs are not known except for a few compounds. To investigate the effect of carbon chain length and substituents of ITCs, the TRPA1-activiting ability of 16 ITCs was measured. Since most of the ITCs showed nearly equal TRPA1-activiting potency, the ITC moiety is likely the predominant contributor to their TRPA1-activating abilities, and contributions of other functional groups to their activities to activate TRPA1 are comparatively small.

  7. Postharvest application of brassica meal-derived allyl-isothiocyanate to kiwifruit: effect on fruit quality, nutraceutical parameters and physiological response.

    PubMed

    Ugolini, Luisa; Righetti, Laura; Carbone, Katya; Paris, Roberta; Malaguti, Lorena; Di Francesco, Alessandra; Micheli, Laura; Paliotta, Mariano; Mari, Marta; Lazzeri, Luca

    2017-03-01

    The use of natural compounds to preserve fruit quality and develop high value functional products deserves attention especially in the growing industry of processing and packaging ready-to-eat fresh-cut fruit. In this work, potential mechanisms underlying the effects of postharvest biofumigation with brassica meal-derived allyl-isothiocyanate on the physiological responses and quality of 'Hayward' kiwifruits were studied. Fruits were treated with 0.15 mg L(-1) of allyl-isothiocyanate vapours for 5 h and then stored in controlled atmosphere (2% O2, 4.5% CO2) at 0 °C and 95% relative humidity, maintaining an ethylene concentration <0.02 μL L(-1). The short- and long-term effects of allyl-isothiocyanate on fruit quality traits, nutraceutical attributes, glutathione content, antiradical capacity and the activity of antioxidant enzymes were investigated. The treatment did not influence the overall fruit quality after 120 days of storage, but interestingly it enhanced the ascorbic acid, polyphenols and flavan-3-ol content, improving the antioxidant potential of kiwifruit. The short-term effect of allyl-isothiocyanate was evidenced by an increase of superoxide dismutase activity and of oxidative glutathione redox state, which were restored 24 h after the treatment. The expression levels of genes involved in detoxification functions, ethylene, ascorbate and phenylpropanoid biosynthesis, were also significantly affected upon allyl-isothiocyanate application. These results suggest that allyl-isothiocyanate treatment probably triggered an initial oxidative burst, followed by an induction of protective mechanisms, which finally increased the nutraceutical and technological value of treated kiwifruits.

  8. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation

    PubMed Central

    Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P.; Owen, Laurie B.; Piazza, Gary A.

    2015-01-01

    Allyl isothiocyanate (AITC), a constituent of many cruciferous vegetables exhibits significant anticancer activities in many cancer models. Our studies provide novel insights into AITC-induced anticancer mechanisms in human A549 and H1299 non-small cell lung cancer (NSCLC) cells. AITC exposure induced replication stress in NSCLC cells as evidenced by γH2AX and FANCD2 foci, ATM/ATR-mediated checkpoint responses and S and G2/M cell cycle arrest. Furthermore, AITC-induced FANCD2 foci displayed co-localization with BrdU foci, indicating stalled or collapsed replication forks in these cells. Although PITC (phenyl isothiocyanate) exhibited concentration-dependent cytotoxic effects, treatment was less effective compared to AITC. Previously, agents that induce cell cycle arrest in S and G2/M phases were shown to sensitize tumor cells to radiation. Similar to these observations, combination therapy involving AITC followed by radiation treatment exhibited increased DDR and cell killing in NSCLC cells compared to single agent treatment. Combination index (CI) analysis revealed synergistic effects at multiple doses of AITC and radiation, resulting in CI values of less than 0.7 at Fa of 0.5 (50% reduction in survival). Collectively, these studies identify an important anticancer mechanism displayed by AITC, and suggest that the combination of AITC and radiation could be an effective therapy for NSCLC. PMID:25742788

  9. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives.

  10. Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria.

    PubMed

    Siahaan, Evi Amelia; Pendleton, Phillip; Woo, Hee-Chul; Chun, Byung-Soo

    2014-01-01

    The edible, brown seaweed Saccharina japonica was prepared as powder in the size range 500-900 μm for the desorption release of allyl isothiocyanate (AITC). Powders were used as raw (containing lipids) and as de-oiled, where the lipid was removed. In general, de-oiled powders adsorbed larger masses of AITC after vapour or solution contact. Mass adsorbed due to solution contact exceeded vapour contact. Larger particles adsorbed more than smaller particles. No chemical bonding between AITC and the powder surface occurred. Release from vapour deposited particles reached 70-85% available within 72 h; solution deposited reached 70-90% available at 192 h. The larger amounts of AITC adsorbed via solution deposition resulted in greater vapour-phase concentrations at 72 h for antimicrobial activity studies. No loss of activity was detected against Escherichia coli, Salmonella Typhimurium or Bacillus cereus. Only a nominal activity against Staphylococcus aureus was demonstrated. S. japonica powder could be used as an edible, natural vehicle for AITC delivery.

  11. Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Hosokawa, Hiroshi; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2013-01-01

    We investigated the effects of allyl isothiocyanate (AITC) on the blood glucose levels of mice using an intraperitoneal glucose tolerance test. The intragastric administration of 25 mg/kg body weight AITC reduced the increase in blood glucose level after 2 g/kg body weight glucose was given intraperitoneally, compared with that of control mice. To elucidate the mechanism responsible for the reduction, respiratory gas analysis employing (13)C-labeled glucose was performed. The intragastrically administering AITC increased (13)CO2 emission, compared to vehicle, after intraperitoneal administration of (13)C-labeled glucose. This indicated that AITC increased the utilization of exogenously administered glucose, which was excessive glucose in the blood. To examine whether transient receptor potential (TRP) channels mediated this reduction in the blood glucose levels, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastrically administering AITC reduced the increase in the blood glucose level in TRPA1 KO mice but not in TRPV1 KO mice. These findings suggest that dietary AITC might reduce the increases in blood glucose levels by increasing the utilization of excessive glucose in the blood by activating TRPV1.

  12. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Li, Tingyou; Bryant, Sharon D; Tsuda, Yuko; Okada, Yoshio; Lazarus, Lawrence H

    2007-10-01

    [N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.

  13. TRPA1 is functionally expressed in melanoma cells but is not critical for impaired proliferation caused by allyl isothiocyanate or cinnamaldehyde.

    PubMed

    Oehler, Beatrice; Scholze, Anja; Schaefer, Michael; Hill, Kerstin

    2012-06-01

    Melanoma is the most dangerous form of skin cancer occurring in Caucasians with rising incidence. They are remarkably resistant to conventional anti-tumour therapies like chemotherapy and radiotherapy. Therefore, new treatment strategies are urgently needed. Anti-tumour effects of phytochemicals such as allyl isothiocyanate or cinnamaldehyde have been demonstrated in various melanoma models in vitro and in vivo. Considering their high potency as transient receptor potential A1 (TRPA1)-activating compounds, we examined the functional expression of TRPA1 channels in different melanoma cell lines as well as in non-malignantly transformed primary melanocytes. The presence of TRPA1 transcripts could be detected in most of the melanoma cell lines. Furthermore, single-cell calcium imaging and patch clamp electrophysiology confirmed the presence of functional TRPA1 channels in those cell lines. Proliferation assays revealed that allyl isothiocyanate and cinnamaldehyde clearly reduce the proliferation of melanoma cells, but this effect is independent of an activation of TRPA1 channels, making it unlikely that ionic currents through TRPA1 are responsible for the anti-tumour effects of mustard oil and cinnamaldehyde.

  14. In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake.

    PubMed

    Manyes, L; Luciano, F B; Mañes, J; Meca, G

    2015-09-01

    Isothiocyanates (ITCs) are natural compounds derived from cruciferous vegetables produced by enzymatic conversion of metabolites called glucosinolates. They are potentially useful antimicrobial compounds for food applications have been shown to be promising agents against cancer in human cell culture, animal models, and in epidemiological studies. In this study, the antifungal activity of the allyl isothiocyanate (AITC) was evaluated on two mycotoxigenic fungi as Aspergillus parasiticus and Penicillium expnsum, aflatoxins (AFs) and patulin (PAT) producers, employing an assay on solid medium. Also an approximation of the risk evaluation associated to the intake of food treated with the AITC to reduce the risk of fungi spoilage has been evaluated. On solid medium and after 20 days incubation the strain of Penicillium expansum was inhibited with AITC quantities highest than 50 mg, whereas the strain of A. parasiticus was sensible to AITC doses highest than 5 mg. The analysis of the risk assessment associated to the intake of several food classes treated with the bioactive compound AITC to prevent fungi spoilage evidenced that this product can be considered as safe due that the estimated daily intakes (EDIs) are always lower than the AITC Admissible Daily intake (ADI).

  15. Toxic effects of a horseradish extract and allyl isothiocyanate in the urinary bladder after 13-week administration in drinking water to F344 rats.

    PubMed

    Hasumura, Mai; Imai, Toshio; Cho, Young-Man; Ueda, Makoto; Hirose, Masao; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2011-01-01

    Subchronic toxicity of a horseradish extract (HRE), consisting mainly of a mixture of allyl isothiocyanate (AITC) and other isothiocyanates, was investigated with administration at concentrations of 0, 0.0125, 0.025 and 0.05% of HRE in drinking water for 13 weeks to male and female F344 rats. For comparison, treatment with 0.0425% of AITC was similarly performed. Body weight gain was reduced in the 0.05% HRE and AITC males as compared to the 0% controls, and the cause was considered at least partly related to decreased water consumption due to the acrid smell of the test substance and decreased food consumption. Serum biochemistry demonstrated increased urea nitrogen in 0.025 and 0.05% HRE and AITC males and 0.0125-0.05% HRE and AITC females, along with decreased total cholesterol in 0.0125-0.05% HRE females. On histopathological assessment, papillary/nodular hyperplasia of bladder mucosa was observed in 0.05% HRE and AITC males and females, in addition to simple mucosal hyperplasia found in all treated groups. Based on the above findings, no-observed-adverse-effect levels (NOAELs) were estimated to be below 0.0125% of HRE for both males and females, corresponding to 9.4 and 8.0 mg/kg body weight/day, respectively, and there appeared to be comparable toxicological properties of HRE to AITC, such as the inductive effect of significant proliferative lesions in the urinary bladder.

  16. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used as a component of food grade oil of mustard, in or on all raw agricultural commodities, when... food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1167 Allyl...

  17. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used as a component of food grade oil of mustard, in or on all raw agricultural commodities, when... food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1167 Allyl...

  18. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used as a component of food grade oil of mustard, in or on all raw agricultural commodities, when... food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1167 Allyl...

  19. Toxicity of allyl isothiocyanate and cinnamic aldehyde assessed using cultured human KB cells and yeast, Saccharomyces cervisiae

    SciTech Connect

    Mochida, K.; Gomyoda, M.; Fujita, T.; Yamagata, K.

    1988-03-01

    The main components of mustard and cinnamon oils are allyl isothiocyante (AIT) and cinnamic aldehyde (CA), substances used as food additives. The acute toxicity of these substances has been noted in rats (Jenner et al. 1964) and it is desirable to obtain information on the toxic effects of these compounds in vitro systems. The authors report the toxicity of AIT and CA on human KB cells and Saccharomyces cervisiae cultivated in culture systems.

  20. Allyl Isothiocyanate Inhibits the Proliferation of Renal Carcinoma Cell Line GRC-1 by Inducing an Imbalance Between Bcl2 and Bax

    PubMed Central

    Jiang, Zhongyong; Liu, Xi; Chang, Kai; Liu, Xia; Xiong, Jie

    2016-01-01

    Background Because of the insensitivity of renal cell carcinoma (RCC) to both chemotherapy and radiotherapy, surgery remains the primary approach for anticancer treatment. However, patients who do not receive timely diagnoses may not be suitable for surgery, especially in the late phase of tumor development. Thus, the discovery of novel effective treatment is of great importance. Allyl isothiocyanate (AITC) can inhibit the proliferation and induce apoptosis in many cancer cells. In this paper, we report on an in vitro study to determine the effect of AITC on proliferation and apoptosis of RCC line GRC-1. Material/Methods CCK8 assay was used to detect cell proliferation under gradient concentrations of AITC. Flow cytometry was employed to evaluate cell apoptosis. Real-time fluorescent polymerase chain reaction quantified mRNA levels of Bax and Bcl-2 genes. Western blotting was further employed for protein expression assay. Results AITC inhibited GRC-1 cell proliferation and induced cell apoptosis in a dose-dependent manner; it also elevated Bax while suppressing Bcl-2 gene expression at both mRNA and protein levels. In general, increasing concentration of AITC decreased Bcl-2/Bax ratio. Conclusions The inhibitory effect of AITC on GRC-1 cells is exerted via cell apoptosis, in which the imbalance of Bcl-2/Bax plays a significant role. PMID:27834342

  1. Role of the BaeSR two-component regulatory system in resistance of Escherichia coli O157:H7 to allyl isothiocyanate.

    PubMed

    Cordeiro, Roniele Peixoto; Krause, Denis Otto; Doria, Juan Hernandez; Holley, Richard Alan

    2014-09-01

    Allyl isothiocyanate (AITC) is an essential oil with antimicrobial activity against Escherichia coli O157:H7. The ability of E. coli O157:H7 to withstand inhibitory AITC concentrations and the role of the two-component BaeSR system as a defense mechanism against AITC was studied. Optimal conditions for AITC stability in an aqueous medium were 25 °C and pH 5. The minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations of AITC against wild-type E. coli O157:H7 were 51 and 412 ppm, respectively. After growing E. coli O157:H7 in stepwise increased concentrations of AITC, the strain withstood concentrations beyond its MIC (206 ppm), but resistance was reversed when AITC exposure was interrupted. Deletion of either the sensor or regulator genes, baeS or baeR, yielded cells only as resistant as the wild-type, but the complete deletion of the BaeSR system decreased AITC resistance of E. coli O157:H7 to half that of wild-type cells. This is the first demonstration that the ability of E. coli O157:H7 to withstand AITC challenge is compromised by the deletion of the BaeSR system. It also indicates that temporary adaptive bacterial resistance to repeated incremental AITC exposure may occur, but it is unlikely to restrict the importance of AITC as an antimicrobial against E. coli O157:H7.

  2. Elimination of Escherichia coli O157:H7 from Fermented Dry Sausages at an Organoleptically Acceptable Level of Microencapsulated Allyl Isothiocyanate

    PubMed Central

    Chacon, Pedro A.; Muthukumarasamy, Parthiban; Holley, Richard A.

    2006-01-01

    Four sausage batters (17.59% beef, 60.67% pork, and 17.59% pork fat) were inoculated with two commercial starter culture organisms (>7 log10 CFU/g Pediococcus pentosaceus and 6 log10 CFU/g Staphylococcus carnosus) and a five-strain cocktail of nonpathogenic variants of Escherichia coli O157:H7 to yield 6 to 7 log10 CFU/g. Microencapsulated allyl isothiocyanate (AIT) was added to three batters at 500, 750, or 1,000 ppm to determine its antimicrobial effects. For sensory analysis, separate batches with starter cultures and 0, 500, or 750 ppm microencapsulated AIT were produced. Sausages were fermented at ≤26°C and 88% relative humidity (RH) for 72 h. Subsequently sausages were dried at 75% RH and 13°C for at least 25 days. The water activity (aw), pH, and levels of starter cultures, E. coli O157:H7, and total bacteria were monitored during fermentation and drying. All sausages showed changes in the initial pH from 5.57 to 4.89 and in aw from 0.96 to 0.89 by the end of fermentation and drying, respectively. Starter culture numbers were reduced during sausage maturation, but there was no effect of AIT on meat pH reduction. E. coli O157:H7 was reduced by 6.5 log10 CFU/g in sausages containing 750 and 1,000 ppm AIT after 21 and 16 days of processing, respectively. E. coli O157:H7 numbers were reduced by 4.75 log10 CFU/g after 28 days of processing in treatments with 500 ppm AIT, and the organism was not recovered from this treatment beyond 40 days. During sensory evaluation, sausages containing 500 ppm AIT were considered acceptable although slightly spicy by panelists. PMID:16672446

  3. Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2015-06-01

    Control of Salmonella in poultry is a public health concern as salmonellosis is one of the most common foodborne diseases worldwide. This study aimed to screen the ability of 5 Salmonella serovars to degrade the mustard glucosinolate, sinigrin (by bacterial myrosinase) in Mueller-Hinton broth at 25 °C for 21 d and to reduce Salmonella on fresh chicken breasts by developing an edible 0.2% (w/v) κ-carrageenan/2% (w/v) chitosan-based coating containing Oriental mustard extract, allyl isothiocyanate (AITC), EDTA or their combinations. Individual Salmonella serovars degraded 50.2%-55.9% of the sinigrin present in 21 d. κ-Carrageenan/chitosan-based coatings containing 250 mg Oriental mustard extract/g or 50 μl AITC/g reduced the numbers of Salmonella on chicken breasts 2.3 log10 CFU/g at 21 d at 4 °C. However, when either mustard extract or AITC was combined with 15 mg/g EDTA in κ-carrageenan/chitosan-based coatings, Salmonella numbers were reduced 2.3 log10 CFU/g at 5 d and 3.0 log10 CFU/g at 21 d. Moreover, these treatments reduced numbers of lactic acid bacteria and aerobic bacteria by 2.5-3.3 log10 CFU/g at 21 d. κ-Carrageenan/chitosan coatings containing either 50 μl AITC/g or 250 mg Oriental mustard extract/g plus 15 mg EDTA/g have the potential to reduce Salmonella on raw chicken.

  4. Allyl astatide

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Syuch, Z.

    1988-11-01

    Allyl astatide was prepared by the interhalogen exchange method, by replacement of the bromine in allyl bromide with astatide ion. The most favorable conditions for the synthesis were found by variations of the method that uses hydrazine hydrate and sodium formaldehyde sulfoxylate as reductants. A by-product is formed by the reaction of allyl bromide with excited astatine-211 which forms by disintegration of radon-211. Allyl astatide was identified by radio gas-liquid chromatography. Its retention indexes on nonpolar and weakly polar liquid phases were found. The stability of this newly prepared astatine compound was studied. The extrapolated boiling point of allyl astatide is 129 +/- 2/sup 0/C.

  5. [Determination of isothiocyanates and related compounds in mustard extract and horseradish extract used as natural food additives].

    PubMed

    Uematsu, Yoko; Hirata, Keiko; Suzuki, Kumi; Iida, Kenji; Ueta, Tadahiko; Kamata, Kunihiro

    2002-02-01

    Amounts of isothiocyanates and related compounds in a mustard extract and a horseradish extract for food additive use were determined by GC, after confirmation of the identity of GC peaks by GC/MS. Amounts of allyl isothiocyanate, which included that of allyl thiocyanate, because most of the allyl thiocyanate detected in the sample was assumed to have been formed from allyl isothiocyanate during GC analysis, were 97.6% and 85.4%, in the mustard extract and the horseradish extract, respectively. Total amounts of the identified isothiocyanates in the mustard extract and the horseradish extract were 98.5% and 95.4%, respectively. Allyl cyanide, a degradation product of allyl isothiocyanate, was found in the mustard extract and the horseradish extract at the levels of 0.57% and 1.73%, respectively. beta-Phenylethyl cyanide, a possible degradation product of beta-phenylethyl isothiocyanate, and allyl sulfides were found in the horseradish extract, at the levels of 0.13% and 0.46%, respectively. Allylamine, which is another degradation product of allyl isothiocyanate, was determined after acetylation, and was found in the mustard extract and the horseradish extract at the levels of 8 micrograms/g and 67 micrograms/g, respectively.

  6. Allyl alcohol

    Integrated Risk Information System (IRIS)

    Allyl alcohol ; CASRN 107 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  8. A Potent and Site-Selective Agonist of TRPA1.

    PubMed

    Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari

    2015-12-23

    TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.

  9. Tetraalkylammonium uranyl isothiocyanates.

    PubMed

    Rowland, Clare E; Kanatzidis, Mercouri G; Soderholm, L

    2012-11-05

    Three tetraalkylammonium uranyl isothiocyanates, [(CH(3))(4)N](3)UO(2)(NCS)(5) (1), [(C(2)H(5))(4)N](3)UO(2)(NCS)(5) (2), and [(C(3)H(7))(4)N](3)UO(2)(NCS)(5) (3), have been synthesized from aqueous solution and their structures determined by single-crystal X-ray diffraction. All of the compounds consist of the uranyl cation equatorially coordinated to five N-bound thiocyanate ligands, UO(2)(NCS)(5)(3-), and charge-balanced by three tetraalkylammonium cations. Raman spectroscopy data have been collected on compounds 1-3, as well as on solutions of uranyl nitrate with increasing levels of sodium thiocyanate. By tracking the Raman signatures of thiocyanate, the presence of both free and bound thiocyanate is confirmed in solution. The shift in the Raman signal of the uranyl symmetric stretching mode suggests the formation of higher-order uranyl thiocyanate complexes in solution, while the solid-state Raman data support homoleptic isothiocyanate coordination about the uranyl cation. Presented here are the syntheses and crystal structures of 1-3, pertinent Raman spectra, and a discussion regarding the relationship of these isothiocyanates to previously described uranyl halide phases, UO(2)X(4)(2-).

  10. DPI-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. I. A mixed opioid agonist with potent antinociceptive activity.

    PubMed

    Gengo, Peter J; Pettit, Hugh O; O'Neill, Scott J; Wei, Ke; McNutt, Robert; Bishop, Michael J; Chang, Kwen-Jen

    2003-12-01

    Compound (+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide (DPI-3290), is one of a series of novel centrally acting agents with potent antinociceptive activity that binds specifically and with high affinity to opioid receptors. In saturation equilibrium binding studies performed at 25 degrees C using membranes from rat brain or guinea pig cerebellum, the Ki values measured for DPI-3290 at delta-, mu-, and kappa-opioid receptors were 0.18 +/- 0.02, 0.46 +/- 0.05, and 0.62 +/- 0.09 nM, respectively. In vas deferens isolated from laboratory mice, DPI-3290 decreased electrically induced tension development in a concentration-dependent manner with corresponding IC50 values of 1.0 +/- 0.3, 6.2 +/- 2.0, and 25.0 +/- 3.3 nM at delta-, mu-, and kappa-receptors, respectively. The activity of DPI-3290 in isolated vas deferens tissue was approximately 20,000, 175.8, and 1500 times more efficacious than morphine, and 492, 2.5, and 35 times more efficacious than fentanyl at delta-, mu-, and kappa-receptors, respectively. In ileal strips isolated from guinea pigs, DPI-3290 inhibited tension development with a corresponding IC50 value of 3.4 +/- 1.6 nM at mu-opioid receptors and 6.7 +/- 1.6 nM at kappa-opioid receptors. Intravenous administration of 0.05 +/- 0.007 mg/kg DPI-3290 produced a 50% antinociceptive response in rats. The antinociceptive properties of DPI-3290 were blocked by naloxone (0.5 mg/kg s.c.). Compared with morphine, this study demonstrated that DPI-3290 is more potent and elicited a similar magnitude of antinociceptive activity in the rat, actions mediated by its mixed opioid receptor agonist activity. The marked antinociceptive activity of DPI-3290 will likely provide a means for relieving severe pain in patients that require analgesic treatment.

  11. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  12. Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice.

    PubMed

    Masamoto, Yukiko; Kawabata, Fuminori; Fushiki, Tohru

    2009-05-01

    The main aim of this study was to elucidate whether thermosensitive transient receptor potential channels (thermoTRPs) play a role in controlling autonomic thermoregulation. We investigated whether the activation of certain thermoTRPs, TRPV1, TRPV3, TRPM8, and TRPA1, would induce autonomic thermoregulation by administering chemical agonists derived from spices and aroma chemicals of these channels to anesthetized mice. We discovered the following: Capsaicin, a TRPV1 agonist, enhanced thermogenesis and heat diffusion; thymol and ethyl vanillin, TRPV3 agonists, did not have any effect on thermogenesis or heat diffusion; menthol and 1,8-cineole, TRPM8 agonists, enhanced thermogenesis; and allyl isothiocyanate and cinnamaldehyde, TRPA1 agonists, enhanced thermogenesis and inhibited heat diffusion. These results suggest that these thermoTRP agonists derived from spices and aroma chemicals modulate autonomic thermoregulation, except for TRPV3 agonists. Our findings suggest the possibility that each thermoTRP is a key sensor inducing reasonable autonomic thermoregulation according to its own activated temperature range.

  13. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates.

    PubMed

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25-5 μg mL(-1)) compared to AITC (MIC of 50-200 μg mL(-1)). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC.

  14. Regioselective synthesis of novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole and 2,2‧-(1,3-phenylene)bis(3-substituted-2-imino-4-phenyl-3H-thiazole) derivatives as antibacterial agents

    NASA Astrophysics Data System (ADS)

    Abbasi Shiran, Jafar; Yahyazadeh, Asieh; Mamaghani, Manouchehr; Rassa, Mehdi

    2013-05-01

    Several novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole derivatives were synthesized by the reaction of allyl-thioureas and 2-bromoacetophenone. We also report the synthesis of bis-allyl-3H thiazoles using the reaction of various isothiocyanates and 1,3-phenylenediamine. The structures of all compounds were characterized by spectral and elemental analysis. Most of the synthesized compounds exhibited efficient antibacterial activities against Salmonella enterica, Micrococcus luteus, Bacillus subtilis and Pseudomonas aeruginosa.

  15. Interactions between delta and mu opioid agonists in assays of schedule-controlled responding, thermal nociception, drug self-administration, and drug versus food choice in rhesus monkeys: studies with SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and heroin.

    PubMed

    Stevenson, Glenn W; Folk, John E; Rice, Kenner C; Negus, S Stevens

    2005-07-01

    Interactions between delta and mu opioid agonists in rhesus monkeys vary as a function of the behavioral endpoint. The present study compared interactions between the delta agonist SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist heroin in assays of schedule-controlled responding, thermal nociception, and drug self-administration. Both SNC80 (ED50 = 0.43 mg/kg) and heroin (ED50 = 0.088 mg/kg) produced a dose-dependent and complete suppression of response rates in the assay of schedule-controlled responding. Heroin also produced thermal antinociception (ED(5 degrees C) = 0.18 mg/kg) and maintained drug self-administration under both a fixed ratio schedule [dose-effect curve peak at 0.0032 mg/kg/injection (inj)] and under a food versus heroin concurrent-choice schedule (ED50 = 0.013 mg/kg/inj), whereas SNC80 did not produce thermal antinociception or maintain self-administration. Fixed ratio mixtures of SNC80 and heroin (1.6:1, 4.7:1, and 14:1 SNC80/heroin) produced additive effects in the assay of schedule-controlled responding and superadditive effects in the assay of thermal nociception. Also, SNC80 did not enhance the reinforcing effects of heroin, indicating that mixtures of SNC80 and heroin produced additive or infra-additive reinforcing effects. These results provide additional evidence to suggest that delta/mu interactions depend on the experimental endpoint and further suggest that delta agonists may selectively enhance the antinociceptive effects of mu agonists while either not affecting or decreasing the sedative and reinforcing effects of mu agonists.

  16. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve.

    PubMed

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC50 values of 1.2 and 1.5mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC50=0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  17. Long-lasting facilitation of respiratory rhythm by treatment with TRPA1 agonist, cinnamaldehyde.

    PubMed

    Tani, Mariho; Yazawa, Itaru; Ikeda, Keiko; Kawakami, Kiyoshi; Onimaru, Hiroshi

    2015-08-01

    The transient receptor potential (TRP) channels are widely distributed in the central nervous system (CNS) and peripheral nervous system. We examined the effects of TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and allyl isothiocyanate) on respiratory rhythm generation in brainstem-spinal cord preparations from newborn rats [postnatal days 0-3 (P0-P3)] and in in situ-perfused preparations from juvenile rats (P11-P13). Preparations were superfused with modified Krebs solution at 25-26°C, and activity of inspiratory C4 ventral root (or phrenic nerve) was monitored. In the newborn rat, an in vitro preparation of cinnamaldehyde (0.5 mM) induced typically biphasic responses in C4 rate: an initial short increase and subsequent decrease, then a gradual recovery of rhythm during 15 min of bath application. After washout, the respiratory rhythm rate further increased, remaining 200% of control for >120 min, indicating long-lasting facilitation. Allyl isothiocyanate induced effects similar to those of cinnamaldehyde. The long-lasting facilitation of respiratory rhythm was partially antagonized by the TRPA1 antagonist HC-030031 (10 μM). We obtained similar long-lasting facilitation in an in situ-perfused reparation from P11-P13 rats. On the basis of results from transection experiments of the rostral medulla and whole-cell recordings from preinspiratory neurons in the parafacial respiratory group (pFRG), we suggest that the rostral medulla, including the pFRG, is important to the induction of long-lasting facilitation. A histochemical analysis demonstrated a wide distribution of TRPA1 channel-positive cells in the reticular formation of the medulla, including the pFRG. Our findings suggest that TRPA1 channel activation could induce long-lasting facilitation of respiratory rhythm and provide grounds for future study on the roles of TRPA1 channels in the CNS.

  18. Long-lasting facilitation of respiratory rhythm by treatment with TRPA1 agonist, cinnamaldehyde

    PubMed Central

    Tani, Mariho; Yazawa, Itaru; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    The transient receptor potential (TRP) channels are widely distributed in the central nervous system (CNS) and peripheral nervous system. We examined the effects of TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and allyl isothiocyanate) on respiratory rhythm generation in brainstem-spinal cord preparations from newborn rats [postnatal days 0–3 (P0–P3)] and in in situ-perfused preparations from juvenile rats (P11–P13). Preparations were superfused with modified Krebs solution at 25–26°C, and activity of inspiratory C4 ventral root (or phrenic nerve) was monitored. In the newborn rat, an in vitro preparation of cinnamaldehyde (0.5 mM) induced typically biphasic responses in C4 rate: an initial short increase and subsequent decrease, then a gradual recovery of rhythm during 15 min of bath application. After washout, the respiratory rhythm rate further increased, remaining 200% of control for >120 min, indicating long-lasting facilitation. Allyl isothiocyanate induced effects similar to those of cinnamaldehyde. The long-lasting facilitation of respiratory rhythm was partially antagonized by the TRPA1 antagonist HC-030031 (10 μM). We obtained similar long-lasting facilitation in an in situ-perfused reparation from P11–P13 rats. On the basis of results from transection experiments of the rostral medulla and whole-cell recordings from preinspiratory neurons in the parafacial respiratory group (pFRG), we suggest that the rostral medulla, including the pFRG, is important to the induction of long-lasting facilitation. A histochemical analysis demonstrated a wide distribution of TRPA1 channel-positive cells in the reticular formation of the medulla, including the pFRG. Our findings suggest that TRPA1 channel activation could induce long-lasting facilitation of respiratory rhythm and provide grounds for future study on the roles of TRPA1 channels in the CNS. PMID:26108952

  19. Antiasthmatic effects of onion extracts--detection of benzyl- and other isothiocyanates (mustard oils) as antiasthmatic compounds of plant origin.

    PubMed

    Dorsch, W; Adam, O; Weber, J; Ziegeltrum, T

    1984-12-15

    Previous studies showed the inhibitory effects of crude ethanolic onion extracts (COE) on allergic skin reactions in man as well as on allergen-induced bronchial asthma in man and guinea-pigs. Work is in progress in order to identify both the mode of action of COE and the active substance(s). The present study describes asthma-protective effects of isothiocyanates. Groups of at least 5 guinea-pigs sensitized to ovalbumin were challenged twice (time 0 and 10 min) by the inhalation of ovalbumin 30 min after oral treatment with increasing doses of the agent tested or control solutions. Bronchial obstruction (BO) was measured by whole body plethysmography. Chloroform extracts of onions showed similar protective effects on BO as COE. The water-soluble fraction of COE was inactive. Benzyl-isothiocyanate (BITC) was identified as one component of onion lipids by combined gas chromatography/mass spectrometry. BITC inhibited BO in a dose-dependent fashion: 150 mg/kg: 89%; 75 mg/kg: 76%; 30 mg/kg: 66%; 15 mg/kg: 49%. Ethyl-isothiocyanate and allyl-isothiocyanate showed similar effects; p-hydroxy-benzyl-isothiocyanate, a very unstable mustard oil, was ineffective. Additional experiments showed no antagonistic effects of COE on histamine- or acetylcholine-induced BO. The antiasthmatic effects of onions and - perhaps - other plants may be mediated at least in part by isothiocyanates.

  20. Signal transduction activated by the cancer chemopreventive isothiocyanates: cleavage of BID protein, tyrosine phosphorylation and activation of JNK

    PubMed Central

    Xu, K; Thornalley, P J

    2001-01-01

    Phenethyl isothiocyanate and allyl isothiocyanate induce apoptosis of human leukaemia HL60 cells in vitro. Apoptosis was associated with cleavage of p22 BID protein to p15, p13 and p11 fragments and activation of JNK and tyrosine phosphorylation (18 kDa and 45 kDa proteins). All these effects and apoptosis were prevented by exogenous glutathione (15 mM). Protein tyrosine phosphatase activity was unchanged. The general caspase inhibitor Z-VAD-fmk prevented apoptosis but not JNK activation – excluding a role for caspases in JNK activation, whereas curcumin prevented JNK activation but only delayed apoptosis. This suggests that in isothiocyanate-induced apoptosis, the caspase pathway has an essential role, the JNK pathway a supporting role, and inhibition of protein tyrosine phosphatases is not involved. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11237388

  1. Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: insight to the mode of action

    PubMed Central

    Nowicki, Dariusz; Rodzik, Olga; Herman-Antosiewicz, Anna; Szalewska-Pałasz, Agnieszka

    2016-01-01

    Production of Shiga toxins by enterohemorrhagic Escherichia coli (EHEC) which is responsible for the pathogenicity of these strains, is strictly correlated with induction of lambdoid bacteriophages present in the host’s genome, replication of phage DNA and expression of stx genes. Antibiotic treatment of EHEC infection may lead to induction of prophage into a lytic development, thus increasing the risk of severe complications. This, together with the spread of multi-drug resistance, increases the need for novel antimicrobial agents. We report here that isothiocyanates (ITC), plant secondary metabolites, such as sulforaphane (SFN), allyl isothiocyanate (AITC), benzyl isothiocynanate (BITC), phenyl isothiocyanate (PITC) and isopropyl isothiocyanate (IPRITC), inhibit bacterial growth and lytic development of stx-harboring prophages. The mechanism underlying the antimicrobial effect of ITCs involves the induction of global bacterial stress regulatory system, the stringent response. Its alarmone, guanosine penta/tetraphosphate ((p)ppGpp) affects major cellular processes, including nucleic acids synthesis, which leads to the efficient inhibition of both, prophage induction and toxin synthesis, abolishing in this way EHEC virulence for human and simian cells. Thus, ITCs could be considered as potential therapeutic agents in EHEC infections. PMID:26922906

  2. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation

    PubMed Central

    Hu, Ping; Hollister, Emily B.; Somenahally, Anilkumar C.; Hons, Frank M.; Gentry, Terry J.

    2015-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  3. Contractile effect of TRPA1 receptor agonists in the isolated mouse intestine.

    PubMed

    Penuelas, Angelica; Tashima, Kimihito; Tsuchiya, Shizuko; Matsumoto, Kenjiro; Nakamura, Tomonori; Horie, Syunji; Yano, Shingo

    2007-12-08

    TRPA1 is a member of the transient receptor potential (TRP) channel family expressed in sensory neurons. The present study focused on the effects of TRPA1 activation on contractile responses in isolated mouse intestine preparations. The jejunum, ileum, and proximal and distal colon were surgically isolated from male ddY mice. Intestinal motility was recorded as changes in isotonic tension. TRPA1, TRPM8, and TRPV1 expressions were examined by reverse transcription-polymerase chain reaction (RT-PCR). A TRPA1 agonist allyl isothiocyanate (AITC) dose-dependently induced contractions in the proximal and distal colon, whereas in the jejunum and ileum, even 100 muM AITC caused very little contraction. Likewise, a TRPA1 and TRPM8 agonist icilin, a TRPA1 agonist allicin, and a TRPV1 agonist capsaicin induced contractions in the colon. However, a TRPM8 agonist menthol induced long-lasting relaxation in the colon. Repeated exposure to AITC produced desensitization of its own contraction in the colon. Moreover, contractions induced by AITC generate cross-desensitization with icilin and capsaicin. Tetrodotoxin completely abolished AITC-induced contractions in the colon, whereas atropine significantly attenuated AITC-induced contractions in the distal colon, but not in the proximal colon. Menthol-induced relaxation in the colon was not inhibited by tetrodotoxin and atropine. RT-PCR analysis revealed the expression of TRPA1 and TRPV1, but not TRPM8, throughout the mouse intestine. These results suggest that TRPA1, but not TRPM8, are functionally expressed in the enteric nervous system throughout the mouse intestine on neurons that may also co-express TRPV1, yet the contractile responses to TRPA1 activation differ depending on their location along the intestine.

  4. Definition of two agonist types at the mammalian cold-activated channel TRPM8

    PubMed Central

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. DOI: http://dx.doi.org/10.7554/eLife.17240.001 PMID:27449282

  5. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    EPA Science Inventory

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  6. DPI-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A mixed opioid agonist with potent antinociceptive activity and limited effects on respiratory function.

    PubMed

    Gengo, Peter J; Pettit, Hugh O; O'Neill, Scott J; Su, Ying Fu; McNutt, Robert; Chang, Kwen-Jen

    2003-12-01

    Allyl-2,5-dimethyl-1-piperazines have been of interest as analgesic agents for the management of moderate-to-severe pain. In this study, we compared the antinociceptive properties and respiratory depressant activity of one such agent, (+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide (DPI-3290), with those of established narcotic analgesics, morphine and fentanyl. Intravenous administration of DPI-3290 in conscious laboratory rats increased antinociception in a dose-dependent manner with a corresponding ED(50) value of 0.05 +/- 0.0072 mg/kg. Simultaneous measurement of arterial blood gas in animals treated with DPI-3290 demonstrated dose-dependent increases in pCO2 with an ED(50) value of 0.91 +/- 0.22 mg/kg. In comparison, morphine and fentanyl increased antinociception in rats with ED(50) values of 2.01 +/- 0.0005 and 0.0034 +/- 0.00024 mg/kg, respectively, and the ED(50) value for morphine-induced changes in pCO2 was 4.23 +/- 0.72 mg/kg, whereas the ED(50) value for fentanyl-induced changes in pCO2 was 0.0127 +/- 0.0035 mg/kg. A separate series of experiments were designed to examine the effects of DPI-3290 on mu-opioid receptor induced antinociception and hypercapnia. Intravenous bolus doses of DPI-3290 that ranged from 0.2 to 1.0 mg/kg had no effect on antinociception mediated by alfentanil (2 microg/kg/min i.v.) but reduced hypercapnia by approximately 50%. Results from these studies demonstrate the equivalent antinociceptive efficacy of DPI-3290, morphine, and fentanyl but dramatic differences in the hypercapnia that antinociceptive doses of these drugs produce. When measured simultaneously, DPI-3290 had an 18.2-fold difference in the ratio comparing the ED(50) value for antinociception with the ED(50) value for changes in pCO2; this ratio was 2.1 for morphine and 3.7 for fentanyl. Furthermore, DPI-3290 reduced the alfentanil-mediated hypercapnia without any effect on antinociception

  7. Intercepted Decarboxylative Allylations of Nitroalkanoates

    PubMed Central

    Schmitt, Meghan; Grenning, Alexander J.

    2012-01-01

    Using palladium-catalyzed decarboxylation, several cascade reactions of allyl and prenyl nitroalkanoates that lead to nitro-containing chemical building blocks are described. A nitronate Michael addition/Tsuji-Trost allylation cascade was developed, leading to functionally dense chemical building blocks. Likewise, a Tsuji-Trost/decarboxylative protonation sequence was developed for the synthesis of orthogonally functionalized 2° nitroalkanes. The latter method provides rapid access to the indolizidine core. PMID:22942479

  8. Intercepted Decarboxylative Allylations of Nitroalkanoates.

    PubMed

    Schmitt, Meghan; Grenning, Alexander J; Tunge, Jon A

    2012-08-22

    Using palladium-catalyzed decarboxylation, several cascade reactions of allyl and prenyl nitroalkanoates that lead to nitro-containing chemical building blocks are described. A nitronate Michael addition/Tsuji-Trost allylation cascade was developed, leading to functionally dense chemical building blocks. Likewise, a Tsuji-Trost/decarboxylative protonation sequence was developed for the synthesis of orthogonally functionalized 2° nitroalkanes. The latter method provides rapid access to the indolizidine core.

  9. Palladium-catalyzed allylation of acidic and less nucleophilic anilines using allylic alcohols directly.

    PubMed

    Hsu, Yi-Chun; Gan, Kim-Hong; Yang, Shyh-Chyun

    2005-10-01

    The direct activation of C-O bonds in allylic alcohols by palladium complexes has been accelerated by carrying out the reactions in the presence of titanium(IV) isoproxide and 4 A molecular sieves. The acidic and less nucleophilic anilines such as diphenylamine, phenothiazine, 4-cyanoaniline, and nitroanilines are efficiently allylated under palladium catalysis using allylic alcohols as allylating reagents.

  10. Indium-Mediated Stereoselective Allylation.

    PubMed

    Kumar, Dinesh; Vemula, Sandeep R; Balasubramanian, Narayanaganesh; Cook, Gregory R

    2016-10-04

    Stereoselective indium-mediated organic reactions have enjoyed tremendous growth in the last 25 years. This is in part due to the insensitivity of allylindium to moisture, affording facile and practical reaction conditions coupled with outstanding functional group tolerance and minimal side reactions. Despite the plethora of articles about allylindium, there is much yet to be discovered and exploited for efficient and sustainable synthesis. In this Account, we describe indium-mediated synthetic methods for the preparation of chiral amines with the aim to present a balance of practical method development, novel asymmetric chemistry, and mechanistic understanding that impact multiple chemical and materials science disciplines. In 2005, we demonstrated the indium-mediated allylation of chiral hydrazones with complete diastereoselectivity (>99:1) and quantitative yields. Further, we revealed the first example of enantioselective indium-mediated allylation of hydrazones using catalytic (R)-3,3'-bis(trifluoromethyl)-BINOL ligands to afford homoallylic amines with high enantioselectivity. The use of enantiopure perfluoroalkylsulfonate BINOLs greatly improved the indium-mediated allylation of N-acylhydrazones with exquisite enantiocontrol (99% yield, 99% ee). This laboratory has also investigated indium-mediated asymmetric intramolecular cyclization in the presence of amino acid additives to deliver biologically relevant chromanes with excellent diastereoselectivity (dr >99:1). The effect of amino acid additives (N-Boc-glycine) was further investigated during the indium-mediated allylation of isatins with allyl bromide to yield homoallylic alcohols in excellent yields in a short time with a wide range of functional group tolerance. Critical mechanistic insight was gained, and evidence suggests that the additive plays two roles: (1) to increase the rate of formation of allylindium from allyl bromide and In(0) and (2) to increase the nucleophilicity of the allylindium

  11. Palladium-catalyzed amination of allyl alcohols.

    PubMed

    Ghosh, Raju; Sarkar, Amitabha

    2011-10-21

    An efficient catalytic amination of aryl-substituted allylic alcohols has been developed. The complex [(η(3)-allyl)PdCl](2) modified by a bis phosphine ligand, L, has been used as catalyst in the reaction that afforded a wide range of allyl amines in good to excellent yield under mild conditions.

