Science.gov

Sample records for agonist carbachol cch

  1. [Role of rennin-angiotensin system in cholinergic agonist carbachol-induced cardiovascular responses in ovine fetus].

    PubMed

    Geng, Chun-Song; Wan, Zhen; Feng, Ya-Hong; Fan, Yi-Sun

    2012-06-25

    To investigate the mechanisms underlying the cholinergic agonist carbachol-induced cardiovascular responses, changes of renin-angiotensin system were examined in fetal hormonal systems. In the ovine fetal model under stressless condition, the cardiovascular function was recorded. Blood samples were collected before (during baseline period) and after the intravenous administration of carbachol. Simultaneously, the levels of angiotensin I (Ang I), angiotensin II (Ang II) and vasopressin in the fetal plasma were detected by immunoradiological method. Also, blood gas, plasma osmolality and electrolyte concentrations were analyzed in blood samples. Results showed that in chronically prepared ovine fetus, intravenous infusion of carbachol led to a significant decrease of heart rate (P < 0.05), and a transient decrease followed by an increase of blood pressure (P < 0.05) within 30 min. After the intravenous infusion of carbachol, blood concentrations of Ang I and Ang II in near-term ovine fetus were both significantly increased (P < 0.05); however, blood concentration of vasopressin, values of blood gas, electrolytes and plasma osmolality in near-term ovine fetus were not significantly changed (P > 0.05). Blood levels of Ang I and Ang II in the atropine (M receptor antagonist) + carbachol intravenous administration group was lower than those in the carbachol group without atropine administration (P < 0.05). In conclusion, this study indicates that the near-term changes of cardiovascular system induced by intravenous administration of carbachol in ovine fetus, such as blood pressure and heart rate, are associated with the changes of hormones of circulatory renin-angiotensin system. PMID:22717634

  2. Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization.

    PubMed

    Cataldi, Mauro; Panuccio, Gabriella; Cavaccini, Anna; D'Antuono, Margherita; Taglialatela, Maurizio; Avoli, Massimo

    2011-03-01

    Exposure to cholinergic agonists is a widely used paradigm to induce epileptogenesis in vivo and synchronous activity in brain slices maintained in vitro. However, the mechanisms underlying these effects remain unclear. Here, we used field potential recordings from the lateral entorhinal cortex in horizontal rat brain slices to explore whether two different K(+) currents regulated by muscarinic receptor activation, the inward rectifier (K(IR)) and the M-type (K(M)) currents, have a role in carbachol (CCh)-induced field activity, a prototypical model of cholinergic-dependent epileptiform synchronization. To establish whether K(IR) or K(M) blockade could replicate CCh effects, we exposed slices to blockers of these currents in the absence of CCh. K(IR) channel blockade with micromolar Ba(2+) concentrations induced interictal-like events with duration and frequency that were lower than those observed with CCh; by contrast, the K(M) blocker linopirdine was ineffective. Pre-treatment with Ba(2+) or linopirdine increased the duration of epileptiform discharges induced by subsequent application of CCh. Baclofen, a GABA(B) receptor agonist that activates K(IR), abolished CCh-induced field oscillations, an effect that was abrogated by the GABA(B) receptor antagonist CGP 55845, and prevented by Ba(2+). Finally, when applied after CCh, the K(M) activators flupirtine and retigabine shifted leftward the cumulative distribution of CCh-induced event duration; this effect was opposite to what seen during linopirdine application under similar experimental conditions. Overall, our findings suggest that K(IR) rather than K(M) plays a major regulatory role in controlling CCh-induced epileptiform synchronization. PMID:21144855

  3. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity.

    PubMed

    Svalø, Julie; Nordling, Jørgen; Bouchelouche, Kirsten; Andersson, Karl-Erik; Korstanje, Cees; Bouchelouche, Pierre

    2013-01-15

    β(3)-Adrenoceptors are major players in detrusor relaxation and have been suggested as a new putative target for the treatment of overactive bladder syndrome. We determined the effects of mirabegron (YM178), a novel β(3)-adrenoceptor agonist, on carbachol-induced tone in isolated human detrusor preparations from patients with bladder outflow obstruction (BOO) with and without detrusor overactivity (DO), and from patients with normal bladder function. We compared the effects to those of isoprenaline, a non-selective β-adrenoceptor agonist. Detrusor specimens were obtained from patients with benign prostatic hyperplasia undergoing cystoscopy and from patients undergoing radical prostatectomy/cystectomy (in total 33 donors). Detrusor contractility was evaluated by organ bath studies and strips were incubated with carbachol (1μM) to induce and enhance tension. Both mirabegron and isoprenaline reduced carbachol-induced tone in tissues from all groups. Isoprenaline decreased tension with higher potency than mirabegron in normal, BOO and BOO+DO detrusor strips with pIC(50) values of 7.49 ± 0.16 vs. 6.23 ± 0.26 (P=0.0002), 6.89 ± 0.34 vs. 6.04 ± 0.31 (P=0.01), and 6.57 ± 0.20 vs. 5.41 ± 0.08 (P<0.0001, n=4), respectively. The maximal relaxant effect of isoprenaline and mirabegron in the normal, BOO and BOO+DO detrusor was 37.7 ± 14.4% and 36.1 ± 23.3%, 14.4 ± 12.2% vs. 33.4 ± 21.0% and 18.3 ± 10.0% vs. 28.3 ± 12.2% (n=4, P>0.05), respectively. Mirabegron and isoprenaline reduced carbachol-induced tone in both normal bladders and obstructed bladder with and without DO. Isoprenaline had higher potency than mirabegron, but the efficacy of mirabegron effect was the same as that of isoprenaline. PMID:23246623

  4. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction.

    PubMed

    Zhong, Xingguo; Fu, Jie; Song, Kai; Xue, Nairui; Gong, Renhua; Sun, Dengqun; Luo, Huilai; He, Wenzhu; Pan, Xiang; Shen, Bing; Du, Juan

    2016-04-01

    TRPP2 channel protein belongs to the superfamily of transient receptor potential (TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca(2+) release from Ca(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca(2+) imaging and tension measurements to test agonist-induced intracellular Ca(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol (CCh)-evoked Ca(2+) release and extracellular Ca(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor (IP3) production, and 2-aminoethoxydiphenyl borate (2APB), which inhibits IP3 recepor (IP3R) to abolish IP3R-mediated Ca(2+) release. To confirm the role of Ca(2+) release in CCh-induced gallbladder contraction, we used thapsigargin (TG)-to deplete Ca(2+) stores via inhibiting sarco/endoplasmic reticulum Ca(2+)-ATPase and eliminate the role of store-operated Ca(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca(2+) release from intracellular Ca(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction. PMID:26660312

  5. Potentiation of carbachol-induced detrusor smooth muscle contractions by β-adrenoceptor activation

    PubMed Central

    Klausner, Adam P; Rourke, Keith F; Miner, Amy S; Ratz, Paul H

    2011-01-01

    In strips of rabbit bladder free of urothelium, the β-adrenoceptor agonist, isoproterenol, significantly reduced basal detrusor smooth muscle tone and inhibited contractions produced by low concentrations of the muscarinic receptor agonist, carbachol. During a carbachol concentration-response curve, instead of inhibiting, isoproterenol strengthened contractions produced by high carbachol concentrations. Thus, the carbachol concentration-response curve was shifted by isoproterenol from a shallow, graded relationship, to a steep, switch-like relationship. The tyrosine kinase inhibitor, genistein, inhibited carbachol-induced contractions only in the presence of isoproterenol. Contraction produced by a single high carbachol concentration (1 µM) displayed 1 fast and 1 slow peak. In the presence of isoproterenol, the slow peak was not strengthened, but was delayed, and U-0126 (mitogen-activated protein kinase kinase inhibitor) selectively inhibited this delay concomitantly with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation. Isoproterenol reduced ERK phosphorylation only in the absence of carbachol. These data support the concept that, by inhibiting weak contractions, potentiating strong contractions, and producing a more switch-like concentration-response curve, β-adrenoceptor stimulation enhanced the effectiveness of muscarinic receptor-induced detrusor smooth muscle contraction. Moreover, β-adrenoceptor stimulation changed the cellular mechanism by which carbachol produced contraction. The potential significance of multi-receptor and multi-cell crosstalk is discussed. PMID:19374847

  6. Carbachol-induced rhythmic slow activity (theta) in cat hippocampal formation slices.

    PubMed

    Konopacki, J; Gołebiewski, H; Eckersdorf, B

    1992-04-24

    Application of the cholinergic agonist, carbachol, produced theta-like rhythmical waveforms, recorded in the stratum moleculare of the dentate gyrus in the cat hippocampal formation slices. This effect of carbachol was antagonized by atropine but not D-tubocurarine. These results provide first direct evidence that the hippocampal formation neuronal network in the cat is capable of producing synchronized slow wave activity when isolated from pulsed rhythmic inputs of the medial septum. PMID:1511270

  7. Carbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes.

    PubMed

    Pelaseyed, Thaher; Gustafsson, Jenny K; Gustafsson, Ida J; Ermund, Anna; Hansson, Gunnar C

    2013-08-15

    We have reported that transmembrane mucin MUC17 binds PDZ protein PDZK1, which retains MUC17 apically in enterocytes. MUC17 and transmembrane mucins MUC3 and MUC12 are suggested to build the enterocyte apical glycocalyx. Carbachol (CCh) stimulation of the small intestine results in gel-forming mucin secretion from goblet cells, something that requires adjacent enterocytes to secrete chloride and bicarbonate for proper mucin formation. Surface labeling and confocal imaging demonstrated that apically expressed MUC17 in Caco-2 cells and Muc3(17) in murine enterocytes were endocytosed upon stimulation with CCh. Relocation of MUC17 in response to CCh was specific as MUC3 and MUC12 did not relocate following CCh stimulation. MUC17 colocalized with PDZK1 under basal conditions, while MUC17 relocated to the terminal web and into early endosomes after CCh stimulation. CCh stimulation concomitantly internalized the Na(+/)H(+) exchanger 3 (NHE3) and recruited cystic fibrosis transmembrane conductance regulator (CFTR) to the apical membranes, a process that was important for CFTR-mediated bicarbonate secretion necessary for proper gel-forming mucin unfolding. The reason for the specific internalization of MUC17 is not understood, but it could limit the diffusion barrier for ion secretion caused by the apical enterocyte glycocalyx or alternatively act to sample luminal bacteria. Our results reveal well-orchestrated mucus secretion and trafficking of ion channels and the MUC17 mucin. PMID:23784542

  8. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    SciTech Connect

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  9. Involvement of cyclooxygenase-2 in carbachol-induced positive inotropic response in mouse isolated left atrium.

    PubMed

    Hara, Yukio; Ike, Asako; Tanida, Riyo; Okada, Muneyoshi; Yamawaki, Hideyuki

    2009-12-01

    The mouse heart is expected to have characteristic contractile properties. However, basic information on the function of the mouse heart has not been accumulated sufficiently. In this study, the involvement of cyclooxygenase (COX)-2 in carbachol (CCh)-induced inotropic response was investigated in mouse isolated left atrium. Influences of CCh and their mechanisms of action on developed tension elicited by electrical stimulation were examined pharmacologically. The presence of COX-2 in atrium was examined by Western blotting and immunohistochemical analysis. CCh (3 microM for 15 min) produced a biphasic inotropic response: a transient decrease in contractile force followed by a late increase. Atropine suppressed the biphasic inotropic response to CCh. A muscarinic M(3) receptor antagonist, 4-diphenyl-acetoxy-N-methlpiperidine, inhibited the late positive inotropic action. Blockade of prostaglandin (PG) E(2) or F(2alpha) receptor by 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) or 9alpha, 15R-dihydroxy-11beta-fluoro-15-(2,3-dihydro-1H-inden-2-yl)-16,17,18,19,20-pentanor-prosta 5Z, 13E-dien-1-oic acid (AL8810), respectively, significantly suppressed the positive inotropic response to CCh. A nonselective COX inhibitor, indomethacin, and a selective COX-2 inhibitor, N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) inhibited the positive response. A COX-1 inhibitor, valeroyl salicylate, did not affect the positive response. The positive response was almost completely abolished in the endocardial endothelium-deprived atria. Existence of COX-2 in endocardial endothelium was confirmed by Western blotting and immunohistochemical analysis. The present study indicated that the CCh-induced positive inotropic response was mediated by PGs, possibly PGE(2) and PGF(2alpha), released in part from endocardial endothelium. Furthermore, for the first time, we demonstrated that the production of PGs depended in part on COX-2 in endocardial endothelium through the

  10. Effects of papaverine on carbachol- and high K+-induced contraction in the bovine abomasum

    PubMed Central

    KANEDA, Takeharu; SAITO, Erika; KANDA, Hidenori; URAKAWA, Norimoto; SHIMIZU, Kazumasa

    2015-01-01

    The effects of papaverine on carbachol (CCh) -and high K+- induced contraction in the bovine abomasum were investigated. Papaverine inhibited CCh (1 µM) -and KCl (65 mM) -induced contractions in a concentration-dependent manner. Forskolin or sodium nitroprusside inhibited CCh-induced contractions in a concentration-dependent manner in association with increases in the cAMP or cGMP contents, whereas papaverine increased cGMP contents only at 30 µM. Changes in the extracellular Ca2+ from 1.5 mM to 7.5 mM reduced verapamil-induced relaxation in high K+-depolarized muscles, but papaverine-induced relaxation did not change. Futhermore, papaverine (30 µM) and NaCN (300 µM) decreased the creatine phosphate contents. These results suggest that the relaxing effects of papaverine on the bovine abomasum are mainly due to the inhibition of aerobic energy metabolism. PMID:26018357

  11. Effects of ritobegron (KUC-7483), a novel β3-adrenoceptor agonist, on both rat bladder function following partial bladder outlet obstruction and on rat salivary secretion: a comparison with the effects of tolterodine.

    PubMed

    Maruyama, Itaru; Yonekubo, Saori; Tatemichi, Satoshi; Maruyama, Kazuyasu; Hoyano, Yuji; Yamazaki, Yoshinobu; Kusama, Hiroshi

    2012-01-01

    The objective of this study was to investigate the effects of the β3-adrenoceptor (AR) agonist ritobegron on rat bladder function following partial bladder outlet obstruction and on rat salivary secretion. In addition, the effects of ritobegron were compared with those of the anti-muscarinic agent tolterodine. After a 6-week partial bladder outlet obstruction (BOO), drug effects on bladder functions were evaluated using cystometrography. Effects on carbachol (CCh)-induced salivary secretion were evaluated in urethane-anesthetized rats. Ritobegron significantly decreased the frequency of non-voiding contractions (NVC), while both ritobegron and tolterodine each significantly decreased the amplitude of NVC. Ritobegron had no effect on either the micturition pressure (MP) or the residual volume (RV). In contrast, tolterodine dose-dependently decreased MP and increased RV. Ritobegron had no effect on CCh-induced salivary secretion, whereas tolterodine dose-dependently decreased it. Ritobegron decreased both the frequency and amplitude of NVC, which is similar to its effect on the contractions associated with detrusor overactivity (DO) in patients with an overactive bladder (OAB), without affecting MP, RV, or CCh-induced salivary secretion. Although tolterodine reduced the amplitude of NVC, it also markedly increased RV and significantly inhibited CCh-induced salivary secretion. These results suggest that use of ritobegron, a β3-AR agonist, is unlikely to lead to the residual urine and dry mouth symptoms that are associated with anti-muscarinic drugs, and that ritobegron may hold promise as a safe and effective agent for OAB treatment. PMID:23538508

  12. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.

    PubMed

    Devor, D C; Frizzell, R A

    1993-11-01

    Single-channel recording techniques were used to identify and characterize the K+ channel activated by Ca(2+)-mediated secretory agonists in T84 cells. Carbachol (CCh; 100 microM) and taurodeoxycholate (TDC; 0.75 mM) stimulated oscillatory outward K+ currents. With K gluconate in bath and pipette, cell-attached single-channel K+ currents stimulated by CCh and ionomycin (2 microM) were inwardly rectified and reversed at 0 mV. The single-channel chord conductance was 32 pS at -90 mV and 14 pS at +90 mV. Similar properties were observed in excised inside-out patches in symmetric K+, permitting further characterization of channel properties. Partial substitution of bath or pipette K+ with Na+ gave a K(+)-to-Na+ selectivity ratio of 5.5:1. Channel activity increased with increasing bath Ca2+ concentration in the physiological range of 50-800 nM. Maximal channel activity occurred at intracellular pH 7.2 and decreased at more acidic or alkaline pH values. Extracellular charybdotoxin (CTX; 50 nM) blocked inward but not outward currents. Extracellular tetraethylammonium (TEA; 10 mM) reduced single-channel amplitude at all voltages. No apparent block of the channel was observed with extracellular Ba2+ (1 mM), apamin (1 microM), 4-aminopyridine (4-AP; 4 mM), quinine (500 microM), or glyburide (10 microM). Cytosolic quinine and 4-AP blocked both inward and outward currents, whereas Ba2+ blocked only outward currents. Apamin, CTX, TEA, and glyburide did not affect channel activity. The agonist activation and pharmacological profile of this inwardly rectified K+ channel indicate that it is responsible for the increase in basolateral K+ conductance stimulated by Ca(2+)-mediated agonists in T84 cells. PMID:7694492

  13. Rapid activation of gluconeogenesis after intracerebroventricular carbachol.

    PubMed

    Migliorini, R H; Garofalo, M A; Roselino, J E; Kettelhut, I C

    1989-10-01

    Intracerebroventricular administration of carbachol (27 nmol in 5 microliters 0.15 M NaCl) produced marked hyperglycemia in 24-h fasted rats, despite the negligible amounts of preformed liver glycosyl residues. To investigate the possibility of a stimulation of gluconeogenesis, conscious unrestrained rats were continuously infused with [14C]bicarbonate (0.51 microliters, 0.18 muCi/min) and label incorporation into circulating glucose determined before and after intraventricular injection. The rate of 14C incorporation into blood glucose of fed rats was not affected by intraventricular injection of 0.15 M NaCl but increased significantly after carbachol administration. In both fed and 24-h fasted rats the hyperglycemia induced by intraventricular carbachol was accompanied by marked increases in plasma lactate. Previous adrenodemedullation prevented both the hyperglycemia and the hyperlactemia. Liver pyruvate kinase activity was reduced in carbachol-treated rats, when the enzyme was assayed with suboptimal concentrations of phosphoenolpyruvate and in the absence of fructose 1,6-biphosphate. Phosphoenolpyruvate carboxykinase activity was not affected. The data suggest that central chemical stimulation with cholinergic agents induces a rapid activation of liver gluconeogenesis, which probably results from an increased sympathetic outflow for epinephrine secretion by the adrenal medulla. PMID:2801933

  14. Carbachol stimulates a different phospholipid metabolism than nerve growth factor and basic fibroblast growth factor in PC12 cells.

    PubMed Central

    Pessin, M S; Altin, J G; Jarpe, M; Tansley, F; Bradshaw, R A; Raben, D M

    1991-01-01

    We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation. PMID:1892912

  15. Motoneuron properties during motor inhibition produced by microinjection of carbachol into the pontine reticular formation of the decerebrate cat.

    PubMed

    Morales, F R; Engelhardt, J K; Soja, P J; Pereda, A E; Chase, M H

    1987-04-01

    It is well established that cholinergic agonists, when injected into the pontine reticular formation in cats, produce a generalized suppression of motor activity (1, 3, 6, 14, 18, 27, 33, 50). The responsible neuronal mechanisms were explored by measuring ventral root activity, the amplitude of the Ia-monosynaptic reflex, and the basic electrophysiological properties of hindlimb motoneurons before and after carbachol was microinjected into the pontine reticular formation of decerebrate cats. Intrapontine microinjections of carbachol (0.25-1.0 microliter, 16 mg/ml) resulted in the tonic suppression of ventral root activity and a decrease in the amplitude of the Ia-monosynaptic reflex. An analysis of intracellular records from lumbar motoneurons during the suppression of motor activity induced by carbachol revealed a considerable decrease in input resistance and membrane time constant as well as a reduction in motoneuron excitability, as evidenced by a nearly twofold increase in rheobase. Discrete inhibitory postsynaptic potentials were also observed following carbachol administration. The changes in motoneuron properties (rheobase, input resistance, and membrane time constant), as well as the development of discrete inhibitory postsynaptic potentials, indicate that spinal cord motoneurons were postsynaptically inhibited following the pontine administration of carbachol. In addition, the inhibitory processes that arose after carbachol administration in the decerebrate cat were remarkably similar to those that are present during active sleep in the chronic cat. These findings suggest that the microinjection of carbachol into the pontine reticular formation activates the same brain stem-spinal cord system that is responsible for the postsynaptic inhibition of alpha-motoneurons that occurs during active sleep. PMID:3585456

  16. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

    PubMed

    Gustafsson, Jenny K; Lindén, Sara K; Alwan, Ala H; Scholte, Bob J; Hansson, Gunnar C; Sjövall, Henrik

    2015-07-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules. PMID:25139191

  17. Mechanisms involved in carbachol-induced Ca2+ sensitization of contractile elements in rat proximal and distal colon

    PubMed Central

    Takeuchi, Tadayoshi; Kushida, Masahiko; Hirayama, Nobue; Kitayama, Muneyoshi; Fujita, Akikazu; Hata, Fumiaki

    2004-01-01

    Mechanisms involved in Ca2+ sensitization of contractile elements induced by the activation of muscarinic receptors in membrane-permeabilized preparations of the rat proximal and distal colon were studied. In α-toxin-permeabilized preparations from the rat proximal and distal colon, Ca2+ induced a rapid phasic and subsequent tonic component. After Ca2+-induced contraction reached a plateau, guanosine 5′-triphosphate (GTP) and carbachol (CCh) in the presence of GTP further contracted preparations of both the proximal and distal colon (Ca2+ sensitization). Y-27632, a rho-kinase inhibitor, inhibited GTP plus CCh-induced Ca2+ sensitization more significantly in the proximal colon than in the distal colon. Y-27632 at 10 μM had no effect on Ca2+-induced contraction or slightly inhibited phorbol-12,13-dibutyrate-induced Ca2+ sensitization in either proximal or distal colon. Chelerythrine, a protein kinase C inhibitor, inhibited GTP plus CCh-induced Ca2+ sensitization in the distal colon, but not in the proximal colon. The component of Ca2+ sensitization that persisted after the chelerythrine treatment was completely inhibited by Y-27632. In β-escin-permeabilized preparations of the proximal colon, C3 exoenzyme completely inhibited GTP plus CCh-induced Ca2+ sensitization, but PKC(19–31) did not. In the distal colon, C3 exoenzyme abolished GTP-induced Ca2+ sensitization. It inhibited CCh-induced sensitization by 50 % and the remaining component was inhibited by PKC(19–31). These results suggest that both protein kinase C and rho pathways in parallel mediate the Ca2+ sensitization coupled to activation of muscarinic receptors in the rat distal colon, whereas the rho pathway alone mediates this action in the proximal colon. PMID:15159278

  18. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons

    PubMed Central

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300

  19. Glucose and carbachol activate phospholipase C in digitonin-permeabilized islets

    SciTech Connect

    Wolf, B.A.; Florholmen, J.; Turk, J.; McDaniel, M.L.

    1987-05-01

    Stimulation of intact islets with D-glucose, the major insulin secretagogue, or with carbachol, a muscarinic agonist, results in the accumulation of inositoltrisphosphate (IP/sub 3/) suggesting that activation of phospholipase C (PLC) has a major role in stimulus-secretion coupling. Carbachol activation of PLC is an example of receptor-mediated activation in islets, whereas, the mechanism of glucose activation of PLC is controversial since a glucose receptor has not been identified. They have measured PLC activity in digitonin-permeabilized islets. Islets were labeled with /sup 3/H-inositol, permeabilized and IP/sub 3/ accumulation measured by HPLC. Carbachol, in the presence of ATP, GTP and 1 ..mu..M free Ca/sup 2 +/ released two-fold more Ins 1,3,4-P/sub 3/ than control in a time-dependent manner. Glucose, under the same conditions also significantly released more Ins 1,3,4-P/sub 3/ than control. This effect was not due to metabolism of glucose nor to an effect on the IP/sub 3/-phosphomonoesterase. Preliminary Ca/sup 2 +/-dependency studies indicate that PLC is not activated by Ca/sup 2 +/ in the submicromolar range. In conclusion, these studies show that Ca/sup 2 +/ does not activate PLC, and furthermore, that D-glucose may be recognized directly by PLC.

  20. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  1. Properties of carbachol-induced oscillatory activity in rat hippocampus.

    PubMed

    Williams, J H; Kauer, J A

    1997-11-01

    Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol. 78: 2631-2640, 1997. The recent resurgence of interest in carbachol oscillations as an in vitro model of theta rhythm in the hippocampus prompted us to evaluate the circuit mechanisms involved. In extracellular recordings, a regularly spaced bursting pattern of field potentials was observed in both CA3 and CA1 subfields in the presence of carbachol. Removal of the CA3 region abolished oscillatory activity observed in CA1, suggesting that the oscillatory generator is located in CA3. An alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), blocked carbachol oscillations, indicating that AMPA receptor-mediated synaptic currents are necessary for the population oscillation. Moreover, the spread of oscillatory activity into CA1 required intact N-methyl--aspartate receptors. These data are more consistent with epileptiform bursting than with theta rhythm described in vivo. In the presence of carbachol, individual CA3 pyramidal cells exhibited a slow, rhythmic intrinsic oscillation that was not blocked by DNQX and that was enhanced by membrane hyperpolarization. We hypothesize that this slower oscillation is the fundamental oscillator that participates in triggering the population oscillation by exciting multiple synaptically connected CA3 neurons. gamma-aminobutyric acid-A (GABAA) receptors are not necessary for carbachol to elicit synchronous CA3 field events but are essential to the bursting pattern observed. Neither GABAB nor metabotropic glutamate receptors appear to be necessary for carbachol oscillations. However, both nicotinic and M1 and M3 muscarinic cholinergic receptors contribute to the generation of this activity. These results establish the local circuit elements and neurotransmitter receptors that contribute to carbachol-induced oscillations and indicate that carbachol-induced oscillations are

  2. Aging changes agonist induced contractile responses in permeabilized rat bladder.

    PubMed

    Durlu-Kandilci, N Tugba; Denizalti, Merve; Sahin-Erdemli, Inci

    2015-08-01

    Aging alters bladder functions where a decrease in filling, storage and emptying is observed. These changes cause urinary incontinence, especially in women. The aim of this study is to examine how aging affects the intracellular calcium movements due to agonist-induced contractions in permeabilized female rat bladder. Urinary bladder isolated from young and old female Sprague-Dawley rats were used. Small detrusor strips were permeabilized with β-escin. The contractile responses induced with agonists were compared between young and old groups. Carbachol-induced contractions were decreased in permeabilized detrusor from old rats compared to young group. Heparin and ryanodine decreased carbachol-induced contractions in young rats where only heparin inhibited these contractions in olds. Caffeine-induced contractions but not inositol triphosphate (IP3)-induced contractions were decreased in old group compared to youngs. The cumulative calcium response curves (pCa 8-4) were also decreased in old rats. Carbachol-induced calcium sensitization responses did not alter by age where GTP-β-S and GF-109203X but not Y-27632 inhibited these responses. Carbachol-induced contractions decrease with aging in rat bladder detrusor. It can be postulated as IP3-induced calcium release (IICR) is primarily responsible for the contractions in older rats where the decrease in carbachol contractions in aging may be as a result of a decrease in calcium-induced calcium release (CICR), rather than carbachol-induced calcium sensitization. PMID:26153091

  3. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Chase, Michael H; Falconi, Atilio

    2016-02-01

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep. PMID:26670051

  4. PDE4 and PDE5 regulate cyclic nucleotide contents and relaxing effects on carbachol-induced contraction in the bovine abomasum

    PubMed Central

    KANEDA, Takeharu; KIDO, Yuuki; TAJIMA, Tsuyoshi; URAKAWA, Norimoto; SHIMIZU, Kazumasa

    2014-01-01

    The effects of various selective phosphodiesterase (PDE) inhibitors on carbachol (CCh)-induced contraction in the bovine abomasum were investigated. Various selective PDE inhibitors, vinpocetine (type 1), erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, type 2), milrinone (type 3), Ro20-1724 (type 4), vardenafil (type 5), BRL-50481 (type 7) and BAY73-6691 (type 9), inhibited CCh-induced contractions in a concentration-dependent manner. Among the PDE inhibitors, Ro20-1724 and vardenafil induced more relaxation than the other inhibitors based on the data for the IC50 or maximum relaxation. In smooth muscle of the bovine abomasum, we showed the expression of PDE4B, 4C, 4D and 5 by RT-PCR analysis. In the presence of CCh, Ro20-1724 increased the cAMP content, but not the cGMP content. By contrast, vardenafil increased the cGMP content, but not the cAMP content. These results suggest that Ro20-1724-induced relaxation was correlated with cAMP and that vardenafil-induced relaxation was correlated with cGMP in the bovine abomasum. In conclusion, PDE4 and PDE5 are the enzymes involved in regulation of the relaxation associated with cAMP and cGMP, respectively, in the bovine abomasum. PMID:25319411

  5. Ligand effects due to resonance character in LAuCCH(-) (L = F, Cl, Br, I, CCH) complexes: an NBO/NRT analysis.

    PubMed

    Zhang, Guiqiu; Wang, Hui; Yue, Huanjing; Li, Hong; Zhang, Shengnan; Fu, Lei

    2015-06-01

    The organogold complexes of LAuCCH(-) (L = F, Cl, Br, I, CCH) were investigated using natural bond orbital/natural resonance theory (NBO/NRT) methods. The NBO/NRT results strongly support the general resonance-type three-center-four-electron (3c/4e) picture of LAuCCH: L(-): Au-CCH ↔ L-Au :CCH(-), arising from hyperconjugation interactions. The sums of ionic and covalent contributions to both L-Au and Au-CCH bonds are all slightly larger than that due to the additional π-back bonding within the 3c/4e hyperbonded triad. This complementary relationship between L-Au and Au-CCH bond orders implies a competing relationship between the ancillary ligand and CCH around the gold atom. We discuss the ligand effects in the LAuCCH(-) series on the basis of this competing relationship. PMID:26026301

  6. Activation of T84 cell chloride channels by carbachol involves a phosphoinositide-coupled muscarinic M3 receptor.

    PubMed

    Dickinson, K E; Frizzell, R A; Sekar, M C

    1992-04-10

    Muscarinic agonists stimulate Cl- secretion across monolayers of the colon tumor epithelial cell line, T84. The muscarinic receptor has been characterized in T84 cell homogenates by radioligand binding using [3H]N-methylscopolamine ([3H]NMS). [3H]NMS bound to a single population of sites at 25 degrees C in 100 mM NaCl, 20 mM HEPES, 10 mM MgCl2, pH 7.4 buffer, with calculated Kd = 278 (+/- 44) pM and Bmax = 40 (+/- 6) fmol/mg protein (n = 4). Binding was reversible (diss. t1/2 = 18 +/- 3 min) and stereoselective (dexetimide Ki = 0.3 nM) much greater than levetimide (Ki = 8300 nM). Antagonists exhibited the following rank order of potencies and Ki values (nM): atropine (0.54) greater than 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP) (0.84) greater than dicyclomine (14) = hexahydrosiladifenidol (18) greater than pirenzepine (136) greater than AF-DX 116 (3610). The same sequence was observed for inhibition of carbachol-induced 125I efflux from T84 monolayers. This is indicative of an M3 'glandular' muscarinic receptor. Coupling to second messenger systems was examined by labelling monolayers with [14C]arachidonic acid (AA) or [3H]inositol. Carbachol (0.3 mM) did not release [14C]AA from labelled lipids, but ionomycin produced a dose-dependent increase in media [14C]AA. Carbachol (0.3 mM) elevated inositol monophosphate 14-fold. The results suggest that muscarinic agonists stimulate Cl- secretion by interacting with an M3 receptor coupled to inositide lipid hydrolysis. PMID:1379932

  7. Carbon Chemistry in Planetary Nebulae: Observations of the CCH Radical

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah Rose; Ziurys, Lucy

    2015-08-01

    The presence of infrared (IR) emission features observed in interstellar environments is consistent with models that suggest they are produced by complex organic species containing both aliphatic and aromatic components (Kwok & Zhang 2011). These IR signals change drastically over the course of the AGB, proto-planetary, and planetary nebulae phases, and this dramatic variation is yet to be understood. The radical CCH is a potential tracer of carbon chemistry and its evolution in dying stars. CCH is very common in carbon-rich circumstellar envelopes of AGB stars, and is present in the proto-planetary nebulae. It has also been observed at one position in the very young planetary nebula, NGC 7027 (Hasegawa & Kwok 2001), as well as at one position in the Helix Nebula (Tenenbaum et al. 2009) - a dense clump east of the central white dwarf. In order to further probe the chemistry of carbon, we have initiated a search for CCH in eight PNe previously detected in HCN and HCO+ from a survey conducted by Schmidt and Ziurys, using the telescopes of the Arizona Radio Observatory (ARO). Observations of the N=1→0 transition of CCH at 87 GHz have been conducted using the new ARO 12-m ALMA prototype antenna, while measurements of the N=3→2 transition at 262 GHz are being made with the ARO Sub-Millimeter Telescope (SMT). We also have extended our study in the Helix Nebula. Thus far, CCH has been detected at 8 new positions across the Helix Nebula, and appears to be widespread in this source. The radical has also been identified in K4-47, M3-28, K3-17, and K3-58. These sources represent a range of nebular ages. Additional observations are currently being conducted for CCH in other PNe, as well as abundance analyses. These results will be presented.

  8. Guanine nucleotide-dependent, pertussis toxin-insensitive, stimulation of inositol phosphate formation by carbachol in a membrane preparation from astrocytoma cells

    SciTech Connect

    Hepler, J.R.; Harden, T.K.

    1986-03-05

    Formation of the inositol phosphates (InsP), InsP/sub 3/, InsP/sub 2/, and InsP/sub 1/ was increased in a concentration dependent manner (K/sub 0.5/ approx. 5 ..mu..M) by GTP..sigma..S in washed membranes prepared from /sup 3/H-inositol-prelabelled 1321N1 human astrocytoma cells. Both GTP..gamma..S and GppNHp stimulated InsP formation by 2-3 fold over control; GTP and GDP were much less efficacious and GMP had no effect. Although the muscarinic cholinergic receptor agonist carbachol had no effect in the absence of guanine nucleotide, in the presence of 10 ..mu..M GTP..gamma..S, carbachol stimulated (K/sub 0.5/ approx. 10 ..mu.. M) the formation of InsP above the level achieved with GTP..gamma..S alone. The effect of carbachol was completely blocked by atropine. The order of potency for a series of nucleotides for stimulation of InsP formation in the presence of 500 ..mu..M carbachol was GTP..gamma..S > GppNHp > GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate G/sub i/, had no effect on InsP formation in the presence of GTP..gamma..S or GTP..gamma..S plus carbachol. Histamine and bradykinin also stimulated InsP formation in the presence of GTP..gamma..S in washed membranes from 1321N1 cells. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not G/sub i/ is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells.

  9. Differences in carbachol dose, pain condition, and sex following lateral hypothalamic stimulation.

    PubMed

    Holden, J E; Wang, E; Moes, J R; Wagner, M; Maduko, A; Jeong, Y

    2014-06-13

    Lateral hypothalamic (LH) stimulation produces antinociception in female rats in acute, nociceptive pain. Whether this effect occurs in neuropathic pain or whether male-female sex differences exist is unknown. We examined the effect of LH stimulation in male and female rats using conditions of nociceptive and neuropathic pain. Neuropathic groups received chronic constriction injury (CCI) to induce thermal hyperalgesia, a sign of neuropathic pain. Nociceptive rats were naive for CCI, but received the same thermal stimulus following LH stimulation. To demonstrate that CCI ligation produced thermal hyperalgesia, males and females received either ligation or sham surgery for control. Both males and females demonstrated significant thermal hyperalgesia following CCI ligation (p<0.05), but male sham surgery rats also showed a significant left-right difference not present in female sham rats. In the second experiment, rats randomly assigned to CCI or nociceptive groups were given one of three doses of the cholinergic agonist carbachol (125, 250, or 500 nmol) or normal saline for control, microinjected into the left LH. Paw withdrawal from a thermal stimulus (paw withdrawal latency; PWL) was measured every 5 min for 45 min. Linear mixed models analysis showed that males and females in both pain conditions demonstrated significant antinociception, with the 500-nmol dose producing the greatest effect across groups compared with controls for the left paw (p<0.05). Female CCI rats showed equivalent responses to the three doses, while male CCI rats showed more variability for dose. However, nociceptive females responded only to the 500-nmol dose, while nociceptive males responded to all doses (p<0.05). For right PWL, only nociceptive males showed a significant carbachol dose response. These findings are suggestive that LH stimulation produces antinociception in male and female rats in both nociceptive and neuropathic pain, but dose response differences exist based on sex and

  10. AB Initio Characterization of MgCCH, MgCCH(+), and MgC2, and Pathways to their Formation in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    1996-01-01

    A study of Mg-bearing compounds has been performed in order to determine molecular properties which are critical for planning new astronomical searches and laboratory studies. The primary focus of the work is on MgCCH, MgCCH(+), and the isomers of MgC2. Only MgCCH has been identified in laboratory studies. Additional calculations have been carried out on MgH, MgNC, MgCN, and their cations in an effort to evaluate pathways to the formation of MgCCH and MgCCH(+) in the InterStellar Medium (ISM) or in circumstellar envelopes. Correlated ab initio methods and correlation-consistent basis sets have been employed. Properties including structures, rotational constants, dipole moments, and harmonic frequencies are reported. A transition state between linear MgCC and cyclic MgC2 has been characterized and was found to yield a minimal barrier (approx. 0.5 kcal/mole), indicating easy interconversion to the cyclic form. Direct reactions in the ISM between Mg or Mg(+) and HCCH are precluded by energetic considerations, but a number of ion- molecule or neutral-neutral exchange reactions between CCH and various Mg-containing species offer plausible pathways to MgCCH or MgCCH(+). Weakly bound MgH may react with CCH to form MgCCH, but MgH has not been detected. Both MgNC and MgCN have been observed, but reactions with CCH are slightly endothermic by 1-3 kcal/mole. Although MgH(+), MgNC(+), and MgCN(+) have not been detected, their reactions with CCH to form MgCCH(+) are all exothermic. With only a small barrier separating linear MgCC and cyclic MgC2, the dissociative recombination of MgCCH(+) with an electron is expected to yield cyclic MgC2, and regenerate Mg and CCH. New astronomical searches for MgCCH, MgCCH(+), cyclic MgC2, MgNC(+), and MgCN(+) will provide further insight into organo-magnesium astrochemistry.

  11. Heart rate variability during carbachol-induced REM sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Velasquez, Noelia; Brando, Victoria; Falconi, Atilio; Chase, Michael H; Migliaro, Eduardo R

    2015-09-15

    The nucleus pontis oralis (NPO) exerts an executive control over REM sleep. Cholinergic input to the NPO is critical for REM sleep generation. In the cat, a single microinjection of carbachol (a cholinergic agonist) into the NPO produces either REM sleep (REMc) or wakefulness with muscle atonia (cataplexy, CA). In order to study the central control of the heart rate variability (HRV) during sleep, we conducted polysomnographic and electrocardiogram recordings from chronically prepared cats during REMc, CA as well as during sleep and wakefulness. Subsequently, we performed statistical and spectral analyses of the HRV. The heart rate was greater during CA compared to REMc, NREM or REM sleep. Spectral analysis revealed that the low frequency band (LF) power was significantly higher during REM sleep in comparison to REMc and CA. Furthermore, we found that during CA there was a decrease in coupling between the RR intervals plot (tachogram) and respiratory activity. In contrast, compared to natural behavioral states, during REMc and CA there were no significant differences in the HRV based upon the standard deviation of normal RR intervals (SDNN) and the mean squared difference of successive intervals (rMSSD). In conclusion, there were differences in the HRV during naturally-occurring REM sleep compared to REMc. In addition, in spite of the same muscle atonia, the HRV was different during REMc and CA. Therefore, the neuronal network that controls the HRV during REM sleep can be dissociated from the one that generates the muscle atonia during this state. PMID:25997581

  12. Effects of aerosolized histamine and carbachol in the conscious horse.

    PubMed Central

    Mirbahar, K B; McDonell, W N; Bignell, W; Eyre, P

    1985-01-01

    Pulmonary function tests were performed in seven conscious, standing horses. Changes in pulmonary mechanics and ventilation volumes were measured after inhalation challenge with saline (baseline), histamine (1% w/v solution for 5 min) and carbachol (0.5% w/v solution for 3 min). Comparisons between baseline and posthistamine values revealed a significant (P less than 0.05) increase in nonelastic work of breathing (Wb), maximum change in transpulmonary pressure (max delta Ppl), and pulmonary resistance (RL), while dynamic compliance (Cdyn) decreased (P less than 0.05). Tripelennamine completely abolished these histamine induced changes suggesting the involvement of H1 receptors. A nonsignificant increase occurred in functional residual capacity. However, the amount of nitrogen retained in the lung at the end of a nitrogen washout test was significantly (P less than 0.05) greater after histamine when compared to baseline values. The effect of carbachol was qualitatively similar to that of histamine, Wb and max delta Ppl increased while Cdyn decreased (P less than 0.05). The increase in lower RL reached statistical significance (P less than 0.05) only at the beginning of expiration (/ 25% VT). The present investigation demonstrates that the physiological measurements of lung function could be carried out in conscious, unsedated horses and that the pulmonary function test methods could be used as a tool for study of drug induced changes in pulmonary mechanics. PMID:4016587

  13. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    PubMed

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes. PMID:26523809

  14. MECHANISMS UNDERLYING ALC13 INHIBITION OF AGONIST-STIMULATED INOSITOL PHOSPHATE ACCUMULATION

    EPA Science Inventory

    Possible mechanisms of AlC13-induced inhibition of agonist-stimulated inositol phosphate (IP) accumulation were investigated using rat brain cortex slices, synaptosomes or homogenates. nder conditions in which AlC13 inhibits carbachol (CARB) stimulated IP accumulation (Gp-mediate...

  15. Renshaw cells are inactive during motor inhibition elicited by the pontine microinjection of carbachol.

    PubMed

    Morales, F R; Engelhardt, J K; Pereda, A E; Yamuy, J; Chase, M H

    1988-04-12

    The present study was undertaken to determine whether the postsynaptic inhibition of motoneurons that occurs following the pontine microinjection of carbachol in the decerebrate cat is due to the activity of Renshaw cells. Thirty-two out of 37 Renshaw cells (86%) were spontaneously active prior to the administration of carbachol, whereas only 2 out of 13 Renshaw cells (15%) discharged during carbachol-induced motor inhibition. In addition, discrete inhibitory synaptic potentials were observed in 33% of the Renshaw cells from which intracellular recordings were obtained after carbachol administration, indicating that these cells were actively inhibited. The finding that a population of Renshaw cells, which inhibit motoneurons, were themselves inhibited during a period of profound motoneuron inhibition was quite unexpected. These results support the conclusion that Renshaw cells are not the inhibitory interneurons that are responsible for the powerful inhibition of motoneurons that occurs following the pontine microinjection of carbachol. PMID:3380320

  16. Carbachol promotes gastrointestinal function during oral resuscitation of burn shock

    PubMed Central

    Hu, Sen; Che, Jin-Wei; Tian, Yi-Jun; Sheng, Zhi-Yong

    2011-01-01

    AIM: To investigate the effect of carbachol on gastrointestinal function in a dog model of oral resuscitation for burn shock. METHODS: Twenty Beagle dogs with intubation of the carotid artery, jugular vein and jejunum for 24 h were subjected to 35% total body surface area full-thickness burns, and were divided into three groups: no fluid resuscitation (NR, n = 10), in which animals did not receive fluid by any means in the first 24 h post-burn; oral fluid resuscitation (OR, n = 8), in which dogs were gavaged with glucose-electrolyte solution (GES) with volume and rate consistent with the Parkland formula; and oral fluid with carbachol group (OR/CAR, n = 8), in which dogs were gavaged with GES containing carbachol (20 μg/kg), with the same volume and rate as the OR group. Twenty-four hours after burns, all animals were given intravenous fluid replacement, and 72 h after injury, they received nutritional support. Hemodynamic and gastrointestinal parameters were measured serially with animals in conscious and cooperative state. RESULTS: The mean arterial pressure, cardiac output and plasma volume dropped markedly, and gastrointestinal tissue perfusion was reduced obviously after the burn injury in all the three groups. Hemodynamic parameters and gastrointestinal tissue perfusion in the OR and OR/CAR groups were promoted to pre-injury level at 48 and 72 h, respectively, while hemodynamic parameters in the NR group did not return to pre-injury level till 72 h, and gastrointestinal tissue perfusion remained lower than pre-injury level until 120 h post-burn. CO2 of the gastric mucosa and intestinal mucosa blood flow of OR/CAR groups were 56.4 ± 4.7 mmHg and157.7 ± 17.7 blood perfusion units (BPU) at 24 h post-burn, respectively, which were significantly superior to those in the OR group (65.8 ± 5.8 mmHg and 127.7 ± 11.9 BPU, respectively, all P < 0.05). Gastric emptying and intestinal absorption rates of GES were significantly reduced to the lowest level (52.8% and

  17. Cch1 Restores Intracellular Ca2+ in Fungal Cells during Endoplasmic Reticulum Stress*

    PubMed Central

    Hong, Min-Pyo; Vu, Kiem; Bautos, Jennifer; Gelli, Angie

    2010-01-01

    Pathogens endure and proliferate during infection by exquisitely coping with the many stresses imposed by the host to prevent pathogen survival. Recent evidence has shown that fungal pathogens and yeast respond to insults to the endoplasmic reticulum (ER) by initiating Ca2+ influx across their plasma membrane. Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1, have been suggested as the protein complex responsible for mediating Ca2+ influx, a direct demonstration of the gating mechanism of the Cch1 channel remains elusive. In this first mechanistic study of Cch1 channel activity we show that the Cch1 channel from the model human fungal pathogen, Cryptococcus neoformans, is directly activated by the depletion of intracellular Ca2+ stores. Electrophysiological analysis revealed that agents that enable ER Ca2+ store depletion promote the development of whole cell inward Ca2+ currents through Cch1 that are effectively blocked by La3+ and dependent on the presence of Mid1. Cch1 is permeable to both Ca2+ and Ba2+; however, unexpectedly, in contrast to Ca2+ currents, Ba2+ currents are steeply voltage-dependent. Cch1 maintains a strong Ca2+ selectivity even in the presence of high concentrations of monovalent ions. Single channel analysis indicated that Cch1 channel conductance is small, similar to that reported for the Ca2+ current ICRAC. This study demonstrates that Cch1 functions as a store-operated Ca2+-selective channel that is gated by intracellular Ca2+ depletion. The inability of cryptococcal cells that lacked the Cch1-Mid1 channel to survive ER stress suggests that Cch1 and its co-regulator, Mid1, are critical players in the restoration of Ca2+ homeostasis. PMID:20123986

  18. Modeling carbachol-induced hippocampal network synchronization using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin

    2010-10-01

    In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.

  19. Effect of morphine and morphine-like drugs on carbachol-induced fighting in cats.

    PubMed

    Krstić, S K; Stefanović-Denić, K; Beleslin, D B

    1982-08-01

    In the present experiments, morphine, methadone or pethidine was injected into the cerebral ventricle of the unanesthetized cat after fighting was induced with carbachol injected previously. The fighting evoked by carbachol was sensitive to the depressant action of morphine or pethidine but not to the depressant effect of methadone. The most likely explanation of the depressant effects of the former compounds is that they act on the postsynaptic receptors of central cholinergic neurons. PMID:6890210

  20. Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle.

    PubMed

    Bolton, T B; Clapp, L H

    1986-04-01

    In helical strips cut from the small mesenteric artery of guinea-pig (GPSMA) (0.3-0.6 mm o.d.) relaxations induced by substance P were more susceptible to damage of the endothelium by rubbing than were relaxations evoked by carbachol. Relaxations induced by 2-nicotin-amidoethyl nitrate (SG75) were unaffected by this procedure. Relaxations evoked by the calcium ionophore A23187 persisted when those to substance P had been abolished by rubbing the endothelium in GPSMA, rabbit mesenteric and rabbit ear arteries. In guinea-pig pulmonary artery and aorta relaxations to A23187 were lost after this treatment. Carbachol and SG75 were more effective in inhibiting phasic than tonic tension induced by noradrenaline in GPSMA, but substance P was more effective against tonic tension. In the GPSMA, carbachol and substance P inhibited tension produced by noradrenaline to similar extents. However, carbachol was less, and substance P much less effective in inhibiting tension evoked by high-potassium solution than by noradrenaline. Susceptibility of relaxations to blockade by haemoglobin in GPSMA was: substance P greater than carbachol greater than ATP greater than SG75. The membrane potential of smooth muscle cells in the media of the GPSMA was recorded by microelectrode. Carbachol, but not substance P, hyperpolarized the cells both in the presence and absence of noradrenaline at concentrations which relaxed the muscle. These results suggest a heterogeneity in the mechanisms of endothelial-dependent relaxations induced by various vascular relaxants. PMID:2423170

  1. Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit.

    PubMed

    Berhane, Y; Bailey, S R; Putignano, C; Elliott, J

    2008-02-01

    The role of endothelium-derived relaxing factors was studied in the regulation of vascular responses in the Krebs perfused equine isolated digit. Perfusion pressure was recorded in response to bolus doses of 5-hydroxytryptamine (6 nmol) alone or co-administered with carbachol (CCh; 0.2 micromol), bradykinin (BK; 0.2 nmol), substance P (SP; 0.2 nmol) or sodium nitroprusside (SNP; 0.2 micromol). N(omega)-Nitro-L-Arginine methyl ester hydrochloride (L-NAME; 300 microm) caused partial but significant inhibition of CCh-induced vasodilatory response, whereas BK and SP-induced responses were resistant to L-NAME. High potassium (K(+), 30 mm) and the cytochrome P-450 (CYP) epoxygenase inhibitor, clotrimazole (10 microm) plus L-NAME (100 microm), completely abolished the CCh, BK and SP-induced vasodilatory responses, whereas the response to SNP was unaffected. In contrast, the L-NAME-resistant proportion of CCh, BK and SP-induced vasodilatory response was not inhibited by the highly selective CYP2C9 inhibitor, sulphaphenazole (10 microm). The cyclo-oxygenase inhibitor, ibuprofen (10 microm) did not affect the CCh, BK and SP-induced responses. These data demonstrate that CCh, BK and SP-induced relaxation in the equine digit involve a combination of the NO and endothelium-derived hyperpolarizing factor (EDHF) pathways. These results do not support the evidence for the involvement of CYP-derived epoxyeicosatrienoic acids and the exact nature of EDHF in the equine digit remains to be established. PMID:18177312

  2. Inhibitory effects of salviae miltiorrhizae radix (danshen) and puerariae lobatae radix (gegen) in carbachol-induced rat detrusor smooth muscle contractility

    PubMed Central

    Liang, Willmann; Teong, Ivy Wen Jia; Koon, Johnny Chi Man; Lau, Clara Bik San; Fung, Kwok Pui; Leung, Ping Chung

    2012-01-01

    Both danshen (D) and gegen (G) have proven relaxant effects on vascular smooth muscle, thus their potential bladder inhibitory effects have impending interests in urology. The aim of this study was to demonstrate the novel effects of D and G on detrusor smooth muscle contractility. Urothelium-intact (+UE) and urothelium-denuded (-UE) detrusor strips were isolated from the rat. Isometric tension was measured using a myograph system. Carbachol (CCh) was used to pre-contract the detrusor strips prior to stepwise relaxation by adding extracts of D, G, and a DG (7:3) formulation. Tonic relaxation level and phasic contractile activity under the herbal treatments were analyzed. There was no difference in the herbal effects between +UE and -UE strips. D alone induced a much smaller relaxation than G alone or DG. G alone also suppressed phasic amplitude but not phasic frequency while DG suppressed both parameters. D and G acted synergistically to yield the observed effects on detrusor smooth muscle. The findings showed that the DG formulation were able to relax the detrusor as well as suppress phasic contractions, both actions important in maintaining normal bladder filling and urine storage processes. Hence DG may have new application in the management of bladder disorders. PMID:22461955

  3. Inhibitory effects of salviae miltiorrhizae radix (danshen) and puerariae lobatae radix (gegen) in carbachol-induced rat detrusor smooth muscle contractility.

    PubMed

    Liang, Willmann; Teong, Ivy Wen Jia; Koon, Johnny Chi Man; Lau, Clara Bik San; Fung, Kwok Pui; Leung, Ping Chung

    2012-01-01

    Both danshen (D) and gegen (G) have proven relaxant effects on vascular smooth muscle, thus their potential bladder inhibitory effects have impending interests in urology. The aim of this study was to demonstrate the novel effects of D and G on detrusor smooth muscle contractility. Urothelium-intact (+UE) and urothelium-denuded (-UE) detrusor strips were isolated from the rat. Isometric tension was measured using a myograph system. Carbachol (CCh) was used to pre-contract the detrusor strips prior to stepwise relaxation by adding extracts of D, G, and a DG (7:3) formulation. Tonic relaxation level and phasic contractile activity under the herbal treatments were analyzed. There was no difference in the herbal effects between +UE and -UE strips. D alone induced a much smaller relaxation than G alone or DG. G alone also suppressed phasic amplitude but not phasic frequency while DG suppressed both parameters. D and G acted synergistically to yield the observed effects on detrusor smooth muscle. The findings showed that the DG formulation were able to relax the detrusor as well as suppress phasic contractions, both actions important in maintaining normal bladder filling and urine storage processes. Hence DG may have new application in the management of bladder disorders. PMID:22461955

  4. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. PMID:25882246

  5. Changes in electrophysiological properties of cat hypoglossal motoneurons during carbachol-induced motor inhibition.

    PubMed

    Fung, S J; Yamuy, J; Xi, M C; Engelhardt, J K; Morales, F R; Chase, M H

    2000-12-01

    The control of hypoglossal motoneurons during sleep is important from a basic science perspective as well as to understand the bases for pharyngeal occlusion which results in the obstructive sleep apnea syndrome. In the present work, we used intracellular recording techniques to determine changes in membrane properties in adult cats in which atonia was produced by the injection of carbachol into the pontine tegmentum (AS-carbachol). During AS-carbachol, 86% of the recorded hypoglossal motoneurons were found to be postsynaptically inhibited on the basis of analyses of their electrical properties; the electrical properties of the remaining 14% were similar to motoneurons recorded during control conditions. Those cells that exhibited changes in their electrical properties during AS-carbachol also displayed large-amplitude inhibitory synaptic potentials. Following sciatic nerve stimulation, hypoglossal motoneurons which responded with a depolarizing potential during control conditions exhibited a hyperpolarizing potential during AS-carbachol. Both spontaneous and evoked inhibitory potentials recorded during AS-carbachol were comparable to those that have been previously observed in trigeminal and spinal cord motoneurons under similar experimental conditions as well as during naturally occurring active sleep. Calculations based on modeling the changes that we found in input resistance and membrane time constant with a three-compartment neuron model suggest that shunts are present in all three compartments of the hypoglossal motoneuron model. Taken together, these data indicate that postsynaptic inhibitory drives are widely distributed on the soma-dendritic tree of hypoglossal motoneurons during AS-carbachol. These postsynaptic inhibitory actions are likely to be involved in the pathophysiology of obstructive sleep apnea. PMID:11102580

  6. Phosphoinositides metabolism in primary culture of dog thyroid cells: Effects of thyrotropin and carbachol

    SciTech Connect

    Taguchi, M.; Field, J.B. )

    1990-04-01

    Thyrotropin (TSH) and carbachol stimulated in a dose-dependent manner the accumulation of 3H-glycerophosphoinositol (GPI), 3H-inositol monophosphate (IP1), 3H-inositol bisphosphate (IP2) and 3H-inositol trisphosphate (IP3) in primary cultures of dog thyroid cells prelabeled with myo-(2-3H)inositol. TSH, 250 mU/mL, stimulated 3H-IP3 level after a 10-minute incubation while 10 mU/mL TSH increased it during a 60-minute incubation. The effect of carbachol was more rapid and greater than that of TSH. Carbachol, 100 mumol/L, elevated 3H-IP3 after a 2-minute incubation and 3H-IP3 formation was increased by as little as 1 mumol/L carbachol. TSH stimulation was observed only if the cells were deprived of TSH for 5 days before being labeled with 3H-inositol. Prolongation of the labeling period or addition of TSH, (Bu)2cAMP or carbachol during the labeling increased 3H-inositol incorporation into polyphoinositides (PIPs). When the cells were labeled without any other addition, control and TSH-stimulated 3H-IP3 levels increased in parallel with 3H-PIP levels. However, TSH or carbachol-stimulated 3H-IP3 levels did not increase in proportion to 3H-PIPs level when the cells were labeled with TSH or (Bu)2cAMP. Thus, the ratio of 3H-IP3/3H-PIPs (both control and TSH or carbachol-stimulated) decreased in the cells labeled with TSH or (Bu)2cAMP, which might reflect TSH stimulation of 3H-inositol incorporation into PIPs pool(s) that do not participate in hormone-induced hydrolysis of PIPs.

  7. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox.

    PubMed Central

    Dionne, V E; Stevens, C F

    1975-01-01

    1. End-plate currents produced by nerve-released acetylcholine and iontophoretically applied acetylcholine and carbachol have been recorded from voltage-clamped frog cutaneous pectoris neuromuscular junctions made visible with Nomarski differential interference contrast optics. 2. The effectiveness of agonists - that is, the end-plate conductance change produced by a given dose-has been determined as a function of post-junctional membrane potential. 3. As the post-junctional membrane potential is made more negative, nerve-released acetylcholine becomes less effective whereas iontophoretically-applied agonists become more effective. 4. This voltage dependence of agonist effectiveness is mediated neither by end-plate current iontophoresis of agonist into the cleft nor through electric field effects on the esterase. 5. Influences of membrane potential on the opening and closing of end-plate channel gates can account quantitatively for the voltage-dependent effectiveness of both nerve-released and iontophoretically applied agonist. PMID:1081139

  8. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  9. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  10. Interaction of IFN-γ with Cholinergic Agonists to Modulate Rat and Human Goblet Cell Function

    PubMed Central

    García-Posadas, L; Hodges, RR; Li, D; Shatos, MA; Storr-Paulsen, T; Diebold, Y; Dartt, DA

    2015-01-01

    Goblet cells populate wet-surfaced mucosa including the conjunctiva of the eye, intestine, and nose, among others. These cells function as part of the innate immune system by secreting high molecular weight mucins that interact with environmental constituents including pathogens, allergens, and particulate pollutants. Herein we determined whether IFN-γ, a Th1 cytokine increased in dry eye, alters goblet cell function. Goblet cells from rat and human conjunctiva were cultured. Changes in intracellular [Ca2+] ([Ca2+]i), high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with IFN-γ with or without the cholinergic agonist carbachol. IFN-γ itself increased [Ca2+]i in rat and human goblet cells and prevented the increase in [Ca2+]i caused by carbachol. Carbachol prevented IFN-γ-mediated increase in [Ca2+]i. This cross-talk between IFN-γ and muscarinic receptors may be partially due to use of the same Ca2+i reservoirs, but also from interaction of signaling pathways proximal to the increase in [Ca2+]i. IFN-γ blocked carbachol-induced high molecular weight glycoconjugate secretion and reduced goblet cell proliferation. We conclude that increased levels of IFN-γ in dry eye disease could explain the lack of goblet cells and mucin deficiency typically found in this pathology. IFN-γ could also function similarly in respiratory and gastrointestinal tracts. PMID:26129651

  11. From synapse to gene product: Prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum

    PubMed Central

    Quattrochi, James J.; Bazalakova, Mihaela; Hobson, J. Allan

    2006-01-01

    It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect. PMID:15893601

  12. Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats

    PubMed Central

    Lu, Jackie W; Fenik, Victor B; Branconi, Jennifer L; Mann, Graziella L; Rukhadze, Irma; Kubin, Leszek

    2007-01-01

    Studies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) sleep. We used anaesthetized rats in which pontine microinjections of a cholinergic agonist, carbachol, can repeatedly elicit REM sleep-like episodes to test whether activation of PF cells induced by antagonism of endogenous, GABAA receptor-mediated, inhibition suppresses the ability of the brainstem to generate REM sleep-like state. Microinjections of the GABAA receptor antagonist, bicuculline (20 nl, 1 mm), into the PF region elicited cortical and hippocampal activation, increased the respiratory rate and hypoglossal nerve activity, induced c-fos expression in ORX and other PF neurones, and increased c-fos expression in pontine A7 and other noradrenergic neurones. The ability of pontine carbachol to elicit any cortical, hippocampal or brainstem component of the REM sleep-like response was abolished during the period of bicuculline-induced activation. The activating and REM sleep-suppressing effect of PF bicuculline was not attenuated by systemic administration of the ORX type 1 receptor antagonist, SB334867. Thus, activation of PF neurones that are endogenously inhibited by GABAA receptors is sufficient to turn off the brainstem REM sleep-generating network; the effect is, at least in part, due to activation of pontine noradrenergic neurones, but is not mediated by ORX type 1 receptors. A malfunction of the pathway that originates in GABAA receptor-expressing PF neurones may cause narcolepsy/cataplexy. PMID:17495048

  13. Effects of nitric acid on carbachol reactivity of the airways in normal and allergic sheep

    SciTech Connect

    Abraham, W.M.; Kim, C.S.; King, M.M.; Oliver, W. Jr.; Yerger, L.

    1982-01-01

    The airway effects of a 4-hr exposure (via a Plexiglas hood) to 1.6 ppm nitric acid vapor were evaluated in seven normal and seven allergic sheep, i.e., animals that have a history of reacting with bronchospasm to inhalation challenge with Ascaris suum antigen. The nitric acid vapor was generated by ultrasonic nebulization of a 2% nitric acid solution. Airway effects were assessed by measuring the change in specific pulmonary flow resistance before and after a standard inhalation challenge with 2.5% carbachol aerosol. Nitric acid exposure did not produce bronchoconstriction in either group. Pre-exposure increases in specific pulmonary flow resistance after carbachol inhalation were 68% (SD+/- 13%) and 82% (SD+/- 35%) for the normal and allergic sheep, respectively. Within 24 hr, the largest post-exposure increases in specific pulmonary flow resistance for the normal and allergic sheep were 108% (SD+/- 51%(P<.06)) and 175% (SD+/- 87% (p<.02)), respectively. We conclude that a short-term exposure to nitric acid vapor at levels below the industrial threshold limit (2 ppm), produces airway hyperreactivity to aerosolized carbachol in allergic sheep.

  14. Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain.

    PubMed

    Klamt, J G; Prado, W A

    1991-05-17

    The sites of the rat brain in which intracerebral administration of carbachol (0.4 microgram/0.5 microliter) elevates the nociceptive threshold to thermic (tail-flick test) and mechanical (calibrated-pinch test) noxious stimuli were examined. An extensive mapping (510 sites) ranging from AP + 10.5 to AP-0.1 mm revealed that antinociception was obtained from 119 sites (23%) widely scattered in the brain, and reached structures distant from, or within the immediate vicinity of the ventricular system. The effects from most placement were demonstrated using the tail-flick test, whereas a smaller proportion (approximately 13%) of sites was effective in reducing the response to mechanical stimuli only. Structures containing sensitive sites include the dorsal raphe nucleus, lateral border of the superior cerebellar peduncle, caudal portion of the superior colliculus, medial geniculate body, habenular complex, amygdala, temporal pole of the ventral hippocampus, rostral aspect of the dorsal hippocampus, lateral septal area, and triangular nucleus of the septum. Analysis of the distribution of responsive sites indicated that they are poorly superposed to the known distribution of opiate-sensitive areas. Most of the structures found to be responsive to carbachol are also known to possess cholinergic receptors and to evoke antinociception following focal electrical stimulation. In various placements, particularly in limbic structures, microinjection of carbachol evoked jumping to mechanical noxious stimulation, hyperexcitability to non-noxious stimuli, convulsive reactions, and other less frequent reactions. On few occasions, however, these changes were accompanied by antinociception. PMID:1893255

  15. Basolateral K channel activated by carbachol in the epithelial cell line T84.

    PubMed

    Tabcharani, J A; Harris, R A; Boucher, A; Eng, J W; Hanrahan, J W

    1994-11-01

    Cholinergic stimulation of chloride secretion involves the activation of a basolateral membrane potassium conductance, which maintains the electrical gradient favoring apical Cl efflux and allows K to recycle at the basolateral membrane. We have used transepithelial short-circuit current (Isc), fluorescence imaging, and patch clamp studies to identify and characterize the K channel that mediates this response in T84 cells. Carbachol had little effect on Isc when added alone but produced large, transient currents if added to monolayers prestimulated with cAMP. cAMP also enhanced the subsequent Isc response to calcium ionophores. Carbachol (100 microM) transiently elevated intracellular free calcium ([Ca2+]i) by approximately 3-fold in confluent cells cultured on glass coverslips with a time course resembling the Isc response of confluent monolayers that had been grown on porous supports. In parallel patch clamp experiments, carbachol activated an inwardly rectifying potassium channel on the basolateral aspect of polarized monolayers which had been dissected from porous culture supports. The same channel was transiently activated on the surface of subconfluent monolayers during stimulation by carbachol. Activation was more prolonged when cells were exposed to calcium ionophores. The conductance of the inward rectifier in cell-attached patches was 55 pS near the resting membrane potential (-54 mV) with pipette solution containing 150 mM KCl (37 degrees C). This rectification persisted when patches were bathed in symmetrical 150 mM KCl solutions. The selectivity sequence was 1 K > 0.88 Rb > 0.18 Na > Cs based on permeability ratios under bi-ionic conditions. The channel exhibited fast block by external sodium ions, was weakly inhibited by external TEA, was relatively insensitive to charybdotoxin, kaliotoxin, 4-aminopyridine and quinidine, and was unaffected by external 10 mM barium. It is referred to as the KBIC channel based on its most distinctive properties (Ba

  16. Autoantibodies enhance agonist action and binding to cardiac muscarinic receptors in chronic Chagas' disease.

    PubMed

    Hernandez, Ciria C; Nascimento, Jose H; Chaves, Elen A; Costa, Patricia C; Masuda, Masako O; Kurtenbach, Eleonora; Campos DE Carvalho, Antonio C; Gimenez, Luis E

    2008-01-01

    Chronic Chagasic patient immunoglobulins (CChP-IgGs) recognize an acidic amino acid cluster at the second extracellular loop (el2) of cardiac M(2)-muscarinic acetylcholine receptors (M(2)AChRs). These residues correspond to a common binding site for various allosteric agents. We characterized the nature of the M(2)AChR/CChP-IgG interaction in functional and radioligand binding experiments applying the same mainstream strategies previously used for the characterization of other allosteric agents. Dose-response curves of acetylcholine effect on heart rate were constructed with data from isolated heart experiments in the presence of CChP or normal blood donor (NBD) sera. In these experiments, CChP sera but not NBD sera increased the efficacy of agonist action by augmenting the onset of bradyarrhythmias and inducing a Hill slope of 2.5. This effect was blocked by gallamine, an M(2)AChR allosteric antagonist. Correspondingly, CChP-IgGs increased acetylcholine affinity twofold and showed negative cooperativity for [(3)H]-N-methyl scopolamine ([(3)H]-NMS) in allosterism binding assays. A peptide corresponding to the M(2)AChR-el2 blocked this effect. Furthermore, dissociation assays showed that the effect of gallamine on the [(3)H]-NMS off-rate was reverted by CChP-IgGs. Finally, concentration-effect curves for the allosteric delay of W84 on [(3)H]-NMS dissociation right shifted from an IC(50) of 33 nmol/L to 78 nmol/L, 992 nmol/L, and 1670 nmol/L in the presence of 6.7 x 10(- 8), 1.33 x 10(- 7), and 2.0 x 10(- 7) mol/L of anti-el2 affinity-purified CChP-IgGs. Taken together, these findings confirmed a competitive interplay of these ligands at the common allosteric site and revealed the novel allosteric nature of the interaction of CChP-IgGs at the M(2)AChRs as a positive cooperativity effect on acetylcholine action. PMID:18702010

  17. Autoantibodies Enhance Agonist Action and Binding to Cardiac Muscarinic Receptors in Chronic Chagas’ Disease

    PubMed Central

    Hernández, Ciria C.; Nascimento, José H.; Chaves, Elen A.; Costa, Patrícia C.; Masuda, Masako O.; Kurtenbach, Eleonora; Campos de Carvalho, Antônio C.; Giménez, Luis E.

    2009-01-01

    Chronic Chagasic patient immunoglobulins (CChP-IgGs) recognize an acidic amino acid cluster at the second extracellular loop (el2) of cardiac M2-muscarinic acetylcholine receptors (M2AChRs). These residues correspond to a common binding site for various allosteric agents. We characterized the nature of the M2AChR/CChP-IgG interaction in functional and radioligand binding experiments applying the same mainstream strategies previously used for the characterization of other allosteric agents. Dose-response curves of acetylcholine effect on heart rate were constructed with data from isolated heart experiments in the presence of CChP or normal blood donor (NBD) sera. In these experiments, CChP sera but not NBD sera increased the efficacy of agonist action by augmenting the onset of bradyarrhythmias and inducing a Hill slope of 2.5. This effect was blocked by gallamine, an M2AChR allosteric antagonist. Correspondingly, CChP-IgGs increased acetylcholine affinity twofold and showed negative cooperativity for [3H]-N-methyl scopolamine ([3H]-NMS) in allosterism binding assays. A peptide corresponding to the M2AChR-el2 blocked this effect. Furthermore, dissociation assays showed that the effect of gallamine on the [3H]-NMS off-rate was reverted by CChP-IgGs. Finally, concentration-effect curves for the allosteric delay of W84 on [3H]-NMS dissociation right shifted from an IC50 of 33 nmol/L to 78 nmol/L, 992 nmol/L, and 1670 nmol/L in the presence of 6.7 × 10−8, 1.33 × 10−7, and 2.0 × 10−7 mol/L of anti-el2 affinity-purified CChP-IgGs. Taken together, these findings confirmed a competitive interplay of these ligands at the common allosteric site and revealed the novel allosteric nature of the interaction of CChP-IgGs at the M2AChRs as a positive cooperativity effect on acetylcholine action. PMID:18702010

  18. Mechanism of carbachol-evoked contractions of guinea-pig ileal smooth muscle close to freezing point.

    PubMed

    Blackwood, A M; Bolton, T B

    1993-08-01

    1. The effect of lowering the temperature to near freezing-point upon the contractions and [3H]-inositol phosphate responses to carbachol were investigated in longitudinal smooth muscle from the guinea-pig ileum. 2. The peak amplitude of the contraction to a single application of 100 microM carbachol was the same at 37 degrees C and temperatures near freezing-point. However, the sensitivity to carbachol was reduced upon lowering the temperature and the time to peak contraction was increased from 5-10 s to 2-10 min. Even when the temperature was maintained near freezing-point, washing off carbachol produced a relaxation and eventual return of tension to basal levels. 3. Incubating the tissue in 140 mM K+, calcium-free solution or in calcium channel antagonists significantly reduced the carbachol-induced contraction to 10-30% of the control at 37 degrees C and also at 3 degrees C. Thus the majority of the activator calcium required for contraction entered the tissue via voltage-dependent calcium channels (VDCs) at both 37 degrees C and 3 degrees C. 4. The contractions produced by high potassium solutions were less at temperatures close to freezing-point than those at 37 degrees C suggesting that voltage-dependent calcium entry was inhibited as the temperature was lowered. 5. A small part of the contractile response to 100 microM carbachol was resistant to the removal of extracellular calcium at both 37 degrees C and 3 degrees C and this component was increased under depolarizing conditions. This suggests that the release of stored calcium contributes to a minor degree to contraction at both 37 degrees C and 3 degrees C.6. Although 100 microM carbachol produced a statistically significant rise in several [3H]-inositol phosphate isomers at both 37 degrees C and 3 degrees C, the production of [3H]-inositol phosphates was less at 3 degrees C than at 37 degrees C and the increase in their production caused by carbachol was much slower.7. These results suggest that the

  19. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors.

    PubMed

    Jakubík, J; Bacáková, L; El-Fakahany, E E; Tucek, S

    1997-07-01

    It is well known that allosteric modulators of muscarinic acetylcholine receptors can both diminish and increase the affinity of receptors for their antagonists. We investigated whether the allosteric modulators can also increase the affinity of receptors for their agonists. Twelve agonists and five allosteric modulators were tested in experiments on membranes of CHO cells that had been stably transfected with genes for the M1-M4 receptor subtypes. Allosterically induced changes in the affinities for agonists were computed from changes in the ability of a fixed concentration of each agonist to compete with [3H]N-methylscopolamine for the binding to the receptors in the absence and the presence of varying concentrations of allosteric modulators. The effects of allosteric modulators varied greatly depending on the agonists and the subtypes of receptors. The affinity for acetylcholine was augmented by (-)-eburnamonine on the M2 and M4 receptors and by brucine on the M1 and M3 receptors. Brucine also enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pilocarpine, 3-(3-pentylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1- methylpyridine (pentylthio-TZTP), oxotremorine-M, and McN-A-343 on the M1, M3, and M4 receptors, for pentylthio-TZTP on the M2 receptors, and for arecoline on the M3 receptors. (-)-Eburnamonine enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pentylthio-TZTP, pilocarpine, oxotremorine and oxotremorine-M on the M2 receptors and for pilocarpine on the M4 receptors. Vincamine, strychnine, and alcuronium displayed fewer positive allosteric interactions with the agonists, but each allosteric modulator displayed positive cooperativity with at least one agonist on at least one muscarinic receptor subtype. The highest degrees of positive cooperativity were observed between (-)-eburnamonine and pilocarpine and (-)-eburnamonine and oxotremorine-M on the M2 receptors (25- and 7-fold increases in

  20. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state. PMID:8501533

  1. Voltage-current relationship of a carbachol-induced potassium-ion pathway in Aplysia neurones.

    PubMed Central

    Ginsborg, B L; Kado, R T

    1975-01-01

    1. The electrical characteristics of a potassium ion selective pathway produced by the action of carbachol on Aplysia neurones (Kehoe, 1972b) has been studied. 2. The relationship between current and voltage has been found to be non-linear, the conductance increasing with depolarization and decreasing with hyperpolarization. The degree of rectification was reduced when the external potassium was raised to 50 mM from its normal value of 10 mM. 3. The direction of the rectification and the effect of increased potassium are as predicted by the 'constant field' theory, but the degree of rectification is somewhat larger. PMID:1142225

  2. Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae.

    PubMed

    Courchesne, William E; Vlasek, Christopher; Klukovich, Rachel; Coffee, Sara

    2011-05-01

    Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca(2+) flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca(2+). The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca(2+) levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca(2+) flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca(2+) flux. Acetate inhibits the Ca(2+) accumulation elicited by the ethanol/osmotic stress. The Ca(2+) flux is primarily via the Cch1 Ca(2+) influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca(2+) flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol. PMID:21259000

  3. Coordination of weakly binding anions to [Ru2(μ-O2CCH3)4]+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dunlop, Kate; Wang, Ruiyao; Stanley Cameron, T.; Aquino, Manuel A. S.

    2014-01-01

    Four new complexes involving the diruthenium(II,III) tetraacetate core, [Ru2(μ-O2CCH3)4]+, with three relatively weakly binding anions ClO4-, NO3- and CFCO2- have been synthesized and structurally characterized in exclusively aqueous media. Despite their low, but still positive, apparent donor numbers (D.N.) in water (according to previous literature by Linert et al.) both NO3- (D.N. = 0.21) and CFCO2- (D.N. < 8.65) do coordinate axially to [Ru2(μ-O2CCH3)4]+ , with water having a D.N. = 19.5. NO3- forms both a polymer, [Ru2(μ-O2CCH3)4(NO3)]x, and a mixed axial adduct with water, [Ru2(μ-O2CCH3)4(H2O)(NO3)] depending on reaction stoichiometry. CFCO2- forms a double salt of the form [Ru2(μ-O2CCH3)4(H2O)2] [Ru2(μ-O2CCH3)4(CF3COO)2]⋯2H2O. ClO4-, with a negative apparent D.N. in water of -12.4, only "binds" outer-sphere to form [Ru2(μ-O2CCH3)4(H2O)2](ClO4), at all reaction stoichiometries (as does the PF6- ion whose structure was also determined and found to be the same as a previous result). These results are compared to the very limited data of [Ru2(μ-O2CCH3)4]+ adduct salts in aqueous solution and it is concluded that despite the low donor numbers, as long as they are positive, the species formed in water can be every bit as varied and rich as those formed in other solvents.

  4. Nitric oxide donor beta2-agonists: furoxan derivatives containing the fenoterol moiety and related furazans.

    PubMed

    Buonsanti, M Federica; Bertinaria, Massimo; Stilo, Antonella Di; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2007-10-01

    The structure of fenoterol, a beta2-adrenoceptor agonist used in therapy, has been joined with furoxan NO-donor moieties to give new NO-donor beta2-agonists. The furazan analogues, devoid of the property to release NO, were also synthesized for comparison. All the compounds retained beta2-agonistic activity at micromolar or submicromolar concentration when tested on guinea pig tracheal rings precontracted with carbachol. Among the furoxan derivatives, the NO contribution to trachea relaxation was evident with product 15b at micromolar concentrations. All the new NO-donor hybrids were able to dilate rat aortic strips precontracted with phenylephrine. Both furoxan and furazan derivatives displayed antioxidant activity greater than that of fenoterol. PMID:17845020

  5. Hydrogen sulphide inhibits carbachol-induced contractile responses in β-escin permeabilized guinea-pig taenia caecum.

    PubMed

    Denizalti, Merve; Durlu-Kandilci, N Tugba; Bozkurt, T Emrah; Sahin-Erdemli, Inci

    2011-05-11

    Hydrogen sulphide (H(2)S) is an endogenous mediator producing a potent relaxation response in vascular and non-vascular smooth muscles. While ATP-sensitive potassium channels are mainly involved in this relaxant effect in vascular smooth muscle, the mechanism in other smooth muscles has not been revealed yet. In the present study, we investigated how H(2)S relaxes non-vascular smooth muscle by using intact and β-escin permeabilized guinea-pig taenia caecum. In intact tissues, concentration-dependent relaxation response to H(2)S donor NaHS in carbachol-precontracted preparations did not change in the presence of a K(ATP) channel blocker glibenclamide, adenylate cyclase inhibitor SQ-22536, guanylate cyclase inhibitor ODQ, protein kinase A inhibitor KT-5720, protein kinase C inhibitor H-7, tetrodotoxin, apamin/charybdotoxin, NOS inhibitor L-NAME and cyclooxygenase inhibitor indomethacin. We then studied how H(2)S affected carbachol- or Ca(2+)-induced contractions in permeabilized tissues. When Ca(2+) was clamped to a constant value (pCa6), a further contraction could be elicited by carbachol that was decreased by NaHS. This decrease in contraction was reversed by catalase but not by superoxide dismutase or N-acetyl cysteine. The sarcoplasmic reticulum Ca(2+)-ATPase pump inhibitor, cyclopiazonic acid, also decreased the carbachol-induced contraction that was further inhibited by NaHS. Mitochondrial proton pump inhibitor carbonyl cyanide p-trifluromethoxyphenylhydrazone also decreased the carbachol-induced contraction but this was not additionally changed by NaHS. The carbachol-induced Ca(2+) sensitization, calcium concentration-response curves, IP(3)- and caffeine-induced contractions were not affected by NaHS. In conclusion, we propose that hydrogen peroxide and mitochondria may have a role in H(2)S-induced relaxation response in taenia caecum. PMID:21371473

  6. Mechanism of carbachol-evoked contractions of guinea-pig ileal smooth muscle close to freezing point.

    PubMed Central

    Blackwood, A. M.; Bolton, T. B.

    1993-01-01

    1. The effect of lowering the temperature to near freezing-point upon the contractions and [3H]-inositol phosphate responses to carbachol were investigated in longitudinal smooth muscle from the guinea-pig ileum. 2. The peak amplitude of the contraction to a single application of 100 microM carbachol was the same at 37 degrees C and temperatures near freezing-point. However, the sensitivity to carbachol was reduced upon lowering the temperature and the time to peak contraction was increased from 5-10 s to 2-10 min. Even when the temperature was maintained near freezing-point, washing off carbachol produced a relaxation and eventual return of tension to basal levels. 3. Incubating the tissue in 140 mM K+, calcium-free solution or in calcium channel antagonists significantly reduced the carbachol-induced contraction to 10-30% of the control at 37 degrees C and also at 3 degrees C. Thus the majority of the activator calcium required for contraction entered the tissue via voltage-dependent calcium channels (VDCs) at both 37 degrees C and 3 degrees C. 4. The contractions produced by high potassium solutions were less at temperatures close to freezing-point than those at 37 degrees C suggesting that voltage-dependent calcium entry was inhibited as the temperature was lowered. 5. A small part of the contractile response to 100 microM carbachol was resistant to the removal of extracellular calcium at both 37 degrees C and 3 degrees C and this component was increased under depolarizing conditions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8401915

  7. In vitro effect of nicorandil on the carbachol-induced contraction of the lower esophageal sphincter of the rat.

    PubMed

    Shimbo, Tomonori; Adachi, Takeshi; Fujisawa, Susumu; Hongoh, Mai; Ohba, Takayoshi; Ono, Kyoichi

    2016-08-01

    The lower esophageal sphincter (LES) is a specialized region of the esophageal smooth muscle that allows the passage of a swallowed bolus into the stomach. Nitric oxide (NO) plays a major role in LES relaxation. Nicorandil possesses dual properties of a NO donor and an ATP-sensitive potassium channel (KATP channel) agonist, and is expected to reduce LES tone. This study investigated the mechanisms underlying the effects of nicorandil on the LES. Rat LES tissues were placed in an organ bath, and activities were recorded using an isometric force transducer. Carbachol-induced LES contraction was significantly inhibited by KATP channel agonists in a concentration-dependent manner; pinacidil > nicorandil ≈ diazoxide. Nicorandil-induced relaxation of the LES was prevented by pretreatment with glibenclamide, whereas N(G)-nitro-l-arginine methyl ester (l-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and iberiotoxin were ineffective at preventing nicorandil-induced LES relaxation. Furthermore, nicorandil did not affect high K(+)-induced LES contraction. Reverse-transcription polymerase chain reaction analysis and immunohistochemistry revealed expression of KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1) and ABCC9 (SUR2) subunits of the KATP channel in the rat lower esophagus. These findings indicate that nicorandil causes LES relaxation chiefly by activating the KATP channel, and that it may provide an additional pharmacological tool for the treatment of spastic esophageal motility disorders. PMID:27562702

  8. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  9. Population synaptic potentials evoked in lumbar motoneurons following stimulation of the nucleus reticularis gigantocellularis during carbachol-induced atonia.

    PubMed

    Yamuy, J; Jiménez, I; Morales, F; Rudomin, P; Chase, M

    1994-03-14

    The effect of electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) on lumbar spinal cord motoneurons was studied in the decerebrate cat using sucrose-gap recordings from ventral roots. The NRGc was stimulated ipsi- and contralaterally before and during atonia elicited by the microinjection of carbachol into the pontine reticular formation. Prior to carbachol administration, the NRGc-induced response recorded from the sucrose-gap consisted of two consecutive excitatory population synaptic potentials followed by a long-lasting, small amplitude inhibitory population synaptic potential. Following carbachol injection, the same NRGc stimulus evoked a distinct, large amplitude inhibitory population synaptic potential, whereas the excitatory population synaptic potentials decreased in amplitude. In addition, after carbachol administration, the amplitude of the monosynaptic excitatory population synaptic potential, which was evoked by stimulation of group Ia afferents in hindlimb nerves, was reduced by 18 to 43%. When evoked at the peak of the NRGc-induced inhibitory response, this potential was further decreased in amplitude. Systemic strychnine administration (0.07-0.1 mg/kg, i.v.) blocked the NRGc-induced inhibitory population synaptic potential and promoted an increase in the amplitude of the excitatory population synaptic potentials induced by stimulation of the NRGc and group Ia afferents. These data indicate that during the state of carbachol-induced atonia, the NRGc effects on ipsi- and contralateral spinal cord motoneurons are predominantly inhibitory and that glycine is likely to be involved in this inhibitory process. These results support the hypothesis that the nucleus reticularis gigantocellularis is part of the system responsible for state-dependent somatomotor inhibition that occurs during active sleep. PMID:8205484

  10. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid

    SciTech Connect

    Takuwa, Y.; Takuwa, N.; Rasmussen, H.

    1986-11-05

    The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of (/sup 3/H)inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in (/sup 3/H)inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of (/sup 3/H)inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca/sup 2 +/ and does not appear to be secondary to an increase in intracellular Ca/sup 2 +/. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.

  11. Subclassification of muscarinic receptors in the heart, urinary bladder and sympathetic ganglia in the pithed rat. Selectivity of some classical agonists.

    PubMed

    van Charldorp, K J; de Jonge, A; Thoolen, M J; van Zwieten, P A

    1985-12-01

    In pithed normotensive rats muscarinic receptors were characterized in heart, urinary bladder and sympathetic ganglia; the selectivity of some classical muscarinic agents for these subtypes was investigated. The potencies in decreasing heart rate, increasing bladder pressure and increasing diastolic blood pressure were measured for the following, intraarterially administered cholinergic agonists: McN-A-343 ([4-m-chlorophenylcarbamoyloxy]-2-butynyltrimethylammonium), pilocarpine, carbachol, oxotremorine, arecoline, acetyl-beta-methylcholine and acetylcholine. The selective M1-antagonist pirenzepine, the mixed M1/M2-antagonist dexetimide and the cardioselective M2-antagonist gallamine were used as tools for identification of the receptors. All data were obtained after intravenous pretreatment with a high dose of atenolol to eliminate tachycardia induced by stimulating sympathetic ganglionic muscarinic receptors. Dexetimide strongly antagonized the bradycardia as well as the increase in bladder pressure induced by pilocarpine, carbachol, oxotremorine, arecoline, acetyl-beta-methylcholine and acetylcholine, whereas pirenzepine was much less effective. Gallamine antagonized the bradycardia, whereas no influence was found on the bladder contraction. Pilocarpine acted as a partial agonist in reducing heart rate as well as in increasing bladder pressure, whereas McN-A-343 was almost ineffective in doses up to 1 mg/kg. The hypertensive response to pilocarpine and carbachol was less pronounced than that produced by McN-A-343. Pirenzepine and dexetimide significantly antagonized the hypertensive response to McN-A-343 and pilocarpine, whereas gallamine was much less effective. The hypertensive response induced by carbachol was totally blocked by hexamethonium. The other agonists used in this study did not produce a significant increase in diastolic blood pressure in doses that produced a maximal effect on heart rate and urinary bladder pressure.(ABSTRACT TRUNCATED AT 250 WORDS

  12. Electrophysiological properties of lumbar motoneurons in the alpha-chloralose-anesthetized cat during carbachol-induced motor inhibition.

    PubMed

    Xi, M C; Liu, R H; Yamuy, J; Morales, F R; Chase, M H

    1997-07-01

    The present study was undertaken 1) to examine the neuronal mechanisms responsible for the inhibition of spinal cord motoneurons that occurs in alpha-chloralose-anesthetized cats following the microinjection of carbachol into the nucleus pontis oralis (NPO), and 2) to determine whether the inhibitory mechanisms are the same as those that are responsible for the postsynaptic inhibition of motoneurons that is present during naturally occurring active sleep. Accordingly, the basic electrophysiological properties of lumbar motoneurons were examined, with the use of intracellular recording techniques, in cats anesthetized with alpha-chloralose and compared with those present during naturally occurring active sleep. The intrapontine administration of carbachol resulted in a sustained reduction in the amplitude of the spinal cord Ia monosynaptic reflex. Discrete large-amplitude inhibitory postsynaptic potentials (IPSPs), which are only present during the state of active sleep in the chronic cat, were also observed in high-gain recordings from lumbar motoneurons after the injection of carbachol. During carbachol-induced motor inhibition, lumbar motoneurons exhibited a statistically significant decrease in input resistance, membrane time constant and a reduction in the amplitude of the action potential's afterhyperpolarization. In addition, there was a statistically significant increase in rheobase and in the delay between the initial-segment (IS) and somadendritic (SD) portions of the action potential (IS-SD delay). There was a significant increase in the mean motoneuron resting membrane potential (i.e., hyperpolarization). The preceding changes in the electrophysiological properties of motoneurons, as well as the development of discrete IPSPs, indicate that lumbar motoneurons are postsynaptically inhibited after the intrapontine administration of carbachol in cats that are anesthetized with alpha-chloralose. These changes in the electrophysiological properties of lumbar

  13. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    SciTech Connect

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  14. Muscarinic receptors mediate negative and positive inotropic effects in mammalian ventricular myocardium: differentiation by agonists.

    PubMed Central

    Korth, M.; Kühlkamp, V.

    1987-01-01

    The concentration-dependence of the negative and positive inotropic effect of choline esters and of oxotremorine was studied in isometrically contracting papillary muscles of the guinea-pig. The preparations were obtained from reserpine-pretreated animals and were electrically driven at a frequency of 0.2 Hz. In the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX, 100 mumol l-1), choline esters and oxotremorine produced concentration-dependent negative inotropic effects. Oxotremorine exhibited the highest negative inotropic potency (with a half-maximal effective concentration, EC50, of 20 nmol l-1) followed by carbachol (139 nmol l-1), methacholine (490 nmol l-1), acetylcholine in the presence of 10 mumol l-1 physostigmine (1.36 mumol l-1) and bethanechol (10 mumol l-1). Atropine was a competitive antagonist of the negative inotropic effects. Carbachol and oxotremorine decreased Vmax, overshoot and duration of slow Ca2+-dependent action potentials which had been elicited in the presence of 100 mumol l-1 IBMX. Choline esters produced a concentration-dependent positive inotropic effect. With an EC50 of 32 mumol l-1, carbachol was the most potent compound, followed by methacholine (35 mumol l-1), acetylcholine in the presence of 10 mumol l-1 physostigmine (46 mumol l-1) and bethanechol (142 mumol l-1). Compared to carbachol and methacholine which increased force by 100% of control, the increase induced by acetylcholine and bethanechol was only 64 and 58%, respectively. Atropine shifted the concentration-effect curves of all choline esters to higher concentrations. Choline esters caused intracellular Na+ activity to increase in the quiescent papillary muscle. This effect was reversed by atropine. Oxotremorine produced a small concentration-dependent positive inotropic effect (about 30% of the maximal effect of carbachol) which was resistant to atropine. Oxotremorine was a potent inhibitor of the positive inotropic effect of choline esters

  15. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep-carbachol

  16. Carbachol increases basolateral K+ conductance in T84 cells. Simultaneous measurements of cell [Ca] and gK explore calcium's role.

    PubMed

    Wong, S M; Tesfaye, A; DeBell, M C; Chase, H S

    1990-12-01

    To explore the role of calcium in mediating the action of carbachol in chloride-secreting epithelia, we simultaneously measured intracellular free [Ca] ([Ca]i) and the potassium conductance (gK) of the basolateral membrane in T84 cells grown on collagen-coated filters. [Ca]i was measured with fura-2 and fluorescence microscopy and expressed as a relative value ([Ca]'i) normalized to control. To assess changes in basolateral gK, we measured the short circuit current (Isc) in the presence of luminal amphotericin and a transepithelial mucosa-to-serosa K+ gradient (Germann, W. J., M. E. Lowy, S. A. Ernst, and D. C. Dawson. 1986. J. Gen. Physiol. 88:237-251). Treatment of the monolayers with carbachol resulted in a parallel increase and then decrease in [Ca]'i and gK. The carbachol-induced changes in gK appeared to be dependent on the increase in [Ca]i because stimulation of gK was significantly diminished when the hormone-induced increase in [Ca]'i was blunted, either by loading the cells with BAPTA or by reducing the extracellular [Ca]. The carbachol-stimulated increase in gK appeared to be the direct result of the increase in steady-state [Ca]'i. The changes in gK and [Ca]'i after stimulation with carbachol were correlated and ionomycin also increased gK and [Ca]'i in a parallel manner. The carbachol-induced delta gK per delta[Ca]'i, however, was greater than that after ionomycin. Because ionomycin and carbachol appear to open the same channel, a conclusion based on inhibitor and selectivity experiments, carbachol may have a second action that amplifies the effect of calcium on gK. PMID:2126802

  17. Reliable Spectroscopic Constants for CCH-, NH2- and Their Isotopomers from an Accurate Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Schwenke, David W.; Chaban, Galina M.

    2005-01-01

    Accurate quartic force fields have been determined for the CCH- and NH2- molecular anions using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, CCSD(T). Very large one-particle basis sets have been used including diffuse functions and up through g-type functions. Correlation of the nitrogen and carbon core electrons has been included, as well as other "small" effects, such as the diagonal Born-Oppenheimer correction, and basis set extrapolation, and corrections for higher-order correlation effects and scalar relativistic effects. Fundamental vibrational frequencies have been computed using standard second-order perturbation theory as well as variational methods. Comparison with the available experimental data is presented and discussed. The implications of our research for the astronomical observation of molecular anions will be discussed.

  18. Naloxone reduces the amplitude of IPSPs evoked in lumbar motoneurons by reticular stimulation during carbachol-induced motor inhibition.

    PubMed

    Xi, M C; Liu, R H; Yamuy, J; Morales, F R; Chase, M H

    1999-02-20

    During active sleep or carbachol-induced motor inhibition, electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) evoked large amplitude, glycinergic inhibitory postsynaptic potentials (IPSPs) in cat motoneurons. The present study was directed to determine whether these IPSPs, that are specific to the state of active sleep, are modulated by opioid peptides. Accordingly, intracellular recordings were obtained from lumbar motoneurons of acute decerebrate cats during carbachol-induced motor inhibition while an opiate receptor antagonist, naloxone, was microiontophoretically released next to the recorded cells. Naloxone reversibly reduced by 26% the mean amplitude of NRGc-evoked IPSPs (1.9+/-0.2 mV (S.E.M.) vs. 1.4+/-0.2 mV; n=11, control and naloxone, respectively, p<0.05), but had no effect on the other waveform parameters of these IPSPs (e.g., latency-to-onset, latency-to-peak, duration, etc.). The mean resting membrane potential, input resistance and membrane time constant of motoneurons following naloxone ejection were not statistically different from those of the control. These data indicate that opioid peptides have a modulatory effect on NRGc-evoked IPSPs during carbachol-induced motor inhibition. We therefore suggest that endogenous opioid peptides may act as neuromodulators to regulate inhibitory glycinergic synaptic transmission at motoneurons during active sleep. PMID:10082872

  19. The mechanism of agonist induced Ca2+ signalling in intact endothelial cells studied confocally in in situ arteries.

    PubMed

    Mumtaz, S; Burdyga, G; Borisova, L; Wray, Susan; Burdyga, T

    2011-01-01

    In endothelial cells there remain uncertainties in the details of how Ca(2+) signals are generated and maintained, especially in intact preparations. In particular the role of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), in contributing to the components of agonist-induced signals is unclear. The aim of this work was to increase understanding of the detailed mechanism of Ca(2+) signalling in endothelial cells using real time confocal imaging of Fluo-4 loaded intact rat tail arteries in response to muscarinic stimulation. In particular we have focused on the role of SERCA, and its interplay with capacitative Ca(2+) entry (CCE) and ER Ca(2+) release and uptake. We have determined its contribution to the Ca(2+) signal and how it varies with different physiological stimuli, including single and repeated carbachol applications and brief and prolonged exposures. In agreement with previous work, carbachol stimulated a rise in intracellular Ca(2+) in the endothelial cells, consisting of a rapid initial phase, then a plateau upon which oscillations of Ca(2+) were superimposed, followed by a decline to basal Ca(2+) levels upon carbachol removal. Our data support the following conclusions: (i) the size (amplitude and duration) of the Ca(2+) spike and early oscillations are limited by SERCA activity, thus both are increased if SERCA is inhibited. (ii) SERCA activity is such that brief applications of carbachol do not trigger CCE, presumably because the fall in luminal Ca(2+) is not sufficient to trigger it. However, longer applications sufficient to deplete the ER or even partial SERCA inhibition stimulate CCE. (iii) Ca(2+) entry occurs via STIM-mediated CCE and SERCA contributes to the cessation of CCE. In conclusion our data show how SERCA function is crucial to shaping endothelial cell Ca signals and its dynamic interplay with both CCE and ER Ca releases. PMID:21176847

  20. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; López-Rodríguez, F; Luppi, P H; Morales, F R; Chase, M H

    1995-07-01

    The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7477901

  1. Rotational Spectrum of Neopentyl Alcohol, (CH_3)_3CCH_2OH

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczołkowski, Lech; Xue, Zhifeng; Suhm, Martin A.

    2012-06-01

    The rotational spectrum of neopentyl alcohol (2,2-dimethyl-1-propanol, (CH_3)_3CCH_2OH) has been investigated for the first time. This molecule differs from ethanol only in having the ^tBu group instead of the methyl group, and is likewise anticipated to exhibit two spectroscopic species, with trans and gauche hydroxyl orientation. Quantum chemistry computations predict the trans to be the more stable species. Rotational transitions of both species have now been assigned in supersonic expansion cm-wave FTMW experiment and in room temperature, mm-wave spectra up to 280 GHz. The supersonic expansion measurements with Ar carrier gas confirm that trans is the global minimum species. The trans spectrum is predominantly b-type, while the gauche is predominantly a-type and the frequencies of rotational transitions in both species appear to be perturbed in different ways. The results from effective and from coupled Hamiltonian fits for neopentyl alcohol are presented, and are compared with predictions from ab initio calculations.

  2. Chemistry in Disks. III. Photochemistry and X-ray Driven Chemistry Probed by the Ethynyl Radical (CCH) in DM Tau, LkCa 15, and MWC 480

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Semenov, D.; Guilloteau, St.; Dutrey, A.; Hersant, F.; Wakelam, V.; Chapillon, E.; Launhardt, R.; Piétu, V.; Schreyer, K.

    2010-05-01

    We studied several representative circumstellar disks surrounding the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau at (sub-)millimeter wavelengths in lines of CCH. Our aim is to characterize photochemistry in the heavily UV-irradiated MWC 480 disk and compare the results to the disks around cooler T Tauri stars. We detected and mapped CCH in these disks with the IRAM Plateau de Bure Interferometer in the C and D configurations in the (1-0) and (2-1) transitions. Using an iterative minimization technique, the CCH column densities and excitation conditions are constrained. Very low excitation temperatures are derived for the T Tauri stars. These values are compared with the results of advanced chemical modeling, which is based on a steady-state flared disk structure with a vertical temperature gradient, and a gas-grain chemical network with surface reactions. Both model and observations suggest that CCH is a sensitive tracer of the X-ray and UV irradiation. The predicted radial dependency and source-to-source variations of CCH column densities qualitatively agree with the observed values, but the predicted column densities are too low by a factor of several. The chemical model fails to reproduce high concentrations of CCH in very cold disk midplane as derived from the observed low excitation condition for both the (1-0) and (2-1) transitions.

  3. Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans.

    PubMed

    Wang, Sha; Liu, Xiao; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-06-01

    The eukaryotic calcium/calmodulin-dependent protein phosphatase calcineurin is crucial for the environmental adaption of fungi. However, the mechanism of coordinate regulation of the response to salt stress by calcineurin and the high-affinity calcium channel CchA in fungi is not well understood. Here we show that the deletion of cchA suppresses the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans Additionally, the hypersensitivity of the ΔcnaA strain to extracellular calcium and cell-wall-damaging agents can be suppressed by cchA deletion. Using the calcium-sensitive photoprotein aequorin to monitor the cytoplasmic Ca(2+) concentration ([Ca(2+)]c) in living cells, we found that calcineurin negatively regulates CchA on calcium uptake in response to external calcium in normally cultured cells. However, in salt-stress-pretreated cells, loss of either cnaA or cchA significantly decreased the [Ca(2+)]c, but a deficiency in both cnaA and cchA switches the [Ca(2+)]c to the reference strain level, indicating that calcineurin and CchA synergistically coordinate calcium influx under salt stress. Moreover, real-time PCR results showed that the dysfunction of cchA in the ΔcnaA strain dramatically restored the expression of enaA (a major determinant for sodium detoxification), which was abolished in the ΔcnaA strain under salt stress. These results suggest that double deficiencies of cnaA and cchA could bypass the requirement of calcineurin to induce enaA expression under salt stress. Finally, YvcA, a member of the transient receptor potential channel (TRPC) protein family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption.IMPORTANCE The feedback inhibition relationship between calcineurin and the calcium channel Cch1/Mid1 has been well recognized from yeast. Interestingly, our previous study (S. Wang et al., PLoS One 7:e46564, 2012, http://dx.doi.org/10.1371/journal

  4. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep. PMID:11172778

  5. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    SciTech Connect

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M. )

    1989-04-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.

  6. The Cch1-Mid1 High-Affinity Calcium Channel Contributes to the Virulence of Cryptococcus neoformans by Mitigating Oxidative Stress.

    PubMed

    Vu, Kiem; Bautos, Jennifer M; Gelli, Angie

    2015-11-01

    Pathogenic fungi have developed mechanisms to cope with stresses imposed by hosts. For Cryptococcus spp., this implies active defense mechanisms that attenuate and ultimately overcome the onslaught of oxidative stresses in macrophages. Among cellular pathways within Cryptococcus neoformans' arsenal is the plasma membrane high-affinity Cch1-Mid1 calcium (Ca(2+)) channel (CMC). Here we show that CMC has an unexpectedly complex and disparate role in mitigating oxidative stress. Upon inhibiting the Ccp1-mediated oxidative response pathway with antimycin, strains of C. neoformans expressing only Mid1 displayed enhanced growth, but this was significantly attenuated upon H2O2 exposure in the absence of Mid1, suggesting a regulatory role for Mid1 acting through the Ccp1-mediated oxidative stress response. This notion is further supported by the interaction detected between Mid1 and Ccp1 (cytochrome c peroxidase). In contrast, Cch1 appears to have a more general role in promoting cryptococci survival during oxidative stress. A strain lacking Cch1 displayed a growth defect in the presence of H2O2 without BAPTA [(1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, cesium salt] or additional stressors such as antimycin. Consistent with a greater contribution of Cch1 to oxidative stress tolerance, an intracellular growth defect was observed for the cch1Δ strain in the macrophage cell line J774A.1. Interestingly, while the absence of either Mid1 or Cch1 significantly compromises the ability of C. neoformans to tolerate oxidative stress, the absence of both Mid1 and Cch1 has a negligible effect on C. neoformans growth during H2O2 stress, suggesting the existence of a compensatory mechanism that becomes active in the absence of CMC. PMID:26385891

  7. A Germin-Like Protein Gene (CchGLP) of Capsicum chinense Jacq. Is Induced during Incompatible Interactions and Displays Mn-Superoxide Dismutase Activity

    PubMed Central

    León-Galván, Fabiola; de Jesús Joaquín-Ramos, Ahuizolt; Torres-Pacheco, Irineo; Barba de la Rosa, Ana P.; Guevara-Olvera, Lorenzo; González-Chavira, Mario M.; Ocampo-Velazquez, Rosalía V.; Rico-García, Enrique; Guevara-González, Ramón Gerardo

    2011-01-01

    A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44–47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV. PMID:22174599

  8. The Cch1-Mid1 High-Affinity Calcium Channel Contributes to the Virulence of Cryptococcus neoformans by Mitigating Oxidative Stress

    PubMed Central

    Vu, Kiem; Bautos, Jennifer M.

    2015-01-01

    Pathogenic fungi have developed mechanisms to cope with stresses imposed by hosts. For Cryptococcus spp., this implies active defense mechanisms that attenuate and ultimately overcome the onslaught of oxidative stresses in macrophages. Among cellular pathways within Cryptococcus neoformans' arsenal is the plasma membrane high-affinity Cch1-Mid1 calcium (Ca2+) channel (CMC). Here we show that CMC has an unexpectedly complex and disparate role in mitigating oxidative stress. Upon inhibiting the Ccp1-mediated oxidative response pathway with antimycin, strains of C. neoformans expressing only Mid1 displayed enhanced growth, but this was significantly attenuated upon H2O2 exposure in the absence of Mid1, suggesting a regulatory role for Mid1 acting through the Ccp1-mediated oxidative stress response. This notion is further supported by the interaction detected between Mid1 and Ccp1 (cytochrome c peroxidase). In contrast, Cch1 appears to have a more general role in promoting cryptococci survival during oxidative stress. A strain lacking Cch1 displayed a growth defect in the presence of H2O2 without BAPTA [(1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, cesium salt] or additional stressors such as antimycin. Consistent with a greater contribution of Cch1 to oxidative stress tolerance, an intracellular growth defect was observed for the cch1Δ strain in the macrophage cell line J774A.1. Interestingly, while the absence of either Mid1 or Cch1 significantly compromises the ability of C. neoformans to tolerate oxidative stress, the absence of both Mid1 and Cch1 has a negligible effect on C. neoformans growth during H2O2 stress, suggesting the existence of a compensatory mechanism that becomes active in the absence of CMC. PMID:26385891

  9. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised.

  10. A correlated ab initio study of the A2 pi <-- X2 sigma+ transition in MgCCH

    NASA Technical Reports Server (NTRS)

    Woon, D. E.

    1997-01-01

    The A2 pi <-- X2 sigma+ transition in MgCCH was studied with correlation consistent basis sets and single- and multireference correlation methods. The A2 pi excited state was characterized in detail; the x2 sigma+ ground state has been described elsewhere recently. The estimated complete basis set (CBS) limits for valence correlation, including zero-point energy corrections, are 22668, 23191, and 22795 for the RCCSD(T), MRCI, and MRCI + Q methods, respectively. A core-valence correction of +162 cm-1 shifts the RCCSD(T) value to 22830 cm-1, in good agreement with the experimental result of 22807 cm-1.

  11. Electrophysiological characterization of neurons in the dorsolateral pontine REM sleep induction zone of the rat: intrinsic membrane properties and responses to carbachol and orexins

    PubMed Central

    Brown§, Ritchie E.; Winston, Stuart; Basheer, Radhika; Thakkar, Mahesh M; McCarley, Robert W.

    2006-01-01

    Pharmacological, lesion and single-unit recording techniques in several animal species have identified a region of the pontine reticular formation (Subcoeruleus, SubC) just ventral to the locus coeruleus as critically involved in the generation of rapid-eye-movement (REM) sleep. However, the intrinsic membrane properties and responses of SubC neurons to neurotransmitters important in REM sleep control, such as acetylcholine and orexins/hypocretins, have not previously been examined in any animal species and thus were targeted in this study. We obtained whole-cell patch-clamp recordings from visually identified SubC neurons in rat brain slices in vitro. Two groups of large neurons (mean diameter 30 and 27μm) were tentatively identified as cholinergic (rostral SubC) and noradrenergic (caudal SubC) neurons. SubC reticular neurons (non-cholinergic, non-noradrenergic) showed a medium-sized depolarizing sag during hyperpolarizing current pulses and often had a rebound depolarization (low-threshold spike, LTS). During depolarizing current pulses they exhibited little adaptation and fired maximally at 30–90 Hz. Those SubC reticular neurons excited by carbachol (n=27) fired spontaneously at 6 Hz, often exhibited a moderately sized LTS, and varied widely in size (17–42 μm). Carbachol-inhibited SubC reticular neurons were medium-sized (15–25 μm) and constituted two groups. The larger group (n=22) was silent at rest and possessed a prominent LTS and associated 1–4 action potentials. The second, smaller group (n=8) had a delayed return to baseline at the offset of hyperpolarizing pulses. Orexins excited both carbachol excited and carbachol inhibited SubC reticular neurons. SubC reticular neurons had intrinsic membrane properties and responses to carbachol similar to those described for other reticular neurons but a larger number of carbachol inhibited neurons were found (> 50 %), the majority of which demonstrated a prominent LTS and may correspond to PGO-on neurons

  12. δ13C-CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic

    NASA Astrophysics Data System (ADS)

    Yu, Juan; Xie, Zhouqing; Sun, Liguang; Kang, Hui; He, Pengzhen; Xing, Guangxi

    2015-09-01

    The biogeochemical cycles of CH4 over oceans are poorly understood, especially over the Arctic Ocean. Here we report atmospheric CH4 levels together with δ13C-CH4 from offshore China (31°N) to the central Arctic Ocean (up to 87°N) from July to September 2012. CH4 concentrations and δ13C-CH4 displayed temporal and spatial variation ranging from 1.65 to 2.63 ppm, and from -50.34% to -44.94% (mean value: -48.55 ± 0.84%), respectively. Changes in CH4 with latitude were linked to the decreasing input of enriched δ13C and chemical oxidation by both OH and Cl radicals as indicated by variation of δ13C. There were complex mixing sources outside and inside the Arctic Ocean. A keeling plot showed the dominant influence by hydrate gas in the Nordic Sea region, while the long range transport of wetland emissions were one of potentially important sources in the central Arctic Ocean. Experiments comparing sunlight and darkness indicate that microbes may also play an important role in regional variations.

  13. δ13C-CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic

    PubMed Central

    Yu, Juan; Xie, Zhouqing; Sun, Liguang; Kang, Hui; He, Pengzhen; Xing, Guangxi

    2015-01-01

    The biogeochemical cycles of CH4 over oceans are poorly understood, especially over the Arctic Ocean. Here we report atmospheric CH4 levels together with δ13C-CH4 from offshore China (31°N) to the central Arctic Ocean (up to 87°N) from July to September 2012. CH4 concentrations and δ13C-CH4 displayed temporal and spatial variation ranging from 1.65 to 2.63 ppm, and from −50.34% to −44.94% (mean value: −48.55 ± 0.84%), respectively. Changes in CH4 with latitude were linked to the decreasing input of enriched δ13C and chemical oxidation by both OH and Cl radicals as indicated by variation of δ13C. There were complex mixing sources outside and inside the Arctic Ocean. A keeling plot showed the dominant influence by hydrate gas in the Nordic Sea region, while the long range transport of wetland emissions were one of potentially important sources in the central Arctic Ocean. Experiments comparing sunlight and darkness indicate that microbes may also play an important role in regional variations. PMID:26323236

  14. Long-term data on δ13C-CH4 emissions elucidate drivers of CH4 metabolism in temperate and northern wetlands

    NASA Astrophysics Data System (ADS)

    McCalley, C. K.; Shorter, J. H.; Crill, P. M.; Hodgkins, S. B.; Chanton, J.; Saleska, S. R.; Varner, R. K.

    2015-12-01

    Methane flux from wetlands is both a critical component of the global CH4 budget, and highly sensitive to global climate change. Gaps in our knowledge of the biological processes that underlie CH4 fluxes from natural ecosystems limit our ability to scale flux estimates as well as predict future emissions. To address these gaps, we used quantum cascade laser technology linked to automated chambers to quantify the isotopic composition of CH4 fluxes from a high latitude (68° N) wetland underlain by discontinuous permafrost (Stordalen Mire, Sweden) and a temperate wetland (43° N) undergoing shrub encroachment (Sallie's Fen, NH). Changes in plant communities and hydrology during permafrost thaw result in both large increases in CH4 emissions as well as shifts in the CH4 production pathway, from hydrogenotrophic to increasingly acetoclastic mechanisms. In contrast, shrub encroachment that replaces sedge species in the temperate wetland reduces CH4 emissions, but doesn't effect δ 13C-CH4, with predominantly acetoclastic production occurring across plant communities. Multi-year data sets identify temperature and hydrologic variability as key contributors to annual and interannual patterns in δ 13C-CH4. Fully-thawed fens at Stordalen had consistent δ13C-CH4 across years, with an annual pattern suggestive of more hydrogenotrophic production early and late in the growing season. In contrast, intermediate-thaw sites, where the water table was more dynamic, had large variations in δ13C-CH4 across years. At Sallie's Fen, patterns in δ13C-CH4 suggest an abrupt shift in CH4 transport and metabolism at the beginning of the growing season and then more stable δ13C-CH4 during the growing season. Together these results provide insights into how plant communities and variable environmental conditions interact to influence the microbial metabolisms that drive CH4 production and consumption in diverse wetland ecosystems.