  12. Allyl-isatin suppresses cell viability, induces cell cycle arrest, and promotes cell apoptosis in hepatocellular carcinoma HepG2 cells.

    PubMed

    Bian, Weihua; An, Yukuan; Qu, Huiqing; Yang, Yue; Yang, Junhou; Xu, Yanyan

    2016-06-01

    The anticancer effect of the newly synthesized isatin derivative, N-allyl-isatin (Allyl-I), was evaluated in vitro with human hepatocellular carcinoma HepG2 cells. Cell viability was detected by cell counting kit-8 (CCK8) assay. Acridine orange (AO)/ethidium bromide (EB) double staining was used to observe the cell morphology. Flow cytometry was used to assess the effects of Allyl-I on the cell cycle, apoptosis rate, and mitochondrial membrane potential (MMP). Western blot analysis was performed to detect the influence of Ally1-I on the expression of cytochrome c (cyt c), Bax, Bcl-2, and cleaved caspase-3. Allyl-I significantly inhibited HepG2 cell viability in a time- and dose-dependent manner. Allyl-I can induce cell cycle arrest in HepG2 cells at the G2/M phase. Apoptotic nuclear morphological changes were observed after AO/EB double staining. Fluorescein isothiocyanate-conjugated Annexin V (Annexin V-FITC) and propidium iodide (PI) double staining showed that the apoptotic rates significantly increased in the presence of Allyl-I. Rhodamine 123 staining indicated that Allyl-I can decrease the MMP. Allyl-I also altered the expression of mitochondrial apoptosis-related proteins. Protein levels of cyt c and cleaved caspase-3 were upregulated following Allyl-I treatment. By contrast, the Bcl-2/Bax ratio decreased. Results suggest that Allyl-I suppresses cell viability, induces cell cycle arrest, and promotes cell apoptosis in HepG2 cells. Furthermore, the induction of apoptosis might be correlated with the mitochondrial pathway.

  13. Iron-Catalyzed Allylic Amination Directly from Allylic Alcohols.

    PubMed

    Emayavaramban, Balakumar; Roy, Moumita; Sundararaju, Basker

    2016-03-14

    Allylic amination, directly from alcohols, has been demonstrated without any Lewis acid activators using an efficient and regiospecific molecular iron catalyst. Various amines and alcohols were employed and the reaction proceeded through the oxidation/reduction (redox) pathway. A direct one-step synthesis of common drugs, such as cinnarizine and nafetifine, was exhibited from cinnamyl alcohol that produced water as side product.

  14. Assessment of DNA Damage and Repair in Adults Consuming AllylIsothiocyanate or Brassica Vegetables

    PubMed Central

    Charron, Craig S.; Clevidence, Beverly A.; Albaugh, George A.; Kramer, Matthew H.; Vinyard, Bryan T.; Milner, John A.; Novotny, Janet A.

    2012-01-01

    Allylisothiocyanate (AITC) is a dietary component with possible anti-cancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n=46) consumed AITC, AITC-rich vegetables (mustard and cabbage), or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells (PBMCs) was assessed by single cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten day intake of neither AITC nor mustard/cabbage(M/C) resulted in statistically significant differences in DNA strand breaks (LS mean % DNA in tail ± SEM: 4.8 ± 0.6 for control, 5.7 ± 0.7 for AITC, 5.3 ± 0.6 for M/C) or urinary 8-oxodG (LS mean µg 8-oxodG/g creatinine ± SEM: 2.95 ± 0.09 for control, 2.88 ± 0.09 for AITC, 3.06 ± 0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3h post-consumption (LS mean % DNA in tail ± SEM: 3.2 ± 0.7 for control, 8.3 ± 1.7 for AITC, 8.0 ± 1.7 for M/C), and this difference disappeared at 6h (4.2 ± 0.9 for control, 5.7 ± 1.2 for AITC, 5.5 ± 1.2 for M/C). Genotypes for GSTM1, GSTT1, and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair. PMID:22902324

  15. The TRPA1 Activator Allyl Isothiocyanate (AITC) Contracts Human Jejunal Muscle: Pharmacological Analysis.

    PubMed

    Sandor, Zsolt; Dekany, Andras; Kelemen, Dezsö; Bencsik, Timea; Papp, Robert; Bartho, Lorand

    2016-09-01

    The contractile effect of AITC (300 μM) on human jejunal longitudinal strips was inhibited by the TRPA1 antagonist HC 030031 and atropine or scopolamine, but was insensitive to tetrodotoxin, purinoceptor antagonists or capsaicin desensitization. It is concluded that TRPA1 activation stimulates a cholinergic mechanism in a tetrodotoxin-resistant manner.

  16. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  17. Effects of transient receptor potential (TRP) channel agonists and antagonists on slowly adapting type II mechanoreceptors in the rat sinus hair follicle.

    PubMed

    Cahusac, Peter M B

    2009-12-01

    The possible functional role of transient receptor potential (TRP) channels was investigated by testing various TRP agonists and antagonists in an isolated rat sinus hair follicle preparation. Extracellular recordings from slowly adapting type II mechanoreceptor units were made. The antagonist capsazepine depressed spontaneous and mechanically evoked activity, with an IC(50) of 82 microM. In one-third of units, capsazepine caused a selective depression of mechanically evoked firing, such that the existing spontaneous firing was interrupted by an absence of activity during the mechanical stimulus. The broad spectrum TRP blocker ruthenium red (30 microM) had inconsistent effects, although in some units a delayed onset (following wash) bursting and paroxysmal firing ensued. The agonist icilin (50-100 microM) had an excitatory effect on spontaneous firing, and (-)-menthol (200 microM) had inconsistent effects. Cinnamaldehyde (1-2 mM) depressed all types of activity equally, mechanically evoked and spontaneous. Camphor (0.5-2 mM) also depressed all types of activity, although it had a preferential effect on spontaneous activity. Capsaicin (1-10 microM) and allyl isothiocyanate (50-100 microM) had no clear effects. These results rule out any role for TRPA1 and TRPV1 channels in mechanotransduction processes of slowly adapting type II mechanoreceptors.

  18. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  19. Regioselective hydroformylation of allylic alcohols.

    PubMed

    Lightburn, Thomas E; De Paolis, Omar A; Cheng, Ka H; Tan, Kian L

    2011-05-20

    A highly regioselective hydroformylation of allylic alcohols is reported toward the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen.

  20. Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa

    PubMed Central

    Son, Hee Jin; Kweon, Hae-Jin; Kim, Jung Tae; Kim, Yiseul; Shim, Jaewon; Suh, Byung-Chang; Rhyu, Mee-Ra

    2015-01-01

    Transient receptor potential ankyrin1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) are members of the TRP superfamily of structurally related, nonselective cation channels and mediators of several signaling pathways. Previously, we identified methyl syringate as an hTRPA1 agonist with efficacy against gastric emptying. The aim of this study was to find hTRPA1 and/or hTRPV1 activators in Agastache rugosa (Fisch. et Meyer) O. Kuntze (A.rugosa), commonly known as Korean mint to improve hTRPA1-related phenomena. An extract of the stem and leaves of A.rugosa (Labiatae) selectively activated hTRPA1 and hTRPV1. We next investigated the effects of commercially available compounds found in A.rugosa (acacetin, 4-allylanisole, p-anisaldehyde, apigenin 7-glucoside, L-carveol, β-caryophyllene, trans-p-methoxycinnamaldehyde, methyl eugenol, pachypodol, and rosmarinic acid) on cultured hTRPA1- and hTRPV1-expressing cells. Of the ten compounds, L-carveol, trans-p-methoxycinnamaldehyde, methyl eugenol, 4-allylanisole, and p-anisaldehyde selectively activated hTRPA1, with EC50 values of 189.1±26.8, 29.8±14.9, 160.2±21.9, 1535±315.7, and 546.5±73.0 μM, respectively. The activities of these compounds were effectively inhibited by the hTRPA1 antagonists, ruthenium red and HC-030031. Although the five active compounds showed weaker calcium responses than allyl isothiocyanate (EC50=7.2±1.4 μM), our results suggest that these compounds from the stem and leaves of A.rugosa are specific and selective agonists of hTRPA1. PMID:25978436

  1. Broad spectrum antibacterial activity of a mixture of isothiocyanates from nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix).

    PubMed

    Conrad, A; Biehler, D; Nobis, T; Richter, H; Engels, I; Biehler, K; Frank, U

    2013-02-01

    Isothiocyanates have been reported to exert antimicrobial activity. These compounds are found in a licensed native preparation of nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix) which is used for treatment of upper respiratory and urinary tract infections. The aim of our investigation was to assess the antimicrobial activity of a mixture of the contained benzyl-, allyl-, and phenylethyl- isothiocyanates against clinically important bacterial and fungal pathogens including antimicrobial resistant isolates. Susceptibility testing was performed by agar-dilution technique. Isothiocyanates were mixed in proportions identical to the licensed drug. Minimum inhibitory- and minimum bactericidal concentrations were assessed. The Minimum inhibitory concentration90 was defined as the concentration which inhibited 90% of the microbial species tested. H. influenzae, M. catarrhalis, S. marcescens, P. vulgaris, and Candida spp. were found to be highly susceptible, with minimum inhibitory concentration90 -values ranging between ≤0.0005% and 0.004% (v/v) of total ITC. Intermediate susceptibilities were observed for S. aureus, S. pyogenes, S. pneumoniae, K. pneumoniae, E. coli and P. aeruginosa, with Minimum inhibitory concentration90 -values ranging between 0.004% and 0.125% (v/v), but with elevated Minimum bactericidal concentrations90-values (2-7 dilution steps above Minimum inhibitory concentration90). Low susceptibilities were determined for viridans streptococci and enterococci. Interestingly, both resistant and non-resistant bacteria were similarly susceptible to the test preparation.

  2. O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system

    EPA Science Inventory

    Allylic ethers were synthesized in water using magnetically recoverable heterogeneous Pd catalyst via O-allylation of phenols with allylic acetates under ambient conditions. Aqueous reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling, and ...

  3. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1

    PubMed Central

    2012-01-01

    Background Essential oils are often used in alternative medicine as analgesic and anti-inflammatory remedies. However, the specific compounds that confer the effects of essential oils and the molecular mechanisms are largely unknown. TRPM8 is a thermosensitive receptor that detects cool temperatures and menthol whereas TRPA1 is a sensor of noxious cold. Ideally, an effective analgesic compound would activate TRPM8 and inhibit TRPA1. Results We screened essential oils and fragrance chemicals showing a high ratio of human TRPM8-activating ability versus human TRPA1-activating ability using a Ca2+-imaging method, and identified 1,8-cineole in eucalyptus oil as particularly effective. Patch-clamp experiments confirmed that 1,8-cineole evoked inward currents in HEK293T cells expressing human TRPM8, but not human TRPA1. In addition, 1,8-cineole inhibited human TRPA1 currents activated by allyl isothiocyanate, menthol, fulfenamic acid or octanol in a dose-dependent manner. Furthermore, in vivo sensory irritation tests showed that 1,8-cineole conferred an analgesic effect on sensory irritation produced by TRPA1 agonists octanol and menthol. Surprisingly, 1,4-cineole, which is structurally similar and also present in eucalyptus oil, activated both human TRPM8 and human TRPA1. Conclusions 1,8-cineole is a rare natural antagonist of human TRPA1 that has analgesic and anti-inflammatory effects possibly due to its inhibition of TRPA1. PMID:23192000

  4. Palladium-catalyzed substitution of allylic fluorides.

    PubMed

    Hazari, Amaruka; Gouverneur, Véronique; Brown, John M

    2009-01-01

    As unusual substrates for the Tsuji-Trost allylation reaction, allylic fluorides are responsive to palladium-catalyzed substitution. Their activity towards this reaction fits in the series OCO(2)Me>OBz>F>OAc. The classic stereoretention mechanism that involves sequential inversions does not operate in this case. Several distinct cases are considered.

  5. Enantioselective Conjugate Allylation of Cyclic Enones

    PubMed Central

    Taber, Douglass F.; Gerstenhaber, David A.; Berry, James F.

    2011-01-01

    Enantioselective organocatalytic 1,2-allylation of a cyclic enone followed by anionic oxy-Cope rearrangement delivered the ketone as a mixture of diastereomers. This appears to be a general method for the net enantioselective conjugate allylation of cyclic enones. PMID:21830779

  6. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones.

    PubMed

    Tong, Guanghu; Zhu, Bo; Lee, Richmond; Yang, Wenguo; Tan, Davin; Yang, Caiyun; Han, Zhiqiang; Yan, Lin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared.

  7. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria

    PubMed Central

    Rosengarten, Jamila F.; de Graaf, Rob M.; Jetten, Mike S. M.

    2016-01-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  8. Human TRPM8 and TRPA1 pain channels, including a gene variant with increased sensitivity to agonists (TRPA1 R797T), exhibit differential regulation by SRC-tyrosine kinase inhibitor.

    PubMed

    Morgan, Kevin; Sadofsky, Laura R; Crow, Christopher; Morice, Alyn H

    2014-08-06

    TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation.

  9. Copper-Catalyzed Enantioselective Allyl-Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/N-Heterocyclic Carbene Chiral Ligand.

    PubMed

    Yasuda, Yuto; Ohmiya, Hirohisa; Sawamura, Masaya

    2016-08-26

    Copper-catalyzed enantioselective allyl-allyl coupling between allylboronates and either Z-acyclic or cyclic allylic phosphates using a new chiral N-heterocyclic carbene ligand, bearing a phenolic hydroxy, is reported. This reaction occurs with exceptional SN 2'-type regioselectivities and high enantioselectivities to deliver chiral 1,5-diene derivatives with a tertiary stereogenic center at the allylic/homoallylic position.

  10. Oxidation state, aggregation, and heterolytic dissociation of allyl indium reagents.

    PubMed

    Koszinowski, Konrad

    2010-05-05

    Solutions of allyl indium reagents formed in the reactions of indium with allyl bromide and allyl iodide, respectively, in N,N-dimethylformamide, tetrahydrofuran, and water were analyzed by a combination of electrospray-ionization mass spectrometry, temperature-dependent (1)H NMR spectroscopy, and electrical conductivity measurements. Additional mass spectrometric experiments probed charge-tagged derivatives of the allyl indium reagents. The results obtained indicate the presence of allyl indium(+3) species, which undergo heterolytic dissociation to yield ions such as InR(2)(solv)(+) and InRX(3)(-) with R = allyl and X = Br and I. The extent of dissociation is greatest for N,N-dimethylformamide, whereas aggregation effects are more pronounced for the less polar tetrahydrofuran. The heterolytic dissociation of the allyl indium reagents supposedly enhances their reactivity by simultaneously providing highly Lewis acidic allyl indium cations and nucleophilic allyl indate anions.

  11. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  12. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  13. Nitro-oleic acid desensitizes TRPA1 and TRPV1 agonist responses in adult rat DRG neurons.

    PubMed

    Zhang, Xiulin; Koronowski, Kevin B; Li, Lu; Freeman, Bruce A; Woodcock, Stephen; de Groat, William C

    2014-01-01

    Nitro-oleic acid (OA-NO2), an electrophilic fatty acid nitroalkene byproduct of redox reactions, activates transient receptor potential ion channels (TRPA1 and TRPV1) in primary sensory neurons. To test the possibility that signaling actions of OA-NO2 might modulate TRP channels, we examined: (1) interactions between OA-NO2 and other agonists for TRPA1 (allyl-isothiocyanate, AITC) and TRPV1 (capsaicin) in rat dissociated dorsal root ganglion cells using Ca(2+) imaging and patch clamp techniques and (2) interactions between these agents on sensory nerves in the rat hindpaw. Ca(2+) imaging revealed that brief application (15-30 s) of each of the three agonists induced homologous desensitization. Heterologous desensitization also occurred when one agonist was applied prior to another agonist. OA-NO2 was more effective in desensitizing the response to AITC than the response to capsaicin. Prolonged exposure to OA-NO2 (20 min) had a similar desensitizing effect on AITC or capsaicin. Homologous and heterologous desensitizations were also demonstrated with patch clamp recording. Deltamethrin, a phosphatase inhibitor, reduced the capsaicin or AITC induced desensitization of OA-NO2 but did not suppress the OA-NO2 induced desensitization of AITC or capsaicin, indicating that heterologous desensitization induced by either capsaicin or AITC occurs by a different mechanism than the desensitization produced by OA-NO2. Subcutaneous injection of OA-NO2 (2.5mM, 35 μl) into a rat hindpaw induced delayed and prolonged nociceptive behavior. Homologous desensitization occurred with AITC and capsaicin when applied at 15 minute intervals, but did not occur with OA-NO2 when applied at a 30 min interval. Pretreatment with OA-NO2 reduced AITC-evoked nociceptive behaviors but did not alter capsaicin responses. These results raise the possibility that OA-NO2 might be useful clinically to reduce neurogenic inflammation and certain types of painful sensations by desensitizing TRPA1 expressing

  14. The stability of allyl radicals following the photodissociation of allyl iodide at 193 nm.

    SciTech Connect

    Fan, H.; Pratt, S. T.; Chemistry

    2006-01-01

    The photodissociation of allyl iodide (C{sub 3}H{sub 5}I) at 193 nm was investigated by using a combination of vacuum-ultraviolet photoionization of the allyl radical, resonant multiphoton ionization of the iodine atoms, and velocity map imaging. The data provide insight into the primary C-I bond fission process and into the dissociative ionization of the allyl radical to produce C{sub 3}H{sup 3+}. The experimental results are consistent with the earlier results of Szpunar et al. [J. Chem. Phys. 119, 5078 (2003)], in that some allyl radicals with internal energies higher than the secondary dissociation barrier are found to be stable. This stability results from the partitioning of available energy between the rotational and vibrational degrees of freedom of the radical, the effects of a centrifugal barrier along the reaction coordinate, and the effects of the kinetic shift in the secondary dissociation of the allyl radical. The present results suggest that the primary dissociation of allyl iodide to allyl radicals plus I*({sup 2}P{sub 1/2}) is more important than previously suspected.

  15. Effects of Brassicaceae Isothiocyanates on Prostate Cancer.

    PubMed

    Novío, Silvia; Cartea, María Elena; Soengas, Pilar; Freire-Garabal, Manuel; Núñez-Iglesias, María Jesús

    2016-05-12

    Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa) is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs) are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models.

  16. Peptide Reactivity of Isothiocyanates – Implications for Skin Allergy

    PubMed Central

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-01-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins. PMID:26883070

  17. Peptide Reactivity of Isothiocyanates – Implications for Skin Allergy

    NASA Astrophysics Data System (ADS)

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-02-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins.

  18. Rh-Catalyzed Chemo- and Enantioselective Hydrogenation of Allylic Hydrazones.

    PubMed

    Hu, Qiupeng; Hu, Yanhua; Liu, Yang; Zhang, Zhenfeng; Liu, Yangang; Zhang, Wanbin

    2017-01-23

    A highly efficient P-stereogenic diphosphine-rhodium complex was applied to the chemo- and enantioselective hydrogenation of allylic hydrazones for the synthesis of chiral allylic hydrazines in 89-96 % yields and with 82-99 % ee values. This methodology was successfully applied to the preparation of versatile chiral allylic amine derivatives.

  19. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.

  20. Identification of allyl esters in garlic cheese.

    PubMed

    Herbrand, Klaus; Hammerschmidt, Franz J; Brennecke, Stefan; Liebig, Margit; Lösing, Gerd; Schmidt, Claus Oliver; Gatfield, Ian; Krammer, Gerhard; Bertram, Heinz-Jürgen

    2007-09-19

    This study describes the identification of six allyl esters in a garlic cheese preparation and in a commercial cream cheese. The extracts were prepared by liquid/liquid extraction and concentrated by the SAFE process. The identification of the allyl esters of acetic, butyric, hexanoic, heptanoic, octanoic, and decanoic acids is based on the correlation of their mass spectrometric data and chromatographic retention time data obtained from the extracts with those of authentic standards. In addition to the gas chromatography (GC)/mass spectrometry analysis, the flavor ingredients were characterized by GC sniffing by a trained flavorist. Some of the esters were isolated by preparative GC.

  1. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  2. Enantioselective transformation of allyl carbonates into branched allyl carbamates by using amines and recycling CO2 under iridium catalysis.

    PubMed

    Zheng, Sheng-Cai; Zhang, Min; Zhao, Xiao-Ming

    2014-06-10

    Enantioselective transformation of allyl carbonates into branched allyl carbamates by using amines and recycling CO2 in the presence of an Ir complex and K3PO4 was accomplished. This provided branched allyl carbamates in fair to excellent yields with up to 98:2 regioselectivity and 93 % ee. The role of CO2 in this transformation is discussed as well.

  3. Dehydrative cross-coupling reactions of allylic alcohols with olefins.

    PubMed

    Gumrukcu, Yasemin; de Bruin, Bas; Reek, Joost N H

    2014-08-25

    The direct dehydrative activation of allylic alcohols and subsequent cross-coupling with alkenes by using palladium catalyst containing a phosphoramidite ligand is described. The activation of the allyl alcohol does not require stoichiometric additives, thus allowing clean, waste-free reactions. The scope is demonstrated by application of the protocol to a series allylic alcohols and vinyl arenes, leading to variety of 1,4-diene products. Based on kinetic studies, a mechanism is proposed that involves a palladium hydride species that activates the allyl alcohol to form the allyl intermediate.

  4. Papaya seed represents a rich source of biologically active isothiocyanate.

    PubMed

    Nakamura, Yoshimasa; Yoshimoto, Motoko; Murata, Yoshiyuki; Shimoishi, Yasuaki; Asai, Yumi; Park, Eun Young; Sato, Kenji; Nakamura, Yasushi

    2007-05-30

    In the present study, papaya (Carica papaya) seed and edible pulp were carefully separated and then the contents of benzyl isothiocyanate and the corresponding glucosinolate (benzyl glucosinolate, glucotropaeolin) quantified in each part. The papaya seed with myrosinase inactivation contained >1 mmol of benzyl glucosinolate in 100 g of fresh seed. This content is equivalent to that of Karami daikon (the hottest Japanese white radish) or that of cress. The papaya seed extract also showed a very high activity of myrosinase and, without myrosinase inactivation, produced 460 micromol of benzyl isothiocyanate in 100 g of seed. In contrast, papaya pulp contained an undetectable amount of benzyl glucosinolate and showed no significant myrosinase activity. The n-hexane extract of the papaya seed homogenate was highly effective in inhibiting superoxide generation and apoptosis induction in HL-60 cells, the activities of which are comparable to those of authentic benzyl isothiocyanate.

  5. Palladium-Catalyzed Aminocarbonylation of Allylic Alcohols.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias

    2016-07-11

    A benign and efficient palladium-catalyzed aminocarbonylation reaction of allylic alcohols is presented. The generality of this novel process is demonstrated by the synthesis of β,γ-unsaturated amides including aliphatic, cinnamyl, and terpene derivatives. The choice of ligand is crucial for optimal carbonylation processes: Whereas in most cases the combination of PdCl2 with Xantphos (L6) gave best results, sterically hindered substrates performed better in the presence of simple triphenylphosphine (L10), and primary anilines gave the best results using cataCXium® PCy (L8). The reactivity of the respective catalyst system is significantly enhanced by addition of small amounts of water. Mechanistic studies and control experiments revealed a tandem allylic alcohol amination/C-N bond carbonylation reaction sequence.

  6. Disintegration of microtubules in Arabidopsis thaliana and bladder cancer cells by isothiocyanates

    PubMed Central

    Øverby, Anders; Bævre, Mette S.; Thangstad, Ole P.; Bones, Atle M.

    2015-01-01

    Isothiocyanates (ITCs) from biodegradation of glucosinolates comprise a group of electrophiles associated with growth-inhibitory effects in plant- and mammalian cells. The underlying modes of action of this feature are not fully understood. Clarifying this has involved mammalian cancer cells due to ITCs' chemopreventive potential. The binding of ITCs to tubulins has been reported as a mechanism by which ITCs induce cell cycle arrest and apoptosis. In the present study we demonstrate that ITCs disrupt microtubules in Arabidopsis thaliana contributing to the observed inhibited growth phenotype. We also confirmed this in rat bladder cancer cells (AY-27) suggesting that cells from plant and animals share mechanisms by which ITCs affect growth. Exposure of A. thaliana to vapor-phase of allyl ITC (AITC) inhibited growth and induced a concurrent bleaching of leaves in a dose-dependent manner. Transcriptional analysis was used to show an upregulation of heat shock-genes upon AITC-treatment. Transgenic A. thaliana expressing GFP-marked α-tubulin was employed to show a time- and dose-dependent disintegration of microtubules by AITC. Treatment of AY-27 with ITCs resulted in a time- and dose-dependent decrease of cell proliferation and G2/M-arrest. AY-27 transiently transfected to express GFP-tagged α-tubulin were treated with ITCs resulting in a loss of microtubular filaments and the subsequent formation of apoptotic bodies. In conclusion, our data demonstrate an ITC-induced mechanism leading to growth inhibition in A. thaliana and rat bladder cancer cells, and expose clues to the mechanisms underlying the physiological role of glucosinolates in vivo. PMID:25657654

  7. Water and methyl isothiocyanate distribution in soil after drip fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide (MBr) has resulted in greater use of MITC generators. In order to understand the efficacy of MITC, it is necessary to assess its generat...

  8. Silicon-directed rhenium-catalyzed allylic carbaminations and oxidative fragmentations of γ-silyl allylic alcohols.

    PubMed

    Chavhan, Sanjay W; Cook, Matthew J

    2014-04-22

    A highly regioselective allylic substitution of β-silyl allylic alcohols has been achieved that provides the branched isomer as a single product. This high level of regiocontrol is achieved through the use of a vinyl silane group that can perform a Hiyama coupling providing 1,3-disubstituted allylic amines. An unusual oxidative fragmentation product was also observed at elevated temperature that appears to proceed by a Fleming-Tamao-type oxidation-elimination pathway.

  9. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  10. Amination of allylic alcohols in water at room temperature.

    PubMed

    Nishikata, Takashi; Lipshutz, Bruce H

    2009-06-04

    The "trick" to carrying out regiocontrolled aminations of allylic alcohols in water as the only medium is use of a nanomicelle's interior as the organic reaction solvent. When HCO(2)Me is present, along with the proper base and source of catalytic Pd, allylic amines are cleanly formed at room temperature.

  11. Highly Concentrated Catalytic Asymmetric Allylation of Ketones

    PubMed Central

    Wooten, Alfred J.; Kim, Jeung Gon; Walsh, Patrick J.

    2008-01-01

    We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80–99%) with high enantioselectivities (79–95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84–87%). PMID:17249767

  12. Highly concentrated catalytic asymmetric allylation of ketones.

    PubMed

    Wooten, Alfred J; Kim, Jeung Gon; Walsh, Patrick J

    2007-02-01

    [reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).

  13. Kinetic resolution of allyl fluorides by enantioselective allylic trifluoromethylation based on silicon-assisted C-F bond cleavage.

    PubMed

    Nishimine, Takayuki; Fukushi, Kazunobu; Shibata, Naoyuki; Taira, Hiromi; Tokunaga, Etsuko; Yamano, Akihito; Shiro, Motoo; Shibata, Norio

    2014-01-07

    Two birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation.

  14. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells.

  15. Pentacoordinated carboxylate π-allyl nickel complexes as key intermediates for the Ni-catalyzed direct amination of allylic alcohols.

    PubMed

    Kita, Yusuke; Sakaguchi, Hironobu; Hoshimoto, Yoichi; Nakauchi, Daisuke; Nakahara, Yasuhito; Carpentier, Jean-François; Ogoshi, Sensuke; Mashima, Kazushi

    2015-10-05

    Direct amination of allylic alcohols with primary and secondary amines catalyzed by a system made of [Ni(1,5-cyclooctadiene)2 ] and 1,1'-bis(diphenylphosphino)ferrocene was effectively enhanced by adding nBu4 NOAc and molecular sieves, affording the corresponding allyl amines in high yield with high monoallylation selectivity for primary amines and high regioselectivity for monosubstituted allylic alcohols. Such remarkable additive effects of nBu4 NOAc were elucidated by isolating and characterizing some nickel complexes, manifesting the key role of a charge neutral pentacoordinated η(3) -allyl acetate complex in the present system, in contrast to usual cationic tetracoordinated complexes earlier reported in allylic substitution reactions.

  16. Allyl 4-hydroxy­phenyl carbonate

    PubMed Central

    Flores Ahuactzin, Víctor Hugo; López, Delia; Bernès, Sylvain

    2009-01-01

    The title mol­ecule, C10H10O4, is a functionalized carbonate used in the synthetic route to organic glasses. The central CH fragment of the allyl group is disordered over two positions, with occupancies in a 0.758 (10):0.242 (10)ratio. This disorder reflects the torsional flexibility of the oxygen–allyl group, although both disordered parts present the expected anti­clinal conformation, with O—CH2—CH=CH2 torsion angles of −111 (2) and 119.1 (4)°. The crystal structure is based on chains parallel to [010], formed by O⋯H—O hydrogen bonds involving hydroxyl and carbonyl groups as donors and acceptors, respectively. The mol­ecular packing is further stabilized by two weak C—H⋯π contacts from the benzene ring of the asymmetric unit with two benzene rings of neighboring mol­ecules. PMID:21582877

  17. Iridium-catalyzed regio- and enantioselective allylic substitution of silyl dienolates derived from dioxinones.

    PubMed

    Chen, Ming; Hartwig, John F

    2014-11-03

    Reported herein is the iridium-catalyzed regio- and enantioselective allylic substitution reactions of unstabilized silyl dienolates derived from dioxinones. Asymmetric allylic substitution of a variety of allylic trichloroethyl carbonates with these silyl dienolates gave γ-allylated products selectively in 60-84% yield and 90-98% ee.

  18. Palladium-catalyzed asymmetric synthesis of allylic fluorides.

    PubMed

    Katcher, Matthew H; Doyle, Abigail G

    2010-12-15

    The enantioselective fluorination of readily available cyclic allylic chlorides with AgF has been accomplished using a Pd(0) catalyst and Trost bisphosphine ligand. The reactions proceed with unprecedented ease of operation for Pd-mediated nucleophilic fluorination, allowing access to highly enantioenriched cyclic allylic fluorides that bear diverse functional groups. Evidence that supports a mechanism in which C-F bond formation occurs by an S(N)2-type attack of fluoride on a Pd(II)-allyl intermediate is presented.

  19. Palladium-catalyzed allylic C-H fluorination.

    PubMed

    Braun, Marie-Gabrielle; Doyle, Abigail G

    2013-09-04

    The first catalytic allylic C-H fluorination reaction using a nucleophilic fluoride source is reported. Under the influence of a Pd/Cr cocatalyst system, simple olefin substrates undergo fluorination with Et3N·3HF in good yields with high branched:linear regioselectivity. The mild conditions and broad scope make this reaction a powerful alternative to established methods for the preparation of allylic fluorides from prefunctionalized substrates.

  20. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    PubMed Central

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  1. Influence of extracellular calcium on allyl alcohol-induced hepatotoxicity.

    PubMed

    Strubelt, O; Younes, M; Pentz, R

    1986-07-01

    The role of calcium in allyl alcohol-induced hepatotoxicity was investigated in the isolated haemoglobin-free perfused rat liver. At a Ca++ concentration of 2.5 mmol/l in the perfusate, allyl alcohol (initial concentration 1.17 mmol/l) produced an enhanced release of GPT and SDH from the liver, an increase in the lactate/pyruvate ratio of the perfusate, a decrease in hepatic oxygen consumption and an increase of both hepatic calcium and malondialdehyde content. In the absence of Ca++ in the perfusate, no hepatic calcium accumulation occurred with allyl alcohol, but all other signs of hepatic damage were as severe as with 2.5 mmol/l Ca++. On the other hand, high extracellular Ca++ (5 mmol/l) alone led to a threefold increase of liver calcium but produced only marginal hepatotoxicity and only slightly enhanced the hepatotoxic effects of allyl alcohol. The concentrations of allyl alcohol in the perfusate were not altered at different Ca++ concentrations. In conclusion, the primary allyl alcohol-induced hepatotoxic injury does not appear to depend upon an influx of extracellular calcium.

  2. General allylic C-H alkylation with tertiary nucleophiles.

    PubMed

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  3. Human chemosensory perception of methyl isothiocyanate: chemesthesis and odor.

    PubMed

    Cain, William S; Dourson, Michael L; Kohrman-Vincent, Melissa J; Allen, Bruce C

    2010-11-01

    An unpublished laboratory study by Russell and Rush (1996) showed that human subjects sense the presence of methyl isothiocyanate (MITC) via the eyes at concentrations as low as hundreds of ppb in air, with dependence upon duration of exposure. The longer the stimulation, the lower the concentrations sensed. Application of benchmark concentration (BMC10) modeling indicated a best estimate of 330 ppb by the end of 4h. With a confidence limit (BMCL) applied, the level dropped to 220 ppb, when employing a probit model. Receptors known as TRPA1 ion channels present in trigeminal and associated peripheral afferent nerves have shown particular sensitivity to isothiocyanates. Sensitivity to these electrophiles, which occur naturally in plants (e.g., capers and mustard greens), most likely derives from a mechanism of reversible covalent bonding. Such sensing can provide warning of potential damage rather than actual damage itself. Based upon its reputation as a lachrymator, Russell and Rush assumed that the eyes would sense MITC, before the upper airways, so gathered no data from the airways, except for odor. Field results from spills and results of acute exposures to animals covered in Dourson et al. (2010) add pertinent information on the matter.

  4. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  5. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    PubMed

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-02-18

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  6. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    PubMed

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs.

  7. Branched/linear selectivity in palladium-catalyzed allyl-allyl cross-couplings: The role of ligands.

    PubMed

    Ardolino, Michael J; Morken, James P

    2015-09-16

    While Pd-catalyzed allyl-allyl cross-couplings in the presence of small-bite-angle bidentate ligands reliably furnish the branched regioisomer with high levels of selectivity, cross-couplings in the presence of large-bite-angle bidentate ligands give varying, often unpredictable, levels of selectivity. In a combined computational and experimental study, we probe the underlying features that govern the regioselectivity in these metal-catalyzed cross-couplings.

  8. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates, as a defense against bacteria, fungi, insects and herbivores including man. Low levels of isothiocyanates trigger a host defense system in mammals that protects them against chronic diseases. Becaus...

  9. Insights into the Mode of Action of Benzyl Isothiocyanate on Campylobacter jejuni

    PubMed Central

    Dufour, Virginie; Stahl, Martin; Rosenfeld, Eric; Stintzi, Alain

    2013-01-01

    Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzyl isothiocyanate by both transcriptomic and physiological approaches. The transcriptomic response of C. jejuni to benzyl isothiocyanate showed upregulation of heat shock response genes and an impact on energy metabolism. Oxygen consumption was progressively impaired by benzyl isothiocyanate treatment, as revealed by high-resolution respirometry, while the ATP content increased soon after benzyl isothiocyanate exposition, which suggests a shift in the energy metabolism balance. Finally, benzyl isothiocyanate induced intracellular protein aggregation. These results indicate that benzyl isothiocyanate affects C. jejuni by targeting proteins, resulting in the disruption of major metabolic processes and eventually leading to cell death. PMID:24014524

  10. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  11. Allyl-silica Hybrid Monoliths For Chromatographic Application

    NASA Astrophysics Data System (ADS)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  12. Structurally defined allyl compounds of main group metals: coordination and reactivity.

    PubMed

    Lichtenberg, Crispin; Okuda, Jun

    2013-05-10

    Organometallic allyl compounds are important as allylation reagents in organic synthesis, as polymerization catalysts, and as volatile metal precursors in material science. Whereas the allyl chemistry of synthetically relevant transition metals such as palladium and of the lanthanoids is well-established, that of main group metals has been lagging behind. Recent progress on allyl complexes of Groups 1, 2, and 12-16 now provides a more complete picture. This is based on a fundamental understanding of metal-allyl bonding interactions in solution and in the solid state. Furthermore, reactivity trends have been rationalized and new types of allyl-specific reactivity patterns have been uncovered. Key features include 1) the exploitation of the different types of metal-allyl bonding (highly ionic to predominantly covalent), 2) the use of synergistic effects in heterobimetallic compounds, and 3) the adjustment of Lewis acidity by variation of the charge of allyl compounds.

  13. Cu-catalyzed enantioselective allylic alkylation with organolithium reagents.

    PubMed

    Hornillos, Valentín; Guduguntla, Sureshbabu; Fañanás-Mastral, Martín; Pérez, Manuel; Bos, Pieter H; Rudolph, Alena; Harutyunyan, Syuzanna R; Feringa, Ben L

    2017-03-01

    This protocol describes a method for the catalytic enantioselective synthesis of tertiary and quaternary carbon stereogenic centers, which are widely present in pharmaceutical and natural products. The method is based on the direct reaction between organolithium compounds, which are cheap, readily available and broadly used in chemical synthesis, and allylic electrophiles, using chiral copper catalysts. The methodology involves the asymmetric allylic alkylation (AAA) of allyl bromides, chlorides and ethers with organolithium compounds using catalyst systems based on Cu-Taniaphos and Cu-phosphoramidites. The protocol contains a complete description of the reaction setup, a method based on (1)H-NMR, gas chromatography-mass spectrometry (GC-MS) and chiral HPLC for assaying the regioselectivity and enantioselectivity of the product, and isolation, purification and characterization procedures. Six Cu-catalyzed AAA reactions between different organolithium reagents and allylic systems are detailed in the text as representative examples of these procedures. These reactions proceed within 1-10 h, depending on the nature of the allylic substrate (bromide, chloride, or ether and disubstituted or trisubstituted) or the chiral ligand used (Taniaphos or phosphoramidite). However, the entire protocol, including workup and purification, generally requires an additional 4-7 h to complete.

  14. Effect of Allylic Groups on SN2 Reactivity

    PubMed Central

    2015-01-01

    The activating effects of the benzyl and allyl groups on SN2 reactivity are well-known. 6-Chloromethyl-6-methylfulvene, also a primary, allylic halide, reacts 30 times faster with KI/acetone than does benzyl chloride at room temperature. The latter result, as well as new experimental observations, suggests that the fulvenyl group is a particularly activating allylic group in SN2 reactions. Computational work on identity SN2 reactions, e.g., chloride– displacing chloride– and ammonia displacing ammonia, shows that negatively charged SN2 transition states (tss) are activated by allylic groups according to the Galabov–Allen–Wu electrostatic model but with the fulvenyl group especially effective at helping to delocalize negative charge due to some cyclopentadienide character in the transition state (ts). In contrast, the triafulvenyl group is deactivating. However, the positively charged SN2 transition states of the ammonia reactions are dramatically stabilized by the triafulvenyl group, which directly conjugates with a reaction center having SN1 character in the ts. Experiments and calculations on the acidities of a variety of allylic alcohols and carboxylic acids support the special nature of the fulvenyl group in stabilizing nearby negative charge and highlight the ability of fulvene species to dramatically alter the energetics of processes even in the absence of direct conjugation. PMID:24977317

  15. Catalytic Asymmetric Generation of (Z)-Disubstituted Allylic Alcohols

    PubMed Central

    Salvi, Luca; Jeon, Sang-Jin; Fisher, Ethan L.; Carroll, Patrick J.; Walsh, Patrick J.

    2008-01-01

    A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetallation with dialkylzinc reagents generates (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (−)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX promoted reaction, a series of inhibitors was screened. It was found that 20–30 mol % tetraethylethylene diamine (TEEDA) inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity. PMID:18052173

  16. Scalable and sustainable electrochemical allylic C-H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  17. Scalable and Sustainable Electrochemical Allylic C–H Oxidation

    PubMed Central

    Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-01-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the fabric of retrosynthetic analysis, impacting the synthesis of natural products, medicines, and even materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization due to the utility of enones and allylic alcohols as versatile intermediates, along with their prevalence in natural and unnatural materials2. Allylic oxidations have been featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this powerful transformation, the vast majority of conditions still employ highly toxic reagents (based around toxic elements such as chromium, selenium, etc.) or expensive catalysts (palladium, rhodium, etc.)2. These requirements are highly problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. As such, this oxidation strategy is rarely embraced for large-scale synthetic applications, limiting the adoption of this important retrosynthetic strategy by industrial scientists. In this manuscript, we describe an electrochemical solution to this problem that exhibits broad substrate scope, operational simplicity, and high chemoselectivity. This method employs inexpensive and readily available materials, representing the first example of a scalable allylic C–H oxidation (demonstrated on 100 grams), finally opening the door for the adoption of this C–H oxidation strategy in large-scale industrial settings without significant environmental impact. PMID:27096371

  18. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.

    PubMed

    Waterman, Carrie; Cheng, Diana M; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Lila, Mary Ann; Raskin, Ilya

    2014-07-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as both a food and medicine throughout the tropics. A moringa concentrate (MC), made by extracting fresh leaves with water, utilized naturally occurring myrosinase to convert four moringa glucosinolates into moringa isothiocyanates. Optimum conditions maximizing MC yield, 4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate, and 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate exhibited 80% stability at 37°C for 30 days. MC, and both of the isothiocyanates described above significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, both attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFα at 1 and 5 μM. These results suggest a potential for stable and concentrated moringa isothiocyanates, delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases.