  15. Millimeter-wave spectroscopy of CrC (X3Σ-) and CrCCH (X ˜ 6Σ+): Examining the chromium-carbon bond

    NASA Astrophysics Data System (ADS)

    Min, J.; Ziurys, L. M.

    2016-05-01

    Pure rotational spectroscopy of the CrC (X3Σ-) and CrCCH (X ˜ 6Σ+) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective 3Σ- and 6Σ+ ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr—C = 1.993 Å — significantly longer. This result suggests that a single Cr—C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited 1Σ+ state lying ˜16 900 cm-1 higher in energy, and CrCCH has a 6Π excited state with E ˜ 4800 cm-1.

  16. Millimeter-wave spectroscopy of CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)): Examining the chromium-carbon bond.

    PubMed

    Min, J; Ziurys, L M

    2016-05-14

    Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1). PMID:27179485

  17. Mechanisms underlying activation of transient BK current in rabbit urethral smooth muscle cells and its modulation by IP3-generating agonists

    PubMed Central

    Kyle, Barry D.; Bradley, Eamonn; Large, Roddy; Sergeant, Gerard P.; McHale, Noel G.; Thornbury, Keith D.

    2013-01-01

    We used the perforated patch-clamp technique at 37°C to investigate the mechanisms underlying the activation of a transient large-conductance K+ (tBK) current in rabbit urethral smooth muscle cells. The tBK current required an elevation of intracellular Ca2+, resulting from ryanodine receptor (RyR) activation via Ca2+-induced Ca2+ release, triggered by Ca2+ influx through L-type Ca2+ (CaV) channels. Carbachol inhibited tBK current by reducing Ca2+ influx and Ca2+ release and altered the shape of spike complexes recorded under current-clamp conditions. The tBK currents were blocked by iberiotoxin and penitrem A (300 and 100 nM, respectively) and were also inhibited when external Ca2+ was removed or the CaV channel inhibitors nifedipine (10 μM) and Cd2+ (100 μM) were applied. The tBK current was inhibited by caffeine (10 mM), ryanodine (30 μM), and tetracaine (100 μM), suggesting that RyR-mediated Ca2+ release contributed to the activation of the tBK current. When IP3 receptors (IP3Rs) were blocked with 2-aminoethoxydiphenyl borate (2-APB, 100 μM), the amplitude of the tBK current was not reduced. However, when Ca2+ release via IP3Rs was evoked with phenylephrine (1 μM) or carbachol (1 μM), the tBK current was inhibited. The effect of carbachol was abolished when IP3Rs were blocked with 2-APB or by inhibition of muscarinic receptors with the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (1 μM). Under current-clamp conditions, bursts of action potentials could be evoked with depolarizing current injection. Carbachol reduced the number and amplitude of spikes in each burst, and these effects were reduced in the presence of 2-APB. In the presence of ryanodine, the number and amplitude of spikes were also reduced, and carbachol was without further effect. These data suggest that IP3-generating agonists can modulate the electrical activity of rabbit urethral smooth muscle cells and may contribute to the effects of neurotransmitters on

  18. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  19. Changes in the contractile responses to carbachol and in the inhibitory effects of verapamil and nitrendipine on isolated smooth muscle preparations from rats subchronically exposed to Pb2+ and Zn2+.

    PubMed

    Vassilev, P P; Venkova, K; Pencheva, N; Radomirov, R; Staneva-Stoytcheva, D

    1994-01-01

    Male Wistar rats were exposed to Pb2+ or Zn2+ and to Pb2+ + Zn2+, receiving Pb(CH3COO)2 or/and ZnSO4 with drinking water for 30 days. Cumulative concentration-effect curves for carbachol were obtained in ileum and trachea isolated from control and heavy metal-treated rats. The effect of the Ca2+ channel blockers on the carbachol-induced contractions was studied by addition of increasing concentrations of verapamil or nitrendipine to the bath solution 20 min. prior to carbachol. The results showed that exposure of rats to heavy metals in doses which did not change the body weight and behaviour, altered the contractile responses to carbachol. The sensitivity to carbachol was higher in preparations from the ileum of Zn(2+)-exposed rats as compared to controls, while a tendency towards decreasing this sensitivity was observed in ileal preparations from Pb(2+)-treated animals. The concentration-effect curves for carbachol in ileal preparations from Pb2+ + Zn(2+)-treated rats did not differ from those in the preparations from untreated rats. The inhibitory effect of the Ca2+ channel blockers on the contractility of ileal and tracheal preparations from treated rats was weaker as compared to that in controls. PMID:7800652

  20. Characterization and agonist regulation of muscarinic ([3H]N-methyl scopolamine) receptors in isolated ventricular myocytes from rat.

    PubMed

    Horackova, M; Robinson, B; Wilkinson, M

    1990-11-01

    Cell surface muscarinic cholinergic receptors have been characterized and quantified for the first time, in intact, isolated adult rat cardiomyocytes. The cells were previously established as functionally fully compatible with cellular responses in intact cardiac tissue. The specific binding of the hydrophilic radioligand, [3H]-NMS, (N-methyl-[3H]-scopolamine methylchloride) was found to be stereo-specific, saturable, reversible and of high affinity. Binding of [3H]-NMS demonstrated appropriate drug specificity and was positively correlated with increasing cell concentrations. Bmax for [3H]-NMS binding to ventricular myocytes, enzymatically dissociated from adult male rats, was 15.8 +/- 1.03 fmol/25 x 10(3) cells (at 4 degrees C) and KD was 0.27 +/- 0.05 nM (n = 14). Binding assays performed at a higher incubation temperature (30 degrees C) yielded a higher Bmax value (22.1 +/- 1.6 fmol/25 x 10(3) cells; n = 11; P less than 0.005 vs. Bmax at 4 degrees C) but an unchanged KD (0.23 +/- 0.06 nM). Pretreatment of myocytes with the muscarinic agonist carbachol (1 mM) at 37 degrees C resulted in a reduction (down-regulation) in specific binding of the hydrophilic ligand [3H]-NMS. The magnitude of this reduction and its rate of recovery were dependent on the time of the exposure to carbachol. Exposures of 30-60 min elicited down-regulated by 35% (Bmax = 14.29 +/- 1.66 changed to 9.5 +/- 1.79 fmol/25 x 10(3) cells, without change in KD P less than 0.01, n = 4). The down-regulation of the muscarinic receptors by carbachol was insensitive to application of bacitracin - an inhibitor of endocytosis. On the other hand preincubation with 10(-9)M atropine, a muscarinic antagonist, hindered the agonist-induced receptor "loss" from the cell surface confirming the muscarinic nature of these receptors. We conclude that our preparation of intact, isolated ventricular cardiomyocytes is ideally suited for the study of cell surface muscarinic receptor regulation under physiological and

  1. Diminished agonist-stimulated inositol trisphosphate generation blocks stimulus-secretion coupling in mouse pancreatic acini during diet-induced experimental pancreatitis

    SciTech Connect

    Powers, R.E.; Saluja, A.K.; Houlihan, M.J.; Steer, M.L.

    1986-05-01

    Young female mice fed a choline-deficient, ethionine-supplemented (CDE) diet rapidly develop acute hemorrhagic pancreatitis. We have observed that pancreatic acini prepared from these mice are unable to secrete amylase in response to addition of the cholinergic agonist carbachol, although they retain the ability to secrete amylase in response to the Ca2+ ionophore A23187. The CDE diet does not alter the binding characteristics (Kd or the maximal number of binding sites) for muscarinic cholinergic receptors as tested using the antagonist (/sup 3/H)N-methylscopolamine nor the competition for this binding by carbachol. Addition of carbachol to acini prepared from mice fed the CDE diet does not result in as marked an increase in cytosolic free Ca2+ levels as that noted in control samples (evaluated using quin2 fluorescence). These observations indicate that the CDE diet interferes with stimulus-secretion coupling in mouse pancreatic acini at a step subsequent to hormone-receptor binding and prior to Ca2+ release. This conclusion is confirmed by our finding that the hormone-stimulated generation of (/sup 3/H)inositol phosphates (inositol trisphosphate, inositol bisphosphate, and inositol monophosphate) from acini labeled with (/sup 3/H)myoinositol is markedly reduced in acini prepared from mice fed the CDE diet. This reduction is not due to a decrease in phosphatidylinositol-4,5-bisphosphate. This communication represents the first report of a system in which a blockade of inositol phosphate generation can be related to a physiologic defect and pathologic lesion.

  2. Labelling of the solvent DMSO as side reaction of methylations with n.c.a. [11C]CH3I.

    PubMed

    Klein, A T; Holschbach, M

    2001-09-01

    Competing labelling of solvent dimethyl sulfoxide (DMSO) can occur during the 11C-methylation of amine precursors. A kinetic analysis of the methylation reaction of DMSO with n.c.a. [11C]CH3I was performed at 120 degrees C resulting in rate constants. The rate constant for the formation of the intermediate, methylated DMSO ([11C]DMSO-M), is compared to the reaction of [11C]CH3I with two tertiary amines, namely Dexetimide and Desmethyloxotremorine-M. The specific activity of the labelled product is reduced due to partial 12C-methylation of the precursor amines by [11C]DMSO-M in cases of significant DMSO labelling as side reaction. PMID:11515652

  3. Theoretical High-Resolution Spectroscopy Beyond Ccsd(t): the Interstellar Anions CN-, CCH-, C3N-, and C4H-

    NASA Astrophysics Data System (ADS)

    Botschwina, Peter; Schröder, Benjamin; Sebald, Peter; Oswald, Rainer

    2014-06-01

    Using extended coupled cluster methods well beyond fc-CCSD(T), spectroscopic properties of several molecular anions of astrochemical interest have been calculated. Excellent agreement with MW data is observed for CN-, CCH-, C3N-, and C4H- and accurate equilibrium structures are presented for all four species. The results for CCH- are superior to recent theoretical results of Huang and Lee and confirm the quality of our earlier predictions. The new calculations predict ν_1 = 3209.3 cm-1, ν_2 (band origin) = 510.0 cm-1, and ν_3 = 1804.4 cm-1, estimated errors not exceeding 1 cm-1. X. Huang, T. J. Lee J. Chem. Phys. 2009, {131}, 104301. M. Mladenović, P. Botschwina, P. Sebald, S. Carter, Theor. Chem. Acc. 1998, 100, 134

  4. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs. PMID:19275609

  5. Acute Aerobic Swimming Exercise Induces Distinct Effects in the Contractile Reactivity of Rat Ileum to KCl and Carbachol

    PubMed Central

    Araujo, Layanne C. da Cunha; de Souza, Iara L. L.; Vasconcelos, Luiz H. C.; Brito, Aline de Freitas; Queiroga, Fernando R.; Silva, Alexandre S.; da Silva, Patrícia M.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2016-01-01

    Aerobic exercise promotes short-term physiological changes in the intestinal smooth muscle associated to the ischemia-reperfusion process; however, few studies have demonstrated its effect on the intestinal contractile function. Thus, this work describes our observations regarding the influence of acute aerobic swimming exercise in the contractile reactivity, oxidative stress, and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and acutely exercised (EX-AC) groups. Animals were acclimated by 10, 10, and 30 min of swimming exercise in intercalated days 1 week before exercise. Then they were submitted to forced swimming for 1 h with a metal of 3% of their body weight attached to their body. Animals were euthanized immediately after the exercise section and the ileum was suspended in organ baths for monitoring isotonic contractions. The analysis of lipid peroxidation was performed in order to determinate the malondialdehyde (MDA) levels as a marker of oxidative stress, and intestinal smooth muscle morphology by histological staining. Cumulative concentration-response curves to KCl were altered in the EX-AC with an increase in both its efficacy and potency (Emax = 153.2 ± 2.8%, EC50 = 1.3 ± 0.1 × 10−2 M) compared to the SED group (Emax = 100%, EC50 = 1.8 ± 0.1 × 10−2 M). Interestingly, carbachol had its efficacy and potency reduced in the EX-AC (Emax = 67.1 ± 1.4%, EC50 = 9.8 ± 1.4 × 10−7 M) compared to the SED group (Emax = 100%, EC50 = 2.0 ± 0.2 × 10−7 M). The exercise did not alter the MDA levels in the ileum (5.4 ± 0.6 μ mol/mL) in the EX-AC compared to the SED group (8.4 ± 1.7 μ mol/mL). Moreover, neither the circular nor the longitudinal smooth muscle layers thickness were modified by the exercise (66.2 ± 6.0 and 40.2 ± 2.6 μm, respectively), compared to the SED group (61.6 ± 6.4 and 34.8 ± 3.7 μm, respectively). Therefore, the ileum sensitivity to contractile agents is differentially altered by the acute aerobic

  6. Distortion of ethyne on coordination to silver acetylide, C2H2⋅⋅⋅AgCCH, characterised by broadband rotational spectroscopy and ab initio calculations.

    PubMed

    Stephens, Susanna L; Zaleski, Daniel P; Mizukami, Wataru; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2014-03-28

    The rotational spectra of six isotopologues of a complex of ethyne and silver acetylide, C2H2⋅⋅⋅AgCCH, are measured by both chirped-pulse and Fabry-Perot cavity versions of Fourier-transform microwave spectroscopy. The complex is generated through laser ablation of a silver target in the presence of a gas sample containing 1% C2H2, 1% SF6, and 98% Ar undergoing supersonic expansion. Rotational, A0, B0, C0, and centrifugal distortion ΔJ and ΔJK constants are determined for all isotopologues of C2H2⋅⋅⋅AgCCH studied. The geometry is planar, C2v and T-shaped in which the C2H2 sub-unit comprises the bar of the "T" and binds to the metal atom through its π electrons. In the r0 geometry, the distance of the Ag atom from the centre of the triple bond in C2H2 is 2.2104(10) Å. The r(HC≡CH) parameter representing the bond distance separating the two carbon atoms and the angle, ∠(CCH), each defined within the C2H2 sub-unit, are determined to be 1.2200(24) Å and 186.0(5)°, respectively. This distortion of the linear geometry of C2H2 involves the hydrogen atoms moving away from the silver atom within the complex. The results thus reveal that the geometry of C2H2 changes measurably on coordination to AgCCH. A value of 59(4) N m(-1) is determined for the intermolecular force constant, kσ, confirming that the complex is significantly more strongly bound than hydrogen and halogen-bonded analogues. Ab initio calculations of the re geometry at the CCSD(T)(F12(*))/ACVTZ level of theory are consistent with the experimental results. The spectra of the (107)Ag(13)C(13)CH and (109)Ag(13)C(13)CH isotopologues of free silver acetylide are also measured for the first time allowing the geometry of the AgCCH monomer to be examined in greater detail than previously. PMID:24697444

  7. Changes in the contractile responses to carbachol and in the inhibitory effects of verapamil and nitrendipine on isolated smooth muscle preparations from rats subchronically exposed to Co2+ and Ni2+.

    PubMed

    Vassilev, P P; Venkova, K; Pencheva, N; Staneva-Stoytcheva, D

    1993-01-01

    Male Wistar rats were exposed to subtoxic doses of Co2+ or Ni2+, receiving Co(NO3)2 or NiSO4 with drinking water for 30 days. No significant differences in the body weight and no visible changes in the behaviour of the controls and experimental animals were established. Cumulative concentration-effect curves for carbachol were obtained in ileum and trachea isolated from control and Co(2+)- or Ni(2+)-treated rats. The effect of the Ca2+ antagonists on the carbachol-induced contractions was studied by adding increasing concentrations of verapamil or nitrendipine to the bath solution 20 min prior to carbachol. The results showed that exposure of rats to subtoxic doses of Co(NO3)2 or NiSO4 altered the contractile responses to carbachol. The changes in the pD2 values and the shift to the left of the concentration-effect curves suggest a higher sensitivity to carbachol in preparations from the ileum of Co(2+)- or Ni(2+)-exposed rats. The tracheal strips isolated from control and heavy metal-treated rats showed a less potent sensitiveness to carbachol as compared to the ileal segments. An opposite tendency for decreased cholinergic reactivity was observed in tracheal strips from Co(2+)- and Ni(2+)-treated animals. The inhibitory effect of the Ca(2+)-antagonists on the contractility of ileal preparations from Co(2+)-treated rats increased at all concentrations of verapamil and at the highest concentration of nitrendipine, but decreased at lower concentrations of nitrendipine. The effect of verapamil on the preparations from Ni(2+)-exposed rats was unchanged or even decreased at higher verapamil concentrations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368943

  8. Multi-years simulations of atmospheric CH4, δ13C-CH4 and δD-CH4

    NASA Astrophysics Data System (ADS)

    Monteil, Guillaume; Houweling, Sander; Röckmann, Thomas; Vaughn, Bruce H.; Tyler, Stanley C.

    2010-05-01

    The atmospheric concentration of methane has increased by more than a factor of two since the start of the preindustrial era, due to human activities such as fossil fuel usage and intensive agriculture. After a continuous increase during the 20th century, measurements show an almost steady mixing ratio from 1999 to 2006, followed by a new increase since 2007. The main driver of those recent changes is the subject of a scientific debate. Plausible hypothesis have been proposed for the growth-rate slowdown, which however remain difficult to prove. The main obstacle in understanding the observed trend of methane is the lack of accurate estimates of the individual source processes involved in the methane cycle. Moreover, the main sink, the hydroxyl radical, OH, is not directly measurable on a large scale and is therefore poorly constrained. In order to better characterize the methane budget, one possibility is to use isotopic ratios of atmospheric methane, as these ratios carry process specific information. During the last 15 years, isotopic measurements have become more common and we have now a relatively good geographical coverage, of time series spanning several years. We used the global chemistry-transport model TM3 to investigate the constraint imposed by the isotopic measurements. We performed coupled simulations of CH4 and its two most common stable isotopologues, 13C-CH4 and CH3D, using different sources and sink scenarios. The aim is to evaluate the isotopic implications of the different hypothesis explaining the recent methane growth rate variations. We evaluated the probability of those hypotheses by comparison of our results with the available measurements. We will present first results which clearly show that isotopic measurements bring important information, confirming their usefulness, although a better characterizations of the isotopic fractionation factors of the individual process and a larger amount of measurements is needed, in particular for CH3D.

  9. Organometallic chemistry of ethynyl boronic acid MIDA ester, HC≡CB(O2CCH2)2NMe.

    PubMed

    Hill, Anthony F; Stewart, Craig D; Ward, Jas S

    2015-03-28

    The reactions of HC≡CBMIDA (BMIDA = B(O2CCH2)2NMe) with a range of ruthenium complexes afford the first isolated examples of σ-alkynyl, σ-alkenyl and vinylidene complexes bearing 4-coordinate boron substituents. Specifically, the reactions of HC≡CBMIDA with [RuH(S2CNR2)(CO)(PPh3)2] (R = Me, Et) and [Ru(CO)2(PPh3)3] afford the alkynyl complexes [Ru(C≡CBMIDA)(S2CNR2)(CO)(PPh3)2] and [RuH(C≡CBMIDA)(CO)2(PPh3)2], the latter being converted to [Ru(C≡CBMIDA)Cl(CO)2(PPh3)2] on treatment with chloroform. With [RuCl(dppe)2]PF6 the vinylidene salt [RuCl(=C=CHBMIDA)(dppe)2]PF6 is obtained, which reacts with Et3N to afford the neutral alkynyl derivative [Ru(C≡CBMIDA)Cl(dppe)2]. Hydrometallation of HC≡CBMIDA by [RuHCl(CO)(PPh3)3] affords the coordinatively unsaturated σ-alkenyl complex [RuCl(CH=CHBMIDA)(CO)(PPh3)2] which in turn reacts with CO, CNC6H2Me3-2,4,6, [Et2NH2][S2CNEt2] or K[HB(pz)3] (pz = pyrazol-1-yl) to afford the coordinatively saturated complexes [Ru(CH=CHBMIDA)Cl(CO)2(PPh3)2], [Ru(CH=CHBMIDA)Cl(CO)(CNC6H2Me3)(PPh3)2], [Ru(CH=CHBMIDA)(S2CNEt2)(CO)-(PPh3)2] and [Ru(CH=CHBMIDA)(CO)(PPh3){HB(pz)3}]. In all cases, the transannular N→B dative bond is retained in the BMIDA substituent. PMID:25711678

  10. Genetic interactions between the Golgi Ca2+/H+ exchanger Gdt1 and the plasma membrane calcium channel Cch1/Mid1 in the regulation of calcium homeostasis, stress response and virulence in Candida albicans.

    PubMed

    Wang, Yanan; Wang, Junjun; Cheng, Jianqing; Xu, Dayong; Jiang, Linghuo

    2015-11-01

    The Golgi-localized Saccharomyces cerevisiae ScGdt1 is a member of the cation/Ca(2+) exchanger superfamily. We show here that Candida albicans CaGdt1 is the functional homolog of ScGdt1 in calcium sensitivity, and shows genetic interactions with CaCch1 or CaMid1 in response to ER stresses. In addition, similar to ScCCH1 and ScMID1, deletion of either CaCCH1 or CaMID1 leads to a growth sensitivity of cells to cold stress, which can be suppressed by deletion of CaGDT1. Furthermore, deletion of CaCCH1 leads to a severe delay in filamentation of C. albicans cells, and this defect is abolished by deletion of CaGDT1. In contrast, CaGDT1 does not show genetic interaction with CaMID1 in filamentation. Interestingly, C. albicans cells lacking both CaMID1 and CaGDT1 exhibit an intermediate virulence between C. albicans cells lacking CaCCH1 (non-virulent) and C. albicans cells lacking CaGDT1 (partially virulent), while C. albicans cells lacking both CaCCH1 and CaGDT1 are not virulent in a mouse model of systemic candidiasis. Therefore, CaGdt1 genetically interacts with the plasma membrane calcium channel, CaCch1/CaMid1, in the response of C. albicans cells to cold and ER stresses and antifungal drug challenge as well as in filamentation and virulence. PMID:26208803

  11. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum

    PubMed Central

    Swärd, Karl; Dreja, Karl; Susnjar, Marija; Hellstrand, Per; Hartshorne, David J; Walsh, Michael P

    2000-01-01

    Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK).The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum.Contraction of permeabilized muscle strips induced by GTPγS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPγS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077.Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol.LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation.In the absence of Ca2+, GTPγS stimulated 35S incorporation from [35S]ATPγS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected.These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction. PMID:10618150

  12. Microwave and Quantum Chemical Study of Intramolecular Hydrogen Bonding in 2-Propynylhydrazine (HC≡CCH2NHNH2).

    PubMed

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-06-16

    The microwave spectrum of 2-propynylhydrazine (HC≡CCH2NHNH2) was investigated in the 23-124 GHz spectral interval. The spectra of two conformers denoted I and II were assigned. I is the lower-energy form, and relative intensity measurements yielded an internal energy difference of 3.0(4) kJ/mol between I and II. The spectra of the ground and five vibrationally excited states were assigned for I, whereas only the spectrum of the ground vibrational state was assigned for II. Both I and II are each stabilized simultaneously by two intramolecular hydrogen bonds. The first of these hydrogen bonds is formed between the hydrogen atom of the -NH- part of the hydrazino group, and the second internal hydrogen bond is formed between one of the hydrogen atoms of the -NH2 part. The π-electrons of the triple bond is thus shared by these two hydrogen atoms. The shortest contact between a hydrogen atom of the hydrazino group and the π-electrons of the ethynyl group is found in lower-energy conformer I. The conformational properties of 2-propynylhydrazine were explored by MP2/cc-pVTZ and CCSD/cc-pVQZ calculations. The CCSD method predicts that seven rotameric forms exist for this compound. Five of these rotamers are stabilized by internal hydrogen bonding. The simultaneous sharing of the π-electrons of the triple bond by two hydrogen atoms occurs only in Conformers I and II, which are predicted to be the two forms with the lowest energies, with I 2.52 kJ/mol lower in energy than II. The effective rotational constants of the ground vibrational states of I and II were predicted by a combination of MP2 and CCSD calculations, whereas centrifugal distortion constants and vibration-rotation constants were calculated by the MP2 method. The theoretical spectroscopic constants are compared with the experimental counterparts. It is concluded that more refined calculations are necessary to obtain complete agreement. PMID:27196111

  13. Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells.

    PubMed

    Calandrella, Sean O; Barrett, Kim E; Keely, Stephen J

    2005-04-01

    We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton. PMID:15389641

  14. The TLR7 agonist imiquimod induces bronchodilation via a nonneuronal TLR7-independent mechanism: a possible role for quinoline in airway dilation.

    PubMed

    Larsson, Olivia J; Manson, Martijn L; Starkhammar, Magnus; Fuchs, Barbara; Adner, Mikael; Kumlien Georén, Susanna; Cardell, Lars-Olaf

    2016-06-01

    Toll-like receptor (TLR) 7 agonists are known to reduce allergic airway inflammation. Their recently reported ability to rapidly relax airways has further increased their interest in the treatment of pulmonary disease. However, the mechanisms behind this effect are not fully understood. The present study, therefore, aimed to determine whether airway smooth muscle (ASM)-dependent mechanisms could be identified. TLR7 agonists were added to guinea pig airways following precontraction with carbachol in vitro or histamine in vivo. Pharmacological inhibitors were used to dissect conventional pathways of bronchodilation; tetrodotoxin was used or bilateral vagotomy was performed to assess neuronal involvement. Human ASM cells (HASMCs) were employed to determine the effect of TLR7 agonists on intracellular Ca(2+) ([Ca(2+)]i) mobilization. The well-established TLR7 agonist imiquimod rapidly relaxed precontracted airways in vitro and in vivo. This relaxation was demonstrated to be independent of nitric oxide, carbon monoxide, and cAMP signaling, as well as neuronal activity. A limited role for prostanoids could be detected. Imiquimod induced [Ca(2+)]i release from endoplasmic reticulum stores in HASMCs, inhibiting histamine-induced [Ca(2+)]i The TLR7 antagonist IRS661 failed to inhibit relaxation, and the structurally dissimilar agonist CL264 did not relax airways or inhibit [Ca(2+)]i This study shows that imiquimod acts directly on ASM to induce bronchorelaxation, via a TLR7-independent release of [Ca(2+)]i The effect is paralleled by other bronchorelaxant compounds, like chloroquine, which, like imiquimod, but unlike CL264, contains the chemical structure quinoline. Compounds with quinoline moieties may be of interest in the development of multifunctional drugs to treat pulmonary disease. PMID:27084847

  15. Phase dependency of long-term potentiation induction during the intermittent bursts of carbachol-induced β oscillation in rat hippocampal slices

    PubMed Central

    Nishimura, Motoshi; Nakatsuka, Hiroki; Natsume, Kiyohisa

    2012-01-01

    The rodent hippocampus possesses theta (θ) and beta (β) rhythms, which occur intermittently as bursts. Both rhythms are related to spatial memory processing in a novel environment. θ rhythm is related to spatial memory encoding process. β rhythm is related to the match/mismatch process. In the match/mismatch process, rodent hippocampus detects a representation matching sensory inputs of the current place among the retrieved internal representations of places. Long-term synaptic potentiation (LTP) is induced in both processes. The cholinergic agent carbachol induces intermittent θ and β oscillations in in vitro slices similar to in vivo bursts. LTP is facilitated during the generation of θ oscillation, suggesting that the facilitation of LTP is dependent upon the phases of intermittent burst (burst phases) of the oscillation. However, whether this is the case for β oscillation has not yet been studied. In the present study, LTP-inducing θ-burst stimulation was administered at the different burst phases of carbachol-induced β oscillations (CIBO), and the synaptic changes were measured at CA3-CA3 pyramidal cell synapses (CA3 synapse) and at CA3-CA1 pyramidal cell synapses (CA1 synapse). At the CA3 synapse, the largest magnitude of LTP was induced at the late burst phases of CIBO. At the CA1 synapse, LTP was induced only at the late burst phases. Modulation of LTP was suppressed when CIBO was blocked by the application of atropine at both synapses. The results suggest that the bursts of hippocampal β rhythm can determine the optimal temporal period for completing with the match/mismatch process.

  16. Role of orexin-2 receptors in the nucleus accumbens in antinociception induced by carbachol stimulation of the lateral hypothalamus in formalin test.

    PubMed

    Yazdi, Fatemeh; Jahangirvand, Mahboubeh; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-08-01

    Orexins, which are mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), play an important role in pain modulation. Previously, it has been established that the nucleus accumbens (NAc) is involved in the modulation of formalin-induced nociceptive responses, a model of tonic pain. In this study, the role of intra-accumbal orexin-2 receptors (OX2rs) in the mediation of formalin-induced pain was investigated. A volume of 0.5 μl of 10, 20, and 40 nmol/l solutions of TCS OX2 29, an OX2r antagonist, were unilaterally microinjected into the NAc 5 min before an intra-LH carbachol microinjection (0.5 μl of 250 nmol/l solution). After 5 min, animals received a subcutaneous injection of formalin 2.5% (50 μl) into the hind paw. Pain-related behaviors were assessed at 5 min intervals during a 60-min test period. The findings showed that TCS OX2 29 administration dose dependently blocked carbachol-induced antinociception during both phases of formalin-induced pain. The antianalgesic effect of TCS OX2 29 was greater during the late phase compared with the early phase. These observations suggest that the NAc, as a part of a descending pain-modulatory circuitry, partially mediates LH-induced analgesia in the formalin test through recruitment of OX2rs. This makes the orexinergic system a good potential therapeutic target in the control of persistent inflammatory pain. PMID:26871404

  17. Chemical and electrochemical oxidation of [Rh(β-diketonato)(CO)(P(OCH2)3CCH3)]: an experimental and DFT study.

    PubMed

    Erasmus, Johannes J C; Conradie, Jeanet

    2013-06-28

    An experimental and computational chemistry study of the reactivity of [Rh(β-diketonato)(CO)(P(OCH2)3CCH3)] complexes towards chemical and electrochemical oxidation shows that more electron withdrawing groups on the β-diketonato ligand reduce electron density on the rhodium atom to a larger extent than electron donating groups. This leads to a slower second-order oxidative addition rate, k1, and a higher electrochemical oxidation potential, E(pa)(Rh), linearly related by ln k1 = -11(1) E(pa)(Rh) - 2.3(5). The reactivity of these complexes can be predicted by their DFT calculated HOMO energies: E(HOMO) = -0.34(8)E(pa)(Rh) - 5.04(4) = 0.032(5) ln k1- 4.96(4). k1 of [Rh(β-diketonato)(CO)(P(OCH2)3CCH3)] complexes is slower than that of related [Rh(β-diketonato)(CO)(PPh3)] and [Rh(β-diketonato)(P(OPh)3)2] complexes due to the better π-acceptor ability of the CO-phosphite-rhodium combination than that of CO-PPh3-rhodium or di-phosphite-rhodium. PMID:23632432

  18. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  19. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  20. Transient Receptor Potential (TRP) and Cch1-Yam8 Channels Play Key Roles in the Regulation of Cytoplasmic Ca2+ in Fission Yeast

    PubMed Central

    Ma, Yan; Sugiura, Reiko; Koike, Atsushi; Ebina, Hidemine; Sio, Susie O.; Kuno, Takayoshi

    2011-01-01

    The regulation of cytoplasmic Ca2+ is crucial for various cellular processes. Here, we examined the cytoplasmic Ca2+ levels in living fission yeast cells by a highly sensitive bioluminescence resonance energy transfer-based assay using GFP-aequorin fusion protein linked by 19 amino acid. We monitored the cytoplasmic Ca2+ level and its change caused by extracellular stimulants such as CaCl2 or NaCl plus FK506 (calcineurin inhibitor). We found that the extracellularly added Ca2+ caused a dose-dependent increase in the cytoplasmic Ca2+ level and resulted in a burst-like peak. The overexpression of two transient receptor potential (TRP) channel homologues, Trp1322 or Pkd2, markedly enhanced this response. Interestingly, the burst-like peak upon TRP overexpression was completely abolished by gene deletion of calcineurin and was dramatically decreased by gene deletion of Prz1, a downstream transcription factor activated by calcineurin. Furthermore, 1 hour treatment with FK506 failed to suppress the burst-like peak. These results suggest that the burst-like Ca2+ peak is dependent on the transcriptional activity of Prz1, but not on the direct TRP dephosphorylation. We also found that extracellularly added NaCl plus FK506 caused a synergistic cytosolic Ca2+ increase that is dependent on the inhibition of calcineurin activity, but not on the inhibition of Prz1. The synergistic Ca2+ increase is abolished by the addition of the Ca2+ chelator BAPTA into the media, and is also abolished by deletion of the gene encoding a subunit of the Cch1-Yam8 Ca2+ channel complex, indicating that the synergistic increase is caused by the Ca2+ influx from the extracellular medium via the Cch1-Yam8 complex. Furthermore, deletion of Pmk1 MAPK abolished the Ca2+ influx, and overexpression of the constitutively active Pek1 MAPKK enhanced the influx. These results suggest that Pmk1 MAPK and calcineurin positively and negatively regulate the Cch1-Yam8 complex, respectively, via modulating the

  1. Depression of miniature endplate potential frequency by acetylcholine and its analogues in frog.

    PubMed Central

    Nikolsky, E. E.; Bukharaeva, E. A.; Strunsky, E. G.; Vyskocil, F.

    1991-01-01

    1. Acetylcholine (ACh), 7.5 x 10(-5) M, and carbachol, 5 x 10(-6) M (CCh) depressed the frequency of miniature endplate potentials (m.e.p.ps) in the frog (Rana temporaria) sartorius neuromuscular junction with active acetylcholinesterase to about 50-55% of the controls. 2. A similar depression was produced by the nicotinic agonists, nicotine, suberyldicholine and tetramethylammonium. 3. The muscarinic agonists, oxotremorine, methylfurmethide and methacholine were without effect on m.e.p.p. frequency. The muscarinic antagonist, atropine and the nicotinic antagonist, (+)-tubocurarine, had no effect on the depression of m.e.p.p. frequency evoked by CCh. 4. The ganglionic blockers, benzhexonium and IEM-1119, were also without effect on the CCh-evoked depression of m.e.p.p. frequency. 5. Pretreatment of muscles with anticholinesterases did not prevent the CCh-induced drop in m.e.p.p. frequency. 6. The effect of CCh was proportionally the same as in the controls in preparations where the m.e.p.p. frequency was changed by elevation of K+ and in the presence of theophylline, noradrenaline, dibutyryl adenosine 3':5'-cyclic monophosphate (db cyclic AMP) and db cyclic GMP. 7. An inhibitor of Na+,K(+)-ATPase, ouabain, 5 x 10(-5) mol l-1, prevented or reversed the depression of m.e.p.p. frequency by CCh. However, the depression was present in a nominally K(+)-free medium. Insulin and adrenaline, which are considered to be Na+,K(+)-ATPase activators, were without effect on depression of m.e.p.p. frequency. 8. The depression of m.e.p.p. frequency by 5 x 10(-6) M CCh was the same at temperatures between 5 and 30 degrees C with a Q10 near to 1.0.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1667283

  2. AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer’s Disease.

    PubMed

    Fisher, Abraham; Bezprozvanny, Ilya; Wu, Lili; Ryskamp, Daniel A; Bar-Ner, Nira; Natan, Niva; Brandeis, Rachel; Elkon, Hanoch; Nahum, Victoria; Gershonov, Eitan; LaFerla, Frank M; Medeiros, Rodrigo

    2016-01-01

    We previously developed orthosteric M1 muscarinic agonists (e.g. AF102B, AF267B and AF292), which act as cognitive enhancers and potential disease modifiers. We now report on a novel compound, AF710B, a highly potent and selective allosteric M1 muscarinic and σ1 receptor agonist. AF710B exhibits an allosteric agonistic profile on the M1 muscarinic receptor; very low concentrations of AF710B significantly potentiated the binding and efficacy of carbachol on M1 receptors and their downstream effects (p-ERK1/2, p-CREB). AF710B (1-30 µg/kg, p.o.) was a potent and safe cognitive enhancer in rats treated with the M1 antagonist trihexyphenidyl (passive avoidance impairment). These effects of AF710B involve σ1 receptor activation. In agreement with its antiamnesic properties, AF710B (at 30 nM), via activation of M1 and a possible involvement of σ1 receptors, rescued mushroom synapse loss in PS1-KI and APP-KI neuronal cultures, while AF267B (1 µM) was less potent in PS1-KI and ineffective in APP-KI models, respectively. In female 3xTg-AD mice, AF710B (10 µg/kg, i.p./daily/2 months) (i) mitigated cognitive impairments in the Morris water maze; (ii) decreased BACE1, GSK3β activity, p25/CDK5, neuroinflammation, soluble and insoluble Aβ40, Aβ42, plaques and tau pathologies. AF710B differs from conventional σ1 and M1 muscarinic (orthosteric, allosteric or bitopic) agonists. These results highlight AF710B as a potential treatment for Alzheimer's disease (e.g. improving cognitive deficits, synaptic loss, amyloid and tau pathologies, and neuroinflammation) with a superior profile over a plethora of other therapeutic strategies. PMID:26606130

  3. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  4. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV.

    PubMed

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G

    2015-12-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26703712

  5. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV.

    PubMed

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G

    2015-12-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26610554

  6. Silencing of a Germin-Like Protein Gene (CchGLP) in Geminivirus-Resistant Pepper (Capsicum chinense Jacq.) BG-3821 Increases Susceptibility to Single and Mixed Infections by Geminiviruses PHYVV and PepGMV

    PubMed Central

    Mejía-Teniente, Laura; Joaquin-Ramos, Ahuizolt de Jesús; Torres-Pacheco, Irineo; Rivera-Bustamante, Rafael F.; Guevara-Olvera, Lorenzo; Rico-García, Enrique; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq. BG-3821. Virus-induced gene silencing studies using a geminiviral vector based in PHYVV component A, displaying that silencing of CchGLP in accession BG-3821, increased susceptibility to geminivirus single and mixed infections. These results suggested that CchGLP is an important factor for geminivirus resistance in C. chinense BG-3821 accession. PMID:26610554

  7. Genetic interactions between Rch1 and the high-affinity calcium influx system Cch1/Mid1/Ecm7 in the regulation of calcium homeostasis, drug tolerance, hyphal development and virulence in Candida albicans.

    PubMed

    Xu, Dayong; Cheng, Jianqing; Cao, Chunlei; Wang, Litong; Jiang, Linghuo

    2015-11-01

    The high-affinity calcium influx system (HACS) consisted of CaCch1, CaMid1 and CaEcm7 controls calcium influx into the cell in response to environmental stimuli. The plasma membrane protein CaRch1 is a negative regulator of calcium influx in Candida albicans. In this study, we show that deletion of any of the HACS components suppresses the calcium hypersensitivity of, and the elevated activation level of calcium/calcineurin signaling in, C. albicans cells lacking CaRCH1. In contrast, CaRCH1 is epistatic to the HACS system in the tolerance of antifungal drugs. In addition, cells lacking CaRCH1 are sensitive to tunicamycin, show a delay in in vitro filamentation and an altered colony surface morphology, and are attenuated in virulence in a mouse systemic model. Cells lacking CaCCH1 and CaMID1, but not CaECM7, are sensitive to tunicamycin. Deletion of CaRCH1 increases the tunicamycin sensitivity of cells lacking CaECM7 or CaMID1, but not CaCCH1. Furthermore, deletion of CaRCH1 suppresses the defect in hyphal development due to the deletion of CaCCH1 or CaECM7, and increases the virulence of cells lacking any of the HACS components. Therefore, CaRch1 genetically interacts with the HACS components in different fashions for these functions. PMID:26323599

  8. Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu2(O2CCH3)4].

    PubMed

    Sengupta, Ananya; Datta, Subhadeep; Su, Chenliang; Herng, Tun Seng; Ding, Jun; Vittal, Jagadese J; Loh, Kian Ping

    2016-06-29

    The coordination chemistry between copper acetate [Cu2(OAc)4] and 5,10,15,20-tetra-4-pyridyl-21H,23H-porphine (porphyrin, H2TPyP) is found to give rise to either a 2D metal-organic framework (MOF) [Cu(TPyP)Cu2(O2CCH3)4] or a 3D MOF [Cu(TPyP)CuCl2]·2.5TCE·7H2O], depending on the choice of solvent. The 2D MOF can be made into a film, which was doped with 7,7,8,8-tetracyanoquinodimethane (TCNQ), and the electrical conductivity of the thin film was increased by 3 orders of magnitude with respect to that of the undoped Cu-MOF. The formation of a charge-transfer complex between TCNQ and the 2D Cu-MOF also imparts stronger paramagnetic properties than for the undoped MOF. PMID:27268770

  9. Rotational Spectra of Symmetric Top Molecules in Ground and Different Vibrational Excited States, and Phenomenon of Resonance – Applying in CF3CCH

    PubMed Central

    Motamedi, Masoud

    2007-01-01

    This paper deals with review of exploration of resonance in symmetric top molecules in different vibrational excited states, vt = n (n =1, 2, 3, 4). Calculations for CF3CCH shows that resonance take place at k=xℓℓ+(A-B)-2AζAζ-(A-B) and k=xℓℓ+(A-B)-2AζAζ-(A-B) for v10 = 2 and v10 = 3 respectively. In order to account for splitting about 3 MHz for the − 2 series in v10 = 4 is necessary to introduce the element 〈 J,k, ℓ|f24| J,k + 2, ℓ − 4〉 in fitting program.

  10. Syntheses, X-ray Structures, and Solution Properties of [V(4)O(4){(OCH(2))(3)CCH(3)}(3)(OC(2)H(5))(3)] and [V(4)O(4){(OCH(2))(3)CCH(3)}(2)(OCH(3))(6)]: Examples of New Ligand Coordination Modes.

    PubMed

    Crans, Debbie C.; Jiang, Feilong; Chen, John; Anderson, Oren P.; Miller, Mary M.

    1997-03-12

    Tetranuclear vanadium complexes with alkoxy ligands, [V(4)O(4){&mgr;,&mgr;,&mgr;(3)-(OCH(2))(3)CCH(3)}(2)(OCH(3))(6)] (1) and [V(4)O(4){&mgr;-(OCH(2))(3)CCH(3)}{&mgr;,&mgr;(3)-(OCH(2))(3)CCH(3)}{&mgr;,&mgr;,&mgr;(3)-(OCH(2))(3)CCH(3)}(OR)(3)] (R = C(2)H(5) (2), R = CH(CH(3))(2) (3), R = CH(3) (4)), were synthesized by reacting VO(OR)(3) and H(3)thme (H(3)thme = 1,1,1-tris(hydroxymethyl)ethane) in alcohol. Complex 1 crystallized in the monoclinic space group P2(1)/n with a = 9.646(4) Å, b = 11.502(3) Å, c = 11.960(3) Å, beta = 90.20(3) degrees, V = 1326.9 (7) Å(3), Z = 2 and R (wR(2)) = 0.045 (0.143). Complex 2 also crystallized in the monoclinic space group P2(1)/n with a = 8.290(8) Å, b = 12.237(2) Å, c = 29.118(4) Å, beta = 89.455(9) degrees, V = 2954(3) Å(3), Z = 4, and R(wR(2)) = 0.049 (0.126). Both 1 and 2 are neutral, discrete complexes possessing a common [V(4)O(16)](12)(-) core, which consists of four vanadium(V) atoms chelated by two (1) or three (2) tridentate thme(3)(-) ligands and by six (1) or three (2) RO(-) groups. Compound 1 exhibits a crystallographically required inversion center; in contrast, complex 2 exhibits no crystallographically imposed symmetry, and its three trialkoxy ligands each coordinate differently (one thme(3)(-) is coordinated in a new coordination mode with the oxygens in a terminal, doubly-bridging and triply-bridging mode). Both compounds 1 and 2 maintain their structures in solution, although compound 1 also forms a second minor species upon dissolution. Sequential exchanges of the RO(-) groups in complexes 2 and 3 were investigated by (51)V and (1)H NMR spectroscopy. For example, [V(4)O(4)(thme)(3)(OC(2)H(5))(3)] will react with CH(3)OH to generate [V(4)O(4)(thme)(3)(OCH(3))(3)] (4). These reactions were found to be reversible. The time scale of the alcohol exchange reactions were found to vary depending on the vanadium center that is undergoing the exchange. PMID:11669666

  11. Long-term Trends and Confidence in Global Natural Gas Fugitive Emissions Rates Based on δ13C-CH4

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Sherwood, O.; Tans, P. P.; Michel, S. E.; Miller, J. B.; Dlugokencky, E. J.; Griffin, W. M.; Bruhwiler, L.

    2014-12-01

    Numerous life cycle assessment (LCA) and field studies have estimated natural gas (NG) fugitive emissions rates (FER) - the fraction of produced NG, mostly CH4, emitted to the atmosphere, unintentionally or by design, during extraction, processing, transport, and distribution - at local, regional, and national scales. In a recent study, we estimated for the first time the global mean FER using long-term (three decades) atmospheric CH4, δ13C-CH4, and C2H6 measurements from global monitoring networks. As a further development, this work investigates the global mean FER uncertainty range (factor of 2) in more detail to increase confidence in the results. The objectives of this research are to (i) estimate probability distribution functions (PDF) of global mean FER, and (ii) identify long-term trends in global fossil fuel (FF) and other CH4 sources. In order to achieve these objectives, global atmospheric δ13C-CH4 measurements since the mid-1980s are analyzed using a box-model of the global CH4 sources and sinks. First, we derive PDFs of the key model parameters including literature isotopic source signatures, atmospheric lifetimes, natural and anthropogenic emissions, and FF hydrocarbon gas composition. Second, a Monte Carlo simulation of the box-model is performed to quantify FER confidence intervals. While our model attributes the majority of increased CH4 levels over the past three decades to microbial sources, FF sources have also increased slightly. However, FER - an indicator of NG life cycle efficiency - has decreased over the same period given the large NG production increase worldwide. Results are most sensitive to global average microbial isotopic signatures (weighted by source strength) and bottom-up estimates of biomass burning emissions, which will be discussed in more detail.

  12. Insight into the photoinduced ligand exchange reaction pathway of cis-[Rh2(μ-O2CCH3)2(CH3CN)6]2+ with a DNA model chelate.

    PubMed

    Chifotides, Helen T; Lutterman, Daniel A; Dunbar, Kim R; Turro, Claudia

    2011-12-01

    We previously showed that [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) binds to dsDNA only upon irradiation with visible light and that photolysis results in a 34-fold enhancement of its cytotoxicity toward Hs-27 human skin fibroblasts, making it potentially useful for photodynamic therapy (PDT). With the goal of gaining further insight on the photoinduced binding of DNA to the complex, we investigated by NMR spectroscopy the mechanism by which 2,2'-bipyridine (bpy), a model for biologically relevant bidentate nitrogen donor ligands, binds to [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) upon irradiation in D(2)O. The photochemical results are compared to the reactivity in the dark in D(2)O and CD(3)CN. The photolysis of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) with equimolar bpy solutions in D(2)O with visible light affords [Rh(2)(O(2)CCH(3))(2)(eq/eq-bpy)(CH(3)CN)(2)(D(2)O(ax))(2)](2+) (eq/eq) with the reaction reaching completion in ~8 h. Only vestiges of eq/eq are observed at the same time in the dark, however, and the reaction is ~20 times slower. Conversely, the dark reaction of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) with an equimolar amount of bpy in CD(3)CN affords [Rh(2)(O(2)CCH(3))(2)(η(1)-bpy(ax))(CH(3)CN)(5)](2+) (η(1)-bpy(ax)), which remains present even after 5 days of reaction. The photolysis results in D(2)O are consistent with the exchange of one equiv CH(3)CNeq for solvent, and the resulting species quickly reacting with bpy to generate eq/eq; the initial eq ligand dissociation is assisted by absorption of a photon, thus greatly enhancing the reaction rate. The photolytic reaction of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+):bpy in a 1:2 ratio in D(2)O affords the eq/eq and (eq/eq)(2) adducts. The observed differences in the reactivity in D(2)O vs CD(3)CN are explained by the relative ease of substitution of eq D(2)O vs CD(3)CN by the incoming bpy molecule. These results clearly highlight the importance of dissociation of an eq CH(3)CN molecule from the dirhodium

  13. The association of thirst, sodium appetite and vasopressin release with c-fos expression in the forebrain of the rat after intracerebroventricular injection of angiotensin II, angiotensin-(1-7) or carbachol.

    PubMed

    Mahon, J M; Allen, M; Herbert, J; Fitzsimons, J T

    1995-11-01

    The effect intracerebroventricular injections of angiotensin II (0.1 nm), angiotensin-(1-7) (1 or 100 nm) and carbachol (500 ng) on c-fos expression was examined in the forebrain of Lister hooded rats. Intense staining of the c-Fos protein was found in the median preoptic nucleus, organum vasculosum of the lamina terminalis, subfornical organ, paraventricular nucleus and supraoptic nucleus after angiotensin II and carbachol Angiotensin II caused significantly more c-fos expression in the ventral median preoptic nucleus and organum vasculosum of the lamina terminalis than carbachol, whereas in the paraventricular and supraoptic nuclei this was reversed, with carbachol having a greater effect on c-fos expression in these areas. Angiotensin-(1-7), however, only induced c-Fos protein in the organum vasculosum of the lamina terminalis and median preoptic nucleus with the number and the intensity of staining of the nuclei significantly less in both areas than after angiotensin II or carbachol. Separate groups of Lister rats were given i.c.v. injections of the same substances at the same doses, but excluding the lower dose of angiotensin-(1-7), and the intakes of water and 1.8% NaCl over 60 min were measured. Angiotensin II stimulated intakes of both water and NaCl. The effect on water intake was almost immediate (<1 min), whereas NaCl intake did not usually start until at least 5 min after injection. Over 60 min, water (12.4 +/- 1.0 ml) and NaCl (4.2 +/- 0.9 ml) intakes were significantly greater than water (1.1 +/- 0.2 ml) and NaCl (0.6 +/- 0.5 ml) intakes of the controls. Carbachol caused less drinking than angiotensin II, the water intake over 60 min being significantly less (4.8 +/- 0.7 ml) and the latency of response greater (>5 min). Carbachol, unlike angiotensin II, had little effect on NaCl intake (0.7 +/- 0.4 ml). Angiotensin-(1-7) had no effect on water (1.1 +/- 0.3 ml) or NaCl (0.3 +/- 0.3 ml) intakes. The plasma levels of vasopressin were measured after i

  14. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling.

    PubMed

    Su, Shao-Hua; Wang, Yue-Qing; Wu, Yi-Fang; Wang, Da-Peng; Lin, Qi; Hai, Jian

    2016-10-15

    The present study further investigated the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase (FAAH) inhibitor URB597 (URB) on chronic cerebral hypoperfusion (CCH)-induced cognitive impairment in rats. Spatial learning and memory were assessed with the Morris water maze and by measuring Long-term potentiation. The expression of microtubule-associated protein-2 (MAP)-2, growth-associated protein-43 (GAP)-43, synaptophysin, cannabinoid receptor 1 (CB1), brain-derived neurotrophic factor (BDNF), FAAH, N-acylphosphatidylethanolamine phospholipase D(NAPE-PLD) and monoacyl glycerol lipase (MGL) as well as phosphoinositide 3-kinase (PI3K)/AKT signaling pathway molecules and downstream targets including AKT, phosphorylated (p-)AKT, cyclic AMP response element- binding protein (CREB), p-CREB, Bcl-2-associated death protein (BAD), p-BAD, glycogen synthase kinase (GSK)-3β, p-GSK-3β, forkhead box protein (FOXO) 3A and p-FOXO3A was determined by western blotting. WIN and URB treatment improved learning and memory performance, effects that were abolished by co-administration of the PI3K/AKT inhibitor LY294002. Moreover, WIN and URB reversed the decreases in MAP-2 and synaptophysin expression resulting from CCH, and stimulated BDNF and CB1 expression as well as CREB, FOXO3A, GSK-3β, and BAD phosphorylation, confirming that WIN and URB mediate neuroprotection by preventing neuronal apoptosis and improving cognition via PI3K/AKT signaling. These findings suggest that WIN and URB are promising agents for therapeutic management of CCH. PMID:27424778

  15. A role for protein kinase C subtypes alpha and epsilon in phorbol-ester-enhanced K(+)- and carbachol-evoked noradrenaline release from the human neuroblastoma SH-SY5Y.

    PubMed Central

    Turner, N A; Rumsby, M G; Walker, J H; McMorris, F A; Ball, S G; Vaughan, P F

    1994-01-01

    Protein kinase C (PKC) consists of a family of closely related subtypes which differ in their localization and activation properties. Our previous studies have suggested a role for PKC in the regulation of noradrenaline (NA) release from the human neuroblastoma SH-SY5Y. Here we have used two approaches to characterize the PKC subtypes present in SH-SY5Y cells. Firstly, the PCR was used to show that SH-SY5Y cells contain mRNA encoding PKC subtypes alpha, beta, gamma, delta, epsilon and zeta. Secondly, immunoblotting showed that SH-SY5Y cells express PKC subtypes alpha, epsilon and zeta at the protein level. Prolonged (48 h) exposure of cells to the phorbol ester phorbol 12-myristate 13-acetate (PMA; 100 nM) resulted in a marked decrease in the amounts of PKC-alpha and PKC-epsilon, with no change in levels of PKC-zeta. Prolonged PMA treatment had no significant effect on K(+)-evoked NA release from SH-SY5Y cells, whereas carbachol-evoked release was increased 2.2-fold. However, prolonged exposure to PMA completely inhibited the ability of acute (12 min) PMA treatment to enhance both K(+)- and carbachol-evoked NA release. The specific PKC inhibitor RO 31-7459 (10 microM) was found to inhibit K(+)- and carbachol-evoked release by 27% and 68% respectively. RO 31-7549 also completely inhibited the ability of acute PMA treatment to enhance release. These data suggest that PKC-alpha and/or PKC-epsilon play an essential role in the regulation of PMA-enhanced K(+)- and carbachol-evoked NA release in SH-SY5Y cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8297348

  16. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  17. Agonist activation of cytosolic Ca2+ in subfornical organ cells projecting to the supraoptic nucleus

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Sharma, R. V.; Xu, Z.; Bhatty, R. A.; Johnson, A. K.

    2001-01-01

    The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.

  18. Monoterpenoid agonists of TRPV3

    PubMed Central

    Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

    2007-01-01

    Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

  19. RQ-00201894: A motilin receptor agonist causing long-lasting facilitation of human gastric cholinergically-mediated contractions.

    PubMed

    Broad, John; Takahashi, Nobuyuki; Tajimi, Masaomi; Sudo, Masaki; Góralczyk, Adam; Parampalli, Umesh; Mannur, Kesava; Yamamoto, Toshinori; Sanger, Gareth J

    2016-02-01

    The aim was to characterise RQ-00201894, a novel non-macrolide motilin agonist, using human recombinant receptors and then investigate its ability to facilitate cholinergic activity in human stomach. A reporter gene assay assessed motilin receptor function. Selectivity of action was determined using a panel of different receptors, ion channels, transporters and enzymes. Cholinergically-mediated muscle contractions were evoked by electrical field stimulation (EFS) of human gastric antrum. The results showed that RQ-00201894, motilin and erythromycin acted as full motilin receptor agonists (EC50: 0.20, 0.11, 69 nM, respectively). In this function, RQ-00201894 had >90-fold selectivity of action over its ability to activate the human ghrelin receptor (EC50 19 nM) and greater selectivity over all other receptors/mechanisms tested. In human stomach RQ-00201894 0.1-30 μM concentration-dependently increased EFS-evoked contractions (up to 1209%; pEC50 6.0). At 0.1-10 μM this activity was usually prolonged. At higher concentrations (3-30 μM) RQ-00201894 also caused a short-lasting muscle contraction, temporally disconnected from the increase in EFS-evoked contractions. RQ-00201894 10 μM did not consistently affect submaximal contractions evoked by carbachol. In conclusion, RQ-00201894 potently and selectively activates the motilin receptor and causes long-lasting facilitation of cholinergic activity in human stomach, an activity thought to correlate with an ability to increase gastric emptying. PMID:26685754

  20. Piperidine derivatives as nonprostanoid IP receptor agonists.

    PubMed

    Hayashi, Ryoji; Sakagami, Hideki; Koiwa, Masakazu; Ito, Hiroaki; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-05-01

    The discovery of a new class of nonprostanoid prostaglandin I2 receptor (IP receptor) agonists is reported. Among them, the unique piperidine derivative 31b (2-((1-(2-(N-(4-tolyl)benzamido)ethyl)piperidin-4-yl)oxy)acetic acid) was a good IP receptor agonist and was 50-fold more selective for the human IP receptor than for other human prostanoid receptors. This compound showed good pharmacokinetic properties in dog. PMID:26996371

  1. Bond selectivity in the dissociative adsorption of c-CH 2N 2 on single crystals: a comparative DFT-LSD investigation for Pd(110) and Cu(110)

    NASA Astrophysics Data System (ADS)

    Rochefort, Alain; McBreen, Peter H.; Salahub, Dennis R.

    1996-02-01

    A comparison between the reactivity of palladium and copper cluster models toward diazirine ( c-CH 2N 2) was made using the LCGTO-MCP-LSD method. Adsorption with the nitrogen pair directly over surface atoms (the μ-top site) is clearly more stable than when the NN pair is perpendicular to the rows of the (110) surface (the μ-bridge site). The NN bond is strongly affected by adsorption, a significant decrease of its bond order is observed for both palladium and copper. One main difference between palladium and copper with regards to the adsorption of c-CH 2N 2 is the magnitude of the MN bond order; palladium tends to form a stronger chemisorption bond than copper. A second difference is that partial occupation of the LUMO of diazirine only occurs for the copper cluster model systems. The concerted dissociation of CN bonds is energetically demanding but appears to be easier on Pd than on Cu by around 28 kcal mol -1. The study of electronically perturbed diazirine (excited, ionized or isomerized) provides insight on how chemisorption induces variations in bond lengths and vibrational frequencies as a result of charge transfer. The results of the calculations show that the μ-top adsorbed state is more similar to the n_ →π∗ first excited state of the free molecule than to the ionized state. A more striking result is obtained when the first excited states of the chemisorbed complexes are studied. A 0.4 eV electron excitation in the {c- CH2N2}/{Cu4} complex (μ-top) leads to a significant decrease of the bond order of the NN bond but does not induce even a small change for the {c- CH2N2}/{Pd4} complex. The calculations provide some insights on the markedly different bond scission selectivity observed in experimental studies of the thermal decomposition of diazirine on Pd and Cu surfaces. Experiments show that NN bond scission occurs with essentially 100% selectivity on copper, whereas NN bond retention as well as NN bond scission occurs on Pd(110).

  2. A Substellar-mass Protostar and its Outflow of IRAS 15398-3359 Revealed by Subarcsecond-resolution Observations of H2CO and CCH

    NASA Astrophysics Data System (ADS)

    Oya, Yoko; Sakai, Nami; Sakai, Takeshi; Watanabe, Yoshimasa; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; van Dishoeck, Ewine F.; Yamamoto, Satoshi

    2014-11-01

    Subarcsecond (0.''5) images of H2CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398-3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M ⊙. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H2CO emission associated with the protostar.

  3. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    SciTech Connect

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; Van Dishoeck, Ewine F.

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.

  4. beta2-Agonists at the Olympic Games.

    PubMed

    Fitch, Kenneth D

    2006-01-01

    The different approaches that the International Olympic Committee (IOC) had adopted to beta2-agonists and the implications for athletes are reviewed by a former Olympic team physician who later became a member of the Medical Commission of the IOC (IOC-MC). Steadily increasing knowledge of the effects of inhaled beta2-agonists on health, is concerned with the fact that oral beta2-agonists may be anabolic, and rapid increased use of inhaled beta2-agonists by elite athletes has contributed to the changes to the IOC rules. Since 2001, the necessity for athletes to meet IOC criteria (i.e., that they have asthma and/or exercise-induced asthma [EIA]) has resulted in improved management of athletes. The prevalence of beta2-agonist use by athletes mirrors the known prevalence of asthma symptoms in each country, although athletes in endurance events have the highest prevalence. The age-of-onset of asthma/EIA in elite winter athletes may be atypical. Of the 193 athletes at the 2006 Winter Olympics who met th IOC's criteria, only 32.1% had childhood asthma and 48.7% of athletes reported onset at age 20 yr or older. These findings lead to speculation that years of intense endurance training may be a causative factor in bronchial hyperreactivity. The distinction between oral (prohibited in sports) and inhaled salbutamol is possible, but athletes must be warned that excessive use of inhaled salbutamol can lead to urinary concentrations similar to those observed after oral administration. This article provides justification that athletes should provide evidence of asthma or EIA before being permitted to use inhaled beta2-agonists. PMID:17085798

  5. Introduction of a single isomer beta agonist.

    PubMed

    Rau, J L

    2000-08-01

    The release of levalbuterol offers the first approved single-isomer beta agonist for oral inhalation. Data from in vitro studies support the concept that S albuterol is not inactive and may have properties antagonistic to bronchodilation. There is some variability in the results of clinical studies with the separate isomers of albuterol, which suggests the need for further study. The introduction of levalbuterol into general clinical use in managing asthma and chronic obstructive disease should begin to offer additional information on the effects of a single isomer beta agonist in comparison to previous racemic mixtures. PMID:10963321

  6. Distortion of ethyne on coordination to silver acetylide, C{sub 2}H{sub 2}⋅⋅⋅AgCCH, characterised by broadband rotational spectroscopy and ab initio calculations

    SciTech Connect

    Stephens, Susanna L.; Zaleski, Daniel P.; Walker, Nicholas R. E-mail: a.c.legon@bristol.ac.uk; Mizukami, Wataru; Tew, David P.; Legon, Anthony C. E-mail: a.c.legon@bristol.ac.uk

    2014-03-28

    The rotational spectra of six isotopologues of a complex of ethyne and silver acetylide, C{sub 2}H{sub 2}⋅⋅⋅AgCCH, are measured by both chirped-pulse and Fabry-Perot cavity versions of Fourier-transform microwave spectroscopy. The complex is generated through laser ablation of a silver target in the presence of a gas sample containing 1% C{sub 2}H{sub 2}, 1% SF{sub 6}, and 98% Ar undergoing supersonic expansion. Rotational, A{sub 0}, B{sub 0}, C{sub 0}, and centrifugal distortion Δ{sub J} and Δ{sub JK} constants are determined for all isotopologues of C{sub 2}H{sub 2}⋅⋅⋅AgCCH studied. The geometry is planar, C{sub 2v} and T-shaped in which the C{sub 2}H{sub 2} sub-unit comprises the bar of the “T” and binds to the metal atom through its π electrons. In the r{sub 0} geometry, the distance of the Ag atom from the centre of the triple bond in C{sub 2}H{sub 2} is 2.2104(10) Å. The r(HC≡CH) parameter representing the bond distance separating the two carbon atoms and the angle, ∠(CCH), each defined within the C{sub 2}H{sub 2} sub-unit, are determined to be 1.2200(24) Å and 186.0(5)°, respectively. This distortion of the linear geometry of C{sub 2}H{sub 2} involves the hydrogen atoms moving away from the silver atom within the complex. The results thus reveal that the geometry of C{sub 2}H{sub 2} changes measurably on coordination to AgCCH. A value of 59(4) N m{sup −1} is determined for the intermolecular force constant, k{sub σ}, confirming that the complex is significantly more strongly bound than hydrogen and halogen-bonded analogues. Ab initio calculations of the r{sub e} geometry at the CCSD(T)(F12{sup *})/ACVTZ level of theory are consistent with the experimental results. The spectra of the {sup 107}Ag{sup 13}C{sup 13}CH and {sup 109}Ag{sup 13}C{sup 13}CH isotopologues of free silver acetylide are also measured for the first time allowing the geometry of the AgCCH monomer to be examined in greater detail than previously.

  7. Reciprocity of agonistic support in ravens

    PubMed Central

    Fraser, Orlaith N.; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim’s likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  8. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  9. Small molecule TSHR agonists and antagonists.

    PubMed

    Neumann, S; Gershengorn, M C

    2011-04-01

    TSH activates the TSH receptor (TSHR) thereby stimulating the function of thyroid follicular cells (thyrocytes) leading to biosynthesis and secretion of thyroid hormones. Because TSHR is involved in several thyroid pathologies, there is a strong rationale for the design of small molecule "drug-like" ligands. Recombinant human TSH (rhTSH, Thyrogen(®)) has been used in the follow-up of patients with thyroid cancer to increase the sensitivity for detection of recurrence or metastasis. rhTSH is difficult to produce and must be administered by injection. A small molecule TSHR agonist could produce the same beneficial effects as rhTSH but with greater ease of oral administration. We developed a small molecule ligand that is a full agonist at TSHR. Importantly for its clinical potential, this agonist elevated serum thyroxine and stimulated thyroidal radioiodide uptake in mice after its absorption from the gastrointestinal tract following oral administration. Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate TSHR. We identified the first small molecule TSHR antagonists that inhibited TSH- and TSAb-stimulated signalling in primary cultures of human thyrocytes. Our results provide proof-of-principle for effectiveness of small molecule agonists and antagonists for TSHR. We suggest that these small molecule ligands are lead compounds for the development of higher potency ligands that can be used as probes of TSHR biology with therapeutic potential. PMID:21511239

  10. Reciprocity of agonistic support in ravens.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  11. HERG1 Channel Agonists and Cardiac Arrhythmia

    PubMed Central

    Sanguinetti, Michael

    2014-01-01

    Type 1 human ether-a-go-go-related gene (hERG1) potassium channels are a key determinant of normal repolarization of cardiac action potentials. Loss of function mutations in hERG1 channels cause inherited long QT syndrome and increased risk of cardiac arrhythmia and sudden death. Many common medications that block hERG1 channels as an unintended side effect also increase arrhythmic risk. Routine preclinical screening for hERG1 block led to the discovery of agonists that shorten action potential duration and QT interval. Agonists have the potential to be used as pharmacotherapy for long QT syndrome, but can also be proarrhythmic. Recent studies have elucidated multiple mechanisms of action for these compounds and the structural basis for their binding to the pore domain of the hERG1 channel. PMID:24721650

  12. HERG1 channel agonists and cardiac arrhythmia.

    PubMed

    Sanguinetti, Michael C

    2014-04-01

    Type 1 human ether-a-go-go-related gene (hERG1) potassium channels are a key determinant of normal repolarization of cardiac action potentials. Loss of function mutations in hERG1 channels cause inherited long QT syndrome and increased risk of cardiac arrhythmia and sudden death. Many common medications that block hERG1 channels as an unintended side effect also increase arrhythmic risk. Routine preclinical screening for hERG1 block led to the discovery of agonists that shorten action potential duration and QT interval. Agonists have the potential to be used as pharmacotherapy for long QT syndrome, but can also be proarrhythmic. Recent studies have elucidated multiple mechanisms of action for these compounds and the structural basis for their binding to the pore domain of the hERG1 channel. PMID:24721650

  13. An automated setup to measure paleoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    NASA Astrophysics Data System (ADS)

    Sperlich, P.; Buizert, C.; Jenk, T. M.; Sapart, C. J.; Prokopiou, M.; Röckmann, T.; Blunier, T.

    2013-02-01

    Air bubbles in ice core samples represent the only opportunity to study the isotopic variability of paleoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup to measure δ13C-CH4, δ15N-N2O and δ18O-N2O isotope ratios in one ice core sample, with a precision of 0.09‰, 0.6‰ and 0.7‰, respectively, as determined on 0.6-1.6 nmol CH4 and 0.25-0.6 nmol N2O. The isotope ratios are referenced to the VPDB scale (δ13C-CH4), the N2-air scale (δ15N-N2O) and the VSMOW scale (δ18O-N2O). Ice core samples of 200-500 g are melted while the air is constantly extracted to minimize gas dissolution. A helium carrier gas flow transports the sample through the analytical system. A gold catalyst is used to oxidize CO to CO2 in the air sample without affecting the CH4 and N2O sample. CH4 and N2O are then separated from N2, O2, Ar and CO2 before they get pre-concentrated and separated by gas chromatography. While the separated N2O sample is immediately analysed in the mass spectrometer, a combustion unit is required for δ13C-CH4 analysis, which is equipped with a constant oxygen supply as well as a post-combustion trap and a post-combustion GC-column (GC-C-GC-IRMS). The post combustion trap and the second GC column in the GC-C-GC-IRMS combination increase the time for δ13C-CH4 analysis which is used to measure δ15N-N2O and δ18O-N2O first and then δ13C-CH4. The analytical time is adjusted to ensure stable conditions in the ion-source before each sample gas enters the IRMS, thereby improving the precision achieved for measurements of CH4 and N2O on the same IRMS. After the extraction of the air from the ice core sample, the analysis of CH4 and N2O takes 42 min. The setup is calibrated by analyzing multiple isotope reference gases that were injected over bubble-free-ice samples. We show a comparison of ice core sample measurements for

  14. An automated GC-C-GC-IRMS setup to measure palaeoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    NASA Astrophysics Data System (ADS)

    Sperlich, P.; Buizert, C.; Jenk, T. M.; Sapart, C. J.; Prokopiou, M.; Röckmann, T.; Blunier, T.

    2013-08-01

    Air bubbles in ice core samples represent the only opportunity to study the mixing ratio and isotopic variability of palaeoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup to measure δ13C-CH4, δ15N-N2O and δ18O-N2O isotope ratios in one ice core sample and with one single IRMS instrument, with a precision of 0.09, 0.6 and 0.7‰, respectively, as determined on 0.6-1.6 nmol CH4 and 0.25-0.6 nmol N2O. The isotope ratios are referenced to the VPDB scale (δ13C-CH4), the N2-air scale (δ15N-N2O) and the VSMOW scale (δ18O-N2O). Ice core samples of 200-500 g are melted while the air is constantly extracted to minimize gas dissolution. A helium carrier gas flow transports the sample through the analytical system. We introduce a new gold catalyst to oxidize CO to CO2 in the air sample. CH4 and N2O are then separated from N2, O2, Ar and CO2 before they get pre-concentrated and separated by gas chromatography. A combustion unit is required for δ13C-CH4 analysis, which is equipped with a constant oxygen supply as well as a post-combustion trap and a post-combustion GC column (GC-C-GC-IRMS). The post-combustion trap and the second GC column in the GC-C-GC-IRMS combination prevent Kr and N2O interferences during the isotopic analysis of CH4-derived CO2. These steps increase the time for δ13C-CH4 measurements, which is used to measure δ15N-N2O and δ18O-N2O first and then δ13C-CH4. The analytical time is adjusted to ensure stable conditions in the ion source before each sample gas enters the IRMS, thereby improving the precision achieved for measurements of CH4 and N2O on the same IRMS. The precision of our measurements is comparable to or better than that of recently published systems. Our setup is calibrated by analysing multiple reference gases that were injected over bubble-free ice samples. We show that our measurements

  15. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. PMID:26832440

  16. Melanocortin 1 Receptor Agonists Reduce Proteinuria

    PubMed Central

    Ebefors, Kerstin; Johansson, Martin E.; Stefánsson, Bergur; Granqvist, Anna; Arnadottir, Margret; Berg, Anna-Lena; Nyström, Jenny; Haraldsson, Börje

    2010-01-01

    Membranous nephropathy is one of the most common causes of nephrotic syndrome in adults. Recent reports suggest that treatment with adrenocorticotropic hormone (ACTH) reduces proteinuria, but the mechanism of action is unknown. Here, we identified gene expression of the melanocortin receptor MC1R in podocytes, glomerular endothelial cells, mesangial cells, and tubular epithelial cells. Podocytes expressed most MC1R protein, which colocalized with synaptopodin but not with an endothelial-specific lectin. We treated rats with passive Heymann nephritis (PHN) with MS05, a specific MC1R agonist, which significantly reduced proteinuria compared with untreated PHN rats (P < 0.01). Furthermore, treatment with MC1R agonists improved podocyte morphology and reduced oxidative stress. In summary, podocytes express MC1R, and MC1R agonism reduces proteinuria, improves glomerular morphology, and reduces oxidative stress in nephrotic rats with PHN. These data may explain the proteinuria-reducing effects of ACTH observed in patients with membranous nephropathy, and MC1R agonists may provide a new therapeutic option for these patients. PMID:20507942

  17. Synthesis and structure of bis[(2 E)-3-(2-furyl)prop-2-enoato]triphenylantimony Ph 3Sb[O2CCH=CH(C4H3O)]2

    NASA Astrophysics Data System (ADS)

    Kalistratova, O. S.; Andreev, P. V.; Gushchin, A. V.; Somov, N. V.; Chuprunov, E. V.

    2016-05-01

    Bis[(2 E)-3-(2-furyl)prop-2-enoato]triphenylantimony Ph 3Sb[O2CCH=CH(C4H3O)]2 is obtained for the first time by the reaction of triphenylantimony, hydrogen peroxide, and 2-furylpropene acid. The X-ray diffraction data show that the central atom of antimony is coordinated in the shape of a distorted trigonal bipyramid. The base of the bipyramid is formed by carbon atoms of phenyl ligands, and the apical vertices are occupied by acid residues. The IR and NMR spectra agree with the composition and structure of the compound.

  18. A crossed molecular beam and ab-initio investigation of the reaction of boron monoxide (BO; X2Σ+) with methylacetylene (CH3CCH; X1A1): competing atomic hydrogen and methyl loss pathways.

    PubMed

    Maity, Surajit; Parker, Dorian S N; Dangi, Beni B; Kaiser, Ralf I; Fau, Stefan; Perera, Ajith; Bartlett, Rodney J

    2013-11-21

    The gas-phase reaction of boron monoxide ((11)BO; X(2)Σ(+)) with methylacetylene (CH3CCH; X(1)A1) was investigated experimentally using crossed molecular beam technique at a collision energy of 22.7 kJ mol(-1) and theoretically using state of the art electronic structure calculation, for the first time. The scattering dynamics were found to be indirect (complex forming reaction) and the reaction proceeded through the barrier-less formation of a van-der-Waals complex ((11)BOC3H4) followed by isomerization via the addition of (11)BO(X(2)Σ(+)) to the C1 and/or C2 carbon atom of methylacetylene through submerged barriers. The resulting (11)BOC3H4 doublet radical intermediates underwent unimolecular decomposition involving three competing reaction mechanisms via two distinct atomic hydrogen losses and a methyl group elimination. Utilizing partially deuterated methylacetylene reactants (CD3CCH; CH3CCD), we revealed that the initial addition of (11)BO(X(2)Σ(+)) to the C1 carbon atom of methylacetylene was followed by hydrogen loss from the acetylenic carbon atom (C1) and from the methyl group (C3) leading to 1-propynyl boron monoxide (CH3CC(11)BO) and propadienyl boron monoxide (CH2CCH(11)BO), respectively. Addition of (11)BO(X(2)Σ(+)) to the C1 of methylacetylene followed by the migration of the boronyl group to the C2 carbon atom and/or an initial addition of (11)BO(X(2)Σ(+)) to the sterically less accessible C2 carbon atom of methylacetylene was followed by loss of a methyl group leading to the ethynyl boron monoxide product (HCC(11)BO) in an overall exoergic reaction (78 ± 23 kJ mol(-1)). The branching ratios of these channels forming CH2CCH(11)BO, CH3CC(11)BO, and HCC(11)BO were derived to be 4 ± 3%, 40 ± 5%, and 56 ± 15%, respectively; these data are in excellent agreement with the calculated branching ratios using statistical RRKM theory yielding 1%, 38%, and 61%, respectively. PMID:23651442

  19. Hydrothermal plumes in the Gulf of Aden, as characterized by light transmission, Mn, Fe, CH4 and δ13C-CH4 anomalies

    NASA Astrophysics Data System (ADS)

    Gamo, Toshitaka; Okamura, Kei; Hatanaka, Hiroshi; Hasumoto, Hiroshi; Komatsu, Daisuke; Chinen, Masakazu; Mori, Mutsumi; Tanaka, Junya; Hirota, Akinari; Tsunogai, Urumu; Tamaki, Kensaku

    2015-11-01

    We conducted water column surveys to search for hydrothermal plumes over the spreading axes in the Gulf of Aden between 45°35‧E and 52°42‧E. We measured light transmission and chemical tracers Mn, Fe, CH4 and δ13C of CH4 in seawater taken using a CTD-Carrousel multi-sampling system at 12 locations including a control station in the Arabian Sea. We recognized three types of hydrothermal plumes at depths of ~650 to ~900 m (shallow plumes), ~1000 to ~1200 m (intermediate plumes), and >1500 m (deep plumes). The shallow plumes were apparently originated from newly discovered twin seamounts (12°03-06‧N and 45°35-41‧E) at the westernmost survey area, where two-dimensional distributions of light transmission and Mn were mapped by tow-yo observations of the CTD-sampling system with an in situ auto-analyzer GAMOS. The maximum concentrations of Mn, Fe, and CH4 of 46 nM, 251 nM, and 15 nM, respectively, were observed for collected seawater within the shallow plumes. The intermediate plumes were characterized by anomalies of light transmission, Mn, Fe, and δ13C of CH4, but by little CH4 anomalies, suggesting that CH4 had been consumed down to the background level during the aging of the plumes. Anomalies of δ3He already reported by the World Ocean Circulation Experiment (WOCE) program exhibited a hydrothermal plume-like peak at ~2000 m depth in the Gulf of Aden, which seems to coincide with the deep plumes observed in this study. The endmember δ13C-CH4 values for the shallow and the deep plumes were estimated to be in a range between -10‰ and -15‰, demonstrating that the sources of CH4 are not biogenic but magmatic as similarly observed at sediment-starved mid-oceanic ridges.

  20. Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.

    PubMed

    Papadimitriou, Vassileios C; Spitieri, Christina S; Papagiannakopoulos, Panos; Cazaunau, Mathieu; Lendar, Maria; Daële, Véronique; Mellouki, Abdelwahid

    2015-10-14

    The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 < 9.0 × 10(-22) cm(3) molecule(-1) s(-1). In global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation. PMID:26372403

  1. Syntheses and reactions of polymer-bound molybdenum complexes and hydrogenolyses of an alkynyl cobalt carbonyl cluster. [Co/sub 3/(CO)/sub 9/CCH/sub 2/CCH/sub 2/C(CH/sub 3/)/sub 3/; cyclopentadienyl-(tricarbonyl) hydridomolybdenum

    SciTech Connect

    Frommer, J.E.

    1980-08-01

    Co/sub 3/(CO)/sub 9/CCH/sub 2/C(CH/sub 3/)/sub 3/ reacted with hydrogen in aromatic solvents to yield 3,3-dimethylbutene, 2,2-dimethylbutane, and 4,4-dimethylpentanal. First order decomposition of starting material and a hydrogen pressure dependence for the rate of appearance of total products were indicated. The hydrogenation was inhibited in the presence of carbon monoxide (CO:H/sub 2/, 3.7:3.7 atm, 60/sup 0/C), but at 85/sup 0/ under the same CO/H/sub 2/ atmosphere, aldehyde production became the predominant reaction pathway at the expense of earlier-formed olefin. Incorporation of independently added olefins in the hydrogenation suggested the intermediacy of olefin aldehyde ad alkane production. A polystyrene-attached n/sup 5/-cyclopentadienyl(tricarbonyl)-hydridomolybdenum complex was prepared and its reactions with several THF-soluble bases were investigated. Enolates of ..beta..-dicarbonyl compounds quantitatively deprotonated this complex, giving polymer-bound salts of the corresponding anion. Little change in pKa in THF was induced by binding the molybdenum hydride to the polymer. Even though the polymer-supported partners rendered the reactions heterogeneous, the systems adhered reasonably well to conventional equilibrium behavior. A polymer-bound carboxylic acid and its conjugate base also displayed essentially conventional equilibrium dynamics.

  2. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C

    PubMed Central

    Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881

  3. Replacement of glycine with dicarbonyl and related moieties in analogues of the C-terminal pentapeptide of cholecystokinin: CCK(2) agonists displaying a novel binding mode.

    PubMed

    Bellier, B; Million, M E; DaNascimento, S; Meudal, H; Kellou, S; Maigret, B; Garbay, C

    2000-10-01

    Recent advances in the field of cholecystokinin have indicated the possible occurrence of multiple affinity states of the CCK(2) receptor. Besides, numerous pharmacological experiments performed "in vitro" and "in vivo" support the eventuality of different pharmacological profiles associated to CCK(2) ligands. Indeed, some agonists are essentially anxiogenic and uneffective in memory tests, whereas others are not anxiogenic and appear as able to reinforce memory. The reference compound for the latter profile is the CCK-8 analogue BC 264 (Boc-Tyr(SO(3)H)-gNle-mGly-Trp-(NMe)Nle-Asp-Phe-NH(2)). However, although tetrapeptide ligands based on CCK-4 (Trp-Met-Asp-Phe-NH(2)) are known to possess sufficient structural features for CCK(2) recognition, none shares the properties of BC 264. Hence we have developed new short peptidic or pseudo-peptidic derivatives containing the C-terminal tetrapeptide of BC 264. Our results indicate that some compounds characterized by the presence of two carbonyl groups at the N-terminus, as in 2b (HO(2)C-CH(2)-CONH-Trp-(NMe)Nle-Asp-Phe-NH(2)), are likely to show a BC 264-like profile, bind to the CCK(2) receptor in a specific way, and display remarkable affinities (2b: 0.28 nM on guinea-pig cortex membrane preparations). This original binding mode is discussed and further enlightened by NMR and molecular modeling studies. PMID:11020275

  4. Low-Temperature Photoelectron Spectroscopy of Aliphatic Dicarboxylate Monoanions, HO2C(CH2)nCO2-(n=1-10): Hydrogen Bond Induced Cyclization and Strain Energies

    SciTech Connect

    Woo, Hin-koon; Wang, Xue B.; Lau, Kai Chung; Wang, Lai S.

    2006-06-29

    Photoelectron spectra of singly-charged dicarboxylate anions HO2C(CH2)nCO2 - (n = 1 – 10) are obtained at two different temperatures (300 and 70 K) at 193 nm. The electron binding energies of these species are observed to be much higher than the singly-charged monocarboxylate anions, suggesting the singly-charged dicarboxylate anions are cyclic due to strong intramolecular hydrogen bonding between the terminal –CO2H and –CO2 - groups. The measured electron binding energies are observed to depend on the chain length, reflecting the different –CO2H…-O2C– hydrogen bonding strength as a result of strain in the cyclic conformation. A minimum binding energy is found at n = 5, indicating that its intramolecular hydrogen bond is the weakest. At 70 K, all spectra are blue-shifted relative to the room temperature spectra with the maximum binding energy shift occurring at n = 5. These observations suggest that the cyclic conformation of HO2C(CH2)5CO2 - (a ten-membered ring) is the most strained among the ten anions. The present study shows that the –CO2H…-O2C– hydrogen bonding strength is different among the ten anions and it is very sensitive to the strain in the cyclic conformations.

  5. Dopamine agonist: pathological gambling and hypersexuality.

    PubMed

    2008-10-01

    (1) Pathological gambling and increased sexual activity can occur in patients taking dopaminergic drugs. Detailed case reports and small case series mention serious familial and social consequences. The frequency is poorly documented; (2) Most affected patients are being treated for Parkinson's disease, but cases have been reported among patients prescribed a dopamine agonist for restless legs syndrome or pituitary adenoma; (3) Patients treated with this type of drug, and their relatives, should be informed of these risks so that they can watch for changes in behaviour. If such disorders occur, it may be necessary to reduce the dose or to withdraw the drug or replace it with another medication. PMID:19536937

  6. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  7. Mechanisms of agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-12-01

    In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [35S]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [35S]GTPgammaS, increasing GDP decreased the [35S]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [35S]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [35S]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [35S]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [35S]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [35S]GTPgammaS to the G protein. At the higher [35S]GTPgammaS concentration, for full agonists, [35S]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining. PMID:15340043

  8. Computational modeling toward understanding agonist binding on dopamine 3.

    PubMed

    Zhao, Yaxue; Lu, Xuefeng; Yang, Chao-Yie; Huang, Zhimin; Fu, Wei; Hou, Tingjun; Zhang, Jian

    2010-09-27

    The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal. PMID:20695484

  9. Strategies for designing synthetic immune agonists.

    PubMed

    Wu, Tom Y-H

    2016-08-01

    Enhancing the immune system is a validated strategy to combat infectious disease, cancer and allergy. Nevertheless, the development of immune adjuvants has been hampered by safety concerns. Agents that can stimulate the immune system often bear structural similarities with pathogen-associated molecular patterns found in bacteria or viruses and are recognized by pattern recognition receptors (PRRs). Activation of these PRRs results in the immediate release of inflammatory cytokines, up-regulation of co-stimulatory molecules, and recruitment of innate immune cells. The distribution and duration of these early inflammatory events are crucial in the development of antigen-specific adaptive immunity in the forms of antibody and/or T cells capable of searching for and destroying the infectious pathogens or cancer cells. However, systemic activation of these PRRs is often poorly tolerated. Hence, different strategies have been employed to modify or deliver immune agonists in an attempt to control the early innate receptor activation through temporal or spatial restriction. These approaches include physicochemical manipulation, covalent conjugation, formulation and conditional activation/deactivation. This review will describe recent examples of discovery and optimization of synthetic immune agonists towards clinical application. PMID:27213842

  10. Proglumide exhibits delta opioid agonist properties.

    PubMed

    Rezvani, A; Stokes, K B; Rhoads, D L; Way, E L

    1987-01-01

    Recently, it was reported that proglumide, a cholecystokinin (CCK) antagonist, potentiates the analgetic effects of morphine and endogenous opioid peptides and reverses morphine tolerance by antagonizing the CCK system in the central nervous system of the rat. In order to provide additional insight into the mode of action of this agent, we assessed the effect of proglumide in the isolated guinea pig ileum and the mouse, rat and rabbit vas deferens. Furthermore, we studied the in vitro binding affinity of this substance to mouse brain synaptosomes. Our results show that proglumide inhibits, dose dependently, the electrically stimulated twitches in the mouse vas deferens and guinea pig ileum, but not in the rat or rabbit vas deferens. The inhibitory action of proglumide on the mouse vas deferens, but not on the guinea pig ileum, is antagonized by naloxone and by the selective delta-antagonist, ICI 174,864, in a competitive fashion. Other CCK antagonists were found to be devoid of such activity on the mouse vas deferens. In vitro binding studies showed that proglumide displaces D-ala-D-[leucine]5-enkephalin (DADLE), a delta agonist, but not ethylketocyclazocine (EKC), a preferentially selective kappa agonist. The effect of proglumide appeared to be elicited presynaptically since it did not alter the norepinephrine-induced contractions of the mouse vas deferens. Our results suggest that proglumide might exert its opiate-like effects by activation of delta-opioid receptors. PMID:3030338

  11. Chimpanzees Extract Social Information from Agonistic Screams

    PubMed Central

    Slocombe, Katie E.; Kaller, Tanja; Call, Josep; Zuberbühler, Klaus

    2010-01-01

    Chimpanzee (Pan troglodytes) agonistic screams are graded vocal signals that are produced in a context-specific manner. Screams given by aggressors and victims can be discriminated based on their acoustic structure but the mechanisms of listener comprehension of these calls are currently unknown. In this study, we show that chimpanzees extract social information from these vocal signals that, combined with their more general social knowledge, enables them to understand the nature of out-of-sight social interactions. In playback experiments, we broadcast congruent and incongruent sequences of agonistic calls and monitored the response of bystanders. Congruent sequences were in accordance with existing social dominance relations; incongruent ones violated them. Subjects looked significantly longer at incongruent sequences, despite them being acoustically less salient (fewer call types from fewer individuals) than congruent ones. We concluded that chimpanzees categorised an apparently simple acoustic signal into victim and aggressor screams and used pragmatics to form inferences about third-party interactions they could not see. PMID:20644722

  12. Effects of age on muscarinic agonist-induced contraction an IP accumulation in airway smooth muscle

    SciTech Connect

    Wills-Karp, M. )

    1991-01-01

    The effects of age on carbachol-stimulated force development and ({sup 3}H)inositol phosphate production was studied in tracheal rings from guinea pigs aged 1 month and 25 months of age. The pD{sub 2} for the contractile response to carbachol was significantly reduced in tracheal tissues from old animals as compared to that of the young tissues, respectively. In contrast, inositol phosphate formation was not altered with increasing age when stimulated by carbachol or NaF, a direct activator of G proteins. Carbachol-induced inositol phosphate accumulation was inhibited by treatment with 1{mu}g/ml pertussis toxin, suggesting that IP1 accumulation is coupled to a pertussis-toxin-sensitive protein. The pD{sub 2} values for contraction were significantly different from the pD{sub 2} values for IP1 accumulation, in both young and old tissues, respectively. These data suggest that IP1 accumulation is not responsible for the decreased contractile ability in tracheal smooth muscle during aging.

  13. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  14. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  15. Estrogen receptor beta agonists in neurobehavioral investigations.

    PubMed

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research. PMID:18600582

  16. Non-Benzodiazepine Receptor Agonists for Insomnia.

    PubMed

    Becker, Philip M; Somiah, Manya

    2015-03-01

    Because of proven efficacy, reduced side effects, and less concern about addiction, non-benzodiazepine receptor agonists (non-BzRA) have become the most commonly prescribed hypnotic agents to treat onset and maintenance insomnia. First-line treatment is cognitive-behavioral therapy. When pharmacologic treatment is indicated, non-BzRA are first-line agents for the short-term and long-term management of transient and chronic insomnia related to adjustment, psychophysiologic, primary, and secondary causation. In this article, the benefits and risks of non-BzRA are reviewed, and the selection of a hypnotic agent is defined, based on efficacy, pharmacologic profile, and adverse events. PMID:26055674

  17. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  18. An innovative method for joining materials at low temperature using silver (nano)particles derived from [AgO2C(CH2OCH2)3H

    NASA Astrophysics Data System (ADS)

    Oestreicher, Annerose; Röhrich, Tobias; Wilden, Johannes; Lerch, Martin; Jakob, Alexander; Lang, Heinrich

    2013-01-01

    A novel method for the manufacture of compact sintered silver layers as joining materials at low temperatures without applying pressure is described. The metal-organic silver complex [AgO2C(CH2OCH2)3H] (3) is used, which generates silver nanoparticles with heat treatment below 200 °C. Complex (3) provides the features for the formation of a molten metal-like silver phase in which silver particles in the nanometer and submicron size range, respectively, are completely miscible. Within this study, copper specimens were bonded, and the joints were evaluated by cross-sectional scanning electron microscope (SEM) images. Moreover, this approach enables the incorporation of copper. An example is given with an average amount of 20 at.% copper content in the silver layer.

  19. Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2

    NASA Astrophysics Data System (ADS)

    Chen, Sun-Yang; Lee, Yuan-Pern

    2010-03-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of CH3CO and O2; IR absorption spectra of CH3C(O)OO and α-lactone were observed. Absorption bands with origins at 1851±1, 1372±2, 1169±6, and 1102±3 cm-1 are attributed to t-CH3C(O)OO, and those at 1862±3, 1142±4, and 1078±6 cm-1 are assigned to c-CH3C(O)OO. A weak band near 1960 cm-1 is assigned to α-lactone, cyc-CH2C(O)O, a coproduct of OH. These observed rotational contours agree satisfactorily with simulated bands based on predicted rotational parameters and dipole derivatives, and observed vibrational wavenumbers agree with harmonic vibrational wavenumbers predicted with B3LYP/aug-cc-pVDZ density-functional theory. The observed relative intensities indicate that t-CH3C(O)OO is more stable than c-CH3C(O)OO by 3±2 kJ mol-1. Based on these observations, the branching ratio for the OH+α-lactone channel of the CH3CO+O2 reaction is estimated to be 0.04±0.01 under 100 Torr of O2 at 298 K. A simple kinetic model is employed to account for the decay of CH3C(O)OO.

  20. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  1. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  2. Risk versus benefit considerations for the beta(2)-agonists.

    PubMed

    Kelly, H William

    2006-09-01

    Short-acting beta(2)-agonists are the mainstay of therapy for acute bronchospasm associated with asthma and chronic obstructive pulmonary disease, whereas long-acting beta(2)-agonists are used in maintaining disease control in these respiratory disorders. This review describes and compares the pharmacology of the beta(2)-agonists and explains how these differences translate into differences in efficacy and beta(2)-adrenergic-mediated adverse effects. Questions commonly asked by clinicians regarding the efficacy and safety of short- and long-acting beta(2)-agonists include issues about cardiovascular effects, tolerance to their bronchodilator and bronchoprotective effects, blunting of albuterol response by long-acting beta(2)-agonists, potential masking of worsening asthma control, and the role of long-acting beta(2)-agonists as adjunctive therapy with inhaled corticosteroids in maintaining asthma control. Pharmacogenetics may play a role in determining which patients may be at risk for a reduced response to a beta(2)-agonist. The continued use of racemic albuterol, which contains a mixture of R-albuterol and S-albuterol, has been questioned because of data from preclinical and clinical studies suggesting that S-albuterol causes proinflammatory effects and may increase bronchial hyperreactivity. The preclinical and clinical effects of these two stereoisomers are reviewed. Data describing the efficacy and safety of levalbuterol (R-albuterol) and racemic albuterol are presented. PMID:16945063

  3. Dopamine agonist withdrawal syndrome: implications for patient care.

    PubMed

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper. PMID:23686524

  4. Supra-physiological efficacy at GPCRs: superstition or super agonists?

    PubMed

    Langmead, Christopher J; Christopoulos, Arthur

    2013-05-01

    The concept of 'super agonism' has been described since the discovery of peptide hormone analogues that yielded greater functional responses than the endogenous agonists, in the early 1980s. It has remained an area of debate as to whether such compounds can really display greater efficacy than an endogenous agonist. However, recent pharmacological data, combined with crystal structures of different GPCR conformations and improved analytical methods for quantifying drug action, are starting to shed light on this phenomenon and indicate that super agonists may be more than superstition. PMID:23441648

  5. Relamorelin: A Novel Gastrocolokinetic Synthetic Ghrelin Agonist

    PubMed Central

    Camilleri, Michael; Acosta, Andres

    2015-01-01

    Synthetic ghrelin agonists, predominantly small molecules, are being developed as prokinetic agents that may prove useful in the treatment of gastrointestinal motility disorders. Relamorelin (RM-131) is a pentapeptide synthetic ghrelin analog that activates the growth hormone secretagogue (GHS)-1a (also called the ghrelin) receptor with approximately 6-fold greater potency than natural ghrelin. The ability of relamorelin to stimulate growth hormone (GH) release is comparable to that of native ghrelin. Relamorelin has enhanced efficacy and plasma stability compared to native ghrelin. In this review, we discuss the pharmacokinetics, pharmacodynamics and potential indications for relamorelin. Relamorelin is administered subcutaneously, dosed daily or twice daily. Relamorelin is being studied for the treatment of patients with gastrointestinal motility disorders. Phase IIA pharmacodynamic studies have demonstrated acceleration of gastric emptying in patients with type 1 diabetes mellitus (T1DM) and type 2 DM (T2DM) and upper gastrointestinal symptoms. In a phase IIA study in patients with diabetic gastroparesis, relamorelin accelerated gastric emptying and significantly improved vomiting frequency compared to placebo and improved other symptoms of gastroparesis in a pre-specified subgroup of patients with vomiting at baseline. In patients with chronic idiopathic constipation with defined transit profile at baseline, relamorelin relieved constipation and accelerated colonic transit compared to placebo. These characteristics suggest that this new ghrelin analog shows great promise to relieve patients with upper or lower gastrointestinal motility disorders. PMID:25545036

  6. Selecting agonists from single cells infected with combinatorial antibody libraries.

    PubMed

    Zhang, Hongkai; Yea, Kyungmoo; Xie, Jia; Ruiz, Diana; Wilson, Ian A; Lerner, Richard A

    2013-05-23

    We describe a system for direct selection of antibodies that are receptor agonists. Combinatorial antibody libraries in lentiviruses are used to infect eukaryotic cells that contain a fluorescent reporter system coupled to the receptor for which receptor agonist antibodies are sought. In this embodiment of the method, very large numbers of candidate antibodies expressing lentivirus and eukaryotic reporter cells are packaged together in a format where each is capable of replication, thereby forging a direct link between genotype and phenotype. Following infection, cells that fluoresce are sorted and the integrated genes encoding the agonist antibodies recovered. We validated the system by illustrating its ability to generate rapidly potent antibody agonists that are complete thrombopoietin phenocopies. The system should be generalizable to any pathway where its activation can be linked to production of a selectable phenotype. PMID:23706638

  7. Therapeutic Potential of 5-HT6 Receptor Agonists.

    PubMed

    Karila, Delphine; Freret, Thomas; Bouet, Valentine; Boulouard, Michel; Dallemagne, Patrick; Rochais, Christophe

    2015-10-22

    Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox. PMID:26099069

  8. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    PubMed

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility. PMID:20579229

  9. Selective 5-HT2C agonists as potential antidepressants.

    PubMed

    Leysen, D C

    1999-02-01

    The antidepressants currently used need improvement, especially in terms of efficacy, relapse rate and onset of action. In this review the clinical and experimental data which support the rationale for 5-HT2C agonists in the treatment of depression are listed. Next, the results obtained with the non-selective 5-HT2C agonists on the market and in clinical development are described. Finally, the preclinical data on the more selective 5-HT2C agonists are summarized. These recent preclinical results reveal a greater potency and effect size compared to fluoxetine, good tolerability and no evidence of tolerance development. Selective 5-HT2C agonists might become innovative drugs for the treatment of depression, panic, obsessive-compulsive disorder (OCD), some forms of aggression and eating disorders. PMID:16160946

  10. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  11. Sleep attacks in patients taking dopamine agonists: review

    PubMed Central

    Homann, Carl Nikolaus; Wenzel, Karoline; Suppan, Klaudia; Ivanic, Gerd; Kriechbaum, Norbert; Crevenna, Richard; Ott, Erwin

    2002-01-01

    Objectives To assess the evidence for the existence and prevalence of sleep attacks in patients taking dopamine agonists for Parkinson's disease, the type of drugs implicated, and strategies for prevention and treatment. Design Review of publications between July 1999 and May 2001 in which sleep attacks or narcoleptic-like attacks were discussed in patients with Parkinson's disease. Results 124 patients with sleep events were found in 20 publications. Overall, 6.6% of patients taking dopamine agonists who attended movement disorder centres had sleep events. Men were over-represented. Sleep events occurred at both high and low doses of the drugs, with different durations of treatment (0-20 years), and with or without preceding signs of tiredness. Sleep attacks are a class effect, having been found in patients taking the following dopamine agonists: levodopa (monotherapy in 8 patients), ergot agonists (apomorphine in 2 patients, bromocriptine in 13, cabergoline in 1, lisuride or piribedil in 23, pergolide in 5,) and non-ergot agonists (pramipexole in 32, ropinirole in 38). Reports suggest two distinct types of events: those of sudden onset without warning and those of slow onset with prodrome drowsiness. Conclusion Insufficient data are available to provide effective guidelines for prevention and treatment of sleep events in patients taking dopamine agonists for Parkinson's disease. Prospective population based studies are needed to provide this information. What is already known on this topicCar crashes in patients with Parkinson's disease have been associated with sleep attacks caused by the dopamine agonists pramipexole and ropiniroleWhether sleep attacks exist, their connection with certain agonists, prevention or treatment, and the justification of legal actions are controversialWhat this study addsSleep attacks as a phenomenon distinct from normal somnolence really do existThey are a class effect of all dopamine drugsEffective prevention and treatment

  12. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  13. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25326839

  14. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25437461

  15. PPAR dual agonists: are they opening Pandora's Box?

    PubMed

    Balakumar, Pitchai; Rose, Madhankumar; Ganti, Subrahmanya S; Krishan, Pawan; Singh, Manjeet

    2007-08-01

    Cardiovascular disorders are the major cause of mortality in patients of diabetes mellitus. Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of three subtypes such as PPARalpha, PPARgamma and PPARdelta/beta. Activation of PPARalpha reduces triglycerides and involves in regulation of energy homeostasis. Activation of PPARgamma causes insulin sensitization and enhances glucose metabolism, whereas activation of PPARdelta enhances fatty acid metabolism. Current therapeutic strategies available for the treatment of diabetes do not inhibit the associated secondary cardiovascular complications. Hence, the development of multimodal drugs which can reduce hyperglycemia and concomitantly inhibit the progression of secondary cardiovascular complications may offer valuable therapeutic option. Several basic and clinical studies have exemplified the beneficial effects of PPARalpha and PPARgamma ligands in preventing the cardiovascular risks. The PPARalpha/gamma dual agonists are developed to increase insulin sensitivity and simultaneously prevent diabetic cardiovascular complications. Such compounds are under clinical trials and proposed for treatment of Type II diabetes with secondary cardiovascular complications. However, PPARalpha/gamma dual agonists such as muraglitazar, tesaglitazar and ragaglitazar have been noted to produce several cardiovascular risks and carcinogenicity, which raised number of questions about the clinical applications of dual agonists in diabetes and its associated complications. The ongoing basic studies have elucidated the cardio protective role of PPARdelta. Therefore, further studies are on the track to develop PPARalpha/delta and PPAR gamma/delta dual agonists and PPARalpha/gamma/delta pan agonists for the treatment of diabetic cardiovascular complications. The present review critically analyzes the protective and detrimental effect of PPAR agonists in

  16. Mechanisms of inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Strange, Philip G

    2005-05-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  17. Differential effects of AMPK agonists on cell growth and metabolism

    PubMed Central

    Vincent, Emma E.; Coelho, Paula P.; Blagih, Julianna; Griss, Takla; Viollet, Benoit; Jones, Russell G.

    2016-01-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used. PMID:25241895

  18. Perception of specific trigeminal chemosensory agonists

    PubMed Central

    Frasnelli, J; Albrecht, J; Bryant, B; Lundström, JN

    2011-01-01

    The intranasal trigeminal system is a third chemical sense in addition to olfaction and gustation. As opposed to smell and taste, we still lack knowledge on the relationship between receptor binding and perception for the trigeminal system. We therefore investigated the sensitivity of the intranasal trigeminal system towards agonists of the trigeminal receptors TRPM8 and TRPA1 by assessing subjects’ ability to identify which nostril has been stimulated in a monorhinal stimulation design. We summed the number of correct identifications resulting in a lateralization score. Stimuli were menthol (activating TRPM8 receptors), eucalyptol (TRPM8), mustard oil (TRPA1) and two mixtures thereof (menthol/eucalyptol and menthol/mustard oil). In addition, we examined the relationship between intensity and lateralization scores and investigated whether intensity evaluation and lateralization scores of the mixtures show additive effects. All stimuli were correctly lateralized significantly above chance. Across subjects the lateralization scores for single compounds activating the same receptor showed a stronger correlation than stimuli activating different receptors. Although single compounds were isointense, the mixture of menthol and eucalyptol (activating only TRPM8) was perceived as weaker and was lateralized less accurately than the mixture of menthol and mustard oil (activating both TRPM8 and TRPA1) suggesting suppression effects in the former mixture. In conclusion, sensitivity of different subpopulations of trigeminal sensory neurons seems to be related, but only to a certain degree. The large coherence in sensitivity between various intranasal trigeminal stimuli suggests that measuring sensitivity to one single trigeminal chemical stimulus may be sufficient to generally assess the trigeminal system’s chemosensitivity. Further, for stimuli activating the same receptor a mixture suppression effect appears to occur similar to that observed in the other chemosensory

  19. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  20. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  1. Dihydrocodeine/Agonists for Alcohol Dependents

    PubMed Central

    Ulmer, Albrecht; Müller, Markus; Frietsch, Bernhard

    2012-01-01

    Objective: Alcohol addiction too often remains insufficiently treated. It shows the same profile as severe chronic diseases, but no comparable, effective basic treatment has been established up to now. Especially patients with repeated relapses, despite all therapeutic approaches, and patients who are not able to attain an essential abstinence to alcohol, need a basic medication. It seems necessary to acknowledge that parts of them need any agonistic substance, for years, possibly lifelong. For >14 years, we have prescribed such substances with own addictive character for these patients. Methods: We present a documented best possible practice, no designed study. Since 1997, we prescribed Dihydrocodeine (DHC) to 102 heavily alcohol addicted patients, later, also Buprenorphine, Clomethiazole (>6 weeks), Baclofen, and in one case Amphetamine, each on individual indication. This paper focuses on the data with DHC, especially. The Clomethiazole-data has been submitted to a German journal. The number of treatments with the other substances is still low. Results: The 102 patients with the DHC treatment had 1367 medically assisted detoxifications and specialized therapies before! The 4 years-retention rate was 26.4%, including 2.8% successfully terminated treatments. In our 12-steps scale on clinical impression, we noticed a significant improvement from mean 3.7 to 8.4 after 2 years. The demand for medically assisted detoxifications in the 2 years remaining patients was reduced by 65.5%. Mean GGT improved from 206.6 U/l at baseline to 66.8 U/l after 2 years. Experiences with the other substances are similar but different in details. Conclusion: Similar to the Italian studies with GHB and Baclofen, we present a new approach, not only with new substances, but also with a new setting and much more trusting attitude. We observe a huge improvement, reaching an almost optimal, stable, long term status in around 1/4 of the patients already. Many further

  2. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  3. Honokiol: A non-adipogenic PPARγ agonist from nature☆

    PubMed Central

    Atanasov, Atanas G.; Wang, Jian N.; Gu, Shi P.; Bu, Jing; Kramer, Matthias P.; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M.; Schwaiger, Stefan; Rollinger, Judith M.; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M.; Heiss, Elke H.

    2013-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators. Methods We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists. Results The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. Conclusion We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo. General significance This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. PMID:23811337

  4. Modification of opiate agonist binding by pertussis toxin

    SciTech Connect

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  5. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  6. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  7. Reactions of vanadium dioxide molecules with acetylene: infrared spectra of VO2(η(2)-C2H2)(x) (x = 1, 2) and OV(OH)CCH in solid neon.

    PubMed

    Zhou, Xiaojie; Chen, Mohua; Zhou, Mingfei

    2013-07-01

    Reactions of vanadium dioxide molecules with acetylene have been studied by matrix isolation infrared spectroscopy. Reaction intermediates and products are identified on the basis of isotopic substitutions as well as density functional frequency calculations. Ground state vanadium dioxide molecule reacts with acetylene in forming the side-on-bonded VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes spontaneously on annealing in solid neon. The VO2(η(2)-C2H2) complex is characterized to have a (2)B2 ground state with C2v symmetry, whereas the VO2(η(2)-C2H2)2 complex has a (2)A ground state with C2 symmetry. The VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes are photosensitive. The VO2(η(2)-C2H2) complex rearranges to the OV(OH)CCH molecule upon UV-vis light excitation. PMID:23718542

  8. Infrared laser and Fourier transform spectroscopy of CCH: A highly excited bending vibration of the X ˜ 2Σ+ state and unique Renner-Teller levels of the A ˜ 2 Π state

    NASA Astrophysics Data System (ADS)

    Tokaryk, D. W.; Vervloet, M.; Phi, Tân-Trào

    2015-04-01

    New infrared bands of the linear carbon chain radical CCH are reported: X ˜ (0140 0)2Σ+ - X ˜ (000 0)2Σ+, recorded with a near-infrared diode laser spectrometer, and A ˜ (0 1 0) 22 Δ - X ˜ (011 0)2 Π, A ˜ (0 2 0) 32 Φ - X ˜ (022 0)2 Δ and A ˜ (0 3 0) 42 Γ - X ˜ (033 0)2 Φ, recorded in emission with a Fourier transform spectrometer. All of the upper levels in the transitions appear to be strongly affected by interactions with other levels. The data demonstrate the excellence of calculations by Tarroni and Carter (2003), which determine the upper state level positions, spin-orbit splitting A, and rotational parameter B to a remarkable level of accuracy, considering the very complex nature of the interactions between the X ˜ 2Σ+ and A ˜ 2 Π electronic states in the regions spanned by the observed levels.

  9. Supra-physiological efficacy at GPCRs: superstition or super agonists?

    PubMed Central

    Langmead, Christopher J; Christopoulos, Arthur

    2013-01-01

    The concept of ‘super agonism’ has been described since the discovery of peptide hormone analogues that yielded greater functional responses than the endogenous agonists, in the early 1980s. It has remained an area of debate as to whether such compounds can really display greater efficacy than an endogenous agonist. However, recent pharmacological data, combined with crystal structures of different GPCR conformations and improved analytical methods for quantifying drug action, are starting to shed light on this phenomenon and indicate that super agonists may be more than superstition. Linked Article This article is a commentary on Schrage et al., pp. 357–370 of this issue. To view this paper visit http://dx.doi.org/10.1111/bph.12003 PMID:23441648

  10. Principles of agonist recognition in Cys-loop receptors

    PubMed Central

    Lynagh, Timothy; Pless, Stephan A.

    2014-01-01

    Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term “chemoreceptor” emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands. PMID:24795655

  11. Alpha-2 agonists as pain therapy in horses.

    PubMed

    Valverde, Alexander

    2010-12-01

    Alpha-2 agonists, such as xylazine, clonidine, romifidine, detomidine, medetomidine, and dexmedetomidine, are potent analgesic drugs that also induce physiologic and behavioral changes, such as hypertension, bradycardia, atrioventricular block, excessive sedation and ataxia, all of which can potentially limit their systemic use as analgesics in some clinical cases. The use of medetomidine and dexmetomidine has been introduced for equine anesthesia/analgesia, and although not approved in this species, their increased specificity for alpha-2 receptors may offer some potential advantages over the traditional alpha-2 agonists. Similarly, other routes of administration and benefits of alpha-2 agonists are recognized in the human and laboratory animal literature, which may prove useful in the equine patient if validated in the near future. This review presents this relevant information. PMID:21056297

  12. Agonist treatment in opioid use: advances and controversy.

    PubMed

    Viswanath, Biju; Chand, Prabhat; Benegal, Vivek; Murthy, Pratima

    2012-06-01

    Opioid dependence is a chronic relapsing condition which requires comprehensive care; pharmacological agents form the mainstay of its long term treatment. The two most popular approaches are the harm reduction method using agonists and the complete abstinence method using antagonists. Currently, particularly from the harm minimization perspective and the low feasibility of an abstinence based approach, there is an increasing trend toward agonist treatment. The use of buprenorphine has gained popularity in view of its safety profile and the availability of the buprenorphine-naloxone combination has made it popular as a take-home treatment. This review outlines the pharmacological advances and controversies in this area. PMID:22813654

  13. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  14. Piperidine derivatives as nonprostanoid IP receptor agonists 2.

    PubMed

    Hayashi, Ryoji; Ito, Hiroaki; Ishigaki, Takeshi; Morita, Yasuhiro; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-06-15

    We searched for a strong and selective nonprostanoid IP agonist bearing piperidine and benzanilide moieties. Through optimization of substituents on the benzanilide moiety, the crucial part of the agonist, 43 (2-((1-(2-(N-(4-tolyl)benzo[d][1,3]dioxole-5-carboxamido)ethyl)piperidin-4-yl)oxy)acetic acid monohydrate monohydrochloride) was discovered and exhibited strong platelet aggregation inhibition (IC50=21nM) and 100-fold selectivity for IP receptor over other PG receptors. The systemic exposure level and bioavailability after oral administration of 43 were also good in dog. PMID:27133594

  15. Pyrrolo- and Pyridomorphinans: Non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists

    PubMed Central

    Kumar, V.; Clark, M.J.; Traynor, J.R.; Lewis, J.W.; Husbands, S.M.