  19. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    PubMed

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF3-substituted allylic carbonate is described. This reaction provides direct access to linear CF3-allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF3-allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  20. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  1. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  2. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  3. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  4. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  5. 4-Methylthio-3-butenyl isothiocyanate (raphasatin) exerts chemopreventive effects against esophageal carcinogenesis in rats

    PubMed Central

    Suzuki, Isamu; Cho, Young-Man; Hirata, Tadashi; Toyoda, Takeshi; Akagi, Jun-ichi; Nakamura, Yasushi; Park, Eun Young; Sasaki, Azusa; Nakamura, Takako; Okamoto, Shigehisa; Shirota, Koji; Suetome, Noboru; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2016-01-01

    To examine the effects of 4-methylthio-3-butenyl isothiocyanate on esophageal carcinogenesis, male 6-week-old F344 rats were subcutaneously injected with 0.5 mg/kg body weight N-nitrosomethylbenzylamine three times per week for 5 weeks and fed a diet supplemented with 80 ppm 4-methylthio-3-butenyl isothiocyanate, equivalent to 6.05 mg/kg body weight/day for the initiation stage, 4.03 mg/kg body weight/day for the promotion stage, or 4.79 mg/kg body weight/day for all stages. Although the incidence of lesions was not affected by 4-methylthio-3-butenyl isothiocyanate treatment, the multiplicity of squamous cell papilloma in the esophagus was significantly decreased in rats in the 4-methylthio-3-butenyl isothiocyanate initiation stage group (1.13 ± 0.74), 4-methylthio-3-butenyl isothiocyanate promotion stage group (1.47 ± 0.99), and 4-methylthio-3-butenyl isothiocyanate all stage group (1.47 ± 1.13) as compared with rats treated with N-nitrosomethylbenzylamine alone (3.00 ± 1.46). Immunohistochemical analysis revealed that 4-methylthio-3-butenyl isothiocyanate induced apoptosis, suppressed cell proliferation, and increased p21 expression when administered in the promotion phase. These modifying effects were not observed in the rats treated with 4-methylthio-3-butenyl isothiocyanate alone. Our results indicated that 4-methylthio-3-butenyl isothiocyanate may exert chemopreventive effects against N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. PMID:27821908

  6. Synthesis of Neoglycoconjugates by the Desulfurative Rearrangement of Allylic Disulfides

    PubMed Central

    Crich, David; Yang, Fan

    2009-01-01

    Two series of neoglucosyl donors are prepared based on connection of the allylic disulfide motif to the anomeric center via either a simple O-glycosyl linkage or N-glycosyl amide unit. Conjugation of both sets of donors to cysteine in peptides is demonstrated through classical disulfide exchange followed by the phosphine-mediated desulfurative allylic rearrangement resulting in neoglycopeptides characterized by a simple thioether spacer. The conjugation reaction functions in the absence of protecting groups on both the neoglycosyl donor and peptide in aqueous media at room temperature. PMID:18729514

  7. Metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates: construction of chiral nonracemic allylic isocyanates.

    PubMed

    Grange, Rebecca L; Evans, P Andrew

    2014-08-27

    We report the facile and efficient metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates. This process facilitates the room temperature construction of an array of chiral nonracemic allylic isocyanates, which are versatile intermediates for the construction of unsymmetrical ureas, carbamates, thiocarbamates and amides. Furthermore, the sulfilimine/isocyanate metathesis reaction with 4,4'-methylene diphenyl diisocyanate (4,4'-MDI) circumvents harsh reaction conditions and/or hazardous reagents employed with more classical methods for the preparation of this important functional group.

  8. Isothiocyanates as derivatization reagents for amines in liquid chromatography/electrospray ionization-tandem mass spectrometry.

    PubMed

    Santa, Tomofumi

    2010-09-01

    The applicability of 3-pyridyl isothiocyanate, p-(dimethylamino)phenyl isothiocyanate and m-nitrophenyl isothiocyanate as the derivatization reagents for amines in high-performance liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) was examined. The generated derivatives of amines with these reagents were favorably separated on the reversed-phase column and detected by ESI-MS/MS. The C-N bond of the generated thiourea structure was efficiently cleaved by collision-induced dissociation and gave the single and intense product ion. Among the three reagents, 3-pyridyl isothiocyanate was the most suitable as the derivatization reagent with regard to the reactivity to amines and the detection sensitivity.

  9. Single pulse shock tube study of allyl radical recombination.

    PubMed

    Fridlyand, Aleksandr; Lynch, Patrick T; Tranter, Robert S; Brezinsky, Kenneth

    2013-06-13

    The recombination and disproportionation of allyl radicals has been studied in a single pulse shock tube with gas chromatographic measurements at 1-10 bar, 650-1300 K, and 1.4-2 ms reaction times. 1,5-Hexadiene and allyl iodide were used as precursors. Simulation of the results using derived rate expressions from a complementary diaphragmless shock tube/laser schlieren densitometry study provided excellent agreement with precursor consumption and formation of all major stable intermediates. No significant pressure dependence was observed at the present conditions. It was found that under the conditions of these experiments, reactions of allyl radicals in the cooling wave had to be accounted for to accurately simulate the experimental results, and this unusual situation is discussed. In the allyl iodide experiments, higher amounts of allene, propene, and benzene were found at lower temperatures than expected. Possible mechanisms are discussed and suggest that iodine containing species are responsible for the low temperature formation of allene, propene, and benzene.

  10. The coordination chemistry of silyl-substituted allyl ligands.

    PubMed

    Solomon, Sophia A; Layfield, Richard A

    2010-03-14

    Metal allyl complexes in which the ligands carry bulky silyl substituents frequently show stability that cannot be achieved with unsubstituted analogues. As a result, it has been possible to characterize a large family of structurally diverse metal silyl-allyls from the s-, p-, d- and f-blocks of the Periodic Table, and to study the coordination chemistry of compounds that often have no counterparts without bulky substituents. The fact that the majority of compounds discussed in this Perspective have been published since 2000 reflects the newness of the area, and the article summarizes the main developments in the structural chemistry of metal silyl-allyls and also selected synthetic and catalytic applications. Although organometallic chemistry is often regarded as transcending traditional boundaries between 'organic' and 'inorganic' chemistry, an understanding persists that those working in the field can be labelled 'inorganic organometallic' chemists or 'organic organometallic' chemists. It is hoped that chemists from a broad range of backgrounds will be able to use this review as an entry point to an exciting new direction in metal allyl chemistry.

  11. Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate Labeled Protein

    PubMed Central

    Vangala, Karthikeshwar; Jiang, Dongping; Zou, Sige; Pechan, Tibor

    2011-01-01

    Using bovine serum albumin (BSA) as the model protein normal Raman spectra of Fluorescein isothiocyanate (FITC) -conjugated protein was systematically studied for the first time using both solution and the drop coating deposition Raman (DCDR) sampling techniques. The FITC-BSA Raman spectra are dominated by the FITC Raman features that are strongly pH dependent. Current DCDR detection sensitivity obtained with a 10:1 FITC-BSA conjugate is 45 fmol in terms of total protein consumption and ~15 attomol at laser probed volume. Unlike the FITC-BSA solution Raman spectra where the FITC Raman features are photostable, concurrent FITC fluorescence and Raman photobleaching is observed in the DCDR spectra of FITC-BSA. While the FITC Raman photobleaching follows a single exponential decay function with a time constant independent of the FITC labeling ratio, the fluorescence background photobleaching is much more complicated and it depends strongly on the FITC labeling ratio and sample conditions. Mechanistically, the FITC Raman photobleaching is believed to be due to photochemical reaction of the FITC molecules in the electronically excited state. The FITC fluorescence photobleaching involves both concentration quenching and photochemical quenching, and the latter may involve a photochemical intermediate that is fluorescence inactive but Raman active. PMID:20925976

  12. 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate: conformers, vibration structure and multiplet Fermi resonance.

    PubMed

    Yenagi, Jayashree; Nandurkar, Anita R; Tonannavar, J

    2012-06-01

    IR and Raman spectral measurements in the region 3500-400/50 cm(-1) have been made for the liquid samples of 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate. A complete assignment of the measured bands has been proposed as aided by conformational and vibration analyses at B3LYP/6-311++G** level of calculations. Three conformers for 2-Methoxyphenyl isocyanate and two for 2-Methoxyphenyl isothiocyanate have been determined. The tilt of the isocyanate (NCO) and isothiocyanate (NCS) moieties with respect to phenyl ring are in broad agreement with their parents. Stretching mode frequencies of methyl group (-OCH(3)) in 2-Methoxyphenyl isocyanate have been lowered in the 2900-2800 cm(-1); deformation asymmetric modes are IR strong and symmetric one Raman strong. In 2-Methoxyphenyl isothiocyanate, a similar pattern is true for stretching modes but deformation asymmetric modes are IR strong and symmetric mode has not been observed. Multiplet absorption band system near 2200 cm(-1) in 2-Methoxyphenyl isocyanate has been interpreted to be caused by Fermi resonance. A similar pattern in absorption near 2100 cm(-1) in 2-Methoxyphenyl isothiocyanate but more complex Raman band pattern has also been explained through Fermi resonance from heuristic stand-point. Many Raman modes in 1300-1100 cm(-1) are intensified apparently owing to isothiocyanate than isocyanate moiety. Phenyl ring breathing mode is shifted to 1040 cm(-1) as strong Raman; the symmetric stretching mode of O-CH(3) near 1023 cm(-1) as strong absorption.

  13. Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder.

    PubMed

    Andrade, Edinéia Lemos; Ferreira, Juliano; André, Eunice; Calixto, João B

    2006-06-28

    TRPA1 is a member of the transient receptor potential (TRP) channel family present in sensory neurons. Here we show that vanilloid receptor (TRPV1) stimulation with capsaicin and activation of TRPA1 with allyl isothiocyanate or cinnamaldehyde cause a graded contraction of the rat urinary bladder in vitro. Repeated applications of maximal concentrations of the agonists produce desensitization to their contractile effects. Moreover, contraction caused by TRPA1 agonists generates cross-desensitization with capsaicin. The TRP receptor antagonist ruthenium red (10-100 microM) inhibits capsaicin (0.03 microM), allyl isothiocyanate (100 microM) and cinnamaldehyde (300 microM)-induced contractions in the rat urinary bladder. The selective TRPV1 receptor antagonist SB 366791 (10 microM) blocks capsaicin-induced contraction, but partially reduces allyl isothiocyanate- or cinnamaldehyde-mediated contraction. However, allyl isothiocyanate and cinnamaldehyde (10-1000 microM) completely fail to interfere with the specific binding sites for the TRPV1 agonist [(3)H]-resiniferatoxin. Allyl isothiocyanate or cinnamaldehyde-mediated contractions of rat urinary bladder, which rely on external Ca(2+) influx, are significantly inhibited by tachykinin receptor antagonists as well as by tetrodotoxin (1 microM) or indomethacin (1 microM). Allyl isothiocyanate-induced contraction is not changed by atropine (1 microM) or suramin (300 microM). The exposure of urinary bladders to allyl isothiocyanate (100 microM) causes an increase in the prostaglandin E(2) and substance P levels. Taken together, these results indicate that TRPA1 agonists contract rat urinary bladder through sensory fibre stimulation, depending on extracellular Ca(2+) influx and release of tachykinins and cyclooxygenase metabolites, probably prostaglandin E(2). Thus, TRPA1 appears to exert an important role in urinary bladder function.

  14. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  15. Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes

    PubMed Central

    Coffey, Rory T.; Qian, Yu; Weerapana, Eranthie; El Oualid, Farid; Hedstrom, Lizbeth

    2015-01-01

    The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates (ITCs) such as benzyl ITC (BITC) and phenethyl ITC (PEITC). While many potential targets of ITCs have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUBs), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the anti-apoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These ITCs increased Mcl-1 ubiquitination and either ITC treatment or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of ITC activity. These ITCs also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low ITC concentrations and aggregation under high ITC concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by ITC treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well established anticancer activity of ITC. We propose that the ITC-induced inhibition of DUB may also explain how ITCs affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of ITCs to treat cancer as well as a variety of other pathological conditions. PMID:26542215

  16. Catalytic, nucleophilic allylation of aldehydes with 2-substituted allylic acetates: carbon-carbon bond formation driven by the water-gas shift reaction.

    PubMed

    Denmark, Scott E; Matesich, Zachery D

    2014-07-03

    The ruthenium-catalyzed allylation of aldehydes with allylic acetates has been expanded to incorporate substituents at the 2-position of the allylic components. Allylic acetates bearing a variety of substituents (CO2-t-Bu, COMe, Ph, CH(OEt)2, and Me) undergo high-yielding additions with aromatic, α,β-unsaturated, and aliphatic aldehydes. The conditions of the reaction were found to be mild (75 °C, 24-48 h) and only required the use of 2-3 mol % of the triruthenium dodecacarbonyl catalyst under 40-80 psi of CO. The stoichiometries of water and allylic acetate employed were found to be critical to reaction efficiency.

  17. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    PubMed Central

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.; Stewart, Deirdre S.; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E.; Cohen, Jonathan B.; Forman, Stuart A.; Miller, Keith W.; Bruzik, Karol S.

    2013-01-01

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by x-ray crystallography. Additionally, we obtained the 3H-labeled ligand with high specific radioactivity. R-(−)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC50 approaches those for propofol and etomidate, whereas S-(+)-14 is tenfold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(−)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human α1β2/3γ2L GABAA receptors. Finally, R-(−)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both α1 and β3 subunits of human α1β3 GABAA receptors. These results indicate R-(−)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors. PMID:22734650

  18. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  19. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro

    PubMed Central

    Waterman, Carrie; Cheng, Diana M.; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Ann Lila, Mary; Raskin, Ilya

    2014-01-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as food and medicine throughout the tropics. A moringa concentrate (MC) made by extracting fresh leaves with water utilized naturally occurring myrosinase to convert four moringa glucosinolates (1–4) into moringa isothiocyanates (5–8). Optimum conditions maximizing MC yield, compound 5 (4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate), and compound 8 (4-[(4’-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate) content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. Compound 8 exhibited 80% stability at 37 °C for 30 days. MC, 5, and 8 significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, 5 and 8 attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFβ at 1 and 5 µM. Our results suggest a potential for stable and concentrated moringa isothiocyanates (5–8), delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. PMID:24731259

  20. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  1. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product.

  2. Rh2(esp)2-catalyzed allylic and benzylic oxidations.

    PubMed

    Wang, Yi; Kuang, Yi; Wang, Yuanhua

    2015-04-07

    The dirhodium(II) catalyst Rh2(esp)2 allows direct solvent-free allylic and benzylic oxidations by T-HYDRO with a remarkably low catalyst loading. This method is operationally simple and scalable at ambient temperature without the use of any additives. The high catalyst stability in these reactions may be attributed to a dirhodium(II,II) catalyst resting state, which is less prone to decomposition.

  3. Highly selective indium mediated allylation of unprotected pentosylamines.

    PubMed

    Behr, Jean-Bernard; Hottin, Audrey; Ndoye, Alpha

    2012-03-16

    A straightforward functionalization of D-pentoses is reported, which affords homoallylaminopolyols in two steps and uses ion exchange chromatography as the only purification operation. The key indium-mediated allylation is effected on unprotected glycosylamines and occurs with good to excellent syn stereoselection. Validation of the synthetic utility of the method was exemplified by a 3-step synthesis of an optically active 1,2,3,6-tetrahydropyridine from D-xylose.

  4. Palladium-catalyzed regio- and enantioselective fluorination of acyclic allylic halides.

    PubMed

    Katcher, Matthew H; Sha, Allen; Doyle, Abigail G

    2011-10-12

    This report describes the Pd(0)-catalyzed fluorination of linear allylic chlorides and bromides, yielding branched allylic fluorides in high selectivity. Many of the significant synthetic limitations previously associated with the preparation of these products are overcome by this catalytic method. We also demonstrate that a chiral bisphosphine-ligated palladium catalyst enables highly enantioselective access to a class of branched allylic fluorides that can be readily diversified to valuable fluorinated products.

  5. Asymmetric Allylic C-H Oxidation for the Synthesis of Chromans.

    PubMed

    Wang, Pu-Sheng; Liu, Peng; Zhai, Yu-Jia; Lin, Hua-Chen; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-10-14

    An enantioselective intramolecular allylic C-H oxidation to generate optically active chromans has been accomplished under the cooperative catalysis of a palladium complex of chiral phosphoramidite ligand and 2-fluorobenzoic acid. Mechanistic studies suggest that this reaction commences with a Pd-catalyzed allylic C-H activation event and then undergoes asymmetric allylic alkoxylation. The synthetic significance of the method has been embodied by concisely building up a key chiral intermediate to access (+)-diversonol.

  6. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising.

  7. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  8. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.).

    PubMed

    Kim, Hyun-Jin; Chen, Feng; Wang, Xi; Choi, Ju-Hee

    2006-09-20

    The effect of spraying exogenous plant hormone methyl jasmonate (MeJA) upon radish sprout (Raphanus sativus L.) was investigated in aspects of total phenolic content (TPC), isothiocyanate content, antioxidant activity of the radish extract, and enzymatic activities of phenylalanine ammonia lyase (PAL) and myrosinase. The MeJA treatment significantly increased the TPC that resulted in the increased DPPH* (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging capacity. In addition, the PAL activity also increased by 60% at 24 h after MeJA treatment. However, the same treatment decreased the amount of 4-methylthio-3-butenylisothiocyanate (MTBITC), a major isothiocyanate in radish sprout and the activity of myrosinase, an enzyme related to produce isothiocyanates.

  9. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  10. TRPA1 agonist activity of probenecid desensitizes channel responses: consequences for screening.

    PubMed

    McClenaghan, Conor; Zeng, Fanning; Verkuyl, Jan Martin

    2012-12-01

    The transient receptor potential channel subtype A member 1 (TRPA1) is a nonselective cation channel widely viewed as having therapeutic potential, particularly for pain-related indications. Realization of this potential will require potent, selective modulators; however, currently the pharmacology of TRPA1 is poorly defined. As TRPA1 is calcium permeable, calcium indicators offer a simple assay format for high-throughput screening. In this report, we show that probenecid, a uricosuric agent used experimentally in screening to increase loading of calcium-sensitive dyes, activates TRPA1. Prolonged probenecid incubation during the dye-loading process reduces agonist potency upon subsequent challenge. When Chinese Hamster Ovary (CHO)-hTRPA1 or STC-1 cells, which endogenously express TRPA1, were dye loaded in the presence of 2 mM probenecid TRPA1, agonists appeared less potent; EC(50) for allyl isothiocyante agonists in CHO-hTRPA1 was increased from 1.5±0.19 to 7.32±1.20 μM (P<0.01). No significant effect on antagonist potency was observed when using the agonist EC(80) concentration determined under the appropriate dye-loading conditions. We suggest an alternative protocol for calcium imaging using another blocker of anion transport, sulfinpyrazone. This blocker significantly augments indicator dye loading and the screening window, but is not a TRPA1 agonist and has no effect on agonist potency.

  11. Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines with trifluoro(allyl)borates and allylstannanes: a combined experimental and theoretical study.

    PubMed

    Wallner, Olov A; Szabó, Kálmán J

    2006-09-06

    Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines has been performed by using substituted trifluoro(allyl)borates and trimethylallylstannanes. The reactions provide the corresponding branched allylic products with excellent regioselectivity. The stereoselectivity of these processes is very high when trifluoro(cinnamyl)borate and trimethyl cinnamyl stannane are employed as allylic precursors; however, the reaction with trifluoro(crotyl)borate results in poor stereoselectivity. The major diastereomer formed in these reactions was the syn isomer, while the (previously reported) reactions with aldehyde electrophiles afforded the anti products, indicating that the mechanism of the stereoselection is dependent on the applied electrophile. Therefore, we have studied the mechanistic aspects of the allylation reactions by experimental studies and DFT modeling. The experimental mechanistic studies have clearly shown that potassium trifluoro(allyl)borate undergoes transmetallation with palladium-pincer complex 1 a affording an eta(1)-allylpalladium-pincer complex (1 e). The mechanism of the transfer of the allyl moiety from palladium to the sulfonylimine substrate was studied by DFT calculations at the B3PW91/LANL2DZ+P level of theory. These calculations have shown that the electrophilic substitution of sulfonylimines proceeds in a one-step process with a relatively low activation energy. The topology of the potential energy surface in the vicinity of the transition-state structure proved to be rather complicated as nine different geometries with similar energies were located as first order saddle points. Our studies have also shown that the high stereoselectivity with cinnamyl metal reagents stems from steric interactions in the TS structure of the allylation reaction. In addition, these studies have revealed that the mechanism of the stereoselection in the allylation of aldehydes and sulfonylimines is fundamentally different.

  12. Catalyst-free synthesis of skipped dienes from phosphorus ylides, allylic carbonates, and aldehydes via a one-pot SN2' allylation-Wittig strategy.

    PubMed

    Xu, Silong; Zhu, Shaoying; Shang, Jian; Zhang, Junjie; Tang, Yuhai; Dou, Jianwei

    2014-04-18

    A catalyst-free allylic alkylation of stabilized phosphorus ylides with allylic carbonates via a regioselective SN2' process is presented. Subsequent one-pot Wittig reaction with both aliphatic and aromatic aldehydes as well as ketenes provides structurally diverse skipped dienes (1,4-dienes) in generally high yields and moderate to excellent stereoselectivity with flexible substituent patterns. This one-pot SN2' allylation-Wittig strategy constitutes a convenient and efficient synthetic method for highly functionalized skipped dienes from readily available starting materials.

  13. Trajectory study of energy transfer and unimolecular dissociation of highly excited allyl with argon.

    PubMed

    Conte, Riccardo; Houston, Paul L; Bowman, Joel M

    2014-09-11

    The influence of rotational excitation on energy transfer in single collisions of allyl with argon and on allyl dissociation is investigated. About 90,000 classical scattering simulations are performed in order to determine collision-induced changes in internal energy and in allyl rotational angular momentum. Dissociation is studied by means of about 50,000 additional trajectories evolved for the isolated allyl under three different conditions: allyl with no angular momentum (J = 0); allyl with the same microcanonically sampled initial conditions used for the collisions (J*); allyl evolving from the corresponding exit conditions after the collision. The potential energy surface is the sum of an intramolecular potential and an interaction one, and it has already been used in a previous work on allyl-argon scattering (Conte, R.; Houston, P. L.; Bowman, J. M. J. Phys. Chem. A 2013, 117, 14028-14041). Energy transfer data show that increased initial rotation favors, on average, increased relaxation of the excited molecule. The availability of a high-level intramolecular potential energy surface permits us to study the dependence of energy transfer on the type of starting allyl isomer. A turning point analysis is presented, and highly efficient collisions are detected. Collision-induced variations in the allyl rotational angular momentum may be quite large and are found to be distributed according to three regimes. The roles of rotational angular momentum, collision, and type of isomer on allyl unimolecular dissociation are considered by looking at dissociations times, kinetic energies of the fragments, and branching ratios. Generally, rotational angular momentum has a strong influence on the dissociation dynamics, while the single collision and the type of starting isomer are less influential.

  14. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  15. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  16. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  17. Enantio- and diastereoselective asymmetric allylic alkylation catalyzed by a planar-chiral cyclopentadienyl ruthenium complex.

    PubMed

    Kanbayashi, Naoya; Hosoda, Kazuki; Kato, Masanori; Takii, Koichiro; Okamura, Taka-aki; Onitsuka, Kiyotaka

    2015-07-11

    We report asymmetric allylic alkylation of allylic chloride with β-diketones as the prochiral carbon nucleophiles using a planar-chiral Cp'Ru catalyst. The reaction proceeds under mild conditions; the resulting chiral products containing vicinal tertiary stereocenters are obtained with high regio-, diastereo-, and enantioselectivities. These chiral products can then be transformed into a chiral diol by controlling the four stereocentres.

  18. Gold(I)-catalyzed amination of allylic alcohols with cyclic ureas and related nucleophiles.

    PubMed

    Mukherjee, Paramita; Widenhoefer, Ross A

    2010-03-19

    A 1:1 mixture of [P(t-Bu)(2)-o-biphenyl]AuCl and AgSbF(6) catalyzes the intermolecular amination of allylic alcohols with 1-methylimidazolidin-2-one and related nucleophiles that, in the case of gamma-unsubstituted or gamma-methyl-substituted allylic alcohols, occurs with high gamma-regioselectivity and syn-stereoselectivity.

  19. Stepwise cycloadditions of mesoionic systems: thionation of thioisomünchnones by isothiocyanates.

    PubMed

    Cantillo, David; Avalos, Martín; Babiano, Reyes; Cintas, Pedro; Jiménez, José L; Light, Mark E; Palacios, Juan C

    2008-03-20

    An unusual thionation strategy of mesoionic compounds with aryl isothiocyanates enables a facile synthesis of 1,3-thiazolium-4-thiolate systems. The mechanistic pathway of such a transformation most likely involves a stepwise 1,3-dipolar cycloaddition, which is supported by theoretical calculations performed with a two-layer hybrid method (B3LYP/6-31G(d):PM3).

  20. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    ERIC Educational Resources Information Center

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  1. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  2. Water and Methyl-Isothiocyanate Distribution in Soil Following Drip Fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide (MBr) has resulted in greater use of MITC generators. In order to understand the efficacy of MITC, it is necessary to assess its generat...

  3. Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproduction of Meloidogyne incognita on Capsicum annuum or Glycine max was suppressed when infective juveniles (J2) were exposed to 0.03 millimolar benzyl isothiocyanate (BITC) for 2hr prior to inoculation of the host. Infectivity assessed by gall index was significantly reduced on both G. max (co...

  4. Cross coupling of magnesium diacetylenides with functional allylic and halide-containing compounds catalyzed by transition metal complexes

    SciTech Connect

    Dzhemilev, U.M.; Ibragimov, A.G.; Saraev, R.A.

    1986-08-20

    An efficient method has been developed for the synthesis of 1,4-enynes, conjugated acetylenes and aryl acetylenes by the cross coupling of magnesium diacetylenides with allyl ethers and esters, alkyl halides, allyl halides, aryl halides, allyl sulfides, and allylsulfones, using Ni and Pd complexes as the catalyst.

  5. Nickel-Catalyzed Allylic Substitution of Simple Alkenes

    PubMed Central

    Matsubara, Ryosuke; Jamison, Timothy F.

    2011-01-01

    This report describes a nickel-catalyzed allylic substitution process of simple alkenes whereby an important structural motif, a 1,4-diene, was prepared. A key for this success is the use of an appropriate Ni-phosphine complex and a stoichiometric amount of silyl triflate. Reactions of 1-alkyl-substituted alkenes consistently provided 1,1-disubstituted alkenes with high selectivity. Insight into the reaction mechanism as well as miscellaneous application of the developed catalytic process is also documented. PMID:21387565

  6. Palladium-Catalyzed Enantioselective Decarboxylative Allylic Alkylation of Cyclopentanones.

    PubMed

    Craig, Robert A; Loskot, Steven A; Mohr, Justin T; Behenna, Douglas C; Harned, Andrew M; Stoltz, Brian M

    2015-11-06

    The first general method for the enantioselective construction of all-carbon quaternary centers on cyclopentanones by enantioselective palladium-catalyzed decarboxylative allylic alkylation is described. Employing the electronically modified (S)-(p-CF3)3-t-BuPHOX ligand, α-quaternary cyclopentanones were isolated in yields up to >99% with ee's up to 94%. Additionally, in order to facilitate large-scale application of this method, a low catalyst loading protocol was employed, using as little as 0.15 mol % Pd, furnishing the product without any loss in ee.

  7. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  8. One pot iridium-catalyzed asymmetrical double allylations of sodium sulfide: a fast and economic way to construct chiral C2-symmetric bis(1-substituted-allyl)sulfane.

    PubMed

    Zheng, Shengcai; Huang, Weiqing; Gao, Ning; Cui, Ruimin; Zhang, Min; Zhao, Xiaoming

    2011-06-28

    One pot asymmetrical double allylations of sodium sulfide catalyzed by an iridium complex along with a combination of caesium fluoride and water in dichloromethane have been realized and the double allylation products with two C-S bond chiral centers were obtained in 67-99% yields with b/l 81/19-99/1, dr 85/15-99/1, and 96-99% ee.

  9. Synthesis of nearly enantiopure allylic amines by aza-Claisen rearrangement of Z-configured allylic trifluoroacetimidates catalyzed by highly active ferrocenylbispalladacycles.

    PubMed

    Jautze, Sascha; Seiler, Paul; Peters, René

    2008-01-01

    The development of the first highly active enantioselective catalyst for the aza-Claisen rearrangement of Z-configured allylic trifluoroacetimidates generating valuable almost enantiopure protected allylic amines is described. Usually Z-configured allylic imidates react significantly slower than their E-configured counterparts, but in the present study the opposite effect was observed. Z-Configured olefins have the principal practical advantage that a geometrically pure C=C double bond can be readily obtained, for example, by semihydrogenations of alkynes. Our catalyst, a C(2)-symmetric planar chiral bispalladacycle complex, is rapidly prepared from ferrocene in four simple steps. Key step of this protocol is an unprecedented highly diastereoselective biscyclopalladation providing dimeric macrocyclic complexes of fascinating structure. In the present study as little as 0.1 mol % of catalyst precursor were sufficient for most of the alkyl substituted substrates to give in general almost quantitative yields. NMR investigations revealed a monomeric structure for the active catalyst species. The bispalladacycle can also be used for the formation of almost enantiomerically pure allylic amines (ee > or =96 %) substituted with important functional groups such as ester, ketone, ether, silyl ether, acetal or protected amino moieties providing high-added-value allylic amine building blocks in excellent yield (> or =94 %). The preparative advantages should render this methodology highly appealing as a practical and valuable tool for the formation of allylic amines in target oriented synthesis.

  10. The importance of the Lewis base in lithium mediated metallation and bond cleavage reaction of allyl amines and allyl phosphines.

    PubMed

    Blair, V L; Stevens, M A; Thompson, C D

    2016-06-21

    Metallation of two analogous N- and P-allyl molecules Ph2NCH2CHCH2 and Ph2PCH2CHCH2 with nBuLi have shown contrasting reactivities based on the choice of Lewis donor. With metallation of the alpha carbon atom was achieved regardless of the Lewis donor used while in comparison metallation of showed an unexpected donor denticity dependence with P-C bond clevage induced with the tri-dentate PMDETA. Complementary DFT and solution studies rationalise this outcome.

  11. Do garlic-derived allyl sulfides scavenge peroxyl radicals?

    PubMed

    Amorati, Riccardo; Pedulli, Gian Franco

    2008-03-21

    The chain-breaking antioxidant activities of two garlic-derived allyl sulfides, i.e. diallyl disulfide (1), the main component of steam-distilled garlic oil, and allyl methyl sulfide (3) were evaluated by studying the thermally initiated autoxidation of cumene or styrene in their presence. Although the rate of cumene oxidation was reduced by addition of both 1 and 3, the dependence on the concentration of the two sulfides could not be explained on the basis of the classic antioxidant mechanism as with phenolic antioxidants. The rate of oxidation of styrene, on the other hand, did not show significant changes upon addition of either 1 or 3. This unusual behaviour was explained in terms of the co-oxidant effect, consisting in the decrease of the autoxidation rate of a substrate forming tertiary peroxyl radicals (i.e. cumene) upon addition of little amounts of a second oxidizable substrate giving rise instead to secondary peroxyl radicals. The relevant rate constants for the reaction of ROO(.) with 1 and 3 were measured as 1.6 and 1.0 M(-1) s(-1), respectively, fully consistent with the H-atom abstraction from substituted sulfides. It is therefore concluded that sulfides 1 and 3 do not scavenge peroxyl radicals and therefore cannot be considered chain-breaking antioxidants.

  12. Cross-coupling of aromatic bromides with allylic silanolate salts.

    PubMed

    Denmark, Scott E; Werner, Nathan S

    2008-12-03

    The sodium salts of allyldimethylsilanol and 2-butenyldimethylsilanol undergo palladium-catalyzed cross-coupling with a wide variety of aryl bromides to afford allylated and crotylated arenes. The coupling of both silanolates required extensive optimization to deliver the expected products in high yields. The reaction of the allyldimethylsilanolate takes place at 85 degrees C in 1,2-dimethoxyethane with allylpalladium chloride dimer (2.5 mol %) to afford 73-95% yields of the allylation products. Both electron-rich and sterically hindered bromides reacted smoothly, whereas electron-poor bromides cross-coupled in poor yield because of a secondary isomerization to the 1-propenyl isomer (and subsequent polymerization). The 2-butenyldimethylsilanolate (E/Z, 80:20) required additional optimization to maximize the formation of the branched (gamma-substitution) product. A remarkable influence of added alkenes (dibenzylideneacetone and norbornadiene) led to good selectivities for electron-rich and electron-poor bromides in 40-83% yields. However, bromides containing coordinating groups (particularly in the ortho position) gave lower, and in one case even reversed, selectivity. Configurationally homogeneous (E)-silanolates gave slightly higher gamma-selectivity than the pure (Z)-silanolates. A unified mechanistic picture involving initial gamma-transmetalation followed by direct reductive elimination or sigma-pi isomerization can rationalize all of the observed trends.

  13. Cation control of diastereoselectivity in iridium-catalyzed allylic substitutions. Formation of enantioenriched tertiary alcohols and thioethers by allylation of 5H-oxazol-4-ones and 5H-thiazol-4-ones.

    PubMed

    Chen, Wenyong; Hartwig, John F

    2014-01-08

    We report highly diastereo- and enantioselective allylations of substituted 5H-oxazol-4-ones and 5H-thiazol-4-ones catalyzed by a metallacyclic iridium complex. Enantioselective Ir-catalyzed allylation of substituted 5H-oxazol-4-ones occurs with high diastereoselectivity by employing the corresponding zinc enolates; enantioselective Ir-catalyzed allylation of substituted 5H-thiazol-4-ones occurs with the corresponding magnesium enolates with high diastereoselectivity. The allylation of substituted 5H-oxazol-4-ones provides rapid access to enantioenriched tertiary α-hydroxy acid derivatives unavailable through Mo-catalyzed allylic substitution. The allylation of substituted 5H-thiazol-4-ones provides a novel method to synthesize enantioenriched tertiary thiols and thioethers. The observed cation effect implies a novel method to control the diastereoselectivity in Ir-catalyzed allylic substitution.

  14. Melatonin agonists and insomnia.

    PubMed

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  15. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  16. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  17. Homogeneous Pd-catalyzed transformation of terminal alkenes into primary allylic alcohols and derivatives.

    PubMed

    Tomita, Ren; Mantani, Kohei; Hamasaki, Akiyuki; Ishida, Tamao; Tokunaga, Makoto

    2014-08-04

    Synthesis of primary alcohols from terminal alkenes is an important process in both bulk and fine chemical syntheses. Herein, a homogeneous Pd-complex-catalyzed transformation of terminal alkenes into primary allylic alcohols, by using 5 mol % [Pd(PPh3)4] as a catalyst, and H2O, CO2, and quinone derivatives as reagents, is reported. When alcohols were used instead of H2O, allylic ethers were obtained. A proposed mechanism includes the addition of oxygen nucleophiles at the less-hindered terminal position of π-allyl Pd intermediates.

  18. Hydrogen-bond-assisted activation of allylic alcohols for palladium-catalyzed coupling reactions.

    PubMed

    Gumrukcu, Yasemin; de Bruin, Bas; Reek, Joost N H

    2014-03-01

    We report direct activation of allylic alcohols using a hydrogen-bond-assisted palladium catalyst and use this for alkylation and amination reactions. The novel catalyst comprises a palladium complex based on a functionalized monodentate phosphoramidite ligand in combination with urea additives and affords linear alkylated and aminated allylic products selectively. Detailed kinetic analysis show that oxidative addition of the allyl alcohol is the rate-determining step, which is facilitated by hydrogen bonds between the alcohol, the ligand functional group, and the additional urea additive.

  19. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  20. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts.

    PubMed

    Guo, Qianghui; Guo, Liping; Wang, Zhiying; Zhuang, Yan; Gu, Zhenxin

    2013-12-01

    Isothiocyanates (ITCs) are proved as one of natural anticarcinogenic compounds, which are produced from the decomposition of glucosinolates by myrosinase. The present study optimized the enzymolysis conditions (pH, addition of EDTA and ascorbic acid) for ITCs production from glucosinolates in broccoli sprouts using response surface methodology. ITCs production was clearly enhanced by a suitable pH, addition content of EDTA and ascorbic acid. The optimal enzymolysis conditions were determined to be adding EDTA 0.02 mmol and 0.16 mg ascorbic acid to 4 ml of the homogenized phosphate-citrate buffer solution (pH 4.00). ITCs profiles were identified and seven kinds of individual ITCs were detected, among which sulforaphane accounted the most. Four kinds of individual ITCs including isobutyl isothiocyanate, 4-isothiocyanato-1-butene, 1-isothiocyanato-3-methyl-butane and 1-isothiocyanato-butane are firstly reported in broccoli sprouts.

  1. Plasmonic Enhancement of Luminescence of Fluorscein Isothiocyanate and Human Immunoglobulin Conjugates

    NASA Astrophysics Data System (ADS)

    Ramanenka, A. A.; Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Ya.; Glukhov, Yu. F.; Gaponenko, S. V.

    2014-05-01

    Plasmonic enhancement of the luminescence of fl uorescein isothiocyanate and human immunoglobulin conjugates near silver nanoparticles was investigated as functions of the nanoparticle-conjugate distance and the excitation polarization. The maximum luminescence enhancement of 7.4 was achieved for p-polarized excitation and nanoparticle-conjugate distance 3.3 nm. The luminescence enhancement factor increased experimentally for p-polarized excitation and decreased for s-polarized excitation as compared with unpolarized excitation.

  2. Silica gel-promoted tandem addition-cyclization reactions of 2-alkynylbenzenamines with isothiocyanates.

    PubMed

    Ding, Qiuping; Cao, Banpeng; Zong, Zhenzhen; Peng, Yiyuan

    2010-05-10

    Tandem addition-cyclization reactions of 2-alkynylbenzenamines with isothiocyanates promoted by silica gel are described. This reaction proceeds smoothly at 80 degrees C under metal- and solvent-free conditions, which provides an efficient and practical route for the generation of 2,4-dihydro-1H-benzo[d][1,3]thiazines. The recovered silica gel could be reused for several times.

  3. Effect of Wasabi Component 6-(Methylsulfinyl)hexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells

    PubMed Central

    Chen, Yu-Jen; Huang, Yu-Chuen; Tsai, Tung-Hu

    2014-01-01

    The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu's stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells. PMID:24575144

  4. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates.

    PubMed

    Liu, Xiaoji; Wang, Yanling; Hoeflinger, Jennifer L; Neme, Bárbara P; Jeffery, Elizabeth H; Miller, Michael J

    2017-03-10

    Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP) hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control) or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(P)H: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible.

  5. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    PubMed

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects.

  6. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates

    PubMed Central

    Liu, Xiaoji; Wang, Yanling; Hoeflinger, Jennifer L.; Neme, Bárbara P.; Jeffery, Elizabeth H.; Miller, Michael J.

    2017-01-01

    Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP) hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control) or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(P)H: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible. PMID:28287418

  7. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera

    PubMed Central

    Boyunegmez Tumer, Tugba; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2016-01-01

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate and 4-[(4′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  8. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS.

    PubMed

    Song, Lijiang; Morrison, John J; Botting, Nigel P; Thornalley, Paul J

    2005-12-15

    Dietary glucosinolates are under intensive investigation as precursors of cancer-preventive isothiocyanates. Quantitation of the dose and bioavailability of glucosinolates and isothiocyanates requires a comprehensive analysis of the major dietary glucosinolates, isothiocyanates, and related metabolites. We report a liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) analytical method for the comprehensive analysis of the seven major dietary glucosinolates, related isothiocyanates, and putative amine degradation products. The parent glucosinolates were sinigrin, gluconapin, progoitrin, glucoiberin, glucoraphanin, glucoalyssin, and gluconasturtiin. The LC-MS/MS analysis method for these compounds was developed and validated; a standard addition analysis protocol was used generally to avoid the requirement for stable isotopic standards. Where stable isotopic standards were available, internal standardization with these gave estimates in agreement with those obtained by the standard addition analysis protocol. For glucosinolates, negative ion electrospray LC-MS/MS analysis was performed. Isothiocyanates and amines were prederivatized to the corresponding thiourea and N-acetamides, respectively, and were quantified by positive ion electrospray LC-MS/MS. The limits of detection were 0.5-2 pmol; the recoveries for glucosinolates, isothiocyanates, and amines were 85-90%, 50-85%, and 60-70%, respectively; and the intra- and interbatch coefficients of variation were 1-4% and 3-10%, respectively. These methods provide facile access to comprehensive analytical data on the major dietary glucosinolates and related metabolites to quantify inputs and metabolic formation of these compounds in cancer prevention and related studies.

  9. Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones

    PubMed Central

    Ceban, Victor; Tauchman, Jiří; Meazza, Marta; Gallagher, Greg; Light, Mark E.; Gergelitsová, Ivana; Veselý, Jan; Rios, Ramon

    2015-01-01

    The highly enantioselective asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with anthrones is presented. The reaction is simply catalyzed by cinchona alkaloid derivatives affording the final alkylated products in good yields and excellent enantioselectivities. PMID:26592555

  10. Conversion of allylic alcohols to stereodefined trisubstituted alkenes: a complementary process to the Claisen rearrangement.

    PubMed

    Belardi, Justin K; Micalizio, Glenn C

    2008-12-17

    A stereoselective method for the conversion of allylic alcohols to (Z)-trisubstituted alkenes is presented. Overall, the reaction sequence described is stereochemically complementary to related Claisen rearrangement reactions--processes that typically deliver the stereoisomeric trisubstituted alkene containing products.

  11. Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones

    NASA Astrophysics Data System (ADS)

    Ceban, Victor; Tauchman, Jiří; Meazza, Marta; Gallagher, Greg; Light, Mark E.; Gergelitsová, Ivana; Veselý, Jan; Rios, Ramon

    2015-11-01

    The highly enantioselective asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with anthrones is presented. The reaction is simply catalyzed by cinchona alkaloid derivatives affording the final alkylated products in good yields and excellent enantioselectivities.

  12. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  13. Structurally simple pyridine N-oxides as efficient organocatalysts for the enantioselective allylation of aromatic aldehydes.