    2014-01-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse. PMID:24973818

  16. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    PubMed

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse. PMID:24973818

  17. Examination of signalling pathways involved in muscarinic responses in bovine ciliary muscle using YM-254890, an inhibitor of the Gq/11 protein

    PubMed Central

    Yasui, F; Miyazu, M; Yoshida, A; Naruse, K; Takai, A

    2008-01-01

    Background and purpose: In the ciliary muscle, the tonic component of the contraction produced by cholinergic agonists is highly dependent on Ca2+ provided by influx through non-selective cation channels (NSCCs) opened by stimulation of M3 muscarinic receptors. We examined effects of YM-254890 (YM), a Gq/11-specific inhibitor, on contraction, NSCC currents and [Ca2+]i elevation induced by carbachol (CCh). Experimental approach: Isometric tension was recorded from ciliary muscle bundles excised from bovine eyes. In ciliary myocytes dispersed with collagenase and cultured for 1–5 days, whole-cell currents were recorded by voltage clamp and the intracellular free Ca2+ concentration [Ca2+]i was monitored using the Fluo-4 fluorophore. Existence and localization of M3 receptors and the α subunit of Gq/11 (Gαq/11) were examined by immunofluorescence microscopy using AlexaFluor-conjugated antibodies. Key results: Both phasic and tonic components of contractions evoked by 2 μM CCh were inhibited by YM (3–10 μM) in a dose-dependent manner. In the cultured cells, CCh (0.05–10 μM) evoked an NSCC current as well as an elevation of the [Ca2+]i. Both initial and sustained phases of these CCh-evoked responses were abolished by YM (3–10 μM). Immunostaining of the cytoplasmic side of the plasma membrane of ciliary myocytes revealed a dense distribution of M3 receptors and Gαq/11. Conclusions and implications: The tonic as well as phasic component of the ciliary muscle contraction appears to be under control of signals conveyed by a Gq/11-coupled pathway. YM is a useful tool to assess whether Gq/11 is involved in a signal transduction system. PMID:18536740

  18. Synthetic RORγt Agonists Enhance Protective Immunity.

    PubMed

    Chang, Mi Ra; Dharmarajan, Venkatasubramanian; Doebelin, Christelle; Garcia-Ordonez, Ruben D; Novick, Scott J; Kuruvilla, Dana S; Kamenecka, Theodore M; Griffin, Patrick R

    2016-04-15

    The T cell specific RORγ isoform RORγt has been shown to be the key lineage-defining transcription factor to initiate the differentiation program of TH17 and TC17 cells, cells that have demonstrated antitumor efficacy. RORγt controls gene networks that enhance immunity including increased IL17 production and decreased immune suppression. Both synthetic and putative endogenous agonists of RORγt have been shown to increase the basal activity of RORγt enhancing TH17 cell proliferation. Here, we show that activation of RORγt using synthetic agonists drives proliferation of TH17 cells while decreasing levels of the immune checkpoint protein PD-1, a mechanism that should enhance antitumor immunity while blunting tumor associated adaptive immune resistance. Interestingly, putative endogenous agonists drive proliferation of TH17 cells but do not repress PD-1. These findings suggest that synthetic agonists of RORγt should activate TC17/TH17 cells (with concomitant reduction in the Tregs population), repress PD-1, and produce IL17 in situ (a factor associated with good prognosis in cancer). Enhanced immunity and blockage of immune checkpoints has transformed cancer treatment; thus such a molecule would provide a unique approach for the treatment of cancer. PMID:26785144

  19. Amphetamine- type reinforcement by dopaminergic agonists in the rat.

    PubMed

    Yokel, R A; Wise, R A

    1978-07-19

    Intravenous self-administration of d-amphetamine (0.25 mg/kg/injection) decreased in a dose-related fashion after injections of the dopaminergic agonists apomorphine and piribedil. The dopaminergic agonists appear to suppress amphetamine intake in the same way as do 'free' amphetamine injections, by extending drug satiation in a given interresponse period. Clonidine, an alpha noradrenergic agonist, did not have similar effects. Apomorphine and piribedil did not increase 14C-amphetamine levels in rat brains, nor did they retard disappearance of 14C-amphetamine; thus their amphetamine-like effects are not due to alterations of amphetamine metabolism. Rats responding for amphetamine continued to respond for apomorphine or peribedil when the latter drugs were substituted for the former. Rats experienced in amphetamine self-administration readily initiated and maintained responding for apomorphine and piribedil. The dopaminergic blocker (+)-butaclamol disrupted responding for apomorphine and piribedil, although it produced no marked increase in responding for the dopaminergic agonists, as it does for amphetamine. These data add to the evidence that actions in the dopaminergic synapse account for amphetamine's reinforcing properties. PMID:98800

  20. Alkaloid delta agonist BW373U86 increases hypoxic tolerance.

    PubMed

    Bofetiado, D M; Mayfield, K P; D'Alecy, L G

    1996-06-01

    Activation of delta opioid receptors increases survival time during acute, lethal hypoxia in mice. delta Agonists therefore present a promising avenue for therapeutic application to reduce the morbidity and mortality associated with clinical hypoxia in settings such as drowning, head injury apnea, and complicated childbirths. However, most delta agonists now available are peptides, and may have limited clinical utility. In the present study, we evaluate the neuroprotective ability of an alkaloid delta agonist, BW373U86. Alkaloid compounds, due to increased stability and increased systemic distribution, may be more favorable for clinical use. We found that BW373U86, like the peptide delta agonist, DPDPE ([D-Pen2, D-Pen5]-enkephalin), increases survival time of mice during lethal hypoxia. The mechanism of neuroprotection induced by delta receptor activation appears to involve decreasing body temperature. Further, using selective opioid receptor antagonists, it appears that BW373U86 exerts these neuroprotective effects by acting at delta-opioid receptors. PMID:8638797

  1. The Agonistic Approach: Reframing Resistance in Qualitative Research

    ERIC Educational Resources Information Center

    Vitus, Kathrine

    2008-01-01

    The agonistic approach--aimed at embracing opposing perspectives as part of a qualitative research process and acknowledging that process as fundamentally political--sheds light on both the construction of and the resistance to research identities. This approach involves reflexively embedding interview situations into the ethnographic context as a…

  2. [Alpha-2 adrenoreceptor agonists in anaesthesia and intensive care medicine].

    PubMed

    Mavropoulos, G; Minguet, G; Brichant, J F

    2014-02-01

    Alpha-2 adrenoreceptor agonists have long been used in the treatment of arterial hypertension. However, in that indication they have progressively been replaced by antihypertensive drugs with a more interesting therapeutic profile. Nonetheless, pharmacological activation of alpha-2 adrenoreceptors leads to a variety of clinical effects that are of major interest for anaesthesia and intensive care practice. Indeed, the sedative and analgesic properties of alpha-2 adrenoreceptor agonists allow a reduction of hypnotic and opioid needs during general anaesthesia. In addition, they induce a down-regulation of the level of consciousness comparable to that of natural slow-wave sleep during post-anaesthesia and intensive care unit stay. These drugs may also prevent some deleterious effects of the sympathetic discharge in response to surgical stress. Furthermore, alpha-2 adrenoreceptor agonists are potent adjuncts for locoregional anaesthesia. In this article, we will summarize the most frequent applications of alpha-2 adrenoreceptor agonists in anaesthesia and intensive care medicine. We will focus on the clinical data available for the two most representative molecules of this pharmacological class: clonidine and dexmedetomidine. PMID:24683831

  3. The emerging therapeutic roles of κ-opioid agonists.

    PubMed

    Jones, Mark R; Kaye, Alan D; Kaye, Aaron J; Urman, Richard D

    2016-01-01

    The current practice of μ-opioid receptor agonists such as morphine as the primary means of acute and chronic pain relief has several dangerous consequences that limit their effectiveness, including respiratory depression, gastrointestinal motility inhibition, addiction, tolerance, and abuse. Several other opioid receptors, notably the μ-opioid (KOP) receptor, have long been known to play a role in pain relief. Recent discoveries and advancements in laboratory techniques have allowed significant developments of KOP agonists as potential novel therapies for pain relief and other pathological processes. These drugs exhibit none of the classic opioid adverse effects and have displayed pronounced analgesia in several different scenarios. New formulations since 2014 have unveiled increased oral bioavailability, exceptional peripheral versus central selectivity, and a positive safety profile. Continued refinements of established μ-opioid agonist formulations have virtually eliminated the centrally mediated side effects of dysphoria and sedation that limited the applicability of previous KOP agonists. Further research is required to better elucidate the potential of these compounds in pain management, as well as in the mediation or modulation of other complex pathophysiological processes as therapeutic agents. PMID:27194194

  4. Physician perceptions of GLP-1 receptor agonists in the UK.

    PubMed

    Matza, Louis S; Curtis, Sarah E; Jordan, Jessica B; Adetunji, Omolara; Martin, Sherry A; Boye, Kristina S

    2016-05-01

    Objectives Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetes for almost a decade, and new treatments in this class have recently been introduced. The purpose of this study was to examine perceptions of GLP-1 receptor agonists among physicians who treat patients with type 2 diabetes in the UK. Methods A total of 670 physicians (226 diabetes specialists; 444 general practice [GP] physicians) completed a survey in 2014. Results Almost all physicians had prescribed GLP-1 receptor agonists (95.4% total sample; 99.1% specialists; 93.5% GP), most frequently to patients whose glucose levels are not adequately controlled with oral medications (85.9% of physicians) and obese/overweight patients (83.7%). Physicians' most common reasons for prescribing a GLP-1 receptor agonist were: associated with weight loss (65.8%), good efficacy (55.7%), less hypoglycemia risk than insulin (55.2%), not associated with weight gain (34.5%), and better efficacy than oral medications (32.7%). Factors that most commonly cause hesitation when prescribing this class were: not considered first line therapy according to guidelines (56.9%), injectable administration (44.6%), cost (36.7%), gastrointestinal side effects (33.4%), and risk of pancreatitis (26.7%). Almost all specialists (99.1%) believed they had sufficient knowledge to prescribe a GLP-1 receptor agonist, compared with 76.1% of GPs. Conclusions Results highlight the widespread use of GLP-1 receptor agonists for treatment of type 2 diabetes in the UK. However, almost a quarter of GPs reported that they do not have enough knowledge to prescribe GLP-1s, suggesting a need for increased dissemination of information to targeted groups of physicians. Study limitations were that the generalizability of the clinician sample is unknown; survey questions required clinicians to select answers from multiple response options rather than generating the responses themselves; and responses to this survey conducted

  5. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  6. Discovery of Tertiary Amine and Indole Derivatives as Potent RORγt Inverse Agonists.

    PubMed

    Yang, Ting; Liu, Qian; Cheng, Yaobang; Cai, Wei; Ma, Yingli; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Zhou, Ling; Xiang, Zhijun; Huxdorf, Melanie; Zhang, Wei; Zhang, Jing; Xiang, Jia-Ning; Leung, Stewart; Qiu, Yang; Zhong, Zhong; Elliott, John D; Lin, Xichen; Wang, Yonghui

    2014-01-01

    A novel series of tertiary amines as retinoid-related orphan receptor gamma-t (RORγt) inverse agonists was discovered through agonist/inverse agonist conversion. The level of RORγt inhibition can be enhanced by modulating the conformational disruption of H12 in RORγt LBD. Linker exploration and rational design led to the discovery of more potent indole-based RORγt inverse agonists. PMID:24900774

  7. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    PubMed

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  8. Sex differences in opioid antinociception: kappa and 'mixed action' agonists.

    PubMed

    Craft, R M; Bernal, S A

    2001-08-01

    A number of investigators have shown that male animals are more sensitive than females to the antinociceptive effects of mu-opioid agonists. The present study was conducted to examine sex differences in opioid antinociception in the rat using agonists known to differ in selectivity for and efficacy at kappa- versus mu-receptors. Dose- and time-effect curves were obtained for s.c. U69593, U50488, ethylketazocine, (-)-bremazocine, (-)-pentazocine, butorphanol and nalbuphine on the 50 or 54 degrees C hotplate and warm water tail withdrawal assays; spontaneous locomotor activity was measured 32-52 min post-injection in the same rats. On the hotplate assay, only butorphanol (54 degrees C) and nalbuphine (50 degrees C) were significantly more potent in males than females. On the tail withdrawal assay, all agonists were significantly more potent or efficacious in males than females at one or both temperatures. In contrast, no agonist was consistently more potent in one sex or the other in decreasing locomotor activity. Estrous stage in female rats only slightly influenced opioid effects, accounting for an average of 2.6% of the variance in females' antinociceptive and locomotor responses to drug (50 degrees C experiment). These results suggest that (1) sex differences in antinociceptive effects of opioids are not mu-receptor-dependent, as they may occur with opioids known to have significant kappa-receptor-mediated activity; (2) the mechanisms underlying sex differences in kappa-opioid antinociception may be primarily spinal rather than supraspinal; (3) sex differences in antinociceptive effects of opioid agonists are not secondary to sex differences in their sedative effects. PMID:11418226

  9. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  10. Glucagon-Like Peptide-1 Receptor Agonists: Beta-Cell Protection or Exhaustion?

    PubMed

    van Raalte, Daniël H; Verchere, C Bruce

    2016-07-01

    Glucagon-like peptide (GLP)-1 receptor agonists enhance insulin secretion and may improve pancreatic islet cell function. However, GLP-1 receptor (GLP-1R) agonist treatment may have more complex, and sometimes deleterious, effects on beta cells. We discuss the concepts of beta cell protection versus exhaustion for different GLP-1R agonists based on recent data. PMID:27160799

  11. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  12. A Potent and Site-Selective Agonist of TRPA1.

    PubMed

    Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari

    2015-12-23

    TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation. PMID:26630251

  13. β2-adrenoceptor agonists in the regulation of mitochondrial biogenesis

    PubMed Central

    Peterson, Yuri K.; Cameron, Robert B.; Wills, Lauren P.; Trager, Richard E.; Lindsey, Chris C.; Beeson, Craig C.; Schnellmann, Rick G.

    2014-01-01

    The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB. PMID:23954364

  14. Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome.

    PubMed

    Morelli, Annamaria; Comeglio, Paolo; Filippi, Sandra; Sarchielli, Erica; Cellai, Ilaria; Vignozzi, Linda; Yehiely-Cohen, Ravit; Maneschi, Elena; Gacci, Mauro; Carini, Marco; Adorini, Luciano; Vannelli, Gabriella B; Maggi, Mario

    2012-10-01

    In the male, metabolic syndrome (MetS) is associated to an increased risk of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). A recently established rabbit model of high fat diet (HFD)-induced MetS showed hypogonadism and the presence of prostate gland alterations, including inflammation, hypoxia and fibrosis. The present study investigated whether HFD-induced MetS might also alter bladder structure and function. Testosterone and the farnesoid X receptor (FXR) agonist INT-747, were evaluated for possible effects on HFD bladder. MetS rabbits develop bladder alterations, including fibrosis (reduced muscle/fiber ratio), hypoxia [2-fold increase as compared to regular diet (RD) group], low-grade inflammation (increased leukocyte infiltration and inflammatory markers) and RhoA/ROCK hyperactivity. Bladder strips from HFD rabbits, pre-contracted with carbachol, showed an overactive response to the selective ROCK inhibitor Y-27632. All these HFD-induced bladder alterations were partially blunted by testosterone and almost completely reverted by INT-747. Both treatments prevented some MetS features (glucose intolerance and visceral fat increase), thus suggesting that their effects on bladder could be ascribed to an improvement of the metabolic and/or hypogonadal state. However, a pathogenetic role for hypogonadism has been ruled out as GnRH analog-induced hypogonadal rabbits, fed a regular diet, did not show any detectable bladder alterations. In addition, INT-747 did not revert the MetS-induced hypogonadal state. FXR mRNA was highly expressed in rabbit bladder and positively associated with visceral fat increase. A direct effect of INT-747 on bladder smooth muscle was further suggested by inhibition of RhoA/ROCK-mediated activity by in vitro experiments on isolated cells. In conclusion, HFD-related MetS features are associated to bladder derangements, which are ameliorated by testosterone or INT-747 administration. INT-747 showed the most marked

  15. A Human Platelet Calcium Calculator Trained by Pairwise Agonist Scanning

    PubMed Central

    Lee, Mei Yan; Diamond, Scott L.

    2015-01-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  16. Octopaminergic agonists for the cockroach neuronal octopamine receptor

    PubMed Central

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor. Abbreviation: AEA arylethanolamine AII 2-(arylimino)imidazolidine AIO 2-(arylimino)oxazolidine AIT 2-(arylimino)thiazolidine APAT 2-(α-phenylethylamino)-2-thiazoline BPAT 2-(β-phenylethylamino)-2-thiazoline CAO 2-(3-chlorobenzylamino)-2-oxazoline DCAO 2-(3,5-dichlorobenzylamino)-2-oxazoline DET5 2-(2,6-diethylphenylimino)-5-methylthiazolidine DET6 2-(2,6-diethylphenylimino)thiazine EGTA ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid GFA genetic function approximation G/PLS genetic partial least squares IND 2-aminomethyl-2-indanol LAH lithium aluminum hydride MCSG maximum common subgroup MCT6 2-(2-methyl-4-chlorophenylimino)thiazine OA octopamine PLS partial least squares QSAR quantitative structure-activity relationship SBAT 2-(substituted benzylamino)-2-thiazoline SD the sum of squared deviations of the dependent variable values from their mean SPIT 3-(substituted phenyl)imidazolidine-2-thione THI 2-amino-1-(2-thiazoyl)ethanol TMS tetramethyl silane PMID:15841226

  17. A human platelet calcium calculator trained by pairwise agonist scanning.

    PubMed

    Lee, Mei Yan; Diamond, Scott L

    2015-02-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  18. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  19. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline.

    PubMed

    Haenisch, Britta; Walstab, Jutta; Herberhold, Stephan; Bootz, Friedrich; Tschaikin, Marion; Ramseger, René; Bönisch, Heinz

    2010-12-01

    Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) > α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline. PMID:20030735

  20. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  1. Synthesis of fluorinated agonist of sphingosine-1-phosphate receptor 1.

    PubMed

    Aliouane, Lucie; Chao, Sovy; Brizuela, Leyre; Pfund, Emmanuel; Cuvillier, Olivier; Jean, Ludovic; Renard, Pierre-Yves; Lequeux, Thierry

    2014-09-01

    The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported. PMID:25047939

  2. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  3. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  4. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. PMID:24038158

  5. Biased signaling: potential agonist and antagonist of PAR2.

    PubMed

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2016-06-01

    Protease activated receptor 2 (PAR2) has emerged as one of the promising therapeutic targets to inhibit rapidly metastasizing breast cancer cells. However, its elusive molecular mechanism of activation and signaling has made it a difficult target for drug development. In this study, in silico methods were used to unfold PAR2 molecular mechanism of signaling based on the concept of GPCR receptor plasticity. Although, there are no conclusive evidences of the presence of specific endogenous ligands for PAR2, the efficacy of synthetic agonist and antagonist in PAR2 signaling has opened up the possibilities of ligand-mediated signaling. Furthermore, it has been proved that ligands specific for one GPCR can induce signaling in GPCRs belonging to other subfamilies. Therefore, the aim of this study was to identify potential agonists and antagonists from the GPCR ligand library (GLL), which may induce biased signaling in PAR2 using the concept of existence of multiple ligand-stabilized receptor conformations. The results of our in silico study suggest that PAR2 may show biased signaling mainly with agonists of serotonin type 1, β-adrenergic type 1,3 and antagonists of substance K (NK1), serotonin type 2, dopamine type 4, and thromboxane receptors. Further, this study also throws light on the putative ligand-specific conformations of PAR2. Thus, the results of this study provide structural insights to putative conformations of PAR2 and also gives initial clues to medicinal chemists for rational drug design targeting this challenging receptor. PMID:26295578

  6. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  7. Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists.

    PubMed

    Lin, Hsiang-Ru; Chou, Tsung-Hsien; Huang, Din-Wen; Chen, Ih-Sheng

    2014-09-01

    Cryptochinones A-D are tetrahydroflavanones isolated from the leaves of Cryptocarya chinensis, an evergreen tree whose extracts are believed to have a variety of health benefits. The origin of their possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and for hyperglycemia. We studied whether cryptochinones A-D, which are structurally similar to known FXR ligands, may act at this target. Indeed, in mammalian one-hybrid and transient transfection reporter assays, cryptochinones A-D transactivated FXR to modulate promoter action including GAL4, SHP, CYP7A1, and PLTP promoters in dose-dependent manner, while they exhibited similar agonistic activity as chenodeoxycholic acid (CDCA), an endogenous FXR agonist. Through molecular modeling docking studies we evaluated their ability to bind to the FXR ligand binding pocket. Our results indicate that cryptochinones A-D can behave as FXR agonists. PMID:25127166

  8. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  9. Potent Adjuvanticity of a Pure TLR7-Agonistic Imidazoquinoline Dendrimer

    PubMed Central

    Shukla, Nikunj M.; Salunke, Deepak B.; Balakrishna, Rajalakshmi; Mutz, Cole A.; Malladi, Subbalakshmi S.; David, Sunil A.

    2012-01-01

    Engagement of toll-like receptors (TLRs) serve to link innate immune responses with adaptive immunity and can be exploited as powerful vaccine adjuvants for eliciting both primary and anamnestic immune responses. TLR7 agonists are highly immunostimulatory without inducing dominant proinflammatory cytokine responses. We synthesized a dendrimeric molecule bearing six units of a potent TLR7/TLR8 dual-agonistic imidazoquinoline to explore if multimerization of TLR7/8 would result in altered activity profiles. A complete loss of TLR8-stimulatory activity with selective retention of the TLR7-agonistic activity was observed in the dendrimer. This was reflected by a complete absence of TLR8-driven proinflammatory cytokine and interferon (IFN)-γ induction in human PBMCs, with preservation of TLR7-driven IFN-α induction. The dendrimer was found to be superior to the imidazoquinoline monomer in inducing high titers of high-affinity antibodies to bovine α-lactalbumin. Additionally, epitope mapping experiments showed that the dendrimer induced immunoreactivity to more contiguous peptide epitopes along the amino acid sequence of the model antigen. PMID:22952720

  10. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  11. Highly selective agonists for substance P receptor subtypes.

    PubMed Central

    Wormser, U; Laufer, R; Hart, Y; Chorev, M; Gilon, C; Selinger, Z

    1986-01-01

    The existence of a third tachykinin receptor (SP-N) in the mammalian nervous system was demonstrated by development of highly selective agonists. Systematic N-methylation of individual peptide bonds in the C-terminal hexapeptide of substance P gave rise to agonists which specifically act on different receptor subtypes. The most selective analog of this series, succinyl-[Asp6,Me-Phe8]SP6-11, elicits half-maximal contraction of the guinea pig ileum through the neuronal SP-N receptor at a concentration of 0.5 nM. At least 60,000-fold higher concentrations of this peptide are required to stimulate the other two tachykinin receptors (SP-P and SP-E). The action of selective SP-N agonists in the guinea pig ileum is antagonized by opioid peptides, suggesting a functional counteraction between opiate and SP-N receptors. These results indicate that the tachykinin receptors are distinct entities which may mediate different physiological functions. PMID:2431898

  12. Suppression of atherosclerosis by synthetic REV-ERB agonist

    SciTech Connect

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  13. Development of specific dopamine D-1 agonists and antagonists

    SciTech Connect

    Sakolchai, S.

    1987-01-01

    To develop potentially selective dopamine D-1 agonists and to investigate on the structural requirement for D-1 activity, the derivatives of dibenzocycloheptadiene are synthesized and pharmacologically evaluated. The target compounds are 5-aminomethyl-10,11-dihydro-1,2-dihydroxy-5H-dibenzo(a,d)cycloheptene hydrobromide 10 and 9,10-dihydroxy-1,2,3,7,8,12b-hexahydrobenzo(1,2)cyclohepta(3,4,5d,e)isoquinoline hydrobromide 11. In a dopamine-sensitive rat retinal adenylate cyclase assay, a model for D-1 activity, compound 10 is essentially inert for both agonist and antagonist activity. In contrast, compound 11 is approximately equipotent to dopamine in activation of the D-1 receptor. Based on radioligand and binding data, IC{sub 50} of compound 11 for displacement of {sup 3}H-SCH 23390, a D-1 ligand, is about 7 fold less than that for displacement of {sup 3}H-spiperone, a D-2 ligand. These data indicate that compound 11 is a potent selective dopamine D-1 agonist. This study provides a new structural class of dopamine D-1 acting agent: dihydroxy-benzocycloheptadiene analog which can serve as a lead compound for further drug development and as a probe for investigation on the nature of dopamine D-1 receptor.

  14. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1

    PubMed Central

    Nagode, Daniel A; Tang, Ai-Hui; Yang, Kun; Alger, Bradley E

    2014-01-01

    Neuronal electrical oscillations in the theta (4–14 Hz) and gamma (30–80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic afferents. In neocortex and hippocampal CA3 regions, parvalbumin (PV)-expressing basket cells, activated by ACh and glutamatergic agonists, largely mediate oscillations. However, in CA1 hippocampus in vitro, cholinergic agonists or the optogenetic release of endogenous ACh from septal afferents induces rhythmic, theta-frequency inhibitory postsynaptic currents (IPSCs) in pyramidal cells, even with glutamatergic transmission blocked. The IPSCs are regulated by exogenous and endogenous cannabinoids, suggesting that they arise from type 1 cannabinoid receptor-expressing (CB1R+) interneurons – mainly cholecystokinin (CCK)-expressing cells. Nevertheless, an occult contribution of PV-expressing interneurons to these rhythms remained conceivable. Here, we directly test this hypothesis by selectively silencing CA1 PV-expressing cells optogenetically with halorhodopsin or archaerhodopsin. However, this had no effect on theta-frequency IPSC rhythms induced by carbachol (CCh). In contrast, the silencing of glutamic acid decarboxylase 2-positive interneurons, which include the CCK-expressing basket cells, strongly suppressed inhibitory oscillations; PV-expressing interneurons appear to play no role. The low-frequency IPSC oscillations induced by CCh or optogenetically stimulated ACh release were also inhibited by a μ-opioid receptor (MOR) agonist, which was unexpected because MORs in CA1 are not usually associated with CCK-expressing cells. Our results reveal novel properties of an inhibitory oscillator circuit within CA1 that is activated by muscarinic agonists. The oscillations could contribute to behaviourally relevant, atropine-sensitive, theta rhythms and link

  15. Syntheses, structures, and surface aromaticity of the new carbaalane [(AlH)(6)(AlNMe(3))(2)(CCH(2)R)(6)] (R = Ph, CH(2)SiMe(3)) and a stepwise functionalization of the inner and outer sphere of the cluster.

    PubMed

    Stasch, Andreas; Ferbinteanu, Marilena; Prust, Jörg; Zheng, Wenjun; Cimpoesu, Fanica; Roesky, Herbert W; Magull, Jörg; Schmidt, Hans-Georg; Noltemeyer, Mathias

    2002-05-15

    The reaction of the acetylene RC triple bond CH (R = Ph, CH(2)SiMe(3)) with an excess of AlH(3).NMe(3) in boiling toluene leads to the carbaalane [(AlH)(6)(AlNMe(3))(2)(CCH(2)R)(6)] (R = Ph 1, CH(2)SiMe(3) 2) in good yield. Treatment of 2 with BCl(3) under varying conditions gives the chlorinated products [(AlCl)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] 3 and [(AlCl)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(2)Cl)(6)] 4, respectively. The latter clearly demonstrates that the cluster can be stepwise functionalized within the inner and outer sphere. The X-ray single-crystal structures of 1, 2, and 4 have been determined. All compounds have in common that the central core consists of a cluster having eight aluminum and six carbon atoms. The bonding properties in this cluster are described as a new manifestation of three-dimensional surface aromaticity. Each Al(4)C fragment of the cube is formed by four bonds with three electron pairs, thus leading to a strong delocalization of the electrons. A phenomenological modeling using a three-dimensional Hückel scheme with fitted parameters to reproduce the energies from ab initio calculations revealed that the orbital scheme localized at one Al(4)C fragment possesses an orbital sextet with a large HOMO-LUMO gap. This is in line with the criteria of aromaticity. The idea of aromaticity was sustained also by qualitative valence bond reasons enumerating the different resonance structures by means of graph theoretical methods. PMID:11996585

  16. 2-Triazole-Substituted Adenosines: A New Class of Selective A3 Adenosine Receptor Agonists, Partial Agonists, and Antagonists

    PubMed Central

    Cosyn, Liesbet; Palaniappan, Krishnan K.; Kim, Soo-Kyung; Duong, Heng T.; Gao, Zhan-Guo; Jacobson, Kenneth A.; Van Calenbergh, Serge

    2016-01-01

    “Click chemistry” was explored to synthesize two series of 2-(1,2,3-triazolyl)adenosine derivatives (1–14). Binding affinity at the human A1, A2A, and A3ARs (adenosine receptors) and relative efficacy at the A3AR were determined. Some triazol-1-yl analogues showed A3AR affinity in the low nanomolar range, a high ratio of A3/A2A selectivity, and a moderate-to-high A3/A1 ratio. The 1,2,3-triazol-4-yl regiomers typically showed decreased A3AR affinity. Sterically demanding groups at the adenine C2 position tended to reduce relative A3AR efficacy. Thus, several 5′-OH derivatives appeared to be selective A3AR antagonists, i.e., 10, with 260-fold binding selectivity in comparison to the A1AR and displaying a characteristic docking mode in an A3AR model. The corresponding 5′-ethyluronamide analogues generally showed increased A3AR affinity and behaved as full agonists, i.e., 17, with 910-fold A3/A1 selectivity. Thus, N6-substituted 2-(1,2,3-triazolyl)-adenosine analogues constitute a novel class of highly potent and selective nucleoside-based A3AR antagonists, partial agonists, and agonists. PMID:17149867

  17. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR.

    PubMed

    Huang, Wendong; Zhang, Jun; Wei, Ping; Schrader, William T; Moore, David D

    2004-10-01

    The constitutive androstane receptor (CAR, NR1I3) is a key regulator of xenobiotic and endobiotic metabolism. The ligand-binding domains of murine (m) and human (h) CAR are divergent relative to other nuclear hormone receptors, resulting in species-specific differences in xenobiotic responses. Here we identify the widely used antiemetic meclizine (Antivert; Bonine) as both an agonist ligand for mCAR and an inverse agonist for hCAR. Meclizine increases mCAR transactivation in a dose-dependent manner. Like the mCAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, meclizine stimulates binding of steroid receptor coactivator 1 to the murine receptor in vitro. Meclizine administration to mice increases expression of CAR target genes in a CAR-dependent manner. In contrast, meclizine suppresses hCAR transactivation and inhibits the phenobarbital-induced expression of the CAR target genes, cytochrome p450 monooxygenase (CYP)2B10, CYP3A11, and CYP1A2, in primary hepatocytes derived from mice expressing hCAR, but not mCAR. The inhibitory effect of meclizine also suppresses acetaminophen-induced liver toxicity in humanized CAR mice. These results demonstrate that a single compound can induce opposite xenobiotic responses via orthologous receptors in rodents and humans. PMID:15272053

  18. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  19. Melatonin and Melatonin Agonists as Adjunctive Treatments in Bipolar Disorders.

    PubMed

    Geoffroy, Pierre Alexis; Etain, Bruno; Franchi, Jean-Arthur Micoulaud; Bellivier, Frank; Ritter, Philipp

    2015-01-01

    Bipolar disorders (BD) present with abnormalities of circadian rhythmicity and sleep homeostasis, even during phases of remission. These abnormalities are linked to the underlying neurobiology of genetic susceptibility to BD. Melatonin is a pineal gland secreted neurohormone that induces circadian-related and sleep-related responses. Exogenous melatonin has demonstrated efficacy in treating primary insomnia, delayed sleep phase disorder, improving sleep parameters and overall sleep quality, and some psychiatric disorders like autistic spectrum disorders. In order to evaluate the efficacy of melatonin among patients with BD, this comprehensive review emphasizes the abnormal melatonin function in BD, the rationale of melatonin action in BD, the available data about the exogenous administration of melatonin, and melatonin agonists (ramelteon and tasimelteon), and recommendations of use in patients with BD. There is a scientific rationale to propose melatonin-agonists as an adjunctive treatment of mood stabilizers in treating sleep disorders in BD and thus to possibly prevent relapses when administered during remission phases. We emphasized the need to treat insomnia, sleep delayed latencies and sleep abnormalities in BD that are prodromal markers of an emerging mood episode and possible targets to prevent future relapses. An additional interesting adjunctive therapeutic effect might be on preventing metabolic syndrome, particularly in patients treated with antipsychotics. Finally, melatonin is well tolerated and has little dependence potential in contrast to most available sleep medications. Further studies are expected to be able to produce stronger evidence-based therapeutic guidelines to confirm and delineate the routine use of melatonin-agonists in the treatment of BD. PMID:26088111

  20. Comparative endpoint sensitivity of in vitro estrogen agonist assays.

    PubMed

    Dreier, David A; Connors, Kristin A; Brooks, Bryan W

    2015-07-01

    Environmental and human health implications of endocrine disrupting chemicals (EDCs), particularly xenoestrogens, have received extensive study. In vitro assays are increasingly employed as diagnostic tools to comparatively evaluate chemicals, whole effluent toxicity and surface water quality, and to identify causative EDCs during toxicity identification evaluations. Recently, the U.S. Environmental Protection Agency (USEPA) initiated ToxCast under the Tox21 program to generate novel bioactivity data through high throughput screening. This information is useful for prioritizing chemicals requiring additional hazard information, including endocrine active chemicals. Though multiple in vitro and in vivo techniques have been developed to assess estrogen agonist activity, the relative endpoint sensitivity of these approaches and agreement of their conclusions remain unclear during environmental diagnostic applications. Probabilistic hazard assessment (PHA) approaches, including chemical toxicity distributions (CTD), are useful for understanding the relative sensitivity of endpoints associated with in vitro and in vivo toxicity assays by predicting the likelihood of chemicals eliciting undesirable outcomes at or above environmentally relevant concentrations. In the present study, PHAs were employed to examine the comparative endpoint sensitivity of 16 in vitro assays for estrogen agonist activity using a diverse group of compounds from the USEPA ToxCast dataset. Reporter gene assays were generally observed to possess greater endpoint sensitivity than other assay types, and the Tox21 ERa LUC BG1 Agonist assay was identified as the most sensitive in vitro endpoint for detecting an estrogenic response. When the sensitivity of this most sensitive ToxCast in vitro endpoint was compared to the human MCF-7 cell proliferation assay, a common in vitro model for biomedical and environmental monitoring applications, the ERa LUC BG1 assay was several orders of magnitude less

  1. Pharmacological properties of acid N-thiazolylamide FFA2 agonists

    PubMed Central

    Brown, Andrew J; Tsoulou, Christina; Ward, Emma; Gower, Elaine; Bhudia, Nisha; Chowdhury, Forhad; Dean, Tony W; Faucher, Nicolas; Gangar, Akanksha; Dowell, Simon J

    2015-01-01

    FFA2 is a receptor for short-chain fatty acids. Propionate (C3) and 4-chloro-α-(1-methylethyl)-N-2-thiazolyl-benzeneacetamide (4-CMTB), the prototypical synthetic FFA2 agonist, evoke calcium mobilization in neutrophils and inhibit lipolysis in adipocytes via this G-protein-coupled receptor. 4-CMTB contains an N-thiazolylamide motif but no acid group, and 4-CMTB and C3 bind to different sites on FFA2 and show allosteric cooperativity. Recently, FFA2 agonists have been described that contain both N-thiazolylamide and carboxylate groups, reminiscent of bitopic ligands. These are thought to engage the carboxylate-binding site on FFA2, but preliminary evidence suggests they do not bind to the same site as 4-CMTB even though both contain N-thiazolylamide. Here, we describe the characterization of four FFA2 ligands containing both N-thiazolylamide and carboxylate. (R)-3-benzyl-4-((4-(2-chlorophenyl)thiazol-2-yl)(methyl)amino)-4-oxobutanoic acid (compound 14) exhibits allosteric agonism with 4-CMTB but not C3. Three other compounds agonize FFA2 in [35S]GTPγS-incorporation or cAMP assays but behave as inverse agonists in yeast-based gene-reporter assays, showing orthosteric antagonism of C3 responses but allosteric antagonism of 4-CMTB responses. Thus, the bitopic-like FFA2 ligands engage the orthosteric site but do not compete at the site of 4-CMTB binding on an FFA2 receptor molecule. Compound 14 activates FFA2 on human neutrophils and mouse adipocytes, but appears not to inhibit lipolysis upon treatment of human primary adipocytes in spite of the presence of a functional FFA2 receptor in these cells. Hence, these new ligands may reveal differences in coupling of FFA2 between human and rodent adipose tissues. PMID:26236484

  2. Defining Nicotinic Agonist Binding Surfaces through Photoaffinity Labeling†

    PubMed Central

    Tomizawa, Motohiro; Maltby, David; Medzihradszky, Katalin F.; Zhang, Nanjing; Durkin, Kathleen A.; Presley, Jack; Talley, Todd T.; Taylor, Palmer; Burlingame, Alma L.; Casida, John E.

    2016-01-01

    Nicotinic acetylcholine (ACh) receptor (nAChR) agonists are potential therapeutic agents for neurological dysfunction. In the present study, the homopentameric mollusk ACh binding protein (AChBP), used as a surrogate for the extracellular ligand-binding domain of the nAChR, was specifically derivatized by the highly potent agonist azidoepibatidine (AzEPI) prepared as a photoaffinity probe and radioligand. One EPI-nitrene photoactivated molecule was incorporated in each subunit interface binding site based on analysis of the intact derivatized protein. Tryptic fragments of the modified AChBP were analyzed by collision-induced dissociation and Edman sequencing of radiolabeled peptides. Each specific EPI-nitrene-modified site involved either Tyr195 of loop C on the principal or (+)-face or Met116 of loop E on the complementary or (−)-face. The two derivatization sites were observed in similar frequency, providing evidence of the reactivity of the azido/nitrene probe substituent and close proximity to both residues. [3H]AzEPI binds to the α4β2 nAChR at a single high-affinity site and photoaffinity-labels only the α4 subunit, presumably modifying Tyr225 spatially corresponding to Tyr195 of AChBP. Phe137 of the β2 nAChR subunit, equivalent to Met116 of AChBP, conceivably lacks sufficient reactivity with the nitrene generated from the probe. The present photoaffinity labeling in a physiologically relevant condition combined with the crystal structure of AChBP allows development of precise structural models for the AzEPI interactions with AChBP and α4β2 nAChR. These findings enabled us to use AChBP as a structural surrogate to define the nAChR agonist site. PMID:17614369

  3. AGONISTIC AUTOANTIBODIES AS VASODILATORS IN ORTHOSTATIC HYPOTENSION: A NEW MECHANISM

    PubMed Central

    Li, Hongliang; Kem, David C.; Reim, Sean; Khan, Muneer; Vanderlinde-Wood, Megan; Zillner, Caitlin; Collier, Daniel; Liles, Campbell; Hill, Michael A.; Cunningham, Madeleine W.; Aston, Christopher E.; Yu, Xichun

    2012-01-01

    Agonistic autoantibodies to the β-adrenergic and muscarinic receptors are a novel investigative and therapeutic target for certain orthostatic disorders. We have identified the presence of autoantibodies to β2-adrenergic and/or M3 muscarinic receptors by enzyme-linked immunosorbent assay in 75% (15 of 20) of patients with significant orthostatic hypotension. Purified serum IgG from all 20 patients and 10 healthy control subjects were examined in a receptor-transfected cell-based cAMP assay for β2 receptor activation and β-arrestin assay for M3 receptor activation. There was a significant increase in IgG-induced activation of β2 and M3 receptors in the patient group compared to controls. A dose response was observed for both IgG activation of β2 and M3 receptors and inhibition of their activation with the non-selective β blocker propranolol and muscarinic blocker atropine. The antibody effects on β2 and/or M3 (via production of nitric oxide) receptor-mediated vasodilation were studied in a rat cremaster resistance arteriole assay. Infusion of IgG from patients with documented β2 and/or M3 receptor agonistic activity produced a dose-dependent vasodilation. Sequential addition of the β blocker propranolol and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester partially inhibited IgG-induced vasodilation (% of maximal dilatory response: from 57.7±10.4 to 35.3±4.6 and 24.3±5.8, respectively, p<0.01, n=3), indicating antibody activation of vascular β2 and/or M3 receptors may contribute to systemic vasodilation. These data support the concept that circulating agonistic autoantibodies serve as vasodilators and may cause or exacerbate orthostatic hypotension. PMID:22215709

  4. Antinociceptive properties of selective MT(2) melatonin receptor partial agonists.

    PubMed

    López-Canul, Martha; Comai, Stefano; Domínguez-López, Sergio; Granados-Soto, Vinicio; Gobbi, Gabriella

    2015-10-01

    Melatonin is a neurohormone involved in the regulation of both acute and chronic pain whose mechanism is still not completely understood. We have recently demonstrated that selective MT2 melatonin receptor partial agonists have antiallodynic properties in animal models of chronic neuropathic pain by modulating ON/OFF cells of the descending antinociceptive system. Here, we examined the antinociceptive properties of the selective MT2 melatonin receptor partial agonists N-{2-[(3-methoxyphenyl)phenylamino]ethyl}acetamide (UCM765) and N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino]ethyl}acetamide (UCM924) in two animal models of acute and inflammatory pain: the hot-plate and formalin tests. UCM765 and UCM924 (5-40 mg/kg, s.c.) dose-dependently increased the temperature of the first hind paw lick in the hot-plate test, and decreased the total time spent licking the injected hind paw in the formalin test. Antinociceptive effects of UCM765 and UCM924 were maximal at the dose of 20mg/kg. At this dose, the effects of UCM765 and UCM924 were similar to those produced by 200 mg/kg acetaminophen in the hot-plate test, and by 3 mg/kg ketorolac or 150 mg/kg MLT in the formalin test. Notably, antinociceptive effects of the two MT2 partial agonists were blocked by the pre-treatment with the MT2 antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT, 10 mg/kg) in both paradigms. These results demonstrate the antinociceptive properties of UCM765 and UCM924 in acute and inflammatory pain models and corroborate the concept that MT2 melatonin receptor may be a novel target for analgesic drug development. PMID:26162699

  5. Induction of depersonalization by the serotonin agonist meta-chlorophenylpiperazine.

    PubMed

    Simeon, D; Hollander, E; Stein, D J; DeCaria, C; Cohen, L J; Saoud, J B; Islam, N; Hwang, M

    1995-09-29

    Sixty-seven subjects, including normal volunteers and patients with obsessive-compulsive disorder, social phobia, and borderline personality disorder, received ratings of depersonalization after double-blind, placebo-controlled challenges with the partial serotonin agonist meta-chlorophenylpiperazine (m-CPP). Challenge with m-CPP induced depersonalization significantly more than did placebo. Subjects who became depersonalized did not differ in age, sex, or diagnosis from those who did not experience depersonalization. There was a significant correlation between the induction of depersonalization and increase in panic, but not nervousness, anxiety, sadness, depression, or drowsiness. This report suggests that serotonergic dysregulation may in part underlie depersonalization. PMID:8570768

  6. INSIGHT AGONISTES: A READING OF SOPHOCLES'S OEDIPUS THE KING.

    PubMed

    Mahon, Eugene J

    2015-07-01

    In this reading of Sophocles's Oedipus the King, the author suggests that insight can be thought of as the main protagonist of the tragedy. He personifies this depiction of insight, calling it Insight Agonistes, as if it were the sole conflicted character on the stage, albeit masquerading at times as several other characters, including gods, sphinxes, and oracles. This psychoanalytic reading of the text lends itself to an analogy between psychoanalytic process and Sophocles's tragic hero. The author views insight as always transgressing against, always at war with a conservative, societal, or intrapsychic chorus of structured elements. A clinical vignette is presented to illustrate this view of insight. PMID:26198605

  7. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  8. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  9. Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064

    SciTech Connect

    Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Parks, Derek J.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Starting from the known FXR agonist GW 4064 1a, a series of alternately 3,5-substituted isoxazoles was prepared. Several of these analogs were potent full FXR agonists. A subset of this series, with a tether between the isoxazole ring and the 3-position aryl substituent, were equipotent FXR agonists to GW 4064 1a, with the 2,6-dimethyl phenol analog 1t having greater FRET FXR potency than GW 4064 1a.

  10. Discovery of potent and selective nonsteroidal indazolyl amide glucocorticoid receptor agonists.

    PubMed

    Sheppeck, James E; Gilmore, John L; Xiao, Hai-Yun; Dhar, T G Murali; Nirschl, David; Doweyko, Arthur M; Sack, Jack S; Corbett, Martin J; Malley, Mary F; Gougoutas, Jack Z; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Dodd, John H; Nadler, Steven G; Somerville, John E; Barrish, Joel C

    2013-10-01

    Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure. PMID:23953070

  11. Site of action of a pentapeptide agonist at the glucagon-like peptide-1 receptor. Insight into a small molecule agonist-binding pocket

    PubMed Central

    Dong, Maoqing; Pinon, Delia I.; Miller, Laurence J.

    2011-01-01

    The development of small molecule agonists for class B G protein-coupled receptors (GPCRs) has been quite challenging. With proof-of-concept that exenatide, the parenterally administered peptide agonist of the glucagon-like peptide-1 (GLP1) receptor, is an effective treatment for patients with diabetes mellitus, the development of small molecule agonists could have substantial advantages. We previously reported a lead for small molecule GLP1 receptor agonist development representing the pentapeptide NRTFD. In this work, we have prepared an NRTFD derivative incorporating a photolabile benzoylphenylalanine and used it to define its site of action. This peptide probe was a full agonist with potency similar to NRTFD, which bound specifically and saturably to a single, distinct site within the GLP1 receptor. Peptide mapping using cyanogen bromide and endoproteinase Lys-C cleavage of labeled wild type and M397L mutant receptor constructs identified the site of covalent attachment of NRTFD within the third extracellular loop above the sixth transmembrane segment. This region is the same as that identified using an analogous photolabile probe based on secretin receptor sequences, and has been shown in mutagenesis studies to be important for natural agonist action of several members of this family. While these observations suggest that small molecule ligands can act at a site bordering the third extracellular loop to activate this class B GPCR, the relationship of this site to the site of action of the amino-terminal end of the natural agonist peptide is unclear. PMID:22079758

  12. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  13. Synthesis and biological activities of indolizine derivatives as alpha-7 nAChR agonists.

    PubMed

    Xue, Yu; Tang, Jingshu; Ma, Xiaozhuo; Li, Qing; Xie, Bingxue; Hao, Yuchen; Jin, Hongwei; Wang, Kewei; Zhang, Guisen; Zhang, Liangren; Zhang, Lihe

    2016-06-10

    Human α7 nicotinic acetylcholine receptor (nAChR) is a promising therapeutic target for the treatment of schizophrenia accompanied with cognitive impairment. Herein, we report the synthesis and agonistic activities of a series of indolizine derivatives targeting to α7 nAChR. The results show that all synthesized compounds have affinity to α7 nAChR and some give strong agonistic activity, particularly most active agonists show higher potency than control EVP-6124. The docking and structure-activity relationship studies provide insights to develop more potent novel α7 nAChR agonists. PMID:26994846

  14. Dopamine agonist-induced substance addiction: the next piece of the puzzle.

    PubMed

    Evans, Andrew

    2011-02-01

    Traditional antiparkinson treatment strategies strive to balance the antiparkinson effects of dopaminergic drugs with the avoidance of motor response complications. Dopamine agonists have an established role in delaying the emergence of motor response complications or reducing motor "off" periods. The recent recognition of a range of "behavioural addictions" that are linked to dopamine agonist use has highlighted the role of dopamine in brain reward function and addiction disorders in general. Dopamine agonists have now even been linked occasionally to new substance addictions. The challenge now for the Parkinsonologist is to also balance the net benefits of using dopamine agonists for their motor effects with avoiding the harm from behavioural compulsions. PMID:20980151

  15. Sustained wash-resistant receptor activation responses of GPR119 agonists.

    PubMed

    Hothersall, J Daniel; Bussey, Charlotte E; Brown, Alastair J; Scott, James S; Dale, Ian; Rawlins, Philip

    2015-09-01

    G protein-coupled receptor 119 (GPR119) is involved in regulating metabolic homoeostasis, with GPR119 agonists targeted for the treatment of type-2 diabetes and obesity. Using the endogenous agonist oleoylethanolamide and a number of small molecule synthetic agonists we have investigated the temporal dynamics of receptor signalling. Using both a dynamic luminescence biosensor-based assay and an endpoint cAMP accumulation assay we show that agonist-driven desensitization is not a major regulatory mechanism for GPR119 despite robust activation responses, regardless of the agonist used. Temporal analysis of the cAMP responses demonstrated sustained signalling resistant to washout for some, but not all of the agonists tested. Further analysis indicated that the sustained effects of one synthetic agonist AR-231,453 were consistent with a role for slow dissociation kinetics. In contrast, the sustained responses to MBX-2982 and AZ1 appeared to involve membrane deposition. We also detect wash-resistant responses to AR-231,453 at the level of physiologically relevant responses in an endogenous expression system (GLP-1 secretion in GLUTag cells). In conclusion, our findings indicate that in a recombinant expression system GPR119 activation is sustained, with little evidence of pronounced receptor desensitization, and for some ligands persistent agonist responses continue despite removal of excess agonist. This provides novel understanding of the temporal responses profiles of potential drug candidates targetting GPR119, and highlights the importance of carefully examining the the mechanisms through which GPCRs generate sustained responses. PMID:26101059

  16. HCO3(-) secretion by murine nasal submucosal gland serous acinar cells during Ca2+-stimulated fluid secretion.

    PubMed

    Lee, Robert J; Harlow, Janice M; Limberis, Maria P; Wilson, James M; Foskett, J Kevin

    2008-07-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3

  17. Mapping the agonist binding site of the nicotinic acetylcholine receptor. Orientation requirements for activation by covalent agonist.

    PubMed

    Sullivan, D A; Cohen, J B

    2000-04-28

    To characterize the structural requirements for ligand orientation compatible with activation of the Torpedo nicotinic acetylcholine receptor (nAChR), we used Cys mutagenesis in conjunction with sulfhydryl-reactive reagents to tether primary or quaternary amines at defined positions within the agonist binding site of nAChRs containing mutant alpha- or gamma-subunits expressed in Xenopus oocytes. 4-(N-Maleimido)benzyltrimethylammonium and 2-aminoethylmethanethiosulfonate acted as irreversible antagonists when tethered at alphaY93C, alphaY198C, or gammaE57C, as well as at alphaN94C (2-aminoethylmethanethiosulfonate only). [2-(Trimethylammonium)-ethyl]-methanethiosulfonate (MTSET), which attaches thiocholine to binding site Cys, also acted as an irreversible antagonist when tethered at alphaY93C, alphaN94C, or gammaE57C. However, MTSET modification of alphaY198C resulted in prolonged activation of the nAChR not reversible by washing but inhibitable by subsequent exposure to non-competitive antagonists. Modification of alphaY198C (or any of the other positions tested) by [(trimethylammonium)methyl]methanethiosulfonate resulted only in irreversible inhibition, while modification of alphaY198C by [3-(trimethylammonium)propyl]methanethiosulfonate resulted in irreversible activation of nAChR, but at lower efficacy than by MTSET. Thus changing the length of the tethering arm by less than 1 A in either direction markedly effects the ability of the covalent trimethylammonium to activate the nAChR, and agonist activation depends on a very selective orientation of the quaternary ammonium within the agonist binding site. PMID:10777557

  18. Isothiouronium compounds as gamma-aminobutyric acid agonists.

    PubMed Central

    Allan, R. D.; Dickenson, H. W.; Hiern, B. P.; Johnston, G. A.; Kazlauskas, R.

    1986-01-01

    Analogues of gamma-aminobutyric acid (GABA) incorporating an isothiouronium salt as a replacement for a protonated amino functional group have been investigated for activity on: GABA receptors in the guinea-pig ileum; [3H]-GABA and [3H]-diazepam binding to rat brain membranes; and GABA uptake and transamination. For the homologous series of omega-isothiouronium alkanoic acids, maximum GABA-mimetic activity was found at 3-[(aminoiminomethyl)thio]propanoic acid. Introduction of unsaturation into this compound gave two isomeric conformationally restricted analogues. The trans isomer was inactive at GABA receptors while the cis compound ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid (ZAPA)) was more potent than muscimol and GABA as a GABA agonist with respect to low affinity GABA receptor sites. Both isomers were moderately potent at inhibiting the uptake of [3H]-GABA into rat brain slices. Comparison of possible conformations of the two unsaturated isomers by interactive computer graphics modelling and comparison with muscimol has led to a plausible active conformation of ZAPA, which may be a selective and potent agonist for low affinity GABA binding sites. PMID:3015310

  19. Cold Suppresses Agonist-induced Activation of TRPV1

    PubMed Central

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  20. Antidiabetic Actions of an Estrogen Receptor β Selective Agonist

    PubMed Central

    Alonso-Magdalena, Paloma; Ropero, Ana B.; García-Arévalo, Marta; Soriano, Sergi; Quesada, Iván; Muhammed, Sarheed J.; Salehi, Albert; Gustafsson, Jan-Ake; Nadal, Ángel

    2013-01-01

    The estrogen receptor β (ERβ) is emerging as an important player in the physiology of the endocrine pancreas. We evaluated the role and antidiabetic actions of the ERβ selective agonist WAY200070 as an insulinotropic molecule. We demonstrate that WAY200070 enhances glucose-stimulated insulin secretion both in mouse and human islets. In vivo experiments showed that a single administration of WAY200070 leads to an increase in plasma insulin levels with a concomitant improved response to a glucose load. Two-week treatment administration increased glucose-induced insulin release and pancreatic β-cell mass and improved glucose and insulin sensitivity. In addition, streptozotocin-nicotinamide–induced diabetic mice treated with WAY200070 exhibited a significant improvement in plasma insulin levels and glucose tolerance as well as a regeneration of pancreatic β-cell mass. Studies performed in db/db mice demonstrated that this compound restored first-phase insulin secretion and enhanced pancreatic β-cell mass. We conclude that ERβ agonists should be considered as new targets for the treatment of diabetes. PMID:23349481

  1. Anti-cancer flavonoids are mouse selective STING agonists

    PubMed Central

    Kim, Sujeong; Li, Lingyin; Maliga, Zoltan; Yin, Qian; Wu, Hao; Mitchison, Timothy J.

    2013-01-01

    The flavonoids FAA and DMXAA showed impressive activity against solid tumors in mice, but failed clinical trials. They act on a previously unknown molecular target(s) to trigger cytokine release from leukocytes, which causes tumor-specific vascular damage and other anti-tumor effects. We show that DMXAA is a competitive agonist ligand for mouse STING (stimulator of interferon genes), a receptor for the bacterial PAMP cyclic-di-GMP (c-di-GMP) and an endogenous second messenger cyclic-GMP-AMP. In our structure-activity relationship studies, STING binding affinity and pathway activation activity of four flavonoids correlated with activity in a mouse tumor model measured previously. We propose that STING agonist activity accounts for the anti-tumor effects of FAA and DMXAA in mice. Importantly, DMXAA does not bind to human STING, which may account for its lack of efficacy or mechanism-related toxicity in man. We propose that STING is a druggable target for a novel innate immune activation mechanism of chemotherapy. PMID:23683494

  2. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  3. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists. PMID:19832688

  4. Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets

    SciTech Connect

    Schaechter, M.; Godfrey, P.P.; Minchin, M.C.W.; McClue, S.J.; Young, M.M.

    1985-10-28

    The metabolism of inositol phospholipids in response to serotonergic agonists was investigated in rabbit platelets. In platelets prelabelled with (/sup 3/H)-inositol, in a medium containing 10 mM LiCl which blocks the enzyme inositol-1-phosphatase, 5-hydroxytryptamine (5-HT) caused a dose-dependent accumulation of inositol phosphates (IP). This suggests a phospholipase-C-mediated breakdown of phosphoinositides. Ketanserin, a selective 5-HT/sub 2/ antagonist, was a potent inhibitor of the 5-HT response, with a Ki of 28 nM, indicating that 5-HT is activating receptors of the 5-HT/sub 2/ type in the platelet. Lysergic acid diethylamide (LSD) and quipazine also caused dose-related increases in inositol phosphate levels, though these were considerably less than those produced by 5-HT. These results show that relatively small changes in phosphoinositide metabolism induced by serotonergic agonists can be investigated in the rabbit platelet, and this cell may therefore be a useful model for the study of some 5-HT receptors. 30 references, 4 figures.

  5. Suppression of atherosclerosis by synthetic REV-ERB agonist.

    PubMed

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M; Solt, Laura A; Burris, Thomas P

    2015-05-01

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. PMID:25800870

  6. A novel PPARgamma agonist monascin's potential application in diabetes prevention.

    PubMed

    Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2014-07-25

    Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including the anti-inflammatory pigments monascin and ankaflavin. Monascin has been shown to prevent or ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory cytokine production. In our recent study, we have found that monascin is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. The PPARgamma agonist activity had been investigated and its exerted benefits are inhibition of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas impairment causing advanced glycation endproducts (AGEs), promotion of insulin expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced hepatic stellate cell (HSC) activation in the past several years. Moreover, our studies also demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal induced pancreas dysfunction. In this review, we focus on the chemo-preventive properties of monascin against metabolic syndrome through PPARgamma and Nrf2 pathways. PMID:24752777

  7. How does agonistic behaviour differ in albino and pigmented fish?

    PubMed Central

    Horký, Pavel; Wackermannová, Marie

    2016-01-01

    In addition to hypopigmentation of the skin and red iris colouration, albino animals also display distinct physiological and behavioural alterations. However, information on the social interactions of albino animals is rare and has mostly been limited to specially bred strains of albino rodents and animals from unique environments in caves. Differentiating between the effects of albinism and domestication on behaviour in rodents can be difficult, and social behaviour in cave fish changes according to species-specific adaptations to conditions of permanent darkness. The agonistic behaviours of albino offspring of pigmented parents have yet to be described. In this study, we observed agonistic behaviour in albino and pigmented juvenile Silurus glanis catfish. We found that the total number of aggressive interactions was lower in albinos than in pigmented catfish. The distance between conspecifics was also analysed, and albinos showed a tendency towards greater separation from their same-coloured conspecifics compared with pigmented catfish. These results demonstrate that albinism can be associated with lower aggressiveness and with reduced shoaling behaviour preference, as demonstrated by a tendency towards greater separation of albinos from conspecifics. PMID:27114883

  8. Long-Acting Beta Agonists Enhance Allergic Airway Disease

    PubMed Central

    Knight, John M.; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O.; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A.; Milner, Joshua D.; Zhang, Yuan; Mandal, Pijus K.; Luong, Amber; Kheradmand, Farrah

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  9. Cariprazine:New dopamine biased agonist for neuropsychiatric disorders.

    PubMed

    De Deurwaerdère, P

    2016-02-01

    Cariprazine (RGH-188, MP-214, Vraylar[TM]) is a new dopamine receptor ligand developed for the treatment of several neuropsychiatric diseases including schizophrenia and bipolar disorders. Cariprazine displays higher affinity at dopamine D3 receptors and a similar affinity at D2 and 5-HT2B receptors. At variance with some atypical antipsychotics, its affinity at 5-HT1A, 5-HT2A and histamine H1 receptors is modest compared with its three main targets. Cariprazine could correspond to a biased agonist at dopamine receptors, displaying either antagonist or partial agonist properties depending on the signaling pathways linked to D2/D3 receptors. The compound crosses the blood-brain barrier, as revealed by positron emission tomography and pharmacokinetic studies in various species. Two main metabolites result mainly from the activity of CYP34A and display properties similar to those of the parent drug. Behavioral data report that cariprazine is efficacious in animal models addressing positive, negative and cognitive symptoms of schizophrenia with no extrapyramidal side effects. In September 2015, the FDA approved the use of cariprazine for the treatment of schizophrenia and type I bipolar disorder. The efficacy of cariprazine in other neuropsychiatric diseases is currently being evaluated in preclinical and clinical studies. Side effects have been observed in humans, including extrapyramidal side effects and akathisia of mild to moderate intensity. PMID:27092339

  10. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  11. Using (FH)2 and (FH)3 to Bridge the σ-Hole and the Lone Pair at P in Complexes with H2 XP, for X=CH3 , OH, H, CCH, F, Cl, NC, and CN.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2016-05-18

    Ab initio MP2/aug'-cc-pVTZ calculations are used to investigate the binary complexes H2 XP:HF, the ternary complexes H2 XP:(FH)2 , and the quaternary complexes H2 XP:(FH)3 , for X=CH3 , OH, H, CCH, F, Cl, NC, and CN. Hydrogen-bonded (HB) binary complexes are formed between all H2 XP molecules and FH, but only H2 FP, H2 ClP, and H2 (NC)P form pnicogen-bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F-H⋅⋅⋅P and F-H⋅⋅⋅F hydrogen bonds and F⋅⋅⋅P pnicogen bonds, except for H2 (CH3 )P:(FH)2 and H3 P:(FH)2 , which do not have pnicogen bonds. All quaternary complexes H2 XP:(FH)3 are stabilized by both F-H⋅⋅⋅P and F-H⋅⋅⋅F hydrogen bonds and P⋅⋅⋅F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ-hole and the lone pair at P in these complexes. The binding energies of H2 XP:(FH)3 complexes are significantly greater than the binding energies of H2 XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone-pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge-transfer energies across the pnicogen bond correlate with the intermolecular P-F distance, while charge-transfer energies across F-H⋅⋅⋅P and F-H⋅⋅⋅F hydrogen bonds correlate with the distance between the lone-pair donor atom and the hydrogen-bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron-donor atom and the hydrogen-bonded F atom. EOM-CCSD spin-spin coupling constants (2h) J(F-P) across F-H⋅⋅⋅P hydrogen bonds, and (1p) J(P-F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F-P coupling data than pnicogen bonds, despite the longer F⋅⋅⋅P distances in F

  12. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  13. Modulation of PPAR subtype selectivity. Part 2: Transforming PPARα/γ dual agonist into α selective PPAR agonist through bioisosteric modification.

    PubMed

    Zaware, Pandurang; Shah, Shailesh R; Pingali, Harikishore; Makadia, Pankaj; Thube, Baban; Pola, Suresh; Patel, Darshit; Priyadarshini, Priyanka; Suthar, Dinesh; Shah, Maanan; Jamili, Jeevankumar; Sairam, Kalapatapu V V M; Giri, Suresh; Patel, Lala; Patel, Harilal; Sudani, Hareshkumar; Patel, Hiren; Jain, Mukul; Patel, Pankaj; Bahekar, Rajesh

    2011-01-15

    A novel series of oxime containing benzyl-1,3-dioxane-r-2-carboxylic acid derivatives (6a-k) were designed as selective PPARα agonists, through bioisosteric modification in the lipophilic tail region of PPARα/γ dual agonist. Some of the test compounds (6a, 6b, 6c and 6f) showed high selectivity towards PPARα over PPARγ in vitro. Further, highly potent and selective PPARα agonist 6c exhibited significant antihyperglycemic and antihyperlipidemic activity in vivo, along with its improved pharmacokinetic profile. Favorable in-silico interaction of 6c with PPARα binding pocket correlate its in vitro selectivity profile toward PPARα over PPARγ. Together, these results confirm discovery of novel series of oxime based selective PPARα agonists for the safe and effective treatment of various metabolic disorders. PMID:21195611

  14. Impact of Efficacy at the μ-Opioid Receptor on Antinociceptive Effects of Combinations of μ-Opioid Receptor Agonists and Cannabinoid Receptor Agonists

    PubMed Central

    Maguire, David R.

    2014-01-01

    Cannabinoid receptor agonists, such as Δ9-tetrahydrocannabinol (Δ9-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ9-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ9-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ9-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ9-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain. PMID:25194020

  15. 1,4-Benzodiazepine peripheral cholecystokinin (CCK-A) receptor agonists.

    PubMed

    Sherrill, R G; Berman, J M; Birkemo, L; Croom, D K; Dezube, M; Ervin, G N; Grizzle, M K; James, M K; Johnson, M F; Queen, K L; Rimele, T J; Vanmiddlesworth, F; Sugg, E E

    2001-05-01

    A series of 1,4-benzodiazepines, N-1-substituted with an N-isopropyl-N-phenylacetamide moiety, was synthesized and screened for CCK-A agonist activity. In vitro agonist activity on isolated guinea pig gallbladder along with in vivo induction of satiety following intraperitoneal administration in a rat feeding assay was demonstrated. PMID:11354363

  16. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics. PMID:26675887

  17. Functional desensitization of the β2 adrenoceptor is not dependent on agonist efficacy

    PubMed Central

    Rosethorne, Elizabeth M; Bradley, Michelle E; Kent, Toby C; Charlton, Steven J

    2015-01-01

    Chronic treatment with β2 adrenoceptor agonists is recommended as a first-line maintenance therapy for chronic obstructive pulmonary disease (COPD). However, a potential consequence of long-term treatment may be the loss of functional response (tachyphylaxis) over time. In this study, we have investigated the tendency of such agonists, with a range of efficacies, to develop functional desensitization to cAMP responses in primary human bronchial smooth muscle cells following prolonged agonist exposure. The data show that upon repeat exposure, all agonists produced functional desensitization to the same degree and rate. In addition, β2 adrenoceptor internalization and β-arrestin-2 recruitment were monitored using β2·eGFP visualization and the PathHunter™ β-arrestin-2 assay, respectively. All agonists were capable of causing robust receptor internalization and β-arrestin-2 recruitment, the rate of which was influenced by agonist efficacy, as measured in those assays. In summary, although a relationship exists between agonist efficacy and the rate of both receptor internalization and β-arrestin-2 recruitment, there is no correlation between agonist efficacy and the rate or extent of functional desensitization. PMID:25692019

  18. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  19. Hyperthermia induced by the dopamine D1 receptor agonist SK&F38393 in combination with the dopamine D2 receptor agonist talipexole in the rat.

    PubMed

    Nagashima, M; Yamada, K; Kimura, H; Matsumoto, S; Furukawa, T

    1992-12-01

    The present experiments were performed to investigate the effects of dopamine D1 receptor agonists given alone or in combination with dopamine D2 receptor agonists on body temperature in rats. The selective dopamine D1 receptor agonist, 1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SK&F38393), produced hyperthermia. However, the dopamine D2 receptor agonist, B-HT 920 (talipexole), and the newly synthesized dopamine D2 receptor agonist, (S)-2-amino-4,5,6,7-tetrahydro-6-propylamino-benzothiazole (SND 919), did not change the temperature. Interestingly, the SK&F38393-induced hyperthermia was enhanced by talipexole and SND 919. The drastic hyperthermia induced by combined administration of dopamine D1 and D2 receptor agonists was blocked by either the dopamine D1 receptor antagonist, SCH23390, or the dopamine D2 receptor antagonist, spiperone. On the other hand, treatment with prazosin, yohimbine, propranolol, scopolamine, or methysergide failed to affect the marked hyperthermia. The present results suggest that a functional link between dopamine D1 and D2 receptors may be synergistic in the regulation of body temperature and that concurrent stimulation of both dopamine D1 and D2 receptors thereby produces marked hyperthermia in the rat. PMID:1361996

  20. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    PubMed

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. PMID:26418413

  1. Regulation of nerve-evoked contractions of rabbit vas deferens by acetylcholine.

    PubMed

    Wallace, Audrey; Gabriel, Deborah; McHale, Noel G; Hollywood, Mark A; Thornbury, Keith D; Sergeant, Gerard P

    2015-09-01

    Stimulation of intramural nerves in the vas deferens of many species yields a classical biphasic contraction comprised of an initial fast component, mediated by P2X receptors and a second slower component, mediated by α1-adrenoceptors. It is also recognized that sympathetic nerve-mediated contractions of the vas deferens can be modulated by acetylcholine (Ach), however there is considerable disagreement in the literature regarding the precise contribution of cholinergic nerves to contraction of the vas deferens. In this study we examined the effect of cholinergic modulators on electric field stimulation (EFS)-evoked contractions of rabbit vas deferens and on cytosolic Ca(2+) levels in isolated vas deferens smooth muscle cells (VDSMC). The sustained component of EFS-evoked contractions was inhibited by atropine and by the selective M3R antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP). EFS-evoked contractions were potentiated by Ach, carbachol (Cch), and neostigmine. The sustained phase of the EFS-evoked contraction was inhibited by prazosin, an α1-adrenoceptor antagonist and guanethidine, an inhibitor of noradrenaline release, even in the continued presence of Ach, Cch or neostigmine. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one enhanced the amplitude of EFS-evoked contractions and reduced the inhibitory effects of 4-DAMP. Isolated VDSMC displayed spontaneous Ca(2+) oscillations, but did not respond to Cch. However, the α1-adrenoceptor agonist, phenylephrine, evoked a Ca(2+) transient and contracted the cells. These data suggest that EFS-evoked contractions of the rabbit vas deferens are potentiated by activation of M3 receptors and reduced by activation of a sGC-dependent inhibitory pathway. PMID:26359240

  2. Regulation of nerve-evoked contractions of rabbit vas deferens by acetylcholine

    PubMed Central

    Wallace, Audrey; Gabriel, Deborah; McHale, Noel G; Hollywood, Mark A; Thornbury, Keith D; Sergeant, Gerard P

    2015-01-01

    Stimulation of intramural nerves in the vas deferens of many species yields a classical biphasic contraction comprised of an initial fast component, mediated by P2X receptors and a second slower component, mediated by α1-adrenoceptors. It is also recognized that sympathetic nerve-mediated contractions of the vas deferens can be modulated by acetylcholine (Ach), however there is considerable disagreement in the literature regarding the precise contribution of cholinergic nerves to contraction of the vas deferens. In this study we examined the effect of cholinergic modulators on electric field stimulation (EFS)-evoked contractions of rabbit vas deferens and on cytosolic Ca2+ levels in isolated vas deferens smooth muscle cells (VDSMC). The sustained component of EFS-evoked contractions was inhibited by atropine and by the selective M3R antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP). EFS-evoked contractions were potentiated by Ach, carbachol (Cch), and neostigmine. The sustained phase of the EFS-evoked contraction was inhibited by prazosin, an α1-adrenoceptor antagonist and guanethidine, an inhibitor of noradrenaline release, even in the continued presence of Ach, Cch or neostigmine. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one enhanced the amplitude of EFS-evoked contractions and reduced the inhibitory effects of 4-DAMP. Isolated VDSMC displayed spontaneous Ca2+ oscillations, but did not respond to Cch. However, the α1-adrenoceptor agonist, phenylephrine, evoked a Ca2+ transient and contracted the cells. These data suggest that EFS-evoked contractions of the rabbit vas deferens are potentiated by activation of M3 receptors and reduced by activation of a sGC-dependent inhibitory pathway. PMID:26359240

  3. Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells.

    PubMed Central

    Kennedy, E D; Rizzuto, R; Theler, J M; Pralong, W F; Bastianutto, C; Pozzan, T; Wollheim, C B

    1996-01-01

    Nutrient-stimulated insulin secretion is dependent upon the generation of metabolic coupling factors in the mitochondria of the pancreatic B cell. To investigate the role of Ca2+ in mitochondrial function, insulin secretion from INS-1 cells stably expressing the Ca2+-sensitive photoprotein aequorin in the appropriate compartments was correlated with changes in cytosolic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]m). Glucose and KCl, which depolarize the cell membrane, as well as the Ca2+-mobilizing agonist, carbachol (CCh), cause substantial increases in [Ca2+]m which are associated with smaller rises in [Ca2+]c. The L-type Ca2+-channel blocker, SR7037, abolished the effects of glucose and KCl while attenuating the CCh response. Glucose-induced increases in [Ca2+]m, [Ca2+]c, and insulin secretion all demonstrate a pronounced initial peak followed by a sustained plateau. All three parameters are increased synergistically when glucose and CCh are combined. Finally, [Ca2+]m, [Ca2+]c, and insulin secretion also display desensitization phenomena following repeated additions of the three stimuli. The high sensitivity of [Ca2+]m to Ca2+ influx and the desensitization-resensitization effects can be explained by a model in which the mitochondria of INS-1 cells are strategically located to sense Ca2+ influx through plasma membrane Ca2+ channels. In conclusion, the correlation of [Ca2+]m and [Ca2+]c with insulin secretion may indicate a fundamental role for Ca2+ in the adaptation of oxidative metabolism to the generation of metabolic coupling factors and the energy requirements of exocytosis. PMID:8958215

  4. Pharmacology and clinical potential of guanylyl cyclase C agonists in the treatment of ulcerative colitis

    PubMed Central

    Pitari, Giovanni M

    2013-01-01

    Agonists of the transmembrane intestinal receptor guanylyl cyclase C (GCC) have recently attracted interest as promising human therapeutics. Peptide ligands that can specifically induce GCC signaling in the intestine include endogenous hormones guanylin and uroguanylin, diarrheagenic bacterial enterotoxins (ST), and synthetic drugs linaclotide, plecanatide, and SP-333. These agonists bind to GCC at intestinal epithelial surfaces and activate the receptor’s intracellular catalytic domain, an event initiating discrete biological responses upon conversion of guanosine-5′-triphosphate to cyclic guanosine monophosphate. A principal action of GCC agonists in the colon is the promotion of mucosal homeostasis and its dependent barrier function. Herein, GCC agonists are being developed as new medications to treat inflammatory bowel diseases, pathological conditions characterized by mucosal barrier hyperpermeability, abnormal immune reactions, and chronic local inflammation. This review will present important concepts underlying the pharmacology and therapeutic utility of GCC agonists for patients with ulcerative colitis, one of the most prevalent inflammatory bowel disease disorders. PMID:23637522

  5. The link between non-ergot-derived dopamine agonists and heart failure: how strong is it?

    PubMed

    Lockett, Katrina; DeBacker, Danielle; Cauthon, Kimberly A B

    2015-03-01

    Dopamine agonists are commonly used as initial monotherapy and adjunct treatment for Parkinson's disease. However, the Food and Drug Administration recently linked pramipexole use with an increased risk of heart failure (HF). Several case-control studies demonstrate a possible increased risk of the development of HF in patients taking non-ergot-derived dopamine agonists compared with patients not taking dopamine agonists. In patients taking non-ergot-derived dopamine agonists, the studies associated the risk of increased HF with pramipexole. These studies did not find a possible increased risk with ropinirole, but to date no randomized, controlled trials have been conducted to directly compare ropinirole with pramipexole and the risk of HF. The mechanism by which HF occurs is unknown, but the development of edema after dopamine agonist use could increase the risk of HF. If patients with a history of cardiovascular disease or edema are prescribed pramipexole, additional monitoring for HF signs and symptoms is recommended. PMID:25760663

  6. [Is the LHRH Agonist Recommended for Fertility Preservation ?].

    PubMed

    Kimura, Kosei; Iwamoto, Mitsuhiko; Tanaka, Satoru; Watanabe, Toru; Aihara, Tomohiko; Sugimoto, Takeki; Miyara, Kyuichiro; Hayashi, Mitsuhiro; Kouno, Tsutomu; Baba, Shinichi; Kawashima, Hiroaki; Hashimoto, Naoki; Uchiyama, Kazuhisa

    2015-08-01

    The POEMS reportedan effect of goserelin for fertility preservation. The Clinical Practice Guideline for Breast Cancer by The Japanese Breast Cancer Society indicates that the use of the LHRH agonist (LHRHa) for preventing chemotherapy-induced early menopause is a grade C-1 recommendation, and its use for fertility preservation is a grade C-2 recommendation. Results from previous studies on the effects of LHRHa for fertility preservation have varied owing to differences in chemotherapy regimens, definitions of ovarian failure, and dosages of tamoxifen. In the POEMS, the primary endpoint of ovarian failure at 2 years was significantly lower, and the secondary endpoint of pregnancy outcomes was better in the combination group; however, precise interpretation is difficult because many cases were excluded. Currently, it is not necessary to revise The Clinical Practice Guideline; however, desirable results from future studies may allow the recommendation of a specific dosage of LHRHa for fertility preservation. PMID:26321722

  7. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity

    PubMed Central

    Crane, James; McGowan, Barbara

    2015-01-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  8. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist.

    PubMed

    Kühnen, Peter; Clément, Karine; Wiegand, Susanna; Blankenstein, Oliver; Gottesdiener, Keith; Martini, Lea L; Mai, Knut; Blume-Peytavi, Ulrike; Grüters, Annette; Krude, Heiko

    2016-07-21

    Patients with rare defects in the gene encoding proopiomelanocortin (POMC) have extreme early-onset obesity, hyperphagia, hypopigmentation, and hypocortisolism, resulting from the lack of the proopiomelanocortin-derived peptides melanocyte-stimulating hormone and corticotropin. In such patients, adrenal insufficiency must be treated with hydrocortisone early in life. No effective pharmacologic treatments have been available for the hyperphagia and obesity that characterize the condition. In this investigator-initiated, open-label study, two patients with proopiomelanocortin deficiency were treated with setmelanotide, a new melanocortin-4 receptor agonist. The patients had a sustainable reduction in hunger and substantial weight loss (51.0 kg after 42 weeks in Patient 1 and 20.5 kg after 12 weeks in Patient 2). PMID:27468060

  9. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis

    PubMed Central

    Dietrich, Johannes W.; Landgrafe, Gabi; Fotiadou, Elisavet H.

    2012-01-01

    This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range. PMID:23365787

  10. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity.

    PubMed

    Crane, James; McGowan, Barbara

    2016-03-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  11. Saralasin and Sarile Are AT2 Receptor Agonists

    PubMed Central

    2014-01-01

    Saralasin and sarile, extensively studied over the past 40 years as angiotensin II (Ang II) receptor blockers, induce neurite outgrowth in a NG108-15 cell assay to a similar extent as the endogenous Ang II. In their undifferentiated state, these cells express mainly the AT2 receptor. The neurite outgrowth was inhibited by preincubation with the AT2 receptor selective antagonist PD 123,319, which suggests that the observed outgrowth was mediated by the AT2 receptor. Neither saralasin nor sarile reduced the neurite outgrowth induced by Ang II proving that the two octapeptides do not act as antagonists at the AT2 receptor and may be considered as AT2 receptor agonists. PMID:25313325

  12. Use of Thrombopoietin Receptor Agonists in Childhood Immune Thrombocytopenia

    PubMed Central

    Garzon, Angelica Maria; Mitchell, William Beau

    2015-01-01

    Most children with immune thrombocytopenia (ITP) will have spontaneous remission regardless of therapy, while about 20% will go on to have chronic ITP. In those children with chronic ITP who need treatment, standard therapies for acute ITP may have adverse effects that complicate their long-term use. Thus, alternative treatment options are needed for children with chronic ITP. Thrombopoietin receptor agonists (TPO-RA) have been shown to be safe and efficacious in adults with ITP, and represent a new treatment option for children with chronic ITP. One TPO-RA, eltrombopag, is now approved for children. Clinical trials in children are ongoing and data are emerging on safety and efficacy. This review will focus on the physiology of TPO-RA, their clinical use in children, as well as the long-term safety issues that need to be considered when using these agents. PMID:26322297

  13. Antiinfective applications of toll-like receptor 9 agonists.

    PubMed

    Krieg, Arthur M

    2007-07-01

    The innate immune system detects pathogens by the presence of highly conserved pathogen-expressed molecules, which trigger host immune defenses. Toll-like receptor (TLR) 9 detects unmethylated CpG dinucleotides in bacterial or viral DNA, and can be stimulated for therapeutic applications with synthetic oligodeoxynucleotides containing immune stimulatory "CpG motifs." TLR9 activation induces both innate and adaptive immunity. The TLR9-induced innate immune activation can be applied in the prevention or treatment of infectious diseases, and the adaptive immune-enhancing effects can be harnessed for improving vaccines. This article highlights the current understanding of the mechanism of action of CpG oligodeoxynucleotides, and provides an overview of the preclinical data and early human clinical trial results, applying these TLR9 agonists in the field of infectious diseases. PMID:17607015

  14. Cannabinoid withdrawal in mice: inverse agonist vs neutral antagonist

    PubMed Central

    Tai, Sherrica; Nikas, Spyros P.; Shukla, Vidyanand G.; Vemuri, Kiran; Makriyannis, Alexandros; Järbe, Torbjörn U.C.

    2015-01-01

    Rationale Previous reports shows rimonabant's inverse properties may be a limiting factor for treating cannabinoid dependence. To overcome this limitation neutral antagonists were developed, to address mechanisms by which an inverse agonist and neutral antagonist elicit withdrawal. Objective Introduces an animal model to study cannabinoid dependence by incorporating traditional methodologies and profiling novel cannabinoid ligands with distinct pharmacological properties/modes of action by evaluating their pharmacological effects on CB1-receptor (CB1R) related physiological/behavioral endpoints. Methods The cannabinergic AM2389 was acutely characterized in the tetrad (locomotor activity, analgesia, inverted screen/catalepsy bar test and temperature); with some comparisons made to Δ9-tetrahydrocannabinol (THC). Tolerance was measured in mice repeatedly administered AM2389. Antagonist-precipitated withdrawal was characterized in cannabinoid-adapted mice induced by either centrally acting antagonists, rimonabant and AM4113, or an antagonist with limited brain penetration, AM6545. Results In the tetrad, AM2389 was more potent and longer acting than THC, suggesting a novel approach for inducing dependence. Repeated administration of AM2389 led to tolerance by attenuating hypothermia that was induced by acute AM2389 administration. Antagonist-precipitated withdrawal signs were induced by rimonabant or AM4113, but not by AM6545. Antagonist-precipitated withdrawal was reversed by reinstating AM2389 or THC. Conclusions These findings suggest cannabinoid-precipitated withdrawal may not be ascribed to the inverse properties of rimonabant, but rather to rapid competition with the agonist at the CB1R. This withdrawal syndrome is likely centrally-mediated, since only the centrally acting CB1R antagonists elicited withdrawal, i.e., such responses were absent after the purported peripherally selective CB1R antagonist AM6545. PMID:25772338

  15. RS 30026: a potent and effective calcium channel agonist.

    PubMed Central

    Patmore, L.; Duncan, G. P.; Clarke, B.; Anderson, A. J.; Greenhouse, R.; Pfister, J. R.

    1990-01-01

    1. A series of dihydropyridine derivatives has been evaluated for calcium channel agonist activity using reversal of nisoldipine-induced inhibition of beating of aggregates of embryonic chick myocytes. This test appears to be specific for calcium channel agonists since isoprenaline and cardiac glycosides are inactive. 2. RS 30026 was the most potent of the series, was significantly more potent than CGP 28392 and of similar potency to Bay K 8644 (pEC50 = 7.45, 6.16 and 7.20, respectively). RS 30026 increased edge movement of individual aggregates, in the absence of nisoldipine, by 50% at 2 nM. 3. Compounds were also evaluated for their effects on guinea-pig papillary muscle and porcine coronary artery rings. RS 30026 displayed positive inotropism at concentrations between 10(-9) and 10(-6) M (pEC200 = 8.21), but was a much more powerful inotrope than Bay K 8644, increasing contractility to 1300% of control at 10(-6) M (compared to 350% of control for Bay K 8644). RS 30026 caused vasoconstriction at concentrations between 10(-10) and 10(-7) M. 4. Calcium channel currents in single embryonic chick myocytes were recorded by whole-cell voltage clamp techniques. RS 30026 (100 nM-500 nM) produced large increases in peak current amplitude and shifted the voltage for threshold and maximal currents to more negative values. RS 30026 (500 nM) also produced large increases in the inward tail currents evoked upon repolarization. The effects of Bay K 8644 (50 and 500 nM) were much less marked.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1694461

  16. Asimadoline, a κ-Opioid Agonist, and Visceral Sensation

    PubMed Central

    Camilleri, Michael

    2009-01-01

    SUMMARY Asimadoline is a potent κ-opioid receptor agonist with a diaryl acetamide structure. It has high affinity for the κ receptor, with IC50 of 5.6 nM (guinea pig) and 1.2 nM (human recombinant), and high selectively with κ: μ: δ binding ratios of 1:501:498 in human recombinant receptors. It acts as a complete agonist in in vitro assay. Asimadoline reduced sensation in response to colonic distension at subnoxious pressures in healthy volunteers and in IBS patients without alteration of colonic compliance. Asimadoline reduced satiation and enhanced the postprandial gastric volume (in female volunteers). However, there were no significant effects on gastrointestinal transit, colonic compliance, fasting or postprandial colonic tone. In a clinical trial in 40 patients with functional dyspepsia (Rome II), asimadoline did not significantly alter satiation or symptoms over 8 weeks. However, asimadoline, 0.5 mg, significantly decreased satiation in patients with higher postprandial fullness scores, and daily postprandial fullness severity (over 8 weeks); the asimadoline 1.0 mg group was borderline significant. In a clinical trial in patients with IBS, average pain 2 hours post-on-demand treatment with asimadoline was not significantly reduced. Post-hoc analyses suggest asimadoline was effective in mixed IBS. In a 12-week study in 596 patients, chronic treatment with asimadoline, 0.5 mg and 1.0 mg, was associated with adequate relief of pain and discomfort, improvement in pain score and number of pain free days in patients with IBS-D. The 1.0 mg dose was also efficacious in IBS-alternating. There were also weeks with significant reduction in bowel frequency and urgency. Asimadoline has been well tolerated in human trials to date. PMID:18715494

  17. Agonist and antagonist effects of cytisine in vivo.

    PubMed

    Radchenko, Elena V; Dravolina, Olga A; Bespalov, Anton Y

    2015-08-01

    Varenicline, the most successful smoking cessation aid, is a selective partial agonists at α4β2* nicotinic receptors. Its efficacy is likely to be shared by other drugs with similar receptor action, including cytisine. The present study aimed to characterize behavioral effects of cytisine compared with nicotine using locomotor activity tests, intracranial self-stimulation of ventral tegmental area (discrete-trial threshold current intensity titration procedure), drug discrimination (0.6 mg/kg nicotine from vehicle), physical dependence (osmotic minipumps delivering 6 mg/kg/day of nicotine) and intravenous nicotine self-administration (0.01 mg/kg per infusion) in adult Wistar rats. Cytisine (1-3 mg/kg) partially substituted for nicotine and at the highest dose tended to antagonize nicotine's discriminative stimulus effects. Nicotine (0.05-0.4 mg/kg), but not cytisine (0.3-3 mg/kg), lowered ICSS thresholds and cytisine dose-dependently reversed effects of nicotine. Nicotine (0.15-0.6 mg/kg), but not cytisine (0.3-3 mg/kg), stimulated locomotor activity and cytisine (3 mg/kg) fully reversed these effects of nicotine. Acute pretreatment with nicotine (0.15-0.6 mg/kg), but not cytisine (0.3-3 mg/kg), reinstated extinguished nicotine self-administration. Continuous infusion of nicotine induced physical dependence, as indicated by reduced rates of food-reinforced responding induced by a challenge dose of mecamylamine. At the highest tested dose (3 mg/kg), cytisine tended to reduce response rates irrespective of whether the rats were continuously exposed to nicotine or saline. Cytisine behaves like a weak partial agonist, mimicking effects of nicotine to a limited degree. Although cytisine reversed several effects of nicotine, it seemed to have a reduced potential to produce withdrawal signs in nicotine-dependent subjects. PMID:25839895

  18. Could dopamine agonists aid in drug development for anorexia nervosa?

    PubMed

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  19. Gonadotropin-Releasing Hormone Agonist Therapy and Obesity in Girls

    PubMed Central

    Shiasi Arani, Kobra; Heidari, Fatemeh

    2015-01-01

    Background: Depot preparations of gonadotropin-releasing hormone agonists (GnRHa) are the gold standard drugs for the treatment of central precocious puberty. A concern about these drugs is obesity. Objectives: This study aimed to investigate the effect of gonadotropin-releasing hormone agonists (GnRHa) therapy on body mass index (BMI) in girls with central precocious puberty (CPP). Patients and Methods: The girls with onset of puberty before eight years of age or menarche before nine years of age were studied. The weight, height, BMI, and pubertal stage were determined before and at sixth and 12th months of treatment. The GnRHa (Triptorelin) was administered intramuscularly for patients with rapidly progressive forms of CPP. Patients with slowly progressive forms of CPP were considered as control group. Results: From 110 subjects with CPP, 46 girls (41.8%) were considered as intervention and 64 (58.2%) as control groups. The mean age at initial visit was 7.46 ± 1.03 years. The BMI standard deviation scores in both groups was not significantly different at sixth and 12th months of treatment compared with baseline (P = 0.257 and P = 0.839, respectively). The prevalence of obesity was not significantly different between study groups at baseline and at and sixth and 12th months of therapy (P = 0.11, P = 0.068, and P = 0.052, respectively). Conclusions: The GnRHa therapy has no effect on BMI and the prevalence of obesity. PMID:26401141

  20. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  1. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    PubMed Central

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  2. Recent advances in the development of farnesoid X receptor agonists.

    PubMed

    Ali, Ahmad H; Carey, Elizabeth J; Lindor, Keith D

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  3. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  4. GITR agonist enhances vaccination responses in lung cancer

    PubMed Central

    Zhu, Li X; Davoodi, Michael; Srivastava, Minu K; Kachroo, Puja; Lee, Jay M; St. John, Maie; Harris-White, Marni; Huang, Min; Strieter, Robert M; Dubinett, Steven; Sharma, Sherven

    2015-01-01

    An immune tolerant tumor microenvironment promotes immune evasion of lung cancer. Agents that antagonize immune tolerance will thus aid the fight against this devastating disease. Members of the tumor necrosis factor receptor (TNFR) family modulate the magnitude, duration and phenotype of immune responsiveness to antigens. Among these, GITR expressed on immune cells functions as a key regulator in inflammatory and immune responses. Here, we evaluate the GITR agonistic antibody (DTA-1) as a mono-therapy and in combination with therapeutic vaccination in murine lung cancer models. We found that DTA-1 treatment of tumor-bearing mice increased: (i) the frequency and activation of intratumoral natural killer (NK) cells and T lymphocytes, (ii) the antigen presenting cell (APC) activity in the tumor, and (iii) systemic T-cell specific tumor cell cytolysis. DTA-1 treatment enhanced tumor cell apoptosis as quantified by cleaved caspase-3 staining in the tumors. DTA-1 treatment increased expression of IFNγ, TNFα and IL-12 but reduced IL-10 levels in tumors. Furthermore, increased anti-angiogenic chemokines corresponding with decreased pro-angiogenic chemokine levels correlated with reduced expression of the endothelial cell marker Meca 32 in the tumors of DTA-1 treated mice. In accordance, there was reduced tumor growth (8-fold by weight) in the DTA-1 treatment group. NK cell depletion markedly inhibited the antitumor response elicited by DTA-1. DTA-1 combined with therapeutic vaccination caused tumor rejection in 38% of mice and a 20-fold reduction in tumor burden in the remaining mice relative to control. Mice that rejected tumors following therapy developed immunological memory against subsequent re-challenge. Our data demonstrates GITR agonist antibody activated NK cell and T lymphocyte activity, and enhanced therapeutic vaccination responses against lung cancer. PMID:26137407

  5. Immobilized thrombin receptor agonist peptide accelerates wound healing in mice.

    PubMed

    Strukova, S M; Dugina, T N; Chistov, I V; Lange, M; Markvicheva, E A; Kuptsova, S; Zubov, V P; Glusa, E

    2001-10-01

    To accelerate the healing processes in wound repair, attempts have been repeatedly made to use growth factors including thrombin and its peptide fragments. Unfortunately, the employment of thrombin is limited because of its high liability and pro-inflammatory actions at high concentrations. Some cellular effects of thrombin in wound healing are mediated by the activation of protease activated receptor-1 (PAR-1). The thrombin receptor agonist peptide (TRAP:SFLLRN) activates this receptor and mimics the effects of thrombin, but TRAP is a relatively weak agonist. We speculated that the encapsulated peptide may be more effective for PAR-1 activation than nonimmobilized peptide and developed a novel method for TRAP encapsulation in hydrogel films based on natural and synthetic polymers. The effects of an encapsulated TRAP in composite poly(N-vinyl caprolactam)-calcium alginate (PVCL) hydrogel films were investigated in a mouse model of wound healing. On day 7 the wound sizes decreased by about 60% under TRAP-chitosan-containing PVCL films, as compared with control films without TRAP. In the case of TRAP-polylysine-containing films no significant decrease in wound sizes was found. The fibroblast/macrophage ratio increased under TRAP-containing films on day 3 and on day 7. The number of proliferating fibroblasts increased to 150% under TRAP-chitosan films on day 7 as compared with control films. The number of [3H]-thymidine labeled endothelial and epithelial cells in granulation tissues was also enhanced. Thus, the immobilized TRAP to PVCL-chitosan hydrogel films were found to promote wound healing following the stimulation of fibroblast and epithelial cell proliferation and neovascularization. Furthermore, TRAP was shown to inhibit the secretion of the inflammatory mediator PAF from stimulated rat peritoneal mast cells due to augmentation of NO release from the mast cells. The encapsulated TRAP is suggested to accelerate wound healing due to the anti-inflammatory effects

  6. Agonist-specific behaviour of the intracellular Ca2+ response in rat hepatocytes.

    PubMed Central

    Chatton, J Y; Cao, Y; Stucki, J W

    1997-01-01

    A variety of agonists stimulate in hepatocytes a response that takes the shape of repetitive cytosolic free Ca2+ transients called Ca2+ oscillations. The shape of spikes and the pattern of oscillations in a given cell differ depending on the agonist of the phosphoinositide pathway that is applied. In this study, the response of individual rat hepatocytes to maximal stimulation by arginine vasopressin (AVP), phenylephrine and ADP was investigated by fluorescence microscopy and flash photolysis. Hepatocytes loaded with Ca2+-sensitive probes were stimulated with a first agonist to evoke a maximal response, and then a second agonist was added. When phenylephrine or ADP was used as the first agonist, AVP applied subsequently could elicit an additional response, which did not happen when AVP was first applied and phenylephrine or ADP was applied later. Cells microinjected with caged myo-inositol 1,4,5-trisphosphate (IP3) were challenged with the different agonists and, when a maximal response was obtained, photorelease of IP3 was triggered. Cells maximally stimulated with AVP did not respond to IP3 photorelease, whereas those stimulated with phenylephrine or ADP responded with a fast Ca2+ spike above the elevated steady-state level, which was followed by an undershoot. In contrast, with all three agonists, IP3 photorelease triggered at the top of an oscillatory Ca2+ transient was able to mobilize additional Ca2+. These experiments indicate that the differential response of cells to agonists is found not only during Ca2+ oscillations but also during maximal agonist stimulation and that potency and efficacy differences exist among agonists. PMID:9371717

  7. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.

    PubMed

    Yu, Shan; Li, Sijia; Henke, Adam; Muse, Evan D; Cheng, Bo; Welzel, Gustav; Chatterjee, Arnab K; Wang, Danling; Roland, Jason; Glass, Christopher K; Tremblay, Matthew

    2016-07-01

    Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. PMID:27025962

  8. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs.

    PubMed

    DeVree, Brian T; Mahoney, Jacob P; Vélez-Ruiz, Gisselle A; Rasmussen, Soren G F; Kuszak, Adam J; Edwald, Elin; Fung, Juan-Jose; Manglik, Aashish; Masureel, Matthieu; Du, Yang; Matt, Rachel A; Pardon, Els; Steyaert, Jan; Kobilka, Brian K; Sunahara, Roger K

    2016-07-01

    G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the β2-adrenergic receptor (β2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the β2AR stabilizes a ‘closed’ receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR–G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity. PMID:27362234

  9. Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse.

    PubMed

    Di Rocco, Agnese; Uchibe, Kenta; Larmour, Colleen; Berger, Rebecca; Liu, Min; Barton, Elisabeth R; Iwamoto, Masahiro

    2015-09-01

    Retinoic acid signaling regulates several biological events, including myogenesis. We previously found that retinoic acid receptor γ (RARγ) agonist blocks heterotopic ossification, a pathological bone formation that mostly occurs in the skeletal muscle. Interestingly, RARγ agonist also weakened deterioration of muscle architecture adjacent to the heterotopic ossification lesion, suggesting that RARγ agonist may oppose skeletal muscle damage. To test this hypothesis, we generated a critical defect in the tibialis anterior muscle of 7-week-old mice with a cautery, treated them with RARγ agonist or vehicle corn oil, and examined the effects of RARγ agonist on muscle repair. The muscle defects were partially repaired with newly regenerating muscle cells, but also filled with adipose and fibrous scar tissue in both RARγ-treated and control groups. The fibrous or adipose area was smaller in RARγ agonist-treated mice than in the control. In addition, muscle repair was remarkably delayed in RARγ-null mice in both critical defect and cardiotoxin injury models. Furthermore, we found a rapid increase in retinoid signaling in lacerated muscle, as monitored by retinoid signaling reporter mice. Together, our results indicate that endogenous RARγ signaling is involved in muscle repair and that selective RARγ agonists may be beneficial to promote repair in various types of muscle injuries. PMID:26205250

  10. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  11. Kinetic determinants of agonist action at the recombinant human glycine receptor

    PubMed Central

    Lewis, Trevor M; Schofield, Peter R; McClellan, Annette M L

    2003-01-01

    The amino acids glycine, β-alanine and taurine are all endogenous agonists of the glycine receptor. In this study, a combination of rapid agonist application onto macropatches and steady-state single-channel recordings was used to compare the actions of glycine, β-alanine and taurine upon homomeric α1 human glycine receptors transiently expressed in human embryonic kidney (HEK 293) cells. The 10–90 % rise times determined from rapid application of 100 μm of each agonist were indistinguishable, indicating each agonist has a similar association rate. At saturating concentrations (30 mm) the rise time for glycine (0.26 ms) was 1.8-fold faster than that for β-alanine (0.47 ms) and 3.9-fold faster than that for taurine (1.01 ms), indicating clear differences in the maximum opening rate between agonists. The relaxation following rapid removal of agonist was fitted with a single exponential for β-alanine (3.0 ms) and taurine (2.2 ms), and two exponential components for glycine with a weighted mean time constant of 27.1 ms. This was consistent with differences in dissociation rates estimated from analysis of bursts, with taurine > β-alanine > glycine. Exponential fits to the open period distributions gave time constants that did not differ between agonists and the geometric distribution for the number of openings per burst indicated that all three agonists had a significant component of single-opening bursts. Based upon these data, we propose a kinetic scheme with three independent open states, where the opening rates are dependent upon the activating agonist, while the closing rates are an intrinsic characteristic of the receptor. PMID:12679369

  12. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  13. Pairwise agonist scanning-flow cytometry (PAS-FC) measures inside-out signaling and patient-specific response to combinatorial platelet agonists.

    PubMed

    Jaeger, Daniel T L; Diamond, Scott L

    2013-05-01

    Understanding the response of cells to multiple stimuli is vital for predicting donor specific responses and better understanding the signaling pathways involved. This is of particular importance in platelets because exposure of phosphatidylserine (PS) occurs upon costimulation but not with a single agonist. Here, we describe a multiplexed pairwise agonist scanning-flow cytometry (PAS-FC) method of measuring platelet inside-out responses to all pairs of six platelet agonists (convulxin, SFLLRN, AYPGKF, ADP, U46619, and PGE(2)) used at their EC(50) concentrations. These agonists allowed exploration of platelet signaling downstream of GPVI, PAR-1, PAR-4, P2Y(1), P2Y(12), TP, and IP receptors. The three-color flow cytometry method simultaneously measured integrin α(IIb)β(3) activation with PAC-1 antibody, P-selectin exposure (via α granule release) with anti-P-selectin, and PS exposure with annexin V. These responses were consistent across a healthy male donor pool. In duplicate measurements with each donor, 4 of the 10 donors had a sufficiently unique 45-parameter (15 pairs × 3 colors) phenotype to self-cluster (P < 0.001). This method has the potential for efficiently scanning for patient specific responses across a broad agonist-receptor space. PMID:23662898

  14. Analgesic effectiveness of the narcotic agonist-antagonists

    PubMed Central

    Houde, Raymond W.

    1979-01-01

    1 Two fundamentally different types of narcotic-antogonists have been found to be very effective analgesics with relatively low dependence-producing potentials. 2 These two drug classes can be distinguished as being either morphine-like or nalorphine-like on the basis of their subjective and objective effects after single doses and on chronic administration, and by the character of their abstinence syndromes on abrupt withdrawal or on precipitation by other antagonists. 3 To explain differences in side effects associated with their analgesic actions, the existence of three types of receptors has been postulated: a μ receptor which is believed to be associated with euphoria and other typical morphine-like effects and a kappa (χ) and a sigma (σ) receptor which are believed to be associated with the sedative and psychotomimetic effects, respectively, of the nalorphine-like drugs. 4 The antagonist-analgesics of the morphine-type have the characteristics of being agonists of low intrinsic activity but with high affinity for the μ receptor. Representative analgesics of this type are profadol, propiram and buprenorphine. 5 The antagonist-analgesics of the nalorphine-type are drugs which are believed to have varying degrees of affinity and intrinsic activity at all three receptors, but characteristically seem to act merely as competitive antagonists with no intrinsic activity at the μ receptor. Representative analgesics of this type are pentazocine, nalbuphine and butorphanol. 6 There are considerable differences among the individual drugs of each type in terms of their analgesic and narcotic-antagonistic potencies. However, clear differences in analgesic efficacy among any of the antagonist-analgesics remain to be proved. All give evidence of being capable of relieving pain in nondependent patients in situations in which doses of morphine (or its surrogates) usually used would be effective. 7 The major advantages of the partial agonists of the morphine-type over the

  15. Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists

    PubMed Central

    2014-01-01

    The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels. PMID:25313322

  16. Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists.

    PubMed

    Peukert, Stefan; Hughes, Richard; Nunez, Jill; He, Guo; Yan, Zhao; Jain, Rishi; Llamas, Luis; Luchansky, Sarah; Carlson, Adam; Liang, Guiqing; Kunjathoor, Vidya; Pietropaolo, Mike; Shapiro, Jeffrey; Castellana, Anja; Wu, Xiaoping; Bose, Avirup

    2014-10-01

    The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels. PMID:25313322

  17. Liver X receptor (LXR) partial agonists: biaryl pyrazoles and imidazoles displaying a preference for LXRβ.

    PubMed

    Kick, Ellen; Martin, Richard; Xie, Yinong; Flatt, Brenton; Schweiger, Edwin; Wang, Tie-Lin; Busch, Brett; Nyman, Michael; Gu, Xiao-Hui; Yan, Grace; Wagner, Brandee; Nanao, Max; Nguyen, Lam; Stout, Thomas; Plonowski, Artur; Schulman, Ira; Ostrowski, Jacek; Kirchgessner, Todd; Wexler, Ruth; Mohan, Raju

    2015-01-15

    A series of biaryl pyrazole and imidazole Liver X Receptor (LXR) partial agonists has been synthesized displaying LXRβ selectivity. The LXRβ selective partial agonist 18 was identified with potent induction of ATP binding transporters ABCA1 and ABCG1 in human whole blood (EC50=1.2μM, 55% efficacy). In mice 18 displayed peripheral induction of ABCA1 at 3 and 10mpk doses with no significant elevation of plasma or hepatic triglycerides at these doses, showing an improved profile compared to a full pan-agonist. PMID:25435151

  18. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves

    SciTech Connect

    Trachte, G.J.

    1986-05-01

    The effect of the synthetic thromboxane/prostaglandin (PG) H2 agonist U46619 on the electrically stimulated rabbit isolated vas deferens was examined to test for thromboxane influences on adrenergic nerves. U46619 effects on force generation, (/sup 3/H) norepinephrine release and norepinephrine-induced contractions were assessed to determine the mechanism of action. U46619 maximally enhanced adrenergic force generation 135 +/- 24% at a concentration of 100 nM. U46619 potentiated maximal contractile effects of exogenously administered norepinephrine 16 +/- 4% and augmented (/sup 3/H)norepinephrine release from electrically stimulated preparations 142 +/- 44%. A competitive thromboxane/PGH2 receptor antagonist, SQ29548, significantly shifted the concentration-response curve for U46619 to the right in a concentration-dependent manner and blocked U46619-induced tritium release. Thus, U46619 appears to potentiate neurotransmitter release by interacting with thromboxane/PGH2 receptors. Because SQ29548 did not prevent the potentiation of norepinephrine contractions by U46619, the postjunctional effect may be independent of thromboxane/PGH2 receptors. We interpret these results to be indicative of both pre- and postjunctional sites of action of U46619. The physiological importance of these thromboxane effects is unknown currently.

  19. Agonistic experience and individual recognition in male Quelea quelea.

    PubMed

    Shawcross, J E; Slater, P J

    1984-01-01

    Male Quelea were moved between groups to assess whether experience of winning or losing in new groups was correlated with their success in competition over food when they were returned to their original groups. No such effect was found. However, differences in time spent feeding after deprivation and in aggressive behaviour were found between groups depending on whether they were made up from high- or low-ranking individuals. In paired encounters there was no evidence that birds threatened unfamiliar individuals more than familiar ones or that they avoided sitting next to them more than familiar birds. This suggests that individual recognition, if it exists at all in these groups, is not important in their agonistic relationships. The rank birds occupied was correlated with beak colour, a probable measure of androgen levels, and with the amount of food consumed after deprivation. The latter result suggests that the same period of deprivation may affect some individuals more than others and this in turn may lead them to compete more for food. PMID:24923828

  20. Agonists and Antagonists of TGF-β Family Ligands.

    PubMed

    Chang, Chenbei

    2016-01-01

    The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling. PMID:27413100

  1. PPARα agonist, fenofibrate, ameliorates age-related renal injury.

    PubMed

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Kim, Hyung Wook; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2016-08-01

    The kidney ages quickly compared with other organs. Expression of senescence markers reflects changes in the energy metabolism in the kidney. Two important issues in aging are mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor α (PPARα) is a member of the ligand-activated nuclear receptor superfamily. PPARα plays a major role as a transcription factor that regulates the expression of genes involved in various processes. In this study, 18-month-old male C57BL/6 mice were divided into two groups, the control group (n=7) and the fenofibrate-treated group (n=7) was fed the normal chow plus fenofibrate for 6months. The PPARα agonist, fenofibrate, improved renal function, proteinuria, histological change (glomerulosclerosis and tubular interstitial fibrosis), inflammation, and apoptosis in aging mice. This protective effect against age-related renal injury occurred through the activation of AMPK and SIRT1 signaling. The activation of AMPK and SIRT1 allowed for the concurrent deacetylation and phosphorylation of their target molecules and decreased the kidney's susceptibility to age-related changes. Activation of the AMPK-FOXO3a and AMPK-PGC-1α signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Our results suggest that activation of PPARα and AMPK-SIRT1 signaling may have protective effects against age-related renal injury. Pharmacological targeting of PPARα and AMPK-SIRT1 signaling molecules may prevent or attenuate age-related pathological changes in the kidney. PMID:27130813

  2. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone.

    PubMed

    Watkins, Steven M; Reifsnyder, Peter R; Pan, Huei-ju; German, J Bruce; Leiter, Edward H

    2002-11-01

    Successful therapy for chronic diseases must normalize a targeted aspect of metabolism without disrupting the regulation of other metabolic pathways essential for maintaining health. Use of a limited number of single molecule surrogates for disease, or biomarkers, to monitor the efficacy of a therapy may fail to predict undesirable side effects. In this study, a comprehensive metabolomic assessment of lipid metabolites was employed to determine the specific effects of the peroxisome proliferator-activated receptor gamma (PPARgamma) agonist rosiglitazone on structural lipid metabolism in a new mouse model of Type 2 diabetes. Dietary supplementation with rosiglitazone (200 mg/kg diet) suppressed Type 2 diabetes in obese (NZO x NON)F1 male mice, but chronic treatment markedly exacerbated hepatic steatosis. The metabolomic data revealed that rosiglitazone i) induced hypolipidemia (by dysregulating liver-plasma lipid exchange), ii) induced de novo fatty acid synthesis, iii) decreased the biosynthesis of lipids within the peroxisome, iv) substantially altered free fatty acid and cardiolipin metabolism in heart, and v) elicited an unusual accumulation of polyunsaturated fatty acids within adipose tissue. These observations suggest that the phenotypes induced by rosiglitazone are mediated by multiple tissue-specific metabolic variables. Because many of the effects of rosiglitazone on tissue metabolism were reflected in the plasma lipid metabolome, metabolomics has excellent potential for developing clinical assessments of metabolic response to drug therapy. PMID:12401879

  3. Therapeutic applications of TRAIL receptor agonists in cancer and beyond.

    PubMed

    Amarante-Mendes, Gustavo P; Griffith, Thomas S

    2015-11-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  4. Minireview: Challenges and opportunities in development of PPAR agonists.

    PubMed

    Wright, Matthew B; Bortolini, Michele; Tadayyon, Moh; Bopst, Martin

    2014-11-01

    The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity. PMID:25148456

  5. Agouti signalling protein is an inverse agonist to the wildtype and agonist to the melanic variant of the melanocortin-1 receptor in the grey squirrel (Sciurus carolinensis).

    PubMed

    McRobie, Helen R; King, Linda M; Fanutti, Cristina; Symmons, Martyn F; Coussons, Peter J

    2014-06-27

    The melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt). We demonstrate that agouti signalling protein (ASIP) is an inverse agonist to the MC1R-wt but is an agonist to the MC1RΔ24. We conclude that the deletion in the MC1RΔ24 leads to a receptor with a high basal activity which is further activated by ASIP. This is the first report of ASIP acting as an agonist to MC1R. PMID:24879893

  6. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  7. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-11-24

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  8. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    PubMed

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model. PMID:19232786

  9. Potent achiral agonists of the ghrelin (growth hormone secretagogue) receptor. Part I: Lead identification.

    PubMed

    Heightman, Tom D; Scott, Jackie S; Longley, Mark; Bordas, Vincent; Dean, David K; Elliott, Richard; Hutley, Gail; Witherington, Jason; Abberley, Lee; Passingham, Barry; Berlanga, Manuela; de Los Frailes, Maite; Wise, Alan; Powney, Ben; Muir, Alison; McKay, Fiona; Butler, Sharon; Winborn, Kim; Gardner, Christopher; Darton, Jill; Campbell, Colin; Sanger, Gareth

    2007-12-01

    High throughput screening combined with efficient datamining and parallel synthesis led to the discovery of a novel series of indolines showing potent in vitro ghrelin receptor agonist activity and acceleration of gastric emptying in rats. PMID:17942309

  10. Innate immune responses to microbial agonist stimulations in heterophils and monocytes from young commercial turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune system recognizes microbial pathogens and pathogen associated molecular patterns and incites inflammatory immune responses to control the infection. Here, we examined functional innate immune responses of turkey heterophils and monocytes to microbial agonist stimulations by measur...

  11. Clinical use of GnRH agonists in canine and feline species.

    PubMed

    Fontaine, E; Fontbonne, A

    2011-04-01

    GnRH (gonadotrophin releasing hormone) is a key hormone of reproductive function in mammals; agonist forms have been largely developed, and data concerning their use in small animal reproduction are now abundant. GnRH agonists act by a two-step mechanism. First, their agonist properties on the pituitary will cause marked LH (luteinizing hormone) and FSH (follicle-stimulating hormone) secretion into the bloodstream, accompanied by an increase in the concentrations of sex steroid hormones. Then, in case of constant administration, GnRH agonists will lead to pituitary desensitization, and FSH and LH levels will collapse. These two effects have been widely documented, and these compounds have many potential benefits in a clinical context, capitalizing both on their stimulating and sterilizing effects. PMID:20964727

  12. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist.

    PubMed

    Lin, Hsiang-Ru

    2015-01-01

    Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist. PMID:25315435

  13. Determination of beta-agonists in swine hair by μFIA and chemiluminescence.

    PubMed

    Chen, Xu; Luo, Yong; Shi, Bo; Gao, Zhigang; Du, Yuguang; Liu, Xianming; Zhao, Weijie; Lin, Bingcheng

    2015-04-01

    β-Agonists are a group of illegal feed additives. In this paper, it was found that the light emission produced by the oxidation of luminol by potassium ferricyanide was enhanced by the β-agonists (ractopamine, salbutamol, and terbutaline). Based on chemiluminescence phenomenon, a novel, rapid, and sensitive microflow injection analysis system on a microfluidic glass chip was established for determination of the β-agonists. The chip was fabricated from two glass plates (64 mm × 32 mm) with microchannels of 200 μm width and 100 μm depth. The detection limits were achieved at 2.0 × 10(-8) mol/L of ractopamine, 1.0 × 10(-8) mol/L of terbutaline and 5.0 × 10(-7) mol/L of salbutamol. In this report, our method was applied for determination of the β-agonists in swine hair from three different sources with satisfactory results. PMID:25546131

  14. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system.