    PubMed

    Pignataro, Luca; Benaglia, Maurizio; Annunziata, Rita; Cinquini, Mauro; Cozzi, Franco

    2006-02-17

    A series of structurally simple pyridine N-oxides have readily been assembled from inexpensive amino acids and tested as organocatalysts in the allylation of aldehydes with allyl(trichloro)silane to afford homoallylic alcohols. (S)-proline-based catalysts afforded the products derived from aromatic aldehydes in fair to good yields and in up to 84% enantiomeric excess (ee). The allylation of heteroaromatic, unsaturated, and aliphatic aldehydes was less satisfactory. By running the reaction in the presence of achiral and chiral additives and structurally different catalysts, we collected some insights into the relationship between the stereochemical outcome and the catalyst's structural features. Even if the ee's obtained are inferior to the best values observed with other catalysts, this work concurs to show that structurally simple pyridine N-oxides can also promote the allylation reaction with satisfactory stereocontrol.

  14. Cross coupling of dialkylmagnesium derivatives with allylic compounds catalyzed by copper salts

    SciTech Connect

    Ibragimov, A.G.; Dzhemilev, U.M.; Saraev, R.A.

    1985-07-20

    The reaction of allylic compounds with Grignard reagents catalyzed by salts of copper, nickel, iron and cobalt, titanium and palladium is a simple and efficient method for the preparation of unsaturated hydrocarbons. However, information concerning the use of dialkylmagnesium derivatives, which are more reactive than Grignard reagents, is extremely limited in these reactions. To continue a study of the cross-coupling of allylic compounds with dialkylmagnesium derivatives in an effort to expand the scope of this reaction and to elucidate the effect of the R/sub 2/Mg reagent structure on its reactivity, the authors investigated the reaction of dialkylmagnesium and diarlmagnesium reagents with allylic ethers and esters, thioethers, and amines, by the action of transition metal salts. This work demonstrates the feasibility of the preparation of unsaturated hydrocarbons of given structure by the cross-coupling of dialkylmagnesium derivatives with functional allylic compounds by the action of catalytic amounts of copper complexes.

  15. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl (α-Cyclopropyl)allylation via Transfer Hydrogenation.

    PubMed

    Tsutsumi, Ryosuke; Hong, Suckchang; Krische, Michael J

    2015-09-07

    The first examples of diastereo- and enantioselective carbonyl α-(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)-Ir-I modified by SEGPHOS, carbonyl α-(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane-containing architectures.

  16. Regio- and Stereoselective Modification of Chiral α-Amino Ketones by Pd-Catalyzed Allylic Alkylation.

    PubMed

    Huwig, Kai; Schultz, Katharina; Kazmaier, Uli

    2015-07-27

    Chiral α-amino ketones are excellent nucleophiles for stereoselective palladium-catalyzed allylic alkylations. Both chiral as well as achiral allylic substrates can be applied, while the stereochemical outcome of the reaction is controlled by the chiral ketone enolate. The substituted amino ketones formed can be reduced stereoselectively, and up to five consecutive stereogenic centers can be obtained. This approach can be used for the synthesis of highly substituted piperidine derivatives.

  17. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C—H Amination

    PubMed Central

    Reed, Sean A.; Mazzotti, Anthony R.; White, M. Christina

    2009-01-01

    A Brønsted base activation mode for oxidative, Pd(II)/sulfoxide catalyzed, intermolecular C—H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C—H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products. PMID:19645492

  18. A simple, nontoxic iron system for the allylation of zinc enolates.

    PubMed

    Jarugumilli, Gopala K; Cook, Silas P

    2011-04-15

    Diiron nonacarbonyl in combination with triphenylphosphine has been identified as a low-cost and environmentally benign catalyst system for the allylation of zinc enolates generated in situ from copper-catalyzed asymmetric conjugate addition reactions. The catalyst system provides the allylated product in modest to good yields at room temperature with unprecedented diastereoselectivity in cyclic enone systems. While triphenylphosphine was uniquely effective among the investigated ligands, the exact nature of the active catalytic species remains unknown.

  19. Direct use of allylic alcohols for platinum-catalyzed monoallylation of amines.

    PubMed

    Utsunomiya, Masaru; Miyamoto, Yoshiki; Ipposhi, Junji; Ohshima, Takashi; Mashima, Kazushi

    2007-08-16

    A new direct catalytic amination of allylic alcohols promoted by the combination of platinum and a large bite-angle ligand DPEphos was developed in which the allylic alcohol was effectively converted to a pi-allylplatinum intermediate without the use of an activating reagent. The use of the DPEphos ligand was essential for obtaining high catalyst activity and high monoallylation selectivity of primary amines, allowing the formation of a variety of monoallylation products in good to excellent yield.

  20. An efficient and convenient palladium catalyst system for the synthesis of amines from allylic alcohols.

    PubMed

    Banerjee, Debasis; Jagadeesh, Rajenahally V; Junge, Kathrin; Junge, Henrik; Beller, Matthias

    2012-10-01

    A novel catalyst system for efficient amination of allylic alcohols with aryl and alkyl amines is presented. By applying a convenient combination consisting of Pd(OAc)(2)/1,10-phenanthroline, a variety of allylic alcohols reacted smoothly to give the corresponding secondary and tertiary amines in good to excellent yields with high regioselectivity. The usefulness of our protocol is demonstrated in the one-step synthesis of the antifungal drug naftifine and the calcium channel blocker flunarizine.

  1. Role of planar chirality of S,N- and P,N-ferrocene ligands in palladium-catalyzed allylic substitutions.

    PubMed

    You, Shu-Li; Hou, Xue-Long; Dai, Li-Xin; Yu, Yi-Hua; Xia, Wei

    2002-07-12

    Palladium-catalyzed asymmetric allylic substitutions using thioether and phosphino derivatives of ferrocenyloxazoline as ligands have been investigated with a focus on studying the role of planar chirality. In allylic alkylation, up to 98% ee and 95% ee were achieved with S,N- and P,N-ligands, respectively. In allylic amination, 97% ee was realized with P,N-ligands in the presence of TBAF. Several palladium allylic complexes were characterized by X-ray diffraction and/or solution NMR. Thioether derivatives of ferrocenyloxazolines with only planar chirality showed lower enantioselectivity in the allylic alkylation except 5c because of the formation of a new chirality on sulfur atom during the coordination of sulfur with palladium. On the other hand, in the planar chiral P,N-ligands without central chirality, (Sp)-11a-c there was no such disturbance and comparatively higher enantioselectivity in both palladium-catalyzed allylic alkylation and amination was provided.

  2. Cp*Rh(III)-Catalyzed Low Temperature C-H Allylation of N-Aryl-trichloro Acetimidamide.

    PubMed

    Debbarma, Suvankar; Bera, Sourav Sekhar; Maji, Modhu Sudan

    2016-12-02

    The readily synthesized trichloro acetimidamide was found to be an excellent directing group for the directed C-H-allylation reactions. Depending on the allylating agent used, selectively either mono- or diallylated products were readily synthesized. Moreover, the trichloro acetimidamide directing group was found to be highly efficient even at lower temperature for the C-H-allylation reaction. Due to mildness of the reaction conditions, double bond isomerization or cyclization to indole side product was not observed.

  3. Fluorination Enables a Ligand-Controlled Regiodivergent Palladium-Catalyzed Decarboxylative Allylation Reaction to Access α,α-Difluoroketones

    PubMed Central

    Yang, Ming–Hsiu; Orsi, Douglas L.

    2015-01-01

    α,α-Difluoroketones possess unique physicochemical properties that are useful for developing therapeutics and probes for chemical biology. In order to access the α-allyl-α,α-difluoroketone substructure, complementary Pd-catalyzed decarboxylative allylation reactions were developed to provide linear and branched α-allyl-α,α-difluoroketones. For these orthogonal processes, the regioselectivity was uniquely controlled by fluorination of the substrate and the structure of ligand. PMID:25581845

  4. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    NASA Astrophysics Data System (ADS)

    Şahiner, Nurettin; Malcı, Savaş; Çelikbıçak, Ömür; Kantoğlu, Ömer; Salih, Bekir

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using 60Co γ source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis.

  5. SN2 reactions with allylic substrates--Trends in reactivity

    NASA Astrophysics Data System (ADS)

    Ochran, Richard A.; Uggerud, Einar

    2007-09-01

    The gas-phase identity SN2 reactions of allylic substrates has been studied by systematic altering of the nucleophile/nucleofuge X, the remote substituent Y, and the number of methyl substituents at the reaction centre: X- + YCHCHCZ2X --> YCHCHCZ2X + X- (X = H, CH3, NH2, F, Cl; Y = F, OH, H, CHO, BH2; Z = H, CH3). Key regions of the potential energy surfaces have been explored by MP2, B3LYP, G3B3 and G3 calculations; the latter two methods providing accurate estimates of the reaction barrier. The calculations show that irrespective of theoretical level, for the second row of the periodic table (X = CH3, NH2, OH, and F), the tendency is that the barrier height decreases in going from left to right in agreement with the previously observed trend for identity SN2 reactions at methyl. The barrier height decreases by introduction a [pi] electron withdrawing substituents, Y, remote 6rom the reaction centre. The barrier height increases by introducing methyl groups (Z = CH3) next to the reaction centre, but the effect is less than half of that of changing the remote substituent from Y = CHO to Y = OH. The trends cannot be explained by simplified valence bond theory and are discussed in light of a simple electrostatic bonding model of the transition structure.

  6. Origins of Regioselectivity in Iridium Catalyzed Allylic Substitution.

    PubMed

    Madrahimov, Sherzod T; Li, Qian; Sharma, Ankit; Hartwig, John F

    2015-12-02

    Detailed studies on the origin of the regioselectivity for formation of branched products over linear products have been conducted with complexes containing the achiral triphenylphosphite ligand. The combination of iridium and P(OPh)3 was the first catalytic system shown to give high regioselectivity for the branched product with iridium and among the most selective for forming branched products among any combination of metal and ligand. We have shown the active catalyst to be generated from [Ir(COD)Cl]2 and P(OPh)3 by cyclometalation of the phenyl group on the ligand and have shown such species to be the resting state of the catalyst. A series of allyliridium complexes ligated by the resulting P,C ligand have been generated and shown to be competent intermediates in the catalytic system. We have assessed the potential impact of charge, metal-iridium bond length, and stability of terminal vs internal alkenes generated by attack at the branched and terminal positions of the allyl ligand, respectively. These factors do not distinguish the regioselectivity for attack on allyliridium complexes from that for attack on allylpalladium complexes. Instead, detailed computational studies suggest that a series of weak, attractive, noncovalent interactions, including interactions of H-bond acceptors with a vinyl C-H bond of the alkene ligand, favor formation of the branched product with the iridium catalyst. This conclusion underscores the importance of considering attractive interactions, as well as repulsive steric interactions, when seeking to rationalize selectivities.

  7. The direct arylation of allylic sp3 C–H bonds via organocatalysis and photoredox catalysis

    PubMed Central

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-01-01

    The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts,1 the establishment of general and mild strategies for the engagement of sp3 C–H bonds in carbon–carbon bond forming reactions has proven difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene, and methine carbons in a catalytic manner is a priority. While protocols for direct allylic C–H oxidation and amination have become widely established,2,3 the engagement of allylic substrates in carbon–carbon bond-forming reactions has thus far required the use of pre-functionalized coupling partners.4 In particular, the direct arylation of non-functionalized allylic systems would enable chemists to rapidly access a series of known pharmacophores, though a general solution to this longstanding challenge remains elusive. We describe herein the use of both photoredox and organic catalysis to accomplish the first mild, broadly effective direct allylic C–H arylation. This new C–C bond-forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants and has been used in the direct arylation of benzylic C–H bonds. PMID:25739630

  8. Resonance interactions in acyclic systems. 1. Energies and charge distributions in allyl anions and related compounds

    SciTech Connect

    Wiberg, K.B.; Breneman, C.M.; LePage, T.J. )

    1990-01-03

    The energies of dissociation of propane to 1-propyl cation and anion and of propene to allyl cation and anion may be satisfactorily reproduced via ab initio calculations at the MP4/6-311++G**//6-31G* level. The reaction of 1-propyl cation with propene to give the unconjugated allyl cation was found to be endothermic, whereas the corresponding reaction of the anion was exothermic. The rotational barrier for allyl cation was 36 kcal/mol, whereas that for the anion was 19 kcal/mol. These data were analyzed in terms of electron delocalization and the electrostatic energies of the ions, and it was concluded that whereas the cation had significant resonance stabilization, the anion had little stabilization. A series of allyl type anions were examined making use of 6-311++G** wave functions calculated at the 6-31G* geometries. Correction for electron correlation at the MP3 level led to calculated proton affinities which agreed well with the experimental values. Electronegative atoms at the central position had little affect on the proton affinities, but when they were at the terminal positions, there was a large change. The changes in electron population among the amions were studied via numerical integration of the charge densities within boundaries which may be assigned to the atoms in the ions. The more stable anions are characterized by a -+- charge distribution for the three atoms in the allylic system, leading to internal coulombic stabilization.

  9. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Galuppo, Maria; Giacoppo, Sabrina; De Nicola, Gina Rosalinda; Iori, Renato; Navarra, Michele; Lombardo, Giovanni Enrico; Bramanti, Placido; Mazzon, Emanuela

    2014-06-01

    Glucomoringin (4(α-L-rhamnosyloxy)-benzyl glucosinolate) (GMG) is an uncommon member of glucosinolate group belonging to the Moringaceae family, of which Moringa oleifera Lam. is the most widely distributed. Bioactivation of GMG with the enzyme myrosinase forms the corresponding isothiocyanate (4(α-L-rhamnosyloxy)-benzyl isothiocyanate) (GMG-ITC), which can play a key role in antitumoral activity and counteract the inflammatory response. The aim of this study was to assess the effect of GMG-ITC treatment in an experimental mouse model of multiple sclerosis (MS), an inflammatory demyelinating disease with neurodegeneration characterized by demyelinating plaques, neuronal, and axonal loss. For this reason, C57Bl/6 male mice were injected with myelin oligodendrocyte glycoprotein35-55 which is able to evoke an autoimmune response against myelin fibers miming human multiple sclerosis physiopatogenesis. Results clearly showed that the treatment was able to counteract the inflammatory cascade that underlies the processes leading to severe MS. In particular, GMG-ITC was effective against proinflammatory cytokine TNF-α. Oxidative species generation including the influence of iNOS, nitrotyrosine tissue expression and cell apoptotic death pathway was also evaluated resulting in a lower Bax/Bcl-2 unbalance. Taken together, this work adds new interesting properties and applicability of GMG-ITC and this compound can be suggested as a useful drug for the treatment or prevention of MS, at least in association with current conventional therapy.

  10. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells

    PubMed Central

    Zhu, Mingyue; Li, Wei; Guo, Junli; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Li, Mengsen

    2016-01-01

    Benzyl isothiocyanate (BITC) is a dietary isothiocyanate derived from cruciferous vegetables. Recent studies showed that BITC inhibited the growth of many cancer cells, including hepatocellular carcinoma (HCC) cells. Alpha-fetoprotein (AFP) is a important molecule for promoting progression of HCC, in the present investigation, we explore the influence of AFP on the role of BITC in the malignant behaviours of HCC cells, and the potential underlying mechanisms. We found thatBITC inhibited viability, migration, invasion and induced apoptosis of human liver cancer cell lines, Bel 7402(AFP producer) and HLE(non-AFP producer) cells in vitro. The role of BITC involve in promoting actived-caspase-3 and PARP-1 expression, and enhancing caspase-3 activity but decreasing MMP-2/9, survivin and CXCR4 expression. AFP antagonized the effect of BITC. This study suggests that BITC induced significant reductions in the viability of HCC cell lines. BITC may activate caspase-3 signal and inhibit the expression of growth- and metastasis-related proteins; AFP is an pivotal molecule for the HCC chemo-resistance of BITC. PMID:27716619

  11. Sensitization of HER2 Positive Breast Cancer Cells to Lapatinib Using Plants-Derived Isothiocyanates.

    PubMed

    Kaczyńska, Angelika; Świerczyńska, Joanna; Herman-Antosiewicz, Anna

    2015-01-01

    Nearly 25% of all breast cancer is characterized by overexpression of HER2 (human epidermal growth factor receptor 2) which leads to overactivation of prosurvival signal transduction pathways, especially through Akt-mTOR-S6K kinases, and results in enhanced proliferation, migration, induction of angiogenesis, and apoptosis inhibition. Anti-HER2 targeted therapies, such as specific monoclonal antibodies or small-molecule tyrosine kinase inhibitors, even in combination, still seem to be insufficient due to incidence of primary or acquired resistance and prevalence of serious side-effects of these drugs. We assumed that combination of compounds that target different levels of the above-mentioned signal transduction pathway might be more effective in eradication of breast cancer cells. In our in vitro research we used a commercially available drug, lapatinib, acting at the level of the receptor in combination with 1 of the plant-derived isothiocyanates: sulforaphane, erucin, or sulforaphene, as it has been shown previously that sulforaphane inhibits Akt-mTOR-S6K1 pathway in breast cancer cells. We used 2 HER2 overexpressing breast cancer cell lines, SKBR-3 and BT-474. Combinations of the drug and isothiocyanates considerably decreased their viability. This action was synergistic and was accompanied by a decrease in phosphorylation of HER2, Akt, and S6. Combined treatment induced apoptosis more efficiently than either agent alone; however the most effective was a combination of lapatinib with erucin. These findings might support the optimization of therapy based on lapatinib treatment.

  12. [2+2+2] cyclotrimerization of alkynes and isocyanates/isothiocyanates catalyzed by ruthenium-alkylidene complexes.

    PubMed

    Alvarez, Silvia; Medina, Sandra; Domínguez, Gema; Pérez-Castells, Javier

    2013-10-04

    Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents. The reaction of unsymmetrical α,ω-diynes gave a product only with the substituent adjacent to the 2-pyridone nitrogen. Isothiocyanates gave thiopyranimines upon reaction with the C═S bond, whereas CS2 reacted efficiently to give a thioxothiopyrane.

  13. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  14. A New Entry to Azomethine Ylides from Allylic Amines and Glyoxals: Shifting the Reliance on Amino Ester Precursors

    PubMed Central

    2015-01-01

    The first examples of azomethine ylides derived from allylic amine and glyoxal precursors are reported. The condensation of primary allylic and α-aryl amines with glyoxylates or α-aryl glyoxals affords conjugated azomethine ylides that undergo facile [3 + 2] cycloaddition, providing 5-alkenyl pyrrolidine cycloadducts that cannot be accessed through the classical use of amino esters as ylide precursors. PMID:25247255

  15. Synthesis of a C1-C11 fragment of Zincophorin using planar chiral, neutral π-allyl iron complexes.

    PubMed

    Cooksey, John P

    2013-08-21

    A key step in the synthesis of a C1-C11 fragment of the ionophore antibiotic Zincophorin involves the addition of an α-alkoxyalkylcopper(I) reagent to a planar chiral, neutral π-allyl iron complex. The key allylic alkylation reaction is highly regio- and stereoselective with addition taking place at the γ-position anti to the metal centre.

  16. Catalyst control in sequential asymmetric allylic substitution: stereodivergent access to N,N-diprotected unnatural amino acids.

    PubMed

    Tosatti, Paolo; Campbell, Amanda J; House, David; Nelson, Adam; Marsden, Stephen P

    2011-07-01

    The sequential use of Cu-catalyzed asymmetric allylic alkylation, olefin cross-metathesis, and Ir-catalyzed asymmetric allylic amination allows the concise, stereodivergent synthesis of complex chiral amines with complete regiocontrol and good diastereoselectivity, exemplified by the synthesis of a pair of diastereoisomeric unnatural branched amino acid derivatives.

  17. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    PubMed

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity.

  18. Stereochemistry of C7-allyl yohimbine explored by X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Kagawa, Natsuko; Masuda, Yoshitake; Morimoto, Tsumoru; Kakiuchi, Kiyomi

    2013-03-01

    X-ray crystallographic analysis revealed that the palladium-catalyzed β-allylation of yohimbine proceeded in a (7S)-selective manner. The crystal structure had an indolenine unit that was generally unstable in air. A stereoselective outcome was obtained when the palladium π-allyl complex approached yohimbine from the less-hindered pro-S side. However, during reserpine allylation—because the structure of reserpine is that of a transoid-3, 15-ring junction—the palladium π-allyl complex approached from both sides: pro-S and pro-R. A computational method was developed to discuss this selectivity. Experimental details and considerations of the reaction are provided.

  19. Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of Allyl Bromide

    NASA Astrophysics Data System (ADS)

    McCabe, Morgan N.; Shipman, Steven

    2014-06-01

    The rotational spectrum of allyl bromide was recorded from 8.7 to 26.5 GHz at -20 °C with a waveguide chirped-pulse Fourier transform microwave spectrometer. The rotational spectrum of allyl bromide has been previously studied by Niide and coworkers. However, previous assignments of this spectrum only extended to J = 12 and K_a = 1. Newly acquired data from our spectrometer has allowed us to extend the previous work to higher values of J and K_a, leading to significant improvements in the distortion constants in particular. Comparisons between the spectra and conformational preferences of the allyl halides will also be discussed. Y. Niide, M, Takano,T. Satoh, and Y. Sasada J. Mol. Spectrosc., 63, 108(1976) Niide, Yuzuru, J. Sci. Hiroshima Univ., Ser. A, 48, 1(1984)

  20. Synthesis of 3-fluoropyrrolidines and 4-fluoropyrrolidin-2-ones from allylic fluorides.

    PubMed

    Combettes, Lorraine E; Schuler, Marie; Patel, Rakesh; Bonillo, Baltasar; Odell, Barbara; Thompson, Amber L; Claridge, Tim D W; Gouverneur, Véronique

    2012-10-08

    Various 3-fluoropyrrolidines and 4-fluoropyrrolidin-2-ones were prepared by 5-exo-trig iodocyclisation from allylic fluorides bearing a pending nitrogen nucleophile. These bench-stable precursors were made accessible upon electrophilic fluorination of the corresponding allylsilanes. The presence of the allylic fluorine substituent induces syn-stereocontrol upon iodocyclisation with diastereomeric ratios ranging from 10:1 to > 20:1 for all N-tosyl-3-fluoropent-4-en-1-amines and amides. The sense and level of stereocontrol is strikingly similar to the corresponding iodocyclisation of structurally related allylic fluorides bearing pending oxygen nucleophiles. These results suggest that the syn selectivity observed upon ring closure involves I(2)-π complexes with the fluorine positioned inside.

  1. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    NASA Astrophysics Data System (ADS)

    Genshuan, Wei; Guanghui, Wang; Ruipu, Yang; Jilan, Wu

    1996-02-01

    A study of the effects of γ-radiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3CHOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited.

  2. Additive-Free Pd-Catalyzed α-Allylation of Imine-Containing Heterocycles.

    PubMed

    Kljajic, Marko; Puschnig, Johannes G; Weber, Hansjörg; Breinbauer, Rolf

    2017-01-06

    An additive-free Pd-catalyzed α-allylation of different imino-group-ontaining heterocycles is reported. The activation of α-CH pronucleophiles (pKa (DMSO) > 25) occurs without the addition of strong bases or Lewis acids using only the Pd/Xantphos catalyst system. The reaction scope has been studied for various 5- and 6-membered nitrogen-containing heterocycles (yields up to 96%). Mechanistic investigations suggest an initial allylation of the imine-N followed by a Pd-catalyzed formal aza-Claisen rearrangement.

  3. Allylation of aldehydes and imines: promoted by reuseable polymer-supported sulfonamide of N-glycine.

    PubMed

    Li, Gui-long; Zhao, Gang

    2006-02-16

    [reaction: see text] A allylation of aldehydes and imines (generated in situ from aldehydes and amines) with allyltributyltin promoted by recoverable and reusable the polymer-supported sulfonamide of N-glycine has been developed. Good to high yields were obtained in various cases. Most of the SnBu(3) residue can be recovered as Bu(3)SnCl. Highly stereoselective synthesis of N-Boc-(2S,3S)-3-hydroxy-2-phenylpiperidine 7 was achieved by using the P4a-mediated allylation of Boc-l-phenylglycinal as a key step.

  4. Additive-Free Pd-Catalyzed α-Allylation of Imine-Containing Heterocycles

    PubMed Central

    2016-01-01

    An additive-free Pd-catalyzed α-allylation of different imino-group-ontaining heterocycles is reported. The activation of α-CH pronucleophiles (pKa (DMSO) > 25) occurs without the addition of strong bases or Lewis acids using only the Pd/Xantphos catalyst system. The reaction scope has been studied for various 5- and 6-membered nitrogen-containing heterocycles (yields up to 96%). Mechanistic investigations suggest an initial allylation of the imine-N followed by a Pd-catalyzed formal aza-Claisen rearrangement. PMID:27936786

  5. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities.

  6. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.

    2013-01-01

    At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265

  7. Nickel complex-catalyzed codimerization of allyl esters with compounds in the norbornene series

    SciTech Connect

    Dzhemilev, U.M.; Khusnutdinov, R.I.; Galeev, D.K.; Nefedov, O.M.; Tolstikov, G.A.

    1987-07-20

    The basic principles governing the cyclocodimerization of norbornene with allyl compounds have been elucidated for their reaction in the presence of a three-component catalyst system, Ni(acac)/sub 2/-P(OR)/sub 3/-AlR'/sub 3/ (or MgR''/sub 2/); a highly selective method has also been developed for the introduction of a methylenecyclobutane fragment to a norbornene hydrocarbon derivative. A new Ni complex has been prepared; it appears to be the catalyst which is active for the cyclocodimerization of norbornene with allylic compounds.

  8. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  9. Allylic Amines as Key Building Blocks in the Synthesis of (E)-Alkene Peptide Isosteres

    PubMed Central

    Skoda, Erin M.; Davis, Gary C.

    2012-01-01

    Nucleophilic imine additions with vinyl organometallics have developed into efficient, high yielding, and robust methodologies to generate structurally diverse allylic amines. We have used the hydrozirconation-transmetalation-imine addition protocol in the synthesis of allylic amine intermediates for peptide bond isosteres, phosphatase inhibitors, and mitochondria-targeted peptide mimetics. The gramicidin S-derived XJB-5-131 and JP4-039 and their analogs have been prepared on up to 160 g scale for preclinical studies. These (E)-alkene peptide isosteres adopt type II′ β-turn secondary structures and display impressive biological properties, including selective reactions with reactive oxygen species (ROS) and prevention of apoptosis. PMID:22323894

  10. Pd-catalyzed asymmetric allylic amination using easily accessible metallocenyl P,N-ligands.

    PubMed

    Wu, Hongwei; Xie, Fang; Wang, Yanlan; Zhao, Xiaohu; Liu, Delong; Zhang, Wanbin

    2015-04-14

    Compared to their C1-symmetric counterparts, planar chiral C2-symmetric metallocenyl P,N-ligands are efficient chiral ligands for Pd-catalyzed asymmetric allylic aminations, providing a number of amination products with high enantioselectivities. A non-C2-symmetric ferrocenyl P,N-ligand (a by-product obtained during the synthesis of the above C2-symmetric species) was also found to be an efficient ligand for asymmetric allylic aminations. A mixed ligand system consisting of both C2- and non-C2-symmetric ferrocene complexes was examined and showed high catalytic activity with the amination products being obtained with excellent enantioselectivities.

  11. An asymmetric alkynylation/hydrothiolation cascade: an enantioselective synthesis of thiazolidine-2-imines from imines, acetylenes and isothiocyanates.

    PubMed

    Ranjan, Alok; Mandal, Anupam; Yerande, Swapnil G; Dethe, Dattatraya H

    2015-09-28

    A multicomponent reaction between imines, terminal alkynes, and isothiocyanates in the presence of a catalytic chiral copper-pybox complex proceeds enantioselectively to give enantiopure thiazolidine-2-imines (60-99% ee) via a highly regioselective intramolecular 5-exo-dig hydrothiolation reaction.

  12. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  13. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells

    PubMed Central

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  14. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  15. Isothiocyanates may chemically detoxify mutagenic amines formed in heat processed meat.

    PubMed

    Lewandowska, Anna; Przychodzeń, Witold; Kusznierewicz, Barbara; Kołodziejski, Dominik; Namieśnik, Jacek; Bartoszek, Agnieszka

    2014-08-15

    Meat consumption represents a dietary risk factor increasing the incidence of common cancers, probably due to carcinogenic amines (HAAs) formed upon meat heating. Interestingly, cancers whose incidence is increased by meat consumption, are decreased in populations consuming brassica vegetables regularly. This inverse correlation is attributed to brassica anticarcinogenic components, especially isothiocyanates (ITCs) that stimulate detoxification of food carcinogens. However, ITC reactivity towards amines generating stable thioureas, may also decrease mutagenicity of processed meat. We confirmed here that combining meat with cabbage (fresh or lyophilized), in proportions found in culinary recipes, limited by 17-20% formation of HAAs and significantly lowered mutagenic activity of fried burgers. Moreover, MeIQx mutagenicity was lowered in the presence of ITCs, as well as for synthetic ITC-MeIQx conjugates. This suggests that formation of thioureas could lead to chemical detoxification of food carcinogens, reducing the cancer risk associated with meat consumption.

  16. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    PubMed Central

    Angelino, Donato; Dosz, Edward B.; Sun, Jianghao; Hoeflinger, Jennifer L.; Van Tassell, Maxwell L.; Chen, Pei; Harnly, James M.; Miller, Michael J.; Jeffery, Elizabeth H.

    2015-01-01

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3–5 servings a week of brassica vegetables may provide health effects, even if they are cooked. PMID:26500669

  17. Granules of blood eosinophils are stained directly by anti-immunoglobulin fluorescein isothiocyanate conjugates.

    PubMed

    Floyd, K; Suter, P F; Lutz, H

    1983-11-01

    Direct staining of the granules of blood eosinophils by anti-immunoglobulin fluorescein isothiocyanate (FITC) conjugates was observed when feline blood smears were tested for presence of feline leukemia virus (FeLV) antigen by immunofluorescent antibody. When blood smears of other species including swine, horses, cattle, dogs, sheep, birds, and human beings were examined, direct staining of eosinophils by FITC conjugates was also detected. This FITC staining was restricted to eosinophils and was not observed in neutrophils, lymphocytes, and platelets. Direct FITC staining of eosinophils does not represent a problem in immunofluorescent test for the detection of FeLV infection in cats, as long as the eosinophils, which can easily be recognized as such, are excluded from the spectrum of interpreted cells.

  18. Milk prevents the degradation of daikon (Raphanus sativus L.) isothiocyanate and enhances its absorption in rats.

    PubMed

    Ippoushi, Katsunari; Ueda, Hiroshi; Takeuchi, Atsuko

    2014-10-15

    Epidemiological and experimental researches show that isothiocyanate (ITC), a class of phytochemical compounds that imparts a characteristic biting taste and pungent odour to cruciferous vegetables, such as daikon (Japanese white radish, Raphanus sativus L. Daikon Group), broccoli, cabbage, and Chinese cabbage, possesses anticancer and anti-inflammatory properties. The concentration of daikon ITC, which degrades in aqueous solution, was measured in mixtures of daikon juice and water, corn oil, or milk. Daikon juice mixed with corn oil or milk showed a higher concentration (1.4-fold) of daikon ITC than that in mixture with water; thus, corn oil and milk prevent the degradation of daikon ITC. Moreover, orally administered daikon juice with milk increased daikon ITC absorption in rats. Therefore, dishes or drinks that include raw daikon with corn oil or milk may promote the possible health benefits of daikon ITC by preventing ITC degradation and enhancing its absorption in vivo.

  19. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions

    SciTech Connect

    DeLuca, N.; Bzik, D.; Person, S.; Snipes, W.

    1981-02-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyanate (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 ..mu..g/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 ..mu..g/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell.

  20. 7-Methylsulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes.

    PubMed

    Rose, P; Faulkner, K; Williamson, G; Mithen, R

    2000-11-01

    Watercress is an exceptionally rich dietary source of beta-phenylethyl isothiocyanate (PEITC). This compound inhibits phase I enzymes, which are responsible for the activation of many carcinogens in animals, and induces phase II enzymes, which are associated with enhanced excretion of carcinogens. In this study, we show that watercress extracts are potent inducers of quinone reductase (QR) in murine hepatoma Hepa 1c1c7 cells, a widely adopted assay for measuring phase II enzyme induction. However, contrary to expectations, this induction was not associated with PEITC (which is rapidly lost to the atmosphere upon tissue disruption due to its volatility) or a naturally occurring PEITC-glutathione conjugate, but with 7-methylsulfinyheptyl and 8-methylsulfinyloctyl isothiocyanates (ITCs). While it was confirmed that PEITC does induce QR (5 microM required for a two-fold induction in QR), 7-methylsulfinyheptyl and 8-methylsulfinyloctyl ITCs were more potent inducers (0.2 microM and 0.5 microM, respectively, required for a two-fold induction in QR). Thus, while watercress contains three times more phenylethyl glucosinolate than methylsulfinylalkyl glucosinolates, ITCs derived from methylsulfinylalkyl glucosinolates may be more important phase II enzyme inducers than PEITC, having 10 - to 25-fold greater potency. Analysis of urine by liquid chromatography-mass spectroscopy (LC-MS) following consumption of watercress demonstrated the presence of N:-acetylcysteine conjugates of 7-methylsulfinylheptyl, 8-methylsulfinyloctyl ITCs and PEITC, indicating that these ITCs are taken up by the gut and metabolized in the body. Watercress may have exceptionally good anticarcinogenic potential, as it combines a potent inhibitor of phase I enzymes (PEITC) with at least three inducers of phase II enzymes (PEITC, 7-methylsulfinylheptyl ITC and 8-methylsulfinyloctyl ITC). The study also demonstrates the application of LC-MS for the detection of complex glucosinolate-derived metabolites in

  1. Toxic effects of 4-methylthio-3-butenyl isothiocyanate (Raphasatin) in the rat urinary bladder without genotoxicity.

    PubMed

    Suzuki, Isamu; Cho, Young-Man; Hirata, Tadashi; Toyoda, Takeshi; Akagi, Jun-Ichi; Nakamura, Yasushi; Sasaki, Azusa; Nakamura, Takako; Okamoto, Shigehisa; Shirota, Koji; Suetome, Noboru; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2017-04-01

    We recently reported that 4-methylthio-3-butenyl isothiocyanate (MTBITC) exerts chemopreventive effects on the rat esophageal carcinogenesis model at a low dose of 80 ppm in a diet. In contrast, some isothiocyanates (ITCs) have been reported to cause toxic effects, promotion activity, and/or carcinogenic potential in the urinary bladder of rats. In the present study, we investigated whether MTBITC had toxic effects in the urinary bladder similar to other ITCs, such as phenethyl ITC (PEITC). First, to examine the early toxicity of MTBITC, rats were fed a diet supplemented with 100, 300 or 1000 ppm MTBITC for 14 days. Treatment with 1000 ppm MTBITC caused increased organ weights and histopathological changes in the urinary bladder, producing lesions similar to those of 1000 ppm PEITC. In contrast, rats treated with 100 or 300 ppm MTBITC showed no signs of toxicity. Additionally, we performed in vivo genotoxicity studies to clarify whether MTBITC may exhibit a carcinogenic potential through a genotoxic mechanism in rats. Rats were treated with MTBITC for 3 days at doses of 10, 30 or 90 mg kg(-1) body weight by gavage, and comet assays in the urinary bladder and micronucleus assays in the bone marrow were performed. No genotoxic changes were observed after treatment with MTBITC at all doses. Overall, these results suggested that the effects of MTBITC in the rat urinary bladder are less than those of PEITC, but that MTBITC could have toxic effects through a nongenotoxic mechanism in the urinary bladder of rats at high doses. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  3. Allylic oxidation of steroidal olefins by vanadyl acetylacetonate and tert-butyl hydroperoxide.

    PubMed

    Grainger, Wendell S; Parish, Edward J

    2015-09-01

    Readily available vanadyl acetylacetonate was found to oxidize the allylic sites of Δ(5) steroidal alcohols without protection of hydroxyl groups. Cholesterol, dehydroepiandrosterone, cholesterol benzoate, cholesterol acetate, pregnenolone, and 5-pregnen-3,20-diene were oxidized to 7-keto products using vanadyl acetylacetonate in one pot reactions at room temperature in the presence of oxygen and water.

  4. Lewis acid/CpRu dual catalysis in the enantioselective decarboxylative allylation of ketone enolates.

    PubMed

    Linder, David; Austeri, Martina; Lacour, Jérôme

    2009-10-07

    The addition of a Lewis acidic metal triflate salt Mg(OTf)(2) as co-catalyst in the CpRu-catalyzed decarboxylative allylation of in situ-generated ketone enolates allows the reaction to proceed at lower temperature with higher regio- and enantioselectivity. Even so-far-unreactive substrates react.

  5. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-02

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  6. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    PubMed

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-04

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid.

  7. A Palladium-Catalyzed Asymmetric Allylic Alkylation Approach to α-Quaternary γ-Butyrolactones.

    PubMed

    Nascimento de Oliveira, Marllon; Fournier, Jeremy; Arseniyadis, Stellios; Cossy, Janine

    2017-01-06

    The Pd-catalyzed asymmetric allylic alkylation (Pd-AAA) of enol carbonates derived from γ-butyrolactones is reported, affording the corresponding enantioenriched α,α'-disubstituted γ-butyrolactones in both high yields and high enantioselectivities (up to 94% ee). This method was eventually applied to the synthesis of chiral spirocyclic compounds.

  8. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  9. Total Synthesis of Cryptocaryol A by Enantioselective Iridium-Catalyzed Alcohol C-H Allylation.

    PubMed

    Perez, Felix; Waldeck, Andrew R; Krische, Michael J

    2016-04-11

    The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C-H allylation, which directly generates an acetate-based triketide stereodiad. In 4 previously reported total syntheses, 17-28 steps were required.

  10. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    PubMed Central

    Zhang, Hang; Zhang, Shan-Jun; Zhou, Qing-Qing; Dong, Lin

    2012-01-01

    Summary The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee) and in high yields (up to 97%). PMID:23019454

  11. Enantioselective synthesis of β-substituted chiral allylic amines via Rh-catalyzed asymmetric hydrogenation.

    PubMed

    Wang, Qingli; Gao, Wenchao; Lv, Hui; Zhang, Xumu

    2016-09-27

    An asymmetric mono-hydrogenation of 2-acetamido-1,3-dienes catalyzed by a Rh-DuanPhos complex has been developed. This approach provides easy access to chiral allylic amines with excellent enantioselectivities and high regioselectivities. The products are valuable chiral building blocks for pharmaceuticals.

  12. Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts

    PubMed Central

    2015-01-01

    A catalytic enantioselective and regiodivergent arylation of alkenes is described. Chiral copper(II)bisoxazoline complexes catalyze the addition of diaryliodonium salts to allylic amides in excellent ee. Moreover, the arylation can be controlled by the electronic nature of the diaryliodonium salt enabling the preparation of nonracemic diaryloxazines or β,β′-diaryl enamides. PMID:26090564

  13. Kinetics of the reaction of diethylene glycol bis-chloroformate with allyl alcohol

    SciTech Connect

    Alekseev, N.N.; Shtoda, N.F.; Dzumedzei, N.V.

    1988-10-01

    The kinetics of diethylene glycol bis-chloroformate solvolysis by excess allyl alcohol in toluene and carbon tetrachloride has been studied. Under conditions of a pseudofirst order reaction with respect to diethylene glycol bis-chloroformate the activation parameters confirm an addition-detachment mechanism.

  14. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  15. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  16. Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols.

    PubMed

    Banerjee, Debasis; Junge, Kathrin; Beller, Matthias

    2014-11-24

    Cooperative catalysis by [Pd(dba)2] and the chiral phosphoric acid BA1 in combination with the phosphoramidite ligand L8 enabled the efficient enantioselective amination of racemic allylic alcohols with a variety of functionalized amines. This catalytic protocol is highly regio- and stereoselective (up to e.r. 96:4) and furnishes valuable chiral amines in almost quantitative yield.

  17. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    PubMed Central

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables. PMID:28094342

  18. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  19. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (<0.01 l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC.

  20. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  1. Synthesis, Characterization, and Some Properties of Cp*W(NO)(H)(η(3)-allyl) Complexes.

    PubMed

    Baillie, Rhett A; Holmes, Aaron S; Lefèvre, Guillaume P; Patrick, Brian O; Shree, Monica V; Wakeham, Russell J; Legzdins, Peter; Rosenfeld, Devon C

    2015-06-15

    Sequential treatment at low temperatures of Cp*W(NO)Cl2 in THF with 1 equiv of a binary magnesium allyl reagent, followed by an excess of LiBH4, affords three new Cp*W(NO)(H)(η(3)-allyl) complexes, namely, Cp*W(NO)(H)(η(3)-CH2CHCMe2) (1), Cp*W(NO)(H)(η(3)-CH2CHCHPh) (2), and Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3). Complexes 1-3 are isolable as air-stable, analytically pure yellow solids in good to moderate yields by chromatography or fractional crystallization. In solutions, complex 1 exists as two coordination isomers in an 83:17 ratio differing with respect to the endo/exo orientation of the allyl ligand. In contrast, complexes 2 and 3 each exist as four coordination isomers, all differing by the orientation of their allyl ligands which can have either an endo or an exo orientation with the phenyl or methyl groups being either proximal or distal to the nitrosyl ligand. A DFT computational analysis using the major isomer of Cp*W(NO)(H)(η(3)-CH2CHCHMe) (3a) as the model complex has revealed that its lowest-energy thermal-decomposition pathway involves the intramolecular isomerization of 3a to the 16e η(2)-alkene complex, Cp*W(NO)(η(2)-CH2═CHCH2Me). Such η(2)-alkene complexes are isolable as their 18e PMe3 adducts when compounds 1-3 are thermolyzed in neat PMe3, the other organometallic products formed during these thermolyses being Cp*W(NO)(PMe3)2 (5) and, occasionally, Cp*W(NO)(H)(η(1)-allyl)(PMe3). All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  2. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-05

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  3. Dopamine agonist therapy in hyperprolactinemia.

    PubMed

    Webster, J

    1999-12-01

    Introduction of the dopamine agonist bromocriptine heralded a major advance in the management of hyperprolactinemic disorders. Although its side effects of nausea, dizziness and headache and its short elimination half-life are limiting factors, its efficacy established it as a reference compound against the activity of which several dopamine agonists, like pergolide, lysuride, metergoline, terguride and dihydroergocristine, fell by the wayside. More recently, two new agents, cabergoline and quinagolide, have been introduced and appear to offer considerable advantages over bromocriptine. Cabergoline, an ergoline D2 agonist, has a long plasma half-life that enables once- or twice-weekly administration. Quinagolide, in contrast, is a nonergot D2 agonist with an elimination half-life intermediate between those of bromocriptine and cabergoline, allowing the drug to be administered once daily. Comparative studies indicate that cabergoline is clearly superior to bromocriptine in efficacy (prolactin suppression, restoration of gonadal function) and in tolerability. In similar studies, quinagolide appeared to have similar efficacy and superior tolerability to that of bromocriptine. Results of a small crossover study indicate that cabergoline is better tolerated, with a trend toward activity superior to that of quinagolide. In hyperprolactinemic men and in women not seeking to become pregnant, cabergoline may be regarded as the treatment of choice.

  4. The magnesium-ene cyclization stereochemically directed by an allylic oxyanionic group and its application to a highly stereoselective synthesis of (+/-)-matatabiether. Allylmagnesium compounds by reductive magnesiation of allyl phenyl sulfides.

    PubMed

    Cheng, D; Zhu, S; Yu, Z; Cohen, T

    2001-01-10

    The first example of a magnesium-ene cyclization stereochemically directed by an allylic oxyanionic group is demonstrated by a highly stereoselective synthesis of the bicyclic terpene matatabiether 10. The synthetic method is particularly valuable, not only because of the stereochemical control and the utility of the versatile hydroxyl group introduced into the product, but also because the precursor of the allylmagnesium is an allyl phenyl sulfide, which is more stable and more easily prepared in a connective fashion than the usual allyl halide precursor. Since the presence of lithium ions encourages undesirable proton transfer to the cyclized organometallic and is detrimental to the stereochemical control, the conversion of the allylic thioether to the allylmagnesium utilizes a lithium-free method involving direct reductive magnesiation in the presence of the magnesium-anthracene complex.

  5. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  6. Construction of 1,5-Enynes by Stereospecific Pd-Catalyzed Allyl-Propargyl Cross-Couplings

    PubMed Central

    Ardolino, Michael J.; Morken, James P.

    2012-01-01

    The palladium-catalyzed cross-coupling of chiral propargyl acetates and allyl boronates delivers chiral 1,5-enynes with excellent levels of chirality transfer and applied across a broad range of substrates. PMID:22594398

  7. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets.

    PubMed

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-21

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm(-1). Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  8. Nickel-catalyzed enantioselective alkylative coupling of alkynes and aldehydes: synthesis of chiral allylic alcohols with tetrasubstituted olefins.

    PubMed

    Yang, Yun; Zhu, Shou-Fei; Zhou, Chang-Yue; Zhou, Qi-Lin

    2008-10-29

    A highly efficient nickel-catalyzed asymmetric alkylative coupling of alkynes, aldehydes, and dimethylzinc has been realized by using bulky spirobiindane phosphoramidite ligands, affording allylic alcohols with a tetrasubstituted olefin functionality in high yields, high regioselectivities, and excellent enantioselectivities.

  9. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-01

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  10. PREPARATION OF FLUORESCEIN ISOTHIOCYANATE-LABELED GAMMA-GLOBULIN BY DIALYSIS, GEL FILTRATION, AND IONEXCHANGE CHROMATOGRAPHY IN COMBINATION.

    PubMed

    DEDMON, R E; HOLMES, A W; DEINHARDT, F

    1965-03-01

    Dedmon, Robert E. (Presbyterian-St. Luke's Hospital, Chicago, Ill.), Albert W. Holmes, and Friedrich Deinhardt. Preparation of fluorescein isothiocyanate-labeled gamma-globulin by dialysis, gel filtration, and ion-exchange chromatography in combination. J. Bacteriol. 89:734-739. 1965.-Antiviral immune gamma-globulins isolated from rabbit and guinea pig sera were labeled through dialysis membranes with fluorescein isothiocyanate and purified in several ways to eliminate nonspecific staining. Gel filtration of the conjugate with Sephadex G-25 coarse beads followed by column fractionation with diethylaminoethyl-Sephadex yielded consistently highly specific staining materials. Fluorescein-protein ratios varied between 1.0 and 4.0. This technique has proved to be simple and reliable, and is less time-consuming than previous techniques.

  11. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  12. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-02

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee.

  13. Expanding insight into asymmetric palladium-catalyzed allylic alkylation of N-heterocyclic molecules and cyclic ketones.

    PubMed

    Bennett, Nathan B; Duquette, Douglas C; Kim, Jimin; Liu, Wen-Bo; Marziale, Alexander N; Behenna, Douglas C; Virgil, Scott C; Stoltz, Brian M

    2013-04-02

    Eeny, meeny, miny ... enaminones! Lactams and imides have been shown to consistently provide enantioselectivities substantially higher than other substrate classes previously investigated in the palladium-catalyzed asymmetric decarboxylative allylic alkylation. Several new substrates have been designed to probe the contributions of electronic, steric, and stereoelectronic factors that distinguish the lactam/imide series as superior alkylation substrates (see scheme). These studies culminated in marked improvements on carbocyclic allylic alkylation substrates.

  14. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  15. Allylic Oxidations Catalyzed by Dirhodium Caprolactamate via Aqueous tert-Butyl Hydroperoxide: The Role of the tert-Butylperoxy Radical

    PubMed Central

    McLaughlin, Emily C.; Choi, Hojae; Wang, Kan; Chiou, Grace; Doyle, Michael P.

    2009-01-01

    Dirhodium(II) caprolactamate exhibits optimal efficiency for the production of the tert-butylperoxy radical, which is a selective reagent for hydrogen atom abstraction. These oxidation reactions occur with aqueous tert-butyl hydroperoxide (TBHP) without rapid hydrolysis of the caprolactamate ligands on dirhodium. Allylic oxidations of enones yield the corresponding enedione in moderate to high yields, and applications include allylic oxidations of steroidal enones. Although methylene oxidation to a ketone is more effective, methyl oxidation to a carboxylic acid can also be achieved. The superior efficiency of dirhodium(II) caprolactamate as a catalyst for allylic oxidations by TBHP (mol % catalyst, % conversion) is described in comparative studies with other metal catalysts that are also reported to be effective for allylic oxidations. That different catalysts produce essentially the same mixture of products with the same relative yields suggests that the catalyst is not involved in product forming steps. Mechanistic implications arising from studies of allylic oxidation with enones provide new insights into factors that control product formation. A previously undisclosed disproportionation pathway, catalyzed by the tert-butoxy radical, of mixed peroxides for the formation of ketone products via allylic oxidation has been uncovered. PMID:19072696

  16. Benzyl isothiocyanate inhibits HNSCC cell migration and invasion, and sensitizes HNSCC cells to cisplatin.

    PubMed

    Wolf, M Allison; Claudio, Pier Paolo

    2014-01-01

    Metastasis and chemoresistance represent two detrimental events that greatly hinder the outcome for those suffering with head and neck squamous cell carcinoma (HNSCC). Herein, we investigated benzyl isothiocyanate's (BITC) ability to inhibit HNSCC migration and invasion and enhance chemotherapy. Our data suggests that treatment with BITC 1) induced significant reductions in the viability of multiple HNSCC cell lines tested (HN12, HN8, and HN30) after 24 and 48 h, 2) decreased migration and invasion of the HN12 cells in a dose dependent manner, and 3) inhibited expression and altered localization of the epithelial-mesenchymal transition (EMT) marker, vimentin. We also observed that a pretreatment of BITC followed by cisplatin treatment 1) induced a greater decrease in HN12, HN30, and HN8 cell viability and total cell count than either treatment alone and 2) significantly increased apoptosis when compared to either treatment alone. Taken together these data suggest that BITC has the capacity to inhibit processes involved in metastasis and enhance the effectiveness of chemotherapy. Consequently, the results indicate that further investigation, including in vivo studies, are warranted.

  17. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate*

    PubMed Central

    Thaler, Roman; Maurizi, Antonio; Roschger, Paul; Sturmlechner, Ines; Khani, Farzaneh; Spitzer, Silvia; Rumpler, Monika; Zwerina, Jochen; Karlic, Heidrun; Dudakovic, Amel; Klaushofer, Klaus; Teti, Anna; Rucci, Nadia; Varga, Franz; van Wijnen, Andre J.

    2016-01-01

    Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation via Tet1 and Tet2 and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2, Col1a1, Bglap2, Sp7, Atf4, and Alpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of the Tet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorption in vivo. Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis. PMID:26757819

  18. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    PubMed

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  19. Glossoscolex paulistus hemoglobin with fluorescein isothiocyanate: Steady-state and time-resolved fluorescence.

    PubMed

    Barros, Ana E B; Barioni, Marina B; Carvalho, Francisco A O; Ito, Amando Siuiti; Tabak, Marcel

    2017-05-01

    Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been followed, in the presence of urea, using fluorescein isothiocyanate (FITC). Binding of FITC to HbGp results in a significant quenching of probe fluorescence. Tryptophan emission decays present four characteristic lifetimes: two in the sub-nanosecond/picosecond, and two in the nanosecond time ranges. Tryptophan decays for pure HbGp and HbGp-FITC systems are similar. In the absence of denaturant, and up to 2.5mol/L of urea, the shorter lifetimes predominate. At 3.5 and 6.0mol/L of urea, the longer lifetimes increase significantly their contribution. Urea-induced unfolding process is characterized by protein oligomeric dissociation and denaturation of dissociated subunits. FITC emission decays for FITC-HbGp system are also multi-exponential with three lifetimes: two in the sub-nanosecond and one in the nanosecond range with a value similar to free probe in buffer. Increase of urea concentration leads to increase of the longer lifetime contribution, implying the removal of the quenching observed for the native HbGp-FITC system. Anisotropy decays are characterized by two rotational correlation times associated to re-orientational motions of the probe relative to protein. Our results suggest that FITC bound to HbGp is useful to monitor denaturant effects on the protein.

  20. Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts.

    PubMed

    De Nicola, Gina Rosalinda; Bagatta, Manuela; Pagnotta, Eleonora; Angelino, Donato; Gennari, Lorenzo; Ninfali, Paolino; Rollin, Patrick; Iori, Renato

    2013-11-01

    The consumption of brassica sprouts as raw vegetables provides a fair amount of glucosinolates (GLs) and active plant myrosinase, which enables the breakdown of GLs into health-promoting isothiocyanates (ITCs). This study reports the determination of the main constituents related to human health found in edible sprouts of two Brassica oleracea varieties, broccoli and Tuscan black kale, and two Raphanus sativus varieties, Daikon and Sango. Radish sprouts exhibited the highest ability to produce ITCs, with Daikon showing the greatest level of conversion of GLs into bioactive ITCs (96.5%), followed by Sango (90.0%). Tuscan black kale gave a value of 68.5%, whereas broccoli displayed the lowest with 18.7%. ITCs were not the exclusive GL breakdown products in the two B. oleracea varieties, since nitriles were also produced, thus accounting for the lower conversion observed. Measuring the release of plant ITCs is a valuable tool in predicting the potential level of exposure to these bioactive compounds after the consumption of raw brassica sprouts.

  1. Epigenetic and antioxidant effects of dietary isothiocyanates and selenium: potential implications for cancer chemoprevention.

    PubMed

    Barrera, Lawrence N; Cassidy, Aedin; Johnson, Ian T; Bao, Yongping; Belshaw, Nigel J

    2012-05-01

    There is evidence from epidemiological studies suggesting that increased consumption of cruciferous vegetables may protect against specific cancers more effectively than total fruit and vegetable intake. These beneficial effects are attributed to the glucosinolate breakdown products, isothiocyanates (ITC). Similarly, selenium (Se) consumption has also been inversely associated with cancer risk and as an integral part of many selenoproteins may influence multiple pathways in the development of cancer. This paper will briefly review the current state of knowledge concerning the effect of Se and ITC in cancer development with a particular emphasis on its antioxidant properties, and will also address whether alterations in DNA methylation may be a potential mechanism whereby these dietary constituents protect against the carcinogenic process. Furthermore, we will discuss the advantages of combining ITC and Se to benefit from their complementary mechanisms of action to potentially protect against the alterations leading to neoplasia. Based on this review it may be concluded that an understanding of the impact of ITC and Se on aberrant DNA methylation in relation to factors modulating gene-specific and global methylation patterns, in addition to the effect of these food constituents as modulators of key selenoenzymes, such as gastrointestinal glutathione peroxidase-2 (GPx2) and thioredoxin reductase-1 (TrxR1), may provide insights into the potential synergy among various components of a plant-based diet that may counteract the genetic and epigenetic alterations that initiate and sustain neoplasia.

  2. Interaction between fluorescein isothiocyanate and carbon dots: Inner filter effect and fluorescence resonance energy transfer.

    PubMed

    Liu, Huabing; Xu, Chaoyong; Bai, Yanli; Liu, Lin; Liao, Dongmei; Liang, Jiangong; Liu, Lingzhi; Han, Heyou

    2017-01-15

    Carbon dots (CDs) have been widely used for the preparation of multifunctional probes by conjugation with organic fluorescent dyes. However, the effect of organic fluorescent dyes on CDs still remains poorly understood. Herein, the effect of fluorescein isothiocyanate (FITC) on CDs was explored by spectroscopic techniques at pH5.1, 7.0 and 9.0. The fluorescent intensity of CDs was found to be quenched gradually after mixing directly with different concentrations of FITC, but the fluorescent lifetime of CDs remained unchanged. According to the results of UV-vis absorption spectra and fluorescent lifetime measurements, a pH-dependent inner filter effect (IFE) between CDs and FITC was proposed. However, the fluorescent lifetime of CDs deceased after their conjugation with FITC, implying the fluorescence resonance energy transfer (FRET) between CDs and FITC. This study has revealed two different effects of FITC on CDs with varying pH values and provided useful theoretical guidelines for further research on the interaction between other nanoparticles and fluorophores.

  3. Interaction between fluorescein isothiocyanate and carbon dots: Inner filter effect and fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Liu, Huabing; Xu, Chaoyong; Bai, Yanli; Liu, Lin; Liao, Dongmei; Liang, Jiangong; Liu, Lingzhi; Han, Heyou

    2017-01-01

    Carbon dots (CDs) have been widely used for the preparation of multifunctional probes by conjugation with organic fluorescent dyes. However, the effect of organic fluorescent dyes on CDs still remains poorly understood. Herein, the effect of fluorescein isothiocyanate (FITC) on CDs was explored by spectroscopic techniques at pH 5.1, 7.0 and 9.0. The fluorescent intensity of CDs was found to be quenched gradually after mixing directly with different concentrations of FITC, but the fluorescent lifetime of CDs remained unchanged. According to the results of UV-vis absorption spectra and fluorescent lifetime measurements, a pH-dependent inner filter effect (IFE) between CDs and FITC was proposed. However, the fluorescent lifetime of CDs deceased after their conjugation with FITC, implying the fluorescence resonance energy transfer (FRET) between CDs and FITC. This study has revealed two different effects of FITC on CDs with varying pH values and provided useful theoretical guidelines for further research on the interaction between other nanoparticles and fluorophores.

  4. Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

    PubMed Central

    Abdul Kadir, Habsah; Tayyab, Saad

    2013-01-01

    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔGDH2O and ΔGD25°C in presence of honey also suggested protein stabilization. PMID:24222758

  5. Benzyl-isothiocyanate Induces Apoptosis and Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells in vitro

    PubMed Central

    Zhu, Mingyue; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Lin, Bo; Guo, Junli; Li, Mengsen

    2017-01-01

    Despite consideration of benzyl isothiocyanate(BITC) is applied to prevention and therapeutic of cancer, the role of BITC in inducing apoptosis, and inhibiting migration and invasion of hepatocellular carcinoma(HCC) cells is still unclear. In this study, we aim to explore the effects of BITC on the growth, migration and invasion of HCC cells in vitro. When human HCC cell lines, Bel 7402 and HLE, were treated with an optimal concentration of BITC for 48 hours, the results indicated that BITC inhibits growth and promotes apoptosis of HCC cells; BITC has a significant inhibitory effect on the migration and invasion of HCC cells. BITC stimulated expression of caspase-3/8 and PARP-1, and suppressed expression of survivin, MMP2/9 and CXCR4. BITC also inhibited the enzymatic activities of MMP2 and MMP9. Altogether, BITC was able to induce apoptosis and suppress the invasive and migratory abilities of Bel 7402 and HLE cells. The role mechanism of BITC might involve an up-regulating the expression of apoptosis-related proteins and down-regulating the expression of metastasis-related proteins. BITC may be applied as a novel chemotherapy for HCC patients. PMID:28243328

  6. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    PubMed

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  7. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice

    PubMed Central

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J.; Wicks, Shawna; Stephens, Jacqueline M.; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-01-01

    Scope Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. Methods and results C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti- diabetic effects observed. Conclusion Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. PMID:25620073

  8. Isothiocyanate analogs targeting CD44 receptor as an effective strategy against colon cancer

    PubMed Central

    Misra, Suniti; Vyas, Alok; O’Brien, Paul; Markwald, Roger R.; Khetmalas, Madhukar; Hascall, Vincent C.; McCarthy, James B.; Karamanos, Nikos K.; Tammi, Markku I.; Tammi, Raija H.; Prestwitch, Glenn D.

    2014-01-01

    Inflammatory pathway plays an important role in tumor cell progression of colorectal cancers. Although colon cancer is considered as one of the leading causes of death worldwide, very few drugs are available for its effective treatment. Many studies have examined the effects of specific COX-2 and 5-LOX inhibitors on human colorectal cancer, but the role of isothiocyanates (ITSCs) as COX–LOX dual inhibitors engaged in hyaluronan–CD44 interaction has not been studied. In the present work, we report series of ITSC analogs incorporating bioisosteric thiosemicarbazone moiety. These inhibitors are effective against panel of human colon cancer cell lines including COX-2 positive HCA-7, HT-29 cells lines, and hyaluronan synthase-2 (Has2) enzyme over-expressing transformed intestinal epithelial Apc10.1Has2 cells. Specifically, our findings indicate that HA-CD44v6-mediated COX-2/5-LOX signaling mediate survivin production, which in turn, supports anti-apoptosis and chemo-resistance leading to colon cancer cell survival. The over-expression of CD44v6shRNA as well as ITSC treatment significantly decreases the survival of colon cancer cells. The present results thus offer an opportunity to evolve potent inhibitors of HA synthesis and CD44v6 pathway and thus underscoring the importance of the ITSC analogs as chemopreventive agents for targeting HA/CD44v6 pathway. PMID:25013352

  9. 1-Allyl-3-benzyl-1H-benzimidazol-2(3H)-one

    PubMed Central

    Kandri Rodi, Youssef; Haoudi, Amal; Capet, Frédéric; Mazzah, Ahmed; Essassi, El Mokhtar; El Ammari, Lahcen

    2013-01-01

    In the title compound, C17H16N2O, the fused benzimidazol-2(3H)-one system is essentially planar, the largest deviation from the mean plane being 0.006 (2) Å for the carbonyl C atom. Its mean plane is almost perpendicular to the benzyl plane and to the allyl group, making dihedral angles of 80.6 (1) and 77.4 (3)°, respectively. The benzyl group and the allyl subsituent lie on opposite sides of the fused ring system. In the crystal, mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds in which the carbonyl O atom acts as accepter to two aromatic C—H groups, forming a two-dimensional network parallel to (001). PMID:24427099

  10. Allylic isothiouronium salts: The discovery of a novel class of thiourea analogues with antitumor activity.

    PubMed

    Ferreira, Misael; Assunção, Laura Sartori; Silva, Adny Henrique; Filippin-Monteiro, Fabíola Branco; Creczynski-Pasa, Tânia Beatriz; Sá, Marcus Mandolesi

    2017-03-31

    A series of 28 aryl- and alkyl-substituted isothiouronium salts were readily synthesized in high yields through the reaction of allylic bromides with thiourea, N-monosubstituted thioureas or thiosemicarbazide. The S-allylic isothiouronium salts substituted with aliphatic groups were found to be the most effective against leukemia cells. These compounds combine high antitumor activity and low toxicity toward non-tumoral cells, with selectivity index higher than 20 in some cases. Furthermore, the selected isothiouronium salts induced G2/M cell cycle arrest and cell death, possibly by apoptosis. Therefore, these compounds can be considered as a promising class of antitumor agents due to the potent cytostatic activity associated with high selectivity.

  11. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives†

    PubMed Central

    Timoshenko, Mariya A.; Kharitonov, Yurii V.; Shakirov, Makhmut M.; Bagryanskaya, Irina Yu.

    2015-01-01

    Abstract A selective synthesis of 7‐ or 14‐nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α‐hydroxy‐15,16‐dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3‐nitroaniline, 3‐(trifluoromethyl)aniline, and 4‐(trifluoromethyl)aniline yield the subsequent 7α‐, 7β‐ and 14αnitrogen‐containing diterpenoids. The reaction with 2‐nitroaniline, 4‐nitro‐2‐chloroaniline, 4‐methoxy‐2‐nitroaniline, phenylsulfamide, or tert‐butyl carbamate proceeds with the formation of 7α‐nitrogen‐substituted diterpenoids as the main products. PMID:27308214

  12. Origin of fast catalysis in allylic amination reactions catalyzed by Pd-Ti heterobimetallic complexes.

    PubMed

    Walker, Whitney K; Kay, Benjamin M; Michaelis, Scott A; Anderson, Diana L; Smith, Stacey J; Ess, Daniel H; Michaelis, David J

    2015-06-17

    Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd π allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(η(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations.

  13. Influence of hypoxia on the hepatotoxic effects of carbon tetrachloride, paracetamol, allyl alcohol, bromobenzene and thioacetamide.

    PubMed

    Strubelt, O; Breining, H

    1980-07-01

    Exposure of rats to a reduced oxygen tension (6% O2, 94% N2) for 6 h increased the serum enzyme and the histological lesions induced by carbon tetrachloride (CCl4). Hypoxia did not enhance the hepatotoxic response to paracetamol, allyl alcohol, bromobenzene or thioacetamide. No correlation was found between the changes in hepatotoxicity induced by hypoxia and those after treatment with ethanol. Hepatic hypoxia therefore was not the pathogenetic mechanism responsible for ethanol-induced enhancement of hepatotoxicity.

  14. Development of the Ireland-Claisen rearrangement of alkoxy- and aryloxy-substituted allyl glycinates.

    PubMed

    Tellam, James P; Carbery, David R

    2010-11-19

    The Ireland-Claisen rearrangement of 3-alkoxy- and 3-aryloxy-substituted allyl glycinates is presented. This [3,3]-sigmatropic rearrangement route offers direct access to syn β-alkoxy and β-aryloxy α-amino acid systems. In particular, N,N-diboc glycine esters rearrange with excellent diastereoselectivities (dr > 25:1). The synthesis of substrates, rearrangement optimization, and a discussion of stereoselection are presented.

  15. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications

    PubMed Central

    Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon

    2015-01-01

    Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363

  16. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    NASA Astrophysics Data System (ADS)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  17. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    PubMed

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  18. Interaction between anions and molybdenum allyl dicarbonyl complexes of 1,4,7-trithiacyclononane.

    PubMed

    Morales, Dolores; Puerto, Marcos; del Río, Ignacio; Pérez, Julio; López, Ramón

    2012-12-07

    The labile complex [MoCl(η(3)-methallyl)(CO)(2)(NCMe)(2)] reacts with the ligand 1,4,7-trithiacyclononane ([9]aneS(3)) and the salt NaBAr'(4) to afford [Mo(η(3)-methallyl)(CO)(2)([9]aneS(3))][BAr'(4)] (1⋅BAr'(4)). An analogous reaction of [MoBr(η(3)-allyl)(CO)(2)(NCMe)(2)] yields [Mo(η(3)-allyl)(CO)(2)([9]aneS(3))][BAr'(4)] (2⋅BAr'(4)). The new compounds 1⋅BAr'(4) and 2⋅BAr'(4) were characterized by IR and NMR spectroscopic analysis and X-ray diffraction studies. Both compounds feature the cyclic thioether [9]aneS(3) coordinated as a tridentate ligand to the molybdenum center. The allyl ligand in 2⋅BAr'(4) is aligned with the middle of the OC-Mo-CO angle, which is acute. Both of these features are typical of most pseudo-octahedral allyl dicarbonyl molybdenum complexes. In contrast, the allyl group is rotated in 1⋅BAr'(4), which is attributed to steric hindrance between the methyl substituent and the ligated thioether, and the OC-Mo-CO angle is obtuse. Compound 1⋅BAr'(4) undergoes rapid substitution of [9]aneS(3) by either chloride and fluoride ions in dichloromethane, and the products include the known species [{Mo(η(3)-methallyl)(CO)(2)}(2)(μ-Cl)(3)](-) and a structurally similar new anionic complex with two fluoro and one hydroxo bridging ligands, respectively. Stable supramolecular adducts were formed in the reactions of 1⋅BAr'(4) and 2⋅BAr(4) with bromide, iodide, hydrogensulfate, and methanesulfonate compounds. The binding constants of these adducts in dichloromethane were calculated from (1)H NMR spectroscopic titration data, and the solid-state structures of the 1⋅Br, 1⋅HSO(4), 1⋅I, and 2⋅I adducts were determined by X-ray diffraction studies. The surprising slightly higher stability of the iodide adduct relative to that of bromide was investigated theoretically, with the results pointing to an effect of the differential solvation of the halide ions.

  19. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    PubMed Central

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  20. Dissecting competitive mechanisms: thionation vs. cycloaddition in the reaction of thioisomunchnones with isothiocyanates under microwave irradiation.

    PubMed

    Cantillo, David; Avalos, Martín; Babiano, Reyes; Cintas, Pedro; Jiménez, José L; Light, Mark E; Palacios, Juan C

    2009-10-16

    This paper documents in detail the reaction of 1,3-thiazolium-4-olates (thioisomunchnones) with aryl isothiocyanates. Having demonstrated with a chiral model that thionation occurs under these conditions to provide 1,3-thiazolium-4-thiolates and that this process is actually a stepwise domino reaction (J. Org. Chem. 2009, 74, 3698-3705), we extend this study to monocyclic thioisomunchnones. Herein, competition between thionation and 1,3-dipolar cycloaddition takes place. The process is synthetically disappointing at room temperature requiring prolonged reaction times for completion. The protocol has been subsequently investigated by using both microwave dielectric heating and conventional thermal heating (oil bath) in DMF at 100 degrees C with an accurate internal reaction temperature measurement. Although a slight acceleration was observed for reactions conducted under microwave irradiation, for most cases the observed yields and chemoselectivities were quite similar. Thus one can conclude that, within experimental errors, the reactivity is not related to nonthermal effects in agreement with recent reassessments on this subject, particularly by Kappe and associates (J. Org. Chem. 2008, 73, 36; J. Org. Chem. 2009, 74, 6157). The whole reaction system, which includes numerous heavy atoms, can be computationally modeled with a hybrid ONIOM[B3LYP/6-31G(d):PM3] level. This reproduces well experimental results and suggests a sequential mechanism. To further corroborate the nonconcertedness, the potential energy surface (PES) has been constructed for simplified models, locating the corresponding stationary points. In doing so, we introduce for the first time a useful and convenient mathematical protocol to locate the stationary points along a reaction path. The protocol is quite simple and should convince many organic chemists that certain daunting theoretical treatments can be made easy.

  1. Fatty Acid Synthesis Intermediates Represent Novel Noninvasive Biomarkers of Prostate Cancer Chemoprevention by Phenethyl Isothiocyanate.

    PubMed

    Singh, Krishna B; Singh, Shivendra V

    2017-03-14

    Increased de novo synthesis of fatty acids is a distinctive feature of prostate cancer, which continues to be a leading cause of cancer-related deaths among American men. Therefore, inhibition of de novo fatty acid synthesis represents an attractive strategy for chemoprevention of prostate cancer. We have shown previously that dietary feeding of phenethyl isothiocyanate (PEITC), a phytochemical derived from edible cruciferous vegetables such as watercress, inhibits incidence and burden of poorly-differentiated prostate cancer in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. The present study was designed to test the hypothesis of whether fatty acid intermediate(s) can serve as noninvasive biomarker(s) of prostate cancer chemoprevention by PEITC using archived plasma and tumor specimens from the TRAMP study as well as cellular models of prostate cancer. Exposure of prostate cancer cells (LNCaP and 22Rv1) to pharmacological concentrations of PEITC resulted in downregulation of key fatty acid metabolism proteins, including acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A). The mRNA expression of FASN and CPT1A as well as acetyl-CoA levels were decreased by PEITC treatment in both cell lines. PEITC administration to TRAMP mice also resulted in a significant decrease in tumor expression of FASN protein. Consistent with these findings, the levels of total free fatty acids, total phospholipids, triglyceride, and ATP were significantly lower in the plasma and/or prostate tumors of PEITC-treated TRAMP mice compared with controls. The present study is the first to implicate inhibition of fatty acid synthesis in prostate cancer chemoprevention by PEITC.

  2. Benefits and Risks of the Hormetic Effects of Dietary Isothiocyanates on Cancer Prevention

    PubMed Central

    Bao, Yongping; Wang, Wei; Zhou, Zhigang; Sun, Changhao

    2014-01-01

    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint. PMID:25532034

  3. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China.

    PubMed

    Fowke, Jay H; Shu, Xiao-Ou; Dai, Qi; Shintani, Ayumi; Conaway, C Clifford; Chung, Fung-Lung; Cai, Qiuyin; Gao, Yu-Tang; Zheng, Wei

    2003-12-01

    Alternative measures of Brassica vegetable consumption (e.g., cabbage) may clarify the association between Brassica and cancer risk. Brassica isothiocyanates (ITCs) are excreted in urine and may provide a sensitive and food-specific dietary biomarker. However, the persistence of ITCs in the body may be brief and dependent on the activity of several Phase II enzymes, raising questions about the relationship between a single ITC measure and habitual dietary patterns. This study investigates the association between urinary ITC excretion and habitual Brassica consumption, estimated by a food frequency questionnaire, among healthy Chinese women enrolled in the Shanghai Breast Cancer Study. Participants (n = 347) completed a validated food frequency questionnaire querying habitual dietary intake during the prior 5 years and provided a fasting first-morning urine specimen. Genetic deletion of glutathione S-transferases (GSTM1/GSTT1), and single nucleotide substitutions in GSTP1 (A313G) and NAD(P)H:quinone oxidoreductase 1 (NQO1: C609T), were identified from blood DNA. Urinary ITC excretion levels were marginally higher with the GSTT1-null or GSTP1-G/G genotypes (P = 0.07, P = 0.05, respectively). Mean habitual Brassica intake was 98.3 g/day, primarily as bok choy, and Brassica intake significantly increased across quartile categories of ITC levels. The association between habitual Brassica intake and urinary ITC levels was stronger among women with GSTT1-null or GSTP1-A/A genotypes, or NQO1 T-allele, and the interaction was statistically significant across GSTP1 genotype. In conclusion, a single urinary ITC measure, in conjunction with markers of Phase II enzyme activity, provides a complementary measure of habitual Brassica intake among Shanghai women.

  4. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  5. Characterization of CM572, a Selective Irreversible Partial Agonist of the Sigma-2 Receptor with Antitumor Activity.

    PubMed

    Nicholson, Hilary; Comeau, Anthony; Mesangeau, Christophe; McCurdy, Christopher R; Bowen, Wayne D

    2015-08-01

    The sigma-2 receptors are promising therapeutic targets because of their significant upregulation in tumor cells compared with normal tissue. Here, we characterize CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one] (sigma-1 Ki ≥ 10 µM, sigma-2 Ki = 14.6 ± 6.9 nM), a novel isothiocyanate derivative of the putative sigma-2 antagonist, SN79 [6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one]. CM572 bound irreversibly to sigma-2 receptors by virtue of the isothiocyanate moiety but not to sigma-1. Studies in human SK-N-SH neuroblastoma cells revealed that CM572 induced an immediate dose-dependent increase in cytosolic calcium concentration. A 24-hour treatment of SK-N-SH cells with CM572 induced dose-dependent cell death, with an EC50 = 7.6 ± 1.7 µM. This effect was sustained over 24 hours even after a 60-minute pretreatment with CM572, followed by extensive washing to remove ligand, indicating an irreversible effect consistent with the irreversible binding data. Western blot analysis revealed that CM572 also induced cleavage activation of proapoptotic BH3-interacting domain death agonist. These data suggest irreversible agonist-like activity. Low concentrations of CM572 that were minimally effective were able to attenuate significantly the calcium signal and cell death induced by the sigma-2 agonist CB-64D [(+)-1R,5R-(E)-8-benzylidene-5-(3-hydroxyphenyl)-2-methylmorphan-7-one]. CM572 was also cytotoxic against PANC-1 pancreatic and MCF-7 breast cancer cell lines. The cytotoxic activity of CM572 was selective for cancer cells over normal cells, being much less potent against primary human melanocytes and human mammary epithelial cells. Taken together, these data show that CM572 is a selective, irreversible sigma-2 receptor partial agonist. This novel irreversible ligand may further our understanding of the endogenous role of this receptor, in addition to having potential use in targeted

  6. Characterization of CM572, a Selective Irreversible Partial Agonist of the Sigma-2 Receptor with Antitumor Activity

    PubMed Central

    Nicholson, Hilary; Comeau, Anthony; Mesangeau, Christophe; McCurdy, Christopher R.

    2015-01-01

    The sigma-2 receptors are promising therapeutic targets because of their significant upregulation in tumor cells compared with normal tissue. Here, we characterize CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one] (sigma-1 Ki ≥ 10 µM, sigma-2 Ki = 14.6 ± 6.9 nM), a novel isothiocyanate derivative of the putative sigma-2 antagonist, SN79 [6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one]. CM572 bound irreversibly to sigma-2 receptors by virtue of the isothiocyanate moiety but not to sigma-1. Studies in human SK-N-SH neuroblastoma cells revealed that CM572 induced an immediate dose-dependent increase in cytosolic calcium concentration. A 24-hour treatment of SK-N-SH cells with CM572 induced dose-dependent cell death, with an EC50 = 7.6 ± 1.7 µM. This effect was sustained over 24 hours even after a 60-minute pretreatment with CM572, followed by extensive washing to remove ligand, indicating an irreversible effect consistent with the irreversible binding data. Western blot analysis revealed that CM572 also induced cleavage activation of proapoptotic BH3-interacting domain death agonist. These data suggest irreversible agonist-like activity. Low concentrations of CM572 that were minimally effective were able to attenuate significantly the calcium signal and cell death induced by the sigma-2 agonist CB-64D [(+)-1R,5R-(E)-8-benzylidene-5-(3-hydroxyphenyl)-2-methylmorphan-7-one]. CM572 was also cytotoxic against PANC-1 pancreatic and MCF-7 breast cancer cell lines. The cytotoxic activity of CM572 was selective for cancer cells over normal cells, being much less potent against primary human melanocytes and human mammary epithelial cells. Taken together, these data show that CM572 is a selective, irreversible sigma-2 receptor partial agonist. This novel irreversible ligand may further our understanding of the endogenous role of this receptor, in addition to having potential use in targeted

  7. Part 1: synthesis of irreversible inhibitors of aldose reductase with subsequent development of a carbon-13 NMR protein probe. Part 2: synthesis of selenium analogs of dopamine as potential dopamine receptor agonists

    SciTech Connect

    Ares, J.J.

    1986-01-01

    Aldose reductase converts glucose into sorbitol using NADPH as a cofactor. Sorbitol accumulation in various tissues is believed to play a major role in the development of debilitating complications of diabetes; thus, much effort has been directed toward the preparation of aldose reductase inhibitors. Of the compounds prepared, the most active are the isothiocyanate and azide analogs of the reversible aldose reductase inhibitor alrestatin. The potency of the alrestatin isothiocyanate prompted the authors to examine the possibility that isothiocyanates enriched with carbon-13 could be used as carbon-13 NMR protein probes. Toward this end, a synthesis of carbon-13 enriched phenylisothiocyanate has been developed. This reagent has been successfully utilized to study peptides via carbon-13 NMR spectroscopy. Research in their laboratory over the years has focused on answering two fundamental questions regarding the interaction of dopamine with its receptor. First, can the concept of bioisosterism be applied to dopamine agonists. Secondly, what is the actual molecular species of dopamine which interacts with the dopamine receptor. In an effort to answer these questions, methyl selenide and dimethyl selenonium analogs of dopamine have been synthesized.

  8. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by (3)O2; Implications for Combustion Modeling and Simulation.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  9. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    PubMed Central

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  10. New [Mo(eta3-allyl)(CO)2L3]+ complexes with monodentate or tridentate nitrogen-donor ligands.

    PubMed

    Pérez, Julio; Morales, Dolores; Nieto, Sonia; Riera, Lucía; Riera, Víctor; Miguel, Daniel

    2005-03-07

    Cationic complexes [Mo(eta(3)-allyl)(CO)2L3]+ (L3 = either nitrogen-donor tridentate ligand or three monodentate ligands) were prepared in high yield and under mild conditions using as precursors either the triflato complex [Mo(eta(3)-allyl)(OTf)(CO)2(NCMe)2] or the combination of the chloro complex [Mo(eta(3)-allyl)Cl(CO)2(NCMe)2] and the salt NaBAr'(4)(Ar'= 3,5-bis(trifluoromethyl)phenyl). The tridentate ligands employed were 2,2':6',2'-terpyridine (terpy) and cis,cis-1,3,5-cyclohexanetriamine (CHTA), whereas the monodentate ligands imidazole (im) and 3,5-dimethylpyrazole (dmpz) were chosen. In order to stabilize the labile intermediates, an excess of acetonitrile was used in most of the syntheses. However, the pyrazole complex was prepared through a nitrile-free route to avoid reactions at the coordinated nitrile. The solid state structures of [Mo(eta(3)-methallyl)(CO)2(terpy)]OTf (2), [Mo(eta(3)-methallyl)(CO)2(CHTA)]BAr'4 (3), [Mo(eta(3)-methallyl)(CO)2(NCMe)3]BAr'4 (4), [Mo(eta(3)-allyl)(CO)2(im)3]OTf (5) and [Mo(eta(3)-allyl)(CO)2(dmpz)3]BAr'4 (6) were determined by means of single-crystal X-ray diffraction.

  11. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel E.; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis. PMID:27462337

  12. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  13. Novel C2-symmetric planar chiral diphosphine ligands and their application in pd-catalyzed asymmetric allylic substitutions.

    PubMed

    Liu, Delong; Xie, Fang; Zhang, Wanbin

    2007-08-31

    Novel C(2)-symmetric diphosphine ligands possessing only the planar chirality of ruthenocene, 1,1'-bis(diphenylphosphino)-2,2'-disubstituted-ruthenocenes (4), were prepared. With this kind of ligands, excellent enantioselectivity and especially highly catalytic activity in palladium-catalyzed asymmetric allylic substitutions of rac-1,3-diphenyl-2-propenyl acetate (9) were observed, compared to their ferrocene analogues 1. Good enantioselectivity and highly catalytic activity were also obtained with 4 in palladium-catalyzed asymmetric allylic substitutions of cyclohexen-1-yl acetate (12). Further study on the effect of R in ester group on enantioselectivity of 4 showed an opposite trend compared with their ferrocene analogues 1 in asymmetric allylic substitutions. For ruthenocene ligands 4, the one with the smaller R in the ester group gave higher enantioselectivity for the palladium-catalyzed asymmetric allylic substitutions of 9, while a converse trend had been observed with 1. However, for the palladium-catalyzed asymmetric allylic substitutions of 12, ligand 4 with a larger R in the ester group resulted in somewhat higher enantioselectivity but still an opposite trend with ligand 1. The X-ray diffraction study of crystal structures of 4 and 1 with Pd(II) was carried out and showed that the enantioselectivity was correlated to the twist angle existing in the palladium complex.

  14. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria.

    PubMed

    Sofrata, Abier; Santangelo, Ellen M; Azeem, Muhammad; Borg-Karlson, Anna-Karin; Gustafsson, Anders; Pütsep, Katrin

    2011-01-01

    Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate.

  15. Benzyl Isothiocyanate, a Major Component from the Roots of Salvadora Persica Is Highly Active against Gram-Negative Bacteria

    PubMed Central

    Sofrata, Abier; Santangelo, Ellen M.; Azeem, Muhammad; Borg-Karlson, Anna-Karin; Gustafsson, Anders; Pütsep, Katrin

    2011-01-01

    Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate. PMID:21829688

  16. Dopamine receptor agonists, partial agonists and psychostimulant addiction.

    PubMed

    Pulvirenti, L; Koob, G F

    1994-10-01

    Despite the epidemic growth of psychostimulant addiction over the past years, few pharmacological means of intervention are available to date for clinical treatment. This is of importance since the withdrawal syndrome that follows abstinence from drugs such as cocaine and the amphetamines is characterized, among other symptoms, by intense craving for the abused drug, and this is considered a critical factor leading into relapse of drug use. In this article, Luigi Pulvirenti and George Koob focus on the modulatory role shown by drugs acting at the dopamine receptor on the various phases of psychostimulant dependence in preclinical models and in human studies, and suggest that a class of compounds with partial agonist properties at the dopamine receptor may have therapeutic potential.

  17. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli.

    PubMed

    Liu, Feixia; Yang, Han; Wang, Limin; Yu, Bo

    2016-12-16

    Plants produce a wide variety of secondary metabolites that are highly nutraceutically and pharmaceutically important. Isothiocyanates, which are found abundantly in cruciferous vegetables, are believed to reduce the risk of several types of cancers and cardiovascular diseases. The challenges arising from the structural diversity and complex chemistry of these compounds have spurred great interest in producing them in large amounts in microbes. In this study, we aimed to synthesize benzyl isothiocyanate in Escherichia coli via gene mining, pathway engineering, and protein modification. Two chimeric cytochrome P450 enzymes were constructed and functionally expressed in E. coli. The E. coli cystathionine β-lyase was used to replace the plant-derived C-S lyase; its active form cannot be expressed in E. coli. Suitable desulfoglucosinolate:PAPS sulfotransferase from Arabidopsis thaliana ecotype Col-0 and myrosinase from Brevicoryne brassicae were successfully mined from the database. Biosynthesis of benzyl isothiocyanate by the combined expression of the optimized enzymes in vitro was confirmed by gas chromatography-mass spectrometry analysis. This study provided a proof of concept for the production of benzyl isothiocyanate by microbially produced enzymes and, importantly, laid the groundwork for further metabolic engineering of microbial cells for the production of isothiocyanates.