    PubMed

    Engel, Abbi L; Holt, Gregory E; Lu, Hailing

    2011-03-01

    Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications. PMID:21643519

  15. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system

    PubMed Central

    Engel, Abbi L; Holt, Gregory E; Lu, Hailing

    2011-01-01

    Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications. PMID:21643519

  16. Aryl sulphonyl amides as potent agonists of the growth hormone secretagogue (ghrelin) receptor.

    PubMed

    Witherington, Jason; Abberley, Lee; Bellenie, Benjamin R; Boatman, Rio; Collis, Katharine; Dean, David K; Gaiba, Alessandra; King, N Paul; Shuker, Nicola; Steadman, Jon G A; Takle, Andrew K; Sanger, Gareth; Butler, Sharon; McKay, Fiona; Muir, Alison; Winborn, Kim; Ward, Robert W; Heightman, Tom D

    2009-02-01

    As part of an on-going lead optimisation effort, a cross screening exercise identified an aryl sulphonyl amide hit that was optimised to afford a highly potent series of ghrelin receptor agonists. PMID:19128969

  17. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    PubMed Central

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  18. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-01-01

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  19. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease

    PubMed Central

    Karner, Charlotta; Cates, Christopher J

    2014-01-01

    Background Long-acting bronchodilators comprising long-acting beta2-agonists and the anticholinergic agent tiotropium are commonly used for managing persistent symptoms of chronic obstructive pulmonary disease. Combining these treatments, which have different mechanisms of action, may be more effective than the individual components. However, the benefits and risks of combining tiotropium and long-acting beta2-agonists for the treatment of chronic obstructive pulmonary (COPD) disease are unclear. Objectives To assess the relative effects of treatment with tiotropium in addition to long-acting beta2-agonist compared to tiotropium or long-acting beta2-agonist alone in patients with chronic obstructive pulmonary disease. Search methods We searched the Cochrane Airways Group Specialised Register of trials and clinicaltrials.gov up to January 2012. Selection criteria We included parallel group, randomised controlled trials of three months or longer comparing treatment with tiotropium in addition to long-acting beta2-agonist against tiotropium or long-acting beta2-agonist alone for patients with chronic obstructive pulmonary disease. Data collection and analysis Two review authors independently assessed trials for inclusion and then extracted data on trial quality and the outcome results. We contacted study authors for additional information. We collected information on adverse effects from the trials. Main results Five trials were included in this review, mostly recruiting participants with moderate or severe chronic obstructive pulmonary disease. All of them compared tiotropium in addition to long-acting beta2-agonist to tiotropium alone, but only one trial additionally compared a combination of the two types of bronchodilator with long-acting beta2-agonist (formoterol) alone. Two studies used the long-acting beta2-agonist indacaterol, two used formoterol and one used salmeterol. Compared to tiotropium alone (3263 patients), treatment with tiotropium plus long

  20. Changing Patterns of Alpha Agonist Medication Use in Children and Adolescents 2009–2011

    PubMed Central

    Mayne, Stephanie L.; Song, Lihai; Steffes, Jennifer; Liu, Weiwei; McCarn, Banita; Margolis, Benyamin; Grimes, Alan; Gotlieb, Edward; Localio, Russell; Ross, Michelle E.; Grundmeier, Robert W.; Wasserman, Richard; Leslie, Laurel K.

    2015-01-01

    Abstract Objectives: The purpose of this study was to describe rates and patterns of long- and short-acting alpha agonist use for behavioral problems in a primary care population following Food and Drug Administration (FDA) approval of the long-acting alpha agonists guanfacine and clonidine. Methods: Children and adolescents 4–18 years of age, who received an alpha agonist prescription between 2009 and 2011, were identified from a sample of 45 United States primary care practices in two electronic health record-based research networks. Alpha agonist receipt was identified using National Drug Codes and medication names. The proportion of subjects receiving long- and short-acting prescriptions in each year was calculated and examined with respect to reported mental health diagnoses, and whether indications for use were on-label, had evidence from clinical trials, or had no trial evidence. Results: In a cohort of 282,875 subjects, 27,671 (10%) received any psychotropic medication and only 4,227 subjects (1.5%) received at least one prescription for an alpha agonist, most commonly a short-acting formulation (83%). Only 20% of alpha agonist use was on-label (use of long-acting formulations for attention-deficit/hyperactivity disorder [ADHD]). Most subjects (68%) received alpha agonists for indications with evidence of efficacy from clinical trials but no FDA approval, primarily short-acting formulations for ADHD and autism; 12% received alpha agonists for diagnoses lacking randomized clinical trial evidence in children, including sleep disorders and anxiety, or for which there was no documented mental health diagnosis. Rates of long-acting alpha agonist use increased more than 20-fold from 0.2% to 4%, whereas rates of short-acting alpha agonist use grew only slightly between 2009 and 2011 from 10.6% to 11.3%. Conclusions: Alpha agonist use was uncommon in this population, and most subjects received short-acting forms for conditions that were off-label, but with

  1. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. PMID:27439030

  2. Wnt Agonist Attenuates Liver Injury and Improves Survival after Hepatic Ischemia/Reperfusion

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Molmenti, Ernesto; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2012-01-01

    The Wnt/β-catenin signaling pathway is well characterized in stem cell biology and plays a critical role in liver development, regeneration, and homeostasis. We hypothesized that pharmacological activation of Wnt signaling protects against hepatic ischemia/reperfusion (I/R) injury through its known proliferative and anti-apoptotic properties. Sprague-Dawley rats underwent 70% hepatic ischemia by microvascular clamping of the hilum of the left and median lobes of the liver for 90 min, followed by reperfusion. Wnt agonist (2-amino-4-[3,4-(methylenedioxy)benzylamino]-6-(3-methoxyphenyl)pyrimidine, 5 mg/kg BW) or vehicle (20% DMSO in saline) in 0.5 ml was injected intraperitoneally (i.p.) 1 h prior to ischemia or infused intravenously over 30 min right after ischemia. Blood and tissue samples from the pre-treated groups were collected 24 h after reperfusion, and a survival study was performed. Hepatic expression of β-catenin and its downstream target gene Axin2 were decreased after I/R while Wnt agonist restored their expression to sham levels. Wnt agonist blunted I/R-induced elevations of AST, ALT, and LDH and significantly improved the microarchitecture of the liver. The cell proliferation determined by Ki67 immunostaining significantly increased with Wnt agonist treatment and inflammatory cascades were dampened in Wnt agonist-treated animals, as demonstrated by attenuations in IL-6, myeloperoxdase, iNOS and nitrotyrosine. Wnt agonist also significantly decreased the amount of apoptosis, as evidenced by decreases in both TUNEL staining as well as caspase-3 activity levels. Finally, the 10-day survival rate was increased from 27% in the vehicle group to 73% in the pre-treated Wnt agonist group and 55% in the Wnt agonist post-ischemia treatment group. Thus, we propose that direct Wnt/β-catenin stimulation may represent a novel therapeutic approach in the treatment of hepatic I/R. PMID:23143067

  3. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  4. WNT AGONIST DECREASES TISSUE DAMAGE AND IMPROVES RENAL FUNCTION AFTER ISCHEMIA-REPERFUSION

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Corbo, Lana; Khader, Adam; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Renal ischemia-reperfusion (IR) injury (IRI) following shock states or transplantation causes tissue damage and delayed graft function, respectively. The Wnt/β-catenin signaling pathway plays a critical role in nephrogenesis. We therefore hypothesized that pharmacological activation of Wnt/β-catenin signaling by Wnt agonist, a synthetic pyrimidine, could protect kidneys from IRI. Adult male rats were subjected to bilateral clamping of the renal pedicles with microvascular clips for 60 min, followed by reperfusion. Wnt agonist (5 mg/kg BW) or vehicle (20% DMSO in saline) was administered intravenously 1 h prior to ischemia. Blood and renal tissues were collected 24 h after IR for evaluation. Renal IR caused a significant reduction of β-catenin and its downstream target gene cyclin D1 by 65% and 39%, respectively, compared to the sham, while Wnt agonist restored them to the sham levels. The number and intensity of cells staining with the proliferation marker Ki67 in ischematized kidneys were enhanced by Wnt agonist. The integrity of the renal histological architecture in the Wnt agonist group was better preserved than the vehicle group. Wnt agonist significantly lowered serum levels of creatinine, AST, and LDH, inhibited the production of IL-6 and IL-1β, and MPO activities. Lastly, Wnt agonist reduced iNOS, nitrotyrosine proteins and 4-hydroxynonenal in the kidneys by 60%, 47% and 21%, respectively, compared to the vehicle. These results indicate that Wnt agonist improves renal regeneration and function while attenuating inflammation and oxidative stress in the kidneys after IR. Thus, pharmacologic stimulation of Wnt/β-catenin signaling provides a beneficial effect on the prevention of renal IRI. PMID:25514428

  5. Do Agonistic Motives Matter More Than Anger? Three Studies of Cardiovascular Risk in Adolescents

    PubMed Central

    Ewart, Craig K.; Elder, Gavin J.; Smyth, Joshua M.; Sliwinski, Martin J.; Jorgensen, Randall S.

    2011-01-01

    Objective Three motivational profiles have been associated with recurring psychological stress in low-income youth and young adults: Striving to control others (agonistic striving), striving to control the self (transcendence striving), and not asserting control (dissipated striving); Agonistic Striving has been associated with elevated ambulatory blood pressure during daily activities. Three studies tested the hypotheses that: (1) Agonistic Striving is associated with poor anger regulation, and (2) Agonistic Striving and poor anger regulation interactively elevate blood pressure. Design Motivational profiles, anger regulation, and ambulatory blood pressure were assessed in a multiethnic sample of 264 urban youth. Main outcome measures (1) Anger regulation/recovery during laboratory challenge; (2) anger / blood pressure during daily activities (48 hours). Results and conclusion Replication of the profiles in distant cities showed they occur with similar frequency across differences of region, race, and gender. Analyses controlling for body size, race, and gender revealed that individuals with the Agonistic Striving profile had higher ambulatory pressure, especially during social encounters. They became more openly angry and aggressive when challenged, but did not exhibit difficulty regulating anger in the laboratory, nor did they feel more angry during monitoring. However, individuals with the Agonistic Striving profile who did display poor anger regulation in the lab had the highest blood pressure; deficient self-regulatory capability amplified the positive association between Agonistic Striving and cardiovascular risk in both genders and all ethnic groups. Although anger is thought to increase cardiovascular risk, present findings suggest that anger and elevated blood pressure are co-effects of agonistic struggles to control others. PMID:21534673

  6. Discovery of Azetidinone Acids as Conformationally-Constrained Dual PPARalpha/gamma Agonists

    SciTech Connect

    Wang, W.; Devasthale, P; Farrelly, D; Gu, L; Harrity, T; Cap, M; Chu, C; Kunselman, L; Morgan, N; et. al.

    2008-01-01

    A novel class of azetidinone acid-derived dual PPAR{alpha}/{gamma} agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARa and PPAR? receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.

  7. [Dopamin agonist treatment and fibrotic heart valve disease in hyperprolactinaemia patients].

    PubMed

    Steffensen, Charlotte; Mægbæk, Merete Lund; Laurberg, Peter; Andersen, Marianne; Kistorp, Caroline; Nørrelund, Helene; Dal, Jakob; Jørgensen, Jens Otto Lunde

    2014-01-01

    Treatment with dopamin agonists, particularly cabergoline, is the primary and preferred therapy for prolactinomas and symptomatic hyperprolactinaemia due to its effectiveness and tolerability. However, an association has been demonstrated between fibrotic heart valve disease and high-dose dopamin agonist use in patients with Parkinson's disease in several echocardiographic studies. Such observations have prompted a number of studies of valvular function in cabergoline-treated hyperprolactinaemia patients. These studies have failed to show an increased prevalence of clinically significant valvular regurgitation. PMID:24629610

  8. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants.

    PubMed

    Smith, Alyson J; Li, Yufeng; Bazin, Hélène G; St-Jean, Julien R; Larocque, Daniel; Evans, Jay T; Baldridge, Jory R

    2016-08-01

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3(+)/CD8(+) T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. PMID:27402566

  9. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  10. β-Adrenoreceptor agonists in the management of pain associated with renal colic: a systematic review

    PubMed Central

    Johnson, Graham David; Fakis, Apostolos; Surtees, Jane; Lennon, Robert Iain

    2016-01-01

    Objectives To determine whether β-adrenoreceptor agonists are effective analgesics for patients with renal colic through a systematic review of the literature. Setting Adult emergency departments or acute assessment units. Participants Human participants with proven or suspected renal colic. Interventions β-adrenoreceptor agonists. Outcome measures Primary: level of pain at 30 min following administration of the β-agonist. Secondary: level of pain at various time points following β-agonist administration; length of hospital stay; analgesic requirement; stone presence, size and position; degree of hydronephrosis. Results 256 records were screened and 4 identified for full-text review. No articles met the inclusion criteria. Conclusions and implications There is no evidence to support or refute the proposed use of β-agonists for analgesia in patients with renal colic. Given the biological plausibility and existing literature base, clinical trials investigating the use of β-adrenoreceptor agonists in the acute setting for treatment of the pain associated with renal colic are recommended. Trial registration number CRD42015016266. PMID:27324714

  11. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists

    PubMed Central

    Silswal, Neerupma; Parelkar, Nikhil K.; Wacker, Michael J.; Badr, Mostafa; Andresen, Jon

    2012-01-01

    We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP) channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response. PMID:23008696

  12. Fluorescence characteristics of hydrophobic partial agonist probes of the cholecystokinin receptor.

    PubMed

    Harikumar, Kaleeckal G; Pinon, Delia I; Miller, Laurence J

    2006-04-01

    Fluorescence spectroscopic studies are powerful tools for the evaluation of receptor structure and the dynamic changes associated with receptor activation. Here, we have developed two chemically distinct fluorescent probes of the cholecystokinin (CCK) receptor by attaching acrylodan or a nitrobenzoxadiazole moiety to the amino terminus of a partial agonist CCK analogue. These two probes were able to bind to the CCK receptor specifically and with high affinity, and were able to elicit only submaximal intracellular calcium responses typical of partial agonists. The fluorescence characteristics of these probes were compared with those previously reported for structurally-related full agonist and antagonist probes. Like the previous probes, the partial agonist probes exhibited longer fluorescence lifetimes and increased anisotropy when bound to the receptor than when free in solution. The receptor-bound probes were not easily quenched by potassium iodide, suggesting that the fluorophores were protected from the extracellular aqueous milieu. The fluorescence characteristics of the partial agonist probes were quite similar to those of the analogous full agonist probes and quite distinct from the analogous antagonist probes. These data suggest that the partially activated conformational state of this receptor is more closely related to its fully active state than to its inactive state. PMID:16779661

  13. Three-dimensional common-feature hypotheses for octopamine agonist 2-(arylimino)imidazolidines.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Taniguchi, Eiji; Eto, Morifusa

    2002-01-01

    Three-dimensional pharmacophore hypotheses were built from a set of 10 octopamine (OA) agonist 2-(Arylimino)imidazolidines (AIIs), 2-(Arylimino)thiazolidines (AITs) and 2-(Arylimino)oxazolidines (AIOs). Among the 10 common-featured models generated by program Catalyst/HipHop, a hypothesis including a ring aromatic (RA), a positive ionizable (PI) and three hydrophobic aliphatic (HpAl) features was considered to be important in evaluating the OA-agonist activity. Active OA agonist 2,6-Et2 AII mapped well onto all the RA, PI and HpAl features of the hypothesis. On the other hand, less active compounds were shown to be difficult to achieve the energetically favorable conformation which is found in the active molecules in order to fit the 3-D common-feature pharmacophore models. Taken together, 2,6-Et2-Ph and foramidine structures are important as OA agonists. The present studies on OA agonists demonstrate that a RA, a PI and three HpAl sites located on the molecule seem to be essential for OA-agonist activity. PMID:11738614

  14. Systemic chemotherapy is modulated by platelet-activating factor-receptor agonists.

    PubMed

    Sahu, Ravi P; Ferracini, Matheus; Travers, Jeffrey B

    2015-01-01

    Chemotherapy is used to treat numerous cancers including melanoma. However, its effectiveness in clinical settings is often hampered by various mechanisms. Previous studies have demonstrated that prooxidative stressor-mediated generation of oxidized lipids with platelet-activating factor-receptor (PAF-R) agonistic activity induces systemic immunosuppression that augments the growth of experimental melanoma tumors. We have recently shown that treatment of murine B16F10 melanoma cells in vitro or tumors implanted into syngeneic mice and treated intratumorally with various chemotherapeutic agents generated PAF-R agonists in a process blocked by antioxidants. Notably, these intratumoral chemotherapy-generated PAF-R agonists augmented the growth of secondary (untreated) tumors in a PAF-R dependent manner. As both localized and systemic chemotherapies are used based on tumor localization/stage and metastases, the current studies were sought to determine effects of PAF-R agonists on systemic chemotherapy against experimental melanoma. Here, we show that systemic chemotherapy with etoposide (ETOP) attenuates the growth of melanoma tumors when given subsequent to the tumor cell implantation. Importantly, this ETOP-mediated suppression of melanoma tumor growth was blocked by exogenous administration of a PAF-R agonist, CPAF. These findings indicate that PAF-R agonists not only negatively affect the ability of localized chemotherapy but also compromise the efficacy of systemic chemotherapy against murine melanoma. PMID:25922565

  15. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    PubMed Central

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  16. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  17. How neighborhood disorder increases blood pressure in youth: agonistic striving and subordination

    PubMed Central

    Elder, Gavin J.; Smyth, Joshua M.

    2012-01-01

    Growing evidence links perceptions of neighborhood disorder to adverse health outcomes but little is known about psychological processes that may mediate this association. We tested the hypothesis that two psychological mechanisms—agonistic striving and subordination—mediate the link between perceived neighborhood disorder and hypertension risk in youth. Perceived neighborhood disorder, agonistic striving, subordination experiences, negative affect, obesity, and ambulatory blood pressure during daily activities (48 h) were assessed in a multiethnic sample of 167 low- to middle-income urban adolescents. Path analyses revealed that agonistic striving, subordination, and obesity each independently mediated the association between neighborhood disorder and blood pressure; these variables accounted for 73 % of the shared variance, 42 % of which was explained by agonistic striving. The direct relationship between perceived neighborhood disorder and blood pressure was no longer significant in the presence of these mediators. Negative affect was associated with neighborhood disorder and subordination, but not blood pressure. Agonistic striving proved to be a significant and substantial mediator of the association between perceived neighborhood disorder, blood pressure, and future hypertension risk. New research should seek to clarify the processes by which stressful neighborhoods induce persistent agonistic motives and perceptions of subordination in adolescents. PMID:23229689

  18. Analysis of the agonist activity of fenoldopam (SKF 82526) at the vascular 5-HT2 receptor.

    PubMed Central

    Christie, M. I.; Harper, D.; Smith, G. W.

    1992-01-01

    1. The 5-HT2 receptor agonist activity of fenoldopam (SKF 82526) was characterized in the rabbit isolated aorta preparation. 2. Fenoldopam was an agonist at the vascular 5-HT2 receptor with lower affinity and efficacy than the naturally occurring agonist 5-hydroxytryptamine (5-HT). Fenoldopam had an affinity (pKA) of 5.84 +/- 0.04 and efficacy (tau) of 0.57 +/- 0.04, whereas 5-HT had a pKA of 6.65 +/- 0.12 and tau of 2.66 +/- 0.41. 3. The constrictor effects of fenoldopam and 5-HT were competitively antagonized by the 5-HT2 antagonist, ketanserin, with pKB values of 8.81 +/- 0.11 and 8.83 +/- 0.10 respectively. 4. Prior incubation with fenoldopam produced a concentration-related rightward shift of a subsequent 5-HT concentration-response curve. This inhibition was specific for 5-HT since constrictor responses to angiotensin II were unaffected. 5. This study indicates that the D1 receptor agonist, fenoldopam, acts as an agonist at the vascular 5-HT2 receptor, but with an affinity and efficacy less than that of the naturally occurring agonist, 5-HT. PMID:1361397

  19. Do inhaled beta(2)-agonists have an ergogenic potential in non-asthmatic competitive athletes?

    PubMed

    Kindermann, Wilfried

    2007-01-01

    The prevalence of asthma is higher in elite athletes than in the general population. The risk of developing asthmatic symptoms is the highest in endurance athletes and swimmers. Asthma seems particularly widespread in winter-sport athletes such as cross-country skiers. Asthmatic athletes commonly use inhaled beta(2)-agonists to prevent and treat asthmatic symptoms. However, beta(2)-agonists are prohibited according to the Prohibited List of the World Anti-Doping Agency. An exception can be made only for the substances formoterol, salbutamol, salmeterol and terbutaline by inhalation, as long as a therapeutic use exemption has been applied for and granted. In this context, the question arises of whether beta(2)-agonists have ergogenic benefits justifying the prohibition of these substances. In 17 of 19 randomised placebo-controlled trials in non-asthmatic competitive athletes, performance-enhancing effects of the inhaled beta(2)-agonists formoterol, salbutamol, salmeterol and terbutaline could not be proved. This is particularly true for endurance performance, anaerobic power and strength performance. In three of four studies, even supratherapeutic doses of salbutamol (800-1200 microg) had no ergogenic effect. In contrast to inhaled beta(2)-agonists, oral administration of salbutamol seems to be able to improve the muscle strength and the endurance performance. There appears to be no justification to prohibit inhaled beta(2)-agonists from the point of view of the ergogenic effects. PMID:17241101

  20. The Good, the Bad, and the Ugly: Agonistic Behaviour in Juvenile Crocodilians

    PubMed Central

    Brien, Matthew L.; Lang, Jeffrey W.; Webb, Grahame J.; Stevenson, Colin; Christian, Keith A.

    2013-01-01

    We examined agonistic behaviour in seven species of hatchling and juvenile crocodilians held in small groups (N = 4) under similar laboratory conditions. Agonistic interactions occurred in all seven species, typically involved two individuals, were short in duration (5–15 seconds), and occurred between 1600–2200 h in open water. The nature and extent of agonistic interactions, the behaviours displayed, and the level of conspecific tolerance varied among species. Discrete postures, non-contact and contact movements are described. Three of these were species-specific: push downs by C. johnstoni; inflated tail sweeping by C. novaeguineae; and, side head striking combined with tail wagging by C. porosus. The two long-snouted species (C. johnstoni and G. gangeticus) avoided contact involving the head and often raised the head up out of the way during agonistic interactions. Several behaviours not associated with aggression are also described, including snout rubbing, raising the head up high while at rest, and the use of vocalizations. The two most aggressive species (C. porosus, C. novaeguineae) appeared to form dominance hierarchies, whereas the less aggressive species did not. Interspecific differences in agonistic behaviour may reflect evolutionary divergence associated with morphology, ecology, general life history and responses to interspecific conflict in areas where multiple species have co-existed. Understanding species-specific traits in agonistic behaviour and social tolerance has implications for the controlled raising of different species of hatchlings for conservation, management or production purposes. PMID:24349018

  1. Agonistic TAM-163 antibody targeting tyrosine kinase receptor-B

    PubMed Central

    Vugmeyster, Yulia; Rohde, Cynthia; Perreault, Mylene; Gimeno, Ruth E.; Singh, Pratap

    2013-01-01

    TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h−1). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level < 10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action. PMID:23529133

  2. Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist

    PubMed Central

    Goto, Tsuyoshi; Nagai, Hiroyuki; Egawa, Kahori; Kim, Young-Il; Kato, Sota; Taimatsu, Aki; Sakamoto, Tomoya; Ebisu, Shogo; Hohsaka, Takahiro; Miyagawa, Hiroh; Murakami, Shigeru; Takahashi, Nobuyuki; Kawada, Teruo

    2011-01-01

    The cholesterol biosynthetic pathway produces not only sterols but also non-sterol mevalonate metabolites involved in isoprenoid synthesis. Mevalonate metabolites affect transcriptional and post-transcriptional events that in turn affect various biological processes including energy metabolism. In the present study, we examine whether mevalonate metabolites activate PPARγ (peroxisome-proliferator-activated receptor γ), a ligand-dependent transcription factor playing a central role in adipocyte differentiation. In the luciferase reporter assay using both GAL4 chimaera and full-length PPARγ systems, a mevalonate metabolite, FPP (farnesyl pyrophosphate), which is the precursor of almost all isoprenoids and is positioned at branch points leading to the synthesis of other longer-chain isoprenoids, activated PPARγ in a dose-dependent manner. FPP induced the in vitro binding of a co-activator, SRC-1 (steroid receptor co-activator-1), to GST (glutathione transferase)–PPARγ. Direct binding of FPP to PPARγ was also indicated by docking simulation studies. Moreover, the addition of FPP up-regulated the mRNA expression levels of PPARγ target genes during adipocyte differentiation induction. In the presence of lovastatin, an HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitor, both intracellular FPP levels and PPARγ-target gene expressions were decreased. In contrast, the increase in intracellular FPP level after the addition of zaragozic acid, a squalene synthase inhibitor, induced PPARγ-target gene expression. The addition of FPP and zaragozic acid promotes lipid accumulation during adipocyte differentiation. These findings indicated that FPP might function as an endogenous PPARγ agonist and regulate gene expression in adipocytes. PMID:21605082

  3. Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist.

    PubMed

    Goto, Tsuyoshi; Nagai, Hiroyuki; Egawa, Kahori; Kim, Young-Il; Kato, Sota; Taimatsu, Aki; Sakamoto, Tomoya; Ebisu, Shogo; Hohsaka, Takahiro; Miyagawa, Hiroh; Murakami, Shigeru; Takahashi, Nobuyuki; Kawada, Teruo

    2011-08-15

    The cholesterol biosynthetic pathway produces not only sterols but also non-sterol mevalonate metabolites involved in isoprenoid synthesis. Mevalonate metabolites affect transcriptional and post-transcriptional events that in turn affect various biological processes including energy metabolism. In the present study, we examine whether mevalonate metabolites activate PPARγ (peroxisome-proliferator-activated receptor γ), a ligand-dependent transcription factor playing a central role in adipocyte differentiation. In the luciferase reporter assay using both GAL4 chimaera and full-length PPARγ systems, a mevalonate metabolite, FPP (farnesyl pyrophosphate), which is the precursor of almost all isoprenoids and is positioned at branch points leading to the synthesis of other longer-chain isoprenoids, activated PPARγ in a dose-dependent manner. FPP induced the in vitro binding of a co-activator, SRC-1 (steroid receptor co-activator-1), to GST (glutathione transferase)-PPARγ. Direct binding of FPP to PPARγ was also indicated by docking simulation studies. Moreover, the addition of FPP up-regulated the mRNA expression levels of PPARγ target genes during adipocyte differentiation induction. In the presence of lovastatin, an HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitor, both intracellular FPP levels and PPARγ-target gene expressions were decreased. In contrast, the increase in intracellular FPP level after the addition of zaragozic acid, a squalene synthase inhibitor, induced PPARγ-target gene expression. The addition of FPP and zaragozic acid promotes lipid accumulation during adipocyte differentiation. These findings indicated that FPP might function as an endogenous PPARγ agonist and regulate gene expression in adipocytes. PMID:21605082

  4. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists.

    PubMed

    Kang, Yu Mi; Jung, Chang Hee

    2016-06-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  5. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  6. Agonist-induced Ca2+ Sensitization in Smooth Muscle

    PubMed Central

    Artamonov, Mykhaylo V.; Momotani, Ko; Stevenson, Andra; Trentham, David R.; Derewenda, Urszula; Derewenda, Zygmunt S.; Read, Paul W.; Gutkind, J. Silvio; Somlyo, Avril V.

    2013-01-01

    Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca2+]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca2+ sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca2+-sensitized force are not well understood. Using permeabilized blood vessels from PRG(−/−) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca2+-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5′-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca2+ transient and phasic force components and the onset of Ca2+-sensitized force. PMID:24106280

  7. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  8. [Functional exploration of brown adipose tissue using beta3 agonists].

    PubMed

    Bertin, R; de Marco, F; Blancher, G; Portet, R

    1994-06-01

    In view to utilize beta 3 adrenoceptor agonists for the investigation of body lipid metabolism, a study of the effects of BRL 37344 on the functional activity of the brown adipose tissue was performed in the Rat. It is known that this tissue is the principal site of heat production for nonshivering thermogenesis mainly due to the oxidation of fatty acids under the control of norepinephrine (NA) released from the sympathetic nervous system. In order to stimulate the activity of the tissue, rats were reared at 16 degrees C. When they were one month old, they were divided in two groups; one group received a surgical sympathectomy of the interscapular brown adipose tissue (TABI) (S group); the other group was sham-operated (T group). The resting metabolism was estimated by the continuous measurement of O2 consumption and CO2 release, at an ambient temperature of 25 degrees C. The animal capacity for nonshivering thermogenesis was determined by increased O2 consumption following i.p. administration of NA or BRL 37344. In the S group a large decrease in TABI NA content and a decrease in resting metabolism were observed. In both groups VO2 was increased by the two drugs; the increase was linearly related to the dose of BRL (between 2.5 to 10 micrograms/kg); but it was 3 times as high in the T group as in the S group. Moreover, the effect of BRL was 40 fold greater than the effect of NA. These results seem to indicate that, in cold reared rats, a part of nonshivering thermogenesis may be mediated by the beta 3 receptors of the brown fat. It may be concluded that the rats born in cold conditions are good models to study the role of beta 3 receptors in the energetic activity of this tissue very profuse in infant but not in adult man. PMID:7994586

  9. GABAA agonist reduces visual awareness: a masking-EEG experiment.

    PubMed

    van Loon, Anouk M; Scholte, H Steven; van Gaal, Simon; van der Hoort, Björn J J; Lamme, Victor A F

    2012-04-01

    Consciousness can be manipulated in many ways. Here, we seek to understand whether two such ways, visual masking and pharmacological intervention, share a common pathway in manipulating visual consciousness. We recorded EEG from human participants who performed a backward-masking task in which they had to detect a masked figure form its background (masking strength was varied across trials). In a within-subject design, participants received dextromethorphan (a N-methyl-d-aspartate receptor antagonist), lorazepam (LZP; a GABA(A) receptor agonist), scopolamine (a muscarine receptor antagonist), or placebo. The behavioral results show that detection rate decreased with increasing masking strength and that of all the drugs, only LZP induced a further decrease in detection rate. Figure-related ERP signals showed three neural events of interest: (1) an early posterior occipital and temporal generator (94-121 msec) that was not influenced by any pharmacological manipulation nor by masking, (2) a later bilateral perioccipital generator (156-211 msec) that was reduced by masking as well as LZP (but not by any other drugs), and (3) a late bilateral occipital temporal generator (293-387 msec) that was mainly affected by masking. Crucially, only the intermediate neural event correlated with detection performance. In combination with previous findings, these results suggest that LZP and masking both reduce visual awareness by means of modulating late activity in the visual cortex but leave early activation intact. These findings provide the first evidence for a common mechanism for these two distinct ways of manipulating consciousness. PMID:22264199

  10. Radiolabelled D2 agonists as prolactinoma imaging agents

    SciTech Connect

    Otto, C.A.

    1989-08-01

    During the past year, further studies on mAChR were conducted. These studies included verification of the difference in pituitary distribution based on ligand charge. The pituitary localization of TRB. A neutral mAChR ligand, was verified. The lack of QNB blockade of TRB uptake was tested by blockage with scopolamine, another mAChR antagonist and by testing the effect in a different strain of rat. Neither scopolamine or change of rat strain had any effect. We concluded that TRB uptake in pituitary is not a receptor-mediated process. Further studies were conducted with an additional quaternized mAChR ligand: MQNB. Pituitary localization of MQNB, like MTRB, could be blocked by pretreatment with QNB. We have tentatively concluded that permanent charge on a mAChR antagonist changes the mechanism of uptake in the pituitary. Time course studies and the effects of DES on myocardial uptake are reported. A brief report on preliminary results of evaluation of quaternized mAChR ligands in the heart is included. In a limited series of such ligands, we have observed a single binding site and a difference in B{sub max} values: QNB competition studies yield larger B{sub max} values than studies with {sup 3}H-NMS. Progress in the synthesis of D{sub 2} agonists includes solving a synthetic problem and preparation of the cold'' analogue of N-0437 using procedures applicable to eventual synthesis with {sup 11}C-CH{sub 3}I. 2 refs., 5 figs., 1 tab.

  11. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects.

    PubMed

    Kawata, Kohei; Morishita, Ken-ichi; Nakayama, Mariko; Yamada, Shoya; Kobayashi, Toshiki; Furusawa, Yuki; Arimoto-Kobayashi, Sakae; Oohashi, Toshitaka; Makishima, Makoto; Naitou, Hirotaka; Ishitsubo, Erika; Tokiwa, Hiroaki; Tai, Akihiro; Kakuta, Hiroki

    2015-01-22

    We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5. PMID:25486327

  12. Agonist-bound structure of the human P2Y12 receptor

    PubMed Central

    Zhang, Jin; Zhang, Kaihua; Gao, Zhan-Guo; Paoletta, Silvia; Zhang, Dandan; Han, Gye Won; Li, Tingting; Ma, Limin; Zhang, Wenru; Müller, Christa E.; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Katritch, Vsevolod; Jacobson, Kenneth A.; Stevens, Raymond C.; Wu, Beili; Zhao, Qiang

    2014-01-01

    The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, has been identified as one of the most prominent clinical drug targets for inhibition of platelet aggregation. Consequently, extensive mutagenesis and modeling studies of the P2Y12R have revealed many aspects of agonist/antagonist binding1-4. However, the details of agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here, we report the structures of the human P2Y12R in complex with a full agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5′-triphosphate (2MeSATP) at 3.1 Å resolution. Analysis of these structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283)5, reveals dramatic conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions, providing the first insight into a different ligand binding landscape in the δ-group of class A G protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing ambiguities surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example of a GPCR where agonist access to the binding pocket requires large scale rearrangements in the highly malleable extracellular region, the structural studies therefore will provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs. PMID:24784220

  13. Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice

    PubMed Central

    Olson, Katherine E.; Kosloski-Bilek, Lisa M.; Anderson, Kristi M.; Diggs, Breha J.; Clark, Barbara E.; Gledhill, John M.; Shandler, Scott J.; Mosley, R. Lee

    2015-01-01

    Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4+ T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating

  14. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  15. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.

    PubMed

    Wagner, Martin; Halilbasic, Emina; Marschall, Hanns-Ulrich; Zollner, Gernot; Fickert, Peter; Langner, Cord; Zatloukal, Kurt; Denk, Helmut; Trauner, Michael

    2005-08-01

    Induction of hepatic phase I/II detoxification enzymes and alternative excretory pumps may limit hepatocellular accumulation of toxic biliary compounds in cholestasis. Because the nuclear xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate involved enzymes and transporters, we aimed to induce adaptive alternative pathways with different CAR and PXR agonists in vivo. Mice were treated with the CAR agonists phenobarbital and 1,4-bis-[2-(3,5-dichlorpyridyloxy)]benzene, as well as the PXR agonists atorvastatin and pregnenolone-16alpha-carbonitrile. Hepatic bile acid and bilirubin-metabolizing/detoxifying enzymes (Cyp2b10, Cyp3a11, Ugt1a1, Sult2a1), their regulatory nuclear receptors (CAR, PXR, farnesoid X receptor), and bile acid/organic anion and lipid transporters (Ntcp, Oatp1,2,4, Bsep, Mrp2-4, Mdr2, Abcg5/8, Asbt) in the liver and kidney were analyzed via reverse-transcriptase polymerase chain reaction and Western blotting. Potential functional relevance was tested in common bile duct ligation (CBDL). CAR agonists induced Mrp2-4 and Oatp2; PXR agonists induced only Mrp3 and Oatp2. Both PXR and CAR agonists profoundly stimulated bile acid-hydroxylating/detoxifying enzymes Cyp3a11 and Cyp2b10. In addition, CAR agonists upregulated bile acid-sulfating Sult2a1 and bilirubin-glucuronidating Ugt1a1. These changes were accompanied by reduced serum levels of bilirubin and bile acids in healthy and CBDL mice and by increased levels of polyhydroxylated bile acids in serum and urine of cholestatic mice. Atorvastatin significantly increased Oatp2, Mdr2, and Asbt, while other transporters and enzymes were moderately affected. In conclusion, administration of specific CAR or PXR ligands results in coordinated stimulation of major hepatic bile acid/bilirubin metabolizing and detoxifying enzymes and hepatic key alternative efflux systems, effects that are predicted to counteract cholestasis. PMID:15986414

  16. Agonistic onset during development differentiates wild house mouse males (Mus domesticus)

    NASA Astrophysics Data System (ADS)

    Krackow, Sven

    2005-02-01

    Wild house mouse populations have been suggested to locally adapt to varying dispersal regimes by expressing divergent aggressivity phenotypes. This conjecture implies, first, genetic polymorphism for dispersive strategies which is supported by the finding of heritable variation for male dispersal tendency in feral house mice. Secondly, aggressivity is assumed to translate into dispersal rates. This speculation is reinforced by experimental evidence showing that non-agonistic males display lower dispersal propensity than same-aged males that have established agonistic dominance. However, the actual ontogenetic behavioural pattern and its variability among populations remain unknown. Hence, in this study the timing of agonistic onset is quantified within laboratory-reared fraternal pairs, and compared between descendants from two different feral populations. Males from the two populations (G and Z) differed strongly in agonistic development, as Z fraternal pairs had a 50% risk of agonistic onset before 23.5±2.7 days of age, while this took 57.3±5.4 days in males from population G. This difference coincided with significant genetic differentiation between the males of the two populations as determined by 11 polymorphic microsatellite markers. Furthermore, in population G, males from agonistic and amicable fraternal pairs exhibited significant genetic differentiation. These results corroborate the supposition of genetic variability for dispersive strategies in house mice, and identify the ontogenetic timing of agonistic phenotype development as the potential basis for genetic differentiation. This opens a unique opportunity to study the genetic determination of a complex mammalian behavioural syndrome in a life history context, using a simple laboratory paradigm.

  17. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  18. Effects of the serotonin agonists 8-OH-DPAT, buspirone, and DOI on water maze performance.

    PubMed

    Kant, G J; Wylie, R M; Chu, K; Ghosh, S

    1998-03-01

    We have previously reported that the serotonin 5-HT1A agonist 8-OH-DPAT and the 5-HT2c agonist TFMPP impair performance on a water maze. In the present report we extended those studies by examining a second 5-HT1A agonist, buspirone, to see whether its effects paralleled those of 8-OH-DPAT, and by testing the effects of the 5-HT2 agonist DOI. Unlike the open pool Morris water maze, the maze used in these experiments has alleys and doorways. The maze can be easily reconfigured to present rats with both previously learned or new maze challenges. Performance is assessed by time to reach the maze exit platform and the number of wrong doorways entered (errors). At doses that did not affect performance in a previously learned maze, the 5-HT1A agonists 8-OH-DPAT (0.1 mg/kg) and buspirone (1 mg/kg) slowed acquisition of a new maze configuration as measured by both swim time to the exit platform and errors committed. A higher dose of buspirone (10 mg/kg) completely blocked acquisition of a novel maze. In contrast. DOI slowed performance as assessed by swim time on both a well-learned maze as well as acquisition of a new maze, but did not affect error rate on either task, suggesting that this 5-HT2 agonist impaired performance by depressing motor activity. These experiments demonstrate that serotonin agonists, especially the 5-HT1A subtype, can impair learning. PMID:9512079

  19. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-01

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. PMID:21968142

  20. Metabotropic glutamate receptor agonists modify the pyloric output of the crustacean stomatogastric ganglion.

    PubMed

    Pérez-Acevedo, Nivia L; Krenz, Wulf D

    2005-11-16

    We have studied the effects of groups I, II, and III metabotropic glutamate receptor (mGluR) agonists and antagonists on pyloric activity in the stomatogastric ganglion (STG) of the Caribbean spiny lobster Panulirus argus. We have found that agonists for all three groups of mGluRs modify the pyloric output. The group I agonist, l-quisqualic acid (l-QA), activated the pyloric central pattern generator (CPG). When the pyloric rhythm was partially suppressed by sucrose-block of input fibers in the stomatogastric nerve (stn), l-QA accelerated the rhythmic activity. In addition, the number of spike discharges was increased in pyloric motoneurons: pyloric (PY), and lateral pyloric (LP). In completely blocked preparations, a slow pyloric rhythm was initiated by l-QA. Groups II and III agonists exerted an inhibitory effect on pyloric activity. The group II agonist, (2S,1'S,2'S)-2-(Carboxycyclopropyl)glycine (L-CCG-I), decreased both the frequency of the pyloric rhythm and the number of spike discharges in the motoneurons: ventricular dilator (VD), PY, and LP. The effects of L-CCG-I were dose-dependent. The group III agonist, l-(+)-2-Amino-4-phosphonobutyric acid (l-AP4), slightly decreased the frequency of the pyloric rhythm and suppressed spike discharges in the VD neuron. All effects of mGluR agonists were reversible. The effect of l-QA was blocked by the broad spectrum mGluR antagonist (S)-Methyl-4-carboxyphenylglycine (MCPG). The inhibitory effect of L-CCG-I was prevented by MCPG and by the group II/III mGluR antagonist (RS)-alpha-Methyl-4-phosphonophenylglycine (MPPG), and was partially blocked by the group II mGluR antagonist (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA). The inhibitory effect of l-AP4 was blocked by MPPG and partially blocked by APICA. PMID:16256086

  1. β2-Adrenergic agonists attenuate organic dust-induced lung inflammation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Poole, Jill A; Toews, Myron L; West, William W; Wyatt, Todd A

    2016-07-01

    Agricultural dust exposure results in significant lung inflammation, and individuals working in concentrated animal feeding operations (CAFOs) are at risk for chronic airway inflammatory diseases. Exposure of bronchial epithelial cells to aqueous extracts of hog CAFO dusts (HDE) leads to inflammatory cytokine production that is driven by protein kinase C (PKC) activation. cAMP-dependent protein kinase (PKA)-activating agents can inhibit PKC activation in epithelial cells, leading to reduced inflammatory cytokine production following HDE exposure. β2-Adrenergic receptor agonists (β2-agonists) activate PKA, and we hypothesized that β2-agonists would beneficially impact HDE-induced adverse airway inflammatory consequences. Bronchial epithelial cells were cultured with the short-acting β2-agonist salbutamol or the long-acting β2-agonist salmeterol prior to stimulation with HDE. β2-Agonist treatment significantly increased PKA activation and significantly decreased HDE-stimulated IL-6 and IL-8 production in a concentration- and time-dependent manner. Salbutamol treatment significantly reduced HDE-induced intracellular adhesion molecule-1 expression and neutrophil adhesion to epithelial cells. Using an established intranasal inhalation exposure model, we found that salbutamol pretreatment reduced airway neutrophil influx and IL-6, TNF-α, CXCL1, and CXCL2 release in bronchoalveolar lavage fluid following a one-time exposure to HDE. Likewise, when mice were pretreated daily with salbutamol prior to HDE exposure for 3 wk, HDE-induced neutrophil influx and inflammatory mediator production were also reduced. The severity of HDE-induced lung pathology in mice repetitively exposed to HDE for 3 wk was also decreased with daily salbutamol pretreatment. Together, these results support the need for future clinical investigations to evaluate the utility of β2-agonist therapies in the treatment of airway inflammation associated with CAFO dust exposure. PMID:27190062

  2. Desensitization of Functional µ-Opioid Receptors Increases Agonist Off-Rate

    PubMed Central

    2014-01-01

    Desensitization of µ-opioid receptors (MORs) develops over 5–15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein–coupled K+ channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu5]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity. PMID:24748657

  3. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  4. Structural insights into Resveratrol’s antagonist and partial agonist actions on estrogen receptor alpha

    PubMed Central

    2013-01-01

    Background Resveratrol, a naturally occurring stilbene, has been categorized as a phytoestrogen due to its ability to compete with natural estrogens for binding to estrogen receptor alpha (ERα) and modulate the biological responses exerted by the receptor. Biological effects of resveratrol (RES) on estrogen receptor alpha (ERα) remain highly controversial, since both estrogenic and anti-estrogenic properties were observed. Results Here, we provide insight into the structural basis of the agonist/antagonist effects of RES on ERα ligand binding domain (LBD). Using atomistic simulation, we found that RES bound ERα monomer in antagonist conformation, where Helix 12 moves away from the ligand pocket and orients into the co-activator binding groove of LBD, is more stable than RES bound ERα in agonist conformation, where Helix 12 lays over the ligand binding pocket. Upon dimerization, the agonistic conformation of RES-ERα dimer becomes more stable compared to the corresponding monomer but still remains less stable compared to the corresponding dimer in antagonist conformation. Interestingly, while the binding pocket and the binding contacts of RES to ERα are similar to those of pure agonist diethylstilbestrol (DES), the binding energy is much less and the hydrogen bonding contacts also differ providing clues for the partial agonistic character of RES on ERα. Conclusions Our Molecular Dynamics simulation of RES-ERα structures with agonist and antagonist orientations of Helix 12 suggests RES action is more similar to Selective Estrogen Receptor Modulator (SERM) opening up the importance of cellular environment and active roles of co-regulator proteins in a given system. Our study reveals that potential co-activators must compete with the Helix 12 and displace it away from the activator binding groove to enhance the agonistic activity. PMID:24160181

  5. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan. PMID:25965047

  6. Agonist self-inhibition at the nicotinic acetylcholine receptor a nonspecific action

    SciTech Connect

    Forman, S.A.; Firestone, L.L.; Miller, K.W.

    1987-05-19

    Agonist concentration-response relationships at nicotinic postsynaptic receptors were established by measuring /sup 86/Rb/sup +/ efflux from acetylcholine receptor rich native Torpedo membrane vesicles under three different conditions: (1) integrated net ion efflux (in 10 s) from untreated vesicles, (2) integrated net efflux from vesicles in which most acetylcholine sites were irreversibly blocked with ..cap alpha..-bungarotoxin, and (3) initial rates of efflux (5-100 ms) from vesicles that were partially blocked with ..cap alpha..-bungarotoxin. Exposure to acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, or (-)-nicotine over 10/sup 8/-fold concentration ranges results in bell-shaped ion flux response curves due to stimulation of acetylcholine receptor channel opening at low concentrations and inhibition of channel function at 60-2000 times higher concentrations. Concentrations of agonists that inhibit their own maximum /sup 86/Rb/sup +/ efflux by 50% (K/sub B/ values) are 110, 211, 3.0, 39, and 8.9 mM, respectively, for the agonists listed above. For acetylcholine and carbamylcholine, K/sub B/ values determined from both 10-s and 15-ms efflux measurements are the same, indicating that the rate of agonist-induced desensitization increases to maximum at concentrations lower than those causing self-inhibition. For all partial and full agonists studied, Hill coefficients for self-inhibition are close to 1.0. Concentrations of agonists up to 8 times K/sub B/ did not change the order parameter reported by a spin-labeled fatty acid incorporated in Torpedo membranes. The authors conclude that agonist self-inhibition cannot be attributed to a general nonspecific membrane perturbation. Instead, these results are consistent with a saturable site of action either at the lipid-protein interface or on the acetylcholine receptor protein itself.

  7. Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties.

    PubMed

    Brust, Andreas; Croker, Daniel E; Colless, Barbara; Ragnarsson, Lotten; Andersson, Åsa; Jain, Kapil; Garcia-Caraballo, Sonia; Castro, Joel; Brierley, Stuart M; Alewood, Paul F; Lewis, Richard J

    2016-03-24

    Opioid receptor screening of a conopeptide library led to a novel selective κ-opioid agonist peptide (conorphin T). Intensive medicinal chemistry, guided by potency, selectivity, and stability assays generated a pharmacophore model supporting rational design of highly potent and selective κ-opioid receptor (KOR) agonists (conorphins) with exceptional plasma stability. Conorphins are defined by a hydrophobic benzoprolyl moiety, a double arginine sequence, a spacer amino acid followed by a hydrophobic residue and a C-terminal vicinal disulfide moiety. The pharmacophore model was supported by computational docking studies, revealing receptor-ligand interactions similar to KOR agonist dynorphin A (1-8). A conorphin agonist inhibited colonic nociceptors in a mouse tissue model of chronic visceral hypersensitivity, suggesting the potential of KOR agonists for the treatment of chronic abdominal pain. This new conorphine KOR agonist class and pharmacophore model provide opportunities for future rational drug development and probes for exploring the role of the κ-opioid receptor. PMID:26859603

  8. Interactions of dopamine agonists with brain D1 receptors labeled by /sup 3/H-antagonists. Evidence for the presence of high and low affinity agonist-binding states

    SciTech Connect

    Leff, S.E.; Hamblin, M.W.; Creese, I.

    1985-02-01

    The interactions of dopaminergic agonists and antagonists with /sup 3/H-antagonist labeled D1 dopamine receptors of rat striatum have been characterized. (/sup 3/H)Flupentixol has been found to selectively label D1 dopamine receptors when its binding to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone. Antagonist//sup 3/H-antagonist competition curves are of uniformly steep slope (nH . 1.0) suggesting the presence of a single D1 dopamine receptor. Agonist//sup 3/H-antagonist competition curves are extremely shallow (nH less than or equal to 0.5) for agonists of high relative efficacy, suggesting the presence of heterogeneous populations of agonist-binding states of the D1 dopamine receptor. Computer-modeling techniques were used to estimate affinities and relative site densities for these heterogeneous binding states. This analysis indicates that the ratio of agonist affinities for low and high affinity agonist-binding states is correlated with agonist relative efficacies in activating adenylate cyclase in membrane homogenates. Under the assay conditions employed, the addition of saturating concentrations of guanine nucleotides reduced, but did not abolish, the relative density of high affinity agonist-binding sites. These binding data can, at least in part, be explained by postulating two states of the D1 dopamine receptor, inducible by agonists but not by antagonists and modulated by guanine nucleotides.

  9. Behavioral and biochemical characterization of benzodiazepine receptor partial agonists in pigeons.

    PubMed

    Witkin, J M; Acri, J B; Wong, G; Gleeson, S; Barrett, J E

    1996-04-01

    The ability of benzodiazepine receptor partial agonists to exhibit full efficacy in preclinical anxiolytic tests, in conjunction with initial clinical results, has suggested the possibility of a reduced clinical side-effect profile compared to benzodiazepine receptor full agonists like diazepam. Because punished behavior of pigeons has been useful in detecting effects of novel anxiolytic drugs, effects of imidazobenzodiazepine and beta-carboline benzodiazepine receptor partial agonists and some related compounds were evaluated in this species. The abilities of these compounds to substitute for the discriminative stimulus effects of the full agonists midazolam also was determined. Intrinsic efficacy was assessed by the degree to which gamma-aminobutyric acid increased ligand potency to displace [(3)H]Ro15-1788 (flumazinil) from membranes of pigeon cerebrum, and ranged from full agonist-like efficacy (Ro 19-5470; 7-(3-cyclopropyl-1,2,4-oxodiazol-5-yl)-5,6-dihydro-5-methyl-4H- imidazo[1,5a]-thieno[3,2-f]diazin-4-one) to minimal gamma-aminobutyric acid potentiations close to that of the antagonist flumazenil (abecarnil and Ro 41-7812; 7-chloro-4,5-dihydro-3-(3-hydroxy-1-propynyl)-5-methyl-6H-imidazo[1,5-a] -[1,4 ]benzodiazepine-6-one). Punished responding was increased markedly by midazolam and by all partial agonists, except Ro 41-7812 and Ro 42-8773 (7-chloro-3-[3-(cyclopropylmethoxy)-1-propynyl]-4,5-dihyro-5 -methyl-6H-imidaz o[1,5-a][1,4]benzodiazepine-6-one), at doses that did not affect nonpunished responding. In contrast to the full substitution generally observed in mammals, all of the partial agonists produced incomplete substitution (40-70%) in the midazolam drug discrimination procedure in pigeons. A positive relationship was observed between the degree of substitution and intrinsic efficacy. The benzodiazepine antagonists, flumazenil and ZK 93,426 (ethyl-5-isopropoxy-4-methoxymethyl-beta-carboline-3-carboxylate), neither increased punished responding nor

  10. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  11. Agonist mediated conformational changes of solubilized calf forebrain muscarinic acetylcholine receptors.

    PubMed

    Vanderheyden, P; Andre, C; de Backer, J P; Vauquelin, G

    1984-10-01

    Muscarinic receptors in calf forebrain membranes can be identified by the specific binding of the radiolabelled antagonist [3H]dexetimide. These receptors (2.8 pM/mg protein) comprise two non-interconvertible subpopulations with respectively high and low agonist affinity but with the same antagonist affinity. For all the agonists tested the low affinity sites represent 85 +/- 5% of the total receptor population. 0.5% Digitonin solubilized extracts contain 0.8 pM muscarinic receptor/mg protein. In contrast with the membranes, these extracts contain only sites with low agonist affinity. The alkylating reagent N-ethylmaleimide causes an increase of the acetylcholine affinity for the low affinity sites in membranes as well as for the solubilized sites. This effect is time dependent until a maximal 3-fold increase in affinity is attained. The rate of N-ethylmaleimide action is enhanced by the concomitant presence of agonists. In contrast, N-ethylmaleimide does not affect antagonist binding. This suggests that agonists mediate a conformational change of both the membrane bound low affinity muscarinic sites and of the solubilized sites, resulting in their increased susceptibility towards NEM alkylation. PMID:6487351

  12. Evidence for air movement signals in the agonistic behaviour of a nocturnal arachnid (order Amblypygi).

    PubMed

    Santer, Roger D; Hebets, Eileen A

    2011-01-01

    Many arthropods possess filiform hair sensilla (termed trichobothria in arachnids), which are extremely sensitive detectors of medium particle displacement. Electrophysiological evidence in some taxa suggests that these sensilla can detect air particle displacements resulting from intraspecific communication signals. However, it has not yet been shown for any species that the air particle displacements detected by the filiform hairs are themselves perceived as a 'signal' (i.e. that individuals make behavioural decisions based upon the responses of these organs to the displays of conspecifics). We investigate the agonistic behaviour of the whip spider Phrynus marginemaculatus and the role of its trichobothria in receiving agonistic signals. Whip spiders have extremely elongated 'antenniform' first legs, which they vibrate close to their opponents during agonistic interactions, inducing air movements that excite their opponents' trichobothria. We find that ablation of the trichobothria causes significant increases in: (I) contest duration, and (II) the probability of contest escalation past aggressive displays to physical fighting. Therefore, in the absence of air movement-sensitive sensilla, contest assessment is impaired. This suggests that whip spiders exploit true air movement signals during agonistic interactions, and that these are received by the trichobothria. Furthermore, these results indicate that, in whip spiders, such signals help mitigate the cost of agonistic interaction. PMID:21853035

  13. Evidence for Air Movement Signals in the Agonistic Behaviour of a Nocturnal Arachnid (Order Amblypygi)

    PubMed Central

    Santer, Roger D.; Hebets, Eileen A.