  18. Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1.

    PubMed

    Narukawa, Masataka; Koizumi, Kanako; Iwasaki, Yusaku; Kubota, Kikue; Watanabe, Tatsuo

    2010-01-01

    We investigated the activation of transient receptor potential cation channel (TRP) subfamily V, member 1 (TRPV1) and TRP subfamily A, member 1 (TRPA1) by 1'-acetoxychavicol acetate (ACA), the main pungent component in galangal. ACA did not activate TRPV1-expressing human embryonic kidney (HEK) cells, but strongly activated TRPA1-expressing HEK cells. ACA was more potent than allyl isothiocyanate, the typical TRPA1 agonist.

  19. Resonance energies of the allyl cation and allyl anion: contribution by resonance and inductive effects toward the acidity and hydride abstraction enthalpy of propene.

    PubMed

    Barbour, Josiah B; Karty, Joel M

    2004-02-06

    Density functional theory was employed to calculate the acidities and hydride abstraction enthalpies of propene (3) and propane (4), along with their vinylogues (5 and 6, respectively). The same reaction enthalpies were calculated for the propene vinylogues in which the terminal vinyl group was rotated perpendicular to the rest of the conjugated system (7). The contribution by resonance and inductive effects toward the acidity and hydride abstraction enthalpy of each vinylogue of 5 (n = 1-3) was computed and extrapolated to n = 0 (the parent propene system). The resonance energies of the allyl cation and anion were determined to be about 20-22 and 17-18 kcal/mol, respectively. Comparisons are made to resonance energies calculated using other methodologies.

  20. Efficient fluorescence energy transfer system between fluorescein isothiocyanate and CdTe quantum dots for the detection of silver ions.

    PubMed

    Feng, Yueshu; Liu, Liwei; Hu, Siyi; Zou, Peng; Zhang, Jiaqi; Huang, Chen; Wang, Yue; Wang, Sihan; Zhang, Xihe

    2016-03-01

    We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag(+)). The results revealed a good linear trend over Ag(+) concentrations in the range 0.01-8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed.

  1. Asymmetric incorporation of (/sup 14/C)cyanate and of fluorescein isothiocyanate in mamillary body of conditioned rats

    SciTech Connect

    Burgal, M.; Montes, F.; Grisolia, S.

    1988-05-01

    A marked decrease in overall learning capacity has been observed in rats injected with cyanate. Therefore it was of interest to test whether learning influenced carbamylation of brain proteins. Incorporation of (/sup 14/C)cyanate into proteins of the mamillary body was selectively modified following operant conditioning of the rat, so that trained rats showed an asymmetric image with higher levels of incorporation in the right side than in the left side, as compared to control rats. These results were confirmed using fluorescein isothiocyanate. The asymmetry persisted once the learning had been well established.

  2. 3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines.

    PubMed

    Arora, Rohit; Kumar, Rakesh; Mahajan, Jyoti; Vig, Adarsh P; Singh, Bikram; Singh, Balbir; Arora, Saroj

    2016-09-01

    The present study envisages the cytotoxic potential of 3-butenyl isothiocyanate isolated from Brassica juncea L. Czern var. Pusa Jaikisan against the human cancer cell lines viz. prostate, bone osteosarcoma, cervical, liver, neuroblastoma and breast cancer. As the compound was observed to be more effective against prostate cancer cell line, therefore, this cell line was further used to study the mechanism of cell death using neutral red assay, reactive oxygen species assay, mitochondrial membrane potential assay, microscopic and cell cycle analysis. The mechanistic analysis indicated that it induced the cell death of prostate cancer cells via apoptosis and hence made it an excellent choice as an effective anticancer compound.

  3. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth

    PubMed Central

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-01-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53R175, one of the most frequent ‘hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53R175 mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53R175 mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53R175 mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53R175 and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary compound and

  4. Fermentation-Assisted Extraction of Isothiocyanates from Brassica Vegetable Using Box-Behnken Experimental Design

    PubMed Central

    Jaiswal, Amit K.; Abu-Ghannam, Nissreen

    2016-01-01

    Recent studies showed that Brassica vegetables are rich in numerous health-promoting compounds such as carotenoids, polyphenols, flavonoids, and glucosinolates (GLS), as well as isothiocyanates (ITCs) and are involved in health promotion upon consumption. ITCs are breakdown products of GLS, and typically used in the food industry as a food preservative and colouring agent. They are also used in the pharmaceutical industry due to their several pharmacological properties such as antibacterial, antifungal, antiprotozoal, anti-inflammatory, and chemoprotective effects, etc. Due to their widespread application in food and pharmaceuticals, the present study was designed to extract ITCs from York cabbage. In order to optimise the fermentation-assisted extraction process for maximum yield of ITCs from York cabbage, Box-Behnken design (BBD) combined with response surface methodology (RSM) was applied. Additionally, the GLS content of York cabbage was quantified and the effect of lactic acid bacteria (LAB) on GLS was evaluated. A range of GLS such as glucoraphanin, glucoiberin, glucobrassicin, sinigrin, gluconapin, neoglucobrassicin and 4-methoxyglucobrassicin were identified and quantified in fresh York cabbage. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis, and also examined by appropriate statistical methods. LAB facilitated the degradation of GLS, and the consequent formation of breakdown products such as ITCs. Results showed that the solid-to-liquid (S/L) ratio, fermentation time and agitation rate had a significant effect on the yield of ITCs (2.2 times increment). The optimum fermentation conditions to achieve a higher ITCs extraction yield were: S/L ratio of 0.25 w/v, fermentation time of 36 h, and agitation rate of 200 rpm. The obtained yields of ITCs (45.62 ± 2.13 μM sulforaphane equivalent (SFE)/mL) were comparable to the optimised conditions, indicating the accuracy of the model for the

  5. Urinary Isothiocyanate Levels and Lung Cancer Risk Among Non-Smoking Women: a Prospective Investigation

    PubMed Central

    Fowke, Jay H.; Gao, Yu-Tang; Chow, Wong-Ho; Cai, Qiuyin; Shu, Xiao-Ou; Li, Hong-lan; Ji, Bu-Tian; Rothman, Nat; Yang, Gong; Chung, Fung-Lung; Zheng, Wei

    2010-01-01

    Background Aside from tobacco carcinogen metabolism, isothiocyanates (ITC) from cruciferous vegetables may induce apoptosis or steroid metabolism to reduce lung cancer risk. To separate the effect of these divergent mechanisms of action, we investigated the association between urinary ITC levels and lung cancer risk among non-smoking women. Methods We conducted a nested case-control within the Shanghai Women’s Health Study. Subjects included 209 incident lung cancer cases who never used tobacco, and 787 individually matched non-smoking controls. Conditional logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI) summarizing the association between urinary ITC levels and lung cancer. Secondary analyses stratified the ITC-lung cancer analyses by menopausal status, exposure to environmental tobacco smoke, and GSTM1 and GSTT1 genotypes. Results Urinary ITC levels were not significantly associated with lower lung cancer risk among non-smoking women, regardless of exposure to environmental tobacco smoke or menopausal status. Furthermore, this association was not modified by GSTT1 genotype. However, an inverse association was suggested among women with a GSTM1-positive genotype (Q1: OR=1.0 (reference); Q2: OR=0.35 (0.14, 0.89); Q3: OR=0.47 (0.20, 1.10); Q4: OR=0.63 (0.35, 1.54), p-trend = 0.38)). In contrast, lung cancer risk was positively associated with urinary ITC levels among women with the GSTM1-null genotype (Q1: OR=1.0 (reference); Q2: OR=1.67 (0.80, 3.50); Q3: OR=1.54 (0.71, 3.33); Q4: OR=2.22 (1.05, 4.67), p-trend = 0.06)). Conclusion Urinary ITC levels were not associated overall with lower lung cancer risk among non-smoking women, but secondary analyses suggested an interaction between urinary ITC levels, GSTM1 genotype, and lung cancer risk. PMID:21122939

  6. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    PubMed Central

    Abidi, Ahlem; Oueslati, Yosra

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity. PMID:28144308

  7. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita-Baylis-Hillman alcohols.

    PubMed

    Abidi, Ahlem; Oueslati, Yosra; Rezgui, Farhat

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita-Baylis-Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity.

  8. Thermosetting composite matrix materials based on allyl and/or propargyl substituted cyclopentadiene, indene and fluorene

    NASA Astrophysics Data System (ADS)

    Tregre, Gregory Jude

    A series of all-hydrocarbon thermoset composite matrix resins was synthesized via electrophilic substitution of cyclopentadiene, indene, and fluorene ring systems with allyl and/or propargyl halides under phase transfer conditions. Reaction of cyclopentadiene with allyl chloride (ACP resin), propargyl bromide (PCP resin) or various feed ratios of allyl chloride and propargyl bromide (APCP resins) yielded mixtures of products with 2-6 substituents per cyclopentadiene ring. Reaction of indene with allyl chloride (Al resins) or propargyl bromide (PI resins) yielded mixtures of products with 2-4 substituents per indene. In both sets of resins the allyl functionality obtained a greater average degree of substitution than the analogous propargyl species. Differential scanning calorimetric (DSC) analysis of the multifunctional resins showed broad, high-energy thermal cures in all cases. The enthalpies of cure for ACP and PCP were 750 J/g and 805 J/g, respectively, with peak cure energies occurring at 310 and 248sp°C. The enthalpy of cure for APCP resins ranged from 750 J/g to 800 J/g with higher propargyl-functional resins yielding higher enthalpies of cure. Physically mixed ACP/PCP resin systems gave peak cure temperatures and energy values comparable to APCP resins. The enthalpies of cure for Al and PI-resins were 480 J/g and 630 J/g, respectively. Peak cure temperature for Al resin was 320sp°C, while the peak cure for PI resin occurred at 282sp°C. Infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR) were used to evaluate mechanisms of cure in the experimental resins. The allyl functional resins cured through a combination of ene reactions and polyaddition reactions. The propargyl functional resins cured through ene reactions and polyadditions but also underwent some cyclotrimerization of the propargyl functionalities. A small amount of autoxidation was seen in all of the resins. Thermal stability and carbon yields of the cured resins were

  9. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  10. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride.

  11. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  12. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    SciTech Connect

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; Chen, Di; Li, Hao; Liu, Qing -Rong; Ding, Chang -Hua; Chen, Bo; Hou, Xue -Long

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanistic studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.

  13. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  14. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    PubMed

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive.

  15. A Spectroscopic and Theoretical Study of Weak Intramolecular OH\\cdots π Interactions in Allyl Carbinol and Methallyl Carbinol

    NASA Astrophysics Data System (ADS)

    Schroeder, Sidsel D.; Mackeprang, Kasper; Kjaergaard, Henrik G.

    2013-06-01

    The weak intramolecular OH\\cdots π interactions in allyl carbinol and methallyl carbinol have been studied using a combination of NIR spectroscopy and theory. The third OH-stretching overtone region of vapor phase allyl carbinol and methallyl carbinol have been recorded with intracavity laser photoacoustic spectroscopy to study the effect of an enhanced OH\\cdots π interaction in methallyl carbinol arising from the electron donating methyl group. Local mode calculations were employed to assign the observed bands. The OH-stretching transition frequency of methallyl carbinol was observed to be red shifted relative to the OH-stretching transition frequency of allyl carbinol. A red shift of the transition frequency is in this context normally interpreted as a signature of hydrogen bonding. Whether the OH\\cdots π interaction can be categorized as a hydrogen bond will be discussed in this talk.

  16. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    PubMed

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  17. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study

    PubMed Central

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-01-01

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au–allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. PMID:26248980

  18. On the Stereochemical Course of Palladium-Catalyzed Cross-Coupling of Allylic Silanolate Salts with Aromatic Bromides

    PubMed Central

    Denmark, Scott E.; Werner, Nathan S.

    2010-01-01

    The stereochemical course of palladium-catalyzed cross-coupling reactions of an enantioenriched, α-substituted, allylic silanolate salt with aromatic bromides has been investigated. The allylic silanolate salt was prepared in high geometrical (Z/E, 94:6) and high enantiomeric (94:6 er) purity by a copper-catalyzed SN2’ reaction of a resolved allylic carbamate. Eight different aromatic bromides underwent cross-coupling with excellent constitutional site selectivity (γ) and with excellent stereospecificity. Stereochemical correlation established that the transmetalation event proceeds through a syn SE’ mechanism which is interpreted in terms of an intramolecular delivery of the arylpalladium electrophile through a key intermediate that contains a discrete Si–O–Pd linkage. PMID:20163185

  19. A high-yielding synthesis of allyl glycosides from peracetylated glycosyl donors.

    PubMed

    Khamsi, Jamal; Ashmus, Roger A; Schocker, Nathaniel S; Michael, Katja

    2012-08-01

    β-Configured peracetylated sugars are often used as easily accessible glycosyl donors that are typically activated with common Lewis acids such as boron trifluoride or trimethylsilyltrifluoromethane sulfonate. Often these glycosylations occur with unsatisfactory yields due to incomplete reactions or extensive byproduct formation, primarily as a result of loss of an additional acetyl group generating partially unprotected glycosides. Here we report a simple glycosylation-reacetylation protocol for the generation of predominantly β-configured peracetylated allyl glucoside, -galactoside, -lactoside, and -maltoside with substantially improved reaction yields.

  20. Terminal olefins to chromans, isochromans, and pyrans via allylic C-H oxidation.

    PubMed

    Ammann, Stephen E; Rice, Grant T; White, M Christina

    2014-08-06

    The synthesis of chroman, isochroman, and pyran motifs has been accomplished via a combination of Pd(II)/bis-sulfoxide C-H activation and Lewis acid co-catalysis. A wide range of alcohols are found to be competent nucleophiles for the transformation under uniform conditions (catalyst, solvent, temperature). Mechanistic studies suggest that the reaction proceeds via initial C-H activation followed by a novel inner-sphere functionalization pathway. Consistent with this, the reaction shows reactivity trends orthogonal to those of traditional Pd(0)-catalyzed allylic substitutions.

  1. One-pot synthesis of 1-iodoalkynes and trisubstituted alkenes from benzylic and allylic bromides.

    PubMed

    Pelletier, Guillaume; Lie, Sharon; Mousseau, James J; Charette, André B

    2012-11-02

    1-Iodoalkynes are formed in moderate to high yields from readily accessible benzylic and allylic alkyl bromides by a one-pot homologation/double elimination procedure with iodoform (CHI(3)). The developed conditions include facile purification and avoid the use of an excess of triphenylphosphine (PPh(3)), as described in classical Corey-Fuchs iodoalkynylation conditions. Replacing CHI(3) with CHI(2)Cl allows the isolation of the corresponding gem-(Z)-chloro-(E)-iodoalkene in good yield and stereoselectivity. Moreover, the use of benzhydryl bromides as nucleophiles enables the synthesis of trisubstituted alkenes under similar reaction conditions.

  2. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups.

    PubMed

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H

    2016-09-15

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and-although there are a small number of catalytic enantioselective conjugate allyl additions-related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  3. Enantioselective Palladium-Catalyzed Alkenylation of Trisubstituted Alkenols to form Allylic Quaternary Centers

    PubMed Central

    Patel, Harshkumar H.; Sigman, Matthew S.

    2016-01-01

    In this report, we describe the generation of remote allylic quaternary stereocenters β, γ, and δ relative to a carbonyl in high enantioselectivity. We utilize a redox-relay Heck reaction between alkenyl triflates and acyclic trisubstituted alkenols of varying chain-lengths. A wide array of terminal (E)-alkenyl triflates are suitable for this process. The utility of this functionalization is validated further by conversion of the products, via simple organic processes to access remotely functionalized chiral tertiary acid, amine and alcohol products. PMID:27768842

  4. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    NASA Astrophysics Data System (ADS)

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-09-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates. Nonetheless, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable because the resulting products could then be subjected to further modifications. However, such reactions, especially when dienoates contain two equally substituted olefins, are scarce and are confined to reactions promoted by a phosphine-copper catalyst (with an alkyl Grignard reagent, dialkylzinc or trialkylaluminium compounds), a diene-iridium catalyst (with arylboroxines), or a bisphosphine-cobalt catalyst (with monosilyl-acetylenes). 1,6-Conjugate additions are otherwise limited to substrates where there is full substitution at the C4 position. It is unclear why certain catalysts favour bond formation at C6, and—although there are a small number of catalytic enantioselective conjugate allyl additions—related 1,6-additions and processes involving a propargyl unit are non-existent. Here we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenyl-boron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 per cent yield, >98:2 diastereomeric ratio (for allyl additions) and 99:1 enantiomeric ratio. We elucidate the mechanistic details, including the origins of high site selectivity (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst

  5. Terminal Olefins to Chromans, Isochromans, and Pyrans via Allylic C–H Oxidation

    PubMed Central

    2015-01-01

    The synthesis of chroman, isochroman, and pyran motifs has been accomplished via a combination of Pd(II)/bis-sulfoxide C–H activation and Lewis acid co-catalysis. A wide range of alcohols are found to be competent nucleophiles for the transformation under uniform conditions (catalyst, solvent, temperature). Mechanistic studies suggest that the reaction proceeds via initial C–H activation followed by a novel inner-sphere functionalization pathway. Consistent with this, the reaction shows reactivity trends orthogonal to those of traditional Pd(0)-catalyzed allylic substitutions. PMID:24983326

  6. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  7. Gold(I)-catalyzed intramolecular amination of allylic alcohols with alkylamines.

    PubMed

    Mukherjee, Paramita; Widenhoefer, Ross A

    2011-03-18

    A 1:1 mixture of (1)AuCl [1 = P(t-Bu)(2)o-biphenyl] and AgSbF(6) catalyzes the intramolecular amination of allylic alcohols with alkylamines to form substituted pyrrolidine and piperidine derivatives. Gold(I)-catalyzed cyclization of (R,Z)-8-(N-benzylamino)-3-octen-2-ol (96% ee, 95% de) led to isolation of (R,E)-1-benzyl-2-(1-propenyl)piperidine in 99% yield with 96% ee, consistent with the net syn addition of the amine relative to the departing hydroxyl group.

  8. Allylic C-H amination for the preparation of syn-1,3-amino alcohol motifs.

    PubMed

    Rice, Grant T; White, M Christina

    2009-08-26

    A highly selective and general Pd/sulfoxide-catalyzed allylic C-H amination reaction en route to syn-1,3-amino alcohol motifs is reported. Key to achieving this reactivity under mild conditions is the use of electron-deficient N-nosyl carbamate nucleophiles that are thought to promote functionalization by furnishing higher concentrations of anionic species in situ. The reaction is shown to be orthogonal to classical C-C bond-forming/-reduction sequences as well as nitrene-based C-H amination methods.

  9. Catalytic enantioselective 1,6-conjugate additions of propargyl and allyl groups

    PubMed Central

    Meng, Fanke; Li, Xiben; Torker, Sebastian; Shi, Ying; Shen, Xiao; Hoveyda, Amir H.

    2016-01-01

    Conjugate (or 1,4-) additions of carbanionic species to α,β-unsaturated carbonyl compounds are vital to research in organic and medicinal chemistry, and there are several known chiral catalysts that facilitate the catalytic enantioselective additions of nucleophiles to enoates1. However, catalytic enantioselective 1,6-conjugate additions are uncommon, and ones that are able to incorporate readily functionalizable moieties, such as propargyl or allyl groups, into acyclic α,β,γ,δ-doubly unsaturated acceptors are unknown2. Chemical transformations that could generate a new bond at the C6 position of a dienoate are particularly desirable, as the resulting products would be subjected to further modifications; such reactions, especially when dienoates contain two equally substituted olefins, are scarce3 and are confined to reactions promoted by a phosphine–copper (with alkyl Grignard4,5, dialkylzinc or trialkylaluminum compounds6,7), a diene–iridium (with arylboroxines)8,9, and a bisphosphine–cobalt catalyst (with monosilyl-acetylenes)10. 1,6-conjugate additions are otherwise limited to substrates where there is full substitution at C411. It is not clear why certain catalysts favor bond formation at C6, and – while there are a small number of catalytic enantioselective conjugate allyl additions12,13,14,15 – related 1,6-additions and processes involving a propargyl unit are non-existent. In this manuscript, we show that an easily accessible organocopper catalyst can promote 1,6-conjugate additions of propargyl and 2-boryl-substituted allyl groups to acyclic dienoates with high selectivity. A commercially available allenylboron compound or a monosubstituted allene may be used. Products can be obtained in up to 83 percent yield, >98 percent diastereo- (for allyl additions) and 99:1 enantiomeric ratio. Mechanistic details, including the origins of high site- (1,6- versus 1,4-) and enantioselectivity as a function of the catalyst structure and reaction type

  10. Chemoprevention of oxidative stress-associated oral carcinogenesis by sulforaphane depends on NRF2 and the isothiocyanate moiety.

    PubMed

    Lan, Aixian; Li, Wenjun; Liu, Yao; Xiong, Zhaohui; Zhang, Xinyan; Zhou, Shanshan; Palko, Olesya; Chen, Hao; Kapita, Mayanga; Prigge, Justin R; Schmidt, Edward E; Chen, Xin; Sun, Zheng; Chen, Xiaoxin Luke

    2016-08-16

    Oxidative stress is known to play an important role in oral cancer development. In this study we aimed to examine whether a chemical activator of NRF2, sulforaphane (SFN), may have chemopreventive effects on oxidative stress-associated oral carcinogenesis. We first showed that Nrf2 activation and oxidative damage were commonly seen in human samples of oral leukoplakia. With gene microarray and immunostaining, we found 4-nitroquinoline 1-oxide (4NQO) in drink activated the Nrf2 pathway and produced oxidative damage in mouse tongue. Meanwhile whole exome sequencing of mouse tongue identified mutations consistent with 4NQO's mutagenic profile. Using cultured human oral keratinocytes and 4NQO-treated mouse tongue, we found that SFN pre-treatment activated the NRF2 pathway and inhibited oxidative damage both in vitro and in vivo. On the contrary, a structural analogue of SFN without the isothiocyanate moiety did not have such effects. In a long-term chemoprevention study using wild-type and Nrf2-/- mice, we showed that topical application of SFN activated the NRF2 pathway, inhibited oxidative damage, and prevented 4NQO-induced oral carcinogenesis in an Nrf2-dependent manner. Our data clearly demonstrate that SFN has chemopreventive effects on oxidative stress-associated oral carcinogenesis, and such effects depend on Nrf2 and the isothiocyanate moiety.

  11. The toxic effects of benzyl glucosinolate and its hydrolysis product, the biofumigant benzyl isothiocyanate, to Folsomia fimetaria.

    PubMed

    Jensen, John; Styrishave, Bjarne; Gimsing, Anne Louise; Bruun Hansen, Hans Christian

    2010-02-01

    Natural isothiocyanates (ITCs) are toxic to a range of pathogenic soil-living species, including nematodes and fungi, and can thus be used as natural fumigants called biofumigants. Natural isothiocyanates are hydrolysis products of glucosinolates (GSLs) released from plants after cell rupture. The study investigated the toxic effects of benzyl-GSL and its hydrolysis product benzyl-ITC on the springtail Folsomia fimetaria, a beneficial nontarget soil-dwelling micro-arthropod. The soil used was a sandy agricultural soil. Half-lives for benzyl-ITC in the soil depended on the initial soil concentration, ranging from 0.2 h for 67 nmol/g to 13.2 h for 3,351 nmol/g. For benzyl-ITC, the concentration resulting in 50% lethality (LC50) value for F. fimetaria adult mortality was 110 nmol/g (16.4 mg/kg) and the concentration resulting in 50% effect (EC50) value for juvenile production was 65 nmol/g (9.7 mg/kg). Benzyl-GSL proved to be less toxic and consequently an LC50 value for mortality could not be estimated for springtails exposed to benzyl-GSL. For reproduction, an EC50 value was estimated to approximately 690 nmol/g. The study indicates that natural soil concentrations of ITCs may be toxic to beneficial nontarget soil-dwelling arthropods such as springtails.

  12. Thionation of mesoionics with isothiocyanates: evidence supporting a four-step domino process and ruling out a [2 + 2] mechanism.

    PubMed

    Cantillo, David; Avalos, Martín; Babiano, Reyes; Cintas, Pedro; Jiménez, José L; Light, Mark E; Palacios, Juan C

    2009-05-15

    Mesoionic heterocycles derived from 1,3-thiazolium-4-olates (thioisomunchnones) undergo thionation with aryl isothiocyanates to afford the corresponding 4-thiolate derivatives. Here, we document this transformation in detail, giving a crystallographic characterization of the solid-state structures. From the mechanistic viewpoint, the formal thionation process could be consistent with a [2 + 2] reaction of the exocyclic C-O bond of the thioisomunchnone with the C=S double bond of the isothiocyanate moiety, which would be competing with a (3 + 2) process as usual in mesoionic rings. Theoretical computations at the [B3LYP/6-31G(d):PM3] level, in which only bond-forming and bond-breaking reactions and neighboring atoms are treated at the DFT level, do reproduce the experimental results and rule out the expected pathway. Calculations instead suggest the existence of a four-step domino pathway through several polar intermediates that agrees with the electronic nature of the substituents involved. The mechanistic hypothesis has further been corroborated by an experiment with isotopically (13)C-labeled PhNCS that unambiguously shows the way in which the exchange reaction occurs.

  13. Chemoprevention of oxidative stress-associated oral carcinogenesis by sulforaphane depends on NRF2 and the isothiocyanate moiety

    PubMed Central

    Liu, Yao; Xiong, Zhaohui; Zhang, Xinyan; Zhou, Shanshan; Palko, Olesya; Chen, Hao; Kapita, Mayanga; Prigge, Justin R.; Schmidt, Edward E.; Chen, Xin; Sun, Zheng; Chen, Xiaoxin Luke

    2016-01-01

    Oxidative stress is known to play an important role in oral cancer development. In this study we aimed to examine whether a chemical activator of NRF2, sulforaphane (SFN), may have chemopreventive effects on oxidative stress-associated oral carcinogenesis. We first showed that Nrf2 activation and oxidative damage were commonly seen in human samples of oral leukoplakia. With gene microarray and immunostaining, we found 4-nitroquinoline 1-oxide (4NQO) in drink activated the Nrf2 pathway and produced oxidative damage in mouse tongue. Meanwhile whole exome sequencing of mouse tongue identified mutations consistent with 4NQO's mutagenic profile. Using cultured human oral keratinocytes and 4NQO-treated mouse tongue, we found that SFN pre-treatment activated the NRF2 pathway and inhibited oxidative damage both in vitro and in vivo. On the contrary, a structural analogue of SFN without the isothiocyanate moiety did not have such effects. In a long-term chemoprevention study using wild-type and Nrf2-/- mice, we showed that topical application of SFN activated the NRF2 pathway, inhibited oxidative damage, and prevented 4NQO-induced oral carcinogenesis in an Nrf2-dependent manner. Our data clearly demonstrate that SFN has chemopreventive effects on oxidative stress-associated oral carcinogenesis, and such effects depend on Nrf2 and the isothiocyanate moiety. PMID:27447968

  14. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.

    PubMed

    Chen, Yi-Ming; Cheng, Tian-Lu; Tseng, Wei-Lung

    2009-10-01

    Selective turn-on fluorescence detection of I(-) was accomplished using fluorescein isothiocyanate-decorated gold nanoparticles (FITC-AuNPs). FITC molecules, which fluoresce strongly in an alkaline solution, were severely quenched when they were attached to the surface of AuNPs through their isothiocyanate group. Upon the addition of I(-), FITC molecules were detached because of I(-) adsorption on the surface of AuNPs. As a result, released FITC molecules were restored to their original fluorescence intensity. Because I(-) has a higher binding affinity to the surface of Au than do Br(-), Cl(-), or F(-), the FITC-AuNPs obviously have a higher selectivity toward I(-) than toward these other anions. Meanwhile, after IO(3)(-) was reduced to I(-) with ascorbic acid, the detection of IO(3)(-) was successfully achieved using the FITC-AuNPs. Under an optimum pH and AuNP concentration, the lowest detectable concentrations of I(-) and IO(3)(-) using this probe were 10.0 and 50.0 nM, respectively. The FITC-AuNPs provide a number of advantages, including easy preparation, selectivity, sensitivity, and low cost. This unique probe was applied to an analysis of the total iodine in edible salt and seawater.

  15. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species.

  16. Identification and analysis of isothiocyanates and new acylated anthocyanins in the juice of Raphanus sativus cv. Sango sprouts.

    PubMed

    Matera, Riccardo; Gabbanini, Simone; De Nicola, Gina Rosalinda; Iori, Renato; Petrillo, Gianna; Valgimigli, Luca

    2012-07-15

    The freeze-dried sprouts' juice of Raphanus sativus (L.) cv. Sango was prepared and analysed for the first time. HPLC analysis of total isothiocyanates, after protein displacement, resulted in 77.8 ± 3.0 μmol/g of dry juice while GC-MS analysis of hexane and acetone extracts showed E- and Z-raphasatin (8.9 and 0.11 μmol/g, respectively) and sulforaphene (11.7 μmol/g), summing up to 20.7 ± 1.7 μmol/g of free isothiocyanates. Sprouts' juice contained an unprecedented wealth of anthocyanins and a new fractionation methodology allowed us to isolate 34 mg/g of acylated anthocyanins (28.3 ± 1.9 μmol/g), belonging selectively to the cyanidin family. Analysis was performed by HPLC-PDA-ESI-MS(n) and extended to deacylated anthocyanins and aglycones, obtained, respectively, by alkaline and acid hydrolysis. This study identified 70 anthocyanins, 19 of which have never been described before and 32 of which are reported here in R. sativus for the first time. Sango radish sprouts are exceptional dietary sources of heath-promoting micronutrients.

  17. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin.

    PubMed

    Yao, Qingwei; Sheets, Matthew

    2006-07-07

    An air- and moisture-stable SeCSe-Pd(II) pincer complex was synthesized and found to catalyze the nucleophilic allylation of aldehydes with allyltributyltin. The allylation of a variety of aromatic and aliphatic aldehydes to give the corresponding homoallyl alcohols was performed at room temperature to 60 degrees C in yields ranging from 50% (for typical aliphatic aldehydes) to up to 97% (for aromatic aldehydes) using 5 x 10(-3) to 1 mol % of the Pd catalyst. NMR spectroscopic study indicated that a sigma-allylpalladium intermediate was formed and possibly functions as the nucleophilic species that undergoes addition to the aldehydes.

  18. A Minimal, Unstrained S‐Allyl Handle for Pre‐Targeting Diels–Alder Bioorthogonal Labeling in Live Cells

    PubMed Central

    Oliveira, Bruno L.; Guo, Zijian; Boutureira, Omar; Guerreiro, Ana; Jiménez‐Osés, Gonzalo

    2016-01-01

    Abstract The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells. PMID:27763724

  19. Cp2TiCl-promoted isomerization of trisubstituted epoxides to exo-methylene allylic alcohols on carvone derivatives.

    PubMed

    Bermejo, Francisco; Sandoval, Celso

    2004-08-06

    The ring-opening reaction of trisubstituted epoxides promoted by Cp2TiCl led to exo-methylene allylic alcohols as major compounds when 0.5 M solutions of the epoxides were added to 0.1 M solutions of the reagent at room temperature in THF. In most cases, the allylic alcohols were contaminated with saturated alcohols. Normal and reverse addition modes led to the alternate product being favored. The different stereochemical outcome of cis- and trans-epoxy acetates is rationalized in terms of mechanistically biased elimination processes.

  20. (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibits growth of colon tumors in mice.

    PubMed

    Zheng, Jie; Park, Mi Hee; Son, Dong Ju; Choi, Min Gi; Choi, Jeong Soon; Nam, Kyung Tak; Kim, Hae Deun; Rodriguez, Kevin; Gann, Benjamin; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-12-08

    In our previous study, we found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal showed anti-cancer effect, but it showed lack of stability and drug likeness. We have prepared several (E)-2,4-bis(p-hydroxyphenyl)-2-butenal analogues by Heck reaction. We selected two compounds which showed significant inhibitory effect of colon cancer cell growth. Thus, we evaluated the anti-cancer effects and possible mechanisms of one compound (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol in vitro and in vivo. In this study, we found that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol induced apoptotic cell death in a dose dependent manner (0-15 μg/ml) through activation of Fas and death receptor (DR) 3 in HCT116 and SW480 colon cancer cell lines. Moreover, the combination treatment with (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol and nuclear factor κB (NF-κB) inhibitor, phenylarsine oxide (0.1 μM) or signal transducer and activator of transcription 3 (STAT3) inhibitor, Stattic (50 μM) increased the expression of Fas and DR3 more significantly. In addition, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol suppressed the DNA binding activity of both STAT3 and NF-κB. Knock down of STAT3 or NF-κB p50 subunit by STAT3 small interfering RNA (siRNA) or p50 siRNA magnified (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol-induced inhibitory effect on colon cancer cell growth. Besides, the expression of Fas and DR3 was increased in STAT3 siRNA or p50 siRNA transfected cells. Moreover, docking model and pull-down assay showed that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol directly bound to STAT3 and NF-κB p50 subunit. Furthermore, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibited colon tumor growth in a dose dependent manner (2.5 mg/kg-5 mg/kg) in mice. Therefore, these findings indicated that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol may be a promising anti-cancer agent for colon cancer with more advanced research.

  1. (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibits growth of colon tumors in mice

    PubMed Central

    Son, Dong Ju; Choi, Min Gi; Choi, Jeong Soon; Nam, Kyung Tak; Kim, Hae Deun; Rodriguez, Kevin; Gann, Benjamin; Ham, Young Wan; Han, Sang Bae; Hong, Jin Tae

    2015-01-01

    In our previous study, we found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal showed anti-cancer effect, but it showed lack of stability and drug likeness. We have prepared several (E)-2,4-bis(p-hydroxyphenyl)-2-butenal analogues by Heck reaction. We selected two compounds which showed significant inhibitory effect of colon cancer cell growth. Thus, we evaluated the anti-cancer effects and possible mechanisms of one compound (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol in vitro and in vivo. In this study, we found that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol induced apoptotic cell death in a dose dependent manner (0-15 μg/ml) through activation of Fas and death receptor (DR) 3 in HCT116 and SW480 colon cancer cell lines. Moreover, the combination treatment with (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol and nuclear factor κB (NF-κB) inhibitor, phenylarsine oxide (0.1 μM) or signal transducer and activator of transcription 3 (STAT3) inhibitor, Stattic (50 μM) increased the expression of Fas and DR3 more significantly. In addition, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol suppressed the DNA binding activity of both STAT3 and NF-κB. Knock down of STAT3 or NF-κB p50 subunit by STAT3 small interfering RNA (siRNA) or p50 siRNA magnified (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol-induced inhibitory effect on colon cancer cell growth. Besides, the expression of Fas and DR3 was increased in STAT3 siRNA or p50 siRNA transfected cells. Moreover, docking model and pull-down assay showed that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol directly bound to STAT3 and NF-κB p50 subunit. Furthermore, (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol inhibited colon tumor growth in a dose dependent manner (2.5 mg/kg-5 mg/kg) in mice. Therefore, these findings indicated that (E)-4-(3-(3,5-dimethoxyphenyl)allyl)-2-methoxyphenol may be a promising anti-cancer agent for colon cancer with more advanced research. PMID

  2. Fibroblasts contracting collagen matrices form transient plasma membrane passages through which the cells take up fluorescein isothiocyanate-dextran and Ca2+.

    PubMed Central

    Lin, Y C; Ho, C H; Grinnell, F

    1997-01-01

    When fibroblasts contract collagen matrices, the cells activate a Ca(2+)-dependent cyclic AMP signaling pathway. We have found that contraction also stimulates uptake of fluorescein isothiocyanate-dextran molecules from the medium. Our results indicate that fluorescein isothiocyanate-dextran enters directly into the cell cytoplasm through 3- to 5-nm plasma membrane passages. These passages, which reseal in less than 5 s in the presence of divalent cations, also are likely sites of Ca2+ uptake during contraction and the first step in contraction-activated cyclic AMP signaling. The formation of plasma membrane passages during fibroblast contraction may reflect a general cellular response to rapid mechanical changes. Images PMID:9017595

  3. Pronociceptive response elicited by TRPA1 receptor activation in mice.

    PubMed

    Andrade, E L; Luiz, A P; Ferreira, J; Calixto, J B

    2008-03-18

    Ankyrin-repeat transient receptor potential 1 (TRPA1) is a member of the transient receptor potential (TRP) channel family and it is found in sensory neurons. In the present study, we found that TRPA1 receptor activation with allyl isothiocyanate or cinnamaldehyde caused dose-dependent spontaneous nociception when injected into the mouse hind paw. Very similar results were obtained when stimulating transient receptor potential vanilloid 1 (TRPV1) receptors with capsaicin. Pretreatment with the TRP receptor antagonist Ruthenium Red (1 nmol/paw) inhibited capsaicin-(0.1 nmol/paw) and allyl isothiocyanate-(1 nmol/paw) induced nociceptive responses. However, the nonselective TRPV1 receptor antagonist capsazepine (1 nmol/paw) and the selective TRPV1 receptor antagonist SB 366791 (1 nmol/paw) only attenuated capsaicin-induced nociception. In contrast, the intrathecal treatment with TRPA1 antisense oligodeoxynucleotide (2.5 nmol/site) and the degeneration of the subset of primary afferent fibers sensitive to capsaicin significantly reduced allyl isothiocyanate-induced nociception. Consequently to TRPA1 antisense oligodeoxynucleotide treatment there was a marked decrease of the expression of TRPA1 receptor in both sciatic nervous and spinal cord segments. Moreover, capsaicin and allyl isothiocyanate-induced nociception were not significantly changed by chemical sympathectomy produced by guanethidine. The previous degranulation of mast cells by compound 48/80 and treatment with antagonist H(1) receptor antagonist pyrilamine (400 microg/paw) both significantly inhibited the capsaicin- and allyl isothiocyanate-induced nociception. The selective NK(1) receptor antagonist N(2)-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl) carbony-1-L-prolyl]-N-methyl-N-phenylmethyl-3-2-(2-naphtyl)-L-alaninamide (10 nmol/paw) reduced either capsaicin- or allyl isothiocyanate-induced nociception. Collectively, the present findings demonstrate that the TRPA1 agonist allyl isothiocyanate produces a

  4. Bis[3-allyl-1-(4-cyanobenzyl)-2-methylbenzimidazolium] di-μ-bromido-bis[bromidocuprate(I)

    PubMed Central

    Xu, Guang-Hai; Wang, Wei

    2008-01-01

    The asymmetric unit of the title compound, (C19H18N3)2[Cu2Br4], contains one cation and one half-anion; there is a centre of symmetry mid-way between the two Cu atoms. In the cation, the nearly planar benzimidazole ring system is oriented at dihedral angles of 75.31 (3) and 21.39 (3)° with respect to the cyano­benzyl and allyl groups, respectively. The dihedral angle between cyano­benzyl and allyl groups is 87.94 (3)°. In the crystal structure, inter­molecular C—H⋯Br hydrogen bonds link the mol­ecules. There is a C—H⋯π contact between the cyano­benzyl ring and the anion; π—π contacts also exist between the benzimidazole ring systems as well as between the anion and the cyano­benzyl ring [centroid–centroid distances = 4.024 (1) and 4.617 (1) Å, respectively]. PMID:21201637

  5. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    PubMed Central

    Porter, David; Poon, Belinda M-L

    2015-01-01

    Summary Iron(II) complexes of the tetradentate amines tris(2-pyridylmethyl)amine (TPA) and N,N′-bis(2-pyridylmethyl)-N,N′-dimethylethane-1,2-diamine (BPMEN) are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol %) or FeBPMEN (10 mol %) converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxy)carbamate) in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+)-(2R,2′R)-1,1′-bis(2-pyridylmethyl)-2,2′-bipyrrolidine ((R,R′)-PDP). PMID:26734101

  6. Cell kinetics of repair after allyl alcohol-induced liver necrosis in mice.

    PubMed

    Lee, J H; Ilic, Z; Sell, S

    1996-04-01

    The cellular kinetics of repair and scarring which occurs after induction of periportal necrosis in mice by allyl alcohol were examined by histology and immunohistochemistry. Thirty-six six-week-old female C57BI/6J mice were injected intraperitoneally with two doses of allyl alcohol on day 0 and tissue sections were taken at various times and stained by haematoxylin and eosin or immunostained for proliferating cell nuclear antigen (PCNA), bile duct/oval cell marker A-6, and DNA fragments (apoptosis). Within 6 hours, periportal necrosis was seen extending to produce large zones of confluent, pan-acinar irregular necrosis, predominantly in the right and medial lobes with sparing of the left and caudate lobes. Restoration of liver mass was accomplished mainly by proliferation of mature hepatocytes in the surviving lobes of the liver (hyperplasia). In the right and medial lobes where necrosis was limited to the periportal zone, there was some, but much less, proliferation of small, oval periportal cells. The large necrotic zones in the right and median lobes shrank and were replaced by granulomatous inflammation. This cellular contribution of liver regeneration in the mouse was different from that previously reported in the rat and provides a means of inducing only a small proliferation of oval cells.

  7. Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle-Kirmse Reaction.

    PubMed

    Tyagi, Vikas; Sreenilayam, Gopeekrishnan; Bajaj, Priyanka; Tinoco, Antonio; Fasan, Rudi

    2016-10-17

    The first example of a biocatalytic [2,3]-sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle-Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C-C bond-forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl-, benzyl-, and alkyl-substituted allylic sulfides) and α-diazo esters. Moreover, the scope of this myoglobin-mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active-site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle-Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon-carbon bonds.

  8. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  9. Bis(allyl)-ruthenium(IV) complexes as highly efficient catalysts for the redox isomerization of allylic alcohols into carbonyl compounds in organic and aqueous media: scope, limitations, and theoretical analysis of the mechanism.

    PubMed

    Cadierno, Victorio; García-Garrido, Sergio E; Gimeno, José; Varela-Alvarez, Adrián; Sordo, José A

    2006-02-01

    The catalytic activity of the bis(allyl)-ruthenium(IV) dimer [[Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl](2)] (C(10)H(16) = 2,7-dimethylocta-2,6-diene-1,8-diyl) (1), and that of its mononuclear derivatives [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(L)] (L = CO, PR(3), CNR, NCR) (2) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(NCMe)(2)][SbF(6)] (3), in the redox isomerization of allylic alcohols into carbonyl compounds, both in tetrahydrofuran and in water, is reported. In particular, a variety of allylic alcohols have been quantitatively isomerized using [[Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl](2)] (1) as catalyst, the reactions proceeding in all cases faster in water. Remarkably, complex 1 has been found to be the most efficient catalyst reported to date for this particular transformation, leading to TOF and TON values up to 62,500 h(-1) and 1 500,000, respectively. Moreover, catalyst 1 can be recycled and is capable of performing allylic alcohol isomerizations even in the presence of conjugated dienes, which are known to be strong poisons in isomerization catalysis. On the basis of both experimental data and theoretical calculations (DFT), a complete catalytic cycle for the isomerization of 2-propen-1-ol into propenal is described. The potential energy surfaces of the cycle have been explored at the B3LYP/6-311 + G(d,p)//B3LYP/6-31G(d,p) + LAN2DZ level. The proposed mechanism involves the coordination of the oxygen atom of the allylic alcohol to the metal. The DFT energy profile is consistent with the experimental observation that the reaction only proceeds under heating. Calculations predict the catalytic cycle to be strongly exergonic, in full agreement with the high yields experimentally observed.

  10. Enantioselective formal α-allylation of nitroalkanes through a chiral iminophosphorane-catalyzed Michael reaction-Julia-Kocienski olefination sequence.

    PubMed

    Uraguchi, Daisuke; Nakamura, Shinji; Sasaki, Hitoshi; Konakade, Yuki; Ooi, Takashi

    2014-04-04

    A two-step sequence for the asymmetric formal α-allylation of nitroalkanes is disclosed. This new methodology relies on the development of a highly diastereo- and enantioselective conjugate addition of nitroalkanes to vinylic 2-phenyl-1H-tetrazol-5-ylsulfones using chiral triaminoiminophosphorane as a requisite base catalyst and subsequent Julia-Kocienski olefination under kinetic conditions.

  11. Spectra of carbanions formed from allyl cyanide during isomerization in zeolite NaY-FAU with strong basic sites

    NASA Astrophysics Data System (ADS)

    Hannus, István; Förster, Horst; Tasi, Gyula; Kiricsi, Imre; Molnár, Árpád

    1995-03-01

    Double bond isomerization of allyl cyanide to crotononitrile over a basic zeolite catalyst was monitored by IR and UV-VIS spectroscopy in order to get information on the surface intermediates involved. Due to the spectral changes the occurence of a carbanionic intermediate seems to be highly probable characterized by an absorption at 400 nm.

  12. Diastereoselective Allylation of "N"-"Tert"-Butanesulfinyl Imines: An Asymmetric Synthesis Experiment for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Chen, Xiao-Yang; Sun, Li-Sen; Gao, Xiang; Sun, Xing-Wen

    2015-01-01

    An asymmetric synthetic experiment that encompasses both diastereoselectivity and enantioselectivity is described. In this experiment, Zn-mediated allylation of an ("R")-"N"-"tert"-butanesulfinyl imine is first performed to obtain either diastereomer using two different solvent systems, followed by oxidation of the…

  13. Copper-catalyzed asymmetric allylation of chiral N-tert-butanesulfinyl imines: dual stereocontrol with nearly perfect diastereoselectivity.

    PubMed

    Zhao, Yi-Shuang; Liu, Qiang; Tian, Ping; Tao, Jing-Chao; Lin, Guo-Qiang

    2015-04-14

    Copper-catalyzed asymmetric allylation of chiral N-tert-butanesulfinyl imines has been described. Dual stereocontrol, through the combination of a chiral auxiliary and a chiral copper complex, has played an important role in achieving the nearly perfect diastereoselectivities (all dr > 99 : 1), especially for ketimine substrates.

  14. Phosphine-catalyzed [4 + 1] annulation between α,β-unsaturated imines and allylic carbonates: synthesis of 2-pyrrolines.

    PubMed

    Tian, Junjun; Zhou, Rong; Sun, Haiyun; Song, Haibin; He, Zhengjie

    2011-04-01

    In this report, a phosphine-catalyzed [4 + 1] annulation between α,β-unsaturated imines and allylic carbonates is described. This reaction represents the first realization of catalytic [4 + 1] cyclization of 1,3-azadienes with in situ formed phosphorus ylides, which provides highly efficient and diastereoselective synthesis of 2-pyrrolines.

  15. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    ERIC Educational Resources Information Center

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  16. Asymmetric allylation/Pauson-Khand reaction: a simple entry to polycyclic amines. Application to the synthesis of aminosteroid analogues.

    PubMed

    Fustero, Santos; Lázaro, Rubén; Aiguabella, Nuria; Riera, Antoni; Simón-Fuentes, Antonio; Barrio, Pablo

    2014-02-21

    Asymmetric allylation of o-iodoarylsulfinylimines has been achieved in high diastereoselectivities. The thus-obtained o-iodoarylhomoallylic sulfinamides participate in a subsequent Sonogashira coupling followed by a diastereoselective intramolecular Pauson-Khand reaction. In this way, tricyclic amines showing a unique benzo-fused indenyl backbone were obtained. The methodology has been applied to the synthesis of amino steroid analogues.

  17. Enantioselective synthesis of 4-substituted tetrahydroisoquinolines via palladium-catalyzed intramolecular Friedel-Crafts type allylic alkylation of phenols.

    PubMed

    Zhao, Zheng-Le; Xu, Qing-Long; Gu, Qing; Wu, Xin-Yan; You, Shu-Li

    2015-03-14

    Palladium-catalyzed asymmetric intramolecular Friedel-Crafts type allylic alkylation reaction of phenols was developed under mild conditions. In the presence of Pd2(dba)3 with (1R,2R)-DACH-phenyl Trost ligand (L2) in toluene at 50 °C, the reaction provides various C4 substituted tetrahydroisoquinolines with moderate to excellent yields, regioselectivity and enantioselectivity.

  18. Indium-mediated one-pot three-component reaction of aromatic amines, enol ethers, and allylic bromides.

    PubMed

    Jang, Taeg-Su; Ku, Il Whea; Jang, Min Seok; Keum, Gyochang; Kang, Soon Bang; Chung, Bong Young; Kim, Youseung

    2006-01-19

    [reaction: see text] A new and efficient indium-mediated one-pot three-component reaction for the synthesis of N-aryl-substituted homoallylamines from aromatic amines, enol ethers, and allylic bromides in THF at room temperature is described.

  19. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    PubMed

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination.

  20. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice

    PubMed Central

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-01-01

    Background Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Material/Methods Mice were dosed with allyl nitrile (0–200 μmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Results Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Conclusions Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities. PMID:26932717

  1. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  2. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.

    PubMed

    Franco, P; Spinozzi, S; Pagnotta, E; Lazzeri, L; Ugolini, L; Camborata, C; Roda, A

    2016-01-08

    A new high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of glucosinolates, as glucoraphanin and glucoerucin, and the corresponding isothiocyanates, as sulforaphane and erucin, was developed and applied to quantify these compounds in Eruca sativa defatted seed meals and enriched functional foods. The method involved solvent extraction, separation was achieved in gradient mode using water with 0.5% formic acid and acetonitrile with 0.5% formic acid and using a reverse phase C18 column. The electrospray ion source operated in negative and positive mode for the detection of glucosinolates and isothiocyanates, respectively, and the multiple reaction monitoring (MRM) was selected as acquisition mode. The method was validated following the ICH guidelines. Replicate experiments demonstrated a good accuracy (bias%<10%) and precision (CV%<10%). Detection limits and quantification limits are in the range of 1-400ng/mL for each analytes. Calibration curves were validated on concentration ranges from 0.05 to 50μg/mL. The method proved to be suitable for glucosinolates and isothiocyanates determination both in biomasses and in complex matrices such as food products enriched with glucosinolates, or nutraceutical bakery products. In addition, the developed method was applied to the simultaneous determination of glucosinolates and isothiocyanates in bakery product enriched with glucosinolates, to evaluate their thermal stability after different industrial processes from cultivation phases to consumer processing.

  3. Isothiocyanate-functionalized bifunctional chelates and fac-[MI(CO)3]+ (M = Re, 99mTc) complexes for targeting uPAR in prostate cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing strategies to rapidly incorporate the fac-[MI(CO)3]+ (M = Re, 99mTc) core into biological targeting vectors is a growing realm in radiopharmaceutical development. This work presents the preparation of a novel isothiocyanate-functionalized bifunctional chelate based on 2,2´-dipicolylamine ...

  4. A/J mouse lung tumorigenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by arylalkyl isothiocyanates

    SciTech Connect

    Hecht, S.S.; Morse, M.A.; Eklind, K.I.; Chung, F.L. )

    1991-03-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen found in tobacco and tobacco smoke. It is a potent lung tumorigen in rodents and appears to be involved in human cancer induced by tobacco products. NNK induces lung tumors in A/J mice after a single dose; tumor multiplicity is higher when the mice are maintained on an AIN-76A diet than when they are maintained on NIH-07 diet. This paper reviews our recent research using this single-dose model. Bioassays of deuterium substituted analogues of NNK have demonstrated that methylation of DNA by NNK is an important step in lung tumor induction. Arylalkyl isothiocyanates inhibit the metabolic activation of NNK and consequently inhibit its DNA binding and tumorigenesis. Structure activity studies have demonstrated that increasing alkyl chain length leads to increasing efficacy in prevention of NNK tumorigenesis. Thus, 3-phenylpropyl isothiocyanate and 4-phenylbutyl isothiocyanate blocked NNK induced lung tumor formation in A/J mice. Lower doses of longer chain arylalkyl isothiocyanates were even more effective as chemopreventive agents.

  5. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  6. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  7. Fluorescein Isothiocyanate-Labeled Lectin Analysis of the Surface of the Nitrogen-Fixing Bacterium Azospirillum brasilense by Flow Cytometry

    PubMed Central

    Yagoda-Shagam, Janet; Barton, Larry L.; Reed, William P.; Chiovetti, Robert

    1988-01-01

    The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies. Images PMID:16347693

  8. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate

    PubMed Central

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT–FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT–FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT–FITC rapid dissociation as an intermediate phase. PMID:25784800

  9. Determination of methyl isothiocyanate in air downwind of fields treated with metam-sodium by subsurface drip irrigation.

    PubMed

    Woodrow, James E; Seiber, James N; LeNoir, James S; Krieger, Robert I

    2008-08-27

    Air concentrations of methyl isothiocyanate (MITC) were determined near two fields treated with metam-sodium (MS) by subsurface drip irrigation. The two study fields showed measurable airborne MITC residues during application of MS and for periods up to 48 h postapplication. Using a Gaussian plume dispersion model, flux values were estimated for all of the sampling periods. On the basis of the flux estimates, the amount of MITC that volatilized within the 48 h period was about 1.4% of the applied material. Compared to other studies, MITC residues in air measured during application by subsurface drip irrigation were up to four orders-of-magnitude lower than those previously published for applications involving delivery through surface irrigation water. Our measured concentrations of MITC in field air were at levels below current regulatory guidance and thresholds for adverse human health effects.

  10. Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate.

    PubMed

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell(®) system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT-FITC rapid dissociation as an intermediate phase.

  11. Development of (trimethylsilyl)ethyl ester protected enolates and applications in palladium-catalyzed enantioselective allylic alkylation: intermolecular cross-coupling of functionalized electrophiles.

    PubMed

    Reeves, Corey M; Behenna, Douglas C; Stoltz, Brian M

    2014-05-02

    The development of (trimethylsilyl)ethyl ester protected enolates is reported. The application of this class of compounds in palladium-catalyzed asymmetric allylic alkylation is explored, yielding a variety of α-quaternary six- and seven-membered ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to traditional β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of (trimethylsilyl)ethyl β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.

  12. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol.

    PubMed

    Plapp, Bryce V; Lee, Ann Ting-I; Khanna, Aditi; Pryor, John M

    2013-02-25

    Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD(+) ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast ADHs with new site-directed substitutions and examined the correlation between catalytic efficiency and growth on selective media of yeast expressing six different ADHs. The H15R substitution (a test for electrostatic effects) is on the surface of ADH and has small effects on the kinetics. The H44R substitution (affecting interactions with the coenzyme pyrophosphate) was previously shown to decrease affinity for coenzymes 2-4-fold and turnover numbers (V/Et) by 4-6-fold. The W82R substitution is distant from the active site, but decreases turnover numbers by 5-6-fold, perhaps by effects on protein dynamics. The E67Q substitution near the catalytic zinc was shown previously to increase the Michaelis constant for acetaldehyde and to decrease turnover for ethanol oxidation. The W54R substitution, in the substrate binding site, increases kinetic constants (Ks, by >10-fold) while decreasing turnover numbers by 2-7-fold. Growth of yeast expressing the different ADHs on YPD plates (yeast extract, peptone and dextrose) plus antimycin to require fermentation, was positively correlated with the log of catalytic efficiency for the sequential bi reaction (V1/KiaKb=KeqV2/KpKiq, varying over 4 orders of magnitude, adjusted for different levels of ADH expression) in the order: WT≈H15R>H44R>W82R>E67Q>W54R. Growth on YPD plus 10mM allyl alcohol was inversely correlated with catalytic efficiency. The fitter yeast are "bradytrophs" (slow growing) because the ADHs have decreased catalytic

  13. Differential effects of phenethyl isothiocyanate and D,L-sulforaphane on Toll-like receptor 3 signaling

    PubMed Central

    Zhu, Jianzhong; Ghosh, Arundhati; Coyle, Elizabeth M.; Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V.; Sarkar, Saumendra N.

    2013-01-01

    Naturally occurring isothiocyanates (ITC) from cruciferous vegetables are widely studied for their cancer chemopreventive effects. Here we investigated the effects of ITC on Toll-like receptor (TLR) signaling, and found that two most promising ITCs, phenethyl isothiocyanate (PEITC) and D,L-sulforaphane (SFN), have differential effects on dsRNA mediated innate immune signaling through TLR3. PEITC preferentially inhibited TLR3 mediated IRF3 signaling and downstream gene expression in vivo and in vitro, whereas SFN caused inhibition of TLR3 mediated NF-κB signaling and downstream gene expression. Mechanistically, PEITC inhibited ligand (dsRNA) dependent dimerization of TLR3 resulting in inhibition of signaling through IRF3. On the other hand, SFN did not disrupt TLR3 dimerization indicating that it affects further downstream pathway resulting in NF-κB inhibition. In order to examine the biological significance of these findings in the context of anti-tumor activities of these compounds, we used two approaches: (a) first, we showed that dsRNA mediated apoptosis of tumor cells via TLR3 was inhibited in the presence of PEITC, whereas this response was augmented by SFN treatment; (b) second, in a separate assay measuring anchorage independent growth and colony formation by immortalized fibroblasts we made similar observations. Here again, PEITC antagonized dsRNA mediated inhibition of colony formation while SFN enhanced the inhibition. These results indicate biologically relevant functional differences between two structurally similar ITC and may provide important insights in therapeutic development of these compounds targeted to specific cancer. PMID:23509350

  14. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases.

  15. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  16. Synthesis and biological properties of 2-methylene-19-nor-25-dehydro-1α-hydroxyvitamin D3-26,23-lactones—weak agonists

    PubMed Central

    Chiellini, Grazia; Grzywacz, Pawel; Plum, Lori A.; Barycki, Rafal; Clagett-Dame, Margaret; DeLuca, Hector. F.

    2015-01-01

    In a continuing effort to explore the 2-methylene-1α-hydroxy-19-norvitamin D3 class of pharmacologically important vitamin D compounds, two novel 2-methylene-19-nor-25-dehydro-1α-hydroxyvitamin D3-26,23-lactones, GC-3 and HLV, were synthesized and biologically tested. Based on reports of similarly structured molecules, it was hypothesized that these compounds might act as antagonists, at least in vitro. The pathway designed to synthesize these compounds was based on two key steps: first, the Lythgoe-type Wittig–Horner coupling of Windaus–Grundmann-type ketone 18, with phosphine oxide 15, followed, later in the synthesis, by the Zn-mediated Reformasky-type allylation of aldehyde 20 with methylbromomethylacrylate 8. Our biological data show that neither compound has antagonistic activity but acts as weak agonists in vitro and in vivo. PMID:18722130

  17. High-accuracy extrapolated ab initio thermochemistry of the vinyl, allyl, and vinoxy radicals.

    PubMed

    Tabor, Daniel P; Harding, Michael E; Ichino, Takatoshi; Stanton, John F

    2012-07-26

    Enthalpies of formation at both 0 and 298 K were calculated according to the HEAT (High-accuracy Extrapolated Ab initio Thermochemistry) protocol for the title molecules, all of which play important roles in combustion chemistry. At the HEAT345-(Q) level of theory, recommended enthalpies of formation at 0 K are 301.5 ± 1.3, 180.3 ± 1.8, and 23.4 ± 1.5 kJ mol(-1) for vinyl, allyl, and vinoxy, respectively. At 298 K, the corresponding values are 297.3, 168.6, and 16.1 kJ mol(-1), with the same uncertainties. The calculated values for the three radicals are in excellent agreement with the corresponding experimental values, but the uncertainties associated with the HEAT values for vinoxy are considerably smaller than those based on experimental studies.

  18. Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans

    PubMed Central

    Lemar, Katey M.; Passa, Ourania; Aon, Miguel A.; Cortassa, Sonia; Müller, Carsten T.; Plummer, Sue; O’Rourke, Brian; Lloyd, David

    2009-01-01

    Both the growth and respiration of Candida albicans are sensitive to extracts of Allium sativum and investigations into the anticandidal activities are now focussing on the purified constituents to determine the targets of inhibition. Of particular interest is allyl alcohol (AA), a metabolic product that accumulates after trituration of garlic cloves. Putative targets for AA were investigated by monitoring changes in intracellular responses after exposure of C. albicans cells to AA or a commercially available garlic extract. Two-photon laser scanning microscopy and other techniques were used. Changes typical of oxidative stress – NADH oxidation and glutathione depletion, and increased reactive oxygen species – were observed microscopically and by flow cytometry. Known targets for AA are alcohol dehydrogenases Adh1 and 2 (in the cytosol) and Adh3 (mitochondrial), although the significant decrease in NAD(P)H after addition of AA is indicative of another mechanism of action. PMID:16207909

  19. Study of an improved Allyl Di-Glycol carbonate sheet for high energy proton detection.

    PubMed

    Ohguchi, H; Juto, N; Fujisaki, S; Migita, S; Koguchi, Y; Takada, M

    2006-01-01

    An allyl di-glycol carbonate (ADC) sheet which has been utilised as a neutron detector for personal dosimetry has recently been studied for its application as a device for radiation exposure control for astronauts in space, where protons are the dominant radiation. It is known that the fabrication process, modified by adding some kind of antioxidant to improve the sensitivity of ADC to high energy protons, causes a substantial increase in false tracks, which disturb the automatic counting of proton tracks using the auto-image analyser. This made clear the difficulty of fabricating ADC sheets which have sufficient sensitivity to high energy protons, while maintaining a good surface. In this study, we have tried to modify the fabrication process to improve the sensitivity to high energy protons without causing a deterioration of the surface condition of ADC sheets. We have successfully created fairly good products.

  20. Theoretical study on the gas phase reaction of allyl chloride with hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Zhang, Yunju; Chao, Kai; Sun, Jingyu; Zhang, Wanqiao; Shi, Haijie; Yao, Cen; Su, Zhongmin; Pan, Xiumei; Zhang, Jingping; Wang, Rongshun

    2014-02-01

    The reaction of allyl chloride with the hydroxyl radical has been investigated on a sound theoretical basis. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for important pathways in detail. The reaction mechanism confirms that OH addition to the C=C double bond forms the chemically activated adducts, IM1 (CH2CHOHCH2Cl) and IM2 (CH2OHCHCH2Cl) via low barriers, and direct H-abstraction paths may also occur. Variational transition state model and multichannel RRKM theory are employed to calculate the temperature-, pressure-dependent rate constants. The calculated rate constants are in good agreement with the experimental data. At 100 Torr with He as bath gas, IM6 formed by collisional stabilization is the major products in the temperature range 200-600 K; the production of CH2CHCHCl via hydrogen abstractions becomes dominant at high temperatures (600-3000 K).

  1. Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization Reaction of Pyridines, Pyrazines, Quinolines, and Isoquinolines.

    PubMed

    Yang, Ze-Peng; Wu, Qing-Feng; Shao, Wen; You, Shu-Li

    2015-12-23

    The first Ir-catalyzed intramolecular asymmetric allylic dearomatization reaction of pyridines, pyrazines, quinolines, and isoquinolines has been developed. Enabled by in situ formed chiral Ir-catalyst, the dearomatized products were isolated in high levels of yield (up to 99% yield) and enantioselectivity (up to 99% ee). It is worth noting that the Me-THQphos ligand is much more efficient than other tested ligands for the dearomatization of pyrazines and certain quinolines. Mechanistic studies of the dearomatization reaction were carried out, and the results suggest the feasibility of an alternative process which features the formation of a quinolinium as the key intermediate. The mechanistic findings render this reaction a yet unknown type in the chemistry of Reissert-type reactions. In addition, the utility of this method was showcased by a large-scale reaction and formal synthesis of (+)-gephyrotoxin.

  2. Asymmetric Petasis Borono-Mannich Allylation Reactions Catalyzed by Chiral Biphenols.

    PubMed

    Jiang, Yao; Schaus, Scott E

    2017-02-01

    Chiral biphenols catalyze the asymmetric Petasis borono-Mannich allylation of aldehydes and amines through the use of a bench-stable allyldioxaborolane. The reaction proceeds via a two-step, one-pot process and requires 2-8 mole % of 3,3'-Ph2 -BINOL as the optimal catalyst. Under microwave heating the reaction affords chiral homoallylic amines in excellent yields (up to 99 %) and high enantioselectivies (er up to 99:1). The catalytic reaction is a true multicomponent condensation reaction whereas both the aldehyde and the amine can possess a wide range of structural and electronic properties. Use of crotyldioxaborolane in the reaction results in stereodivergent products with anti- and syn-diastereomers both in good diastereoselectivities and enantioselectivities from the corresponding E- and Z-borolane stereoisomers.

  3. Catalytic asymmetric carbon-carbon bond formation via allylic alkylations with organolithium compounds.

    PubMed

    Pérez, Manuel; Fañanás-Mastral, Martín; Bos, Pieter H; Rudolph, Alena; Harutyunyan, Syuzanna R; Feringa, Ben L

    2011-05-01

    Carbon-carbon bond formation is the basis for the biogenesis of nature's essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C-C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C-C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon-carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

  4. Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

    NASA Astrophysics Data System (ADS)

    Thorman, Rachel M.; Bjornsson, Ragnar; Ingólfsson, Oddur

    2016-08-01

    Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds.

  5. Polarity-Reversed Allylations of Aldehydes, Ketones, and Imines Enabled by Hantzsch Ester in Photoredox Catalysis.

    PubMed

    Qi, Li; Chen, Yiyun

    2016-10-10

    The polarity reversal (umpolung) reaction is an invaluable tool for reversing the chemical reactivity of carbonyl and iminyl groups, which subsequent cross-coupling reactions to form C-C bonds offers a unique perspective in synthetic planning and implementation. Reported herein is the first visible-light-induced polarity-reversed allylation and intermolecular Michael addition reaction of aldehydes, ketones, and imines. This chemoselective reaction has broad substrate scope and the engagement of alkyl imines is reported for the first time. The mechanistic investigations indicate the formation of ketyl (or α-aminoalkyl) radicals from single-electron reduction, where the Hantzsch ester is crucial as the electron/proton donor and the activator.

  6. Catalyst-controlled C-O versus C-N allylic functionalization of terminal olefins.

    PubMed

    Strambeanu, Iulia I; White, M Christina

    2013-08-14

    The divergent synthesis of syn-1,2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid cocatalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate cocatalyst leads for the first time to anti-2-aminooxazolines (C-O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C-N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C-O versus C-N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C-H cleavage/functionalization to olefin isomerization/oxidative amination.

  7. Palladium-catalyzed asymmetric allylic amination of racemic butadiene monoxide with isatin derivatives.

    PubMed

    Li, Gen; Feng, Xiangqing; Du, Haifeng

    2015-05-28

    Isatins and their derivatives are important functional moities and building blocks in pharmaceutical and synthetic chemistry. Numerous enantioselective transformations at the C-3 carbonyl group have been well developed. However, the asymmetric substitution reaction with isatins and their derivatives as nucleophiles based on the free N-H groups has been less studied due to the relatively weaker nucleophilicity resulting from the two electron-withdrawing carbonyl groups. In this paper, a palladium-catalyzed asymmetric allylic amination of racemic butadiene monoxide with isatin derivatives using a chiral phosphoramidite olefin hybrid ligand has been successfully developed under mild conditions. A variety of chiral amino alcohols were afforded in 55-87% yields with 10/1->20/1 regioselectivity ratios and 80-97% ees.

  8. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  9. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  10. Domino cyclization-alkylation protocol for the synthesis of 2,3-functionalized indoles from o-alkynylanilines and allylic alcohols.

    PubMed

    Xu, Chang; Murugan, Vinod K; Pullarkat, Sumod A

    2012-05-21

    A practical and efficient protocol for the one-pot synthesis of 2,3-substituted indoles was developed via a palladacycle catalyzed domino cyclization-alkylation reaction involving 2-alkynylanilines and allylic alcohols under mild conditions without any additives.

  11. Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand.

    PubMed

    Jian, Zhongbao; Cui, Dongmei; Hou, Zhaomin; Li, Xiaofang

    2010-05-07

    Aminophenyl functionalized cyclopentadienyl ligated rare-earth metal allyl mediated cationic systems display high cis-1,4 selectivity for the polymerization of isoprene, and living reversible and rapid chain transfer to aluminium additives.

  12. Modular access to vicinally functionalized allylic (thio)morpholinonates and piperidinonates by substrate-controlled annulation of 1,3-azadienes with hexacyclic anhydrides.

    PubMed

    Braunstein, Hannah; Langevin, Spencer; Khim, Monique; Adamson, Jonathan; Hovenkotter, Katie; Kotlarz, Lindsey; Mansker, Brandon; Beng, Timothy K

    2016-09-21

    A modular substrate-controlled hexannulation of inherently promiscuous 1,3-azadienes with hexacyclic anhydrides, which affords versatile vicinally functionalized allylic lactams, in high yields, regio- and stereoselectivities is described.

  13. Cationic allyl complexes of the rare-earth metals: synthesis, structural characterization, and 1,3-butadiene polymerization catalysis.

    PubMed

    Robert, Dominique; Abinet, Elise; Spaniol, Thomas P; Okuda, Jun

    2009-11-09

    Monocationic bis-allyl complexes [Ln(eta(3)-C(3)H(5))(2)(thf)(3)](+)[B(C(6)X(5))(4)](-) (Ln = Y, La, Nd; X = H, F) and dicationic mono-allyl complexes of yttrium and the early lanthanides [Ln(eta(3)-C(3)H(5))(thf)(6)](2+)[BPh(4)](2)(-) (Ln = La, Nd) were prepared by protonolysis of the tris-allyl complexes [Ln(eta(3)-C(3)H(5))(3)(diox)] (Ln = Y, La, Ce, Pr, Nd, Sm; diox = 1,4-dioxane) isolated as a 1,4-dioxane-bridged dimer (Ln = Ce) or THF adducts [Ln(eta(3)-C(3)H(5))(3)(thf)(2)] (Ln = Ce, Pr). Allyl abstraction from the neutral tris-allyl complex by a Lewis acid, ER(3) (Al(CH(2)SiMe(3))(3), BPh(3)) gave the ion pair [Ln(eta(3)-C(3)H(5))(2)(thf)(3)](+)[ER(3)(eta(1)-CH(2)CH=CH(2))](-) (Ln = Y, La; ER(3) = Al(CH(2)SiMe(3))(3), BPh(3)). Benzophenone inserts into the La-C(allyl) bond of [La(eta(3)-C(3)H(5))(2)(thf)(3)](+)[BPh(4)](-) to form the alkoxy complex [La{OCPh(2)(CH(2)CH=CH(2))}(2)(thf)(3)](+)[BPh(4)](-). The monocationic half-sandwich complexes [Ln(eta(5)-C(5)Me(4)SiMe(3))(eta(3)-C(3)H(5))(thf)(2)](+)[B(C(6)X(5))(4)](-) (Ln = Y, La; X = H, F) were synthesized from the neutral precursors [Ln(eta(5)-C(5)Me(4)SiMe(3))(eta(3)-C(3)H(5))(2)(thf)] by protonolysis. For 1,3-butadiene polymerization catalysis, the yttrium-based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90% 1,4-cis stereoselectivity.

  14. Free radical alkylation of titanium allyl complexes. Metal-mdeiated carbon-carbon bond formation in the odd-electron manifold

    SciTech Connect

    Casty, G.L.; Carter, C.A.G.; Nomura, Nobuyoshi; Stryker, J.M.

    1995-12-31

    Both nucleophilic and electrophilic addition to transition metal coordinated hydrocarbyl ligands has been extensively investigated, leading to the development of numerous synthetically important metal-mediated organic reactions. Free radical additions to coordinated ligands, however, remain rare and, in the organic context, virtually undeveloped. Here, the authors report the highly regioselective addition of organic free radicals to the central allyl carbon of paramagnetic titanocene(III) allyl complexes, providing an unusual, convenient, and general entry into the titanacyclobutane structural class.

  15. A formal anti-Markovnikov hydroamination of allylic alcohols via tandem oxidation/1,4-conjugate addition/1,2-reduction using a Ru catalyst.

    PubMed

    Nakamura, Yushi; Ohta, Tetsuo; Oe, Yohei

    2015-05-01

    A formal anti-Markovnikov hydroamination of allylic alcohols using a Ru catalyst via tandem oxidation/1,4-conjugate addition/1,2-reduction was developed. Thus, the reaction of allylic alcohols with amines was performed in the presence of the catalyst generated from RuClH(CO)(PPh3)3 and 2,6-bis(n-butyliminomethyl)pyridine in situ to afford the corresponding γ-amino alcohols efficiently.

  16. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    PubMed

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data.

  17. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  18. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  19. Growth of organic films on semiconductor surfaces: Fundamental reactivity studies and molecular layer deposition involving isocyanates and isothiocyanates

    NASA Astrophysics Data System (ADS)

    Loscutoff, Paul W.

    The continued pursuit of smaller device dimensions by the semiconductor industry has led to an increased interest in functional organic films. Organics have great potential as advanced materials, owing to the versatility of organic moieties and vast knowledge base of organic reactivity. In order to implement organic films into semiconductor devices, the inorganic/organic hybrid interfaces must be investigated, so that the reactivity at these pivotal features is well-known. In this work organic films are studied in two environments: the Ge(100)-2x1 surface and the SiO2 surface. The reconstructed Ge(100)-2x1 surface offers a well-defined substrate, ideal for fundamental reactivity studies. Organic reactants are deposited under ultrahigh vacuum conditions, allowing reactions between gas-phase organic molecules and the surface to be isolated and analyzed by in situ spectroscopic techniques. By use of infrared (IR) spectroscopy, x-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) modeling, we investigate the reactivity of phenyl and tert-butyl isocyanate and isothiocyanate at the Ge(100)-2x1 surface. The isocyanate and isothiocyanate moieties are both highly reactive groups consisting of a cumulated double bond containing two heteroatoms, allowing for many potential products with the Ge surface. We find that dative bonding through the heteroatoms plays an important role in the surface reactions, functioning as either reaction intermediates or final products depending on the adsorbate. Various cycloaddition products are also observed at the surface, with prominent reactivity trends resulting from the differences in oxygen and sulfur reactivity. In order to study the practical implementation of organic films, molecular layer deposition (MLD) reactions are studied on the hydroxlyated SiO 2 surface. MLD is a layer-by-layer technique, where films are deposited one molecular unit at a time, allowing for film tailorability and composition control down to

  20. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

    PubMed Central

    Silveira-Dorta, Gastón; Álvarez-Méndez, Sergio J; Martín, Víctor S

    2016-01-01

    Summary An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction–olefination process. The sequential reduction with DIBAL-H at −78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner–Wadsworth–Emmons organophosphorus reagents. A better Z-(dia)stereoselectivity was observed when compared to the previous one-pot method. The (dia)stereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives. PMID:27340486

  1. Infrared spectroscopy of gas phase C{sub 3}H{sub 5}{sup +}: The allyl and 2-propenyl cations

    SciTech Connect

    Douberly, Gary E.; Ricks, Allen M.; Schleyer, Paul v. R.; Duncan, Michael A.

    2008-01-14

    C{sub 3}H{sub 5}{sup +} cations are probed with infrared photodissociation spectroscopy in the 800-3500 cm{sup -1} region using the method of rare gas tagging. The ions and their complexes with Ar or N{sub 2} are produced in a pulsed electric discharge supersonic expansion cluster source. Two structural isomers are characterized, namely, the allyl (CH{sub 2}CHCH{sub 2}{sup +}) and 2-propenyl (CH{sub 3}CCH{sub 2}{sup +}) cations. The infrared spectrum of the allyl cation confirms previous theoretical and condensed phase studies of the C{sub 2v} charge delocalized, resonance-stabilized structure. The 2-propenyl cation spectrum is consistent with a C{sub s} symmetry structure having a nearly linear CCC backbone and a hyperconjugatively stabilizing methyl group.

  2. Asymmetric synthesis of axially chiral anilides by Pd-catalyzed allylic substitutions with P/olefin ligands.

    PubMed

    Liu, Yilin; Feng, Xiangqing; Du, Haifeng

    2015-01-07

    As an attractive class of non-biaryl atropisomeric compounds, C-N axially chiral anilides have received considerable attention, and several methods have been successfully developed for their synthesis. Pd-catalyzed asymmetric allylic amination was proved to be an effective approach for the chiral anilide synthesis, although only moderate enantioselectivity and relatively narrow substrate scope have been achieved in the previous work. Searching for highly efficient methods for the synthesis of axially chiral anilides is therefore of great interest in synthetic and pharmaceutical chemistry. In this paper, a palladium-catalyzed asymmetric allylic substitution of ortho-substituted anilides using phosphorus amidite-olefin ligands was successfully achieved to afford a variety of axially chiral anilides in high yields with up to 84% ee. The absolute configurations of chiral anilides were also determined from X-ray and CD spectra.

  3. Enantioselective synthesis of α-quaternary Mannich adducts by palladium-catalyzed allylic alkylation: total synthesis of (+)-sibirinine.

    PubMed

    Numajiri, Yoshitaka; Pritchett, Beau P; Chiyoda, Koji; Stoltz, Brian M

    2015-01-28

    A catalytic enantioselective method for the synthesis of α-quaternary Mannich-type products is reported. The two-step sequence of (1) Mannich reaction followed by (2) decarboxylative enantioselective allylic alkylation serves as a novel strategy to in effect access asymmetric Mannich-type products of "thermodynamic" enolates of substrates possessing additional enolizable positions and acidic protons. Palladium-catalyzed decarboxylative allylic alkylation enables the enantioselective synthesis of five-, six-, and seven-membered ketone, lactam, and other heterocyclic systems. The mild reaction conditions are notable given the acidic free N-H groups and high functional group tolerance in each of the substrates. The utility of this method is highlighted in the first total synthesis of (+)-sibirinine.

  4. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    PubMed

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  5. Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts.

    PubMed

    Papi, Alessio; Orlandi, Marina; Bartolini, Giovanna; Barillari, Jessica; Iori, Renato; Paolini, Moreno; Ferroni, Fiammetta; Grazia Fumo, Maria; Pedulli, Gian Franco; Valgimigli, Luca

    2008-02-13

    There is high current interest in the chemopreventive potential of Brassica vegetables (cruciferae), particularly due to their content in glucosinolates (GL), which upon myrosinase hydrolysis release the corresponding isythiocyanates (ITC). Some ITCs, such as sulforaphane (SFN) from broccoli ( Brassica oleacea italica), have been found to possess anticancer activity through induction of apoptosis in selected cell lines, as well as indirect antioxidant activity through induction of phase II detoxifying enzymes. Japanese daikon ( Raphanus sativus L.) is possibly the vegetable with the highest per capita consumption within the Brassicaceae family. Thanks to a recently improved gram scale production process, it was possible to prepare sufficient amounts of the GL glucoraphasatin (GRH) as well as the corresponding ITC 4-methylthio-3-butenyl isothiocyanate (GRH-ITC) from its sprouts. This paper reports a study on the cytotoxic and apoptotic activities of GRH-ITC compared with the oxidized counterpart 4-methylsulfinyl-3-butenyl isothiocyanate (GRE-ITC) on three human colon carcinoma cell lines (LoVo, HCT-116, and HT-29) together with a detailed kinetic investigation of the direct antioxidant/radical scavenging ability of GRH and GRH-ITC. Both GRH-ITC and GRE-ITC reduced cell proliferation in a dose-dependent manner and induced apoptosis in the three cancer cell lines. The compounds significantly ( p < 0.05) increased Bax and decreased Bcl2 protein expression, as well as producing caspase-9 and PARP-1 cleavage after 3 days of exposure in the three cancer cell lines. GRH-ITC treatment was shown to have no toxicity with regard to normal human lymphocytes (-15 +/- 5%) in comparison with SFN (complete growth inhibition). GRH and GRH-ITC were able to quench the 2,2-diphenyl-1-picrylhydrazyl radical, with second-order rate constants of 14.0 +/- 2.8 and 43.1 +/- 9.5 M(-1) s(-1), respectively (at 298 K in methanol), whereas the corresponding value measured here for the reference

  6. Selective Tsuji-Trost type C-allylation of hydrazones: a straightforward entry into 4,5-dihydropyrazoles.

    PubMed

    El Mamouni, El Hachemia; Cattoen, Martin; Cordier, Marie; Cossy, Janine; Arseniyadis, Stellios; Ilitki, Hocine; El Kaïm, Laurent

    2016-12-13

    The 4,5-dihydropyrazole motif has drawn considerable attention over the years as it was shown to exhibit a plethora of biological and pharmacological properties, including anticancer, antibacterial, antifungal, antiviral, and anti-inflammatory properties. As such, it has been the target of a number of methods and drug discovery programs. We report here a straightforward and highly selective approach featuring a key palladium-catalysed Tsuji-Trost type C-allylation and subsequent intramolecular 1,4-addition of hydrazones.

  7. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  8. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  9. Catalytic asymmetric allylation reactions using BITIP catalysis and 2-substituted allylstannanes as surrogates for beta-keto ester dianions.

    PubMed

    Keck, G E; Yu, T

    1999-07-29

    [formula: see text] Catalytic asymmetric allylation (CAA) reactions using the indicated allylstannane and the BITIP catalysts previously described by us give high yields and enantioselectivities in additions to aldehydes. The products are convertible to beta-keto esters by oxidative cleavage of the olefin. These reactions thus provide a useful catalytic enantioselective method for chain extension with introduction of a versatile four-carbon unit.

  10. Platinum-catalyzed direct amination of allylic alcohols under mild conditions: ligand and microwave effects, substrate scope, and mechanistic study.

    PubMed

    Ohshima, Takashi; Miyamoto, Yoshiki; Ipposhi, Junji; Nakahara, Yasuhito; Utsunomiya, Masaru; Mashima, Kazushi

    2009-10-14

    Transition metal-catalyzed amination of allylic compounds via a pi-allylmetal intermediate is a powerful and useful method for synthesizing allylamines. Direct catalytic substitution of allylic alcohols, which forms water as the sole coproduct, has recently attracted attention for its environmental and economical advantages. Here, we describe the development of a versatile direct catalytic amination of both aryl- and alkyl-substituted allylic alcohols with various amines using Pt-Xantphos and Pt-DPEphos catalyst systems, which allows for the selective synthesis of various monoallylamines, such as the biologically active compounds Naftifine and Flunarizine, in good to high yield without need for an activator. The choice of the ligand was crucial toward achieving high catalytic activity, and we demonstrated that not only the large bite-angle but also the linker oxygen atom of the Xantphos and DPEphos ligands was highly important. In addition, microwave heating dramatically affected the catalyst activity and considerably decreased the reaction time compared with conventional heating. Furthermore, several mechanistic investigations, including (1)H and (31)P{(1)H} NMR studies; isolation and characterization of several catalytic intermediates, Pt(xantphos)Cl(2), Pt(eta(2)-C(3)H(5)OH)(xantphos), etc; confirmation of the structure of [Pt(eta(3)-allyl)(xantphos)]OTf by X-ray crystallographic analysis; and crossover experiments, suggested that formation of the pi-allylplatinum complex through the elimination of water is an irreversible rate-determining step and that the other processes in the catalytic cycle are reversible, even at room temperature.

  11. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  12. Directed Growth of Polymer Nanorods Using Surface-Initiated Ring-Opening Polymerization of N-Allyl N-Carboxyanhydride.

    PubMed

    Lu, Lu; Lahasky, Samuel H; Zhang, Donghui; Garno, Jayne C

    2016-02-17

    A stepwise chemistry route was used to prepare arrays of polymer nanostructures of poly(N-allyl glycine) on Si(111) using particle lithography. The nanostructures were used for studying surface reactions with advanced measurements of atomic force microscopy (AFM). In the first step to fabricate the surface platform, isolated nanopores were prepared within a thin film of octadecyltrichlorosilane (OTS). The OTS served as a surface resist, and the areas of nanopores provided multiple, regularly shaped sites for further reaction. An initiator, (3-aminopropyl)triethoxysilane (APTES), was grown selectively inside the nanopores to define sites for polymerization. The initiator attached selectively to the sites of nanopores indicating OTS prevented nonspecific adsorption. Surface-initiated ring-opening polymerization of N-allyl N-carboxyanhydride with APTES produced polymer nanorods on the nanodots of APTES presenting amine functional groups. The surface changes for each step were monitored using high resolution atomic force microscopy (AFM). Slight variations in the height of the poly(N-allyl glycine) nanorods were observed which scale correspondingly to the initial dimensions of nanopores. The distance between adjacent polymer nanorods was controlled by the size of mesoparticle masks used in the experiment. This surface platform has potential application in biotechnology for smart coatings or biosensors.