    2011-01-01

    Many arthropods possess filiform hair sensilla (termed trichobothria in arachnids), which are extremely sensitive detectors of medium particle displacement. Electrophysiological evidence in some taxa suggests that these sensilla can detect air particle displacements resulting from intraspecific communication signals. However, it has not yet been shown for any species that the air particle displacements detected by the filiform hairs are themselves perceived as a ‘signal’ (i.e. that individuals make behavioural decisions based upon the responses of these organs to the displays of conspecifics). We investigate the agonistic behaviour of the whip spider Phrynus marginemaculatus and the role of its trichobothria in receiving agonistic signals. Whip spiders have extremely elongated ‘antenniform’ first legs, which they vibrate close to their opponents during agonistic interactions, inducing air movements that excite their opponents' trichobothria. We find that ablation of the trichobothria causes significant increases in: (I) contest duration, and (II) the probability of contest escalation past aggressive displays to physical fighting. Therefore, in the absence of air movement-sensitive sensilla, contest assessment is impaired. This suggests that whip spiders exploit true air movement signals during agonistic interactions, and that these are received by the trichobothria. Furthermore, these results indicate that, in whip spiders, such signals help mitigate the cost of agonistic interaction. PMID:21853035

  14. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  15. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    PubMed

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  16. Dissociated nonsteroidal glucocorticoid receptor modulators; discovery of the agonist trigger in a tetrahydronaphthalene-benzoxazine series.

    PubMed

    Barker, Mike; Clackers, Margaret; Copley, Royston; Demaine, Derek A; Humphreys, Davina; Inglis, Graham G A; Johnston, Michael J; Jones, Haydn T; Haase, Michael V; House, David; Loiseau, Richard; Nisbet, Lesley; Pacquet, Francois; Skone, Philip A; Shanahan, Stephen E; Tape, Dan; Vinader, Victoria M; Washington, Melanie; Uings, Iain; Upton, Richard; McLay, Iain M; Macdonald, Simon J F

    2006-07-13

    The tetrahydronaphthalene-benzoxazine glucocorticoid receptor (GR) partial agonist 4b was optimized to produce potent full agonists of GR. Aromatic ring substitution of the tetrahydronaphthalene leads to weak GR antagonists. Discovery of an "agonist trigger" substituent on the saturated ring of the tetrahydronaphthalene leads to increased potency and efficacious GR agonism. These compounds are efficacy selective in an NFkB GR agonist assay (representing transrepression effects) over an MMTV GR agonist assay (representing transactivation effects). 52 and 60 have NFkB pIC(50) = 8.92 (105%) and 8.69 (92%) and MMTV pEC(50) = 8.20 (47%) and 7.75 (39%), respectively. The impact of the trigger substituent on agonism is modeled within GR and discussed. 36, 52, and 60 have anti-inflammatory activity in a mouse model of inflammation after topical dosing with 52 and 60, having an effect similar to that of dexamethasone. The original lead was discovered by a manual agreement docking method, and automation of this method is also described. PMID:16821781

  17. PPARδ agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair

    PubMed Central

    Pang, Maoyin; de la Monte, Suzanne M.; Longato, Lisa; Tong, Ming; He, Jiman; Chaudhry, Rajeeve; Duan, Kevin; Ouh, Jiyun; Wands, Jack R.

    2009-01-01

    Background/Aims Chronic ethanol exposure impairs liver regeneration due to inhibition of insulin signaling and oxidative injury. PPAR agonists function as insulin sensitizers and anti-inflammatory agents. We investigated whether treatment with a PPARδ agonist could restore hepatic insulin sensitivity, survival signaling, and regenerative responses vis-a-vis chronic ethanol feeding. Methods Adult rats were fed isocaloric liquid diets containing 0% or 37% ethanol, and administered a PPARδ agonist by i.p. injection. We used liver tissue to examine histopathology, gene expression, oxidative stress, insulin signaling, and regenerative responses to 2/3 hepatectomy. Results Chronic ethanol feeding caused insulin resistance, increased oxidative stress, lipid peroxidation, DNA damage, and hepatocellular injury in liver. These effects were associated with reduced insulin receptor binding and affinity, impaired survival signaling through PI3K/Akt/GSK3β, and reduced expression of insulin responsive genes mediating energy metabolism and tissue remodeling. PPARδ agonist treatment reduced ethanol-mediated hepatic injury, oxidative stress, lipid peroxidation, and insulin resistance, increased signaling through PI3K/Akt/GSK3β, and enhanced the regenerative response to partial hepatectomy. Conclusions PPARδ agonist administration may attenuate the severity of chronic ethanol-induced liver injury and ethanol’s adverse effects on the hepatic repair by restoring insulin responsiveness, even in the context of continued high-level ethanol consumption. PMID:19398227

  18. Rat Urinary Bladder Carcinogenesis by Dual-Acting PPARα + γ Agonists

    PubMed Central

    Oleksiewicz, Martin B.; Southgate, Jennifer; Iversen, Lars; Egerod, Frederikke L.

    2008-01-01

    Despite clinical promise, dual-acting activators of PPARα and γ (here termed PPARα+γ agonists) have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPARα is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARγ can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARα as well as PPARγ, making it plausible that the urothelial carcinogenicity of PPARα+γ agonists may be caused by receptor-mediated effects (exaggerated pharmacology). Based on previously published mode of action data for the PPARα+γ agonist ragaglitazar, and the available literature about the role of PPARα and γ in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARα+γ agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds. PMID:19197366

  19. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    PubMed Central

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  20. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  1. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  2. Identification of dual PPARα/γ agonists and their effects on lipid metabolism.

    PubMed

    Gao, Quanqing; Hanh, Jacky; Váradi, Linda; Cairns, Rose; Sjöström, Helena; Liao, Vivian W Y; Wood, Peta; Balaban, Seher; Ong, Jennifer Ai; Lin, Hsuan-Yu Jennifer; Lai, Felcia; Hoy, Andrew J; Grewal, Thomas; Groundwater, Paul W; Hibbs, David E

    2015-12-15

    The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20). In vitro assays confirmed these compounds to show no statistically significant toxicity to cells, with the exception of compound 12 which inhibited cell growth to 74.5%±3.5 and 54.1%±3.7 at 50μM and 100μM, respectively. In support of their potential as dual PPARα/γ agonists, all ten compounds upregulated the expression of cholesterol transporters ABCA1 and ABCG1 in THP-1 macrophages, with indoline derivative 16 producing the greatest elevation (2.3-fold; 3.3-fold, respectively). Furthermore, comparable to the activity of established PPARα and PPARγ agonists, compound 16 stimulated triacylglycerol accumulation during 3T3-L1 adipocyte differentiation as well as fatty acid β-oxidation in HuH7 hepatocytes. PMID:26616289

  3. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    PubMed

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series. PMID:27434274

  4. A combined ligand and structure based approach to design potent PPAR-alpha agonists

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Gangwal, Rahul P.; Sangamwar, Abhay T.

    2012-11-01

    A combined ligand and structure based pharmacophore modeling approach was employed to reveal structural and chemical features necessary for PPAR-alpha agonistic activity. The best HypoGen pharmacophore model Hypo1 for PPAR-alpha agonists contains two hydrogen-bond acceptor (HBA), two general hydrophobic (H), and one negative ionizable (NI) feature. In addition, one structure based pharmacophore model was developed using LigandScout3.0, which has identified additional three hydrophobic features. Further, molecular docking studies of all agonists showed hydrogen bond interactions with important amino acids (Ser280, Tyr314 and Tyr464) and these interactions were compared with Hypo1, which shows that the Hypo1 has a good predictive ability. The screened virtual hits from Hypo1 were subjected to the Lipinski's rule of five, structure based pharmacophore screening and molecular docking analysis. Finally, three novel compounds with diverse scaffolds were selected as possible candidates for the designing of potent PPAR-alpha agonists. Combination of these two approaches results in designing an ideal pharmacophore model, which provides a powerful tool for the discovery of novel PPAR-alpha agonists.

  5. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis. PMID:26770990

  6. 3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques

    NASA Astrophysics Data System (ADS)

    Yamaotsu, Noriyuki; Hirono, Shuichi

    A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.

  7. Detection of retinoic acid receptor agonistic activity and identification of causative compounds in municipal wastewater treatment plants in Japan.

    PubMed

    Sawada, Kazuko; Inoue, Daisuke; Wada, Yuichiro; Sei, Kazunari; Nakanishi, Tsuyoshi; Ike, Michihiko

    2012-02-01

    Retinoic acid (RA) receptor (RAR) agonists are potential toxicants that can cause teratogenesis in vertebrates. To determine the occurrence of RAR agonists in municipal wastewater treatment plants (WWTPs), we examined the RARα agonistic activities of influent and effluent samples from several municipal WWTPs in Osaka, Japan, using a yeast two-hybrid assay. Significant RARα agonistic activity was detected in all the influent samples investigated, suggesting that municipal wastewater consistently contains RAR agonists. Fractionations using high-performance liquid chromatography, directed by the bioassay, found several bioactive peaks from influent samples. The RAR agonists, all-trans RA (atRA), 13-cis RA (13cRA), 4-oxo-atRA, and 4-oxo-13cRA, possibly arising from human urine, were identified by liquid chromatography ion trap time-of-flight mass spectrometry. Quantification of the identified compounds in municipal WWTPs confirmed that they were responsible for the majority of RARα agonistic activity in WWTP influents, and also revealed they were readily removed from wastewater by activated sludge treatment. Simultaneous measurement of the RARα agonistic activity revealed that although total activity typically declined concomitant with the reduction of the four identified compounds, it remained high after the decline of RAs and 4-oxo-RAs in one WWTP, suggesting the occurrence of unidentified RAR agonists during the activated sludge treatment. PMID:22095885

  8. Design and synthesis of silicon-containing fatty acid amide derivatives as novel peroxisome proliferator-activated receptor (PPAR) agonists.

    PubMed

    Kajita, Daisuke; Nakamura, Masaharu; Matsumoto, Yotaro; Ishikawa, Minoru; Hashimoto, Yuichi; Fujii, Shinya

    2015-08-15

    We recently reported that diphenylsilane structure can function as a cis-stilbene mimetic. Here, we investigate whether silyl functionality can also serve as a mimetic of aliphatic cis-olefin. We designed and synthesized various silyl derivatives of oleoylethanolamide (OEA: 8), an endogenous cis-olefin-containing PPARα agonist, and evaluated their PPARα/δ/γ agonistic activity. We found that diethylsilyl derivative 20 exhibited PPARα/δ agonistic activity, and we also obtained a PPARδ-selective agonist, 32. Our results suggest that incorporation of silyl functionality is a useful option for structural development of biologically active compounds. PMID:26071639

  9. Errors in the measurement of agonist potency-ratios produced by uptake processes: a general model applied to beta-adrenoceptor agonists.

    PubMed Central

    Kenakin, T. P.

    1980-01-01

    1. The sensitization of guinea-pig atria and trachea to noradrenaline, isoprenaline, and salbutamol, produced by an inhibitor of neuronal (cocaine) and extraneuronal (metanephrine) uptake, was studied quantitatively. The data were compared to a theoretical model. 2. Cocaine produced near maximal sensitization to noradrenaline in guinea-pig atria (5 fold) at concentrations which produced only partial sensitization in guinea-pig trachea (4.7 fold sensitization of a maximum 11 fold). These results agreed with the model which predicts that there is a direct relationship between the amount of uptake inhibitor required to produce full sensitization and the magnitude of maximal sensitization demonstrable in the tissue. This makes extrapolation of uptake inhibition concentrations from tissue to tissue a potentially erroneous practice. 3. In normal trachea, salbutamol is 20 times more potent than noradrenaline but this difference is abolished (to 0.9 times) by cocaine (100 microM). This reduction of potency-ratio is due to the selective cocaine-induced sensitization of trachea to noradrenaline and raises a serious objection to the classification of salbutamol as a beta 2 selective agonist. 4. Metanephrine produced very little sensitization of trachea to isoprenaline. Experiments with salbutamol showed metanephrine to be a simple competitive antagonist of beta-adrenoceptors (pKb = 4.3) and that this receptor antagonism masked sensitization to isoprenaline. 5. A theoretical model indicates that an inhibitor of agonist uptake requires a remarkable degree of selectivity for the uptake mechanism (i.e. Kb for receptors 10(4) x KI for uptake sites) to demonstrate tissue sensitization to the agonist. This analysis and the data with metanephrine indicate that a sinistral shift of the concentration-response curve is a poor indicator of the importance of uptake mechanisms in an isolated tissue. 6. An alternate method to determine the importance of agonist-uptake effects on

  10. Activation of M1/4 receptors phase advances the hamster circadian clock during the day.

    PubMed

    Basu, Priyoneel; Wensel, Adrienne L; McKibbon, Reid; Lefebvre, Nicole; Antle, Michael C

    2016-05-16

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) can be reset by the cholinergic agonist carbachol. In hamsters, intraSCN carbachol produces phase advances during the day. This phenomenon has previously been attributed to the muscarinic receptors, as carbachol-induced phase shifts are blocked by pretreatment with the muscarinic antagonist atropine. The SCN contains all five muscarinic receptors, leaving open the question as to which muscarinic receptors mediate these shifts. Here we test two selective muscarinic agonists, the M1/4 agonist McN-A-343 and the M2/3 agonist bethanechol, in addition to the non-selective cholinergic agonist carbachol. Consistent with previous reports, carbachol produced significant phase advances when injected to the SCN during the mid-subjective day. At the doses used here, McN-A-343, but not bethanechol, also produced significant phase shifts when injected to the SCN during the mid-subjective day. Phase shifts to McN-A-343 were as large as those produced by carbachol, suggesting that activation of the M1/4 receptors alone can fully account for the daytime phase advances produced by cholinergic agonists. Given acetylcholine's role in arousal, and the similarity between phase advances to carbachol/McN-A-343 and to exercise and arousal manipulations, it is possible that acetylcholine may contribute to non-photic resetting of the circadian clock. PMID:27063283

  11. Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep.

    PubMed Central

    Berthiaume, Y; Staub, N C; Matthay, M A

    1987-01-01

    We did experiments to determine whether beta-adrenergic agonists increase lung liquid clearance in anesthetized ventilated adult sheep and, if so, whether the increase is mediated by beta receptors and what mechanism is involved. We instilled 100 ml of autologous serum either alone or with a beta-adrenergic agonist (terbutaline, 10(-5) M, or epinephrine, 5.5 X 10(-6) M) into one lower lobe. After 4 h both terbutaline and epinephrine increased lung liquid clearance. The increase in lung liquid clearance was inhibited when propranolol (a beta blocker) or amiloride (a sodium channel blocker) was added to the terbutaline. Increased clearance was not explained by changes in pulmonary hemodynamics, pulmonary blood flow, or lung lymph flow. We conclude that beta-adrenergic agonists increase lung liquid clearance in anesthetized intact adult sheep. This increase is mediated through beta receptors and probably depends on increased active transport of sodium across the alveolar barrier. Images PMID:2879851

  12. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  13. Search for new type of PPARγ agonist-like anti-diabetic compounds from medicinal plants.

    PubMed

    Matsuda, Hisashi; Nakamura, Seikou; Yoshikawa, Masayuki

    2014-01-01

    Potent ligands of peroxisome proliferator-activated receptor γ (PPARγ) such as thiazolidinediones (pioglitazone, troglitazone, etc.) improve insulin sensitivity by increasing the levels of adiponectin, an important adipocytokine associated with insulin sensitivity in adipose tissue. Several constituents from medicinal plants were recently reported to show PPARγ agonist-like activity in 3T3-L1 cells, but did not show agonistic activity at the receptor site different from thiazolidinediones. Our recent studies on PPARγ agonist-like constituents, such as hydrangenol and hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii, piperlonguminine and retrofractamide A from the fruit of Piper chaba, and tetramethylkaempferol and pentamethylquercetin from the rhizomes of Kaempferia parviflora, are reviewed. PMID:24882400

  14. Incorporation of Phosphonate into Benzonaphthyridine Toll-like Receptor 7 Agonists for Adsorption to Aluminum Hydroxide.

    PubMed

    Cortez, Alex; Li, Yongkai; Miller, Andrew T; Zhang, Xiaoyue; Yue, Kathy; Maginnis, Jillian; Hampton, Janice; Hall, De Shon; Shapiro, Michael; Nayak, Bishnu; D'Oro, Ugo; Li, Chun; Skibinski, David; Mbow, M Lamine; Singh, Manmohan; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M; Wu, Tom Y-H

    2016-06-23

    Small molecule Toll-like receptor 7 (TLR7) agonists have been used as vaccine adjuvants by enhancing innate immune activation to afford better adaptive response. Localized TLR7 agonists without systemic exposure can afford good adjuvanticity, suggesting peripheral innate activation (non-antigen-specific) is not required for immune priming. To enhance colocalization of antigen and adjuvant, benzonaphthyridine (BZN) TLR7 agonists are chemically modified with phosphonates to allow adsorption onto aluminum hydroxide (alum), a formulation commonly used in vaccines for antigen stabilization and injection site deposition. The adsorption process is facilitated by enhancing aqueous solubility of BZN analogs to avoid physical mixture of two insoluble particulates. These BZN-phosphonates are highly adsorbed onto alum, which significantly reduced systemic exposure and increased local retention post injection. This report demonstrates a novel approach in vaccine adjuvant design using phosphonate modification to afford adsorption of small molecule immune potentiator (SMIP) onto alum, thereby enhancing co-delivery with antigen. PMID:27270029

  15. DEVELOPMENT AND IN VITRO CHARACTERIZATION OF A NOVEL BIFUNCTIONAL MU-AGONIST/DELTA-ANTAGONIST OPIOID TETRAPEPTIDE

    PubMed Central

    Purington, Lauren C.; Sobczyk-Kojiro, Katarzyna; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2011-01-01

    The development of tolerance to and dependence on opioid analgesics greatly reduces their long-term usefulness. Previous studies have demonstrated that co-administration of a mu opioid receptor (MOR) agonist and delta opioid receptor (DOR) antagonist can decrease MOR agonist induced tolerance and dependence development after chronic exposure. Clinically, a single ligand displaying multiple efficacies (e.g. MOR agonism concurrently with DOR antagonism) would be of increased value over two drugs administered simultaneously. Guided by modeling of receptor-ligand complexes we have developed a series of potent non-selective opioid tetrapeptides that have differing efficacy at MOR and DOR. In particular, our lead peptide (KSK-103) binds with equal affinity to MOR and DOR but acts as a MOR agonist with similar efficacy but greater potency than morphine and a DOR antagonist in cellular assays measuring both G protein stimulation and adenylyl cyclase inhibition. PMID:21958158

  16. 2-Aminoalkyl nicotinamide derivatives as pure inverse agonists of the ghrelin receptor.

    PubMed

    Takahashi, Bitoku; Funami, Hideaki; Iwaki, Takehiko; Maruoka, Hiroshi; Nagahira, Asako; Koyama, Makoto; Kamiide, Yoshiyuki; Matsuo, Tsuyoshi; Muto, Tsuyoshi; Annoura, Hirokazu

    2015-07-01

    New inverse agonists of the ghrelin receptor (ghrelinR) were obtained through high-throughput screening and subsequent structural modification of 2-aminoalkyl nicotinamide derivatives. The key structural feature to improve in vitro activity was the introduction of a diazabicyclo ring at the 5-position of the pyridine ring. The final product showed potent inverse agonist activity and, despite its low brain permeability, reduced food intake in both normal and obese mice. These results implied that peripheral ghrelinR activity is important for appetite control and that a peripheral ghrelinR inverse agonist could be an anti-obesity drug with reduced risk of central nervous system (CNS)-related side effects. PMID:25981690

  17. Label-Free Cell Phenotypic Identification of D-Luciferin as an Agonist for GPR35.

    PubMed

    Hu, Heidi; Deng, Huayun; Fang, Ye

    2016-01-01

    D-Luciferin (also known as beetle or firefly luciferin) is one of the most widely used bioluminescent reporters for monitoring in vitro or in vivo luciferase activity. The identification of several natural phenols and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as agonists for GPR35, an orphan G protein-coupled receptor, had motivated us to examine the pharmacological activity of D-Luciferin, given that it also contains phenol and carboxylic acid moieties. Here, we describe label-free cell phenotypic assays that ascertain D-Luciferin as a partial agonist for GPR35. The agonistic activity of D-Luciferin at the GPR35 shall evoke careful interpretation of biological data when D-Luciferin or its analogues are used as probes. PMID:27424891

  18. Clinical use of deslorelin (GnRH agonist) in companion animals: a review.

    PubMed

    Lucas, X

    2014-10-01

    Over the years, many contraceptive medications have been developed for companion animals, but many secondary adverse effects have limited their use. A major advancement was achieved with the use of gonadotropin-releasing hormone (GnRH) analogues, mainly GnRH agonists, which mimic the effects of native GnRH. The development of effective low-dose, slow-release implants with potent agonists such as deslorelin (Suprelorin®, Virbac) have allowed their use to become widespread in recent years, with many potential benefits in companion animals. While the major application of deslorelin was initially male contraception, due to its two differing actions, either the stimulation of oestrus or the sterilization of fertility, its use has been increasing in the bitch as well. The aim of this study is to review the applications of deslorelin GnRH agonist implants in companion animal, such as dogs, cats and some exotic pets. PMID:25277434

  19. Quantitative Measure of Receptor Agonist and Modulator Equi-Response and Equi-Occupancy Selectivity

    PubMed Central

    Zhang, Rumin; Kavana, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are an important class of drug targets. Quantitative analysis by global curve fitting of properly designed dose-dependent GPCR agonism and allosterism data permits the determination of all affinity and efficacy parameters based on a general operational model. We report here a quantitative and panoramic measure of receptor agonist and modulator equi-response and equi-occupancy selectivity calculated from these parameters. The selectivity values help to differentiate not only one agonist or modulator from another, but on-target from off-target receptor or functional pathway as well. Furthermore, in conjunction with target site free drug concentrations and endogenous agonist tones, the allosterism parameters and selectivity values may be used to predict in vivo efficacy and safety margins. PMID:27116909

  20. Discovery of novel indazole derivatives as dual angiotensin II antagonists and partial PPARγ agonists.

    PubMed

    Lamotte, Yann; Faucher, Nicolas; Sançon, Julien; Pineau, Olivier; Sautet, Stéphane; Fouchet, Marie-Hélène; Beneton, Véronique; Tousaint, Jean-Jacques; Saintillan, Yannick; Ancellin, Nicolas; Nicodeme, Edwige; Grillot, Didier; Martres, Paul

    2014-02-15

    Identification of indazole derivatives acting as dual angiotensin II type 1 (AT1) receptor antagonists and partial peroxisome proliferator-activated receptor-γ (PPARγ) agonists is described. Starting from Telmisartan, we previously described that indole derivatives were very potent partial PPARγ agonists with loss of AT1 receptor antagonist activity. Design, synthesis and evaluation of new central scaffolds led us to the discovery of pyrrazolopyridine then indazole derivatives provided novel series possessing the desired dual activity. Among the new compounds, 38 was identified as a potent AT1 receptor antagonist (IC50=0.006 μM) and partial PPARγ agonist (EC50=0.25 μM, 40% max) with good oral bioavailability in rat. The dual pharmacology of compound 38 was demonstrated in two preclinical models of hypertension (SHR) and insulin resistance (Zucker fa/fa rat). PMID:24462665

  1. Selexipag: An Oral and Selective IP Prostacyclin Receptor Agonist for the Treatment of Pulmonary Arterial Hypertension.

    PubMed

    Asaki, Tetsuo; Kuwano, Keiichi; Morrison, Keith; Gatfield, John; Hamamoto, Taisuke; Clozel, Martine

    2015-09-24

    Prostacyclin controls cardiovascular function via activation of the prostacyclin receptor. Decreased prostacyclin production occurs in several cardiovascular diseases. However, the clinical use of prostacyclin and its analogues is complicated by their chemical and metabolic instability. A medicinal chemistry program searched for novel nonprostanoid prostacyclin receptor agonists not subject to these limitations. A compound with a diphenylpyrazine structural core was synthesized. Metabolic stability and agonist potency were optimized through modification of the linear side chain. Compound 12b (MRE-269, ACT-333679) was identified as a potent and highly selective prostacyclin receptor agonist. Replacement of the terminal carboxyl group with an N-acylsulfonamide group yielded parent compound 26a (selexipag, NS-304, ACT-293987), which is orally active and provides sustained plasma exposure of 12b. Compound 26a was developed for the treatment of pulmonary arterial hypertension and shown to reduce the risk of the composite morbidity/mortality end point in a phase 3 event-driven clinical trial. PMID:26291199

  2. Discovery of DS-1558: A Potent and Orally Bioavailable GPR40 Agonist

    PubMed Central

    2015-01-01

    GPR40 is a G protein-coupled receptor that is predominantly expressed in pancreatic β-cells. GPR40 agonists stimulate insulin secretion in the presence of high glucose concentration. On the basis of this mechanism, GPR40 agonists are possible novel insulin secretagogues with reduced or no risk of hypoglycemia. The improvement of in vitro activity and metabolic stability of compound 1 led to the discovery of 13, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid, as a potent and orally available GPR40 agonist. Compound 13 (DS-1558) was found to have potent glucose lowering effects during an oral glucose tolerance test in ZDF rats. PMID:25815144

  3. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  4. Pharmacological and Therapeutic Effects of A3 Adenosine Receptor (A3AR) Agonists

    PubMed Central

    Fishman, Pnina; Bar-Yehuda, Sara; Liang, Bruce T.; Jacobson, Kenneth A.

    2011-01-01

    The Gi-coupled A3 adenosine receptor (A3AR) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A3AR as a potential therapeutic target. Highly selective A3AR agonists have been synthesized and molecular recognition in the binding site has been characterized. The present review summarizes preclinical and clinical human studies demonstrating that A3AR agonists induce specific anti-inflammatory and anticancer effects via a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction pathways. Currently, A3AR agonists are being developed for the treatment of inflammatory diseases including rheumatoid arthritis and psoriasis; ophthalmic diseases such as dry eye syndrome and glaucoma; liver diseases such as hepatocellular carcinoma and hepatitis. PMID:22033198

  5. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  6. Influence of idazoxan on the dopamine D2 receptor agonist-induced behavioural effects in rats.

    PubMed

    Ferrari, F; Giuliani, D

    1993-11-30

    The behavioural effects in rats of the dopamine D2 receptor agonists, lisuride, B-HT 920 and SND 919, were variously influenced by pre-treatment with the selective alpha 2-adrenoceptor antagonist, idazoxan (2 mg/kg), depending on the nature of the effect in question and the doses of agonist employed. The influence of idazoxan on drug-induced stretching-yawning, penile erection, sedation, stereotyped behaviour, aggressiveness and mounting is described and tentatively interpreted in neurochemical terms, account being taken of the activity of respective alpha 2-adrenoceptor antagonist and dopamine receptor agonists used, at alpha 2-adrenoceptors and at different dopamine D2 receptor subtypes, pre- and postsynaptically located. PMID:7907024

  7. Trans/cis isomerization of [RuCl2{H2Cdbnd C(CH2PPh2)2)}(diamine)] complexes: Synthesis, spectral, crystal structure and DFT calculations and catalytic activity in the hydrogenation of α,β-unsaturated ketones

    NASA Astrophysics Data System (ADS)

    Warad, Ismail; Al-Noaimi, Mousa; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Hammouti, Belkheir; Hadda, Taibi B.

    2014-01-01

    Three complexes of the general formula trans/cis-[Ru(II)(dppme)(Nsbnd N)Cl2] {dppme is H2Cdbnd C(CH2PPh2)2 and Nsbnd N is 1,2-diaminocyclohexane (trans/cis-(1)) and 1-methyl-1,2-diaminopropane (trans-(2)} were obtained by reacting trans-[RuCl2(dppme)2] with an excess amount of corresponding diamine in CH2Cl2 as a solvent. The complexes were characterized by an elemental analysis, IR, 1H, 13C and 31P{1H} NMR, FAB-MS and UV-visible. The trans-(1) (kinetic product) readily isomerizes to the cis-(1) (thermodynamic product) and this process was followed by using 31P{1H} NMR, cyclic voltammetry and UV-vis spectroscopy. The electrochemical studies on complex (1) reveal that the Ru(III)/Ru(II) couples are sensitive to the isomer (trans/cis) formed. The cis-(1) was confirmed by X-ray structure and 31P{1H} NMR. Transfer-hydrogenation reactions for reduction of trans-4-phenyl-3-butene-2-one were conducted using complexes trans/cis-(1) and trans-(2). The electronic spectra of cis/trans-(1) in dichloromethane were calculated with the use of time-dependent DFT methods.

  8. Infrared resonance Raman, and excitation profile studies of Os/sub 2/(O/sub 2/CCH/sub 3/)/sub 4/Cl/sub 2/ and Os/sub 2/(O/sub 2/CCD/sub 3/)/sub 4/Cl/sub 2/. The assignment of the osmium-osmium stretching vibration for a complex involving an osmium-osmium multiple bond

    SciTech Connect

    Clark, R.J.H.; Hempleman, A.J.; Tocher, D.A.

    1988-08-31

    Extensive Raman studies (1525-40 cm/sup /minus/1/) of Os/sub 2/(O/sub 2/CCH/sub 3/)/sub 4/Cl/sub 2/ have led to the identification of the three strong bands, /nu//sub 1/, /nu//sub 2/, and /nu//sub 3/, at 229, 393, and 292 cm/sup /minus/1/ to the key skeletal stretching modes, /nu/(OsOs), /nu/(OsO), and /nu/(OsCl), respectively. Raman spectra of the complex at resonance with the intense electronic band at /lambda//sub max/ = 383 nm lead to the development of a six-membered overtone progression in /nu//sub 1/ as well as combination band progressions in /nu//sub 1/ based upon one quantum of either /nu//sub 2/ or /nu//sub 3/. This indicates that the principal structural change attendant upon excitation to the resonant state is along the OsOs coordinate. Fourier transform infrared spectra (3500-40 cm/sup /minus/1/) have also been obtained. Acetate deuteriation provides conclusive evidence for many of the infrared and Raman band assignments. The study provides the first firm identification of /nu/(OsOs) for a multiply bonded species.

  9. The potency of different serotonergic agonists in counteracting opioid evoked cardiorespiratory disturbances

    PubMed Central

    Dutschmann, M.; Waki, H.; Manzke, T.; Simms, A. E.; Pickering, A. E.; Richter, D. W.; Paton, J. F. R.

    2009-01-01

    Serotonin receptor (5-HTR) agonists that target 5-HT4(a)R and 5-HT1AR can reverse μ-opioid receptor (μ-OR)-evoked respiratory depression. Here, we have tested whether such rescuing by serotonin agonists also applies to the cardiovascular system. In working heart–brainstem preparations in situ, we have recorded phrenic nerve activity, thoracic sympathetic chain activity (SCA), vascular resistance and heart rate (HR) and in conscious rats, diaphragmatic electromyogram, arterial blood pressure (BP) and HR via radio-telemetry. In addition, the distribution of 5-HT4(a)R and 5-HT1AR in ponto-medullary cardiorespiratory networks was identified using histochemistry. Systemic administration of the μ-OR agonist fentanyl in situ decreased HR, vascular resistance, SCA and phrenic nerve activity. Subsequent application of the 5-HT1AR agonist 8-OH-DPAT further enhanced bradycardia, but partially compensated the decrease in vascular resistance, sympathetic activity and restored breathing. By contrast, the 5-HT4(a)R agonist RS67333 further decreased vascular resistance, HR and sympathetic activity, but partially rescued breathing. In conscious rats, administration of remifentanyl caused severe respiratory depression, a decrease in mean BP accompanied by pronounced bradyarrhythmia. 8-OH-DPAT restored breathing and prevented the bradyarrhythmia; however, BP and HR remained below baseline. In contrast, RS67333 further suppressed cardiovascular functions in vivo and only partially recovered breathing in some cases. The better recovery of μ-OR cardiorespiratory disturbance by 5-HT1AR than 5-HT4(a)R is supported by the finding that 5-HT1AR was more densely expressed in key brainstem nuclei for cardiorespiratory control compared with 5-HT4(a)R. We conclude that during treatment of severe pain, 5-HT1AR agonists may provide a useful tool to counteract opioid-mediated cardiorespiratory disturbances. PMID:19651661

  10. Recovery of brain biomarkers following peroxisome proliferator-activated receptor agonist neuroprotective treatment before ischemic stroke

    PubMed Central

    2014-01-01

    Background Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to “normal” following pre-treatments with PPARα agonists. Results In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPARα agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia – reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction – a protein instrumental to the unfolded protein response system - was shown to be reduced following PPARα agonists treatment while it was strongly increased in ischemia-reperfusion. Conclusions Pre-treatment with PPARα agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPARα agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis

  11. Peroxisome Proliferator-Activated Receptor Agonist Treatment of Alcohol-Induced Hepatic Insulin Resistance

    PubMed Central

    de la Monte, Suzanne M.; Pang, Maoyin; Chaudhry, Rajeeve; Duan, Kevin; Longato, Lisa; Carter, Jade; Ouh, Jiyun; Wands, Jack R.

    2011-01-01

    Chronic ethanol exposure impairs insulin signaling in the liver. Peroxisome-proliferator activated receptor (PPAR) agonists function as insulin sensitizers and are used to treat type 2 diabetes mellitus. We examined the therapeutic effectiveness of PPAR agonists in reducing alcoholic hepatitis and hepatic insulin resistance in a model of chronic ethanol feeding. Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% (control) or 37% ethanol (caloric content; 9.2% v/v) for 8 weeks. After 3 weeks on the diets, the rats were treated with vehicle, or a PPAR-α, PPAR-δ, or PPAR-γ agonist twice weekly by i.p. injection. Livers were harvested for histopathological, gene expression (RT-PCR), protein (Western and ELISA), and receptor binding studies. Ethanol-fed rats developed steatohepatitis with disordered hepatic chord architecture, increased hepatocellular apoptosis, reduced binding to the insulin, IGF-1, and IGF-2 receptors, and decreased expression of glyceraldehyde-3-phosphate dehydrogenase and aspartyl-(asparaginyl)-β-hydroxylase (mediates remodeling), which are regulated by insulin/IGF signaling. PPAR-α, PPAR-δ, or PPAR-γ agonist treatments reduced the severity of ethanol-mediated liver injury, including hepatic architectural disarray and steatosis. In addition, PPAR-δ and PPAR-γ agonists reduced insulin/IGF resistance and increased insulin/IGF-responsive gene expression. In conclusion, PPAR agonists may help reduce the severity of chronic ethanol-induced liver injury and insulin/IGF resistance, even in the context of continued high-level ethanol consumption. PMID:21426453

  12. Early postnatal stress alters place conditioning to both mu- and kappa-opioid agonists.

    PubMed

    Michaels, Clifford C; Holtzman, Stephen G

    2008-04-01

    Clinical literature has established a link between early childhood incidents of neglect and trauma and adult problems with substance abuse. In rats, such early life stress has been modeled using a maternal separation (MS) paradigm in which rat pups were removed from their mothers for a few hours daily during the first two postnatal weeks. In this study, we used the MS model to investigate the effects of early postnatal stress on place conditioning to both mu- and kappa-opioid agonists in male and female Long-Evans rats. Offspring of both rearing conditions [MS or nonhandled (NH)] were conditioned using a biased procedure to saline, the mu-opioid agonist morphine (3.0, 5.6, and 10 mg/kg s.c.), or the kappa-opioid agonist spiradoline (0.3, 1.0, and 3.0 mg/kg) for 3 days, followed by a drug-free place-conditioning test 24 h later. Saline was administered in the morning, 30 min before confinement in one compartment, whereas morphine or spiradoline was administered in a similar manner 6 h later in the opposite compartment. MS offspring spent significantly more time in the morphine-paired compartment than NH offspring, indicating a greater place preference for the mu-opioid agonist. In the case of spiradoline, NH offspring spent significantly less time in the spiradoline-paired compartment, indicating a greater aversion to the kappa-opioid agonist in these animals than in MS offspring. These findings indicate that early postnatal stress can significantly alter the rewarding or aversive value of mu- and kappa-opioid agonists when measured using place conditioning. PMID:18203949

  13. Agonist binding and function at the human alpha(2A)-adrenoceptor: allosteric modulation by amilorides.

    PubMed

    Leppik, R A; Birdsall, N J

    2000-11-01

    It has been found previously that amilorides act via an allosteric site on the alpha(2A)-adrenergic receptor to strongly inhibit antagonist binding. In this study, allosteric modulation of agonist binding and function at the alpha(2A)-adrenergic receptor was explored. The dissociation rate of the agonist [(3)H]UK14304 from alpha(2A)-receptors was decreased by the amilorides in a concentration-dependent manner. This contrasts with the increases in (3)H-antagonist dissociation rate found previously. The agonist-amiloride analog interaction data could be fitted to equations derived from the ternary complex allosteric model. The calculated log affinities of the amilorides at the [(3)H]UK14304-occupied receptor increased with the size of the 5-N-alkyl side chain and ranged from 2.4 for amiloride to 4.2 for 5-(N,N-hexamethylene)-amiloride. The calculated negative cooperativities cover a narrow range, in sharp contrast to the broad range found for antagonist-amiloride analog interactions. The effects of the amilorides on the agonist actions of UK14304, epinephrine, and norepinephrine were explored using a [(35)S]GTPgammaS functional assay, and the parameters calculated for the cooperativities and affinities of the UK14304-amiloride analog interactions, using the equation derived from the ternary complex allosteric model, were in good agreement with those derived from the kinetic studies. Therefore both the binding and functional data provide further support for the existence of a well defined allosteric site on the human alpha(2A)-adrenergic receptor. The binding mode of the amilorides at the agonist-occupied and antagonist-occupied receptor differs markedly but, within each group, the structure of either the agonist or the antagonist examined has only a slight effect on the allosteric interactions. PMID:11040058

  14. Flow-injection chemiluminescence method to detect a β2 adrenergic agonist.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Shang, Jian; Wang, Zhongcheng; Yu, Hua; Du, Wei; Fu, Qiang

    2015-02-01

    A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide-luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide-luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from 'Y2 ' to the flow cell. The linear ranges and limit of detection were 10-100 and 5 ng/mL for isoprenaline hydrochloride, 20-100 and 5 ng/mL for salbutamol sulfate, 8-200 and 1 ng/mL for terbutaline sulfate, 20-100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8-98.5%. The possible CL reaction mechanism of potassium ferricyanide-luminol-β2 adrenergic agonist was discussed from the UV/vis spectra. PMID:24830367

  15. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor.

    PubMed

    Gough, Michael J; Ruby, Carl E; Redmond, William L; Dhungel, Birat; Brown, Alexis; Weinberg, Andrew D

    2008-07-01

    Acquisition of full T-cell effector function and memory differentiation requires appropriate costimulatory signals, including ligation of the costimulatory molecule OX40 (TNFRSF4, CD134). Tumors often grow despite the presence of tumor-specific T cells and establish an environment with weak costimulation and immune suppression. Administration of OX40 agonists has been shown to significantly increase the survival of tumor-bearing mice and was dependent on the presence of both CD4 and CD8 T cells during tumor-specific priming. To understand how OX40 agonists work in mice with established tumors, we developed a model to study changes in immune cell populations within the tumor environment. We show here that systemic administration of OX40 agonist antibodies increased the proportion of CD8 T cells at the tumor site in three different tumor models. The function of the CD8 T cells at the tumor site was also increased by administration of OX40 agonist antibody, and we observed an increase in the proportion of antigen-specific CD8 T cells within the tumor. Despite decreases in the proportion of T regulatory cells at the tumor site, T regulatory cell function in the spleen was unaffected by OX40 agonist antibody therapy. Interestingly, administration of OX40 agonist antibody caused significant changes in the tumor stroma, including decreased macrophages, myeloid-derived suppressor cells, and decreased expression of transforming growth factor-beta. Thus, therapies targeting OX40 dramatically changed the tumor environment by enhancing the infiltration and function of CD8 T cells combined with diminished suppressive influences within the tumor. PMID:18593921

  16. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  17. Thermostabilisation of an agonist-bound conformation of the human adenosine A(2A) receptor.

    PubMed

    Lebon, Guillaume; Bennett, Kirstie; Jazayeri, Ali; Tate, Christopher G

    2011-06-10

    The adenosine A(2A) receptor (A(2A)R) is a G-protein-coupled receptor that plays a key role in transmembrane signalling mediated by the agonist adenosine. The structure of A(2A)R was determined recently in an antagonist-bound conformation, which was facilitated by the T4 lysozyme fusion in cytoplasmic loop 3 and the considerable stabilisation conferred on the receptor by the bound inverse agonist ZM241385. Unfortunately, the natural agonist adenosine does not sufficiently stabilise the receptor for the formation of diffraction-quality crystals. As a first step towards determining the structure of A(2A)R bound to an agonist, the receptor was thermostabilised by systematic mutagenesis in the presence of the bound agonist [(3)H]5'-N-ethylcarboxamidoadenosine (NECA). Four thermostabilising mutations were identified that when combined to give mutant A(2A)R-GL26, conferred a greater than 200-fold decrease in its rate of unfolding compared to the wild-type receptor. Pharmacological analysis suggested that A(2A)R-GL26 is stabilised in an agonist-bound conformation because antagonists bind with up to 320-fold decreased affinity. None of the thermostabilising mutations are in the ZM241385 binding pocket, suggesting that the mutations affect ligand binding by altering the conformation of the receptor rather than through direct interactions with ligands. A(2A)R-GL26 shows considerable stability in short-chain detergents, which has allowed its purification and crystallisation. PMID:21501622

  18. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands.

    PubMed

    Takayama, Hiromitsu; Ishikawa, Hayato; Kurihara, Mika; Kitajima, Mariko; Aimi, Norio; Ponglux, Dhavadee; Koyama, Fumi; Matsumoto, Kenjiro; Moriyama, Tomoyuki; Yamamoto, Leonard T; Watanabe, Kazuo; Murayama, Toshihiko; Horie, Syunji

    2002-04-25

    Mitragynine (1) is a major alkaloidal component in the Thai traditional medicinal herb, Mitragyna speciosa, and has been proven to exhibit analgesic activity mediated by opioid receptors. By utilizing this natural product as a lead compound, synthesis of some derivatives, evaluations of the structure-activity relationship, and surveys of the intrinsic activities and potencies on opioid receptors were performed with guinea pig ileum. The affinities of some compounds for mu-, delta-, and kappa-receptors were determined in a receptor binding assay. The essential structural moieties in the Corynanthe type indole alkaloids for inducing the opioid agonistic activity were also clarified. The oxidative derivatives of mitragynine, i.e., mitragynine pseudoindoxyl (2) and 7-hydroxymitragynine (12), were found as opioid agonists with higher potency than morphine in the experiment with guinea pig ileum. In addition, 2 induced an analgesic activity in the tail flick test in mice. PMID:11960505

  19. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate.

    PubMed Central

    Colquhoun, D; Sakmann, B

    1985-01-01

    The fine structure of ion-channel activations by junctional nicotinic receptors in adult frog muscle fibres has been investigated. The agonists used were acetylcholine (ACh), carbachol (CCh), suberyldicholine (SubCh) and decan-1,10-dicarboxylic acid dicholine ester (DecCh). Individual activations (bursts) were interrupted by short closed periods; the distribution of their durations showed a major fast component ('short gaps') and a minor slower component ('intermediate gaps'). The mean duration of both short and intermediate gaps was dependent on the nature of the agonist. For short gaps the mean durations (microseconds) were: ACh, 20; SubCh, 43; DecCh, 71; CCh, 13. The mean number of short gaps per burst were: ACh, 1.9; SubCh, 4.1; DecCh, 2.0. The mean number of short gaps per burst, and the mean number per unit open time, were dependent on the nature of the agonist, but showed little dependence on agonist concentration or membrane potential for ACh, SubCh and DecCh. The short gaps in CCh increased in frequency with agonist concentration and were mainly produced by channel blockages by CCh itself. Partially open channels (subconductance states) were clearly resolved rarely (0.4% of gaps within bursts) but regularly. Conductances of 18% (most commonly) and 71% of the main value were found. However, most short gaps were probably full closures. The distribution of burst lengths had two components. The faster component represented mainly isolated short openings that were much more common at low agonist concentrations. The slower component represented bursts of longer openings. Except at very low concentrations more than 85% of activations were of this type, which corresponds to the 'channel lifetime' found by noise analysis. The frequency of channel openings increased slightly with hyperpolarization. The short gaps during activations were little affected when (a) the [H+]o or [Ca2+]o were reduced to 1/10th of normal, (b) when extracellular Ca2+ was replaced by Mg2

  20. Disease Modification of Breast Cancer–Induced Bone Remodeling by Cannabinoid 2 Receptor Agonists

    PubMed Central

    Symons-Liguori, Ashley M; Largent-Milnes, Tally M; Havelin, Josh J; Ferland, Henry L; Chandramouli, Anupama; Owusu-Ankomah, Mabel; Nikolich-Zugich, Tijana; Bloom, Aaron P; Jimenez-Andrade, Juan Miguel; King, Tamara; Porreca, Frank; Nelson, Mark A; Mantyh, Patrick W; Vanderah, Todd W

    2015-01-01

    Most commonly originating from breast malignancies, metastatic bone cancer causes bone destruction and severe pain. Although novel chemotherapeutic agents have increased life expectancy, patients are experiencing higher incidences of fracture, pain, and drug-induced side effects; furthermore, recent findings suggest that patients are severely undertreated for their cancer pain. Strong analgesics, namely opiates, are first-line therapy in alleviating cancer-related pain despite the severe side effects, including enhanced bone destruction with sustained administration. Bone resorption is primarily treated with bisphosphonates, which are associated with highly undesirable side effects, including nephrotoxicity and osteonecrosis of the jaw. In contrast, cannabinoid receptor 2 (CB2) receptor-specific agonists have been shown to reduce bone loss and stimulate bone formation in a model of osteoporosis. CB2 agonists produce analgesia in both inflammatory and neuropathic pain models. Notably, mixed CB1/CB2 agonists also demonstrate a reduction in ErbB2-driven breast cancer progression. Here we demonstrate for the first time that CB2 agonists reduce breast cancer–induced bone pain, bone loss, and breast cancer proliferation via cytokine/chemokine suppression. Studies used the spontaneously-occurring murine mammary cell line (66.1) implanted into the femur intramedullary space; measurements of spontaneous pain, bone loss, and cancer proliferation were made. The systemic administration of a CB2 agonist, JWH015, for 7 days significantly attenuated bone remodeling, assuaged spontaneous pain, and decreased primary tumor burden. CB2-mediated effects in vivo were reversed by concurrent treatment with a CB2 antagonist/inverse agonist but not with a CB1 antagonist/inverse agonist. In vitro, JWH015 reduced cancer cell proliferation and inflammatory mediators that have been shown to promote pain, bone loss, and proliferation. Taken together, these results suggest CB2 agonists as a

  1. Use of alpha-agonists for management of anaphylaxis occurring under anaesthesia: case studies and review.

    PubMed

    Heytman, M; Rainbird, A

    2004-12-01

    Anaphylaxis is an uncommon but serious complication of anaesthesia. Most current guidelines for the management of anaphylaxis list only epinephrine as a vasopressor to use in the event of cardiovascular collapse. We present two cases of anaphylaxis under anaesthesia where return of spontaneous circulation was refractory to epinephrine, but occurred following the administration of the alpha-agonist metaraminol. Potential advantages and disadvantages of using epinephrine in this setting, the role of alpha-agonists and some potential mechanisms accounting for their role in successful management are reviewed. PMID:15549981

  2. Chemical communication in scarab beetles: reciprocal behavioral agonist-antagonist activities of chiral pheromones.

    PubMed Central

    Leal, W S

    1996-01-01

    A novel mechanism of reciprocal behavioral agonist-antagonist activities of enantiomeric pheromones plays a pivotal role in overcoming the signal-to-noise problem derived from the use of a single-constituent pheromone system in scarab beetles. Female Anomala osakana produce (S, Z)-5-(+)-(1-decenyl)oxacyclopentan-2-one, which is highly attractive to males; the response is completely inhibited even by 5% of its antipode. These two enantiomers have reverse roles in the Popillia japonica sex pheromone system. Chiral GC-electroantennographic detector experiments suggest that A. osakana and P. japonica have both R and S receptors that are responsible for behavioral agonist and antagonist responses. PMID:8901541

  3. Discovery of biaryls as RORγ inverse agonists by using structure-based design.

    PubMed

    Enyedy, Istvan J; Powell, Noel A; Caravella, Justin; van Vloten, Kurt; Chao, Jianhua; Banerjee, Daliya; Marcotte, Douglas; Silvian, Laura; McKenzie, Andres; Hong, Victor Sukbong; Fontenot, Jason D

    2016-05-15

    RORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation. Our goal was to optimize two RORγ inverse agonists: T0901317 from literature and 1 that we obtained from internal screening. We used information from internal X-ray structures to design two libraries that led to a new biaryl series. PMID:27080181

  4. The CRTH2 agonist Pyl A prevents lipopolysaccharide-induced fetal death but induces preterm labour

    PubMed Central

    Sykes, Lynne; Herbert, Bronwen R; MacIntyre, David A; Hunte, Emma; Ponnampalam, Sathana; Johnson, Mark R; Teoh, Tiong G; Bennett, Phillip R

    2013-01-01

    We have previously demonstrated that the anti-inflammatory prostaglandin 15-deoxy-Δ 12,14-prostaglandin J2 (15dPGJ2) delays inflammation-induced preterm labour in the mouse and improves pup survival through the inhibition of nuclear factor-κB (NF-κB) by a mechanism yet to be elucidated. 15dPGJ2 is an agonist of the second prostaglandin D2 receptor, chemoattractant receptor homologous to the T helper 2 cell (CRTH2). In human T helper cells CRTH2 agonists induce the production of the anti-inflammatory interleukins IL-10 and IL-4. We hypothesized that CRTH2 is involved in the protective effect of 15dPGJ2 in inflammation-induced preterm labour in the murine model. We therefore studied the effects of a specific small molecule CRTH2 agonist on preterm labour and pup survival. An intrauterine injection of lipopolysaccharide (LPS) was administered to CD1 mice at embryonic day 16, ± CRTH2 agonist/vehicle controls. Mice were killed at 4.5 hr to assess fetal wellbeing and to harvest myometrium and pup brain for analysis of NF-κB, and T helper type 1/2 interleukins. To examine the effects of the CRTH2 agonist on LPS-induced preterm labour, mice were allowed to labour spontaneously. Direct effects of the CRTH2 agonist on uterine contractility were examined ex vivo on contracting myometrial strips. The CRTH2 agonist increased fetal survival from 20 to 100% in LPS-treated mice, and inhibited circular muscle contractility ex vivo. However, it augmented LPS-induced labour and significantly increased myometrial NF-κB, IL-1β, KC-GRO, interferon-γ and tumour necrosis factor-α. This suggests that the action of 15dPGJ2 is not via CRTH2 and therefore small molecule CRTH2 agonists are not likely to be beneficial for the prevention of inflammation-induced preterm labour. PMID:23374103

  5. Dimethyl-diphenyl-propanamide derivatives as nonsteroidal dissociated glucocorticoid receptor agonists.

    PubMed

    Yang, Bingwei V; Weinstein, David S; Doweyko, Lidia M; Gong, Hua; Vaccaro, Wayne; Huynh, Tram; Xiao, Hai-Yun; Doweyko, Arthur M; McKay, Lorraine; Holloway, Deborah A; Somerville, John E; Habte, Sium; Cunningham, Mark; McMahon, Michele; Townsend, Robert; Shuster, David; Dodd, John H; Nadler, Steven G; Barrish, Joel C

    2010-12-01

    A series of 2,2-dimethyl-3,3-diphenyl-propanamides as novel glucocorticoid receptor modulators is reported. SAR exploration led to the identification of 4-hydroxyphenyl propanamide derivatives displaying good agonist activity in GR-mediated transrepression assays and reduced agonist activity in GR-mediated transactivation assays. Compounds 17 and 30 showed anti-inflammatory activity comparable to prednisolone in the rat carrageenan-induced paw edema model, with markedly decreased side effects with regard to increases in blood glucose and expression of hepatic tyrosine aminotransferase. A hypothetical binding mode accounting for the induction of the functional activity by a 4-hydroxyl group is proposed. PMID:21073190

  6. Synthesis and SAR of aminothiazole fused benzazepines as selective dopamine D2 partial agonists.

    PubMed

    Urbanek, Rebecca A; Xiong, Hui; Wu, Ye; Blackwell, William; Steelman, Gary; Rosamond, Jim; Wesolowski, Steven S; Campbell, James B; Zhang, Minli; Brockel, Becky; Widzowski, Daniel V

    2013-01-15

    Dopamine (D(2)) partial agonists (D2PAs) have been regarded as a potential treatment for schizophrenia patients with expected better side effect profiles than currently marketed antipsychotics. Herein we report the synthesis and SAR of a series of aminothiazole fused benzazepines as selective D(2) partial agonists. These compounds have good selectivity, CNS drug-like properties and tunable D(2) partial agonism. One of the key compounds, 8h, has good in vitro/in vivo ADME characteristics, and is active in a rat amphetamine-induced locomotor activity model. PMID:23237836

  7. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson's disease.

    PubMed

    Alexander, G M; Schwartzman, R J; Nukes, T A; Grothusen, J R; Hooker, M D

    1994-08-01

    We studied the effect of the beta 2-adrenergic agonist albuterol on Parkinson's disease (PD) patients receiving chronic levodopa treatment. The albuterol-treated patients demonstrated reduced parkinsonian symptoms and an increased ability to tap their index finger between two points 20 cm apart, and were able to perform a "walk test" in 70% of their control time. Three patients currently on chronic albuterol therapy still show amelioration of their parkinsonian symptoms, and two have reduced their daily levodopa dose. This study suggests that beta 2-adrenergic agonists as adjunct therapy to levodopa may be beneficial in PD. PMID:8058159

  8. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  9. Self-administration of agonists selective for dopamine D2, D3, and D4 receptors by rhesus monkeys.

    PubMed

    Koffarnus, Mikhail N; Collins, Gregory T; Rice, Kenner C; Chen, Jianyong; Woods, James H; Winger, Gail

    2012-08-01

    Dopamine receptor mechanisms are believed to play a role in the reinforcing effects of cocaine and other drugs of abuse. The lack of receptor-selective agonists has made it difficult to determine the role of the individual dopamine receptors in mediating these reinforcing effects. In this study, rhesus monkeys with a history of intravenous cocaine self-administration were tested for the reinforcing effects of several D(3)-preferring agonists, a D(2)-preferring agonist, and a D(4) agonist. The D(2)-preferring agonist did not maintain responding in any monkeys, and the D(4) agonist was self-administered at low rates, just above those maintained by saline, in one monkey. The D(3)-preferring agonists were self-administered by approximately half of the animals, although at lower rates than cocaine. These results indicate that the apparent limited reinforcing effectiveness of D(2)-like agonists requires activity at D(3) receptors. Previous data from this laboratory and others also suggest that these drugs may not serve as reinforcers directly; the behavior may be maintained by response-contingent delivery of stimuli previously paired with cocaine. The ability of drug-related stimuli to maintain responding apparently differs among monkeys and other organisms, and may be related to individual differences in drug-taking behavior in humans. PMID:22785383

  10. The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist

    SciTech Connect

    Madauss, Kevin P.; Bledsoe, Randy K.; Mclay, Iain; Stewart, Eugene L.; Uings, Iain J.; Weingarten, Gordon; Williams, Shawn P.

    2009-07-23

    The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).

  11. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice.

    PubMed

    Elayan, Hamzeh; Milic, Milos; Sun, Ping; Gharaibeh, Munir; Ziegler, Michael G

    2012-07-01

    Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake. PMID:22422105

  12. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  13. Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats

    PubMed Central

    Hammond, R.; Mauk, R.; Ninaci, D.; Nelson, D.; Gibbs, RB

    2009-01-01

    Previous work has shown that continuous estradiol replacement in young ovariectomized rats enhances acquisition of a delayed matching-to-position (DMP) T-maze task over that of ovariectomized controls. The mechanism by which estradiol confers this benefit has not been fully elucidated. This study examined the role of selective estrogen receptor agonists of ERα, ERβ, and GPR30 in the enhancement of spatial learning on a DMP task by comparing continuous estradiol replacement with continuous administration of PPT (an agonist of ERα), DPN (an agonist of ERβ), or G-1 (an agonist of GPR30) relative to gonadally intact and ovariectomized vehicle-treated controls. It was found that ovariectomy impaired acquisition on this task, whereas all ER selective agonists restored the rate of acquisition to that of gonadally intact controls. These data suggest that estradiol can work through an