  13. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanistic studiesmore » by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  14. Control of selectivity in allylic alcohol oxidation on gold surfaces: the role of oxygen adatoms and hydroxyl species.

    PubMed

    Mullen, Gregory M; Zhang, Liang; Evans, Edward J; Yan, Ting; Henkelman, Graeme; Mullins, C Buddie

    2015-02-14

    Gold catalysts display high activity and good selectivity for partial oxidation of a number of alcohol species. In this work, we discuss the effects of oxygen adatoms and surface hydroxyls on the selectivity for oxidation of allylic alcohols (allyl alcohol and crotyl alcohol) on gold surfaces. Utilizing temperature programmed desorption (TPD), reactive molecular beam scattering (RMBS), and density functional theory (DFT) techniques, we provide evidence to suggest that the selectivity displayed towards partial oxidation versus combustion pathways is dependent on the type of oxidant species present on the gold surface. TPD and RMBS results suggest that surface hydroxyls promote partial oxidation of allylic alcohols to their corresponding aldehydes with very high selectivity, while oxygen adatoms promote both partial oxidation and combustion pathways. DFT calculations indicate that oxygen adatoms can react with acrolein to promote the formation of a bidentate surface intermediate, similar to structures that have been shown to decompose to generate combustion products over other transition metal surfaces. Surface hydroxyls do not readily promote such a process. Our results help explain phenomena observed in previous studies and may prove useful in the design of future catalysts for partial oxidation of alcohols.

  15. Semiquantitative analysis of 3-butenyl isothiocyanate to monitor an off-flavor in mustard seeds and glycosinolates screening for origin identification.

    PubMed

    Frank, Nancy; Dubois, Mathieu; Goldmann, Till; Tarres, Adrienne; Schuster, Elke; Robert, Fabien

    2010-03-24

    The present paper describes the development of an analytical method for the semiquantitative analysis of 3-butenyl isothiocyanate in mustard seeds, this compound being linked to an undesirable (at least for the European palate) off-flavor. 3-Butenyl isothiocyanate is one of the enzymatic degradation products of gluconapin, a member of the glucosinolate family of compounds. A headspace-gas chromatography-mass spectrometry (HS-GC-MS) method has been developed for the rapid analysis of 3-butenyl isothiocyanate in mustard seeds. The cross-check of this HS-GC-MS method has been made on the basis of the analysis of the native gluconapin using liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). Both techniques gave comparable results. The HS-GC-MS method was kept as the method of choice as it is rapid and solvent-free. Because yellow mustard seeds do not normally contain gluconapin, its presence in such seeds above the limit of detection was already considered as a criterion for potentially problematic mustard batches. However, "organoleptically" acceptable brown mustard seeds already contained measurable amounts of gluconapin and had to be differentiated from mustard seeds containing nonacceptable levels of gluconapin, as it is typically the case for brown mustard originating from the Indian subcontinent. Thus, a 3-butenyl isothiocyanate content "cut point" has been established to discriminate between batches. This limit could then be applied for the acceptance or rejection of mustard seed batches. In addition, LC-TOF-MS screening of mustard seeds from different geographic origins showed the heterogeneity of the glucosinolate profile and the difficulty to find good origin markers.

  16. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera.

    PubMed

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P; Pezzuto, John M

    2011-01-01

    Moringa oleifera Lamarck is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential antiinflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC(50) = 0.96 ± 0.23 μM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC(50) = 2.86 ± 0.39 μM) and benzyl isothiocyanate (IC(50) = 2.08 ± 0.28 μM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal-regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB and subsequent binding to NF-κB cis-acting element was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating antiinflammatory or cancer chemopreventive activity.

  17. Corepressors of agonist-bound nuclear receptors

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2007-09-15

    Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, 'corner') box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.

  18. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  19. Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages.

    PubMed

    Rose, Peter; Won, Yen Kim; Ong, Choon Nam; Whiteman, Matt

    2005-06-01

    Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.

  20. First study on antimicriobial activity and synergy between isothiocyanates and antibiotics against selected Gram-negative and Gram-positive pathogenic bacteria from clinical and animal source.

    PubMed

    Dias, Carla; Aires, Alfredo; Bennett, Richard N; Rosa, Eduardo A S; Saavedra, Maria J

    2012-05-01

    The emergence of new diseases and the resurgence of several infections that were controlled in the past, associated with recent increase of bacterial resistance have created the necessity for more studies towards to the development of new antimicrobials and new treatment strategies. The aim of the present study was to evaluate the in vitro synergy between different classes of important glucosinolates hydrolysis products-isothiocyanates with antibiotics (gentamycin and vancomycin), against important pathogenic bacteria: Escherichia coli, Enterococcus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus. A disc diffusion method was used to evaluate the antibacterial activity. The antimicrobial activity of phytochemicals and combinations between gentamycin, vancomycin and phytochemicals were quantitatively assessed by measuring the inhibitory halos. The results showed a selective antimicrobial effect of isothiocyanates, and this effect was strictly related with their chemical structure. In general the benzylisothiocyanate was the most effective compound against both Gram-positive and Gram-negative bacteria. The Listeria monocytogenes and Staphylococcus aureus were the bacteria most affected either by the phytochemicals alone or by the combination phytochemical-antibiotic. The bacteria Pseudomonas aeruginosa was the less affected pathogen. The most important synergism detected occurred between the commercial antibiotics with benzylisothiocyanate and 2-phenylethylisothiocyanate. In conclusion, some isothiocyanates are effective inhibitors of in vitro bacterial growth, and they can act synergistically with antibiotics.

  1. Why platinum catalysts involving ligands with large bite angle are so efficient in the allylation of amines: design of a highly active catalyst and comprehensive experimental and DFT study.

    PubMed

    Mora, Guilhem; Piechaczyk, Olivier; Houdard, Romaric; Mézailles, Nicolas; Le Goff, Xavier-Frederic; le Floch, Pascal

    2008-01-01

    The platinum-catalyzed allylation of amines with allyl alcohols was studied experimentally and theoretically. The complexes [Pt(eta(3)-allyl)(dppe)]OTf (2) and [Pt(eta(3)-allyl)(DPP-Xantphos)]PF(6) (5) were synthesized and structurally characterized, and their reactivity toward amines was explored. The bicyclic aminopropyl complex [Pt(CH(2)CH(2)CH(2)NHBn-kappa-C,N)(dppe)]OTf (3) was obtained from the reaction of complex 2 with an excess of benzylamine, and this complex was shown to be a deactivated form of catalyst 2. On the other hand, reaction of complex 5 with benzylamine and allyl alcohol led to formation of the 16-VE platinum(0) complex [Pt(eta(2)-C(3)H(5)OH)(DPP-Xantphos)] (7), which was structurally characterized and appears to be a catalytic intermediate. A DFT study showed that the mechanism of the platinum-catalyzed allylation of amines with allyl alcohols differs from the palladium-catalyzed process, since it involves an associative ligand-exchange step involving formation of a tetracoordinate 18-VE complex. This DFT study also revealed that ligands with large bite angles disfavor the formation of platinum hydride complexes and therefore the formation of a bicyclic aminopropyl complex, which is a thermodynamic sink. Finally, a combination of 5 and a proton source was shown to efficiently catalyze the allylation of a broad variety of amines with allyl alcohols under mild conditions.

  2. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1.

    PubMed

    Li, Qiwei; Zhan, Ming; Chen, Wei; Zhao, Benpeng; Yang, Kai; Yang, Jie; Yi, Jing; Huang, Qihong; Mohan, Man; Hou, Zhaoyuan; Wang, Jian

    2016-03-01

    Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients.

  3. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson’s Disease

    PubMed Central

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases’ pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  4. Differential binding of tropomyosin isoforms to actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester and fluorescein-5-isothiocyanate.

    PubMed

    Skórzewski, Radosław; Robaszkiewicz, Katarzyna; Jarzebińska, Justyna; Suder, Piotr; Silberring, Jerzy; Moraczewska, Joanna

    2009-11-01

    Differential interactions of tropomyosin (TM) isoforms with actin can be important for determination of the thin filament functions. A mechanism of tropomyosin binding to actin was studied by comparing interactions of five alphaTM isoforms with actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) and with fluorescein-5-isothiocyanate (FITC). MBS attachment sites were revealed with mass spectrometry methods. We found that the predominant actin fraction was cross-linked by MBS within subdomain 3. A smaller fraction of the modified actin was cross-linked within subdomain 2 and between subdomains 2 and 1. Moreover, investigated actins carried single labels in subdomains 1, 2, and 3. Such extensive modification caused a large decrease in actin affinity for skeletal and smooth muscle tropomyosins, nonmuscle TM2, and chimeric TM1b9a. In contrast, binding of nonmuscle isoform TM5a was less affected. Isoform's affinity for actin modified in subdomain 2 by binding of FITC to Lys61 was intermediate between the affinity for native actin and MBS-modified actin except for TM5a, which bound to FITC-actin with similar affinity as to actin modified with MBS. The analysis of binding curves according to the McGhee-von Hippel model revealed that binding to an isolated site, as well as cooperativity of binding to a contiguous site, was affected by both actin modifications in a TM isoform-specific manner.

  5. Gas-phase reaction of methyl isothiocyanate and methyl isocyanate with hydroxyl radicals under static relative rate conditions.

    PubMed

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2014-02-26

    Gaseous methyl isothiocyanate (MITC), the principal breakdown product of the soil fumigant metam sodium (sodium N-methyldithiocarbamate), is an inhalation exposure concern to persons living near treated areas. Inhalation exposure also involves gaseous methyl isocyanate (MIC), a highly reactive and toxic transformation product of MITC. In this work, gas-phase hydroxyl (OH) radical reaction rate constants of MITC and MIC have been determined using a static relative rate technique under controlled laboratory conditions. The rate constants obtained are 15.36 × 10(-12) cm(3) molecule(-1) s(-1) for MITC and 3.62 × 10(-12) cm(3) molecule(-1) s(-1) for MIC. The average half-lives of MITC and MIC in the atmosphere are estimated to be 15.7 and 66.5 h, respectively. The molar conversion of MITC to MIC for OH radical reactions is 67% ± 8%, which indicates that MIC is the primary product of the MITC-OH reaction in the gas phase.

  6. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane

    PubMed Central

    Bricker, Gregory V.; Riedl, Kenneth M.; Ralston, Robin A.; Tober, Kathleen L.; Oberyszyn, Tatiana M.; Schwartz, Steven J.

    2014-01-01

    Scope Broccoli sprouts are a rich source of glucosinolates, a group of phytochemicals that when hydrolyzed, are associated with cancer prevention. Our objectives were to investigate the metabolism, distribution, and interconversion of isothiocyanates (ITCs) in mice fed thermally processed broccoli sprout powders (BSPs) or the purified ITC sulforaphane. Methods and results For 1 wk, mice were fed a control diet (n = 20) or one of four treatment diets (n = 10 each) containing nonheated BSP, 60°C mildly heated BSP, 5-min steamed BSP, or 3 mmol purified sulforaphane. Sulforaphane and erucin metabolite concentrations in skin, liver, kidney, bladder, lung, and plasma were quantified using HPLC-MS/MS. Thermal intensity of BSP processing had disparate effects on ITC metabolite concentrations upon consumption. Mild heating generally resulted in the greatest ITC metabolite concentrations in vivo, followed by the nonheated and steamed BSP diets. We observed interconversion between sulforaphane and erucin species or metabolites, and report that erucin is the favored form in liver, kidney, and bladder, even when only sulforaphane is consumed. Conclusion ITC metabolites were distributed to all tissues analyzed, suggesting the potential for systemic benefits. We report for the first time tissue-dependent ratio of sulforaphane and erucin, though further investigation is warranted to assess biological activity of individual forms. PMID:24975513

  7. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate.

    PubMed

    Zhang, Jian; Liu, Jingyang; Meng, Liyuan; Ma, Zhongyou; Tang, Xinyun; Cao, Yuanyuan; Sun, Leni

    2012-04-01

    Thirty-two isolates were obtained from wheat rhizosphere by wheat germ agglutinin (WGA) labeled with fluorescein isothiocyanate (FITC). Most isolates were able to produce indole acetic acid (65.6%) and siderophores (59.3%), as well as exhibited phosphate solubilization (96.8%). Fourteen isolates displayed three plant growth-promoting traits. Among these strains, two phosphate-dissolving ones, WS29 and WS31, were evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum Wan33). Strain WS29 and WS31 significantly promoted the development of lateral roots by 34.9% and 27.6%, as well as increased the root dry weight by 25.0% and 25.6%, respectively, compared to those of the control. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, both isolates were determined to belong to the genus Bacillus. The proportion of isolates showing the properties of plant growth-promoting rhizobacteria (PGPR) was higher than in previous reports. The efficiency of the isolation of PGPR strains was also greatly increased by WGA labeled with FITC. The present study indicated that WGA could be used as an effective tool for isolating PGPR strains with high affinity to host plants from wheat roots. The proposed approach could facilitate research on biofertilizers or biocontrol agents.

  8. A novel synthetic isothiocyanate ITC-57 displays antioxidant, anti-inflammatory, and neuroprotective properties in a mouse Parkinson's disease model.

    PubMed

    Lee, Ji Ae; Son, Hyo Jin; Kim, Ji Hyun; Park, Ki Duk; Shin, Nari; Kim, Hye Ri; Kim, Eun Mee; Kim, Dong Jin; Hwang, Onyou

    2016-01-01

    The degenerative process of the nigral dopamine(DA)rgic neurons in Parkinson's disease (PD) involves both oxidative stress and neuroinflammation. In the present study, we aimed at developing a novel antioxidant and anti-inflammatory agent for PD therapy. Toward this end, we screened a novel focused library of isothiocyanate derivatives that we have generated for an anti-inflammatory property. We obtained a novel compound ITC-57 and found that ITC-57 effectively induced gene expression of the antioxidant enzymes NAD(P)H quinone oxidoreductase-1, the catalytic and modulatory subunits of glutamylcysteine ligase, and HO-1 in DAergic neuronal CATH.a cells and protected CATH.a cells from oxidative damages. The compound also induced the same antioxidant enzymes in microglial BV-2 cells and suppressed the production of the proinflammatory molecules nitric oxide, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in lipopolysaccharide-activated BV-2 cells. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-elicited mouse model of PD, ITC-57 protected the DAergic neurons from degeneration, induced HO-1, lowered TNF-α, and suppressed microglial activation in the nigra. Furthermore, ITC-57 prevented the PD-associated motor deficits from occurring. Taken together, ITC-57 would be useful toward development of a disease-modifying therapy for PD.

  9. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1

    PubMed Central

    Li, Qiwei; Zhan, Ming; Chen, Wei; Zhao, Benpeng; Yang, Kai; Yang, Jie; Yi, Jing; Huang, Qihong; Mohan, Man; Hou, Zhaoyuan; Wang, Jian

    2016-01-01

    Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients. PMID:26848531

  10. Induction of apoptosis in HT-29 cells by extracts from isothiocyanates-rich varieties of Brassica oleracea.

    PubMed

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Deulofeu, Ramon; Molina, Rafael; Ballesta, Antonio; Kensler, Thomas W; Lafuente, Amalia

    2007-01-01

    Among the vegetables with anti-carcinogenic properties, members of the genus Brassica are the most effective at reducing the risk of cancer. This property may be explained by their principle bioactive compounds, isothiocyanates (ITCs). The aim of this study was to measure the amounts of ITCs in extracts from vegetables of the Brasssica genus and assay them for potency of induction of apoptosis in a colorectal cancer cell line (HT-29). ITCs were determined by the cyclocondensation assay with 1,2-benzenedithiol and induction of apoptosis by assessment of cell viability, caspase-3 activity and DNA fragmentation. Purple cabbage extract showed the highest ITC concentration per gram, fresh weight, followed by black cabbage and Romanesco cauliflower. At ITC concentrations of 7.08 microg/mL these extracts decreased cell viability and induced caspase-3 and DNA fragmentation at 48h. Brussels sprouts showed the strongest effects on cell viability and caspase-3 activity. Varieties of Brassica Oleracea are rich sources of ITCs that potently inhibit the growth of colon cancer cells by inducting apoptosis. All the extracts showed anticancer activity at ITC concentrations of between 3.54 to 7.08 mug/mL, which are achievable in vivo. Our results showed that ITC concentration and the chemopreventive responses of plant extracts vary among the varieties of Brassica Oleracea studied and among their cultivars.

  11. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    PubMed Central

    Calmes, Benoit; N’Guyen, Guillaume; Dumur, Jérome; Brisach, Carlos A.; Campion, Claire; Iacomi, Béatrice; Pigné, Sandrine; Dias, Eva; Macherel, David; Guillemette, Thomas; Simoneau, Philippe

    2015-01-01

    Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola. PMID:26089832

  12. Characterization of some amino acid derivatives of benzoyl isothiocyanate: Crystal structures and theoretical prediction of their reactivity

    NASA Astrophysics Data System (ADS)

    Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.

    2015-11-01

    The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.

  13. DNA Microarray Profiling Highlights Nrf2-Mediated Chemoprevention Targeted by Wasabi-Derived Isothiocyanates in HepG2 Cells.

    PubMed

    Trio, Phoebe Zapanta; Kawahara, Atsuyoshi; Tanigawa, Shunsuke; Sakao, Kozue; Hou, De-Xing

    2017-01-01

    6-MSITC and 6-MTITC are sulforaphane (SFN) analogs found in Japanese Wasabi. As we reported previously, Wasabi isothiocyanates (ITCs) are activators of Nrf2-antioxidant response element pathway, and also inhibitors of pro-inflammatory cyclooxygenase-2. This study is the first to assess the global changes in transcript levels by Wasabi ITCs, comparing with SFN, in HepG2 cells. We performed comparative gene expression profiling by treating HepG2 cells with ITCs, followed by DNA microarray analyses using HG-U133 plus 2.0 oligonucleotide array. Partial array data on selected gene products were confirmed by RT-PCR and Western blotting. Ingenuity Pathway Analysis (IPA) was used to identify functional subsets of genes and biologically significant network pathways. 6-MTITC showed the highest number of differentially altered (≥2 folds) gene expression, of which 114 genes were upregulated and 75 were downregulated. IPA revealed that Nrf2-mediated pathway, together with glutamate metabolism, is the common significantly modulated pathway across treatments. Interestingly, 6-MSITC exhibited the most potent effect toward Nrf2-mediated pathway. Our data suggest that 6-MSITC could exert chemopreventive role against cancer through its underlying antioxidant activity via the activation of Nrf2-mediated subsequent induction of cytoprotective genes.

  14. [Phenylhexyl isothiocyanate induces gene p15 demethylation by down-regulating DNA methyltransferases in Molt-4 cells].

    PubMed

    Jiang, Shao-hong; Ma, Xu-dong; Huang, Yi-qun; Xu, Yun-lu; Zheng, Rui-ji

    2009-04-01

    This study is to investigate the effect of phenylhexyl isothiocyanate (PHI), which has been proved to be a novel histone deacetylase inhibitor (HDACi) recently, on gene p15 de novo expression in acute leukemia cell line Molt-4, and to further study its potential mechanism. Modified methylation specific PCR (MSP) was used to screen p15-M and p15-U mRNA. DNA methyltransferasel (DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein was detected by Western blotting. Hypermethylation of gene p15 was reversed and activation transcription of gene p15 in Molt-4 was de novo after 5 days exposure to PHI in a concentration dependent manner. DNMT1 and DNMT3B were inhibited by exposure to PHI for 5 days (P < 0.05). Alteration of DNMT3A was not significant. It is showed that PHI could reverse hypermethylation of gene p15 and transcriptional activation of gene p15 is de novo by PHI. It may result from down-regulating DNA methyltransferases, DNMT1 and DNMT3B, or up-regulating the histone acetylation that allows chromatin unfolding and the accessibility of regulators for transcriptional activation in the p15 promoter.

  15. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor.

    PubMed

    Rinken, A; Ferré, S; Terasmaa, A; Owman, C; Fuxe, K

    1999-02-25

    RAT dopamine D2short receptors expressed in CHO cells were characterized by activation of [35S]GTPgammaS binding. There were no significant differences between the maximal effects seen in activation of [35S]GTPgammaS binding caused by dopaminergic agonists, but the effects of 5-HT, 8OH-DPAT and 5-methoxytryptamine amounted to 47 +/- 7%, 43 +/- 5% and 70 +/- 7% of the dopamine effect, respectively. The dopaminergic antagonist (+)butaclamol inhibited activations of both types of ligands with equal potency (pA2 = 8.9 +/- 0.1), indicating that only one type of receptor is involved. In competition with [3H]raclopride binding, dopaminergic agonists showed 53 +/- 2% of the binding sites in the GTP-dependent high-affinity state, whereas 5-HT showed only 20 +/- 3%. Taken together, the results indicate that serotonergic agonists behave as typical partial agonists for D2 receptors with potential antiparkinsonian activity.

  16. Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles.

    PubMed

    Malik, Hasnain A; Taylor, Buck L H; Kerrigan, John R; Grob, Jonathan E; Houk, K N; Du Bois, J; Hamann, Lawrence G; Patterson, Andrew W

    2014-06-01

    We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of N-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective in situ blocking groups for the Lewis basic site, and a pre-formed pyridine N-oxide is shown to enable high yield of allylic C-H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)2 provide an inverse correlation of the computed heterocycle-Pd(OAc)2 binding affinities with the experimental conversions to products. Additionally, (1)H NMR binding studies provide experimental support for theoretical calculations.

  17. Spectroscopic and structural studies of allyl urethane derivative of Monensin A sodium salt

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil; Bartl, Franz

    2013-07-01

    A new derivative of polyether antibiotic Monensin A sodium salt its allyl urethane (MON-UR2-Na) was synthesised and its structure was studied by X-ray, FT-IR, NMR, and ESI-MS methods. The results of these studies demonstrated that the oxygen atom of the Cdbnd O urethane group is not engaged in the coordination of the Na+ as postulated previously. The crystal space group is P21 with a = 12.0378(11), b = 12.4495(11), c = 14.9690(14), β = 94.791(8) and Z = 2. The structure determined in the present study exhibits significant differences with respect to the earlier published structure of phenyl urethane of Monensin. A comparison of these structures clearly shows that not only the functional urethane group but also its substituent strongly influence the structure of this type of derivatives of Monensin A. X-ray data and spectroscopic and spectrometric behaviour of the new derivative of Monensin A are discussed in detail and compared to the structure of phenyl urethane of Monensin A sodium salt.

  18. Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.

    PubMed

    Carlsen, Ryan W; Ess, Daniel H

    2016-06-14

    Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row.

  19. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose.

  20. Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study

    PubMed Central

    2017-01-01

    A mechanistic study of the isothiourea-catalyzed enantioselective [2,3]-rearrangement of allylic ammonium ylides is described. Reaction kinetic analyses using 19F NMR and density functional theory computations have elucidated a reaction profile and allowed identification of the catalyst resting state and turnover-rate limiting step. A catalytically relevant catalyst–substrate adduct has been observed, and its constitution elucidated unambiguously by 13C and 15N isotopic labeling. Isotopic entrainment has shown the observed catalyst–substrate adduct to be a genuine intermediate on the productive cycle toward catalysis. The influence of HOBt as an additive upon the reaction, catalyst resting state, and turnover-rate limiting step has been examined. Crossover experiments have probed the reversibility of each of the proposed steps of the catalytic cycle. Computations were also used to elucidate the origins of stereocontrol, with a 1,5-S···O interaction and the catalyst stereodirecting group providing transition structure rigidification and enantioselectivity, while preference for cation−π interactions over C–H···π is responsible for diastereoselectivity. PMID:28230365

  1. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  2. Enhanced biocompatibility and adhesive properties of modified allyl 2-cyanoacrylate-based elastic bio-glues.

    PubMed

    Lim, Jin Ik; Kim, Ji Hye

    2015-09-01

    Despite cyanoacrylate's numerous advantages such as good cosmetic results and fast application for first aid, drawbacks such as brittleness and local tissue toxicity have limited their applicability. In this study, to improve both the biocompatibility and mechanical properties of cyanoacrylate, allyl 2-cyanoacrylate (AC) was pre-polymerized and mixed with poly(L-lactide-co-ɛ-caprolactone) (PLCL, 50:50) as biodegradable elastomer. For various properties of pre-polymerized AC (PAC)/PLCL mixtures, bond strength, elasticity of flexure test as bending recovery, cell viability, and in vivo test using rat were conducted and enhanced mechanical properties and biocompatibility were confirmed. Especially, optimal condition for pre-polymerization of AC was determined to 150°C for 40min through cytotoxicity test. Bond strength of PAC/PLCL mixture was decreased (over 10 times) with increasing of PLCL. On the other hand, biocompatibility and flexibility were improved than commercial bio-glue. Optimal PAC/PLCL composition (4g/20mg) was determined through these tests. Furthermore, harmful side effects and infection were not observed by in vivo wound healing test. These results indicate that PAC/PLCL materials can be used widely as advanced bio-glues in various fields.

  3. Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study.

    PubMed

    West, Thomas H; Walden, Daniel M; Taylor, James E; Brueckner, Alexander C; Johnston, Ryne C; Cheong, Paul Ha-Yeon; Lloyd-Jones, Guy C; Smith, Andrew D

    2017-03-10

    A mechanistic study of the isothiourea-catalyzed enantioselective [2,3]-rearrangement of allylic ammonium ylides is described. Reaction kinetic analyses using (19)F NMR and density functional theory computations have elucidated a reaction profile and allowed identification of the catalyst resting state and turnover-rate limiting step. A catalytically relevant catalyst-substrate adduct has been observed, and its constitution elucidated unambiguously by (13)C and (15)N isotopic labeling. Isotopic entrainment has shown the observed catalyst-substrate adduct to be a genuine intermediate on the productive cycle toward catalysis. The influence of HOBt as an additive upon the reaction, catalyst resting state, and turnover-rate limiting step has been examined. Crossover experiments have probed the reversibility of each of the proposed steps of the catalytic cycle. Computations were also used to elucidate the origins of stereocontrol, with a 1,5-S···O interaction and the catalyst stereodirecting group providing transition structure rigidification and enantioselectivity, while preference for cation-π interactions over C-H···π is responsible for diastereoselectivity.

  4. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update.

    PubMed

    Colín-González, Ana Laura; Ali, Syed F; Túnez, Isaac; Santamaría, Abel

    2015-10-01

    Therapeutic approaches based on isolated compounds obtained from natural products to handle central and peripheral disorders involving oxidative stress and inflammation are more common nowadays. The validation of nutraceutics vs. pharmaceutics as tools to induce preventive and protective profiles in human health alterations is still far of complete acceptance, but the basis to start more solid experimental and clinical protocols with natural products has already begun. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound exhibiting a considerable number of positive actions in cell models and living systems. An update, in the form of review, is needed from time to time to get access to the state-of-the-art on this topic. In this review we visited recent and refreshing evidence of new already proven and potential targets to explain the benefits of using SAC against toxic and pathological conditions. The broad spectrum of protective actions covered by this molecule comprises antioxidant, redox modulatory and anti-inflammatory activities, accompanied by anti-apoptotic, pro-energetic and signaling capacities. Herein, we detail the evidence on these aspects to provide the reader a more complete overview on the promising aspects of SAC in research.

  5. Novel palladium complex-catalyzed reaction of magnesium amides with allylic electrophiles

    SciTech Connect

    Dzhemilev, U.M.; Ibragimov, A.G.; Minsker, D.L.; Muslukhov, R.R.

    1987-08-20

    In order to develop an efficient method for the synthesis of higher order unsaturated tertiary amines, and also to explore a new method for the formation of C-N bonds, they have investigated the transition metal complex-catalyzed reaction of magnesium amides with electrophiles; the electrophiles selected for study included allyl ethers and esters, as well as sulfones, sulfides and quaternized allylamines. The effects of the nature and structure of the catalyst components, as well as of the reaction conditions, on product yield were examined in the case of the reaction of diethyl (bromomagnesium)amine with diallyl ether, and revealed that the highest yield of diethylallyl-amine (I) was achieved using Pd(acac)/sub 2/ (3-5 mole %) and Ph/sub 3/P (1:2) as catalyst in THF solution at 50/sup 0/C for 5 h. Other transition metal (Ni, Fe, Zr, Ti, Cu) compounds were also examined as catalysts, but the yield of (I) did not exceed 15% with these compounds. Bimetallic catalysts based on Zr (Cp/sub 2/ZrCl, Py/sub 2/ZrCl/sub 6/, (RO)/sub 4/Zr) and Ni (Ni(acac)/sub 2/ and NiCl/sub 2/) were successful in forming (I) from diethyl (bromomagnesium)amine and diallyl ether in 60% yield.

  6. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  7. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  8. Ropinirole, a non-ergoline dopamine agonist.

    PubMed

    Jost, Wolfgang H; Angersbach, Dieter

    2005-01-01

    Dopamine agonists have become indispensable in the treatment of Parkinson's disease. In every-day practice, however, the decision to select the best compound for an individual patient is rendered difficult because of the large number of substances available on the market. This review article provides a closer look at the experimental and clinical studies with ropinirole published so far. Ropinirole is a non-ergoline dopamine agonist which has been proven to be effective in both, monotherapy and combination therapy of idiopathic Parkinson's disease. In addition to ameliorating bradykinesia, rigor, and tremor, ropinirole facilitates the daily life and improves depressive moods of patients with Parkinson's disease. The long-term complications of levodopa are avoided, and problems commonly associated with levodopa treatment are reduced. Ropinirole appears to have a neuroprotective effect. In addition to Parkinson's disease, ropinirole has also been used successfully in the treatment of restless legs syndrome.

  9. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli.

    PubMed

    Kim, Sung-Jin; Vassão, Daniel G; Moinuddin, Syed G A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2014-01-01

    The creosote bush (Larrea tridentata) harbors members of the monolignol acyltransferase, allylphenol synthase, and propenylphenol synthase gene families, whose products together are able to catalyze distinct regiospecific conversions of various monolignols into their corresponding allyl- and propenyl-phenols, respectively. In this study, co-expression of a monolignol acyltransferase with either substrate versatile allylphenol or propenylphenol synthases in Escherichia coli established that various monolignol substrates were efficiently converted into their corresponding allyl/propenyl phenols, as well as providing proof of concept for efficacious conversion in a bacterial platform. This capability thus potentially provides an alternate source to these important plant phytochemicals, whether for flavor/fragrance and fine chemicals, or ultimately as commodities, e.g., for renewable energy or other intermediate chemical purposes. Previous reports had indicated that specific and highly conserved amino acid residues 84 (Phe or Val) and 87 (Ile or Tyr) of two highly homologous allyl/propenyl phenol synthases (circa 96% identity) from a Clarkia species mainly dictate their distinct regiospecific catalyzed conversions to afford either allyl- or propenyl-phenols, respectively. However, several other allyl/propenyl phenol synthase homologs isolated by us have established that the two corresponding amino acid 84 and 87 residues are not, in fact, conserved.

  10. Palladium-Catalyzed, Site-Selective Direct Allylation of Aryl C–H Bonds by Silver-Mediated C–H Activation: A Synthetic and Mechanistic Investigation

    PubMed Central

    Lee, Sarah Yunmi; Hartwig, John F.

    2016-01-01

    We describe a method for the site-selective construction of a C(aryl)–C(sp3) bond by the palladium-catalyzed direct allylation of arenes with allylic pivalates in the presence of AgOPiv to afford the linear (E)-allylated arene with excellent regioselectivity; this reaction occurs with arenes that have not undergone site-selective and stereoselective direct allylation previously, such as monofluorobenzenes and non-fluorinated arenes. Mechanistic studies indicate that AgOPiv ligated by a phosphine reacts with the arene to form an arylsilver(I) species, presumably through a concerted metalation–deprotonation pathway. The activated aryl moiety is then transferred to an allylpalladium(II) intermediate formed by oxidative addition of the allylic pivalate to the Pd(0) complex. Subsequent reductive elimination furnishes the allyl–aryl coupled product. The aforementioned proposed intermediates, including an arylsilver complex, have been isolated, structurally characterized, and determined to be chemically and kinetically competent to undergo the proposed elementary steps of the catalytic cycle. PMID:27797512

  11. The identification of orally bioavailable thrombopoietin agonists.

    PubMed

    Munchhof, Michael J; Antipas, Amy S; Blumberg, Laura C; Brissette, William H; Brown, Matthew F; Casavant, Jeffrey M; Doty, Jonathan L; Driscoll, James; Harris, Thomas M; Wolf-Gouveia, Lilli A; Jones, Christopher S; Li, Qifang; Linde, Robert G; Lira, Paul D; Marfat, Anthony; McElroy, Eric; Mitton-Fry, Mark; McCurdy, Sandra P; Reiter, Lawrence A; Ripp, Sharon L; Shavnya, Andrei; Thomasco, Lisa M; Trevena, Kristen A

    2009-03-01

    Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety. The resulting compounds possessed favorable in vivo pharmacokinetic properties, including good bioavailability.

  12. Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats.

    PubMed

    Glendinning, John I; Simons, Yael M; Youngentob, Lisa; Youngentob, Steven L

    2012-03-01

    In humans, fetal ethanol exposure is highly predictive of adolescent ethanol use and abuse. Prior work in our labs indicated that fetal ethanol exposure results in stimulus-induced chemosensory plasticity in the taste and olfactory systems of adolescent rats. In particular, we found that increased ethanol acceptability could be attributed, in part, to an attenuated aversion to ethanol's aversive odor and quinine-like bitter taste quality. Here, we asked whether fetal ethanol exposure also alters the oral trigeminal response of adolescent rats to ethanol. We focused on two excitatory ligand-gated ion channels, TrpV1 and TrpA1, which are expressed in oral trigeminal neurons and mediate the aversive orosensory response to many chemical irritants. To target TrpV1, we used capsaicin, and to target TrpA1, we used allyl isothiocyanate (or mustard oil). We assessed the aversive oral effects of ethanol, together with capsaicin and mustard oil, by measuring short-term licking responses to a range of concentrations of each chemical. Experimental rats were exposed in utero by administering ethanol to dams through a liquid diet. Control rats had ad libitum access to an iso-caloric iso-nutritive liquid diet. We found that fetal ethanol exposure attenuated the oral aversiveness of ethanol and capsaicin, but not mustard oil, in adolescent rats. Moreover, the increased acceptability of ethanol was directly related to the reduced aversiveness of the TrpV1-mediated orosensory input. We propose that fetal ethanol exposure increases ethanol avidity not only by making ethanol smell and taste better, but also by attenuating ethanol's capsaicin-like burning sensations.

  13. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens.

    PubMed

    Tierens, K F; Thomma, B P; Brouwer, M; Schmidt, J; Kistner, K; Porzel, A; Mauch-Mani, B; Cammue, B P; Broekaert, W F

    2001-04-01

    Crude aqueous extracts from Arabidopsis leaves were subjected to chromatographic separations, after which the different fractions were monitored for antimicrobial activity using the fungus Neurospora crassa as a test organism. Two major fractions were obtained that appeared to have the same abundance in leaves from untreated plants versus leaves from plants challenge inoculated with the fungus Alternaria brassicicola. One of both major antimicrobial fractions was purified to homogeneity and identified by 1H nuclear magnetic resonance, gas chromatography/electron impact mass spectrometry, and gas chromatography/chemical ionization mass spectrometry as 4-methylsulphinylbutyl isothiocyanate (ITC). This compound has previously been described as a product of myrosinase-mediated breakdown of glucoraphanin, the predominant glucosinolate in Arabidopsis leaves. 4-Methylsulphinylbutyl ITC was found to be inhibitory to a wide range of fungi and bacteria, producing 50% growth inhibition in vitro at concentrations of 28 microM for the most sensitive organism tested (Pseudomonas syringae). A previously identified glucosinolate biosynthesis mutant, gsm1-1, was found to be largely deficient in either of the two major antimicrobial compounds, including 4-methylsulphinylbutyl ITC. The resistance of gsm1-1 was compared with that of wild-type plants after challenge with the fungi A. brassicicola, Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum, or Peronospora parasitica, or the bacteria Erwinia carotovora or P. syringae. Of the tested pathogens, only F. oxysporum was found to be significantly more aggressive on gsm1-1 than on wild-type plants. Taken together, our data suggest that glucosinolate-derived antimicrobial ITCs can play a role in the protection of Arabidopsis against particular pathogens.

  14. Stoichiometry of phosphorylation to fluorescein 5-isothiocyanate binding in the Ca2+-ATPase of sarcoplasmic reticulum vesicles.

    PubMed

    Nakamura, S; Suzuki, H; Kanazawa, T

    1997-03-07

    In an attempt to establish the stoichiometry of phosphorylation in the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles, phosphorylation by ATP (or Pi) or labeling by fluorescein 5-isothiocyanate (FITC) was performed with the SR vesicles under the conditions in which almost all the phosphorylation sites or FITC binding sites are phosphorylated or labeled. The resulting vesicles were solubilized in lithium dodecyl sulfate and then the Ca2+-ATPase was purified by size exclusion high performance liquid chromatography. Peptide mapping and sequencing of the tryptic digest of the purified enzyme showed that Lys-515 of the Ca2+-ATPase was exclusively labeled with FITC, in agreement with the previously reported findings. The content of the phosphoenzyme from ATP (4.57 nmol/mg of Ca2+-ATPase protein) or from Pi (4.94 nmol/mg of Ca2+-ATPase protein) in the purified enzyme was approximately half the content of the FITC binding site (8.17-8.25 nmol/mg of Ca2+-ATPase protein) and also half the content of the Ca2+-ATPase molecule (9.06 nmol/mg of Ca2+-ATPase protein) calculated from its molecular mass (110,331 Da). These results show that there is one specific FITC binding site per molecule of the Ca2+-ATPase (in agreement with the previously reported findings) and that the stoichiometry of phosphorylation to FITC binding is approximately 0. 5:1.0. All the above findings lead to the conclusion that only half of the Ca2+-ATPase molecules present in the SR vesicles can be phosphorylated. FITC binding completely inhibited the ATP-induced phosphorylation before the binding reached its maximum level. This finding indicates that FITC preferentially binds to a part of the Ca2+-ATPase molecules and that this binding is primarily responsible for the inhibition of phosphorylation, suggesting an intermolecular ATPase-ATPase interaction.

  15. Comparative Systems Biology Analysis To Study the Mode of Action of the Isothiocyanate Compound Iberin on Pseudomonas aeruginosa

    PubMed Central

    Tan, Sean Yang-Yi; Liu, Yang; Chua, Song Lin; Vejborg, Rebecca Munk; Jakobsen, Tim Holm; Chew, Su Chuen; Li, Yingying; Nielsen, Thomas E.; Tolker-Nielsen, Tim; Givskov, Michael

    2014-01-01

    Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease. PMID:25155599

  16. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    PubMed

    Azarenko, Olga; Jordan, Mary Ann; Wilson, Leslie

    2014-01-01

    Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  17. The Inactivation of Human CYP2E1 by Phenethyl Isothiocyanate, a Naturally Occurring Chemopreventive Agent, and Its Oxidative Bioactivation

    PubMed Central

    Yoshigae, Yasushi; Sridar, Chitra; Kent, Ute M.

    2013-01-01

    Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC. PMID:23371965

  18. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.

    PubMed

    Müller, Caroline; van Loon, Joop; Ruschioni, Sara; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-10-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate

  19. Phenethyl isothiocyanate suppresses EGF-stimulated SAS human oral squamous carcinoma cell invasion by targeting EGF receptor signaling.

    PubMed

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Amagaya, Sakae; Lin, Yung-Chang; Yang, Jai-Sing

    2013-08-01

    Phenethyl isothiocyanate (PEITC) is a natural compound that is involved in chemoprevention as well as inhibition of cell growth and induction of apoptosis in several types of cancer cells. Previous studies have revealed that PEITC suppresses the invasion of AGS gastric and HT-29 colorectal cancer cells. However, the effects of PEITC on the metastasis of SAS oral cancer cells remain to be determined. Our results showed that PEITC treatment inhibited the invasion of EGF-stimulated SAS cells in a concentration-dependent manner, but appeared not to affect the cell viability. The expression and enzymatic activities of matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) were suppressed by PEITC. Concomitantly, we observed an increase in the protein expression of both tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in treated cells. Furthermore, PEITC treatments decreased the protein phosphorylation of epidermal growth factor receptor (EGFR) and downstream signaling proteins including PDK1, PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate NF-κB for the suppression of MMP-2 and MMP-9 expression. In addition, PEITC can trigger the MAPK signaling pathway through the increase in phosphorylated p38, JNK and ERK in treated cells. Our data indicate that PEITC is able to inhibit the invasion of EGF-stimulated SAS oral cancer cells by targeting EGFR and its downstream signaling molecules and finally lead to the reduced expression and enzymatic activities of both MMP-2 and MMP-9. These results suggest that PEITC is promising for the therapy of oral cancer metastasis.

  20. Modeling methyl isothiocyanate soil flux and emission ratio from a field following a chemigation of metam-sodium.

    PubMed

    Li, Lin Ying; Barry, Terrell; Mongar, Kevin; Wofford, Pamela

    2006-01-01

    Metam-sodium had become the most heavily used soil fumigant in recent years as the deadline approached for methyl bromide to phase out in January 2005. After application, metam-sodium decomposes rapidly to methyl isothiocyanate (MITC), a highly toxic compound capable of killing a wide spectrum of soil-borne pests. Inhalation risk of MITC ranked high among airborne agricultural pesticides in California. Information about off-gassing intensity and percentage of emission is essential for exposure risk assessment and mitigation measures, but is limited, especially for new application methods such as drip chemigation. Air concentrations of MITC were monitored around a field treated with metam-sodium through surface drip irrigation system. The field was tarped with plastic films before the chemigation. The air concentrations at receptor locations were simulated for the period of air monitoring with the Industrial Source Complex (ISC3) Dispersion Model, and soil flux density of MITC at various periods after chemigation was estimated through a back-calculation procedure. The estimated soil flux density of MITC showed a diurnal pattern, with the daytime flux stronger than nighttime. However, the average air concentration at nighttime was higher than that at daytime. Soil flux density peaked at 4.30 microg m-2 s-1 in the first 12-h period after chemigation, then declined with time. The MITC emission percentage in the first 60-h was 2.65% of applied mass, of which 57% occurred in the first 24-h after chemigation. The study indicated that the tarped bed drip application method of metam-sodium had a relatively good control of MITC emission from soil.